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Abstract: Currently, Advanced Metering Infrastructure (AMI) systems have equipped the low voltage
section with a communication system that is being used mainly for metering purposes, but it
can be further employed for additional applications related to the Smart Grid (SG) concept. This
paper explores the potential applications beyond metering of the available channel in a Power Line
Communication-based AMI system. To that end, IP has been implemented over Narrow Band-Power
Line Communication (NB-PLC) in a real microgrid, which includes an AMI system. A thorough
review of potential applications for the SG that might be implemented for this representative case is
included in order to provide a realistic analysis of the potentiality of NB-PLC beyond smart metering.
The results demonstrate that existing AMI systems based on NB-PLC have the capacity to implement
additional applications such as remote commands or status signals, which entails an added value for
deployed AMI systems.

Keywords: narrowband power line communications; smart grid applications; Smart Grid
communications; internet protocol

1. Introduction

Most of the existing research works that address grid improvements without communication focus
on automation issues and local control tasks [1–3]. By contrast, a proper communication infrastructure
enables the electric system to increase its efficiency to a much greater extent than automation without
communication capacities could ever do [4]. In this context emerges the concept of the Smart Grid
(SG), which highly relies on the introduction of Information and Communication Technologies (ICTs)
for its success. Overall, ICTs allow the traditional power grid to become more reliable, resilient, and
efficient. There is a wide range of research works endorsing this concept, including the definition of
applications for the SG and their requirements [5–7]. These applications are supported by bidirectional
communication systems that must meet the needs of each specific application: technical aspects such
as data rate, latency, reliability, coverage range, and security. However, other factors such as the
deployment cost, the integration with legacy technologies, the grid distribution system arrangements,
and specific deployment strategies from the involved stakeholders must be also addressed.

In this context, Narrowband PLC (NB-PLC) present some valuable features, whose suitability for
the SG has been widely covered in the literature [8–10]: low initial deployment cost, the use of existing
infrastructure, and the total control over communications by distribution system operators without
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the need for external communication system operators. These features have all contributed to the relevant
presence of NB-PLC in European Advanced Metering Infrastructures (AMI) deployments [11].
However, NB-PLC presents some drawbacks, mainly related to its performance dependency on
the channel conditions [12]. In any case, it is expected that future improvements of the technology will
lead to increased levels of performance and robustness [13].

Once the NB-PLC infrastructure for AMI has been successfully deployed, it can be used for
additional applications apart from metering. The objective of this work is to analyze the new potential
applications for SGs of a NB-PLC system. Considering the existing number of AMI deployments
based on this technology, the new potential applications can entail a notably improvement for the grid.
The study is based on the results of a measurement campaign performed in a real microgrid with
a wide range of distributed energy resources (DERs), which also includes an AMI system based on
NB-PLC. A thorough review of potential applications for SGs that might be implemented for this
representative case is included in order to provide a realistic analysis of the potentiality of NB-PLC
beyond smart metering.

The paper is divided as follows: Section 2 describes emerging applications for SGs, while
the opportunities for NB-PLC beyond Smart Metering are described in Section 3. Then, Section 4
discusses the potential applications of the implementation of IP over NB-PLC in a real microgrid and,
finally, Section 5 summarizes the most important ideas of the presented work.

2. Review of Applications for Smart Grids

Some of the most important applications for the SGs regarding their communication requirements
can be seen in Table 1 [6,7,14–16]. The communication requirements are given in terms of data rate
and latency. The data rate specifies how fast the data is transmitted between two communication
nodes and can be considered the most restrictive parameter, and the latency defines the delay of
the data when transmitted from one node to another. Latency becomes crucial in applications that
require fast responses, while for some other applications is less important (e.g., metering for billing).
The applications are arranged in order of increasing data rate, so that Table 1 can be consulted for
evaluating potential applications to be implemented in an existing communication deployment.

In addition to traditional applications such as monitoring, control, and substation automation,
there are important agents whose relevance in the SG is growing. These are mainly the distributed
energy resources (DERs) and microgrids, the consumers evolving towards prosumers, and the electric
vehicles (EVs), from which new applications are emerging. These applications are reviewed below.
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Table 1. Classification of applications for the Smart Grid according to their communication requirements.

Data Rate
Range

Latency
Range Application Approximated

Specific Data Rate
Approximated

Specific Latency Tasks Typical
Data Size

Indicative Data
Sampling Reliability

bps ms–s

Remote control ~bps 100–500 ms Connections/disconnections 100–500 B Occasional >99%

Pricing ~bps 10 s Prepayment services 100–200 B Regular (per month) >99%

Lighting, traffic control ~bps 100–300 s Signaling and commands 10–50 B Occasional >99%

<10 kbps ms–s

SCADA ~kbps 300–3000 ms Monitoring and control commands 100–500 B “Polling” >99%

Domestic applications ~kbps/device 2–15 s

Customer information requests
and responses 100–500 B Regular and under

demand >99%

Premises network administration 25 B As needed >99%

10–100
kbps

<200 ms

Substation automation
(SA) 9.6–56 kbps 15–200 ms Monitoring and control commands 150–250 B Several times per day

and under demand >99.99%

Overhead transmission
line monitoring 9.6–56 kbps 15–200 ms Monitoring and data maintenance 100–1000 B Several times per day

and under demand 99.0–99.99%

Distribution automation
(DA)

9.6–56 kbps 20–200 ms

Monitoring and data maintenance 100–1000 B 1 device per hour >99.99%

Control commands 150–250 B 1 device per hour
(minimum) >99.99%

Fault detection, clearing, isolation
and restoration 25 B 1 device per 5 s

(minimum) >99.99%

200 ms–5 s

Distribution management 9.6–100 kbps 100 ms–2 s Monitoring, data maintenance and
control commands 100–1000 B 1 device per hour

(minimum) 99.0–99.99%

Home Energy
Managemnt (HEM) 9.6–56 kbps 200 ms–2 s Signaling and commands 100–500 B Regular and under

demand 99.0–99.99%

Distributed Energy
Resources management 9.6–56 kbps 200 ms–2 s Operation commands 25 B Several times per day 99.0–99.99%

Demand-side
management (SM) 14–100 kbps/node 500 ms–5 s RTP programs 100 B 1 per device per price,

several times per day >99%
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Table 1. Cont.

Data Rate
Range

Latency
Range Application Approximated

Specific Data Rate
Approximated

Specific Latency Tasks Typical
Data Size

Indicative Data
Sampling Reliability

10–100
kbps

<2 s

Outage management 56 kbps 2 s Outage and restoration
management 25 B 1 per power lost >99%

AMI (per node) 10–100 kbps ≥2 s
Meter reading–on demand 100 B As needed >99%

Meter reading–scheduled 1600–2400 B Several times per day >99%

2 s–5 min

EVs—vehicle to grid
(V2G) 9.6–56 kbps 2 s–5 min Pricing signals and commands 255 B 1 per EV per day 99.0–99.99%

EVs—charging 9.6–56 kbps 2 s–5 min Charge status signals and
commands 100 B 2–4 per EV per day 99.0–99.99%

Demand-side
management (DSM)

14–100 kbps/node 2 s–5 min

TOU programs 100 B 1 per device per price,
several times per year >99%

CPP programs 100 B 1 per device per price,
several times per year >99%

Service switch operation 25 B 1–2 per group of
meters per day >99%

100–1000
kbps 20 ms–2 s

Wide area awareness 600–1500 kbps 20–200 ms Synchrophasor, command controls 50–100 B Regular and under
demand >99.99%

Surveillance 500–1500 kbps ~s Monitoring and response 100–500 B Regular and
event-driven >99.99%

AMI (backhaul) 500 kbps ≥2 s Meter reading–bulk transfer ~MB Several times per day >99%

Mbps ms Automated Distribution
automation (ADA)

~Mbps 25–100 ms

Monitoring: power oscillations,
voltage stability, states estimation >55 B Once every 0.1 s

(minimum) >99.99%

Control: voltages, cascade failures,
transients, power oscillations 4–160 B Once every 0.1 s

(minimum) >99.99%

Protection: adaptative islanding
and predictive behaviour 4–160 B Once every 0.1 s >99.99%
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2.1. Distributed Energy Resources and Microgrids

The rise of DERs worldwide is a fact that is progressively changing the grid planning. Additionally,
the fluctuating and intermittent nature of renewable energy sources (RES) causes variations in
the power flow that can affect the overall operation of the grid. As a consequence, efficient monitoring
and control applications are required to operate these resources in a reliable and safe way. Current
DERs management strategies focus on enabling an increase of the DERs in existing power grids and
promote the use of more RES with minimum costs for the power grid [5]. Additionally, DERs and
microgrids are closely linked and many microgrid control schemes include specific DER monitoring
and control applications.

The management of DERs and microgrids is closely related to metering tasks, since it requires
efficient and reliable consumption and generation measurements (e.g., through AMI deployments).
Three main metering processes can be found [7]:

• On-demand metering: SMs are read when needed, e.g., when the utility needs to backfill missing
information or during a decision-making process;

• Scheduled metering: provides the data collection from a meter on a regular basis, e.g., several
times per day. Usually, the readings are stored automatically at the meter and then retrieved by
the control center or the utility;

• Bulk transfer: this action is performed to collect data from all the requested meters. The
communication requirements highly depend on the number of involved meters.

The communication requirements for DER management applications vary based on the specific
service, but required data rates can be located in the 9.6–56 kbps range, while latency requirements are
usually above 200 ms and up to a few seconds [6].

2.2. Prosumers

The relevance of the prosumers in order to deliver sustainable, economic, and secure power supply
has been widely accepted. However, there has been still little investigation in prosumer management
schemes in existing SG energy sharing approaches [17]. Three main methods can be found:

• Individual integration: in which there is a direct energy sharing between the prosumers and
utility grid;

• Simple-group integration: the prosumer groups contain different prosumers with diverse
behaviors and the prosumers collectively increase the amount of power to be auctioned to
the grid. These groups can be also found as Virtual Power Plants (VPPs);

• A novel approach (goal-oriented virtual prosumer-communities), which connects the prosumers
to the grid in the form of goal-oriented virtual communities [17].

The individual integration has been the most addressed approach, specially through a set of
measures known as Demand response (DR). DR refers to short-term changes by customers in their
electric consumption patterns to reduce or shift electric load over time and then improving the overall
energy system reliability and energy efficiency. The prosumers participate in the energy market by
changing their energy consumption approach instead of being exposed to fixed prices, resulting in
profits for both the companies and end-users [15]. DR applications can be further classified into [18]:

• Incentive-based DR programs: customers get payments or preferential prices for non-DR periods
from reducing electricity usage during periods of system need or stress. On one hand, in some
programs the grid operator gets total access to the customer premises (direct load control).
The utility sends commands to a load controller that turns on/off selected devices at the customer
premises. Typical devices under these programs are domestic appliances such as central air
conditioning systems, heat pumps, electric water heaters, and pool pumps. On the other hand,
other measures (energy demand, interruptible rates, demand bidding, and capacity market
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programs) require customer involvement, which decides whether they will participate or not
according to the prices and their needs.

• Time-based DR programs: customers vary their demand according to the received price signals.
The oldest and the most prevalent DR program is the time-of-use (TOU), in which customers shift
their electricity usage to off-peak hours to lower their bills. Implementation experience of TOU
rates shows that they can partially influence patterns of electricity demand [19].

• A variation of TOU is critical peak pricing (CPP), which relies on very high critical peak prices, as
opposed to the ordinary peak prices in TOU rates. If the utility needs to limit the loads, it sends
CPP messages to enrolled customers for a radical load reduction. Finally, real-time pricing (RTP)
offers short-term, time-varying pricing information, reflecting the wholesale price of electricity.

As occurs with DERs, the applications for prosumers highly rely on metering systems. Regarding
communication requirements, relatively low-speed communications can be used within prosumer
management, and the latency requirements are not strict (a few seconds).

2.3. Electrical Vehicles (EVs)

The rise of EVs also entails a suitable communications system able to deal with their impact on
the grid. Two main services can be identified regarding EVs communication.

• Vehicle to grid (V2G) operation, which is the supply of the power flow stored in the car to
the power grid. Basically, in this operation the EV acts as a portable battery. Hence, it can be
considered also as a DER. During this operation, it is necessary to monitor both the states of
the grid and the EV and measure the transferred power.

• Charging state is a derived application of EVs. Ideally, charging operations should be done
according to external parameters such as the grid state, renewable energy production, or even
electricity prices. Therefore, different tasks of monitoring and measuring are required.

Communication requirements for EVs applications are between 5 and 10 kbps in terms of data
rate and latency around 2 s. However, if the operations are related to load balancing and billing,
the required data rate can increase up to 56 kbps [15].

2.4. Other Applications

New applications have arisen from the SG concept and are expected to grow in the future, for
example, economical services related to the electricity market, such as the infrastructure for power
generation and electricity market information exchange described in [20]. In this scenario the supply
is provided according to real-time price signals. Another relevant application is the Home Energy
Management (HEM) concept, related also to prosumers, which focuses on the power management
on the consumer side. Thus, home appliances are monitored and controlled to balance and optimize
the power supply and consumption [21]. The requirements of data rates of this applications depend
upon the specific tasks. Since they are not critical services, requirements in terms of latency are less
strict, between 2 and 15 s [15].

3. Opportunities for NB-PLC beyond Smart Metering

3.1. The Role of PLC in the Smart Grid

On one hand, PLC presents some valuable advantages for SGs applications, as it has a wide
potential coverage due to the electricity wires, making every line-powered device a potential target of
value-added services through PLC. Moreover, the installation is already deployed, easy to manage,
and stable. On the other hand, the greatest disadvantages of PLC are mainly related to the medium,
due to existing disturbances, noises, and attenuations, and consequently, the global capacity of PLC in
terms of bandwidth is less than other technologies.
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The use of PLC for applications related to the management of the grid has long been used by
electric power utilities, even before the SG concept arose. In the beginning of the nineties, some studies
pointed out PLC as the enabler of the Automatic Metering Reading (AMR), the subsequent AMI, and
also some control applications [22]. In the following years, prepaid and load response were identified
as potential applications of PLC [23]. Additionally, ref. [24–26] include examples of applications
implemented with PLC related to voltage and reactive power control, emergency signaling, security
systems and maintenance, and remote control. In addition, it is also common to find combinations of
PLC with different tools to increase the range of control applications, such as SCADA systems [27] and
multi-agents architectures [28]. Most of the first uses of PLC were related to the HV section of the grid.
In addition to being considered the most critical section of the grid, the HV section is a better medium
for communications than Medium Voltage (MV) and Low Voltage (LV) lines, since they present lower
attenuation [8]. However, this scenario has changed over time since the MV and LV sections, especially
the latter, are increasingly getting the attention of the grid operators. In addition, some features, such
as OFDM modulation, have facilitated the presence of PLC in LV grids.

Very promising applications of PLC for the SGs are also located within the MV section, such as fault
detection and management, remote control, diagnostic services, and distribution automation [29–33].
Also, applications within the area of DERs can be found in [34,35]. New applications are emerging
also in the LV section, in particular thanks to the rise of AMI systems, which are equipping the LV
section with a true communication system for the first time. This scenario sets a new opportunity for
applications and management of the SGs in the LV section, where the smart meter becomes an enabler
of new applications rather than a digital meter. In fact, there is a wide range of projects making use of
the implementation of PLC in the LV section. For instance, PRICE, Grid4EU, Sustainable, Smart City
Malaga, and Discern use AMI systems based on PoweRline Intelligent Metering Evolution (PRIME)
and G3-PLC for the optimization and management of the grid [36–40]. The Smart Grid Vendee and
Nice Grid projects follow the same idea of using AMI systems (both based on G3-PLC) but include
also DG [41,42]. A common feature of these projects is that all of them use PLC only for AMI purposes.
PLC also presents advantages for EVs applications, since it provides a physical association between
the vehicle and the supply equipment, which provides security and guarantees authentication [8].
In this sense, especially NB-PLC presents promising features for these applications, and some versions
of the technology offer the advantage of being able to communicate through transformers [10].

3.2. The Role of IP

The implementation of communications based on IP emerges as a good candidate for making
use of the additional available channel in NB-PLC, because IP seems to be able to guarantee
the interoperability among different technologies [23]. It also presents several important advantages
for SG applications: reliability, security, strength, simplicity, and the fact of being an open standard.
Specifically, IP is able to address the following key challenges for the SG success [43,44]:

• Flexibility: it is widely accepted that the future SG will be a heterogeneous scenario of
multiple communication technologies, since there is no unique solution that can address
all the functionalities expected from the SG. Not surprisingly, the integration and operation
of multiple technologies and vendor solutions was found to be the top concern about
communications for grid operators [45]. In this sense, IP can run over any link layer network
(e.g., Ethernet, wireless radio networks, and serial lines) providing a common and flexible way
to use and manage the SG. Then, SG applications become independent of the physical media
and data link communication technologies, which greatly reduces the complexity for developing
upper-layer applications and enables interoperability [46].

• Resilience: the SG has to be able to evolve together with the new technologies, applications, and
devices, and so the communication systems must do. In this sense, one of the principal benefits of
IP is its ability to add a capability (e.g., a new application or service) without having to change
IP itself.
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• Scalability: the SG architecture must enable communication and handle data for millions of devices
connected to the grid (substations, transformers, smart meters, DERs, and other equipment) and
growing annually. The last version of IP, IPv6, offers addressing and routing for a huge network
such as the expected SG [47].

• Stability and reliability: the SG data network must be reliable so that it can guarantee uninterrupted
and high quality electrical service. After more than 30 years of existence, it has been demonstrated
that IP is a workable solution considering its large and well-established knowledge base [47].

• Security: ensuring a high degree of security is a crucial requirement for the success of SGs,
as commented on in the previous section. Despite the fact that IP was designed to be open
and flexible, over the years more and more tools have been built to provide security in
the communications that make use of IP networks. In fact, IP is the communication protocol with
the biggest number of tools for securing and managing the transport of data. Many applications,
such as energy metering in the SG, have emerged from a decade of research in wireless sensor
networks. However, the lack of an IP-based network architecture precluded sensor networks from
interoperating with the Internet, limiting their real-world impact [23]. But that is now changing
and IP is increasingly being used in supervision and control applications in the energy field, such
as demand response, DG control, and consumer integration [48]. As pointed out in [23], IP has to
be implemented up until the last node of the communication network in order to be the reference
protocol. Therefore, it is essential to reach the LV section.

3.3. IP Data Transmission over NB-PLC: Practical Implementation

The AMI infrastructure might allow additional applications beyond smart metering, as studied
in [49]. In [9], it was demonstrated by laboratory tests that IP can be implemented in the available
channel of a NB-PLC system (specifically, PRIME technology), and in [50], measurements performed
in a real environment demonstrated the viability of IP transmission over PLC. The measurements
were performed in a real microgrid implementing a PLC-based AMI system consisting of 21 nodes.
Detailed features of the microgrid and the AMI deployment can be consulted in [51]. The devices
used for the measurements are briefly described below. Additionally, they can be identified in
the communication topology of the scenario showed in Figure 1.

• Portable Base Node (PBN): acts as a communication PLC node and includes IP capabilities.
Three PBNs were used, whose roles were configured as follows:

# PBN-BN: one of the PBNs was configured as the subnet manager node (base node).
# PBN-SNA and PBN-SNB: the other two PBNs were configured as service nodes (SN).

These PBNs will be registered in the subnetwork governed by the PBN-BN.

• SMs: all the SMs within the considered subnetwork are part of the measurements as they will
be registered in the PBN-BN as well. The SMs are responsible for generating different types of
traffic, which were also considered for the measurements since the implementation of IP should
not affect the normal metering tasks of the microgrid:

# Control data (C): it is automatically generated for the maintenance and operation of
the subnetwork, and consists mainly of signaling data and topological information. Control
traffic is always present in the subnetwork;

# Basic instantaneous metering data values (I): these are request tasks configured in the data
concentrator, which interrogates each minute to all the SMs within the subnetwork
regarding their instantaneous measurement data, whether of consumption or generation.
This traffic is added to the control traffic;

# Load profile metering data values (P): these are also request tasks configured in the data
concentrator, which interrogates a specific SM regarding its measurement data stored
between a start date and an end date via web service.
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Finally, Iperf software tool is responsible for generating IP traffic and measuring the performance
of the network in terms of data rate [52]. A detailed description of the configurations and devices can
be consulted in [50].
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Figure 1. Example of subnetwork topology for the measurements.

Aiming at testing a wide range of parameters, several configurations and scenarios were measured,
as summarized in Table 2, and the results can be seen in a schematic way in Figure 2. The analysis of
the obtained results is addressed in [53]. For the present work, the numeric values of the obtained data
rates and latencies are the parameters under consideration, since they are the key parameters to take
into account when evaluating communication networks [5,6].

Overall, it can be seen that for the communication between the BN and a SN, the level of switching
of the receiver node (i.e., the communication hops between nodes through a repeater or switch) is
the main limiting parameter followed by the type of traffic within the subnetwork. For each case, the
resulting data rate and latency can be seen in Figure 2. For the communication between a node directly
connected to the BN (its switching level is zero) and another node, regardless of its switching level (up
to three), the available data rate is less than 1 kbps and the latency range is 1–3 s.

Table 2. Summary of the considered configurations for the evaluation of IP over PLC-PRIME.

Measurement Configurations

Transmission size (kB) 100

Number of nodes in the subnetwork 21

Type of metering traffic in the subnetwork
Control (C)
Control + instantaneous (I)
Control + profiles (P)

Considered transport protocols TCP and UDP

Type of IP communication and switching level (i)

Between BN and SN

BN–SNB(0)
BN–SNB(1)
BN–SNB(2)
BN–SNB(3)

Between SN and SN

SNA(0)–SNB(0)
SNA(0)–SNB(1)
SNA(0)–SNB(2)
SNA(0)–SNB(3)
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Figure 2. Results from the implementation of IP over PLC-PRIME, in terms of data rate and latency, in
a microgrid including an Advanced Metering Infrastructure (AMI) system with 21 nodes. The two main
branches differentiate the source nodes (clients in the IP communication). Then, different sub-branches
emerge according to the level of switching (i) and the type of traffic: control (C), control+instantaneous
(I), and control + profiles (P). Additionally, the suitability of implementing Transmission Control
Protocol (TCP) or User Datagram Protocol (UDP) is also shown.

4. Discussion of Potential Applications of the Implementation of IP over PLC-PRIME

Observing the results in Figure 2 and the data rates and latency values given in Table 1, it is
clear that applications requiring real-time o nearly real-time responses would not be possible with
the presented implementation. Thereafter, applications that require data rates in the order of bps up
to a few kbps could be addressed with the analyzed implementation. Regarding latency, it is crucial
in applications requiring fast responses, which are out of reach of the case under study. However,
the obtained latency results are in line with the latency requirements of the applications whose data
rates vary between bps and a few kbps. The possible applications are described below:

• Focusing on the analysis on the management of the DERs of the microgrid, the requirements
for their monitoring and control range from 9.6 to 56 kbps [6], which is beyond the reach of
the implementation. Additionally, the features of the presented system would not be applicable
to complex management systems [54]. However, it would be possible to implement some less
strict tasks in terms of requirements for DER management. The management of resources can
be approached as a system, in turn, consisting of a monitoring system and several control
actions. The monitoring system, located at the grid operator premises, would be responsible
for reporting the situation of the system by evaluating the state of each of the DERs. This task
could be implemented through simple information signals from each resource, taking advantage
of its associated SM. The response signals would return to the grid operator, which together
with additional supplementary information (e.g., metering data from the SMs themselves via
PLC, task planning, and meteorological forecast) will generate actions to be carried out. At this
point, SCADA systems are usually employed. The implementation of a SCADA system with
the presented implementation could be made just for low performance versions due to the required
data rate (see Table 1). However, those actions can be also implemented as simple signals with P/Q
commands. P/Q commanding for assets control are a widely used technique to keep the voltage
values within the desired range while minimizing system losses [55]. These control parameters
would be then encapsulated in packets that would travel as data frames within the PLC-PRIME
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subnetwork. Once they reach the target node, the signals would be conveniently extracted and
executed by actuators. Additionally, connection/disconnection commands and payment tasks
could also be introduced within the available data rate. Connection/disconnection commands
allow to switch on/off different assets remotely, according to prefixed set-points, while payment
tasks are useful for dynamic pricing and resources savings for the system operator. Figure 3
shows a schematic representation of this management proposal, specifying the communications
at each point as well as the energy flow according to the resource. In addition, the specific traffic
flow for some applications is also included. The advantage of implementing IP (or an alternative
service) over a PLC-PRIME deployment is that the implementation benefits from the features of
the standard (e.g., network auto configuration, robustness, and topological information, among
others), as well as having direct access to the assets (distributed resources and loads) through
the SMs installed as part of the deployment. In addition, since two SNs can communicate between
them without the need of passing through the BN, the data flow does not necessarily need to
start always from the BN, which is interesting from the point of view of networking optimization.
In a subnetwork as the proposed microgrid, with up to three repetition levels (see Figure 1),
all nodes would be accessible with this implementation and could perform the applications
discussed above.

• Communications in home networks: some applications in domestic premises can be addressed
with the presented implementation, e.g., pricing signals and control commands operating within
a HEM system. There are numerous NB-PLC deployments in which end users already count with
a SM. Hence, these deployments are setting the basis for making use of the existing infrastructure
for additional applications. Furthermore, there is a progressive increase of domestic devices that
include some type of communication. Despite the fact that households have been an environment
with multiple protocols and different vendors [8], IP continues to play a very important role,
which makes the implementation of IP over PLC of relevance. The possible applications would be
related with pricing services and remote control.

• Applications in wide area networks: in this context the Smart City concept arises and by extension
a wide range of applications that require data rates of the order of bps or kbps, such as lighting,
irrigation, signaling, monitoring, remote control, and even the management of different assets of
the city such as energy resources, if applicable. As occurs in the domestic premises, cities begin
to be a field with multiple vendors and different solutions in which IP could act as a seamless
communication enabler. In metropolitan scenarios with highly urbanized areas, a great advantage
of PLC against wireless options is that attenuation losses to wireless communications are high
due to interferences with physical objects, and signal strength is low. Then, the assets might not
always be accessible in all locations or at all times [10].

• Applications for utilities and grid operators: the scenario presented can be useful for some
important tasks for grid operators such as signaling and management of connections and
disconnections. These tasks do not have very strict data rate requirements and the needed
data sample can be performed with the presented implementation. As commented above, other
services such as SCADA could be included just for very low performance versions.
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Figure 3. Proposed scheme for including additional tasks in a microgrid with the implementation
of IP over PLC-PRIME: IP-based control commands are sent from the grid operator via Ethernet to
the data concentrator, in which IP data is encapsulated into PLC-PRIME frames towards the receiver
node. Once the frames arrives at the destination, the data is conveniently interpreted by an actuator
which acts over the desired distributed energy resources (DER). IP-based status information from the
DERs travels in reverse, towards the operator via the data concentrator. Additionally, three possible
applications are depicted: P/Q commands, remote connection/disconnection, and payment tasks.

Although the study of security-related aspects is outside the scope of this work, it is worth
mentioning it due to its relevance in SG applications such as those discussed above. Ensuring the security
of SGs is key for their success, which also involves ensuring availability, confidentiality, integrity, and
authentication [8]. As described in [12], it is possible to establish three types of secure associations
between the application level and the PLC equipment. The choice of the most appropriate criterion will
depend not only on the features of the final application but also on the communication protocols used.

• Secure association between the application and the PLC node (“end-to-end”). For this purpose,
an uninterrupted safety tunnel is established between both ends of the communication;
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• Secure transmission in the PLC section and at the application level, separately. In this case,
the tunnel is established in two different domains: from the PLC network to the gateway, and
from the gateway to the final application.

• No specific safety tunnel. In this scenario, the security techniques included in the communications
protocols are used. In the specific case of the technology used for the implementation, PLC-PRIME
v.1.3.6, it includes secure connection methods, authentication, and privacy. Version 1.4 of
the standard also includes encryption mechanisms.

5. Conclusions

In contrast to existing works that address applications in SGs focusing on their requirements
or on the features of each particular technology, this work analyzes the potential applications to be
supported by existing communication deployments. Hence, this compilation can be consulted as
a guideline for implementing potential applications of an existing deployment whose initial purpose
differs from what can be further implemented.

This is the specific case of AMI systems: their success has led to numerous PLC-based deployments
whose infrastructure is currently being used only for metering purposes. This work explores
the viability of using the available channel existing in an AMI system based on NB-PLC for SG
applications beyond Smart Metering. It has been demonstrated that several applications such as remote
connections/disconnections and status signals could be implemented. Additionally, applications for
domestic networks and smart cities could be also addressed. This analysis provides an added value to
existing and future PLC-based AMI deployments, which entails an overall enhancement of the SG.
Future work will tackle the performance of the implementation on the new version of PRIME and
the practical execution of the presented applications.
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