eman ta zabal zazu

UPV EHU

PhD Thesis

A FRAMEWORK FOR TRAFFIC ENGINEERING IN
SOFTWARE-DEFINED NETWORKS WITH ADVANCE RESERVATION
CAPABILITIES

ALAITZ MENDIOLA ALCARAZ

Supervised by Eduardo Jacob Taquet and Jasone Astorga Burgo

University of the Basque Country UPV/EHU

Department of Communications Engineering

2017

(cc)2017 ALAITZ MENDIOLA ALCARAZ (cc by-nc-nd 4.0)

Alaitz Mendiola Alcaraz: PhD Thesis, A framework for Traffic
Engineering in Software-Defined Networks with advance reservation
capabilities, © 2017

Dedicated to the loving memory of Fernando and Marian.

Abstract

The appearance of Software-Defined Networking (SDN) has cleared the
pace for the next generation of networks. In a nutshell, SDN proposes
the separation of the forwarding and control planes, where the control
of the network is performed by means of a logically centralized control
plane that resides in an external element and programs the forwarding
plane using open interfaces. With this new paradigm in mind, network
operators worldwide have started to evolve their network architectures,
in order to reduce their CAPEX and OPEX expenditures and facilitate
the introduction of new services more efficiently.

Among the benefits introduced by SDN, network operators are
interested in its capability to control the network taking into account its
overall state. This capability of SDN can revolutionize Traffic Engineering
(TE), one of the most challenging topics in communication networks,
where the logically centralized control plane enables the utilization of
novel TE strategies and the fine granularity available to forward the
packets makes possible the use of alternative load balancing approaches.

Moreover, Research and Education Networks (REN) that offer high
availability and high quality services to the research and academic
community have started to include SDN in their network evolution plans,
attracted as well by the impact of SDN in TE. In RENs, TE plays a
key role, where the nature of the data being transmitted through these
kinds of networks requires fast failure recovery capabilities and an efficient
utilization of the network resources to cope with the growing data traffic.

More precisely, one of the services typically provided to the research
community is Bandwidth on Demand (BoD), which allows to establish
end-to-end connectivity services during a specific period of time with
a guaranteed bandwidth. The provisioning of the BoD service requires
the utilization of advance reservation mechanisms, typically used in grid
computing and optical networks. In addition, these kind of services are
usually provided in a multi-domain fashion, that is, involving multiple

network domains.

Notwithstanding, the introduction of SDN, makes possible to re-
think how TE should be supported and how the resource and timing
constraints to support advance reservations should be handled in such an
environment. On the one hand, an in-depth analysis of current solutions
for TE based on SDN has been conducted, in order to identify the features
that a TE framework for SDN should provide. On the other hand, current
advance reservation systems, and more precisely, the impact that the data
structures utilized to handle resource and timing constraints have in the
performance of such systems has been evaluated.

As a consequence of these analysis, this PhD thesis introduces DynPaC,
a novel framework for TE in SDN that by means of a modular and
technology agnostic approach, aims to satisfy the TE requirements of
network operators independent of the scope in which it is utilized and the
use case. It is worth remarking that DynPaC has been designed taking
into account the requirements proposed by the network operations team
of the pan-European REN GEANT, which provides connectivity services
to 50 million users across the globe.

In that regard, the DynPaC framework supports advance reservations
and is compliant with the Network Services Framework (NSF) employed
to provide the multi-domain BoD service. Moreover, it improves the
current BoD service provided by GEANT by adding automatic topology
discovery and resilience capabilities. In addition, its modular approach
and its capability to introduce novel TE mechanisms has allowed to
incorporate two mechanisms that make possible the improvement of the
network resource utilization, the flow relocation mechanism and the flow
disaggregation mechanism.

The advance reservation capabilities of DynPaC rely on a set of data
structures and algorithms specifically designed to leverage the logically
centralized control plane and the high programmability available in SDN.
The solution is based on the generation of network snapshots, a data
structure that represents a period of time during which the resource
consumption of a given set of concurrent service reservations remains
stable. These network snapshots are arranged using a hierarchical data
structure called Network Snapshots Tree (NSTree), which enables the

representation of wider time intervals where a subset of common resources

vi

are available by aggregating multiple network snapshots into auxiliary
nodes.

This approach presents some benefits. On the one hand, the utilization
of network snapshots allows to find different but equally valid paths for
the given resource constraints in the different network snapshots in which
the service exists. Furthermore, this also makes possible the introduction
of the aforementioned resource utilization optimization techniques named
flow relocation and flow disaggregation, which allow to accept new service
demands that otherwise would not be accepted.

On the other hand, by aggregating the network snapshots, the time
required to accept or reject a service gets reduced. In advance reservations
it is necessary to check whether there are enough resources to satisfy the
demand during the entire life span of the reservation. In this particular
case, this requires analyzing all the affected network snapshots. By
arranging the network snapshots in a hierarchical data structure, the
running time of the solution is improved, achieving a logarithmic running
time instead of a linear one.

In order to prove the suitability of the solution for the REN
environment, it has been conducted a functional validation where the
connectivity requirements proposed by GEANT’s network operations
team has been successfully tested, so as the multi-domain capabilities
of the solution. Moreover, the performance of the solution has been
evaluated using different topologies, including the topology of one of the
most renowned RENs in the United States, the Energy Sciences Network.
The experiments conclude that the DynPaC framework can satisfy the
requirements of the RENs, and that the data structures and algorithms
used to handle the advance reservations are able to accept or reject a
service reservation request within the order of the milliseconds.

Finally, the solution presented in this PhD thesis has been implemented
using one of the most important SDN controllers in the market, the
open source ONOS controller. It is worth remarking that the DynPaC
framework will be deployed in the pilot phase of the new SDN-based BoD
service of GEANT by the end of 2017. Furthermore, the Open Networking
Laboratory is planning to include some of the features included in the
DynPaC framework in future releases of the ONOS controller.

vii

Laburpena

Software bidez Definitutako Sareen (SDN, Software-Defined Network)
agerpena funtsezkoa izango da sareen hurrengo belaunaldiaren gara-
penerako. Laburki esanda, SDNek datu eta kontrol planoak bereiztea
proposatzen dute, sarearen kontrola logikoki zentralizatuta dagoen
kontrol plano baten bidez burutzen delarik. Logikoki zentralizatutako
kontrol plano hau saretik kanpo dagoen elementu batean kokatzen da eta
sareko elementuen datu planoa programatzen du interfaze irekien bitartez.
Sare paradigma berri hau kontutan izanda, sareen operadoreek beraien
sareetako arkitekturak eboluzionatzen hasi dira, hasierako kostuak zein
operazio kostuak murrizteko asmoarekin eta sareko zerbitzu berrien
sarrera era eraginkorrago batean ahalbidetzeko asmoarekin.

SDNek ekarritako onura guztien artean, sareko operadoreentzat
interesgarriena zera da, SDNek sarea kontrolatzeko daukaten gaitasuna,
sare horien egoera orokorra kontutan izanda. SDNen gaitasun honek
erabateko iraultza ekar dezake Trafikoaren Ingeniaritzaren (TE, Traffic
Engineering) arlora, komunikazio-sareen munduan erronka garrantzitsuak
planteatzen dituen arloa hain zuzen ere. Izan ere, SDNen logikoki
zentralizatutako kontrol planoak TEko estrategia berrien erabilpena
ahalbidetzen du eta datu planoan, berriz, trafiko fluxuak bereizmen
handiarekin banatzeko gaitasunak, sareko zama orekatzeko teknika
berritzaileak erabiltzeko aukera ematen du.

Zentzu horretan, Sare Akademikoak (REN, Research and Education
Network), zientzia erkidegoari eskuragarritasun eta kalitate altuko
zerbitzuak eskaintzen dizkiotenak, beraien sareen eboluziorako plang-
intzetan SDNak sartzen hasi dira, SDNek TEn eduki dezaketen eraginak
erakarrita. RENetan TEk funtsezko papera jokatzen du, sare mota hauen
bitartez bidalitako datuen izaerak hutsegiteei aurre egiteko tekniken
inplementazioa eta sareko baliabideen erabilpen eraginkorra eskatzen
baititu, azken hau bidalitako datu bolumenaren etengabeko handiagotzea

onartu ahal izateko.

ix

RENek zientzia erkidegoari emandako ohiko zerbitzu bat Eskatu
Ahalako Banda-Zabalera (BoD, Bandwidth on Demand) deritzona da.
Zerbitzu honen bitartez denbora epe zehatz baterako banda zabalera
bermatua daukaten muturretik muturrerako konektibitate zerbitzuak
ezartzea posiblea da. BoD zerbitzua emateko aldez aurretik erreserbak
egiteko mekanismoak beharrezkoak dira, sare optikoetan eta grid
konputazioan sarritan erabili ohi direnak. Gainera, zerbitzu mota hauek
domeinu anitzetako testuinguruetan erabilgarriak izan ohi dira, hau da,
zerbitzuek sare domeinu bat baino gehiagoren bitartez ezartzen diren
testuinguruetan.

Hala ere, SDNen eta ohiko sareen arteko desberdintasunak kontutan
izanda, sare berri hauetan aldez aurretiko erreserbak onartzen dituzten
zerbitzuak emateko, berriro ere hausnartu behar da TEa zelan emango
den eta sare baliabideak zelan kudeatuko diren denboraren arabera.
Horretarako, gaur egun SDNetarako existitzen diren TE proposamenen
azterketa sakona burutu da, SDNetarako TE mekanismo egoki batek
eman behar dituen funtzionaltasunak identifikatzeko xedearekin. Beste
alde batetik, gaur egungo aldez aurretiko erreserba sistemak aztertu
dira ere, denbora eta sareko baliabideen eskakizunak kudeatzeko
erabilitako datu egiturek daukaten eragina azpimarratuz, datu egitura
hauek erreserba sistemen errendimenduan daukaten eragina ulertzeko
xedearekin.

Azterketa hauen ondorio bezala, doktorego-tesi honek DynPaC
framework-a aurkezten du, SDNetarako TE framework berri bat dena.
SDN teknologiekiko independentea den diseinu modular baten bitartez,
DynPaC framework-aren helburua sareko operadoreen TE eskakizunak
asetzea da, edozein sare mota eta erabilpen kasurako. Aipatzekoa da
DynPaC 50 milioi erabiltzaile baino gehiago dituen GEANT RENaren
eragiketarako taldeak proposatutako betebeharrak kontutan hartuta
diseinatu dela.

Zentzu horretan, DynPaCek aldez aurreko zerbitzuak ematen ditu eta
domeinu anitzetako BoD zerbitzua emateko erabili ohi den Network
Services Framework-arekin (NSF) bat dator. Are gehiago, DynPaCek
gaur egun GEANT-ek ematen duen BoD zerbitzua hobetzen du,
sareko topologia automatikoki detektatzeko eta hutsegiteak kudeatzeko

mekanismoak ematen baititu. Gainera, DynPaCen diseinu modularrari

eta TE mekanismo berriak sartzeko aurkezten duen gaitasunari esker,
sareko baliabideen erabilpena hobetzen duten bi mekanismo gehitzea
posiblea izan da: fluxuen bir-kokapenerako mekanismoa eta fluxuen
desagregaziorakoa.

Aldez aurreko erreserbak egiteko gaitasunari dagokionez, DynPaC,
SDNen logikoki zentralizatutako kontrol planoa eta programagarritasun
altua ustiatzeko bereziki diseinatutako datu egitura eta algoritmo talde
batean oinarritzen da. Proposatutako ebazpena sarearen uneko egoeren
sorkuntzan oinarritzen da, network snapshots bezala ezagutzen direnak.
Network snapshot hauek aldi berean existitzen diren zerbitzu erreserben
multzo zehatz baten ondorioz, sareko baliabideen erabilpena egonkor
mantentzen duten denbora tarteak adierazten dituzten datu egiturak dira.
Network snapshot hauek datu egitura hierarkiko baten bidez antolatzen
dira, sarearen uneko egoeren zuhaitza deritzona. Egitura honek network
snapshot bat baino gehiago bateratzen ditu, sareko baliabideen azpi-
multzo bat eskuragarri mantenduko duten denbora tarte luzeagoak
adieraztea ahalbidetuz.

Hurbilketa honek zenbait abantaila ematen ditu. Alde batetik,
network snapshot-en erabilpenari esker zerbitzu erreserba bati dagozkion
network snapshot desberdinetan bide aukera desberdin, baina era berean
baliagarriak, aurkitzea posible da. Are gehiago, hurbilketa honek lehen
aipatutako optimizazio tekniken aplikazioa errazten du ere, fluxuen bir-
kokapenerako mekanismoak eta fluxuen desagregaziorako mekanismoak
alegia. Teknika hauei esker, beste modu batean ukatuko liratekeen
zerbitzuen erreserbak onartzea posible da.

Beste alde batetik, network snapshot-ak nodo laguntzaileetan bater-
atuz, zerbitzu erreserba bat onartu daitekeen zehazteko beharrezkoa den
denbora murriztu daiteke. Aldez aurreko erreserbak onartzen dituzten
sistemetan, zerbitzu eskaera batek iraungo duen denbora tarte osoan
eskaera asetzeko behar beste baliabide eskuragarri egongo direla egiaztatu
behar da. Honek, aldaketak izango dituzten network snapshot guztiak
aztertzea suposatuko luke. Network snapshot-ak datu egitura hierarkiko
batean antolatuz, zerbitzu eskariak onartzeko prozesuak behar duen
konputazio denbora murrizten da, portaera lineal batetik portaera
logaritmiko batera pasatuz.

xi

Proposatutako ebazpena RENentzako bideragarria dela frogatzeko
helburuarekin, balioztatze funtzional bat burutu da. Balioztatze
funtzional honen bitartez doktorego-tesi honetan proposatutako ebazpe-
nak GEANTeko sare-eragiketarako taldeak adierazitako betebeharrak
asetzen dituela egiaztatu da, baita domeinu anitzetako testuinguruetan
zerbitzua emateko gai dela ere. Bestalde, ebazpenaren errendimenduaren
ebaluazio bat burutu da ere. Honetarako sare topologia desberdinak
erabili dira, hauen artean, ESNet REN amerikarraren sareko topologia ere.
Burututako saiakuntzek DynPaCek RENen eskakizunak asetzen dituela
frogatzen dute, baita aldez aurreko erreserben kudeaketarako erabilitako
datu egiturek eta algoritmoek zerbitzu eskarien onarpenerako prozesua
milisegundoen inguruko denboran burutu dezaketela ere.

Azkenik, tesi honetan aurkeztutako ebazpena merkatuko SDNen
kontrolatzaile garrantzitsuenetariko bat erabiliz inplementatu da, kode
irekiko ONOS kontrolatzailea hain zuzen ere. Gainera, azpimarratu
beharrekoa da DynPaC GEANTek emango duen BoD zerbitzu berriaren
pilotuan erabiliko dela, SDNetan oinarrituko dena, eta 2017 urtean zehar
martxan ipiniko dena. Are gehiago, Open Network Laboratory delakoa,
ONOS kontrolatzailearen garapenaren erantzule dena, DynPaCeko
funtzionaltasun batzuk kontrolatzaile honen hurrengo bertsioetan sartzea

pentsatzen dago.

xii

Resumen

La aparicién de las Redes Definidas por Software (SDN, Software-Defined
Network) seré clave para la préxima generacién de redes. En resumen, las
SDNs proponen la separacién del plano de datos y el plano de control,
donde el control de la red es llevado a cabo mediante un plano de control
légicamente centralizado que se sitia en un elemento externo al equipo
de red, y el cual programa el plano de datos mediante interfaces abiertas.
Teniendo en mente este novedoso paradigma de red, los operadores de red
han comenzado a evolucionar sus arquitecturas de red, con el propésito de
reducir tanto los costes iniciales como los costes operacionales y facilitar
la introduccién de nuevos servicios de red de manera mas eficiente.

Entre los beneficios proporcionados por las SDNs, los operadores de
red estan especialmente interesados en su capacidad de controlar la red
teniendo en cuenta el estado global de la misma. Esta capacidad de las
SDN puede suponer una auténtica revolucion en la Ingenieria de Trafico
(TE, Traffic Engineering), uno de los temas més desafiantes en el mundo
de las redes de comunicaciones, donde el plano de control légicamente
centralizado posibilita la utilizacién de estrategias novedosas de TE y
donde la alta granularidad disponible en el plano de datos hace posible la
utilizacién de técnicas alternativas para el balanceo de la carga en la red.

En ese sentido, las Redes Académicas (REN, Research and Education
Network), las cuales ofrecen servicios de alta disponibilidad y alta calidad
a la comunidad cientifica, han comenzado a incluir las SDNs en sus planes
de evolucion de red, atraidos por el impacto que las SDNs puede suponer
en la TE. En las RENs, la TE juega un papel fundamental, donde la
naturaleza de los datos transmitidos a través de este tipo de redes requiere
la implementacién de técnicas de recuperacion frente a errores y una
eficiente utilizacion de los recursos de red, para asi asimilar el continuo
crecimiento del volumen de datos transmitidos.

Uno de los servicios tipicamente proporcionados a la comunidad
cientifica por las RENs es el Ancho de Banda bajo Demanda (BoD,
Bandwidth on Demand), el cual permite establecer servicios de

xiii

conectividad extremo a extremo durante un periodo de tiempo especifico
y con un ancho de banda garantizado. La provisiéon del servicio BoD
requiere la utilizacion de mecanismos de reserva avanzada, cominmente
utilizados en redes oOpticas y en la computacién grid. Ademas, este tipo
de servicios suelen incluir soporte para multiples dominios, en los que el
servicio se establece a lo largo de miiltiples dominios de red.

No obstante, dadas las diferencias de las SDNs con respecto a las redes
tradicionales, es necesario preguntarse cémo se ha de soportar la TE y
c6mo se han de gestionar los recursos de red en funcién del tiempo, para
proporcionar servicios de reserva avanzada en este tipo de redes. Para ello,
se ha llevado a cabo un exhaustivo andlisis de las soluciones existentes de
TE en SDNs, a fin de identificar las funcionalidades que una solucién
para la TE en SDNs deberia proporcionar. Por otra parte, también
se han estudiado los sistemas de reserva avanzada actuales, haciendo
especial hincapié en el impacto que las estructuras de datos empleadas
para gestionar los requerimientos de tiempo y recursos de red, a fin de
comprender el impacto que las mismas tienen en el rendimiento de tales
sistemas.

Como consecuencia de estos andlisis, esta tesis doctoral presenta
DynPaC, un novedoso framework para la TE en SDNs, el cual, mediante
un diseno modular e independiente de la tecnologia SDN empleada,
pretende satisfacer los requerimientos de TE de los operadores de red,
independientemente del tipo de red y el caso de uso en el que se utilice.
Cabe destacar que DynPaC ha sido disenado teniendo en consideracién
los requerimientos propuestos por el equipo de operacién de red de la
REN europea GEANT, la cual proporciona servicios de conectividad a
mas de 50 millones de usuarios.

En ese sentido, DynPaC soporta la provision de servicios de reserva
avanzada, y es compatible con el Network Services Framework (NSF),
utilizado habitualmente para proporcionar el servicio BoD con multi-
dominio. Es mas, DynPaC mejora el servicio actual de BoD proporcionado
por GEANT al introducir mecanismos para el descubrimiento de
topologia y para la gestion de los fallos de red. Ademads, su diserio modular
y su capacidad para introducir nuevos mecanismos de TE ha permitido

incorporar dos mecanismos que hacen posible la mejora de la utilizacion

Xiv

de los recursos de red, el mecanismo para el realojamiento de flujos y el
mecanismo para la desagregacién de flujos.

En relacién al soporte de reservas avanzadas, DynPaC se basa
en la utilizacion de una serie de estructuras de datos y algoritmos
especificamente disenados para aprovechar el plano de control l6gicamente
centralizado y la alta programabilidad disponible en las SDNs. La solucién
se basa en la generacién de mnetwork snapshots, una estructura de datos
que permite representar periodos de tiempo en los que la utilizacion de los
recursos de red permanece estable como consecuencia de la coexistencia
de un conjunto dado de reservas de servicio. Los network snapshots
se organizan mediante una estructura de datos jerarquica, denominada
Arbol de Instantdneas de Red (NSTree, Network Snapshot Tree), que
permite la representacién de periodos de tiempo mas amplios en los que un
subconjunto de los recursos de red estan disponibles, como consecuencia
de agregar multiples network snapshots en nodos auxiliares.

Esta aproximacién presenta una serie de ventajas. Por una parte, la
utilizacién de network snapshots permite hallar caminos alternativos pero
igualmente validos en los diferentes network snapshots en los que una
reserva de servicio esta contemplada. Es maés, esta aproximacién también
posibilita la introduccién de las técnicas de optimizacién previamente
mencionadas, denominadas realojamiento de flujos y desagregacién de
flujos, que facilitan la aceptacién de nuevas reservas de servicio que de
otra manera serian rechazadas.

Por otra parte, al agregar los network snapshots en nodos auxiliares,
el tiempo necesario para determinar si una reserva de servicio se puede
aceptar se ve reducido. En los sistemas de reserva avanzada es necesario
comprobar si hay recursos suficientes para satisfacer la demanda durante
todo el periodo de tiempo solicitado. En este caso particular, supondria
analizar todos los network snapshots que se ven afectadas. Al organizar
los network snapshots en una estructura de datos jerarquica, el tiempo
de computo del proceso de admisién de las demandas de servicio se ve
reducido, pasando de un comportamiento lineal a un comportamiento
logaritmico.

Con el objetivo de demostrar la viabilidad de la soluciéon para
las RENs, se ha llevado a cabo una validacién funcional en la que

se ha comprobado que la solucién propuesta en esta tesis doctoral

XV

satisface los requerimientos planteados por el equipo de operacién de
red de GEANT, as{ como su capacidad para proporcionar el servicio
en entornos multi-dominio. Adicionalmente, también se ha llevado a
cabo una evaluacién del rendimiento de la solucién, para lo cual se han
empleado distintas topologias de red, incluyendo la topologia de red de
la REN americana ESNet. Los experimentos demuestran que DynPaC
satisface los requerimientos de las RENSs, y que las estructuras de datos y
algoritmos utilizados en la gestion de reservas avanzadas son capaces de
realizar el proceso de admisién de las peticiones de servicio en el orden
de los milisegundos.

Finalmente, la solucién presentada en esta tesis ha sido implementada
utilizando uno de los controladores SDN més importantes del mercado,
el controlador de cédigo abierto ONOS. Ademads, cabe destacar que
DynPaC serd utilizado en el despliegue piloto del nuevo servicio de
BoD basado en SDNs de GEANT a lo largo del 2017. Es més, el Open
Networking Laboratory, a cargo del desarrollo del controlador ONOS, est4a
planeando incluir algunas de las funcionalidades de DynPaC en préximos
lanzamientos del dicho controlador.

Xvi

Acknowledgements

Writing this PhD thesis has been, undoubtedly, the most challenging task
I have ever faced. It would have been impossible without the help and
support of my supervisors, colleagues, family and friends.

Seven years ago I ran into the office of an unknown professor to me at
that time, Eduardo, which told me a crazy story about how the future
of networking was software-defined. He introduced me to this challenging
and amazing research topic, and motivated me to became the engineer I
am today. For this, and for all his support throughout this years as my
supervisor, I will be forever grateful. Notwithstanding, I have had the
good fortune of having not one, but two amazing supervisors. For me,
having Jasone on board has been the greatest experience. She has teach
me how research must be done, and she has encouraged me to pursue my
objectives and not to give up. Jasone, thank you very very much!!

In addition, during these years in the I2T Research group I have had
the chance to work with a great group of people, and therefore, I would
like to express my gratitude to them as well, specially to Marivi, for her
advise and her inestimable help reviewing articles and to Jon, Jokin and
Elias for being my friends in battle. But above all, thank you Igor, you
saved me a lot of money on psychotherapy, but not so much in beers!. I
would also like to thank to my colleagues in the GEANT project and to
Sonja Filiposka and Wolfgang John for their reviews.

Pero sin lugar a dudas, el mayor de mis agradecimientos se lo dedico a
mi familia. A mi aitatxu, a mi amatxu y a mi hermano Iker, quienes me
han apoyado y aguantado a lo largo de estos afios, sin olvidarme de mis
tias, tios, primas y primos. También me gustaria aprovechar estas lineas
para recordar a Fernando y a mi prima Marian, quienes por desgracia no
estaran presentes para verme convertida en doctora. Azkenengoz, nire
lagun minei Maitetxu, Ganore eta Maci, eta nire bizitza osoan zehar
nirekin egon diren neskatilei: Nagore C., Nagore M., Itxa, Eidertxi eta
Tatxu. Guztioi, MILA ESKER BIHOTZ BIHOTZEZ!

xvii

Contents

I
1

II

INTRODUCTION 1
INTRODUCTION 3
1.1 Imtroduction 3
1.2 Context e 4

1.2.1 Research and Education Networks 5
1.2.2 Traffic Engineering in packet networks 8
1.2.3 Software-Defined Networking 17
1.3 Problem statement and motivation 20
1.4 Objectives 21
1.5 Contributions 23
1.6 Content of the document 24

STATE OF THE ART 27
TRAFFIC ENGINEERING FRAMEWORKS IN SOFTWARE-
DEFINED NETWORKS 29
2.1 Introduction, 30

2.1.1 Impact of the SDN interface type to TE 30
2.1.2 Overview of the most relevant D-CPI Protocols . . 34
2.2 TE frameworks for network resource utilization optimization 44
2.2.1 Binetal proposal 45
2.2.2 B4 ... 48
2.2.3 SWAN 51
2.2.4 OSCARS 54
225 OPEN 57
226 OFVN 59
2.2.7 IDEALIST 62
2.3 TE frameworks for congestion minimization 65
2.3.1 Huang et al. proposal 66
2.3.2 Lietal proposal 68
2.3.3 BaatDaat 71
2.3.4 MiceTrap 74

Xix

XX

I11

CONTENTS

2.4 TE frameworks for packet loss minimization 76
2.4.1 QNOX e 77
2.4.2 Yoon et al. proposal 80
2.4.3 Phemius et al. proposal 82

2.5 TE frameworks for QoE maximization 85
2.5.1 Kassler et al. proposal 85

2.6 Summary of SDN-based TE frameworks 88

2.7 Conclusions L 90

ALGORITHMS AND DATA STRUCTURES FOR ADVANCE

RESERVATIONS 93

3.1 Introduction., 94
3.1.1 Fundamentals of advance reservations 95
3.1.2 Algorithms and data structures 98

3.2 Resource management on a per link basis 100
3.2.1 Schelén et al. proposal 100
3.2.2 Guerin and Ariel proposal 105
3.2.3 Burchard proposal 108
3.2.4 Wang and Chen proposal 111

3.3 Alternative resource management approaches 115
3.3.1 Wolf and Steinmetz proposal 115
3.3.2 Andreica et al. proposal 120
3.3.3 Schneider and Linnert proposal 124
3.3.4 Balman et al. proposal 127
3.3.5 Barshan et al. proposal 129

3.4 Comparison of advance reservation solutions 132

3.5 Conclusions 134

PROPOSAL 137

A GENERIC FRAMEWORK FOR TRAFFIC ENGINEERING

IN SDN 139
4.1 Modules 139
4.1.1 Path computation element (PCE) 139
4.1.2 Topology abstractor 141
4.1.3 Resilience module 142
4.1.4 Monitoring module 143
4.1.5 Network programmer 143

4.1.6 Service manager 144

v

CONTENTS

4.2 Interface towards external elements 145
4.2.1 Traffic Analyzers 146
4.2.2 Orchestrators 147

SUPPORT FOR ADVANCE RESERVATIONS 153

5.1 Reservation model 154
5.1.1 Definition 154
5.1.2 Timing constraints 154

5.2 Path computation algorithm 157
5.2.1 Pre-computation phase. 157
5.2.2 On-demand phase 160

5.3 Data structures for advance reservations in SDN 162
5.3.1 Network Snapshot 162
5.3.2 NSTree, 164

5.4 Operations supported by the NSTree 179
5.4.1 Reservation of a new service 179
5.4.2 Removal of a service 185
5.4.3 Programmatic removal of a network snapshot . . . 187

OPTIMIZATION TECHNIQUES 191

6.1 Flow relocation 191

6.2 Flow disaggregation 195

VALIDATION 199

FUNCTIONAL VALIDATION 201

7.1 Suitability of the DynPaC framework for TE and
optimization techniques 201

7.2 Multi-domain E2E involving OpenFlow domains 205

7.3 Multi-domain E2E involving heterogeneous domains . . . 209

7.4 GEANT Requirements Tests 213
7.4.1 Requirements 213
7.4.2 Scenario e 215
7.4.3 Results 216
7.4.4 Conclusions 222

PERFORMANCE EVALUATION 223

8.1 Analysis of the impact of the number of alternative paths
in the setup time and the resource utilization 224
8.1.1 Full mesh networks 225

xxi

xxii

VI
A

CONTENTS

8.1.2 ESNet network
8.2 Analysis of the impact of the number of links on the setup
time
8.3 Analysis of the impact of the requested bandwidth on the
setup time and the number of rejected services
8.4 Analysis of the impact of the aggregation policy

CONCLUSIONS
CONCLUSIONS AND FUTURE WORK
9.1 Imtroduction
9.2 Contributions L
9.3 Dissemination of the results
9.3.1 Publications in international journals
9.3.2 Publications in proceedings of international confer-

9.3.3 Oral communications
9.3.4 Other publications related to this PhD thesis . . .
9.3.5 Participation in projects
9.4 Future work and research lines

APPENDIX
APPENDIX: RESERVATIONS GENERATOR SCRIPT

BIBLIOGRAPHY

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1

Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13

Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21
Figure 3.1

Figure 3.2

GEANT connectivity map. 5
SDN architecture proposed by the SDNRG [80]. . 18
SDN architecture proposed by the ONF [81]. . . . 19
Categorization of SDN protocols depending on the

interface type. 31
D-CPI interface in the ONF architecture. 35
Main components of the ForCES architecture. . . 36
Main components of the OpenFlow switch. 38

Structure of the flow tables in an OpenFlow switch. 39
Main components of the PCE-based architecture. 43

Architecture proposed by Bin et al. [128].. 46
Google’s B4 architecture [51]. 49
SWAN architecture [129]. 52
OSCARS architecture [131]. 55
Architecture of OPEN’s control plane [134]. . . . 57
OFVN architecture [138]. 60
Architecture proposed by the FP7-IDEALIST

project [142].. L. 63
Architecture proposed by Huang et al. [154]. . . . 67
Architecture proposed by Li et al.[155]. 69
BaatDaat architecture [156]. 72
MiceTrap architecture [157]. 74
QNOX architecture [165]. 78
Architecture proposed by Yoon et al. [169]. 81
Architecture proposed by Phemius et al. [170]. . . 83
Architecture proposed by Kassler et al. [50]. . . . 86

Structure of the binary search tree over time
proposed by Schelén et al. [194]. 102
Structure of the segment tree proposed by Schelén
etal. [194].o 103

xxiii

XXiv

List of Figures

Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6
Figure 3.7

Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

Figure 5.8

Figure 5.9

Data structure proposed by Guerin and Ariel [196]. 106

Array proposed by Burchard et al. [180]. 109
Modifications to the segment tree introduced by

Burchard et al. [180]. 110
Structure of the Bandwidth Tree [199]. 112

Architecture of the ReRA system proposed by

Wolf and Steinmetz [202]. 116
Data structure for time management proposed by
Wolf and Steinmetz [202]. 118
Data structure for reservations management
proposed by Wolf and Steinmetz [202]. 119
List of free blocks proposed by Schneider and
Linnert [206]. 125
Linked list proposed by Balman et al. [207]. . . . 128
Architecture proposed by Barshan et al. [208]. . . 130
Architecture of a generic framework for advance
path computation in SDN. 140
Integration of the DynPaC framework with a
traffic analyzer. 146
Integration of the DynPaC framework as NRM for
multi-domain BoD service provisioning. 148
DynPaC operational modes. 149
Service is accepted by the DynPaC framework. . 155
Service A is rejected by the DynPaC framework
due to a lack of resources. 155
Service B is rejected by DynPaC because it is
blocked for new requests. 156
Service A is rejected by DynPaC because the
book-ahead interval is not respected. 156
Ingress and egress nodes facing users or other
domains in a network. 159
Selection of paths of less than nj;4x hops. 159
Structure to store the pre-computed paths. 161
Network resource consumption evolution repre-
sented with network snapshosts. 164
Design of the NSTree data structure. 165

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15

Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 6.1
Figure 6.2
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4

Figure 7.5

Figure 7.6
Figure 7.7

Figure 7.8

Figure 7.9
Figure 7.10

List of Figures

Node generation process case 0: no overlapping. . 170
Node generation process case 1: back overlapping. 171
Node generation process case 2: partial overlapping.172
Node generation process case 3: front overlapping. 172
Node generation process case 4: full overlapping. . 173
Rearrangement Case A: Two consecutive NS
aggregated into the same CA
Rearrangement Case B: Two consecutive NS
children of the root node. 176
Rearrangement Case C: Predecessor Network
Snapshot aggregated into a Common Ancestor. . 177
Rearrangement Case D: New node aggregated into
a Common Ancestor. 177

Rearrangement Case E: Consecutive nodes aggre-

gated into different Common Ancestors. 178
Creation of a CA from a NS with root parent. . . 184
Creation of a CA from a NS with CA parent. . . 184
Flow relocation. 192
Flow disaggregation. 196
Implementation of the DynPaC framework with

ODP. 203
Topology used for the EWSDN 2015 demonstration.203
Video of the EWSDN 2015 demonstration. 204
Demo scenario for multi-domain OpenFlow based

on NSI CONTEST and DynPaC results. 206
Modules of a NRM for OpenFlow domains based

on DynPaC. 207

Video of the Supercomputing 2014 demonstration. 208
Implementation of the DynPaC framework with
ONOS. e 210
Scenario for multi-domain BoD service provision-
ing involving three heterogeneous domains. 211
Video of the NetSOFT 2016 demonstration. . . . 213
Cambridge laboratory deployment for functional
validation. oo 216

XXV

XXVi

List of Figures

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11

Figure 8.12
Figure 8.13

Effect of the path diversity in a 5 node full mesh
network.
Effect of the path diversity in a 6 node full mesh
network.
Effect of the path diversity in a 7 node full mesh
network.
Effect of the path diversity in a 8 node full mesh
network.
Overall network resource utilization for a 8 node

full mesh topology.

Path pre-computation time.
Topology of the ESNet network.

Effect of the path diversity in the ESNet network.
Effect of the path diversity in the ESNet network.

Overall network resource utilization in the ESNet
topology.
Impact of the number of nodes in the setup time.
Effect of the requested bandwidth.
Effect of the value of delta.

240

List of Tables

Table 2.1
Table 2.2
Table 3.1
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5

Table 7.6
Table 7.7
Table 7.8
Table 7.9
Table 8.1

Table 8.2

Summary of the impact of SDN protocols to TE. 34

Summary of SDN-based TE frameworks 89
Comparison of advance reservation solutions . . . 133
Requirements for an SDN-based NRM. 214
Summary of the functional validation tests. . . . 217
Test 1 - DynPaC topology abstraction. 217

Test 2 - Programmatic VLAN circuit establishment.218
Test 3 - Programmatic VLAN circuit establish-

ment with VLAN translation. 219
Test 4 - Rate limiting. 220
Test 5 - Port status notification. 221
Test 6 - Interface towards NSA. 221
Test 7 - STP discovery. 222
Summary of the results obtained for the full mesh

topologies. Lo oL 231
Summary of the results obtained for the ESNet

topology. Lo 238

xxvii

Acronyms

A-CPI Application-Controller Plane Interface
ABNO Application-Based Network Operations
ALTO Application Layer Traffic Optimization
ANM Adaptive Network Management

aNode Analyzed NSTree Node

ATD Address Translation Database

aTime Analyzed Time Slot

BDDP Broadcast Domain Discovery Protocol
BFD Bidirectional Forwarding Detection

BFS Breadth First Search

BGP Border Gateway Protocol

BGP-LS Border Gateway Protocol - Link State
BoD Bandwidth on Demand

C-SPF Constrained-Shortest Path First

CA Common Ancestor

CE Control Elements

CKE Cognitive Knowledge Element

cPCE Child Path Computation Element
D-CPI Data-Controller Plane Interface

DABP Deadline And Budget Priority based on Deadline Budged

Constraint

xxviii

Acronyms

DARA Dynamic Advance Reservation Algorithm
DC Data Center

DFS Depth First Search

DynPaC Dynamic Path Computation

ECMP Equal-Cost Multi-Path

EON Elastic Optical Network

ERO Explicit Route Objects

ESNet Energy Sciences Network

eT End Time

ETSI European Telecommunications Standards Institute
FE Forwarding Elements

ForCES Forwarding and Control Element Separation
FPGA Field-Programmable Gate Array

GMPLS Generalized Multi-Protocol Label Switching
GTS GEANT Testbed Services

H-PCE Hierarchical Path Computation Element
I2RS Interface to the Routing System

IETF Internet Engineering Task Force

IoT Internet of Things

LDP Label Distribution Protocol

LFB Logical Forwarding Blocks

LLDP Link Layer Discovery Protocol

LP Linear Programming

LSDB Link Status Database

XXix

XXX Acronyms

LSP Label Switched Path

MDP Media Degradation Path

ME Management Entity

MI Management Interface

MPLS Multi-Protocol Label Switching

MPLS-TE Multi-Protocol Label Switching - Traffic Engineering
MPTCP Multi-Path TCP

NA Not Applicable

NaaS Network as a Service

NE Network Element

NETCONF Network Configuration Protocol

NFV Network Functions Virtualization

NOS Network Operating System

NREN National Research and Education Networks
NRM Network Resource Manager

NS Network Snapshot

NSA Network Services Agent

NSF Network Services Framework

NSI-CS Network Services Interface - Connectivity Service
NSI Network Services Interface

NSP Network Service Provider

NSTree Network Snapshots Tree

NVGRE Generic Routing for Encapsulation Network Virtualization

RWA Routing and Wavelength Assignment

Acronyms

PAF Path Assignment Function

PCC Path Computation Client

PCE Path Computation Element

PCEL Physical Control Elements

PCEP Path Computation Element Communication Protocol
PCM Path Computation Module

PFE Physical Forwarding Elements

pNode Predecessor NSTree Node

pPCE Parent Path Computation Element

PPM Path Provision Module

PredNS Predecessor Network Snapshot

PSS Path Setup Subsystem

ODP Open Daylight Project

OF-CONFIG OpenFlow Management and Configuration Protocol
OFVN OpenFlow-based Virtualization-aware Networking
OLS OpenFlow Logical Switch

ONE Open Network Environment

ONF Open Networking Foundation

ONOS Open Network Operating System

OPEN Open Programmable Extensible Networks

OSCARS On-Demand Secure Circuits and Advance Reservation
System

OSPF Open Shortest Path First

OVS Open vSwitch

XXXi

xXxxii

Acronyms

OVSDB Open vSwitch Database Management Protocol
OXM OpenFlow eXtensible Match

QMOF QoS Matching and Optimisation Function
QNOX QoS-aware Network Operating System

QoE Quality of Experience

REN Research and Education Networks

ReRA Resource Reservation in Advance

REST Representational State Transfer

RFC Request For Comments

RMS Resource Management System

RST Remaining Service Time

RSVP Resource Reservation Protocol

RSVP-TE Resource Reservation Protocol - Traffic Engineer
SAR Service Acceptance Ratio

SARA Static Advance Reservation Algorithm

SDN Software-Defined Networking

SDNRG Software-Defined Networking Research Group
SDO Standards Development Organizations

SE Service Element

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SPF Shortest Path First

SPIN Second Pointer Node

sT Start Time

Acronyms

STP Service Termination Point

STSD Specified Time Specified Duration
STUD Specified Time Unspecified Duration
SuccNS Successor Network Snapshot

SWAN Software-Driven WAN

TE Traffic Engineering

TED Traffic Engineering Database

ToR Top of Rack

TRL Technology Readiness Level

UTSD Unspecified Time Specified Duration
UTUD Unspecified Time Unspecified Duration
VM Virtual Machine

VoIP Voice over IP

VPN Virtual Private Networks

VXLAN Virtual eXtensible Local Area Network

WDM Wavelength Division Multiplexing

xxxiii

Part I

INTRODUCTION

Introduction

"Computer science research is different from these
more traditional disciplines. Philosophically it
differs from the physical sciences because it seeks
not to discover, explain, or exploit the natural
world, but instead to study the properties of

machines of human creation."
— Dennis Ritchie

1.1 INTRODUCTION

During the last decade, Software-Defined Networking (SDN) has emerged
as a revolutionary networking paradigm, and has gained the attention of
both the industry and the academia. Actually, SDN has been included in
several reports as one of the most disruptive and interesting technologies
in the networking area [1, 2]. Several factors have been decisive for
the success of SDN. On the one hand, the vast range of SDN-enabled
networking devices available in the market has been primordial. Both
classical manufacturers such as Cisco [3], HP [4] or NEC [5] and novel
manufacturers such as Corsa [6] are commercializing SDN products.
On the other hand, the availability of open-source controllers with
OpenFlow support [7], the de facto protocol for SDN, has fostered the
implementation of SDN applications.

For the moment, the Standards Development Organizations (SDO)s,
Network Service Provider (NSP)s and vendors involved in this new

INTRODUCTION

market opportunity are working on a unified definition of SDNs. Most
definitions agree on the availability of open programmable interfaces
at networking devices, the separation of the control and forwarding
planes, and the existence of a logically centralized controller. Nevertheless,
most agents involved in the standardization of SDN do agree on some
possible applications. In addition to its utilization in Data Center (DC)
networks [8], campus networks [9, 10] and as an enabler for Network
Functions Virtualization (NFV) [11], SDN appears as a promising
candidate to enhance current Traffic Engineering (TE).

TE has always been one of the most challenging topics in
communication networks [12]. As stated by the Internet Engineering Task
Force (IETF), TE deals with the performance optimization of operational
networks, and plays a key role in the provisioning of services with Quality
of Service (QoS) [13]. Being aware of the benefits that SDN can bring to
TE, telecom companies such as Telefonica and AT&T have started to
work on SDN-based solutions [14]. Similarly, and given the relevance that
TE has on the provisioning of connectivity services inside the research and
academic community, Research and Education Networks (REN) have also
started to analyze the applicability of SDN to their transport networks.

In such a context, Section 1.2 introduces RENs and the services
typically provided by them, making special emphasis on the need
to support advance reservations in order to offer the Bandwidth on
Demand (BoD) service. It also presents the fundamentals of TE in packet
networks, including the most common TE performance objectives and
techniques, its evolution and its current limitations. In addition, the
fundamentals of SDN are described, where the architectures proposed
by two different SDOs are introduced. Section 1.3 identifies the problem
and the motivation behind this PhD thesis, while Section 1.4 presents the
objectives and Section 1.5 summarizes the contributions. Finally, Section
1.6 provides a detailed overview of the content of this document.

1.2 CONTEXT

It is indubitable that research and innovation have a huge impact on the

development of our society. Aware of this, most countries, to the extent

1.2 CONTEXT

G'(A>NT<7 At the Heart of Global Research and Education Networking

GEANT Coverage Y _ —Multiple 100 Gbps links
I RedCLARA Network .| w—100Gbps
Il EUMEDCONNECT3 Network
I TEIN Network
I AfricaConnect2: UbuntuNet Alliance,
WACREN & ASREN
I CAREN Network

S = Muliples of 10 Gbps

GEANT and partner networks enabling user ‘
collaboration across the globe

,,,,,,,,,,,,,,,,,,,

Figure 1.1.: GEANT connectivity map.

of their possibilities, invest on research and development projects in order
to increase their competitiveness.

The magnitude of the research questions trying to be answered today
require multidisciplinary teams, which results in hundreds of researchers
and innovators distributed across the world working together. Hence, it
is necessary to facilitate the communication between the team members,
and provide efficient ways to access the data necessary to conduct the
experiments.

With the advent of the Internet and the huge advancements in
communications since its appearance, collaborative research has become
a reality. Furthermore, in order to satisfy the connectivity needs
of researchers, most countries have created National Research and
Education Networks (NREN).

121 RESEARCH AND EDUCATION NETWORKS

In an effort to satisfy the connectivity requirements of their research
community, most developed countries have deployed their own NREN.

INTRODUCTION

Examples of such networks are Internet2 [15] or the Energy Sciences
Network (ESNet) [16] in the United States of America, Canarie [17]
in Canada, Kreonet [18] in South Korea, Sinet [19] in Japan or
RedIRIS [20] in Spain. Moreover, the European Community considers
the interconnection of the European NRENSs a high priority subject. As a
result, it finances GEANT [21], the pan-European REN that interconnects
the European NRENs and peers them with non-European NRENs, as
illustrated in Figure 1.1.

The portfolio of this kind of network usually considers the following
connectivity services to satisfy the needs of the academic institutions
[22]:

o Provide private high-bandwidth Internet Protocol (IP) connectivity
separated from the general-purpose access to the Internet.

o Provide dedicated point-to-point connectivity circuits. For instance,
GEANT offers dedicated Ethernet circuits, dedicated wavelengths
and BoD, which will be later explained in this section.

o Facilitate peerings among RENs and with external commercial
partners, such as Amazon or Microsoft, for example, to enable rapid

access to cloud services.

¢ Provide single-domain and multi-domain Virtual Private Networks
(VPN).

¢ Enable networking-related research through distributed testbeds.

Notwithstanding, the provisioning of such kind of service usually
encompasses high operational costs, especially in those services where
a Service Level Agreement (SLA) must be ensured and a certain QoS
must be provided. An example of such kind of service is BoD, which is
described in the following subsection.

1.2.1.1 BANDWIDTH ON DEMAND

A service typically provided by the RENSs to satisfy the increasing demand
of users with short-term, high-capacity and high-availability demands is
BoD. For instance, the Energy Sciences Network (ESnet) [16], the high-
speed computer network serving the United States Department of Energy,

1.2 CONTEXT

provides BoD through the On-Demand Secure Circuits and Advance
Reservation System (OSCARS) [23]. Likewise, GEANT offers BoD to
their users through the AUTOBAHN [24] provisioning tool.

In essence, BoD allows to establish end-to-end (E2E) dedicated circuits
with a guaranteed bandwidth during an specific period of time. As a
consequence, the provisioning of this service requires the reservation of
the network resources in advance, in order to ensure that the users will
obtain the requested resources as expected.

Resource reservation has been a widely studied topic in communication
networks [25-33]. Initial resource reservation systems were focused on
immediate reservations, where the resources were exploited immediately
after their request and for an unspecified period of time [34, 35].
Notwithstanding, the appearance of new scenarios in which the resource
reservation was necessary for a specific period of time, such as a
video-conferencing systems [36], video-on-demand [37] or massive data
transfers in the grid environment [38], introduced the concept of advance
reservations.

As opposed to immediate reservations, in advance reservations the
resources are exploited at some time in the future and during a specific
period of time. One of the main benefits of relying in advance reservation
mechanisms is the optimization of the network resources utilization [39].
This is a consequence of introducing time constraints on the resource
reservation. Since resources are reserved for a specific period of time, this
approach allows to re-utilize the same resources for future reservations
that do not overlap in time.

First proposals for advance reservations were focused on scenarios
where the network resources were rather limited. As stated by Degermark
et al., "where resources are plentiful, not even immediate reservations may
be necessary, but where resources are scarce enough to justify reservations
at all, it makes sense to be able to make them in advance.” (in [40], page
4). Although today’s networks are usually over-provisioned to provide
QoS, advance reservations can still make a difference. For instance, even
if redundant network devices are necessary to ensure service provisioning,
the redundancy ratio could be reduced by utilizing the network resources
in a more efficient way. Moreover, a better utilization of the network

INTRODUCTION

resources could enable the network to be able to cope with the growing
traffic demands during a longer period of time.

In recent proposals [41, 42], advance reservation mechanisms have
been widely applied to Wavelength Division Multiplexing (WDM) optical
networks [43]. In WDM optical networks, when a circuit is requested,
it is necessary to assign a route and a wavelength, which is known
as the Routing and Wavelength Assignment (RWA) problem [44]. A
comprehensive survey were the advance reservation mechanisms to
address this problem are analyzed is available in [45]. Moreover, the
use of advance reservations mechanisms has also become very popular
to optimize the bandwidth consumption [46] and minimize the network
congestion [47] in a variety of scenarios.

All in all, advance reservation solutions, including the ones utilized to
provide BoD, require the utilization of TE strategies, in order to ensure an
efficient utilization of the network resources over time. As a consequence,
the following section introduces TE in packet networks.

122 TRAFFIC ENGINEERING IN PACKET NETWORKS

This section introduces TE in packet networks and presents a list of
common TE performance objectives and the techniques used to achieve
them. Moreover, a brief overview of the evolution of TE in packet networks
is included.

1.2.2.1 DEFINITION OF TE

In communication networks, TE consists of the application of strategies
and scientific principles to optimize the performance of operational
networks [13]. The general objective of TE is to route traffic in a
data network so that traffic demands are met, by optimizing a selected
performance objective. This usually involves the computation of a path
between a given source-destination pair, or the computation of multiple
paths to share the load according to specific traffic-splitting ratios.

1.22.2 TE PERFORMANCE OBJECTIVES AND TECHNIQUES

The performance optimization of a network is an iterative process in which

new technologies and optimization mechanisms are continuously required

1.2 CONTEXT

[12]. When a TE solution is designed, the performance objective must be
selected carefully, since different performance objectives can be mutually
exclusive. This section presents a comprehensive list of performance

objectives and the techniques that are used for their optimization.
o Congestion minimization

In an operational IP context, congestion is one of the most important
problems, since it affects delay, jitter and packet loss [12]. Therefore, it is
one of the most critical performance objectives in current communication
networks.

Congestion minimization can be achieved using different techniques:

e Sharing the network resources by multiple traffic streams.

o Re-allocating network resources by redistributing the traffic over

the infrastructure.

e Denying the access to congested resources. Once the congestion is
detected, the TE system can only assign not congested resources to

new demands.

Sharing the network resources by multiple traffic streams is of special
relevance for the congestion minimization, since it is a proactive technique
aiming to avoid congestion. This is often achieved by minimizing the
links’ utilization solving a traditional optimization problem known as
the minimum cost multi-commodity flow problem [48]. This optimization
problem has been widely studied in the literature [49-52] and it is an
ongoing research work. The main purpose of this approach is to balance
the traffic load along the network, which results in a better network
utilization. This is achieved by splitting the traffic into a set of streams
that are routed through multiple paths connecting the ingress-egress
router pair. As a consequence, the load is balanced among a higher
number of network resources, resulting in a smaller amount of packets
queued at the forwarding devices and less occupied bandwidth at the
links.

A common approach to solve the multi-commodity flow problem is the
computation of an optimal splitting ratio for the incoming traffic demand
and the paths to transfer the resulting sub-flows. Traffic splitting can be

10

INTRODUCTION

achieved in different ways. On the one hand, the simplest mechanism to
split the traffic is on a per-packet basis, for example in a round-robin
fashion. On the other hand, it is also possible to split the traffic on a
per-flow basis, by applying a hash function over a set of the packets’
header fields. Current commercial routers can be configured to divide
traffic based on the result of hashing different TCP/IP header fields.

The limitations of these two approaches are later explained in Section
1.2.2.4. Notwithstanding, it is worth mentioning that in addition to these
two approaches, traffic splitting can also be achieved by forwarding the
traffic using a richer combination of header fields, without the need
of applying hash functions. For example, this is possible in OpenFlow
devices, where the flows can be defined using a combination of header
fields from Layer 1 (L1) to Layer 4 (L4), as it will be explained in Chapter
II. And this is precisely the kind of approach that novel TE strategies can
exploit in SDN.

As mentioned before, congestion can result in a higher E2E delay
and packet loss. In other words, congestion minimization can be
considered a general performance objective that has a direct impact
on more specific performance objectives such as the E2E delay and
packet loss minimization. Therefore, the techniques used to minimize the
congestion are also useful to minimize these two performance parameters.
Notwithstanding, there are other factors besides congestion that can
be the root cause of the E2E delay and the packet loss, requiring
the utilization of more specific techniques for their optimization. As a
consequence, the following subsections present other techniques to deal
with the minimization of the E2E delay and the packet loss, where they
are considered independent performance objectives.

o E2F delay minimization

A typical network-related performance objective that impacts QoS and
Quality of Experience (QoE). The minimization of the E2E delay is
essential for critical real-time communications. It can be applied on a
per-flow basis or as an overall objective that takes into account the E2E
delay of all the packets transmitted in the network. One of the most
common techniques to minimize the E2E delay is Constrained-Shortest

1.2 CONTEXT

Path First (C-SPF), where the E2E delay is used as a constraint for the
path selection [53].

o Packet loss minimization

Another typical network-related performance objective that can also be
evaluated per-flow or network-wide. Besides congestion, packet loss can
also be the result of failures in the network, such as forwarding devices
and links, requiring additional techniques to increase the failure recovery
capabilities of the network. This performance objective is usually tackled
by over-provisioning the network to increase resilience [54] by means of
redundant resources to be used in case of failure. In fact, if multiple
paths are available to convey traffic between a given source-destination
pair, traffic can be re-routed among the available paths when one of them
suffers a disruption.

e Energy consumption minimization

This is a performance objective that does not necessarily match
a network performance parameter. It is widely used in the scope of
green computing [55], which aims to lower the environmental impact of
Information and Communication Technologies (ICT). This performance
objective is usually optimized either by adapting the rate of network
operation to the offered workload or by reducing the amount of active
resources [56]. In this last case, the energy consumption is reduced when
traffic is gathered into a few paths and unused line cards can be powered
down in the network equipment. This is a good example of how the
different performance objectives can be mutually exclusive, since the
minimization of the energy consumption and the congestion minimization

cannot be achieved at the same time when this approach is followed.
e QoE mazimization
The QoE, as defined by the European Telecommunications Standards

Institute (ETSI), is a parameter that measures the performance of
using an ICT service or product taking into account objective technical

11

12

INTRODUCTION

parameters, like QoS, and subjective psychological parameters [57].
In other words, it is a parameter that gets affected by all the
elements involved in the E2E transmission, including the end devices,
environmental factors such as the light and the network performance.
Therefore, the QoE maximization also requires the optimization of
the network performance, which is inside our scope of interest.
Notwithstanding, maximizing the QoE does not always imply the
maximization of the network throughput, and a correlation between the
QokE criteria and the network-related performance parameters needs to
be defined, as argued in [50].

e Resource utilization optimization

The optimization of the resource utilization is another performance
objective. For example, computation, buffer space and bandwidth are
resources that need to be efficiently used, since they can impact congestion
and other parameters. In addition, a good utilization of the resources
helps network operators to serve a higher number of service demands
without increasing their costs. That is, a good utilization of the network
resources allows network operators to allocate a higher amount of traffic
using the same network resources.

A common approach to optimize the network resource utilization
is to schedule well characterized data transfers. For instance, network
operators can decide to transmit backup traffic between various data
centers during the night hours, since more resources are available at that
time.

As mentioned before, advance reservation systems [58] are also used for
the provisioning of the BoD service, since they are meant to optimize the
bandwidth utilization. Advance reservation systems allow to maintain a
detailed inventory of the resource consumption over time and a better
assignment of resources to satisfy new demands.

1.2.2.3 EVOLUTION OF TE

According to Awduche et al. [59], TE is considered a control issue where
the element in charge of TE acts as a controller in an adaptive feedback
control system. In this schema, available control actions must include

1.2 CONTEXT

the modification of traffic management parameters, the modification of
parameters associated with routing and the modification of the attributes
and constraints associated with resources. Over the years, TE in packet
networks has been tackled using different approaches, as mentioned in the
Request For Comments (RFC) 3272 [12]. However, first proposals were
not appropriate for TE because they did not satisfy the aforementioned
requirements posed in [59].

First routing protocols in the ARPANET were highly scalable and
resilient distributed protocols but without the flexibility required by TE
[60]. When the Internet became a reality, the adaptive routing protocols

used in ARPANET were substituted by dynamic routing protocols.

Though, the Interior Gateway Protocols (IGP) that run on the Internet
were neither appropriate for TE, since the route selection was based on
shortest path algorithms fed with additive link metrics and not on the
resources available in the network.

As a first approach to take advantage of TE strategies in the Internet,
overlay models were used, like IP over ATM [61]. By means of a secondary
technology capable of establishing virtual circuits, point-to-point links
between IP routers were served. This way, arbitrary virtual topologies
were defined and superimposed onto the physical network topology that
resulted in a much easier TE operation. Nevertheless, the use of overlay
technologies increased the overall complexity of the network operation. In
addition, these strategies were usually based on circuit pre-provisioning,
given the lack of efficient mechanisms to create new circuits on demand.

Parallel in time, the Nimrod routing architecture was designed to
provide service-specific routing taking into account multiple constraints
[62]. Nimrod was based on the distribution of link-state maps that
abstracted network connectivity and services information, and introduced
the concept of explicit routing to allow the selection of paths at originating
nodes. Even if this protocol was never deployed in the public Internet, it
introduced some interesting concepts adopted in more recent proposals,
like explicit routing.

In the next iteration, Shortest Path First (SPF) algorithms that took
into account the requested Type of Service (ToS) were proposed [63].
These approaches lead to an unfair usage of the network resources, where
the shortest paths end up congested and other paths remain underutilized.

13

14

INTRODUCTION

Next, traffic splitting was introduced by means of the Equal-Cost
Multi-Path (ECMP), where traffic was split equally among all the
available shortest paths [64]. Although the utilization of traffic splitting
mechanisms is not always optimal, as it will be further explained in
Section 1.2.2.4, the use of [64] is very extended, and many manufacturers
support this protocol in their networking devices.

Later, the Multi-Protocol Label Switching (MPLS) forwarding archi-
tecture emerged to provide flexibility and to increase the performance
and scalability of the network layer routing [65]. In MPLS, packets are
transmitted between the edge nodes of an MPLS domain using Label
Switched Path (LSP) and the forwarding decisions at each node are done
based on previously assigned labels. This results in a higher network
performance, since the forwarding decision is performed using a single
header field. MPLS is useful for TE because it provides most of the
functionalities available from the overlay model in an integrated manner
and at a lower level [13]. It supports the creation of explicit LSPs
that are not constrained by the destination-based forwarding paradigm,
facilitating the multipath routing. Furthermore, MPLS is appropriate for
TE because it supports explicit routing and allows traffic aggregation and
disaggregation, while the classical destination-based IP forwarding only
supports aggregation based on IP subnetting. In addition, with MPLS it
is relatively easy to integrate constraint-based routing frameworks.

Finally, the IETF proposed the Path Computation Element (PCE)-
based architecture for MPLS and Generalized Multi-Protocol Label
Switching (GMPLS) networks [66], which extends packet switching
capabilities of MPLS to an open set of networking and switching methods.
The PCE-based architecture proposed a dedicated element to be in charge
of the path computation making possible the application of complex
algorithms such as C-SPF. In addition, it supports the instantiation of
point-to-point and point-to-multipoint LSPs, which is known as explicit
routing. This architecture can be used when the path computation is
CPU-intensive or when there is no visibility of all the network elements
involved. As a consequence, this architecture is being adopted for TE [67],
and can be used in intra-domain, inter-domain and inter-layer contexts.

In summary, although TE has greatly evolved since the appearance
of first communication networks, it is still a challenging topic.

1.2 CONTEXT

Notwithstanding, the appearance of SDN arises the question of how the
novelties introduced by this new paradigm can boost the next generation
of TE solutions.

1.2.2.4 LIMITATIONS OF CURRENT TE SOLUTIONS

Although TE solutions have greatly evolved during the last years, they
still present some limitations, which are described below:

e Unrealistic traffic splitting ratios

Congestion minimization is often achieved using multiple paths, but
the current mechanisms to split the traffic present some limitations.

On the one hand, per-packet traffic splitting results in an excessive
packet reordering in the destination end-point, which is undesirable,
especially for Transmission Control Protocol (TCP) applications. As
explained in [68], packet-level multipath routing can entail TCP segments
arriving out of order to the destination entity, triggering the TCP
congestion avoidance mechanism unnecessarily and resulting in the
application throughput and the whole network performance being
degraded. In addition, jitter can occur, requiring large buffers to
temporarily store the packets received out of order.

On the other hand, per-flow traffic splitting allows individual TCP or
User Datagram Protocol (UDP) flows to be distinguished, avoiding the
traffic reordering problem. Nevertheless, the traffic splitting granularity
is determined by the forwarding element and the hash function that is
used to split the traffic. This granularity does not necessarily need to
be the same granularity demanded by the TE solution, resulting in the
assignment of inappropriate traffic ratios to each path. As a result, the
overall network performance and the capacity of the TE mechanism to
deal with congestion may not be optimal.

In addition, traffic splitting mechanisms, such as the one utilized in
ECMP, where the traffic is split among paths of equal cost [64], may not
take into account the potential congestion of the shortest paths used to
balance the traffic, resulting in a poor performance [69].

15

16

INTRODUCTION

e Suboptimal path computation algorithms

Path computation and the required resource handling in Multi-
Protocol Label Switching - Traffic Engineering (MPLS-TE) present some
limitations as well. In [70], the authors detected that some of the links
in an over-provisioned network were experiencing some latency. They
analyzed their MPLS-TE solution and deducted that latency inflation
was a consequence of both the C-SPF algorithm that they were using
and the continuous path re-computations that occur as a consequence of
the autobandwidth algorithm, which is provided by many MPLS vendors
to automatically adjust the reserved bandwidth of the LSPs depending
on the traffic demand.

e TFE databases do not reflect the network state in real-time

Although the PCE-based architecture can improve some of the
limitations present in classic MPLS-TE, it also presents some limitations
of its own. In the PCE-based architecture, path computation is done
using the TE information stored in the Traffic Engineering Database
(TED). This database holds an inventory of the resources available in
the network, information that is used by the PCE to compute the paths.
Notwithstanding, according to the RFC 4655 [66], the TED does not
always reflect the network state in real-time. When the TED is not
properly synchronized with the network state, which can occur at specific
times, the rate of wrong computed paths may increase.

e Long convergence times of distributed protocols

Another important limitation that can be found in MPLS-TE and in
the PCE-based architecture is their dependence on Resource Reservation
Protocol - Traffic Engineer (RSVP-TE). When a network device requests
a path, the PCE replies with the computed path information. Then, the
network device uses the distributed protocol RSVP-TE to inform the
other nodes. As a consequence, the establishment of the path depends
on the time to propagate the new path configuration to all the network
devices. This has a direct impact on the network stability, since the

1.2 CONTEXT

already established data flows may not be aware of the new situation
immediately. This fact also affects scalability as defined by the RFC
4655, because RSVP-TE is an in-band signaling protocol. This is a
limitation that most MPLS-TE based solutions present, as they all rely
on RSVP-TE.

123 SOFTWARE-DEFINED NETWORKING

Since SDN is considered as an enabler for future TE solution, this section
presents the fundamentals of SDN, including a brief introduction to the
history of SDN, its definition and the proposed architectures.

1.2.3.1 FUNDAMENTALS OF SDN

SDN is the result of three key research areas very popular since their
inception in the mid-90s [71]. First, proposals like Open Signaling [72]
and Active Networking [73] pushed in favor of network programmability by
means of open interfaces and code piggybacked inside the user messages
respectively. Second, the control and data plane separation brought to the
fore the possibility to control the network from an external entity [74] and
the transition towards a logically centralized control plane [75]. Moreover,
the IETF boosted the standardization of the Forwarding and Control
Element Separation (ForCES) framework, according to many the first
serious precursor of SDN. Finally, the appearance of network operating
systems and the clean slate approach proposed at the 4D [76] project led to

the release of the OpenFlow switch specification and the SDN revolution.

According to the Open Networking Foundation (ONF) [77], the
changing traffic patterns within an enterprise DC, the need to
accommodate the traffic of new personal devices in a fine-grained manner,
the rise of cloud services and the associated increasing demand for network
capacity are key computing and communication trends that require a new
network paradigm such as SDN.

The ONF defines SDN as an emerging network architecture where the
network is directly programmable and where the control and forwarding
planes are decoupled. One of the main characteristics of SDN is that the
intelligence is logically centralized in SDN controllers. Such controllers
maintain a global view of the network, which results in the network

17

18

INTRODUCTION

Application | | Service |

Application Plane

| Network Service Abstraction Layer (NSAL) |

Service Interface

| Service | | App | | App | | Service | §
ey >
g ' ' C z:
ST Control Abstraction Layer Control Abstraction Layer o 3
(CAL) (CAL) 3

CP Southbound Interface MP Southbound Interface

| Device and Resource Abstraction Layer (DAL) |

| Forwarding Plane | | App | | Operational Plane |

Network Device

Figure 1.2.: SDN architecture proposed by the SDNRG [80].

appearing to the applications and policy engines as a single, logical switch
[78].

With SDN, network design and operation are simplified because the
entire network can be controlled from a logically centralized point using
open interfaces. Network control becomes vendor-independent and the
utilization of simpler network devices is a real possibility, since the devices
only need to understand the SDN technology that controls them. One
of the main features of this new paradigm is that networks can be
programmatically configured, making possible the management of the
entire network through intelligent orchestration and provisioning systems.
Besides, SDN architectures support a set of Application Programming
Interfaces (API) that enable the implementation of common network
services, custom tailored to meet business objectives.

Nowadays, not only the ONF but many SDO are dealing with
SDN. For instance, the IETF has created a research group focused
on this trend, named the Software-Defined Networking Research Group
(SDNRG) [79]. Both the ONF and the SDNRG have proposed different

SDN architectures, which are described in this section.

1.2 CONTEXT

Management M

Application
Plane

Manager SDN Application (20)

10 ace
Controller

Plane
SDN Controller

1[oece

Manager Network Element (21)

Data
plane

Figure 1.3.: SDN architecture proposed by the ONF [81].

e SDNRG Architecture

The architecture proposed by the SDNRG [80] is depicted in Figure 1.2,
and defines five different planes. Inside the network device, the forwarding
plane is the one responsible for handling packets in the data path and it
is often referred to as the data plane. Secondly, the operational plane is

the plane responsible for managing the operational state of the network.

Outside the network devices, in an external entity, the control plane is
the one in charge of taking the decisions about how packets are forwarded
at network devices, and it is also in charge of pushing such decisions
down to network devices so that they are executed. On the other hand,
the management plane is the one in charge of monitoring, configuring
and maintaining the network devices. Finally, the application plane, also
located in an external entity, is where the applications that rely on the
network to provide services for the end users and processes reside.

In addition to these five planes, the SDNRG architecture also defines
two abstraction layers: the Device and Resource Abstraction Layer and
the Network Service Abstraction Layer. The first one abstracts the
network devices’ forwarding and operational planes and connects to
the control plane and management plane through the Control Plane
Southbound Interface and the Management Plane Southbound Interface
respectively. The second abstraction layer exposes the control and
management planes through a Northbound Interface to the application
plane.

19

20

INTRODUCTION

e ONF Architecture

The ONF has also presented a reference architecture for SDN [81],
which follows a three layers approach, as depicted in Figure 1.3. It must be
taken into account that the main goal of this architecture is to provide a
high level overview of the reference points and open interfaces that should
be present in every SDN deployment, in order to guarantee a minimum
set of capabilities that would allow to control the connectivity provided
by the network resources and the traffic flows through them.

The first layer is known as the data plane and it is the plane in which
the network elements reside. The data plane uses the Data-Controller
Plane Interface (D-CPI) to expose the network elements’ capabilities
to the second layer, that is, the controller plane. As its name suggests,
the controller plane contains the SDN controller, which is the element
in charge of controlling the network elements through the previously
mentioned D-CPI. The controller plane also exposes services to the third
layer, known as the application layer, through the Application-Controller
Plane Interface (A-CPI). This latter plane holds the applications that
specify the behavior of the network through the A-CPI. In addition
to these two interfaces, this architecture also considers a Management
Interface (MI) to configure and manage the three different planes.

1.3 PROBLEM STATEMENT AND MOTIVATION

As mentioned before, research and education networks demand TE
solutions to provide the necessary QoS to their users. Most of the RENs
however, still rely on MPLS-TE to achieve such goal in their production
networks.

Notwithstanding, the growing traffic demands that RENs must deal
with and the need to provide new services to the research community
makes necessary the evolution of these types of networks on a regular basis.
As such, since the appearance of SDN, RENs have started to evaluate the
suitability of this new paradigm to evolve their infrastructure.

In a nutshell, with an SDN-based infrastructure, RENs can benefit
from the lower CAPEX and OPEX expenditures. Furthermore, with
an SDN-based approach, RENs can overcome some of the limitations

1.4 OBJECTIVES

present in current TE solutions, as explained throughout this chapter
and summarized in the list below:

e The higher granularity available at the SDN forwarding devices

allows the utilization of more realistic traffic splitting rations.

o The logically centralized control plane of SDN enables the
implementation of new path computation approaches.

e In SDN, having a centralized control plane which is aware of
the global network state in real-time can alleviate current TED

synchronization problems.

e The high programmability of SDN and the possibility to control
the network out-of-band can overcome the long convergence times
of current distributed protocols.

Considering current limitations in MPLS-TE solutions, and considering
how SDN can help overcome such problems, this PhD thesis addresses the

following research question:

Is it possible for network operators, and more precisely RENs,
improve the operation and the resource utilization of their
networks with an SDN-based TE solution? And if it is possible,
how that can be achieved?

14 OBJECTIVES

In order to address the question introduced in the previous section, this
PhD thesis presents a solution for TE in SDN networks. The main
objective of the solution is to provide a generic framework to support
the provisioning of connectivity services, including BoD, based on novel
TE strategies that leverage the features present in SDN. Having such an
objective in mind, the solution must tackle the specific goals listed below:

e The framework for TE in SDN networks must be technology
agnostic, in terms of the D-CPI protocol that is employed. That

21

INTRODUCTION

is, it must be able to operate over an SDN infrastructure regardless
of the technology being used to control the network.

e The framework must be engineered to support the introduction of
novel TE strategies and path computation algorithms easily.

¢ The framework must provide the means to retrieve accurate network
state information in real-time, in order to present trustworthy TE
information to the algorithms used to achieve the TE performance

objectives.

e The framework must provide the means to assure the SLAs agreed
between the network operator and the users.

e The framework must provide failure recovery mechanisms, in order

to minimize the service disruption time and the packet loss.

e The framework must include open interfaces towards external
elements such as orchestrators and external agents. This will allow
the utilization of the framework in a variety of scenarios, and will
allow RENs to continue using the multi-domain technologies already
used in order to establish E2E circuits involving multiple network

domains.

In addition, since this generic framework aims to satisfy the needs
of the research and education community, it needs to support advance
reservations. In that regard, the solution also satisfies the following

functional objectives:

e The advance reservation mechanism must be able to accept the
highest amount of service reservation requests as possible, which will
have a positive impact in the perception of the users regarding the
service. In addition, satisfying this objective will allow to increase
the revenue of the network operator at the time of providing this
service. That is, the solution must be able to maximize the network
resource utilization in order to reduce the CAPEX and OPEX
expenditures of RENs.

e The solution must be able to respond to the users’ requests as fast
as possible. That is, the time required to determine whether there

1.5 CONTRIBUTIONS

are enough resources in the network to satisfy the demand and to
compute the path that will satisfy the connectivity requirements of

the user must be minimized.

e Once a service reservation request is accepted by the system, it
must be ensured that the service will be provided during the entire
reservation period without disruption.

1.5 CONTRIBUTIONS

The main contributions of this PhD thesis are enumerated below:

1. A study of the impact of the different interfaces proposed by the
ONF in TE has been conducted. First, a comprehensive list of SDN
protocols operating at different interfaces have been reviewed, so as
the research proposals relying on these protocols. After a qualitative
evaluation, where the SDN protocols have been compared against
TE capabilities of the PCE-based architecture, it has been possible
to identify that the protocols operating at the D-CPI interface
are the ones that benefit the most TE. As a consequence, a more
in depth analysis of TE solutions based on D-CPI protocols has
allowed to identify the desired features to be included in the generic
framework for TE in software-defined networks.

2. A complete analysis of the impact of the data structures that
are used to support advance reservations. This analysis has also
allowed to identify the strengths and limitations of current advance

reservation solutions.

3. The design of a generic framework for TE in SDN, called the
Dynamic Path Computation (DynPaC) framework, that supports
the introduction of novel TE strategies and path computation
algorithms regardless of the SDN technology being used.

4. The introduction of resilience mechanisms such as path protection
or path restoration to handle the network failures.

5. A novel data structure and a set of associated algorithms to support
advance reservations in SDN that leverages the logically centralized

INTRODUCTION

control plane and high programmability of this new networking
paradigm.

6. A set of TE techniques that seek to improve the network
resource utilization in software-defined networks, which rely on flow
relocations and the disaggregation of the reserved services in a set
of sub-services, easier to relocate.

7. The design of a Representational State Transfer (REST) interface
towards external elements that allows the integration of the
DynPaC framework with orchestrators.

8. The introduction of an operational mode in the DynPaC framework
that allows its utilization in the Network Services Framework (NSF)
to provide multi-domain connectivity services, which can alleviate
the long times usually required to manually configure these kinds
of services involving multiple REN.

9. The deployment of the pilot of the SDN-based BoD service in
GEANT, where the DynPaC framework will be tested by a set of
selected users of the academic and research community.

1.6 CONTENT OF THE DOCUMENT

This remaining of this document is structured as follows:

e Part II - State of the art: This part reviews the most relevant
technologies and proposals of application to this thesis. It is divided
in the following two chapters:

— Chapter II - Traffic Engineering frameworks for
Software-Defined Networks: Reviews current frameworks
to support TE in SDN depending on the performance objective
that the algorithms seek to optimize.

— Chapter III - Algorithms and Data Structures for
Advanced Reservations: Analyzes the impact of the data
structures to handle the resource management over time

required by advance reservation mechanisms.

1.6 CONTENT OF THE DOCUMENT

e Part III - Proposal: This part presents the solution proposed in
this PhD thesis. It is divided in the following three chapters:

— Chapter IV - Generic framework for Traffic Engineer-
ing in SDN: This chapter describes the architecture of the
DynPaC framework. It presents the modules that comprise the
framework and the support for multi-domain capabilities.

— Chapter V - Support for advance reservations: This
chapter is focused on the support for advance reservations
in the proposed solution. It includes information about
the reservation model that it supports, the data structures
specifically designed to handle advance reservations in SDN

and the operations supported by these data structures.

— Chapter VI - Optimization Techniques: This chapter
describes a set of optimization techniques that the DynPaC
framework supports to improve the network resources
utilization, namely flow relocation and flow disaggregation.

e Part IV - Validation: This part is focused on the validation of
the contributions presented in this PhD thesis. It is divided in the
following chapters:

— Chapter VII - Functional Validation: In this chapter, the
set of experiments conducted to demonstrate that the proposed

framework is able to satisfy the objectives of this thesis are
described.

— Chapter VIII - Performance Evaluation: In this chapter
the performance of the advance reservation mechanism
proposed by this PhD thesis is evaluated, in order to state its
feasibility in REN networks. Furthermore, it is demonstrated
that the system is able to perform the admission control of the

reservations requests in the order of milliseconds.

e Part V - Conclusions: The last part of this document is divided
in the following chapters:

— Chapter IX - Conclusions and Future Work: This
chapter summarizes the conclusions of this PhD thesis, the

26

INTRODUCTION

dissemination results consequence of this research effort and
presents the future work of this research line.

Part 11

STATE OF THE ART

Traffic Engineering Frameworks

in Software-Defined Networks

"Any problem in computer science can be solved

with another level of indirection."
— David Wheeler

As mentioned before, SDN has been appointed as the next generation
TE enabler. Among the benefits provided by SDN, its capability to make
network-wide decisions from a logically centralized control plane and its
high programmability are the ones that will impact the most future TE
solutions.

As a consequence, this chapter presents a comprehensive survey about
current proposals for TE based on the utilization of SDN technologies.
The main objective of this survey is to identify current frameworks for
TE and their strengths and limitations. The analysis conducted to the
current solutions has allowed to identify the need of a generic framework
to support TE in SDN deployments, especially suited to satisfy the
requirements of RENs.

The different proposals analyzed in this chapter have been selected
given their relevance, while other solutions like [82-84] are not described
in this chapter since they are based on similar techniques or even if they
present TE solutions, they do not propose a framework for TE. They have
been categorized considering their performance objective, namely network
resource optimization, congestion minimization, packet loss minimization
and QoF mazimization. It is worth noting that the analysis of the different

29

30

TE FRAMEWORKS IN SDN

proposals is focused on their architectural design and their support for
TE.

This chapter is structured as follows. First, an introductory section
presents the benefits that using SDN provides to the TE, where it is
identified that the protocols operating at the D-CPI interface are the
ones with the highest impact on TE. As a consequence, an overview of a
comprehensive set of SDN protocols operating at this interface is provided.
Later, Sections 2.2 to 2.5 present the different SDN-based TE solutions,
in order to identify the current state in terms of TE support in this
new networking paradigm. Finally, Section 2.6 summarizes and compares
the different solutions while Section 2.7 presents the conclusion of the

analysis.

2.1 INTRODUCTION

Currently, the SDN ecosystem consists of multiple protocols and
technologies. While OpenFlow is considered the de facto protocol for
SDN and most proposals, either focused on TE or not, are based on
this technology, other solutions such as Link Layer Discovery Protocol
(LLDP), Generic Routing for Encapsulation Network Virtualization
(NVGRE) [85] or Virtual eXtensible Local Area Network (VXLAN) [86]
are also considered SDN technologies. Notwithstanding, this chapter
focuses on the SDN protocols operating at the D-CPI interface, since
they are the ones that benefit the most TE, as stated in [87].

2.1.1 IMPACT OF THE SDN INTERFACE TYPE TO TE

Given the extend of the SDN ecosystem, an in-depth survey where the
impact of a comprehensive list of SDN protocols to TE was analyzed was
conducted in [87] by the author of this PhD thesis. The main objective
of this survey was to answer the following question.

How does the interface type in which the SDN protocols operate impact
TE?

In summary, nine different protocols considered to be part of the SDN
ecosystem were analyzed, namely ForCES, OpenFlow, Interface to the
Routing System (I2RS), Border Gateway Protocol - Link State (BGP-LS)

2.1 INTRODUCTION

. Protocol
ALTO
Interface Type S— _—
‘ ’ ACPI
SDN)
. /\
(D-CPl o~
" Forces) . \7 (\?penno\i)
BGP-LS/ —

Figure 2.1.: Categorization of SDN protocols depending on the interface type.

in conjunction with Path Computation Element Communication Protocol
(PCEP), Open vSwitch Database Management Protocol (OVSDB),
Network Configuration Protocol (NETCONF), OpenFlow Management
and Configuration Protocol (OF-CONFIG) and Application Layer Traffic
Optimization (ALTO). These protocols were categorized depending
on the interface type at which they operate as defined in the SDN
architecture proposed by the ONF (see Figure 2.1). The three interfaces
defined by the ONF are the ones described below:

e D-CPI protocols: used to communicate the data plane with the
controller plane. The D-CPI is aware of an instance of the data
plane’s informational model, that is, the set of resources on the data
plane and the operations that can be performed on them. These
protocols operate on an event timescale, that is, they are able to
enable or disable circuits at the data plane within milliseconds.

e A-CPI protocols: protocols that are used to communicate the
controller plane with the application plane. The protocols in this
category can provide an abstraction of the network resources to
the applications, or user-friendly and standardized mechanisms to

program the network elements.

e MI Protocols: the ONF’s SDN architecture includes management
technologies to operate over the three planes. More precisely,
the MIs that operate over the data plane are used to manage

31

32

TE FRAMEWORKS IN SDN

the network elements, and are in charge of tasks such as policy
provisioning, port, queues or LSPs configuration and in some cases,
even of failure detection. They operate on much slower timescale
when compared with the D-CPI protocols, within minutes or hours.

In order to determine the impact of these protocols to TE, they were
evaluated taking as a reference the most advanced TE architecture present
in today’s production networks, the PCE-based architecture. To that
matter, the following set of evaluation metrics defined in RFC 4655 [88]
and two additional metrics were used (marked with an asterisk).

¢ Optimality: the ability to maximize network utilization and
minimize cost, considering QoS objectives, multiple regions and

multiple layers.

o Scalability: the implications of routing, TE LSP signaling, and
PCE communication overhead, such as the number of messages and

the size of the messages.

o Load sharing: the ability to allow multiple PCEs to spread
the path computation load by allowing multiple PCEs to take
responsibility for a subset of the total path computation requests.
It should not be confused with load balancing the traffic among
multiple paths. In the case of SDN protocols, it refers to the ability
to have multiple controllers implementing the TE solution.

e Multipath computation: the ability to compute multiple and
potentially diverse paths to satisfy load-sharing of traffic and
protection /restoration needs including E2E diversity and protection

within individual domains.

e Re-optimization: the ability to perform TE LSP path re-
optimization. In the case of SDN protocols, it refers to the ability

to relocate flows onto alternative paths.

¢ Network stability: the ability to minimize any perturbation on
existing TE state resulting from the computation and establishment
of new TE paths.

2.1 INTRODUCTION

Accurate TED synchronization: the ability to maintain
accurate synchronization between TED and network topology and
resource states.

TED synchronization speed: the speed which TED synchroniza-
tion is achieved with.

Impact on data flows: the impact of the synchronization process
on the data flows in the network. This metric refers to the effect
that a poor TED synchronization will have on the data flows. For
instance, based on outdated information a path could not be the
optimal one, resulting in a performance degradation or even a path
being computed for already unavailable resources.

Granularity*: refers to the number of possible classifiers that can
be used at the network devices to forward the packets. That is, the
number of header fields and wild-carding options that can be taken
into account to classify the packets at the networking devices (e.g.,
an IPv4 source address and its mask). The higher the number of
available packet classifiers the higher the granularity is, resulting
in finer-grain flows. It has clear implications on the multipath
capabilities of the solutions, since a higher granularity allows to
split the traffic more conveniently. Similarly, it also impacts the
optimality and the re-optimization capabilities of the solutions.

Equipment configurability*: capacity to configure the network
equipment to enforce the establishment of paths.

The survey concluded that the protocols operating at the D-CPI
interface are the ones that benefit the most TE, as summarized in
Table 2.1. The symbols indicate that the SDN protocol capabilities are
(V'):better, (X):worse or (=):equal compared to the capabilities of the PCE-
based architecture. Among the benefits provided by the SDN technologies
operating at the D-CPI interface it is worth remarking the following ones:

e The higher granularity available at the forwarding elements

programmed through D-CPI interfaces enables the utilization of
more appropriate traffic splitting ratios for load balancing.

33

34

TE FRAMEWORKS IN SDN

Table 2.1.: Summary of the impact of SDN protocols to TE.

Impact

Load . Net TED .
Optimality Scalability ghar- “iUitPath Re- g TED gine °% Granularity Dduipment
R comp. opt. . accu. data config.
ing bility speed
flows
ForCES v v v v v v v v = v
OpenFlow v v v v v v v X X v
12RS v X v v v = v X = =
BGP-LS/PCEP v * v v v = 4 X = =
OVSDB v
NETCONF v
OF-CONFIG X X v
ALTO v X v v v X v X X X

o The utilization of a logically centralized control plane allows taking
decisions based on an up-to-date global view of the network, which

facilitates the optimization of the network performance.

e The possibility to have a dedicated element in charge of the
path computation as in the PCE-based architecture allows easier
introduction of algorithms with different objective functions.

e The high programmability of the forwarding elements allows the

application of fast failure recovery mechanisms.

e The utilization of an out-of-band control mechanism reduces
the convergence time needed by distributed protocols such as
RSVP-TE.

Since the D-CPI protocols are the ones that impact the most on TE
solutions, the following subsection will introduce a comprehensive set of
protocols operating at this interface.

2.1.2 OVERVIEW OF THE MOST RELEVANT D-CPI PROTOCOLS

As mentioned before, the D-CPI protocols are the ones used to
communicate the data plane with the controller plane (see Figure 2.2,
where the D-CPI interface is identified). As such, an overview of protocols
operating at this interface is presented, namely ForCES, OpenFlow and
BGP-LS/PCEP.

2.1 INTRODUCTION

Management

Application
Plane

SDN Application (20)

]A[A-CPI

SDN Controller

Manager

Controller
Plane

B

1 p-cpi

Data
plane

Manager Network Element (>1)

Figure 2.2.: D-CPI interface in the ONF architecture.

2.1.2.1 FORCES

Back in 2003, the ForCES Working Group (WG) of the IETF presented
the ForCES framework [89], which enables the separation of the control
and forwarding planes of the network elements. Although the framework
and the homonym protocol were designed to easily add new functionalities
to the forwarding plane, neither the industry nor the academia adopted
the proposal. In fact, due to the lack of open implementations of the
ForCES protocol, the ForCES framework was ostracized [90]. Currently,
with SDN being a hot topic, the ForCES WG has resumed the
standardization process. As stated in the RFC 3746 [91], ForCES does not
only define a framework, but also standardizes all the associated protocols
that make possible the information exchange between the control and
the forwarding planes. It can be considered as a framework aiming to
improve network programmability through an open interface. However,
unlike other SDN technologies, the ForCES framework does not impose
a centralized control plane, in fact, it can be used with legacy distributed
control protocols.

In the ForCES framework, which is depicted in Figure 2.3, a
Network Element (NE) consists of Forwarding Elements (FE) and
Control Elements (CE). In short, the FEs are logical entities that use
the underlying hardware to provide per-packet processing. They must
support a minimal set of capabilities to be able to establish network
connectivity. FEs are formed by Logical Forwarding Blocks (LFB),
which are programmed by the CE by means of the ForCES protocol

35

36

TE FRAMEWORKS IN SDN

4 NE)

PCEL PCEL
Partition
CE
CE CE
Manager

[F<;;‘CE§ Pr_ott.)'c‘;)l :]

PFE Y PFE

A PFE
;. Partition }(d
Ma r\gger """"""" - |FE E _______ FE E m
LFB LF B LFB

- J

Figure 2.3.: Main components of the ForCES architecture.

to implement a wide variety of logical functions, e.g., Layer 3 (L3)
forwarding, Firewall or Network Address Translation. The FEs reside
inside Physical Forwarding Elements (PFE), whereas CEs do the same
in the Physical Control Elements (PCEL)!. Typically, the PFEs and the
PCELs are placed in the same physical machine, although, they can also
be located separately as specified by the RFC 6041 [92] by a single or
multiple hops, as stated in RFC 6053 [93].

There are two operational phases identified in the ForCES framework.
First, in the pre-association phase the CE manager and the FE manager
decide whether the CEs and the FEs are part of the same NE. However,
this operational phase is out of the scope of the ForCES protocol.
Second, in the post-association phase, the FEs and the CEs use the
ForCES protocol to associate and exchange information to facilitate
packet processing.

The ForCES protocol supports CEs redundancy. Multiple CEs can
operate over the same FE, though, the coordination between the CEs
is out of the scope of the ForCES protocol. As a consequence, it is
possible for different CEs to implement different routing or signaling
protocols, where the FE acts as the entity in charge of redirecting the
control packets to each one of the CEs according to some filtering rules.
Similarly, the framework also supports the coexistence of multiple FEs,
which imposes additional challenges. First, the functions that each one of
the FEs implement must be very well defined, as it can affect the overall

performance of the system. Furthermore, depending on the functions

1 To avoid confusion with the PCE

2.1 INTRODUCTION

that each FE is in charge of, it may be necessary to perform multiple
forwarding decisions in more than one equipment.

ForCES is a master-slave protocol, with CEs acting as masters and
FEs as slaves. The protocol provides the means to associate the different
elements of the framework, so as to tear down such associations. It is
also in charge of transmitting subscribed-to events from FEs to CEs
and of responding to status requests issued from the CEs to the FEs.
Additionally, it is used to configure the FEs and the associated LFBs’
operational parameters, so as to activate or deactivate the FEs. In the
end, the protocol manages the LFBs at the FEs, which are compliant
with the FE model defined in the RFC 5812 [94].

As mentioned before, the FEs are comprised of LFBs that are
interconnected in a direct graph, and receive, process, modify, and
transmit packets along with meta-data. The FE model establishes a
formal way to define the FE’s LFBs using eXtensible Markup Language
(XML), while the configuration components, capabilities and associated
events of the LFBs are defined when they are formally created. On the
one hand, the FEs can be broadly defined by simply specifying their
capabilities. For instance, FEs can be described in terms of IPv4 or IPv6
forwarding support or by the set of matching fields supported for the
packet classification. On the other hand, the FE model can also be used
to describe the FE state model, which presents a snapshot view of the
FE to the CE. For each LFB, the number of inputs and outputs can be
specified, as well as the packet types accepted in each of them and the
routing criteria.

As stated in [95], the ForCES protocol is powerful enough to define
other protocols. For instance, the authors of that paper state that both
OpenFlow and NETCONF, could be considered subsets of the ForCES
protocol. Therefore, according to the ONF’s SDN architecture ForCES
could be considered both a D-CPI and an MI.

In summary, ForCES is helpful for TE because it can be used with
legacy protocols, supports CE redundancy and it can be used to define
other protocols such as OpenFlow and NETCONF.

37

38

TE FRAMEWORKS IN SDN

OpenFlow OpenFlow
Controller Controller
A
i OpenFlow
! Protocol !
¥ ¥
OpenFlow OpenFlow Group Meter
Channel Channel Table Table
Flow | | Pipeline) Flow
Table Table
OLS

Figure 2.4.: Main components of the OpenFlow switch.

2.1.2.2 OPENFLOW

Back in 2008, the Stanford University released the first stable version
of OpenFlow. Since then, the ONF has become the SDO in charge
of the standardization of the OpenFlow Switch Specification and its
homonym protocol. The OpenFlow Switch Specification defines both the
OpenFlow Logical Switch (OLS) and the OpenFlow protocol, used for
the communication between the OLS and the OpenFlow controller.

As depicted in Figure 2.4, the OLS consist of one or more control
channels and a datapath. The datapath is where the packet look-ups and
forwarding are performed, by means of one or more flow tables, a group
table and a meter table. The OLS connects to the external controller
through the OpenFlow channel, often referred to as the control channel,
using the OpenFlow protocol.

Each OLS must have at least a flow table comprised of flow entries,
which are formed by the match fields, the priority that specifies the
matching precedence of the entry, the counters that hold statistical
information, the set of instructions that are applied to the matching
packets, the timeouts and the cookie that unambiguously identifies the
flow entry (see Figure 2.5). Among the instructions that can be applied
to packets, the ability to direct the packets to specific meters is of
special relevance for TE. Meters are switch elements able to measure
and control the rate of the packets being forwarded; therefore, they play
a key role in QoS enforcement. Instructions can also be used to apply a

2.1 INTRODUCTION

Match Field | Priority | Counters | Instructions | Timeouts | Cookie |
Per... Write-Actions Hard timeout Opaque controller-
0-65535 Flow table Goto-Table Idle timeout issued identifier
Flow entry Meter*
Port Apply-Actions*
Queue Clear-Actions

Group Write-Metadata
Group

Bucket

Meter

Meter band

port‘ ethernet | 1Pv4 ‘ IPv6 ‘ Tce ‘ uop ‘ 1. Optional OpenFlow Xtensible
‘ src ‘ dst [type |proto| src ‘ dst ‘ src [dst [src ‘ dst [src [dst ‘ ™ fields Match (OXM) Fields

Figure 2.5.: Structure of the flow tables in an OpenFlow switch.

certain set of actions. Available actions include sending the packet to a
queue or to an outport (output port), directing the packet to a group
table or re-writing a specific field, to cite a few. Another interesting
feature of OpenFlow is the fine-granularity that it supports for the
matching of packets. OpenFlow takes into account at least the physical
ingress port and additional Ethernet, IPv6, IPv4, TCP and UDP header
fields. Moreover, additional header fields can be included thanks to the
OpenFlow eXtensible Match (OXM), which is a very flexible model where
new matching fields are defined as Type Length Values (TLV).

In a nutshell, the external controller populates the flow tables of the
OLS with the flow entries that determine the behavior of the traffic that
matches them. Each OLS can contain more than one flow table with its
corresponding flow entries. The OpenFlow pipeline process defines how
packets interact with those flow tables. According to the latest OpenFlow
Switch Specification [7], packets are always matched first against the first
flow table and in the cases where there are multiple flow-tables, packets
are forwarded to the subsequent ones. When a packet matches one or
multiple flow entries, the instruction set associated to the entry with
the highest priority is applied, which can include directing the packet
to another flow table. Then, when the pipeline process finishes, either
because there are not more re-directions to subsequent flow tables or

because it is the last flow table, all the associated actions are applied.
It is worth mentioning that an OLS is able to handle flow miss-matches.

Depending on the configuration, when a packet arrives that does not
match any of the flow entries installed in a flow table, the OLS can specify

39

40

TE FRAMEWORKS IN SDN

how to process it. As a consequence, packets can be directed to another
flow table or be sent to the controller. This feature makes possible to work
reactively besides of proactively; that is, to act in response to packets that
do not match any entry of a flow table.

There is a single group table per OLS, which makes possible to represent
additional forwarding methods. For instance, in an OLS it is possible to
flood packets creating a group that associates output actions to all the
ports but the ingress port. Each entry at the group table is defined by
a unique identifier, a set of counters, the action buckets (ordered list of
actions to execute and the associated parameters) that must be applied to
the packets and the group type they belong to. For the moment, OpenFlow
defines four different group types: all, select, indirect and fast fail-over.
The first one is characterized by applying all the action buckets defined
for the group. The select group type uses just one of the action buckets
associated to the group for each packet, e.g., in a round-robin fashion.
Third, the indirect group type supports a single action bucket. Finally,
the fast fail-over group applies one action bucket at each time, following
the order in which they are configured.

Regarding the OpenFlow controllers, it is worth mentioning that
network operators can choose between centralized (e.g., NOX [96] POX
[97], Trema [98], Ryu [99], FloodLight [100], Beacon [101], Maestro
[102], McNettle [103], Jaxon [104], Snac [105]) or distributed (e.g., Onix
[106], HyperFlow [107], Helios [108]) controllers. They can also select the
programming language to use, being Java and Python the most popular
ones. Furthermore, there are also available special purpose controllers,
such as FlowVisor [109], Open Virtex [110] and AutoSlice [111], which
make possible to virtualize OpenFlow-based networks by slicing the
network resources and exposing the network control to other controllers
transparently. For further information regarding network virtualization
with OpenFlow see [112-114]. In addition, several frameworks have
appeared recently that support a set of SDN protocols, including
OpenFlow. This is the case of the Open Network Operating System
(ONOS) [115], Open Daylight Project (ODP) [116] or Cisco Open
Network Environment (ONE) [117]. Further information about OpenFlow
controllers can be found in [118].

2.1 INTRODUCTION

Undoubtedly, the OpenFlow protocol is a D-CPI used to communicate
the OLSs that reside in the data plane with the OpenFlow controller
placed in the homonym plane of the ONF’s SDN architecture. OpenFlow
has a number of mechanisms that can benefit TE. Firstly, it provides the
means to add, delete and modify meters for traffic shaping. Secondly,
its high-granularity makes it ideal to implement flow disaggregation
strategies. Thirdly, it supports alternative forwarding methods through
the group table, such as load balancing or fast fail-over.

2.1.23 BGP-LS/PCEP

Defined by the IETF Inter-Domain Routing WG [119], BGP-LS is a
protocol used to collect and share information about link state and TE
[120]. By means of a set of extensions added to the Border Gateway
Protocol (BGP) routing protocol [121], BGP-LS retrieves the topological
information from the Link State Databases and distributes it to a
consumer both directly or through a BGP Speaker or a Route Reflector. A
BGP speaker exchanges network reachability information with other BGP
speakers, including the intermediate Autonomous Systems (AS) that the
traffic must transit to reach destinations, whereas a Route Reflector is
mostly used as a concentrator for multiple BGP speakers inside an IGP
area. Taking into consideration that BGP is an inter-AS technology, with
BGP-LS it is possible to provide information about other IGP areas to
the external components.

Although it can work independently, BGP-LS is a mechanism that
can also be used by multiple applications, such as PCE and ALTO. For
example, PCE performs path computation using TE information, and TE
information is never exchanged across different network domains. Since
BGP-LS can be used to exchange TE information between different IGP
areas and network domains, BGP-LS makes a PCE capable of computing
E2E paths across different IGP areas. Thus, BGP-LS is a mechanism that
can improve actual TE solutions such as the PCE-based architecture.

BGP-LS can be used to provide information about the maximum
bandwidth, the maximum reservable bandwidth or the unreserved
bandwidth on a given link. It can also be used to inform about the default
TE metric. That is, to inform about the objective function of the TE
strategy, such as the minimization of the delay or of the link utilization.

41

42

TE FRAMEWORKS IN SDN

Many vendors have started to include BPG-LS support in their devices
(i.e., Cisco or Juniper), so as many SDN platforms like the aforementioned
ODP, ONOS and Cisco ONE [122]. BGP-LS by itself cannot be considered
a full D-CPI technology, since it is only valid to exchange topological
information among network elements and does not provide network
programmability. However, most SDN controllers use BGP-LS together
with the PCEP protocol, which is the reason why these two protocols
working together are considered another D-CPI solution in this chapter.

As mentioned before, the main characteristic of the PCE-based
architecture is that the path computation is performed in a dedicated
element. In this architecture, a Path Computation Client (PCC) requests
a path, which is computed by the PCE using the TE information stored
in a TED. In order to fulfill its intended objective, the PCE-based
architecture relies on two key protocols: Path Computation Element
Communication Protocol (PCEP) [123] and RSVP-TE, defined in RFC
4657 [123] and RFC 3209 [124] respectively .

As stated in the RFC 4657 [123], the PCEP protocol is used for
the communication between PCCs and PCEs, so as for the inter-PCE
communication. Figure 2.6 depicts how a PCC communicates with a PCE
to request a path computation. (1) the PCC sends PCEP PCReq messages
to the PCE when it wants a path to be computed for one or more TE LSPs.
Using the same message, it sends the set of constraints and attributes that
the PCE requires to compute the path and a priority number to indicate
the urgency of the request. When the PCE has finished computing the
path, it replies (2) with a PCEP PCRep message, which can be a negative
message indicating the reason why the computation has failed or a positive
one. In the latter case, the response includes the set of computed paths
and the sets of attributes associated with them, such as the path costs
(e.g., cumulative link TE metrics and cumulative link IGP metrics) and
the computed bandwidth. In order to avoid negative messages, the PCE
can notify PCCs that it is unable to satisfy certain requests or that it has
been experiencing unacceptable delays. This way, since the PCE-based
architecture supports multiple PCEs in the same network domain, the
PCC has the opportunity to send its PCReq to another PCE.

Using the PCEP protocol, (3) the PCEs send explicit paths to the PCCs
specified by means of Explicit Route Objects (ERO). These EROs are

2.1 INTRODUCTION

<
PCE '_'

@ PCEP PCReq A @ PCEP PCRep

Constraints Paths
Attributes Attributes

Priority

Y

PCC @ Obtain ERO

RSVP-TE
Signalling

MPLS MPLS
Node Node

Figure 2.6.: Main components of the PCE-based architecture.

used for the (4) establishment of the LSPs through RSVP-TE in MPLS
and GMPLS networks. They consist of sets of IPv4/v6 prefixes and AS
numbers, among other possible parameters. Hence, the computation of
the paths must support everything that can be expressed in an ERO,
like the degree of paths disjointedness or the maximum hop count among
others.

It is worth mentioning that PCEP includes support for load-balancing.
The PCC can indicate the support for load-balancing and the number
of paths that can be included in the balancing group. This is a very
interesting feature for multipath communications and the minimization
of the link load, because the more paths to split the traffic, the lower the
load on each of them will be.

There are multiple PCE types, depending on the number of PCEs
involved or the computational model they follow. Among all the
possibilities, the centralized PCE is of special relevance for this thesis
as it can be considered as a predecessor of current SDNs. PCEs can be
stateful or stateless depending on how they manage the network state.
On the one hand, a stateful PCE is aware of both, the network state
(links state, bandwidth, etc.) and the set of already computed paths and
reserved resources in the network. The stateful PCE requires reliable state
synchronization mechanisms, which can result in control plane overhead.
On the contrary, a stateless PCE has knowledge about the network
topology (nodes, links, bandwidth, etc.), information that it uses for

43

44

TE FRAMEWORKS IN SDN

the path computation, but it does not take into account the amount
of resources that are already used or reserved in the network (e.g. current
link utilization). That is, in a stateless PCE each request is processed
independently, without considering the resources allocated by previous
requests, which results in a much simpler path computation.

In addition, BGP-LS is not only a protocol that network devices can
use to inform about the topological and link state information. It can
also be used in Hierarchical Path Computation Element (H-PCE) to
exchange TED information between PCEs [125]. In multi-domain path
computation, child-PCEs are in charge of the computation of the paths
in each domain, while the parent-PCE is in charge of what in the multi-
domain terminology is known as the inter-domain path computation. The
multi-domain path computation is in fact a two-step process in which first
the parent-PCE computes the domain sequence and then the child-PCEs
compute the paths inside each domain.

To summarize, on the one hand, BGP-LS is able to retrieve topological
and link state information but lacks the necessary mechanisms to program
the network elements. On the other hand, PCEP is able to program
the network elements but lacks the necessary mechanisms to retrieve
information from the network resources. However, the two protocols
complement each other, and working together compose another D-CPI
technology to be taken into account. Working in conjunction with
BGP-LS can lead the PCE-based architecture to a whole new level, since
it can be useful to solve many of the limitations found regarding the
retrieval of TE information to store it in the TED.

22 TE FRAMEWORKS FOR NETWORK RESOURCE
UTILIZATION OPTIMIZATION

The optimization of the network resource utilization is one of the most
common objective functions in TE, and therefore, in SDN-based TE. This
a direct consequence of the higher revenue that network operators can
achieve by utilizing the network resources they have available in a more
efficient manner. An in this regard, having a logically centralized control
plane can impose a great benefit, since it allows to make routing decisions
based on the overall network state.

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

Multiple solutions have emerged in the past few years dealing with the
optimization of network resources in software-defined networks. Among
the techniques utilized to achieve such a goal, the utilization of load
balancing techniques not based in ECMP are very popular. For instance,
in [126], a Open Shortest Path First (OSPF) routing optimization scheme

that minimizes the maximum link utilization between the FEs on a

ForCES router is achieved by means of a weight-smart OSPF algorithm.

Similarly, Van der Pol et al. use Multi-Path TCP (MPTCP) to distribute
the traffic across multiple paths in an OpenFlow controlled Wide Area

Network (WAN), while [127] performs load balancing in campus networks.

Other solutions deal with scheduled data transfers that exploit the
availability of well-characterized traffic patterns, or define hierarchical
architectures to support multi-domain service provisioning with QoS.

There is though something that all the above solutions and the ones
described in the following sections do have in common. Whatever it is the
specific technique utilized to improve the network resource consumption,
and whatever it is the network resource being optimized, all these
solutions rely on path computation engines embedded in the control
plane. This is a natural evolution of the PCE-based architecture, which is
sometimes referred to as an early implementation of SDN. Thanks to this
approach, TE solutions can easily adopt novel and more sophisticated
routing algorithms that take advantage of the up-to-date network state
information available at the controller plane.

The following subsections present the different proposals analyzed in
this chapter that deal with the optimization of the network resources
utilization. They have been selected given their relevance to the field,
and because they provide detailed information about their architectural
design and TE support.

221 BIN ET AL. PROPOSAL

Cloud Computing has made possible the shared use of computational
resources by multiple tenants, enabling the rapid development of new
businesses by removing the need to purchase hardware or software
components. This is achieved by means of resource scheduling, which
affects the utilization of the resources and the quality of the service

45

46

TE FRAMEWORKS IN SDN

Development
Environment

!

Applications

Consumer
Layer

Job Control Agent

>

-

«——» Scheduling <
Strategy

Transactions <
le » Management

.

Task Dispatcher

Broker
Layer

Condition
Monitoring

QoS

SLA
Coordinator

Security
Task Execution
Memory

Middleware Service
Layer

» Service Information Center

>

Transaction b
Server g p
AAd Price
v
Resource
Reservation Other

Charge

\J

Resource Invoker

LFB

LFB1 | (LFB2 N

Middleware Service
Layer

FE2

Figure 2.7.: Architecture proposed by Bin et al. [128].

provided to the tenant. The same premise is applicable to the network
resources. Moreover, network resource sharing is also considered in the
Cloud Computing environment, which is known as Network as a Service
(NaasS).

Having in mind the benefits provided by the application of these
resource scheduling policies in the Cloud Computing environment, Bin
et al. [128] proposed a solution that applies the same principles to achieve
higher and more efficient network resource utilization in a virtualized
environment. Their solution is applied to ForCES routers, in order
to increase their performance through the application of a resource
scheduling algorithm based on an economic model that allows to select
resources in a programmable and scalable fashion.

e Design

The architecture proposed by Bin et al. is depicted in Figure 2.7, where
the layers it is comprised of are described below:

e Consumer Layer: External entity that allows end-users to send
requests to the CE.

¢ Broker Layer: Part of the CE responsible of resource discovery
and allocation.

¢ Middleware Service Layer: Part of the CE that enables the
construction of the ForCES econometric model, which considers
QoS and security information.

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

e Resource Service Layer: Includes the FEs and the LFBs that
can be allocated.

In a nutshell, the solution presented in this section allows users to

specify a network service request and a SLA that needs to be satisfied.

Then, the Broker Layer uses an algorithm called Deadline And Budget
Priority based on Deadline Budged Constraint (DABP) to select the
optimal combination of available LFBs able to satisfy that demand with
the information provided by the Middleware Service Layer, taking also
into account budget and deadline constraints. Once the suitable resources
have been selected and reserved for the user, the Broker Layer signs the
SLA contract ensuring that the network service request will be provided
with the necessary guarantees. Finally, the SLA is signed, the request is
sent to the Resource Service Layer and the LFBs are instantiated to form
the ForCES router instance that will provide the service to the user.

e TFE support

They propose an algorithm that not only takes into account deadline
constraints but also budget constraints, named DABP. The algorithm
finds the minimum amount of LFBs available at the moment of making
the request to satisfy the user request. To be able to do that, the algorithm
selects the LFBs taking into account QoS and pricing objectives and the
real-time node computing resource utilization.

o Conclusions

Although their solution allows to define a ForCES router compliant
with the SLA specified by the user, the only resources that are taken into
account to select the optimal set of LFBs are computational resources,
such as computer or storage resources. However, even if this resources can
have an impact on the QoS provided to the users, network resources such
as link capacity are left behind. That is, the solution takes into account
node-related resources, while link-related resources are not considered.

Notwithstanding, it is worth noting that the solution does take into
account the feedback from the LFBs to the CE in order to help make
better choices on future resource selections. All in all, the architecture

47

48

TE FRAMEWORKS IN SDN

that they present is tightly related to the use case. They do not present
a generic framework that could be utilized for other use cases making use
of ForCES routers.

222 B4

The implementation of TE strategies based on OpenFlow has become a
hot topic since the announcement that Google uses SDN and OpenFlow to
optimize the links utilization in B4 [51], one of its internal WANs. B4 uses
SDN principles and the OpenFlow protocol for the control of the switches.
This network supports simultaneously standard routing protocols and a
centralized TE solution implemented as an SDN application. With this
solution, Google has achieved a 70 % average link utilization, almost the
double of what traditionally is achieved in over-provisioned networks.

It is worth noting that Google’s solution is entirely customized to their
use case and it should not be considered a generic solution for TE in SDN,
although the same principles could be applied for other environments
with modifications. Among the characteristics that Google has exploited
to customize its solution are: (1) they control all the elements involved in
the data transfer, from applications to servers and local Area Networks
(LAN), (2) their most bandwidth-consuming application is large-scale
data copy between DCs that supports adaptive rates and (3) their WAN
interconnects a small number of DCs, making centralized control feasible.
All in all, they outline SDN as the main driver to achieve a network
resource utilization never seen before with traditional WAN architectures,
thanks to the possibility of making decisions based on the global view of

the network from a centralized controller.
e Design

In B4, the network is abstracted to a TE overlay were the modules
depicted in Figure 2.8 control the entire network. Later, the decisions
taken from this overlay called global layer are issued to a distributed
controller layer that programs the flow entries of OpenFlow switches. At
the global layer, the solution consists of a TFE Server, an SDN Gateway
and a Bandwidth Enforcer, which are described below.

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

Bandwidth

FGs
Bandwidth
Functions

.

Enforcer

Traffic
Sources

-

TE Server
.T.E . Tunnels TED
Optimization ™ Manager
Algorithm TGs ¢
A
Site Level TE
Topology Trunk Ops
Level
Topology Topology SDN
Aggregation Gateway
-
Port / TE
Change / \, Ops

Status /

Figure 2.8.: Google’s B4 architecture [51].

« Bandwidth Enforcer: Computes the bandwidth functions of each
application, where a bandwidth function can be considered as
the SLA between the application and the B4 network. They are
computed taking into account the flow’s relative priority, and later

sent to the TE Server.

e« SDN Gateway: Abstracts
comprised of multiple instances of the ONIX controller and forwards
the TE operations to it. In addition, it also feeds the TE Server with

the topology information.

e TE Server: Uses the topology information provided by the SDN
gateway to abstract the network topology in a simpler graph
that is used by the TFE optimization algorithm. The algorithm is
then applied to Flow Groups that aggregate multiple application
traffic demands in order to compute the tunnels, or the site-to-site
paths. These tunnels are later sent to the TED Manager for their
translation into TE operations to be sent to the SDN gateway.

e TFE support

The algorithm uses the priority of the flow group that aggregates
multiple applications’ bandwidth functions to select the less congested

the underlying controller layer

49

50

TE FRAMEWORKS IN SDN

path using a max-min fair solution that maximizes network utilization
while the fair share of the resources among the individual flows is ensured.
Once the paths are computed, it allocates the necessary resources to
satisfy the demand. Then, the traffic of the different applications is
forwarded to their destinations using ECMP. It is worth mentioning that
they use an heuristic approach to adapt the split ratio of the flow group
to be compliant with the splitting capabilities of the forwarding devices
actually used in the network. Once an edge is fully utilized, representing
therefore, a bottleneck, it is removed from the topology graph, so it is
never assigned to further applications until it is released.

In addition, this solution also provides failure recovery mechanisms. In
essence, once a link failure is detected, the ECMP costs are updated and
the traffic is continued to be delivered through another paths in the group
in less than 4 ms, which is compliant with carrier grade requirements.
However, the failure of a transit router on the network results in more than
3 s of service unavailability, since all the multipath entries of the affected
services need to be updates, which usually takes 100 ms. Depending on
the application, especially for those with high-availability requirements,

a service unavailability of more than 3 ms is excessive.

o Conclusions

The solution presented in this section has been proven useful for
the optimization of the network resource consumption. According to
Google, this network is able to adapt to the growing traffic demands
incurring in less costs and over-provisioning compared to traditional WAN
architectures.

However, this solution requires prior knowledge about the network,
meaning that it is only valid in networks where the traffic demand and
pattern is previously known. Google uses the statistical information they
collect about the network usage to optimize it. Furthermore, the solution
also requires to have access to the end-devices or servers in order to
modify the sending rate of the applications so that they are adapted
to the resource availability. As a consequence, this solution is entirely
customized to fit Google’s needs and it would not be possible to apply
it directly to control other networks without a similar statistical analysis.

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

In addition, the architecture for TE that they present for its utilization
in the global layer is tightly coupled to their use case. Hence, it cannot
be considered a generic framework for TE.

Moreover, the solution does not provide the means to support advance
reservations, therefore being insufficient to satisfy the needs of RENs and
Internet Service Providers (ISP) aiming to provide services like BoD.

223 SWAN

Similar to B4, Software-Driven WAN (SWAN) [129] is a system for
inter-DC WANSs based on OpenFlow that improves the network resource
utilization coordinating the sending rates of the different services and
centrally allocating network paths. In this solution, the SDN controller
is the one that computes how much traffic each service can send and
the network paths that can accommodate that traffic. The approach
is similar to the one followed in B4, where high priority services are
guaranteed with the optimal paths and services with the same priority
are treated fairly. In addition, the solution considers the utilization of flow
relocation techniques, and minimizes the effect of OpenFlow switches’ re-
programming by reserving a set of bandwidth and flow entries in the
devices. Through these advanced TE strategies, they are able to carry up
to a 60% of additional traffic compared to MPLS-TE applied in the same
scenario. Furthermore, the solution has been proven useful outside the
context of inter-DC communications, achieving an improvement of 16-25
% compared to MPLS-TE.

e Design

This solution differentiates three priority classes: interactive, elastic and
background, being interactive the highest priority class and background
the lowest one. All the services make their connectivity requests to the
SWAN controller, which is aware of the global state of the network and
the services being provided. Then, it estimates the sending rate for each
of the services, reserves the shortest paths for higher classes’ services, and
allocates the necessary bandwidth for these services in strict precedence
taking into account their class priority.

o1

52

TE FRAMEWORKS IN SDN

DC

Service
Host

Service

Broker Inter-DC

WAN

SWAN Controller

Figure 2.9.: SWAN architecture [129].

As depicted in Figure 2.9, the solution uses network agents to obtain
information about the network topology. These network agents are used
to inform the controller about link or node failures immediately, which
triggers a process at the controller to relocate the services. In addition, the
network agents also gather information collected by the end-hosts about
future service demands every five minutes. This information is later used
by the controller to re-compute the service allocations and optimize the
overall network usage. Furthermore, the network agents also monitor the
real network usage, providing additional information to the controller that
can be used to further improve the resource allocation.

As mentioned before, in order to ease the relocation of flows and
avoid congestion, SWAN reserves a set of flow entries and bandwidth
respectively. Nevertheless, regarding the reservation of this remnant
bandwidth, it is used to carry background services unless necessary. In
the event of a service relocation into an alternative path, the background
traffic is preempted, in favor of the higher priority relocated services.

e TE support

In SWAN, the path assignment is performed by means of Linear
Programming (LP), which differs from the classic graph theory approach
in that the path is found solving a system of equations. As input to a
multi-commodity flow function, they use a set of possible paths between

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

the pairs of source and destination nodes. Although this approach may
lead to underutilized resources, their results show that with an input of
15 paths they are able to achieve the necessary overall throughput.

The multi-commodity flow function is executed for each class of service
in strict priority precedence. This is how they assure that the best paths
are assigned for the highest priority services. After this phase, they invoke
the multi-commodity flow function again for the services within the same
service class, achieving the fair utilization of the network resources among
them. Nonetheless, the output of the LP function is not necessarily
feasible. The function does not take into account the flow entry availability
in the network devices. As such, it may be necessary to run the LP
function again, until a feasible solution is found.

Besides providing an improved network resource utilization, the SWAN
controller also handles network failures. The aforementioned network
agents inform the controller in case of a link or node failure, so that
it can execute the necessary failure recovery mechanisms. In summary,
once a failure is detected, the multi-commodity function is invoked again

and executed over the new network topology.

e Conclusions

SWAN represents, with Google’s B4, one of the most successful
implementations of SDN-based TE. It is a mature solution, which has
been proven efficient to improve the network resource utilization both in
the inter-DC context and outside of it. However, the solution presents a
set of drawbacks. First, the solution requires the utilization of network
agents in order to monitor the network resources and estimate the service

traffic demands. However, not all the vendors are willing to include new

agents in their devices, making difficult the adoption of the solution.

Second, by reserving a set of flow entries in order to deal with the network
failures, they limit the amount of resources that are available to accept
new demands. Third, the path computation procedure based on LP may
result in an invalid result, since the availability of flow entries in the
OpenFlow switches is not considered. In addition, although a framework
for TE is described, its internal architecture is not public and it does not

support advance reservations.

93

o4

TE FRAMEWORKS IN SDN

2.24 OSCARS

The On-Demand Secure Circuits and Advance Reservation System
(OSCARS) software framework is one of the most well-known multi-
domain advance reservation systems in the REN environment. Designed,
implemented and maintained by the American ESNet, it is one of the first
deployments in production of the PCE-based architecture. Currently, as in
the case of the BoD service provided by Géant, it runs over an MPLS-TE
transport network, and satisfies the requirements of researchers across the
world in the need of high-capacity and long-term circuits.

Initially described in [130], OSCARS supports the provisioning of Layer
2 (L2) and Layer 3 unicast circuits. The solution supports both immediate
reservations, that is, reservations that need to be deployed in the network
at the time of their request and advance reservations, that is, reservations
that need to be deployed in the future. Later, the framework has been
extended with anycast circuits support [131], which has improved the
overall system performance by reducing the blocking probability.

Being a production level solution with the code publicly available,
there have been some efforts to use the OSCARS software framework
over an OpenFlow network. For instance, ESnet developed a Path Setup
Subsystem (PSS) for OpenFlow-enabled networks based on NOX, which
was later adapted to the FloodLight controller [23].

e Design

As depicted in Figure 2.10, the OSCARS framework consists of
ten modules whose work-flow is handled by a central element called
coordinator. The most relevant modules for the support of advance
reservations are described below.

¢ Web Browser User Interface: Provides a user-friendly Graphic
User Interface (GUI) that non-technical users can use to make the

service reservations easily.

¢ Coordinator: Manages the entire work-flow of the system. Once
a service reservation request is received, it triggers the path

computation procedure.

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

Notification
Broker

Authz

Topology
Bridge

PCE
Web Brouser Resource
User Interface Manager

IDC API

OSCARS

Figure 2.10.: OSCARS architecture [131].

o Topology Bridge: Stores the topology information that is later
used by the PCE to compute the paths. Originally it was
only updated every hour, but in its SDN-capable version, these

limitations regarding the topology discovery are mitigated.

o PCE: Computes the optimal paths taking into account the topology
information stored in the topology bridge and the resources

consumed by the already reserved services.

e Resource Manager: Keeps track of the service reservations
accepted in the system, the time at which they start and terminate
and the path they have been assigned with.

The OSCARS software framework has been engineered in a modular
fashion, to ease the introduction of new elements or the upgrade of the
existing ones to support new features. For instance, the PCE was updated
to support anycast connectivity services when the solution was already

in its pre-production stage.

e TE support

The approach followed by ESNet to support TE in its network by means
of the OSCARS software framework consists on the utilization of a PCE

95

56

TE FRAMEWORKS IN SDN

as defined in the PCE-based architecture. Although any routing algorithm
can be applied in this module, they have opted for C-SPF to compute the
paths.

The PCE has been engineered in a hierarchical fashion, in which the
network graph constructed using the information stored in the topology
bridge is pruned sequentially. In summary, the PCE retrieves the network
graph and removes all the resources that are not available at the time
frame for which the new reservation is requested. Initially, the network
graph may consist of 1000 nodes and 1500 links, making necessary its
reduction to a simpler one. As such, the network graph is first pruned by
removing all the links that do not have the required Virtual Local Area
Network (VLAN) tags available. Later, the same is done with the links
that do not have the necessary available bandwidth. Once the network
graph is pruned, the shortest path is computed by means of the Dijkstra
algorithm [132]. Once the path is computed, the information regarding
the new service reservation, including its start time, its end time and
the associated path is stored in a resource scheduling database for future

requests.
o Conclusions

The OSCARS framework represents, according to this author’s point of
view, one of the most promising solutions for TE in the REN environment.
It defines a generic framework for TE, flexible and modular enough to
support different use cases. However, the framework lacks the mechanisms
to retrieve accurate information from the network, at least in the MPLS
version that runs in the production network, as the network is described
by means of a static XML document that gets updated every hour.
Furthermore, it lacks the mechanisms to adapt the routes to topological
changes and does not provide any mechanism to monitor or analyze the
traffic. More precisely, the retrieval of the topology information every
hour means that the PCE that runs in the framework may provide false
results as a consequence of operating over an outdated topology graph.

Moreover, this also impacts the way fault recovery is provided, which
requires the establishment of the backup paths in the network at the time
of installing the primary path, therefore, consuming network resources

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

Network Applications

TE VPNs Recovery

Routing Discovery Label Distribution

Network Operating System

OPEN Control Plane

Figure 2.11.: Architecture of OPEN’s control plane [134].

unnecessarily. In addition, at the time of installing the service into the
network, the solution relies in RSVP-TE to distribute the selected routes
among the MPLS devices, and as they noted in [130], this procedure can
take several minutes. Luckily, aware of such limitation, some proposals
to integrate this framework with OpenFlow have been made using
FloodLight controller [133], and more recently ODP.

225 OPEN

The solution proposed by Das et al. [134] seeks to exploit both the
advantages of OpenFlow and the highly efficient forwarding of MPLS.
The solution is based on the utilization of the Open Programmable
Extensible Networks (OPEN) control plane to implement MPLS-TE
based on OpenFlow. They apply the OPEN control plane to an MPLS-
based data plane implemented using a modified Open vSwitch (OVS)
that performs MPLS data plane functionalities. In addition, they use
a NOX controller modified to work with some MPLS extensions added
to the OpenFlow protocol. However, this solution is merely focused
on the application of OpenFlow as an alternative Label Distribution
Protocol (LDP), leaving other functionalities such as resilience or dynamic
LSPs establishment aside. Moreover, in OpenFlow 1.1 the protocol was
extended to support MPLS labels as matching field, and even to push
and pop MPLS labels. The same authors implemented in [135] a set
of TE techniques in a NOX controller to optimize several services in

o7

58

TE FRAMEWORKS IN SDN

OpenFlow networks. The optimization depends on different parameters
gathered with real-time monitoring tools at the edge devices of a WAN.

e Design

The OPEN control plane consists of a set of network applications that
run on top of a Network Operating System (NOS) in order to provide
TE in MPLS networks. The architecture of the control plane is depicted
in Figure 2.11. It consists of a specialized module called TFE in charge
of the implementation of the TE strategies. In addition, the architecture
includes modules in charge of the network topology discovery and of the
recovery functionalities. Besides, it has a specific module to handle the
distribution of the MPLS labels.

e TE Support

In today’s networks, MPLS-TE is the preferred choice to support TE.
With that premise in mind, the solution proposed by Das et al. brings
the benefits of the high-programmability and the logically centralized
control of the network of SDN to the MPLS domain. In a nutshell, TE
is provided through the utilization of a C-SPF algorithm that operates
on top of a network graph automatically discovered by the OpenFlow
controller. The C-SPF computes the optimal path taking into account
bandwidth constraints, and adapts the traffic rate of the services and the
reservation itself by means of the autobandwidth algorithm [136] thanks
to the information gathered by a monitoring system. Furthermore, the
solution also supports flow preemption, that is, the relocation of an
already installed LSP into an alternative path to make room for higher
priority traffic.

The same author [135] outlines some of the benefits of utilizing SDN
to provide TE. First, SDN eliminates the need for distributed protocols
and enables the aggregation of multiple services to be treated jointly.
Second, with SDN it is possible to have application-aware routing. With
this approach, different applications can be in charge of the routing needs
of different services with different requirements. For instance, Voice over
IP (VoIP) requires low latency paths, while a file transfer does not. Third,

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

as mentioned before, it is possible to adapt the reserved bandwidth
for a given service taking into account the actual use of the network
resources. And finally, the logically centralized control enables unified
failure recovery.

o Conclusions

The solution proposed by Das et al. is interesting because it merges an
MPLS data plane with an OpenFlow control plane. It is worth mentioning
how they rely on the feedback of a monitoring system to optimize the
network resource consumption. However, the algorithms used for TE are
not explained in detail, making difficult to assess the overall suitability
of the solution. The framework to support TE is also very basic, without
explaining in detail the functionalities carried out by each of the modules,
although it does consider most of the required elements for a generic TE
framework. Regarding the support for advance reservation, this solution
does not currently provide the necessary mechanisms.

226 OFVN

As stated by Gharbaoui et al. [137], even if network virtualization
techniques provide important advantages to DC networks, they also
raise new challenges regarding DC infrastructure management, specially
since operations such as Virtual Machine (VM) provisioning and
reconfiguration occur much more frequently than in legacy DCs. In such
a context, they present an approach that takes into account the current
occupation of DC network links when selecting the server in which to
allocate a virtual machine.

In fact, in a DC network with a typical tree-like topology, the selection
of a server and the selection of the corresponding network path are
very tightly connected. That is, the selection of one of these parameters
heavily constraints the options available for the selection of the other. For
this reason, the authors present two selection algorithms, which basically
differ in the order in which resources are selected, that is, in one of the
algorithms the server is selected first, whereas in the other algorithm
the network path is selected first. For each type of resource, the authors

99

60

TE FRAMEWORKS IN SDN

fe e eeeeeeeeeeeeeeaeeeaeemmeemmaeeeanmeonmnas,
: Resource Selection Manager

<
Resource < Z
" selection Engine -
D
: o)
' [
Network Host L N 8
Information DB Information DB N V] ~
... Y y— 2
O
2
OF Controller |« »| T Resource 0(%
Controller =

OFVN It

> -
LK T/ -~
N N~ Y
-) N T

- ’ >N

. \
J Ak o 0y
N \
\
1
H

Figure 2.12.: OFVN architecture [138].

propose three selection policies: select the first one with enough available
resources, select the most unloaded one or select the most loaded one
with enough available resources. In order to implement this approach, the
authors propose to use OpenFlow and the flow-level information obtained
through statistics messages.

The results obtained through simulation show that the proposed
approach provides a lower blocking probability than a solution that
allocates servers in a random fashion without taking into account network

conditions.
e Design

The architecture of the solution implemented by Gharbaoui et al.
for the DC environment is described in [138]. The OpenFlow-based
Virtualization-aware Networking (OFVN) architecture is depicted in
Figure 2.12, and consists of the following modules:

¢« VM Request Manager: Entity that handles VM allocation

requests.

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

e Resource Selection Manager: Comprised of a Resource Selection
Engine in charge of the path computation and the server on which
the VM needs to be allocated, a Network Information Database that
holds information about the global state of the network and per-flow
monitoring statistics and a Host Information Database that holds
information about the status of the servers.

o OpenFlow Controller: In charge of programming the flow tables
of the OpenFlow switches.

e« IT Resource Controller: In charge of placing the VMs in the

servers.

As can be deducted, the solution proposed by Gharbaoui et al. is
an implementation of the Resource Selection Engine within the OFVN
architecture. In a nutshell, once a new VM is requested through the VM
Request Manager, the Resource Selection Manager checks the IT and
network resource availability and selects the most appropriate server or
the less congested path to allocate the VM.

o TE Support

Gharbaoui et al. present two different approaches to select the optimal
server to allocate VMs inside a DC. The first approach is called Server-
Driven while the second one is called Network-Driven. As their names
suggest, they differ on which resource is selected first. The type of resource
that is selected first also affects the selection of the remaining elements
that interconnect the VM, and therefore, has an impact on the network
performance that is achieved.

On the one hand, the Server-Driven algorithm selects the server in
which the VM needs to be placed, and it is considered as a candidate
server until the network resources involved to exchange traffic to and
from the VM are checked. This is done by means of an iterative process,
by selecting the switches one by one and checking if the links are not
congested.

On the other hand, the Network-Driven algorithm selects the OpenFlow
switches, following an iterative process as well. In each step, the network

congestion of the outgoing links is evaluated, and the next OpenFlow

61

62

TE FRAMEWORKS IN SDN

switch is selected among those reachable through non-congested links.
Once the path is computed, the server is selected among the ones that
are reachable from the last OpenFlow switch. It is worth noting that the
network load in both algorithms is evaluated using OpenFlow statistics,
which are gathered by the OpenFlow controller.

o Conclusions

Although Gharbaoui presents a valid solution for the selection of paths
inside DC networks, the algorithms are tightly coupled to the fat-tree
topology that is used in the DC, and the solution could not be applied
outside the DC context. In addition, the framework that they propose is
also very dependent of the use case, and it cannot be considered a generic
framework for the application of TE. Nevertheless, it is worth mentioning
how the OpenFlow statistics are used to facilitate the selection of the
next OpenFlow switches, which enables the minimization of the network
congestion and allows to achieve higher network resource utilization.

227 IDEALIST

Elastic Optical Network (EON) networks [139] allow the dynamic
configuration of the physical parameters of the network in order to provide
flexible connection-oriented circuits and enhance the overall network
capacity. In such a context, the FP7-IDEALIST project [125] proposes
a solution based on the Application-Based Network Operations (ABNO)
architecture, defined in RFC 7491 [140], that allows to provide multi-
domain connectivity services in flex-grid optical networks [141].

This project proposes the utilization of hierarchical PCEs to
achieve multi-domain service provisioning. In a nutshell, a Child Path
Computation Element (cPCE) is in charge of the path computation
in each of the domains, also known as intra-domain path computation,
whereas a Parent Path Computation Element (pPCE) is in charge of
selecting the domains that will facilitate the connectivity, also known
as inter-domain path computation. In such a scenario, BGP-LS is used
to exchange TE information between the cPCEs and the pPCE. With
this architecture, several proposals have appeared dealing with the

2.2 TE FRAMEWORKS FOR NETWORK RESOURCE UTILIZATION

ABNO Controller '

Path
Computation & pPCE 9 BGP-LS
TED

Segmgnt Synchronization
espansion

[] BGP-LS S 9 BGP-LS
CRCE Speaker N EACH Speaker

LSP Provisioning

il

LSP

Figure 2.13.: Architecture proposed by the FP7-IDEALIST project [142].

optimization of network resources utilization in flex-grid optical networks,

which are further described in the next subsections.
e Design

The architecture proposed in the IDEALIST project is depicted in
Figure 2.13, and it consists of the following modules:

o« pPCE: In charge of the domain selection. The BGP-LS speaker
retrieves the inter-domain TE information gathered from the
BGP-LS speakers of the cPCEs that it aggregates.

e cPCE: In charge of the path computation in the domain or AS
that it controls. The BGP-LS speaker placed next to each cPCE
retrieves the TE information of the domain and exports it to the
BGP-LS speaker of its pPCE.

o ANM: The Adaptive Network Management (ANM) is comprised
of an ABNO controller, also referred to as SDN controller, and a
LSP provisioning module. The first one tracks the network resource
utilization to enable the adoption of an stateful-PCE approach
whereas the second one uses RSVP-TE to instantiate the LSPs in

the network.

It is worth noting that in [143] the solution was extended to deal
with transport technologies and control plane heterogeneity in a unified

63

64

TE FRAMEWORKS IN SDN

manner. The proposal integrates OpenFlow and flex-grid networks, using
the same hierarchical PCE architecture, but relying on an OpenFlow
controller to handle the topology discovery and service provisioning in
the OpenFlow domains, instead of the ANM.

e TE support

The FP7-IDEALIST project has proposed different techniques and
solutions to improve network resources utilization and to ease path
computation in multi-domain scenarios. For instance, in the work carried
out by Casellas et al. [143], the cPCEs of each domain implement a
C-SPF algorithm. In the case of the flex-grid domains, this algorithm
allows to find the shortest path using bandwidth and spectrum availability
constraints. Furthermore, the algorithm takes into account aspects such
as spectrum continuity through the different segments of the network. On
a first stage, they identify the resources that would satisfy the demand,
and they apply the Dijkstra algorithm over the pruned topology.

In addition, Cuaresma et al. [144] have evaluated the performance
of the path computation procedure depending on the amount of
topology information available in the pPCE. The authors compared two
algorithms to determine which strategy is more efficient for the E2E
path computation. In the first one, only the TE information necessary to
perform the inter-domain path computation is sent to the pPCE. Whereas
in the second one, all the TE information is sent. In the second case, every
time a path is requested to connect two end-points belonging to the same
domain, the path computation is performed by the cPCE of that domain.
On the contrary, when the two end-points belong to different domains the
path computation is performed at the pPCE, which is aware of both the
inter-domain and intra-domain topologies of each domain. In this later
case, the path computation is performed a 20% faster compared to the
first case.

Finally, Martinez et al. [145] propose the utilization of two PCEs to
optimize the network resource consumption inside a domain. In this
solution, the PCEs are in charge of executing a Routing and Spectrum
allocation algorithm to compute the physical route and the frequency
slot that each LSP will use. In order to re-optimize already installed

2.3 TE FRAMEWORKS FOR CONGESTION MINIMIZATION

LSPs (a time and resource consuming task), they propose the utilization
of a front PCE and a back PCE, the first one in charge of the algorithm
execution for new and restored LSPs and the second one in charge of
the re-optimization of already installed LSPs running in the background.
Having this architecture requires both PCEs to be coordinated, which is
achieved using BGP-LS for TED synchronization and PCEP to exchange
information about the LSPs. In case of a failure affecting an established
LSP, the front PCE computes another path and once it is setup, it
communicates with the back PCE to inform about the new TED and
to request a re-optimization of the affected LSPs.

o Conclusions

The architecture proposed by the FP7-IDEALIST project is an
interesting approach to deal with multi-domain service provisioning
involving heterogeneous networks. The techniques utilized by the PCEs in
order to enhance the network resource utilization include the application
of C-SPF that takes into account spectrum and bandwidth information to
select the optimal path. Furthermore, they also consider the utilization
of secondary PCEs in charge of LSPs re-optimization operating in the
background with support for network failures.

In addition, they also explore different alternatives to deal with multi-
domain path computation. Notwithstanding, according to this author’s
point of view, even if the approach is proven to be more efficient, it is
against the fundamentals of hierarchical PCE, since the pPCE computes
the entire multi-domain path without involving the cPCE. Moreover, they
do not present a generic framework for TE in SDN.

23 TE FRAMEWORKS FOR CONGESTION MINIMIZA-
TION

Traditionally, the minimization of the network congestion has been the
preferred TE objective function. The problem has been widely studied
in MPLS networks [146-149], where the utilization of traffic splitting

mechanisms is a common choice.

65

66

TE FRAMEWORKS IN SDN

With SDN, the high programmability and the high granularity available
at the networking elements opens the gate for new strategies aiming
to minimize the network congestion. For instance, Braun et al. [150]
propose a mechanism to distribute the load in case of network congestion
through pre-computed disjoint backup paths. Other solutions coordinate
with the end-hosts to customize the TCP timers in order to avoid the
utilization of congestion avoidance mechanisms [151], while solutions like
the one proposed by Kim et al. [152] rely on machine learning approaches
to reduce congestion. However, although these proposals present novel
TE solutions to minimize network congestion, they do not define TE
frameworks for SDN.

Consequently, in this section a comprehensive set of frameworks that
facilitate TE in software-defined networks is presented, whose main

objective function is the minimization of the network congestion.

23.1 HUANG ET AL. PROPOSAL

Grid computing requires high-speed data transfers between the different
sites where the nodes reside. A very common approach to satisfy such need
is by means of GridFTP [153], where multiple TCP streams are used to
mitigate the effects of the congestion avoidance mechanism of TCP and
reduce the packet losses. However, the traditional routing protocols do not
take into account information from the application layer, which results in
all the TCP streams being provided through the same path.

In order to solve such limitation, Huang et al. propose an SDN-based
solution for GridF'TP [154] that relies on the OpenFlow protocol to route
different TCP streams along different paths between the given endpoints.
More specifically, the authors propose to build an OpenFlow controller
that pre-computes a fix number of available paths between the source and
destination nodes using Breadth First Search (BFS). Then, the OpenFlow
controller installs the appropriate flow entries in the OpenFlow switches
in order to divide the TCP streams uniformly through the previously
computed paths. With this approach, GridFTP is able to improve the
data transmission time by using multiple parallel TCP streams.

2.3 TE FRAMEWORKS FOR CONGESTION MINIMIZATION 67

OpenFlow Controller

Assign Multipath API

. 4

Make Path API

L7
GridFTP
Client

GridFTP
Server

Figure 2.14.: Architecture proposed by Huang et al. [154].

e Design

The OpenFlow controller proposed by Huang et al. to support SDN-
based GridFTP is illustrated in Figure 2.14. It consists of two applications
accessible through an API that are described below:

o Assign Multipath: Application in charge of pre-computing a set
of possible paths between a given pair of source and destination
nodes. It exposes an open API called Assign Multipath API that
is used by the GridFTP client when a high-speed data transfer is
about to begin.

o« Make Path: Application in charge of assigning a specific path to
a TCP stream. It exposes an open API called Make Path API that
is used by the GridFTP client when a new TCP session is about to
begin and the ports that are going to be used to differentiate that
session are known. Once the Make Path application knows the ports,
it generates the necessary flow entries for the OpenFlow switches
along the path and installs them.

e TFE support

In this proposal, the authors are able to achieve higher data transfer
speeds by utilizing a quite simple TE mechanisms. First, they alleviate

68

TE FRAMEWORKS IN SDN

future path computations by generating a set of possible paths between
the source and destination nodes that will involve the data transfer. To
that matter, they use a BFS algorithm, and store the paths for their
later use arranged from shortest to longest ones. Once the GridFTP
client wants to use a specific port to setup a TCP connection, the client
sends the port information to the OpenFlow controller. At that moment,
the shortest available path is selected among the ones pre-computed
beforehand and it is installed in the network.

With this approach, they are able to reduce the time required to finish
the data transfer by the number of parallel paths used to connect the
two end-points. That is, in Figure 2.14, given that there are three parallel
paths between the GridFTP client and the GridF'TP server, the data
transfer is achieved three times faster compared to when a single path is
used.

e Conclusions

The solution presented in this section is a clear example of the benefits
that SDN can bring to TE. In this case, the improvement is achieved
because the granularity available at the data plane allows forwarding
the traffic based on information from the application layer. All in all,
the solution is able to reduce the time required to complete the data
transfers between two endpoints. However, the solution could be enhanced
with additional TE mechanisms such as fault recovery or make use of
more sophisticated routing algorithms. In addition, the solution does not
provide a generic framework for TE that could be used in other use cases.

232 LI ET AL. PROPOSAL

The solution proposed by Li et al. [155] directly handles congestion
minimization by applying a C-SPF algorithm. They propose to use
OpenFlow border routers in order to connect IPv4 and IPv6 islands in
an efficient manner. As a consequence, they are able to eliminate the
necessity of dedicated equipment in charge of the interoperability between
islands of different types.

2.3 TE FRAMEWORKS FOR CONGESTION MINIMIZATION 69

OpenFlow Controller

: <
ATD | | TED |
o |
z | y 4
N o .
£
20— pem | PCM OSPF SNMP
g A A
£ i
: \/ \/
: | OF Interface |
Interface with Interface with
OpenFlow switchg’s Network Equipment

Island Island Island

Figure 2.15.: Architecture proposed by Li et al.[155].

In order to compute the optimal path, they monitor the traffic load
using legacy protocols such as OSPF and Simple Network Management
Protocol (SNMP) for the legacy IP islands. With this approach, they
are able to reduce the overall congestion of the network, which they
demonstrate by injecting video traffic and comparing the quality of the
image received.

e Design

The architecture proposed by Li et al. to provide flexible TE is shown
in Figure 2.15, and it is comprised of the following modules:

o ATD: The Address Translation Database (ATD) stores the IP
addresses that facilitate the interconnection of different islands.
That is, it allows to perform the translation from IPv4 addresses
to IPv6 addresses and wvice versa.

e TED: The TED stores the TE information regarding the network
status as informed by the SNMP module.

70

TE FRAMEWORKS IN SDN

o« PPM: The Path Provision Module (PPM) is the entity in charge
of the provisioning of the paths. In other words, it translates paths
into OpenFlow messages. In addition, it manages the ATD and the
TED.

o PCM: The Path Computation Module (PCM) is the element in
charge of the computation of the paths taking into account the
network state information contained in the TED.

o OSPF: A single instance of the OSPF module is used for all the
IP routers of the islands. It is used to retrieve the network topology
information, which is later fed to the TED.

¢ SNMP: The SNMP module allows to retrieve link state information
from the IP routers, which is later stored in the TED.

¢ OF Interface: Allows the communication through the OpenFlow
protocol with the OpenFlow switches.

e TFE support

The OpenFlow routers are connected to a centralized controller, which
has an overall view of the network topology and state. For each incoming
flow, the OpenFlow routers contact the centralized controller to compute
the optimum path according to the current network conditions. As
mentioned before, the algorithm that they use is C-SPF, which takes into
account the traffic load on the current network to select the optimal path.
Once the path is computed, the controller programs the OpenFlow routers
so that the traffic is forwarded along the computed path, encapsulating
IPv4 packets in IPv6 or vice versa as needed. This way, the controller is
able to select paths that reduce the E2E delay and the network congestion,
compared to alternatives that implement TE mechanisms using dual stack
routers or pre-configured static IP tunnels.

e Conclusions

On the one hand, this solution stands out because the OpenFlow
switches are used both to direct the traffic to and from less congested

2.3 TE FRAMEWORKS FOR CONGESTION MINIMIZATION

islands and because it eliminates the need of dedicated equipment in
charge of the translation between IPv4 and IPv6 domains. In addition, the
solution integrates support for multiple protocols in the same controller,
where OSPF and SNMP are used in conjunction with OpenFlow.

On the other hand, the architecture that they propose is tightly related
to the use case, and it is technology dependent. However, it is worth
noting that they outline the need for the joint utilization of monitoring
tools, automated topology discovery mechanisms and path computation
to achieve TE.

233 BAATDAAT

In order to reduce congestion in DC networks as a consequence of greedy
algorithms that overload the best possible paths, BaatDaat [156] proposes
the utilization of TE strategies that leverage the centralized nature of
SDN. The authors of this solution propose a real-time traffic monitoring
tool embedded in the hardware devices that sends information about
the network resource utilization to an OpenFlow controller. Then, the
monitoring information is processed to build an updated topology-wide
network utilization map. With this information, a scheduling algorithm
implemented in the controller plane computes the optimal paths to avoid
network congestion, even if that implies selecting detour paths. The
support of non-SPF algorithms for the selection of the paths is of interest
to this topic because there are cases in which the optimization function is
not significantly affected by the number of the traversed hops. With this
solution, the authors have achieved an improvement of an 18% of overall
network utilization compared to ECMP.

e Design

Unlike the other architectures previously reviewed in this chapter, the
architecture of BaatDaat is comprised of elements both in the data plane
and the controller plane. As illustrated in Figure 2.16, at the data plane
a module in charge of monitoring the real-time occupation of the switch
links is included, called Link Measurement. This module computes the
link utilization by adding the bytes of each packet that comes through

71

72

TE FRAMEWORKS IN SDN

OpenFlow Controller

i Scheduling Routing Module

OpenFlow Switch

: : ; Exact : ; :
oo Match EoL 3
N H »| Lookup > . : .
| : : eader Arbitrer : HE
et : Parser <] " : I
1 0 ! » . P> : I
- Wildcard Poded
H- S S - Lookup : : (3 :
= ; : -
i3 : ' v 9
= : 2 L
HI=I H E E 5
N 1 P10
Podd | | Link Packet | ¢ i
P R " C | £ 0
oo = ”| Measurement Editor : :

Figure 2.16.: BaatDaat architecture [156].

the link. In addition, it also computes the utilization of the outgoing link
after the packet is processed by the output port.

On the other hand, at the controller plane a specific module is
embedded in the OpenFlow controller, named Scheduling Routing Module,
which is in charge of computing the paths that allow to balance the load
inside the DC network.

e TFE support

The approach followed by BaatDaat aims to reduce network congestion
by finding detour paths that can help alleviate the greedy utilization of
some of the links in the network. It relies on real-time measurements
and a mixed scheduling scheme that is both applied at the data plane
and the controller plane. On the one hand, the monitoring of the links
utilization is performed at the OpenFlow switches, and it is used to send
the new arriving flows through the less utilized link. When the same level

2.3 TE FRAMEWORKS FOR CONGESTION MINIMIZATION

of utilization is reported in all the outgoing links, the ECMP protocol is
used to transmit the flow packets through all the links randomly.

When the Link Measurement module detects congestion in any of the
links, it requests a detour path to the controller. More precisely, it notifies
the controller when any of the shortest path links is above its 30% of
utilization. It is worth noting that in order to simplify the scheduling
procedure, they limit the detour paths to the network segment between
the Top of Rack (ToR) and the aggregation switches in a fat-tree like
topology. Furthermore, they only admit detour paths two hops longer
than the shortest path, in order to prevent oscillation and unnecessary
network resource consumption.

e Conclusions
BaatDaat proposes a flow scheduling algorithm that is only triggered

when the link utilization is above a certain threshold. Unless congestion
is detected, a modified OpenFlow switch with real-time monitoring

capabilities is able to balance the load without involving the controller.

This approach allows to reduce the traffic sent to the OpenFlow controller,
which in a DC network with a flow inter-arrival time in the order of ms
can result in the congestion of the control channel. In addition, they
demonstrate that the utilization of non-shortest paths can actually help
minimizing the network congestion, just using detour paths that are only
2 hops longer that the shortest ones.

However, the solution does not take into account the type of traffic
being send. For instance, even if the detour paths are only 2 hops longer,
this can be unacceptable for real-time applications with a high sensitivity
to E2E delay. Secondly, the solution depends on the real-time monitoring
module that they have embedded in a Field-Programmable Gate Array
(FPGA)-based OpenFlow switch. This makes difficult the adoption of the
solution, since most switch vendors do not provide the means to include
such modules in their products. In addition, they do not provide a generic
framework for SDN that would suit the needs of other use cases and do

not support advance reservations.

73

74

TE FRAMEWORKS IN SDN

Mice Aggregation
Topol Stats
opology Collector Flow Table
OF
Path Weight Switch Group Table
Mice Path ElephantPath | | | T
Computation Computation | | | eeeeseseeeeeceeceeeceeeees
End-Host
Set of Rules and Applications
Path Install e (U [7s :
Elephant Flow
MiceTrap Controller Detection /
Marking

Figure 2.17.: MiceTrap architecture [157].

2.34 MICETRAP

As stated by Trestian et al. [157], the most common approach to apply
TE in DC networks is to distinguish between long-lived flows, known as
elephant flows, and short-lived flows, known as mice flows. Usually, the
10% of the flows in a DC network are elephant flows, but they carry the
80% of the traffic. In such a context, TE strategies are only applied to
elephant flows, while mice flows are routed according to baseline routing
methods.

Although this approach facilitates the scalability of TE strategies, it
might also cause congestion to mice flows, which can correspond to critical
network traffic. As a consequence, Trestian et al. propose MiceTrap, an
approach to extend TE to mice flows without hindering the scalability.
The main idea behind MiceTrap is to leverage the flow aggregation
capacity provided by OpenFlow to handle a number of mice flows together.
Then, it applies a weighted routing algorithm that uses the actual link
utilization information to compute the splitting ratios that improve the
balance of the mice flows.

e Design

Figure 2.17 depicts the architecture of MiceTrap, which is comprised
of the seven modules described below:

e« Topology Block: Module in charge of storing the topology
information, that is, the nodes and links that comprise the network.

2.3 TE FRAMEWORKS FOR CONGESTION MINIMIZATION

e Stats Collector Block: Retrieves per-link statistical information
from the switches in order to provide information to the path
computation algorithms about the real link utilization.

e« Path Weigth Block: Module that computes the paths.

e Mice Path Computation Block: Computes the paths for the

mice flows.

e Elephant Flow Path Computation Block: Computes the paths
for the elephant flows.

¢ Set of Rules and Path Installation Block: Takes the computed
paths and translates them into OpenFlow rules that are sent to the

involved nodes.

« Network Map Block: Retrieves network state information, such

as the current traffic matrix or the routes that are already installed.

e TFE support

MiceTrap applies multiple TE strategies to reduce the congestion in DC
networks. It differs from other solutions for TE in DC in that it tries to

optimize the path selection for mice flows and not only for elephant flows.

MiceTrap applies two different path computation algorithms depending
on the type of flow that needs to be routed. However, the proposal is

focused on the path computation algorithm that is applied to mice flows.

First, in order to reduce the amount of flow entries necessary to route

the mice flows in the OpenFlow devices, it aggregates multiple mice flows.

That way, they use a less granular flow match description, such as the
destination IP address, that is matched by the entire set of aggregated
mice flows. Then, the aggregated flow is treated in the group table, where
the load is balanced among multiple shortest paths able to connect the
given source with the given destination node.

Instead of using ECMP to share the load, the Mice Path Computation
Block computes a set of possible shortest paths between the source and
destination. Then, with the statistical information retrieved by the Stats
Collector Block and the topology information available at the Topology
module it computes the weights that need to be assigned for each of

75

76

TE FRAMEWORKS IN SDN

the paths, which depend on the current load. Once the weights are
computed, the action buckets that conform the group entry assigned to
the aggregated mice flow are updated with the weights. As a consequence
of this approach, not all the paths valid for the aggregated flow carry
the same amount of traffic, achieving a better utilization of the network

resources and reducing the congestion.
e Conclusions

As in the previous case, one of the limitations encountered by this
solution is the need to install additional software in the OpenFlow
switches. More precisely, it is necessary to identify which flows are
elephant or mice flows. Depending on the vendor, this may not be an
option, which may result in additional equipment being necessary. In
addition, the solution only computes the set of shortest paths to share the
load among the aggregated mice flows. Even if they are able to minimize
the overall congestion of the network, it could be interesting to measure
the behavior of the solution when non-shortest paths are also used.

On the other hand, the architecture of the MiceTrap controller is
one of the most complete frameworks. It includes monitoring modules,
topology discovery and abstraction modules and PCEs. Although the
path computation modules are use case dependent, it represents a good
example of how a generic framework for TE should be.

24 TE FRAMEWORKS FOR PACKET LOSS MINIMIZA -
TION

As outlined in Chapter I, the packet loss minimization is an objective
function that can be achieved as a result of the minimization of the
congestion, but it is also a TE objective function on its own. Generally,
when the packet loss is not a consequence of the network congestion, it is
caused by the failure of a node or a link in the network.

With that premise in mind, packet loss minimization is a well-addressed
objective in SDN by means of techniques aiming to improve network
resilience. For instance, there are proposals dealing with fault restoration
in ForCES routers [158], where FE redundancy is achieved by means of

2.4 TE FRAMEWORKS FOR PACKET LOSS MINIMIZATION

cloned virtual machines. Other solutions deal with network resilience in
WANS, as in [159], where the authors propose a flow relocation mechanism
to minimize service disruption in case of a natural disaster. On the other
hand, the solution proposed by Pisa et al. [84] minimizes the packet loss
in DC networks by re-configuring the forwarding tables of the hypervisors
in DC networks in order to provide seamless VM migration.

In such a context, and once again, the high programmability and the
logically centralized control plane of SDN are the key features leveraged
by these solutions, since they facilitate the rapid re-programming of the
network elements in order to adapt to the changing conditions. Among
the available proposals dealing with failure recovery in SDN [160-164],
the solutions that are described in this section have been selected because
they define a framework or an architecture to minimize the packet loss in
SDN.

241 QNOX

QoS-aware Network Operating System (QNOX) [165] is an architecture
that aims to provide QoS and facilitate the introduction of TE
mechanisms in order to optimize the performance of hybrid networks. It is
defined using the ForCES framework, although it considers the possibility
of its application to both legacy networks and OpenFlow networks. In
the latter case, OpenFlow would be the chosen protocol to be used in the
ForCES interface, as stated in [166].

Using this architecture, Jeong et al. [167] have implemented a multi-
layer fault restoration mechanism using ForCES. Their proposal is a
scheme that relies on the fault restoration capabilities of different layers.
It uses the fast fault detection mechanisms of the physical layer, some of
the classic TE strategies available at the MPLS layer and the hierarchical
priority-based resource sharing available at the IP layer.

e Design
The architecture of QNOX is illustrated in Figure 2.18 and it has been

designed to operate both with OpenFlow devices and legacy equipment.
To that purpose, it exposes a ForCES interface to communicate the FE

T

78

TE FRAMEWORKS IN SDN

: Knowledge-based : : Virtual CE
: Decision making on : H Network Manager | :
' service & network : i | Topology FE :
mapping <ll—:> Manager Manager
i | Network TE DB : . Network |
: Loaq Link '\e/lr or;na.nce Resource :
1 | Balancing State DB | ! : SIEOINE Manager | :

Cognitive Knowledge
Element (CKE)

Management Element
(ME)

: Control Element
(CE)

: User Defined Control Applications

Multi-Layer Routing Signaling || Session Layer |
PCE Protocols | | Protocols Signaling ' Forwarding
: Elements (FE)

ForCES Interface :

CE Management
Agent

Figure 2.18.: QNOX architecture [165].

with the CE, which in conjunction with a Cognitive Knowledge Element
(CKE) is able to provide QoS and TE in hybrid networks.

In this architecture, a Service Element (SE) receives a new service
request and checks whether it can be provided or not with the required
QoS and fault restoration capabilities. In order to determine whether the
service can be provided or not, the PCE or the legacy routing protocols
are used to compute the paths, depending on the underlying transport
network technology. These modules are executed using the information
available at the Management Entity (ME), which is the entity in charge
of retrieving the network resources and handling the virtualized topology.
In addition, the CKE maintains a link state database and a TED, which
can be used to apply load balancing and other TE techniques to optimize

the network resources utilization.

2.4 TE FRAMEWORKS FOR PACKET LOSS MINIMIZATION

e TFE support

As pointed out in [168], fault restoration in transport networks requires
detecting the failure, reacting to the failure, notifying the neighbors or
the controller in the case of SDN, computing an alternative path and
installing the path in the networking elements. As it can be deducted, all
these phases have an impact on the service disruption time and therefore,
the experienced packet loss.

In order to minimize the packet loss as a consequence of a network
failure, Jeong et al. have proposed a multi-layer approach that they have
implemented in QNOX. In a nutshell, they rely on the fault restoration
capabilities available at different layers of the protocol stack. As such,
once a new service is requested, they compute both the primary LSP and
the secondary LSP to be used in an MPLS network taking as input the
global state of the network. As such, they keep an up-to-date view of
the network in the CE, information that they use to perform the path
computation. In order to compute the backup path, once the primary
path has been computed, they remove all the resources included in the
primary path and they execute the algorithm again. With this approach,
they ensure that the backup path does not share any resource with the
secondary path, that is, they ensure that the primary and the secondary
path are totally disjoint paths, as long as the network supports it.

Then, in the event of a network failure, they rely on the FE itself to
detect the failure, and switch the data transmission to the secondary
LSP. They compare their solution with the failure recovery capabilities
of distributed OSPF, and they conclude that with this mechanism, they
are able to reduce the service disruption time in an order of magnitude
in order to be compliant with the carrier grade requirements.

e Conclusions

The solution proposed by Jeong et al. is proven to be useful compared
to the classical approach followed in distributed OSPF where the
convergence time of the algorithm is not enough to satisfy the carrier
grade requirements. Although the novelty of their solution relies on the
use of a path computation element in the controller plane to compute

79

80

TE FRAMEWORKS IN SDN

both the primary and the secondary LSPs taking into account the global
state of the network, the solution uses the same failure recovery approach
that is already used in MPLS-TE. That is, both LSPs are installed in the
network, even if that means that only the 50 % of the reserved resources
will be used at any given time. When a failure is detected by the network
element, the secondary LSP gets active, without involving the controller
or without requiring the computation of another path.

The framework presented in this section is heavily constrained by the
ForCES framework, including legacy protocols that for instance with
OpenFlow would not be necessary. Moreover, the solution does not
include mechanisms to support advance reservations.

242 YOON ET AL. PROPOSAL

As mentioned before, one of the key elements in failure recovery is
detecting that a failure has occurred. Multiple techniques can be used for
that matter. For instance, a very common approach in SDN is to let the
switch notify the failure to the controller, so that the controller can react
upon that event. Notwithstanding, active protocols such as Bidirectional
Forwarding Detection (BFD) can be used as well, which is precisely what
Yoon et al. propose in [169].

In this proposal, BFD is included in the ForCES architecture to
detect network failures in DiffServ-aware MPLS transport networks. The
solution aims to deliver broadband real-time services with QoS. In such
a context, BFD is used to detect link failures and make performance
measurements, which are controlled by the ForCES CE. The CE activates
BFD for each LSP and receives information about the link failures and
the measured performance in return. This information is later used to

compute the paths using a C-SPF algorithm.
e Design
The architecture proposed by Yoon et al. follows a hierarchical

approach, in which a dedicated CE is in charge of controlling the interfaces
of the FE with BFD support. In addition, a centralized controller handles

24 TE FRAMEWORKS FOR PACKET LOSS MINIMIZATION 81

Centralized
C-SPF TE Agent > Controller
TCP/IP

[« [e« [e« |

v
OSPF Link

Status LSDB RSVP-TE ForCES
gathering Protocol

I Highspeed Switching Fabric / Bus/ Shared Memory l

4

BFD/OAM H TE-LSP
setup/release
[BFD/OAM | [
BFD/OAM TEASP | < Resource . e -
BFD/OAM _|«—»{ TE-LSP Management

Figure 2.19.: Architecture proposed by Yoon et al. [169].

the routing functionalities, as depicted in Figure 2.19. The modules of the
CE elements of this architecture are described below:

e C-SPF: As it name suggests, it is in charge of applying the
C-SPF algorithm, with the information available in the Link Status
Database (LSDB).

« LSDB: Stores the information regarding the status of the link,
including its availability and the utilization.

o« BFD/OAM: They monitor the status of the LSPs.

« RSVP-TE: Handles the setup and release of the LSPs and their
configuration, such as the bandwidth or wavelength allocation.

o« TE agent: Communicates with the central controller, also known
as the TE manager, to setup the desired QoS policy.

e TFE support

In this architecture, the TE support is distributed among the
centralized controller and the CEs associated to each interface. The
centralized controller is in charge of the overall routing and switching
capabilities. However, the link state control is kept in the CEs near the
interface.

This approach allows a faster network failure detection, since in
addition to the utilization of an active protocol such as BFD, the CE is
kept near, reducing the latency that notifying a remote controller would

82

TE FRAMEWORKS IN SDN

impose. Furthermore, at each CE there is also a module in charge of the
path computation, which also improves the efficiency of the solution.

They are able to keep the solution compliant with the carrier grade
requirements by sending BFD packets every 5 — 10 ms. Once the system
detects that three BFD messages have been lost, it notifies the failure in
order to establish an alternative path.

o Conclusions

The hierarchical approach followed by Yoon et al. is interesting for
two reasons. First, it uses BFD to detect the network failures, which
reduces the detection times considerably, making the solution compliant
with the carrier grade requirements. Second, they use a dedicated CE
element for every interface, allowing a faster response in case of failure
since no additional delay is introduced.

However, the solution still relies in legacy protocols, presenting
therefore, the limitations described in Chapter I. In addition, each CE has
its own C-SPF module operating over a local copy of the LSDB. Although
there is a centralized controller in charge of the TE management, they do
not specify how that is handled. In case of a simultaneous failure in two
links, it could be possible to have inconsistent topology views in these
local copies, which could lead to an invalid path computation.

As in previous solutions, even if it defines a suitable architecture for
TE in SDN, the solution is use case dependent and therefore it could not
be applied to other use cases.

243 PHEMIUS ET AL. PROPOSAL

The architecture proposed by Phemius et al. [170] aims to provide TE
in WANS. The solution relies on a monitoring module that keeps track
of the network utilization and detects link failures in order to redirect
the traffic to less congested paths and react upon network failures. For
that purpose, they propose an architecture for TE that prioritizes critical
flows, allowing the preemption of already provisioned flows with a lower

priority.

2.4 TE FRAMEWORKS FOR PACKET LOSS MINIMIZATION

Visualization
Events Network Eng. TE
Monitor Device Manager Link Discovery
FloodLight Core

Figure 2.20.: Architecture proposed by Phemius et al. [170].

In order to monitor the network, they rely entirely on the capabilities
provided by OpenFlow. That is, they monitor the utilization of the
network by polling the switches for per-flow statistics and they detect
the network failures upon switch notification.

e Design

The architecture proposed by Phemius et al. is depicted in Figure 2.20.

It extends the FloodLight controller with the five custom modules marked

in blue that enable the utilization of TE strategies in OpenFlow networks.

e Monitor: This module is in charge of monitoring the network
status, which includes retrieving bandwidth consumption and
latency calculation.

« Events: This module triggers alarms when a network failure occurs

or when a network resource usage exceeds a certain threshold.

o TE: It is in charge of selecting the paths for the flows taking into
account their priority and the QoS constraints.

e Network Engineering: It facilitates the programming of the
network devices and keeps track of the installed flow rules.

e Visualization: GUI that allows the end-users to easily request new

service demands and allows to keep track of the consumed resources.

83

84

TE FRAMEWORKS IN SDN

e TFE support

This solution provides both network resource optimization and packet
loss minimization. The main contribution is their monitoring strategy,
which unlike other monitoring tools implemented in OpenFlow networks
does not only compute the consumed bandwidth, but also computes the
latency on a given path. On the one hand, the per-flow bandwidth usage
is computed by retrieving the per-flow statistics periodically. On the
other hand, the latency is computed by injecting packets from the source
node and redirecting them to the controller once they have reached the
destination node. By analyzing the time difference between both events
using time-stamps, they are able to estimate the latency experienced by
the packets through that specific path.

Once they have these QoS metrics available, every time a new flow
establishment is requested they compute the cost of each link and they
use the Dijkstra algorithm to compute the constrained shortest path. It
is worth noting that their TE solution considers the priority of the flows.
As a consequence, flows marked as critical are allowed to preempt other
non-critical flows, even if it results in the relocation of the non-critical
flow or even its removal. This strategy is applied both, when a new flow
is requested and when a failure occurs in the network.

In the latter case, once the Events module detects a failure, it prioritizes
the relocation of the critical flows into alternative paths. That can result
in a non-critical flow being switched to an alternative path. Moreover,
it can also result in a critical flow also being relocated to an alternative
path, which can lead to a waterfall effect in which a preempted flow forces
lower priority flows to use alternative paths.

e Conclusions

The solution presented by Phemius et al. relies entirely on the
monitoring capabilities of OpenFlow. However, monitoring in OpenFlow
needs to be carefully handled. For instance, the accuracy of the bandwidth
monitoring depends on the polling frequency. The bandwidth is computed
by comparing the bits that have matched a certain flow between two
instants. However, that measures the average bandwidth, which may differ

2.5 TE FRAMEWORKS FOR QOE MAXIMIZATION

from the actual bandwidth usage in each instant in the case of traffic
with drastic rate changes. On the other hand, there must be a perfect
synchronization between all the elements of the network, including the
controller, which is not trivial, since the latency at the control channel
can affect the accuracy of the retrieved network state information.

Regarding the path computation, the preemption mechanism that they
include may result in a waterfall effect where multiple flows may be
relocated unnecessarily. This is a consequence of computing the paths
sequentially. The solution could be improved in this case by means of
an LP approach, that could optimize the flow placement taking into
consideration their priorities.

Finally, the architecture that they propose is well engineered. It
includes monitoring and TE functionalities. However, it is dependent on
the FloodLight controller and lacks support for advance reservations.

25 TE FRAMEWORKS FOR QOE MAXIMIZATION

Since QoK is a performance parameter that depends on both objective and
subjective factors, the QoE maximization can be tackled from different
perspectives. Nonetheless, for the purpose of this analysis, this section
reviews the TE frameworks aiming to maximize the QoE in software-
defined networks from the network optimization perspective.

As in the case of the previous sections of this chapter, there are other
solutions that deal with QoE in SDN that have not been included in
this analysis because they do not present a well-defined framework. More
examples of such solutions are described in [171-173]. Hence, a single
proposal is analyzed in this section since it is the only one where the
architecture of the framework is described.

25.1 KASSLER ET AL. PROPOSAL

Kassler et al. [50] propose an architecture for service negotiation and
path optimization in SDNs that seeks to maximize the QoE. The main
premise of the solution is that different traffic types may need different
optimization functions. For instance, VoIP traffic may need the selection

85

86

TE FRAMEWORKS IN SDN

Client
Profile

Client
Profile

PAF

Topology
Database

Client A Client B

Figure 2.21.: Architecture proposed by Kassler et al. [50].

of a path with the minimum delay, whereas a data transfer may require
a path with the highest available bandwidth.

In such a context, the solution is based on two key enablers: QoS
Matching and Optimisation Function (QMOF) and Path Assignment
Function (PAF). The former one resides in the application plane, whereas
the latter one resides at the OpenFlow controller and maintains updated
information about the flows installed in the network. It also holds a
topology database populated with the topological information provided
by OpenFlow. The result is an architecture able to reassign paths in order

to admit new services.
e Design

The architecture proposed by Kassler et al. is depicted in Figure 2.21,
which relies on the three main components described below:

¢ QMOF: Element that resides in the application plane and is in
charge of processing the user requests and generating the optimal
service configuration to satisfy the users’ demands. This results in

2.5 TE FRAMEWORKS FOR QOE MAXIMIZATION

the generation of a Media Degradation Path (MDP) (later explained
in this section), which is sent to the PAF.

e PAF: Element that resides in the controller plane and computes
the optimal paths to provide the service with the demanded QoE
by the users using the information contained in the MDP. Once the
path is computed, the necessary flow rules are programmed in the

OpenFlow devices.

e Topology Database: Element that resides in the controller plane
and maintains an up-to-date view of the network graph and the
active flows in the network.

e TFE support

One of the most interesting features of this proposal is the generation
of MDPs. In order to adapt to dynamic conditions in the network, the
output of the QMOF is the generation of multiple configurations for the

same service. For instance, if a user requests a video stream, it may

prefer to prioritize the quality of the voice over the quality of the video.

As a result, the QMOF generates a MDP specifying an ordered set of
configuration preferences. In this particular case, the MDP would consist
of four possible configurations, the first one with the user requirements as
they were specified, the second one with the allowed degradation of the
video, the third one with the allowed degradation of the voice and the
fourth one with the allowed degradation of both of them.

Once the PAF receives the MDP, it computes the optimal path for
the first configuration taking into account the network state information
stored in the Topology Database. In case of unavailability of resources to
provide the first configuration, the PAF computes in strict precedence
the optimal paths for the remaining configurations, until a suitable
configuration is found. Furthermore, the PAF also provides the means
to relocate already provisioned services into less preferred configurations
in order to make room for new service demands that cannot be provided
using any of the configurations specified in their MDPs. Regarding the
path computation algorithm implemented in the PAF, the solution relies
on a variant of the multi-commodity flow problem defined by the same
authors in [174].

87

88

TE FRAMEWORKS IN SDN

e Conclusions

The solution presented by Kessler et al. stands out thanks to the
generation of multiple configurations to provide a service, taking into
account the user preferences. This approach allows to increase the
number of services being provided through the network, considering the
degradation of the service that the user considers acceptable. Nevertheless,
the solution is also capable of degrading already provisioned services,
which may be unfair to the users. The QoE is a subjective parameter and
the very same fact of degrading the QoS to a user, even if this degradation
was already considered in the original request of the service, may result
in the minimization of the QoE.

In addition, the framework provided by Kessler et al. would benefit
from additional elements, such a monitoring module to check the actual

network resources consumption.

26 SUMMARY OF SDN-BASED TE FRAMEWORKS

Table 3.1 summarizes the SDN-based TE proposals analyzed in this
chapter. The table identifies which is the performance objective used
in each proposal, the context in which it is applied, the D-CPI
protocol in which it is based and the Path Computation Algorithm
(PCA) that is used. In addition, the functionalities supported by the
frameworks or architectures defined in each proposal are identified,
namely Topology handling (Topo.), Monitoring (Mon.), Resilience (Res.),
Load Balancing (LB), Flow Relocation or Re-optimization (FR) and
Advance Reservations (AR) support. Please note that in the table the
following additional acronyms have been used: CC stands for Cloud
Computing, FC for ForCES and OF for OpenFlow.

It is worth remarking that whatever the strategy is to compute the
paths, all the analyzed frameworks rely on a dedicated TED to store
the topology-related information. Notwithstanding, depending on the
scope at which the solution is applied, different sets of functionalities
are desirable.

On the one hand, for Inter-DC WAN networks, the two solutions
analyzed in this chapter rely on load balancing techniques to optimize

2.6 SUMMARY OF SDN-BASED TE FRAMEWORKS

Table 2.2.: Summary of SDN-based TE frameworks
Framework
Proposal Perf. Objective Context D-CPI PCA
TED Mon. Res. LB FR AR
Network resource
Bin L cc FC 4
optimization
Network resource Inter-DC Max-Min
B4 OF v o/
optimization WAN fair share
SWAN Network resource Inter-DC OF LP MCFP v v v v v
optimization WAN Precomp
Network resource REN PCEP
OSCARS C-SPF ~ v 4
optimization WAN OF
Network resource
OPEN o WAN OF C-SPF v v v v
optimization
Network resource
OFVN o DC OF C-SPF v v
optimization
Network resource BGP-LS
IDEALIST WAN C-SPF v v v
optimization PCEP
Congestion BFS
Huang s WAN OF v 4
minimization Precomp
Congestion
Li) _g o WAN OF C-SPF v v
minimization
Congestion
BaatDaat . g o DC OF non-SPF v v v
minimization
Congestion W-SPF
MiceTrap 5 DC OF v v v
minimization Precomp
Packet loss
QNOX o WAN FC C-SPF v v
minimization
Packet loss
Yoon WAN FC C-SPF v v v
minimization
Packet loss
Phemius WAN OF C-SPF v v v v
minimization
oE
Kassler Q WAN OF LP MCFP Vv v

maximization

89

90

TE FRAMEWORKS IN SDN

their network resource utilization. In addition, both solutions provide
failure recovery mechanisms thanks to the logically centralized control
plane and the high programmability of SDN.

On the other hand, all the proposals designed for WANs also agree
on the necessity of having failure recovery mechanisms. This is an
understandable requirement, since NSPs and RENs operating such kinds
of networks are subject to strict quality controls by governments and
customer associations, and must be able to react to network failures
as agreed in the SLAs subscribed with their users. In this regard, it is
also worth mentioning that the only framework with advance reservation
capabilities is OSCARS, the only one design to operate in a REN.

Finally, it is also clear that in DC networks one of the features in
which all the authors agree is monitoring. This may be the result of
the fat-tree like topologies usually employed in such networks, where the
path computation itself is not very challenging but keeping track of the
resources consumption and reacting based on that information can result

in a more efficient utilization of the network resources.

2.7 CONCLUSIONS

This chapter has presented a representative set of SDN-based solutions
where a framework or an architecture to support TE is defined. The
solutions range from architectures aiming to optimize the network
resource utilization to solutions dealing with network congestion, packet
loss or the maximization of the QoE. They are based on the utilization
of D-CPI interfaces such as OpenFlow, ForCES or BGP-LS/PCEP in
different network types such as WANs or DCs.

The overall impression after conducting the analysis to the existing
frameworks is that the high-programmability of SDN, the possibility
to make decisions from the centralized controller using up-to-date
information about the network topology or the resources’ consumption,
and the fact that advance path computation engines can be embedded
on the control plane are of great value to improve the performance of the
network.

Depending on the objective function they are trying to achieve, the
architectures include a different set of modules. However, all of them rely

2.7 CONCLUSIONS

on a PCE on the controller plane which uses the topology information
contained in a topology database. Besides, most of them are not only
focused on a single objective function. For instance, many solutions
dealing with the optimization of the network resources also provide
resilience.

Nonetheless, none of the analyzed solutions present a generic framework
for TE that could benefit multiple use cases. In general, the architectural

frameworks are tightly coupled to the use case in which they are applied.

Moreover, besides the OSCARS framework, none of the solutions support
advance reservations, which as stated in the Chapter I, is one of the
requirements that the solution presented in this thesis aims to address.
All in all, this analysis has allowed to identify a set of features that a
generic SDN-based TE framework should provide, which are listed below:

e The framework must include the necessary mechanisms to retrieve
the up-to-date network topology and abstract it to ease the path
computation.

e The framework must be flexible enough to make the introduction
of novel TE strategies possible.

e The framework must be able to support multiple use cases and

scopes.

e The framework must not impose the installation of software agents
in the network devices to be easily applied with devices of different
vendors.

e The framework must be prepared to react to network failures in

order to ensure the service provisioning.

e The framework must allow to take forwarding decisions based on

application layer information.

e The framework must provide the mechanisms to retrieve monitoring

information from the network.

91

Algorithms and Data Structures

for Advance Reservations

"Study the past if you would define the future."

— Confucius

As mentioned in Chapter I, advance reservation mechanisms allow to
reserve a set of resources to be exploited in the future, and are of special
relevance for RENs.

Supporting advance reservations is not trivial, since the utilization
of such mechanisms imposes some challenges. As identified by Wischik
and Greenberg in [175], in advance reservation systems the control and
responsibility of the service provisioning is moved from the network to
the user, who needs to specify in advance the desired characteristics of
the traffic to be exchanged. In addition, the reservation of the network
resources may lead to a lower network resource utilization if it is not
handled correctly, since new service reservations may be rejected when the
reserved resources are not actually being used. Furthermore, as noticed
by Schneider and Linnert [176], the utilization of advance reservation
mechanisms can actually result in a high and undesirable resource
fragmentation. That is, that the availability of the resources may vary
constantly, resulting in high amounts of different situations with different
traffic loads to consider. As a consequence, advance reservation systems
need to be carefully engineered.

93

94

ALGORITHMS AND DATA STRUCTURES OF AR

With the appearance of SDN, solutions to provide advance reservations
have appeared during the last years [177-179]. Nevertheless, these
solutions are focused on the architectural aspects, or new path
computation algorithms that leverage the logically centralized nature
of this paradigm, without considering novel data structures specially
designed to support the novel TE approaches feasible in SDN.

In such a context, this chapter provides an overview of a representative
set of advance reservation solutions where the objective function is the
improvement of the network resources consumption taking into account
bandwidth and timing constraints. More precisely, this chapter is focused
on analyzing the effect of the data structures used to handle the timing
constraints in advance reservation systems. Since, as stated by Burchard, "
... the time spent in the data structures in a sample network management
system adds up to about 60 percent of the total processing time required
by the bandwidth broker, whereas routing requires only about 8 percent
and the administrative tasks take the remaining 32 percent of the total
processing time." (in [180], page 1).

This chapter is structured as follows. First, Section 3.1 introduces
the fundamentals of advance reservations, where some concepts about
algorithms and data structures are also presented. Then, the analyzed
solutions are categorized depending on how they deal with the resource
management; Section 3.2 analyzes the solutions where the data structures
keep information related to the link utilization profiles, whereas Section
3.3 analyzes alternative solutions to deal with the resources management.
Finally, Section 3.4 compares the solutions presented in this chapter, while

Section 3.5 summarizes the conclusions.

3.1 INTRODUCTION

In order to better understand current solutions dealing with advance
reservations, this section presents the fundamentals of these types of
systems. In addition, since the focus of this review is to understand the
impact of the data structures used to handle the resources utilization, a

brief introduction to algorithms and data structures is provided.

3.1 INTRODUCTION

3.1.1 FUNDAMENTALS OF ADVANCE RESERVATIONS

This subsection introduces the fundamentals of advance reservations
in communication networks, where (1) the reservation models typically
employed, (2) the time interval types, (3) the resource variability, (4) the

architecture types and (5) the scope of the data structures are described.

These aspects will be later used in Section 3.4 to compare the different

solutions reviewed in this chapter.

3.1.1.1 RESERVATION MODELS

The reservation model describes the type of advance reservation that
is supported by the solution. Usually, the advance reservation model
supported depends on the timing constraints that are specified in the
reservation request. In that regard, Zheng and Mouftah introduced the
following classification [181].

o Specified Time Specified Duration (STSD): Advance
reservations where the start time and the duration of the reservation
or the end time are specified. STSD reservations can be of fized
window, where the possible start time is unique or of flexible
window, where multiple start times are considered valid. This is the
reservation model typically supported by most advance reservation
systems and it is usually formulated as a connection feasibility
problem or as a variant of the soonest completion problem where

the start time needs to be within a certain time interval.

o Specified Time Unspecified Duration (STUD): Advance
reservations where the start time is specified but the duration is
unknown. Many authors formulate this problem as a maximum
duration problem, where the resource consumption over time is
analyzed in order to find the path able to sustain the connection
between the specified end-points as long as possible. In addition,
immediate reservations can also be considered a sub-type of this
advance reservation category, where the start time is the time at

which the request is performed.

o Unspecified Time Specified Duration (UTSD): Advance
reservations where the start time is unknown but the duration or the

95

96

ALGORITHMS AND DATA STRUCTURES OF AR

end time is specified. Usually, these types of advance reservations
seek to transfer a huge amount of data before a certain deadline.
Some authors formulate this problem as the soonest completion
problem, where the goal is to find the path able to satisfy that
the data transfer will finish as soon as possible, and therefore, will
start as soon as possible.

o Unspecified Time Unspecified Duration (UTUD): Advance
reservations where both the start time and the end time are not
specified.

3.1.1.2 TIME INTERVAL TYPES

In advanced reservation systems, new service requests must be analyzed
for different time intervals, each of them representing the resource
consumption or availability over a specific period of time. As a
consequence, it is a characteristic of advanced reservation systems that
the running time of the algorithms will inevitably depend on the number
of time intervals to be analyzed.

Advanced reservation systems can be based on fized [182, 183] or
dynamic time intervals [184-186]. On the one hand, fixed time intervals
are used by systems that divide the time spectra into well-defined time
slots of the same duration. Although this approach simplifies the analysis,
when the time intervals are too small, the number of time slots to be
analyzed grows, impacting negatively the running time of the employed
algorithms. In addition, when the time slots are too big, the optimality
of the system is degraded, since the reservations must be extended to
fit within this wider time intervals and therefore consume resources when
there was not needed. On the other hand, the solutions based on dynamic
time intervals require more complex data structures, but do not impose
such penalties on the optimality of the solution.

3.1.1.3 RESOURCE VARIABILITY

It is worth noting that even if the most common approach in advance
reservation systems is to consider a sustained consumption of a given
resource over time (i.e., bandwidth), some proposals consider the
possibility of reserving different fractions of the resource in different

3.1 INTRODUCTION

time intervals. As a consequence, advance reservations can be further

categorized in the following sub-types:

e Static reservations: The reserved bandwidth does not vary over

time.

o Elastic or malleable reservations: The reserved bandwidth
varies over time, but no time slots where the transmission is

suspended are considered [187].

e Non-continuous reservations: The reserved bandwidth varies
over time, supporting time slots where the data transmission is
suspended [188].

3.1.1.4 ARCHITECTURE TYPES

Depending on the type of entity that handles the reservation
requests, advance reservation architectures can be differentiated between

centralized and distributed:

e Centralized: A single entity handles all the reservation requests,
the scheduling and the nodes configuration.

e Distributed: Each node handles the reservation requests that
it receives and performs the admission control using its local

information.

The type of architecture employed to support the advance reservations
has a direct impact on how the path computation is performed. In this
regard, centralized architectures make possible the utilization of path pre-
computation strategies or the use of pruned topologies to ease on-demand
path computations. On the other hand, distributed architectures impose

the utilization of distributed routing protocols.

3.1.1.5 DATA STRUCTURE SCOPE

The scope of the data structure utilized to keep track of the resource
consumption can have a huge impact on the optimality of the solution. In
this regard, most advance reservation systems keep track of the utilization
profiles on a per link basis. As a consequence, the data structure that is

97

98

ALGORITHMS AND DATA STRUCTURES OF AR

used needs to be replicated per every link on the network. Besides the
impact on the memory consumption, this results in additional constraints
to perform the admission control of the reservation requests. With this
approach, and given that each link supports a different set of reservations
in each time slot, the resource consumption over time of each link evolves
differently, which directly impacts how the path computation must be
handled. This approach is mandatory, when a distributed architecture is
used.

On the other hand, the data structure could be used to reflect the
resource consumption over time on a per path or a per graph basis. In
the latter case, this could result in a lower memory consumption, since
a single instance of the data structure would be needed. In addition,
the evolution of the network resource consumption could be handled
atomically. Although this approach could simplify the admission control
and the path computation in advance reservation systems, there are very
few proposals that rely on these types of approaches. Even the solutions
where a centralized architecture is used to handle the reservation are
usually based on utilization profiles on a per link basis.

3.1.2 ALGORITHMS AND DATA STRUCTURES

As defined by Sedgewick and Wayne, algorithms are "methods for solving
problems that are suited for computer implementation", which "go hand
in hand with data structures - schemes for ordering data that leave them
amenable to efficient processing by an algorithm" ([189], page 3). The
impact of the data structures in the implementation of network algorithms
has been widely studied by Robert Endre Tarjan [190].

A very important question when designing algorithms is to know their
efficiency. To that matter, the most common approach is to estimate their
asymptotic complexity using the Big-O notation, which provides an upper
bound of the growth rate of an algorithm as a function of the input. It
is represented by the symbol O(f(n)), where n is the input. Throughout
this document, the running time of an algorithm or the computational
complexity of an algorithm are used as a synonyms of its asymptotic

complexity.

3.1 INTRODUCTION

In computer science, problems are categorized in tractable or
intractable, depending on the complexities of the fastest known
algorithms able to solve them. The separation between these two types
depends on whether the algorithm runs in polynomial time or non-
polynomial time respectively.

Since the goal of this chapter is to analyze the relationship between the
data structures employed to keep track of the resources consumption over
time and the performance achieved to process the reservation requests,
this section briefly introduces some relevant data structure types to this

topic:

e Array: a collection of elements of equal type identified by a unique
index, where the indexes can be obtained through a mathematical
formula [191]. During this chapter, only unidimensional arrays are

considered.

o Linked List: an ordered collection of elements in which each entry,

or node, points to the next one by means of a pointer.

e« Rooted Tree: a hierarchical data structure where an element called
root points to a set of child nodes. These child nodes can also be
the parent of other nodes. The nodes that do not have any children
are known as leaf nodes. On the one hand, the depth of a node is
the amount of intermediate nodes to reach the root of the tree. On
the other hand, the height of a node represent the number of nodes

to reach a leaf node. There are multiple types of trees:

— Binary tree: each node in the tree but the leaves have two child

nodes.
— Balanced tree: binary tree where the elements are sorted.

— Segment tree: a tree specially designed to store intervals or

segments.

« Disjoint Set: a data structure that keeps track of sets of elements
divided in disjoint sub-sets, that is, where each sub-set only contains
elements not included in the remaining ones. This data structure
provides the means to identify the set that contains a certain
element (find operation) and to form a new set as a union of two

99

100

ALGORITHMS AND DATA STRUCTURES OF AR

disjoint sets (link operation). They are usually implemented using

a tree.

32 RESOURCE MANAGEMENT ON A PER LINK BASIS

In a nutshell, advance reservation systems are the consequence of an
exhaustive research effort in the field of network resource utilization.
One of the most extended approaches to handle time-dependent resource
management consists on keeping the information regarding the bandwidth
utilization as a function of time on a per link basis. This approach is easy
to implement, and can be supported both in distributed and centralized
architectures. However, it requires the utilization of multiple instances of
the data structure, one per each link in the network, which increases the
memory consumption of the solutions.

An example of such approach is the one followed in [192], where advance
reservations are proposed to enhance the network resource utilization in
gigabit networks. In their paper, Varvarigos et al. present a protocol to
enable the bandwidth reservation in advance using per link utilization
profiles as a function of time, where the routing algorithm presented in
[193] is used to select the optimal paths. Pretty much at the same time,
Wischik et al. [175], demonstrated that advance reservation mechanisms
were beneficial when the resources were booked a critical time in advance,
with no positive effect when the time in advance was too small or too big.

Notwithstanding, even if these two proposals represent good examples
of resource management on a per link basis, they do not delve with the
impact of the data structures to process the reservation requests. As such,
the following subsections present a comprehensive set of solutions where
resource consumption on a per link basis can be handled to support
advance reservations, and where the impact of the data structure is
analyzed. As long as possible, the reservation model, the data structure
and the algorithms on which the solution relies are presented.

321 SCHELEN ET AL. PROPOSAL

According to Schelén et al. [194], admission control mechanisms are

necessary to ensure that the service requests are provided with

3.2 RESOURCE MANAGEMENT ON A PER LINK BASIS

the minimum requested quality. With such mechanisms, the network
providers are able to reject service requests due to resource unavailability,
and guarantee to the accepted requests that the services will be provided
as desired.

In such a context, they have designed a QoS agent that behaves as a
Bandwidth Broker, in order to enforce path-sensitive admission control
able to scale in backbone networks. To state which data structure is the
most suitable one to handle the time-constraints of advanced reservations,
they compare a binary search tree over time and a segment tree that
uses slotted time. Their analysis reveals that although a higher memory
consumption is required, the segment tree behaves better for long service
reservations than the binary search tree.

With both data structures handling the bandwidth consumption per
link, they rely on the QoS agent to compute the path that satisfies the
reservation requirements. To that matter, the QoS agent retrieves the
topology and the available resources in the network using OSPF and
SNMP, and computes the path taking into account that information and
the resource availability of each link. Moreover, in order to state which
routing approach is more appropriate, they compare on-demand path
computation and path pre-computation strategies.

o Reservation model

The solution proposed by Schelén et al. supports both immediate and
advance reservations, where the peak bandwidth is used as the QoS
metric to select the paths. As stated in [195], the coexistence of these
two reservation types is handled by aggregating the bandwidth of every
immediate reservation and checking during a short period of time whether
the demand can be satisfied taking into account the resource consumption
of already accepted reservations. Regarding the advance reservations, they
consider the STSD reservation model, where requests are identified by

their start and end times, the source and destination nodes and the peak
bandwidth.

101

102

ALGORITHMS AND DATA STRUCTURES OF AR

t=t,
6=58,
Lior=Ls= 83 + L,

t=t; t=tg

5=6, 5=2586

Lror=L, =8, Lror=Le =85 + L4

4 4
A | 14 A | A |

t=1, t=1, t=1 t=t,
5=6, 5= 6, 5=6s 5=6,
Lior=L1=0 Lror=L3=0 Lror=Ls=0 Lior=L;=0

Figure 3.1.: Structure of the binary search tree over time proposed by Schelén
et al. [194].

e Data structures

On the one hand, in the binary search tree over time, whose structure
is depicted in Figure 3.1, every reservation is represented by means of two
nodes. The first one represents the starting point of the reservation with a
positive bandwidth, whereas the second one represents the ending point of
the reservation with a negative bandwidth. If multiple reservations start
or end in the same point in time, the node represents the aggregated
bandwidth of all the reservations (identified as § in the figure), where
the bandwidth of the starting reservation is added and the bandwidth of
the ending reservation is subtracted. In addition, the node also points to
the next node in time and stores the aggregated bandwidth of the left
sub-tree (identified as Lror in the figure).

When this data structure is used, the admission control process involves
a binary search to find the starting point, the computation of the
aggregated bandwidth of the left sub-trees and a linear search to study
all the nodes that overlap with the new request to check. In the case when
the node reflects a positive value of the bandwidth, it is checked whether
the request can be accepted or not. In this case, since they conduct first
the admission control and then they update the data structures, when
the requests start to be rejected, the computation time decreases, since
the process stops earlier.

On the other hand, the segment tree proposed by Schelén et al. to
handle advance reservations is shown in Figure 3.2. In this segment tree,

3.2 RESOURCE MANAGEMENT ON A PER LINK BASIS

Node value = NV;
Max value = MV; = max(NVs + MVs, NVg + MVs)

/\

Node value = NVs Node value = NVg

Max value = MVs = max(NV; + MVy, NV, + MV,) Max value = MV = max(NVs + MVs, NV, + MV,)
Node value = NV, Node value = NV, Node value = NV Node value = NV,
Max value =0 Max value =0 Max value =0 Max value =0

\

time

Figure 3.2.: Structure of the segment tree proposed by Schelén et al. [194].

the root node represents the entire time frame in which service requests
can be accepted, where each frame is recursively divided into smaller
and equally sized time frames until the leaf nodes represent a single time
slot. As depicted in the figure, each node contains information about the
available bandwidth during the time interval that it represents (identified
as NV in the figure), and the maximum available bandwidth in its child
nodes (identified as Max value in the figure)

When a new request arrives, the tree is traversed from the root to the
leaves, checking in all the cases that applies if the bandwidth constraint
remains satisfied. If positive, the request is accepted and the affected
tree node is updated. All the operations are performed in constant time,
independent of the number of reservations but dependent on the number
of time slots and the length of the requested duration.

When the requests start to be rejected, this data structure results in
a slower running time, since the data structure is updated at the same
time that the admission control is performed. Besides, in addition to
the unnecessary extra overhead imposed by the node updates, an extra
overhead is imposed by the need of restoring the data structure to its

previous state.

103

104

ALGORITHMS AND DATA STRUCTURES OF AR

e Algorithms

In order to assess which strategy is the most appropriate one for
advance reservations, the authors compare on-demand path computation
and path pre-computation. On the one hand, using on-demand path
computation, the admission control mechanism (either based on the
binary search tree over time or the segment tree) must be invoked on
a per hop basis. In a nutshell, they rely on OSPF, where the next hop is
selected among those with enough resources available through the entire
duration of the new reservation request. This approach may lead to path
re-computations and the re-set of the already reserved resources in the
path, since a selected path may lead to a neighbor node with no links
available satisfying the demand.

On the other hand, they use the OSPF information available at the
QoS agent to pre-compute shortest path trees between all the nodes in
the network. Then, when a new reservation requests arrives, the tree is
checked to find a path with enough resources in all of its links. Their
experiments conclude that using a path pre-computation approach the
admission control procedure takes a longer time, but it is still within the
acceptable parameters in trunk networks.

o Conclusions

The comparison between the data structures and the path computation
strategy conducted by Schelén et al. reveals a set of limitations common
in the classic approaches to handle advance reservations.

First, regarding the data structures that are used, the analysis
concludes that the segment tree is a better choice to handle advance
reservations. However, their approach presents some drawbacks that could
be improved. On the one hand, the use of slotted time results in a static
structure where even the time periods in which no reservations exist
must be represented using a leaf node, leading to an unnecessary memory
consumption. In addition, they use a binary segment tree, which increases
considerably the number of nodes that need to be kept in memory, even
if those nodes do not represent relevant information. On the other hand,
their approach to update the tree before checking all the affected time

3.2 RESOURCE MANAGEMENT ON A PER LINK BASIS

slots may result in unnecessary tree traversals to revert to the original
situation. This could be improved by executing first a checking phase and
later a tree update phase.

Second, keeping track of per-link resources’ consumption can lead to
unnecessary path re-computations. As mentioned before, when the on-
demand path computation approach is used, the admission control is
enforced on a per hop basis. As a consequence, when a hop is found with
no available links to satisfy the reservation demand, the already reserved
resources in previous nodes must be re-set. It is worth noting, however,
that this disadvantage could be solved following the path pre-computation
approach.

322 GUERIN AND ARIEL PROPOSAL

As stated by Guerin and Ariel, advance reservations require enhancements
in three major areas: (1) protocol and signaling capabilities to
express advance reservation requests, (2) extensions to handle time
constraints and (3) routing algorithms able to take into account temporal
characteristics.

Their work is focused on the effect of the introduction of time
constraints in the routing algorithms. To that matter, they present
routing algorithms for both basic advance reservations and maximum
total bandwidth, although the later one is out of the scope of this analysis.
They consider that the time to make the reservations is fixed, and equally
divided into time slots of the same duration. Their solution is based on
per-link resource consumption management, which they represent using
a vector that describes the bandwidth consumption at each time slot.
Additionally, they also use delay constraints for the selection of the
optimal paths. For the two reservation types that they analyze, they
conclude that the path computation time is influenced by the number
of time slots that are overlapped by the newly requested reservation.

o Reservation model

In their article, Guerin and Ariel present path computation algorithms
for both basic advance reservations and maximum total bandwidth. In

105

106

ALGORITHMS AND DATA STRUCTURES OF AR

Li = [{bi[0], bi[1], bi[2], ..., bi[n]}, 6i]

Figure 3.3.: Data structure proposed by Guerin and Ariel [196].

the case of basic advance reservations, they study the running time of
the path computation algorithms used to achieve the following objectives.
First, to identify a path that satisfies the required constraints through the
entire period of time for which the reservation is requested. Second, to
find a path that maximizes the duration of a connection between two
given points with a sustained bandwidth. Third, to find a path that
minimizes the time at which a transfer of sustained rate and known
duration starts. That is, Guerin and Ariel proposal supports the STSD

and STUD reservation models.
e Data structures

In order to handle the time constraints, the authors of this proposal
consider that advance reservation systems have a fixed number of time
slots of equal duration. This allows to represent the bandwidth availability
over time at a given link by means of a vector. As shown in Figure 3.3,
each entry of the vector represents the available bandwidth at a given
time slot. Additionally, in order to support additional constraints such
as delay at the time of computing the paths, the data structure used to
represent the resource consumption may include additional entries (in the
figure, § represents the delay in the given link).

Since the model considers a maximum time 7" in the future for which
reservations in advance can be made, the vector is of known size, making
easier to manage. Nevertheless, the utilization of a vector to represent
the bandwidth consumption over time results in the running time of the
algorithms being multiplied by a factor of m, being m the size of the
vector.

e Algorithms

The procedures followed for the path computation are described below:

3.2 RESOURCE MANAGEMENT ON A PER LINK BASIS

e Connection feasibility: The vector of each link is analyzed to
check whether the requested period of time has enough resources
to satisfy the reservation demand. If negative, the link is removed
from the graph representing the topology. Once all the necessary
links have been removed, the path computation is performed using
SPF.

e Maximum duration: First, the maximum time for which the
requested bandwidth can be sustained is identified in each link of
the network, information that is later used to compute the widest
path using BF'S.

e Soonest completion: For each link in the topology, it is checked
whether the starting time can sustain the requested traffic rate
through the entire duration. It is not possible, the analysis continues

with the next entry on the vector, until a valid starting time is found.

If the analysis ends without finding a suitable starting time, the
link is removed from the topology. As in the case of the connection
feasibility, once the topology has been pruned, the path is computed
using SPF.

e Conclusions

The authors of this paper characterize the effect of timing constraints
on the path computation algorithms to support a variety of reservation
types. In summary, the path computation is intrinsically affected by
the fact that all the time slots that a new reservation request overlaps
must be analyzed independently. This results in the running time of the
algorithms being multiplied by at least a factor m (in the case of the
soonest completion problem the vector can be scanned twice) , being m
the number of affected time slots.

As a consequence, the granularity of the time slots plays a key role in

the effectiveness of the solution. With bigger time slots, the amount of

positions in the vector to be analyzed is lower than with smaller time slots.

However, the utilization of bigger time slots may result in the reservations
lasting more than the necessary time.
Their solution for the path computation in advance reservation

systems could be improved by utilizing a more efficient data structure.

107

108

ALGORITHMS AND DATA STRUCTURES OF AR

Furthermore, handling the resources on a per-link basis also imposes
some additional challenges, since the vectors representing each link evolve
differently.

3.23 BURCHARD PROPOSAL

As mentioned before, Burchard demonstrates the importance of the data
structures and their effect on the admission control. He estimates that
the effect of the data structures is around the 60% of the time required to
analyze a request, whereas the routing takes the 8% and administrative
tasks take a 32% [180]. Taking into account that failure recovery can be
seen as a new reservation request and that re-optimization procedures
to improve the network resource utilization require accessing those data
structures, their efficiency is of uttermost importance.

In the analysis conducted by Burchard, the segment tree proposed
by Guerin and Ariel and arrays are compared in terms of memory
efficiency and the speed of the admission control process, concluding that
arrays are easier to implement and more efficient, especially in terms
of memory consumption. Nevertheless, the comparison conducted by
Burchard assumes that the reservations are short compared to the book-
ahead interval, which may not be extrapolated to different use cases where
advance reservations are long, as it happens in the REN environment.

Burchard has deeply studied the performance of advanced reservation
systems. Although this section is focused on the data structures that are
used, it is worth mentioning that this author has also presented solutions
to deal with network failures using re-routing [197, 198] and to improve
the performance of resource utilization in the grid environment using
malleable reservations, that is, reservations that can be satisfied in any

given time interval [187] with varying bandwidth reservations over time.
e Reservation model

Burchard defines the book-ahead interval as the time interval for which
requests can be issued. This book-ahead interval is divided into equal
length time slots, each of which keeps track of the amount of allocated
bandwidth in a specific time interval. The simplest reservation model

3.2 RESOURCE MANAGEMENT ON A PER LINK BASIS

BW; | BW, | BW; | BW, | BWs | BWs | BW; | BWjg

<7 >
Book-ahead interval

Figure 3.4.: Array proposed by Burchard et al. [180].

consider by Burchard corresponds to the connection feasibility with the
assumption that the requested time is short compared to the book-ahead
interval, that is, it considers a STSD reservation model. In addition, it
also compares the two data structures for the soonest completion problem
(STSD with flexible window) and malleable reservations.

e Data structures

The first data structure analyzed by Burchard is a circular array. Each
entry in the array represents a time slot, and stores the accumulated
bandwidth usage over time on a per link basis. As depicted in Figure 3.4,
the array proposed by Burchard is of fixed length, where only the time
slots of the book-ahead interval exist. In order to support the advance of
the book-ahead interval, the array is implemented as a ring buffer, where
the last index of the array points to the first entry. The current time is
expressed by means of a pointer, which advances over the array as the time
passes. This approach allows to limit the amount of memory consumption
required to store the information related to the reservations, being the
amount of memory (b.s), where b is the length of the book-ahead interval
and s is the memory required to store a single slot.

The segment tree used to make the comparison is the one proposed
by Guerin and Ariel. However, Burchard has opted for an array-based
implementation of the tree to reduce the memory consumption. In the

original proposal, the segment tree is dynamically built using pointers.

Instead, Burchard leverages the fact that the tree is binary to store it in

an array, where shifting operations can be used for its efficient traversal.

109

110

ALGORITHMS AND DATA STRUCTURES OF AR

Tree #1 Tree #2
| ,\ | /\ |
A/// \\\ A/// \\\
| | | | |
7 N\ 7 N\ 7 N\ RN
K Y K > K Y K N
C T T T J C T 1T T 7
/ /
Y N ¥ N ¥ N PN Y N ¥ N N PN
Lol
- >

Book-ahead interval

Figure 3.5.: Modifications to the segment tree introduced by Burchard et al.
[180].

In addition, in order to cope with the fact that it uses a fixed book-ahead
interval, it uses two segment trees, as depicted in Figure 3.5, to deal with
the advance of the book-ahead interval as the current time passes.

e Conclusions

The analysis conducted by Burchard is focused on the memory
consumption of the data structures. In that regard, it is obvious that
an array will always behave better than a hierarchical tree of any kind,
since trees require the creation of additional auxiliary nodes not necessary
in the arrays.

Nonetheless, in terms of admission control efficiency, the comparison
shows that arrays behave better only when the time requested for the
reservation is short compared to the book-ahead interval. This assumption
is valid for the use case proposed by Burchard, focused on the grid
computing environment, but it is not true for all the use cases. In fact, in
the case of BoD, service reservation requests are rather long.

Notwithstanding, the performance of segment trees is better than the
performance of the arrays in a very specific advance reservation type,
the connection feasibility problem. For other reservation types, this is
not sustained. In fact, for the case of malleable reservations, the use of

segment trees always imposes a penalization, since higher nodes are not

3.2 RESOURCE MANAGEMENT ON A PER LINK BASIS

very useful, and finding a suitable interval (not necessarily the first one)
requires accessing the leaf nodes.

3.24 WANG AND CHEN PROPOSAL

Aware of the limitations present in the advance reservation systems at
that time, Wang and Chen proposed the utilization of more efficient data
structures to ease path computation. Their data structure was presented
in [199], where a hierarchical tree named Bandwidth Tree is used to
represent the bandwidth availability on a per link basis.

With this data structure, they are able to leverage the utilization of very
granular time slots while the computational complexity of the solution
gets reduced. As stated before, when a linked list or an array is used to
represent the bandwidth consumption over time, the running time of the
path computation algorithm increases linearly with the number of affected
time slots. With such data structures, smaller time slots result in a higher
amount of time slots to be analyzed, hence imposing a penalization in the
running time of the algorithms.

In order to solve this problem, Wang and Chen propose a hierarchical
tree in which higher nodes, known as internal nodes, aggregate two or
three consecutive child nodes. This way, a hierarchical tree in which the

root node represents the maximum reservable time interval is formed.

With this approach, the internal nodes represent wider time intervals,

which correspond with the union of the time intervals of their children.

As a consequence, it is possible to analyze multiple consecutive time
slots together, where the available bandwidth announced at the internal
node represents the minimal available bandwidth through the entire time

interval.

o Reservation model

As in the work carried out by Schelén et al., the data structure proposed
by Wang and Chen aims to be able to handle multiple advance reservation
types. On the one hand, they consider the problem of the connection
feasibility between a source node and a destination node for a given time

interval with a specific bandwidth, that is, an STSD reservation model.

111

112

ALGORITHMS AND DATA STRUCTURES OF AR

{BW, [ts, t)}

{BWs, [ty, ta)} {BWC, [ts, te)}

{BWp, [ts, t2)} {BWE, [ta, ta)} {BWE, [t3, ta)} {BWG, [ts, ts)} {BWy, [ts, ts)}

Figure 3.6.: Structure of the Bandwidth Tree [199].

On the other hand, they also consider the maximum duration problem,
that is, to find the path that allows to connect a pair of endpoints with
a guaranteed bandwidth for the longest possible time. Therefore, they
also support an STUD reservation model. Finally, they also consider the
soonest completion problem, which aims to find the earliest starting time
for the reservation (STSD with flexible window).

e Data structures

The Bandwidth Tree, depicted in Figure 3.6, is a hierarchical data
structure where the leaf nodes have all the same height and represent
a non-empty time interval that it is not constraint by a specific value,
therefore the solution supports variable length time slots. These leaf nodes
are aggregated into internal nodes that represent a wider time interval
where the minimum available bandwidth through the aggregated time
interval is specified. In order to keep the Bandwidth Tree balanced, each
internal node aggregates two or three consecutive nodes. Finally, the root
node represents the maximum reservable time interval.

e Algorithms
On the one hand, Wang and Chen introduce a novelty with respect to

the segment tree proposed by Schelén. Instead of checking the resources
and updating the tree at the same time, they first conduct a check phase

3.2 RESOURCE MANAGEMENT ON A PER LINK BASIS

and only if it is possible to make the reservation they conduct the update
phase.

In order to check whether there is enough bandwidth to accept the
reservation or not, they start checking the higher nodes. If the higher
nodes can sustain the reservation, the request is accepted, if not, the lower
height nodes are analyzed until the whole time interval of the reservation
is checked. It is worth noting that in each node, instead of keeping the
available bandwidth, they keep the minimal bandwidth. As such, the
actual available bandwidth in a leaf node is computed by adding the
minimal bandwidths of all the nodes from the root to the leaf node.

Since the Bandwidth Tree represents the per link bandwidth availability
over time, the running times of the path computation algorithms are
still dependent on the number of nodes and edges in the network. The

procedures followed for the path computation are described below:

e Connection feasibility: In order to obtain a path from source
to destination that satisfies the bandwidth constraints during the
entire period of time, they check on every link in the topology
if there is enough bandwidth. The links that cannot sustain the
requested reservation are removed from the topology, and once they
obtain the pruned version of the topology they run the Depth First
Search (DFS) algorithm to obtain the shortest path.

¢ Maximum duration: First, they analyze the Bandwidth Tree

of each link to obtain the maximum duration in each of them.

Then, they use the maximum duration to compute the cost of
each link and they construct the maximum spanning tree using the
Kruskal algorithm [200]. The path between the source node and the
destination node in the maximum spanning tree is the one that can

sustain the reservation of the maximum duration.

e Soonest completion: In order to find the earliest starting time
for the reservation, they check on the Bandwidth Tree of each link
if the reservation can be satisfied using the first possible starting
time. Once the topology is pruned with the links that can satisfy
the demand, they use DFS to check whether a path to connect
the source and destination nodes exists. If it does not exist, they

113

114

ALGORITHMS AND DATA STRUCTURES OF AR

continue making the analysis with the next starting times, until a

suitable one is found.

e Conclusions

The work carried out by Wang and Chen introduces very interesting
concepts to handle advance reservations in an efficient manner. First,
they check whether the reservation can be accepted or not and only if
it is possible they perform the necessary updates to the data structures
holding the resources information. Second, by aggregating multiple nodes
into higher nodes they reduce the running times of the algorithms, both to
check for resource availability and to compute the paths. With simple data
structures as linked lists or arrays the running time depends linearly with
the number of time intervals to be analyzed, whereas with a hierarchical
approach the dependency is logarithmic.

Nonetheless, the solution also presents some limitations that could
be improved. First, by using a root node to represent the maximum
reservable time interval their solution results in a higher amount of nodes.
Since the root or internal nodes aggregate consecutive nodes, this forces
the creation of leaf nodes to represent time intervals where no reservation
has been made. In addition, by limiting the number of child nodes to
two or three the number of auxiliary nodes increases and therefore the
memory consumption, while another way of aggregating the child nodes
could result in a more efficient memory consumption.

Finally, as it happened with the other solutions included in this
category to deal with advance reservations, each link requires its own
Bandwidth Tree to represent the resource availability. This results in
different Bandwidth Trees, since each link’s resource utilization evolves
differently depending on the services that are been carried out through

them.

3.3 ALTERNATIVE RESOURCE MANAGEMENT APPROACHES

3.3 ALTERNATIVE RESOURCE MANAGEMENT AP-
PROACHES

The present section analyses the advance reservation mechanisms where
the resource management is not handled on a per link basis, such as on
a per graph basis, or on a per network basis.

3.3.1 WOLF AND STEINMETZ PROPOSAL

Back in 1995, Wolf and Steinmetz [201] introduced a basic model for
Resource Reservation in Advance (ReRA) systems, that is, systems with
the capability of supporting resource reservations of known duration to
be exploited in the future. Their purpose was to provide a generic model
to support a wide range of services that may require advance reservations,
such as video conferences or video-on-demand.

Among their contributions to the field of advance reservations, they
defined a set of features to be provided by advance reservation systems.
First, the system must provide the means to translate and interprete the
QoS requirements of the applications in terms of affected resources. Once
the translation has been done, the system must be able to check whether
the required resources are available to satisfy the demand and if positive,
compute the optimum QoS performance achievable. Then, the resources
must be reserved and scheduled to be activated during the requested
period of time.

Later in 1997, they further developed their work with a first
implementation of the ReRA system [202], where they presented the data
structures used to handle the advance reservations. It is worth noting,
that this proposal has been included in this section since they do not
specify if the resource management is performed on a per link basis or
on a different approach. The reservation model, the architecture and the
data structures that they use are described in the following subsections:

o Reservation model

The ReRA system presented by Wolf and Steinmetz supports both
immediate and advance reservations. In order to avoid the systematic

115

116

ALGORITHMS AND DATA STRUCTURES OF AR

e

Announcement
DB

Y

ReRA/nonReRA | _ _ Reservation
Application Protocol Agent

A

Control

v RMS

L Notification
Component

Data L

A

™| Monitor [}
\ 4 Y

Regulator Cioomomed) Resource-DB, Time

‘ Reservation -
Management <—»| Reservation-DB |—
Time Schedule
Resource
i Management
* ¥ QoS / Resource
Resource Translation
Scheduler
Y
Resource
v Monitor SNMP Agent

Figure 3.7.: Architecture of the ReRA system proposed by Wolf and Steinmetz
[202].

rejection of immediate reservation requests due to the reservations made
in advance, the pool of resources is divided in two different partitions. The
first partition is devoted to immediate reservation, whereas the second
partition is to be used by the advance reservations. In order to avoid the
under-utilization of any of the partitions, the solution considers a dynamic
threshold that gets updated depending on the actual reservations.

e Architecture and work-flow

The architecture for the ReRA system proposed by Wolf and Steinmetz
is depicted in Figure 3.7.

In a nutshell, the ReRA system presented in this section supports
reservation requests from multiple agents, such as ReRA and non-ReRA
applications, Reservation Protocol Agents (i.e., Resource Reservation

3.3 ALTERNATIVE RESOURCE MANAGEMENT APPROACHES

Protocol (RSVP) agent) or User Agents. This is achieved by means of
a component in the Resource Management System (RMS) named the
Notification Component, which provides an interface to interact with the
Reservation Management module. When a new reservation request arrives
to the Reservation Management module, it coordinates with the Resource
Management and QoS/Resource Translation modules to compute the
QoS requirements, taking into account the actual network load available
through the Resource Monitor. Once the QoS requirements are computed,
the Reservation Management module uses the information contained in
the Resource-DB and the Reservation-DB to schedule the service using

the time-aware algorithm implemented in the Time Schedule module.

Once the reservation request gets accepted in the system, the Resource
Scheduler activates and deactivates the necessary resources to provide the
service.

In their model, each reservation goes through five different stages:
REQUEST, CONFIRM, DEMAND, ACCEPT and USE. The first 4
being part of the negotiation phase and the last one being part of the
resource usage phase. In a nutshell, once a reservation is requested it goes
to the REQUEST state, which transitions to CONFIRM only if there are
enough resources to satisfy the demand. When the user is about to exploit
the reserved resources, it DEMANDS the reservation, which triggers a
procedure to check whether the exploitation of the reserved resources
is still possible. If positive, the ReRA system marks the reservation as
ACCEPT, and informs the user or the application that has requested
the resources about it. It is worth noting that these last two states are
optional, since the system can be configured to automatically exploit the
reserved resources without interacting with the user or the requesting
application. Finally, once the resources are actually being exploited, the
reservation transitions to the USE state.

e Data structures

In the ReRA system, the time is divided in different QoS slices that
represent a set of reservations. During the entire time slice, the QoS
parameters and the state of each reservation remain unchanged. In order
to represent the QoS slices, Wolf and Steinmetz propose the utilization of

117

118

ALGORITHMS AND DATA STRUCTURES OF AR

Time Slice: »| TimeSlice: [—» ==-==-- Time Slice:
begin, end begin, end begin, end
Resources: Resources: Resources:
Available Available Available
Reserved Reserved Reserved
Allocated Allocated Allocated
Reservations: Reservations: Reservations:
ID1, ID2,... ID1, ID2,... ID1, ID2,...

Figure 3.8.: Data structure for time management proposed by Wolf and
Steinmetz [202].

a linked list, where the QoS slices are arranged chronologically, as depicted
in Figure 3.8.

Each QoS slice is identified by its start and end times, and holds
information about the available, reserved and allocated resources. This
approach allows to handle variations in the available resources, as a
consequence of network failures etc. and to distinguish the reservations
that are actually being exploited. In addition, each QoS slice keeps track
of the set of reservations that exist in that period of time, represented by
their identifiers.

Furthermore, in order to handle each reservation, a second data
structure is used, whose design is illustrated in Figure 3.9. For each
reservation, the start and end times are stored, so as the set of QoS
slices in which they are included. In addition, in order to handle periodic
reservations, the data structure keeps separate track of a set of time sub-
periods, where the resource load assigned to the reservation may vary.

e Conclusions

The approach followed by Wolf and Steinmetz for the ReRA system
presents both advantages and disadvantages. On the one hand, the
solution aims to handle all the resources needed to provide the E2E
service, including the network resources. To that matter, the system
automatically translates the service demand into a set of QoS constraints,
which may vary along the different QoS slices to adapt to the varying
availability of resources. In addition, the systems considers the possibility
of having both ReRA and non-ReRA applications coexisting together, by
assigning a different and disjoint set of network resources to be used by

3.3 ALTERNATIVE RESOURCE MANAGEMENT APPROACHES

Reservation ID Begin, End Begin, End
Usage begin, end | QoS P QoS
QoS slices Resource Load Resource Load
Y
Reservation ID Begin, End Begin, End
Usage begin, end P QoS »| QoS
QoS slices Resource Load Resource Load
n
'
Reservation ID Begin, End Begin, End
Usage begin, end P QoS »| QoS
QoS slices Resource Load Resource Load

Figure 3.9.: Data structure for reservations management proposed by Wolf and
Steinmetz [202].

each of them. Finally, they also state the need of external databases to
replicate the reservation information and handle system failures.

On the other hand, even if the RMS has been designed as a centralized
component, the reservation information needs to be distributed to the
network elements part of the E2E circuit by means of distributed
protocols such as RSVP, approach that presents some drawbacks. First,
the reservation protocol used in the network needs to be modified to
support time constraints. Second, each node is only aware of its own
resource reservation, making difficult the detection of failures at other
nodes along the path.

Moreover, regarding the resource management, the solution could be
improved with a more efficient data structure. Although the use of a
linked list imposes no constraints on the length of the reservations, it
results in a computational complexity of O(n), being n the number of QoS
slices. Finally, although the data structures are presented, the algorithm
used to translate the service demands into QoS requirements and the
algorithm used to check whether the reservation can be accepted or not
are not described, making difficult a more comprehensive assessment of
the solution.

119

120

ALGORITHMS AND DATA STRUCTURES OF AR

332 ANDREICA ET AL. PROPOSAL

Andreica et al. [203] propose several data structures to handle advance
reservations, namely arrays, disjoint sets, balanced trees, block partitions
and extended segment trees. For each data structure, they compare the
running time to perform the check and update operations, where the
extended segment tree stands out with the lowest running time.

It is worth noting that in this proposal, resource utilization is handled
both on a per link and on a per path basis. They argument the need
to handle resources on a per path basis to increase the performance
of advance reservation mechanisms. However, the approach they follow
where the data structures are upgraded to handle multiple dimensions
does not achieve this goal.

In such a scenario, this section reviews the different data structures
and operations proposed by Andreica et al.. In addition, how they deal
with the resources consumption on a per path basis is introduced to later
finalize with a summary of the conclusions.

o Reservation model

This proposal introduces an interesting concept to the reservation
model: requests are both characterized by constraint parameters and
optimization parameters. On the one hand, constraint parameters specify
a range of acceptable values for the reservation, such as the allowed
start time, the duration, the minimum bandwidth, etc. On the other
hand, optimization parameters are related to the objective function of
the solution, that is, parameters that need to be minimized of maximized,
such as congestion, delay, etc.

As mentioned before, they handle advance reservations on a per link
and on a per path basis. In the advance reservation model where the
data transfers are scheduled over a single link, a reservation r is defined
by the earliest start time (E.S,), the duration of the data transfer (D,),
the latest finish time (LF),) and the minimum required bandwidth (B,),
where the relation between the different parameters is defined in the
expression 3.1. They also consider that once a data transfer starts, it
cannot be interrupted. Therefore, it is an advance reservation of the STSD

3.3 ALTERNATIVE RESOURCE MANAGEMENT APPROACHES

with flexible window type. It is worth noting that they first consider a
bandwidth model in which each request asks for the whole bandwidth on
the link. Later, they introduce the possibility of requesting a fraction of
the bandwidth link, in order to support multiple reservations at the same

time intervals.

ES, <t<t+ D, <LF, (3.1)

Regarding the advance reservations on a per path basis, they extend
the advance reservation model to support the request of the bandwidth
along a specific path. That is, in addition to the parameters described
before, they also specify the list of nodes that the data transmission will

use.

e Data structures

TIME SLOT ARRAY

The simplest way to handle the timing constraints of the reservation
model that they propose when the resources are managed on a per link
basis is by utilizing an array. The array divides the time spectra into
equally sized time slots. Being m the size of the array, and therefore,
the number of time slots, checking whether a reservation request can be
satisfied or not takes O(m), which is also the time required to update the
array once a reservation request has been accepted. This stands for both
bandwidth models, when the request occupies the entire link capacity or
when it occupies a fraction of it.

DISJOINT SET

For the first bandwidth model where the request occupies the full link
capacity, the utilization of a disjoint set structure can speed the running
time of the check phase. With this data structure a set identified by
its start and end times represents a maximal interval where the link
is occupied. Using this approach, they claim that the running time of
the check procedure is reduced, because larger time intervals can be
analyzed per operation. In the case of the update procedure, the running

121

122

ALGORITHMS AND DATA STRUCTURES OF AR

time is O(m x log(m)), which for high values of m actually imposes a
penalization. They do not specify how they handle the second bandwidth
model with this data structure. Notwithstanding, it represents a case of a
data structure based on dynamic time slots. A disjoint set structure can
be implemented by means of a linked list.

BALANCED TREE

The next improvement they introduced to the data structure is to organize
the maximal intervals on a balanced tree, where a maximal interval is a set
of consecutive slots with the same bandwidth availability. Although they
do not provide an assured running time for the check phase, they consider
that it will be faster than O(m *log(m)). Moreover, by using a max-heap
with the lengths of the intervals where all the bandwidth is available they
can speed up the check procedure for the first bandwidth problem to O(1),
since the longest available interval would always be stored at the head of
the max-heap. On the other hand, the time complexity of the update
phase is O(log(m)), therefore improving the efficiency of the disjoint sets
data structure.

BLOCK PARTITION ARRAY

In [204], Andreica presents a data structure based on block partitions. An
array of length n, where each entry represents a time interval, is divided
into k blocks of n/k elements. Each block keeps track of the first time
interval and the last interval that it aggregates. This approach allows
to speed up the checking and update phases to run in O(k + n/k), since
multiple time slots can be checked and updated simultaneously. This data
structure is valid for both bandwidth models.

EXTENDED SEGMENT TREE

The last data structure analysed by Andreica was presented in [205]. The
segment tree is a balanced tree where the whole time interval where
reservations are accepted is represented by the root of the tree. Then, the
root is divided in two child nodes of equal length, and the same happens
with these child nodes, until the leaf nodes that represent a single time
slot are no longer divided. In order to ensure a running time of O(log(m)),
they keep track in each node of the aggregated bandwidth consumed by

3.3 ALTERNATIVE RESOURCE MANAGEMENT APPROACHES

the reservations that stopped during the represented time interval. In
addition, they also keep track of the aggregated bandwidth of the cells
aggregated by the node.

o Support for resources consumption on a per path basis

Andreica et al. is, as far of this PhD Thesis knows, the only

author that has dealt with advance reservations on a per path basis.

However, the reservation model that it considers includes the path as
an explicit parameter of the reservation. Therefore, no impact on the
path computation is analyzed.

All in all, Andreica considers multidimensional data structures
to handle multiple constraints simultaneously. For instance, a two
dimensional data structure could be able to handle network links and
time slots simultaneously. Although it does not mention it, extending

the time slot array to an additional dimension would be straightforward.

However, this author has not been able to improve the performance of the
advance reservation system with this approach, nor extend all the data
structures. In his words "We also extended the data structures to multiple

dimensions, but the efficiency decreases with the increase in dimension.

We were unable to make the extended segment tree support all the pairs
of range queries and updates that can be supported in one dimension” (in

[203], page 292).
o Conclusions

The work carried out by Andreica is one of the most extensive
ones dealing with the impact of data structures to support advance
reservations. Although his achievements are related to advance
reservations on a per link basis, it is worth mentioning that he considers
handling advance reservations on a per path basis as the next step in
this research area. According to the author of this PhD Thesis, we should
extend this approach to handle advance reservations on a per network
basis.

123

124

ALGORITHMS AND DATA STRUCTURES OF AR

All in all, the analysis performed by Andreica shows that the data
structure with the best performance is the extended segment tree, with
a running time for both check and update phases of O(log(m)).

3.3.3 SCHNEIDER AND LINNERT PROPOSAL

In the grid computing environment, advance reservations are commonly
used to schedule jobs among computing resources. When network
resources are also reserved in advance, this requires making coordinated
reservations, which is known as co-allocations. When co-allocations are
supported, the advance reservation systems needs to be able to handle
multiple resource types, requiring optimized data structures.

In such a scenario, Schneider and Linnert propose the utilization of lists
of free blocks [206], as opposed to the common slotted time approach in
order to avoid resources and time fragmentation [176]. In their solution,
they create a dynamic list where each entry on the list represents a
time range of free resources, and they analyze three possible methods to
organize the items in the list. It is worth noting that they do not define
any algorithm for the path computation and do not state the scope of
the data structure, therefore, this section will only present the supported
reservation model and the data structure that they have designed.

o Reservation model

The reservation model considered by Schneider and Linnert belongs
to the STSD with flexible window. The reservation requests are
characterized by a set of resource types, the requested capacity for each of
them and the duration of the resources usage. In addition, the requester
of the service may specify a booking interval, during which the reservation
needs to take place. That is, their solution is meant to identify the start
time that guarantees that the requested reservation will be provided for
the specified duration during the booking interval. If no booking interval
is specified, they consider the reservation of the immediate reservation

type.

3.3 ALTERNATIVE RESOURCE MANAGEMENT APPROACHES

‘ ‘ .
@ @
f5 f, f,
2 g —
]
time g time g
(a) Time exclusive list. (b) Capacity hierarchy list.

A

resource

TTE
[]

time

(c) Mixed list.

Figure 3.10.: List of free blocks proposed by Schneider and Linnert [206].

e Data structures

Aware of the limitations imposed by the utilization of slotted time
data structures to handle advance reservations, such as (1) the time and
resource fragmentation, (2) the need to specify a book-ahead interval and
(3) the fact that more slots than the necessary ones are checked in order to
admit a reservation or not, Schneider and Linnert proposed the utilization
of lists of free blocks.

A list of free blocks is a list where each entry represents a time interval
with a set of available resources. As depicted in Figure 3.10, they consider
three options to organize the items on the list.

o Time exclusive list: where there is a single entry per point in
time, arranged chronologically to represent the available resources
(see Figure 3.10a).

e Capacity hierarchy list: where each item represents the available
resources through a sustained period of time and associated sub-

125

126

ALGORITHMS AND DATA STRUCTURES OF AR

lists may be used to represent sub-periods of time where additional
resources may be free (see Figure 3.10b).

e Mixed list: where the list items do not follow any rule and are
ordered by their start time and the available capacity (see Figure
3.10c).

On the one hand, with the time exclusive list, the allocation process
is enhanced compared to the slotted time approach since it is possible
to analyze non-adjacent blocks of variable length. On the other hand, as
stated by the authors, although checking for available resources may be
simplified in a capacity hierarchy list, the allocation process may require
splitting list entries in two or three list entries. In this case, having a
capacity hierarchy tree complicates the process of updating the data
structure. Finally, they state that the allocation process using mixed list
is very complicated.

e Conclusions

Schneider and Linnert propose an interesting approach to handle
advance reservations. The utilization of lists of free blocks is very similar
to the disjoint set data structure proposed by Andreica el al. (which will
be later explained in Section 3.3). Nonetheless, this solution stands out
since by handling ranges of available resource, it is possible to have entries
in the list not necessarily adjacent to each other in the time domain. In
other words, they can have an entry to reflect the resource availability over
June, and a next entry to reflect the resource availability over August, not
being necessary to have an entry for July.

In addition, they introduce the possibility to create hierarchical lists of
free blocks. Although as they pointed out, this data structure requires a
higher processing time to make the necessary updates when a reservation
is accepted into the system due to the splitting procedures that are
required. Nonetheless, this approach could be useful, in scenarios with

lower reservation demands.

3.3 ALTERNATIVE RESOURCE MANAGEMENT APPROACHES

3.34 BALMAN ET AL. PROPOSAL

In [207], Balman et al. propose a novel advance reservation algorithm that
allows to suggest possible time intervals on which the reservation can be
scheduled. The algorithm was designed to be included in OSCARS, the
advance reservation framework of ESNet.

Among the novelties introduced by Balman et al., the utilization
of different network graphs that evolve through time to represent the
resource availability is noteworthy. Instead of handling the resource
consumption on a per link bases, it uses a linked list to represent
different time intervals on which the network presents an stable resource
availability. As such, this section reviews the reservation model that this
solution supports, the novel data structure and the algorithms that it uses
for the path computation. The algorithm is able to process reservation
requests in O(n? * r?), where n is the number of nodes in the network
and 7 is the number of accepted reservations.

e Reservation model

The solution proposed by Balman et al. supports two reservation
models. First, they are able to provide multiple alternatives to accept
the reservation by solving the soonest completion problem. In this case,
since they specify the latest possible end time, the reservation model
belongs to the STSD with flexible window type. In this reservation model,
the reservation requests are defined by the earliest start time, the latest
end time, the maximum requested bandwidth, the size of the data to
be transferred and the source and destination nodes. In addition, they
also provide the means to advertise the starting time of the interval that
ensures the shortest transfer duration, requiring the specification of the
data volume that needs to be transferred.

e Data structures
In order to support advance reservations, they use a linked list where

each entry represents a time step, where a time step is a time interval in

which an static graph represents the available bandwidth in all the links of

127

128

ALGORITHMS AND DATA STRUCTURES OF AR

o— st t st —@

NOW Res_ID: 1 Res_ID: 1,2 Res_ID: 2 Res_ID: N INFINITE

Figure 3.11.: Linked list proposed by Balman et al. [207].

the network (see Figure 3.11). That is, it represents a time interval where
a set of reservations coexist. Instead of keeping the resource availability
per time step, each entry on the linked list keeps track of the identifiers of
the coexisting reservations. Every time a new reservation is accepted, it
is necessary to update the linked list with new entries. And those already
existing entries affected by the reservation need to be updated with the
identifier of the new reservation. The data structure does not impose
any constraints regarding the duration of the time steps, nor imposes a

maximum book-ahead interval.
o Algorithms

In order to determine whether a new reservation can be accepted or not,
they need to find a path able to sustain the desired bandwidth through
the entire duration. This requires analyzing multiple time steps, which are
computed on-the-fly, by checking on the linked list the time steps that
overlap with the new reservation. In addition, it is necessary to ensure
that the reservation can be accepted in all of the affected time steps.

As such, they create time windows, as time steps representing wider
time intervals where the graph representing the minimum available
bandwidth is stored. On the one hand, to find the time interval that
guarantees the shortest transfer duration, they analyze first the time
windows of smaller length, and if that window cannot sustain the
reservation, they continue analyzing longer time windows. On the other
hand, in order to solve the soonest completion problem, they start
analyzing the time windows that present the earliest end time, also
prioritizing the ones of smaller duration. It is worth noting, that since
the linked list only keeps track of the reservation identifiers, the static
graph needs to be computed on-the-fly.

In order to state whether a time window can sustain the reservation,

they calculate the maximum available bandwidth from source to

3.3 ALTERNATIVE RESOURCE MANAGEMENT APPROACHES

destination using the static graph associated to the time window. Then,
for the case of shortest duration transfer, they compute the volume of data
that could be transferred during that time window taking into account the
start and end times of the reservation, since it may not correspond with
the start and end times of the time window. Once a window is found, the
reservation is accepted, and the information regarding the reservation,
including its start and end times, bandwidth and computed path are
stored.

o Conclusions

The solution proposed by Balman et al. introduces a novel concept,
very interesting for future solutions dealing with advance reservations: the
utilization of static graphs to represent the resource availability during a
specific period of time. This approach differs from the classical approaches
where the resource availability was handled on a per link basis and
presents numerous advantages. First, the time analysis gets simplified,
since the graph represent a time interval where the computed path is
valid. Second, the utilization of time windows covering multiple time steps
ensures, with a single path computation, that the path is valid through a
wider time interval.

Nonetheless, according to this PhD thesis, this solution could be
improved by keeping track of the available resources on the linked list
entries. With their approach, every time a new time window needs to
be analyzed it is necessary to compute the static graph. This procedure
could be avoided, by just keeping track of the bandwidth availability of the
links, for instance, with an array. In addition, this graph-based approach
could support the utilization of additional TE techniques such as flow
relocation that could improve the network resources utilization and that

are not implemented in this solution.

3.35 BARSHAN ET AL. PROPOSAL

Barshan et al. [208] present an architecture to support advance
reservations in media production networks, which is depicted in Figure
3.12. It is worth noting, that they propose this advance reservation

129

130

ALGORITHMS AND DATA STRUCTURES OF AR

| Media Network Management Layer

Reservation
Interface | AR Scheduling Algorithms |

— I

| Controller | | Controller |

| |
i@@

Datacenter Recording

() Studio
—

Broadcaster

On-site filming

Figure 3.12.: Architecture proposed by Barshan et al. [208].

solution for its application in SDN. In media production networks, the
traffic demands are usually known in advance, at least some hours
before the data exchange begins, therefore, it represents a good use case
scenario to apply advance reservations. It is worth noting that the work
presented in this section has been used as basis to support resilient service
provisioning in the same scenario [209], and to dynamically re-optimize
the schedule scenarios using information retrieved from the network [210].

In their solution, the do not keep track of the resources consumption
over time with any data structure. Instead, they store the information
regarding the reservations and check in every time slot the already
accepted reservations that need to be taken into account. This is a
consequence of the reservation model that they use, where elastic and
non-continuous advance reservations are supported and where the already
accepted reservations can be routed through alternative paths to facilitate

the acceptance of new incoming requests.
e Reservation model

In this proposals, multiple advance reservation models are considered,
since they support two types of service requests that in addition, can be
dependent to each other. That is, a set of sequential reservations may
conform a scenario, and if and only if the network is able to accept all
the reservations the scenario is accepted for scheduling.

3.3 ALTERNATIVE RESOURCE MANAGEMENT APPROACHES

First, they support video streaming, which requires a constant bit rate
during a specific time interval. Second, they support file transfers, where a
volume to be transferred before a certain deadline is specified. In addition,
these two types of services can be executed sequentially as a result of a
dependency relationship.

As such, video streaming can be STSD if the start time is specified,

but it can also be UTSD if it needs to be scheduled after another service.

Similarly, file transfers are considered STUD where they do not depend
on a previous reservation, and UTUD when they depend on a previous
reservation.

It is worth noting, that since no data structures are used to keep the
resource consumption of previous reservations over time, it is necessary to
specify the duration of each interval (I). As such, the nth reservation in a
given scenario is specified in expression 3.2, where s™ and d" are the source
and destination nodes, 7 and ¢t are the start and end times respectively,
1" refers to the duration of the reservation, b™ to the requested bandwidth
and v™ to the volume of the files.

= (87, 7,0 0§, b7 (3.2)

s Vs len

e Algorithms

The algorithms proposed by Barshan et al. are meant to identify
when and how to schedule the reservation requests over the network. In
that regard, they propose two algorithms: Static Advance Reservation
Algorithm (SARA), applied when all the requests are known in advance,
and Dynamic Advance Reservation Algorithm (DARA), applied when
new scenarios enter into the advance reservation system.

In order to avoid the computational complexity of a LP-based solution,
they use an heuristics-based approach. On the one hand, the SARA
algorithm arranges the previously-known scenarios taking into account
their earliest starting time and the amount of resources pending to be
consumed. Then, it stores the current state of the reservation and the

resources that it is consuming and checks whether a re-schedule is feasible.

If positive, it re-schedules the reservation and if not, the scenario is
kept in its current schedule. On the other hand, the DARA algorithm is

131

132

ALGORITHMS AND DATA STRUCTURES OF AR

executed every time a new scenario is requested, and takes into account
the scenarios currently being provisioned through the network in order to
avoid disrupting the already accepted services.

To check whether a reservation can be scheduled or not, the algorithm
checks the reservations that are scheduled for the entire time interval that
the reservation has been made. This procedure needs to be repeated every
I seconds. In the case of the video streaming services, it is necessary to
have a sustained rate in all the intervals, whereas with the file transfers

it is possible to assign a different bandwidth.

o Conclusions

The solution proposed by Barshan et al. stands out due to the variety
of advance reservation models supported. However, their decision of
not keeping track of the consumed resources over time degrades the
performance of the solution.

The experiments that they have conducted reveals that the time
slot granularity that they specify for each scenario request affects the
processing time. As such, the smaller the time slot is, the higher the
processing time is, resulting in 10 s being necessary to process the requests
when 1 min time slots are used. On the contrary, they also demonstrate
that the utilization of smaller time slots reduce the blocking probability
of the system. Hence, there is a trade-off between the time required to
process the requests and the requests acceptance ratio.

3.4 COMPARISON OF ADVANCE RESERVATION SOLU-
TIONS

In order to assess the suitability of the different data structures to handle
advance reservation, Table 3.1 summarizes the proposals analyzed in
this chapter. Please note that the variables used to express the running
time are the ones that follow: "k" refers to the number of links in the
network, "m" refers to the number of entries in arrays and lists or nodes
in hierarchical structures, "b" refers to the size of the blocks in the array of

block partitions proposed by Andreica, whereas "r" refers to the number

of already accepted reservations.

3.4 COMPARISON OF ADVANCE RESERVATION SOLUTIONS

Table 3.1.: Comparison of advance reservation solutions

Proposal Data Structure f;)s;:ration Architecture f;izz;‘;:y Scope of DS Slot type Running time
Schelén et al. Binary search tree STSD Distributed Static Link Dynamic k= O(log(n) +m)
Schelén et al. Segment tree STSD Distributed Static Link Fixed k*O(log(n))
Guerin and Ariel Array :g?}% & Centralized Static Link Fixed k*O(m)
Burchard Circular array STSD Centralized Static Link Fixed k*O(m)

Wang and Chen Interval Tree :ii?’ & Centralized Static Link Dynamic k= O(log(m))
Wolf and Steinmetz Linked List STUD Centralized Static Unknown Dynamic ~ O(m)

Andreica et al. Array STSD Centralized Static Link & Path Fixed O(m)

Andreica et al. Disjoint Set STSD Centralized Static Link & Path Dynamic O(m log(m))
Andreica et al. Balanced Tree STSD Centralized Static Link & Path ~ Dynamic ~ O(log(m))
Andreica Block partitions STSD Centralized Static Link & Path Fixed O(b+m/b)
Andreica Segment tree STSD Centralized Static Link & Path Dynamic O(log(m))
Schneider and Linnert — List of free blocks STSD Unknown Static Unknown Dynamic k= O(log(m))
Balman et al. Linked List STSD Centralized Static Graph Dynamic O(k 1?)
Barshan et al. None ALL Centralized NC None Fixed Unknown

In a nutshell, there is a clear relation between the employed data
structure and the running time of the solution. On the one hand, using
arrays results in a linear running time, since no aggregation of time
intervals is possible. The only solution that is based on arrays and presents
a better performance is the block partition array introduced by Andreica,
where the running time gets reduced by enabling checking blocks of
multiple array cells simultaneously.

The linked lists present the same inconvenience, they impose a linear
running time. However, they make possible the utilization of dynamic
time slots, which can result in a lower memory consumption since the
nodes can be created dynamically based on the service demands.

Finally, the hierarchical trees are the ones that behave more efficiently
at the time of handling the resource utilization evolution over time. The
utilization of hierarchical trees, either if it is a segment tree, a binary
tree or a balanced tree guarantee a logarithmic running time. In addition,
these kinds of structures can be based for both fixed and dynamic time

slots and in distributed or centralized architectures.

133

134

ALGORITHMS AND DATA STRUCTURES OF AR

3.5 CONCLUSIONS

As demonstrated with the analysis conducted in this chapter, data
structures have a huge impact on advance reservation systems.

On the one hand, the resource management approach plays a key role.
Most classical approaches, the first ones dealing with advance reservations,
considered a link based resource management. Notwithstanding, the
bandwidth on a given link is the resource being shared by the reservations.
However, keeping track of the resource utilization profile per each link
on the network requires the utilization of multiple instances of the data
structure. In the end, this imposes a penalization in terms of memory,
and does not avoid the fact that the process needs to be repeated k times,
being k£ the number of links in the network in order to compute the
path that satisfies the reservation constraints. Although this approach
is required by distributed architectures, centralized architectures could
benefit of a more efficient approach to deal with advance reservations. This
is outlined by Balman et al., where a graph-based resource management
approach is considered.

On the other hand, the data structure itself has an impact on
the efficiency of the solution. It is indubitable that handling advance
reservations requires taking into account the evolution over time of the
resource consumption. When arrays or linked lists with fixed time slots are
used, the running time of the algorithms are always linearly dependent on
m, being m the number of time slots considered in the book-ahead interval.
In addition, time intervals where no reservations at all exist need to be
handled as well, increasing the memory consumption. Furthermore, the
size of the fixed time slots can result in unnecessary resource and time
fragmentation, and impact the optimality of the solution.

In that regard, the utilization of hierarchical data structures presents
some benefits. First, by allowing the analysis of wider time slots the
running time of the algorithms gets reduced to a logarithmic function.
Second, the hierarchical data structures are able to support non-
consecutive time slots, therein reducing the need to keep track of the
resources during the entire book-ahead interval. This last fact results in

an additional benefit: there is no need of a book-ahead interval.

3.5 CONCLUSIONS 135

All in all, there are currently no solutions based on hierarchical
structures where the resource management is performed on a per graph
basis. The utilization of SDN, with its logically centralized control plane
that facilitates the automatic abstraction of the network graph represents
the perfect environment to re-think how advance reservations are handled,
and leverage the lessons learned throughout these last decades on the

impact of data structures on such systems.

Part 111

PROPOSAL

A generic framework for traffic

engineering in SDIN

"As an architect, you design for the present, with
an awareness of the past, for a future which is
essentially unknown."

— Norman Foster

The first contribution presented in this thesis is the architecture of
the DynPaC framework, which is depicted in Figure 4.1. As mentioned
before, DynPaC is a generic framework aiming to facilitate the adoption
of TE strategies in software-defined networks. It consists of 6 well-defined
modules and a REST API that facilitates its integration with external

elements, which are described in the following sections.

41 MODULES
This section describes the modules that conform the DynPaC framework,

namely PCE, Topology Abstractor, Resilience Module, Monitoring
Module, Network Programmer and Service Manager.

411 PATH COMPUTATION ELEMENT (PCE)

As already stated in Chapter I, in communication networks, TE consists

in the application of strategies and scientific principles to optimize the

139

140

A GENERIC FRAMEWORK FOR TE IN SDN

Gul External Traffic
Element Analyzer
/‘/ T\
The DynPaC Framework
%
TE Optimization Iy
PCE Algorithms o
A
y N~
. Services DB |
Service Manager
I Scheduler |
A A A A
Y A 4 Y A 4
Resilience Monitoring Topology Network
Module Module Abstractor Programmer
A A A

Network Elements

Figure 4.1.: Architecture of a generic framework for advance path computation
in SDN.

performance of operational networks, as described in RFC 2702[13].
Having such an objective, path computation plays a key role in TE, since
it directly impacts the network resource utilization. As a consequence,
given that the DynPaC framework aims to bring TE to software-defined
networks, the framework includes an element whose solely purpose is
to perform path computation. The approach is very similar to the
one proposed in the PCE-based architecture, defined in RFC4655 [88],
where a dedicated element is in charge of the path computation in
MPLS [65] / GMPLS [211] networks.

One of the main benefits of having a dedicated element in charge of
the path computation is that the algorithm can be easily replaced or
updated. For example, it is possible to use different routing algorithms
such as Dijkstra [132] or Ford-Fulkerson [212] depending on the use case,
just by including such algorithms in the PCE. Furthermore, it eases
the utilization of novel and customized path computation algorithms,
with different objective functions such as the minimization of the power

4.1 MODULES

consumption if the framework is used for green computing, or the
maximization of the QoE, if the framework is used to provide video on-
demand services. The specific algorithm used for the BoD application is
later explained in Chapter V.

412 TOPOLOGY ABSTRACTOR

The PCE requires a model of the network in order to perform the path
computation. Moreover, the path computation procedure gets greatly
affected by the data structures and the models that are used to represent
the network. For instance, the performance of the well-known algorithm
Dijkstra is dependent on the data structure. The first implementation
of Dijkstra’s algorithm run on O(n?), where n is the number of nodes in
the network. Notwithstanding, more recent implementations based on the
utilization of minimum priority queues or heaps have reduced the running-
time of the algorithm to O(m +n xlog(n)), where m is the number of links
in the network [213]. The classic approach is to represent the network as
a graph, which requires the identification of the network elements. That
is, the vertexes of the network graph and the links that unite them, also
known as the edges of the network graph.

Usually, SDN controllers use the LLDP and Broadcast Domain
Discovery Protocol (BDDP) [214] for this purpose. However, once the
topology is discovered, the optimal way to represent it may vary
depending on the network type or the use case. As such, some topologies
may require the utilization of adjacency lists, whereas other may require
the utilization of adjacency matrices.

In such a scenario, the main objective of the topology abstractor
is to construct the correct network model that will facilitate the
path computation. For example, for the implementation of this
framework the network graph is retrieved automatically and abstracted
as a unidimensional array, where each entry represents the available
bandwidth of a bidirectional link that interconnects two given nodes,
leveraging the fact that the services are considered symmetrical and
bidirectional.

141

142

A GENERIC FRAMEWORK FOR TE IN SDN

4.1.3 RESILIENCE MODULE

Since the minimization of the packet loss is a common TE objective, this
framework includes a resilience module that aims to minimize the service
disruption and the packet loss in the event of a network failure. The
resilience module monitors the state of the network infrastructure and
when it receives an event informing about a node or a link failure, it
communicates with the service manager (later explained in this section)
so that it executes the recovery mechanisms. It is worth noting that the
framework does not impose any specific mechanism for the detection of
the network failures. For instance, the network failure could be detected
either by means of an active protocol such as the BFD protocol defined in
RFC 5880 [215], or passively by listening to notifications from the switches.
The framework neither imposes any particular recovery mechanism; some
use cases may require path protection, whereas others may require path
restoration [216], as detailed below:

e Path protection: Failure recovery mechanism where the backup
resources are pre-computed and reserved. Only after the network
failure occurs the reserved resources are used in the actual

provisioning of the service.

e Path restoration: Failure recovery mechanism where the backup
resources are not reserved. In the event of a network failure, path

restoration may require the computation of the backup path.

In both cases, when the backup path is pre-computed or when it is
computed on-demand, it is necessary to check whether there are enough
network resources or not. Only in case there are enough resources, the
backup path is installed in the network.

Either case, once the resilience module detects the failure, the DynPaC
framework re-programs the affected network elements in order to install
alternative routes to keep providing the affected connectivity services.
This feature is of especial relevance for multiple use cases, i.e., for
applications where the high availability is necessary, such as emergency

services and urban traffic signaling, or real-time communications.

4.1 MODULES

414 MONITORING MODULE

The DynPaC framework includes a monitoring module that keeps track
of the resources consumed by each connectivity service provisioned in the
network. Monitoring is essential from both the end-users and the network
operators’ perspective, since it allows to verify that the SLAs subscribed
between the two of them are being fulfilled.

It needs to be taken into account that the optimization of the network
resource utilization may encompass the adoption of TE techniques. A
classical approach consists of splitting the incoming traffic into multiple
paths to minimize the congestion. When such technique is utilized, it is
necessary to verify that the service is being provisioned as promised, since
the enforcement of SLAs through mechanisms like rate limiting usually
take place at the edge network elements, but not in the intermediate
elements.

In such a scenario, the monitoring module has been designed to keep
track of per-flow and per-service network resource consumption. This
way, the monitoring module is able to deal with the disaggregation of
an original service demand into multiple sub-services, which as will be
later explained, is one of the optimization techniques used in the DynPaC
framework.

The module does not impose any particular mechanism to obtain the
QoS metrics. On the one hand, in a SDN network with OpenFlow devices
it could be programmed to obtain different metrics from the statistical
information kept at the switches per each flow, such as the bandwidth
or the delay [217]. On the other hand, it could retrieve the information
from a NetFlow or sFlow collector. In summary, the monitoring module
should be able to retrieve information about the metrics relevant for the
computation of the paths, and react upon the violation of any SLA, for
example, by notifying the service manager about the situation.

415 NETWORK PROGRAMMER

The network programmer is the module in charge of programming the
network elements involved in the provisioning of a given service. As

mentioned before, in advance reservation systems, services are reserved for

143

144

A GENERIC FRAMEWORK FOR TE IN SDN

the future and for a certain amount of time. This implies that the network
resources that will be consumed by the service are free to be used by other
reservations until the service start time reaches. Once that happens, the
optimum path that the PCE has computed for the service needs to be
installed in the network. Similarly, once the service end time reaches, the
network programmer is in charge of removing all the associated state from
the involved network resources. Overall, the network programmer is in
charge of translating the information contained in the form of a path, that
is, a sequence of network elements, in the appropriate messages in order
to program the network devices. For instance, in the case of OpenFlow
devices, this would imply the generation of the necessary flow modification
messages in order to install or remove the flow entries from the OpenFlow
switches.

416 SERVICE MANAGER

The Service Manager is the core of the DynPaC framework, since it is
in charge of the work-flow management, the services’ life-cycle and the
resource management, which are individually described next.

4.1.6.1 WORK-FLOW MANAGEMENT

All the modules of the framework and the REST API communicate with
the Service Manager, which orchestrates the interaction of the different
modules in order to provide the requested connectivity service.

Firstly, the Service Manager triggers a mechanism in the 7Topology
Abstractor to retrieve the topology of the network, which performs a set of
abstractions that eases future path computations performed at the PCE.
Once the topology is abstracted to the format required by the PCE, the
Service Manager is ready to receive new service requests.

Every time a new service is requested, the Service Manager requests
a path or a set of paths to the PCE. Then, the Service Manager checks
whether the service request can be accepted or not, taking into account
the resources available in the network, the paths provided by the PCE
and enforcing, if necessary, the set of TE optimization techniques also
available in this module (see Chapter VI). Furthermore, once a service
is accepted, it listens to the events produced by the Resilience Module

4.2 INTERFACE TOWARDS EXTERNAL ELEMENTS

and the Monitoring Module to react upon network failures and ensure
the fulfillment of the SLAs respectively. In addition, the Service Manager
communicates with the Network Programmer every time a service needs
to be installed in or removed from the network.

4.1.6.2 SERVICES’ LIFE-CYCLE MANAGEMENT

One of the main tasks performed by the Service Manager is the
management of the services’ life-cycle. It is worth noting that the DynPaC
framework has been designed to support advance service reservations.
That is, the framework supports the reservation of services that are
automatically installed in or removed from the network in a future time.
As a consequence, it is necessary to keep track of the state of each service,
in order to know if the service is reserved for the future, installed in the
network, or has expired. For this purpose, the Service Manager uses a data-
store named Services DB. The services’ life-cycle differs depending on the
operational mode at which the framework operates, namely synchronous
and asynchronous modes, which are later explained in Section 4.2.2.1.

4163 RESOURCE MANAGEMENT

As mentioned before, one of the main features of the DynPaC framework
is its support for advance reservations. For such a feature, it is necessary
to keep track of the resources consumption over time, which is done by
means of a data-store named Scheduler. This approach is consistent with
the Stateful PCE, described in RFC 4655 [88], which uses not only the
information contained in the TED for the path computation but also
the resources consumed by already accepted connectivity services in the
network. Since the efficient management of the network resources to
support advance reservations is one of the main objectives of this thesis,
it will be explained later in Section 5.3.

42 INTERFACE TOWARDS EXTERNAL ELEMENTS

One of the most important features of the DynPaC framework is that it
provides an open REST API for its integration with external elements.
On the one hand, the interface can be used by external traffic analyzers

to send information about the traffic that could be useful to optimize the

145

146

A GENERIC FRAMEWORK FOR TE IN SDN

Traffic
Analyzer

Figure 4.2.: Integration of the DynPaC framework with a traffic analyzer.

network resource consumption, as it will be explained in Chapter VI. On
the other hand, the interface can be used by external elements such as
orchestrators to handle the life-cycle of the services remotely. Both cases
are explained in detail in the following subsections.

421 TRAFFIC ANALYZERS

Historically, TE solutions have benefited from previously known traffic
patterns and service demands. However, these kinds of solutions based
on traffic matrices are only valid for the specific network for which the
traffic is characterized, and they cannot be generalized to other networks.

Having this limitation of classic TE solutions in mind, the REST
APIT exposed by the DynPaC framework has been designed to facilitate
the interconnection with external traffic analyzers, or in general, to
any external element capable of providing on-demand information about
traffic patterns, as illustrated in Figure 4.2. This information can be
later used to optimize the network resource utilization. For instance, a
traffic analyzer can use this interface to provide information about the
periodicity of a certain traffic. This use case is of special relevance for
the Internet of Things (IoT) in which the IoT devices usually transmit
their data in specific time slots to achieve energy efficiency. Knowing in

4.2 INTERFACE TOWARDS EXTERNAL ELEMENTS

advance the time evolution of a traffic pattern can be useful to rearrange
the network load in a safe manner.

Furthermore, an external element can provide information about the
bandwidth consumption for different traffic types through this interface,
allowing to characterize different traffic sub-flows inside an ongoing
service. This could make possible the disaggregation of original services
into multiple sub-services that could be more easily accommodated in the
network, making easier the acceptance of new service demands that with
the previous network load configuration would be rejected.

422 ORCHESTRATORS

With the advent of NFV and the need for multi-domain communications,
the REST API of the DynPaC framework has been designed to ease
the integration of the framework with external orchestrators. The REST
API provides the means to retrieve all the relevant information about
the DynPaC framework and the accepted services. Moreover, all the
operations supported by the DynPaC framework, such as the reservation
of a new service or its termination, are also exposed through the
REST API. As a consequence, external elements such as NFV or multi-
domain orchestrators can use the REST API to communicate with
the DynPaC framework and request the connectivity services that they
require. Similarly, the REST API can be used by an external GUI to ease
the interaction with the framework. This way, the users or the network
administrators can have access to the information about the services in
a more user-friendly manner, or make the service reservations by simply

filling a form.

4.2.2.1 MULTI-DOMAIN CAPABILITIES

Of special relevance in this section is the possibility that the REST API
provides to support multi-domain connectivity services. More precisely,
in order to provide multi-domain capabilities, the DynPaC framework
has been designed to be compliant with the Network Services Interface
- Connectivity Service (NSI-CS) [218] protocol, which is part of the
NSF standardized by the Open Grid Forum. This has been achieved
extending the REST API exposed by DynPaC and introducing a second

147

148

A GENERIC FRAMEWORK FOR TE IN SDN

‘GUI<—l
A

NSA <« NSI-CS—» NSA

LN
‘1/

The DynPaC Framework

TE Optimization
Algorithms

l

Service Manager

PCE

REST API

| Services DB |
| Scheduler |

i !]] o

Resilience Monitoring Topology Network
Module Module Abstractor Programmer

OpenFlow protocol

E2E Service

Figure 4.3.: Integration of the DynPaC framework as NRM for multi-domain
BoD service provisioning.

operational mode that allows DynPaC to act as the Network Resource
Manager (NRM) of OpenFlow domains, as depicted in Figure 4.3.

In NSI-CS, two main elements are involved in the E2E service
provisioning. On the one hand, the Network Services Agent (NSA) are in
charge of handling the communication with the other NSA peers and of
negotiating the E2E services’ setup, activation/deactivation, modification
and tear down. They also exchange topology information and thus
handle an abstracted form of the domain topology that is suitable for
advertisement. In other words, the NSAs are in charge of the inter-domain
aspects of the service provisioning. On the other hand, the NRM is the
NSI-CS component ultimately responsible for managing the transport
resources. It thus needs to be able to model the detailed domain topology,
maintain a resource utilization calendar and calculate intra-domain paths
based on calendar and topology constraints.

In order to be able to use the DynPaC application as an NRM, the
NSA needs to be able to map the internal NSI-CS states within the

4.2 INTERFACE TOWARDS EXTERNAL ELEMENTS

| External E. | | DynPaC |
[|

"’ —requestService(Tear, Tena, VLAN, BW)——) { (_«———requestService

REQUESTED REQUESTED

teheck < Teheck \

v

O Succ :
RESERVED l

A 4

Succ
RESERVED

———commiitService:

TOBEINSTALLED
© T Tetart

ACTIVE ACTIVE

[———releaseService
| ReLEAseD |
@ provisionService————————
[AcTive

(¢———terminateService—————
FINISHED

Tend Tend
I FINISHED I
\/ \/

(a) Synchronous. (b) Asynchronous.

Resource Reservation
Resource Reservation

Figure 4.4.: DynPaC operational modes.

DynPaC work-flow. NSI-CS allows for advance reservations, which is a
concept already supported by DynPaC, but it also supports the concept
of multiple provisioning/releasing cycles within a reservation, which is the
process of building or tearing down the actual circuit without canceling
the booking of resources. This feature is very useful for the cases where
there is a planned network downtime and the user needs to be aware of the
exact times when the circuit is unavailable, without setting off monitoring
alarms.

As a consequence, to be compliant with the NSI-CS work-flow, the
framework has been extended with an additional operational mode,
called ashynchronous operational mode, in which the network devices are
updated upon external request. Figure 4.4 depicts the life-cycle of the
services for the two operational modes currently supported in the DynPaC
framework: synchronous and asynchronous.

In a nutshell, in the asynchronous operational mode the external
element acts as the master, whereas the DynPaC framework acts as
the slave regarding the services’ life-cycle management. That is, all the
changes in the services’ life-cycle is directly handled by the external
element. On the other hand, in the synchronous operational mode, the

149

150

A GENERIC FRAMEWORK FOR TE IN SDN

service manager is still in charge of the services’ life-cycle management.
Figure 4.4 depicts the two operational modes available in the DynPaC
framework, and how the service state varies in both cases upon reception
of the REST API calls.

First, in the synchronous operational mode, the external element makes
a new service reservation request specifying the service start and end
times, the bandwidth and the VLAN tags that will be used to isolate
the circuit. At that moment, the service is in REQUESTED state. Once
DynPaC checks that there are enough resources in the network to accept
the service, it acknowledges that the service has been accepted to the
external element and switches the state of the service to RESERVED.
Later, when the service start time reaches, the service is automatically
installed in the network, and marked as ACTIVE. Similarly, once the
service end time reaches, the service is automatically uninstalled from
the network and marked as FINISHED.

Second, in the asynchronous operational mode, the external element
makes the service reservation and receives the acknowledgement from
the DynPaC framework as before. The main difference is that once the
service start time reaches, the service is not automatically installed in
the network. It is necessary an additional state that is only reachable by
means of an explicit request from the external element. That way, the
services evolve from the RESERVED state towards TOBEINSTALLED
state upon the reception of the commitService message. Once the service
is in that state, it can be installed in the network at the moment
of its start time. In addition, as mentioned before, the asynchronous
operational mode also supports the release of the network resources upon
the external element’s request by means of the releaseService message.
Upon reception of that request, DynPaC puts the service in RELEASED
state, where the service is uninstalled from the network but the network
resources that the service was consuming remain unchanged. Similarly,
DynPaC can re-install the service upon the external element’s request
by means of the provisionService message, where the resources that the
service was consuming previously are utilized to continue with the service
provisioning.

In summary, the DynPaC framework exposes a REST API originally
designed to support the reservation or removal of generic L2 service

4.2 INTERFACE TOWARDS EXTERNAL ELEMENTS 151

demands. Furthermore, it also provides the means to retrieve information
about the already reserved services and about the edge nodes with their
corresponding ports and VLANs. In addition to these calls, the REST API
supports the communication with the NSAs. More specifically, the REST
APT calls have been designed to support the explicit service provisioning
and the release of the resources of an active service. With these API calls,
the NSA is able to map the internal NSI-CS states to the appropriate
REST API calls so that the work-flow proceeds as specified by the NSI-CS
standard [218].

Support for advance reservations

""Who controls the past, ran the Party slogan,
controls the future: who controls the present
controls the past."

— George Orwell

As stated in [87], the next generation of TE solutions will leverage the
benefits of SDN. All in all, SDN can overcome the long-convergence times
of legacy routing protocols thanks to its support for out-of-band control
of the network elements. In addition, SDN enables the utilization of more
realistic traffic splitting techniques that leverage the higher granularity
to make forwarding decisions at the network elements. Furthermore,
it supports the utilization of dedicated elements to perform the path
computation using real-time network state information.

However, as outlined in Chapter III, were a comprehensive study about
advance reservation systems has been conducted, there are no proposals
taking advantage of these benefits, not even the more recent solutions
already based in SDN. Overall, the classical approach to deal with advance
reservations consists of per-link resource management and the utilization
of C-SPF over pruned topologies.

In such a scenario, this thesis presents a novel advance reservation
solution that leverages the centralized nature of SDN. The logically
control plane of SDN, which allows to make routing decisions taking into
account the overall state of the network, facilitates the adoption of new
approaches to tackle the problem of advance reservations.

153

154

SUPPORT FOR ADVANCE RESERVATIONS

As such, this chapter presents a novel solution for advance reservations
that handles network resources atomically, instead of per-link basis.
First, the reservation model used in the DynPaC framework is presented.
Second, the algorithm used for the computation of the paths is described.
Then, the two data structures that make possible the management of the
network resources over time are introduced, namely Network Snapshots
and Network Snapshots Tree (NSTree). Finally, the operations supported
by the NSTree are described in detail.

51 RESERVATION MODEL

This section describes the reservation model used in the DynPaC
framework, and the timing conditions that need to be fulfilled to accept
new service reservation demands into the system.

51.1 DEFINITION

In the DynPaC framework, a new service reservation request between two

end-points for a certain amount of time is defined as follows:

Definition 1. Every new service reservation request is identified by the
source and destination end-points (node and port), the start time at which
the service needs to be provisioned and the end time at which the service
needs to be terminated. In addition, the service reservation request is also
characterized by the peak bandwidth that will be available through the E2FE
circust and the desired failure recovery policy, which can be either path
protection or path restoration. It is, therefore, a STSD reservation model.

512 TIMING CONSTRAINTS

Each new service reservation request requires the execution of two
different phases: check and update. Firstly, it is necessary to check whether
there are enough resources in the network to satisfy the service demand
or not (i.e., bandwidth, VLANS, etc.). This phase takes t.pecr time and
results in the new service demand being accepted (see Figure 5.1) or
rejected (see Figure 5.2).

5.1 RESERVATION MODEL

User DynPaC
Request Service A

tcheck
Accept Service A

tbouk_ahead tsetup

tupdate

Commit Service A .

Figure 5.1.: Service is accepted by the DynPaC framework.

User DynPaC
Request Service A

tcheck tsetup
Reject Service A

Figure 5.2.: Service A is rejected by the DynPaC framework due to a lack of

resources.

Secondly, the optimal path is selected among all the available paths
satisfying the connectivity requirement and the necessary data structures
are updated, which takes t,p,qqte time. The second phase is only executed
for the accepted services, being p4 the probability of a service being

accepted by DynPaC, also known as the Service Acceptance Ratio (SAR).

The SAR is one of the most commonly used parameters to evaluate
advance reservation systems, since it measures the amount of service
reservation requests that are accepted by the system compared to the
total amount of service reservations that are requested to the system, as

described in equation 5.1:

SAR = Z Serviceaccepted / Z Servicerequested (51)

The time required to execute both phases is known as tsetup, and sets
the time that needs to pass between consecutive service requests in order

155

156

SUPPORT FOR ADVANCE RESERVATIONS

User DynPaC
Request Service A

tcheck
Accept Service A
tsetup
Request Service B
Reject Service B ® tupdate

Figure 5.3.: Service B is rejected by DynPaC because it is blocked for new
requests.

User DynPaC
Request Service A

tcheck
Reject Service A |

tbookﬁahead

Commit Service A .

Figure 5.4.: Service A is rejected by DynPaC because the book-ahead interval is
not respected.

to guarantee that the system is stable and that the data structures
represent the network state correctly. Furthermore, tsesyp also delimits
the time at which the requested service can be committed to the network,
which is commonly referred to as the book-ahead interval (tpook ahead)
[180]. By definition, no service requests will be accepted in the system if
no tsetup has passed since the last service request, as depicted in Figure
5.3 and no tpeok ahead time exists between the time at which the request
was received and the start time of the service, as illustrated in Figure 5.4.
The relationship between tcpeck, tupdates tsetup a0 tpook ahead is defined
by equations 5.2 and 5.3.

tsetup = fcheck T tupdate (52)

5.2 PATH COMPUTATION ALGORITHM

tsetup < tbookiahead (53)

Since the tgetyp for a given service depends on whether the service has
been accepted or not, we define the average tsesyp as follows:

Uisetup) = teheck + DA * tupdate (5.4)

52 PATH COMPUTATION ALGORITHM

As mentioned before, having an advance reservation solution that
leverages the centralized nature of the SDN control plane allows
per-network resource management, as opposite to the classical per-
link approach. This characteristic of the advance reservation solution
presented in this thesis makes possible the utilization of path pre-
computation strategies. In a nutshell, the approach followed on the
DynPaC framework consists of the pre-computation of a set of possible
paths for all the pairs of source and destination nodes. Then, once a
particular service reservation is requested, the possible paths are checked
against the available resources, until a valid path is found.

It is worth noting, that prior to the path pre-computation, it is
necessary to retrieve and abstract the network topology. In that regard,
once the topology is retrieved, an undirected graph is formed. This
approach allows to simplify the path computation, since in this solution,
the service requests are considered symmetrical and bidirectional. That
is, for a given service the same bandwidth is reserved for both directions
of the communication.

This section describes both algorithms, the algorithm used at the pre-
computation phase and the second algorithm used at the on-demand
phase.

52.1 PRE-COMPUTATION PHASE

The first phase on the computation of the optimal path for a given service
reservation request consists of the computation of the set of possible paths

157

158

SUPPORT FOR ADVANCE RESERVATIONS

that will be used to establish the connectivity circuits between particular
source and destination nodes. The most basic approach would consist
of the computation of all the possible paths between all the possible
combinations of source and destination nodes to have the highest possible
number of alternative paths to test. However, this approach is not feasible,
since obtaining all the possible paths between two nodes is a well-known
NP-hard problem.

In order to be computationally feasible, the path pre-computation
algorithm needs to compute only a subset of the possible paths in
the network. Although this approach makes the utilization of path pre-
computation feasible, it also presents some drawbacks that need to be
taken into account. First, by pruning the list of possible paths, the
DynPaC algorithm can reject a service reservation request even in the case
of available resources, that is, the request can result in a false negative.
This is a typical problem when using heuristics. Notwithstanding, as it
will be demonstrated in Chapter VIII, the SAR gets improved with two
possible paths, but no significant enhancement is achieved with a higher
path diversity. Second, the path pre-computation phase will depend on
the use case and the topology of the network, since the better the selection
of the possible paths is, the lower the amount of false negatives will be.
For the particular case of BoD, the path pre-computation algorithm has
been customized taking into account two requirements particular to the
use case.

First, services are provided E2E between two end-points, where an end-
point is represented either by a combination of node and port, or by a
combination of node, port and VLAN tag. In terms of path computation,
what this requirement represents is that only the possible paths between
pairs of ingress or egress nodes must be computed. It is unnecessary to go
through every combination of nodes, since only the ones facing users or
external administrative domains can be selected in the service reservation
requests. For example, Figure 5.5 depicts the ingress and egress nodes in
a network. In that case, in the Network Domain A, the combination of
nodes, which is (}), being & the number of nodes being selected from a
set of n nodes, gets reduced from (;) =21to () =3.

Second, it is desirable to consume the least possible amount of network

resources to provide a connectivity service. Although in a communication

5.2 PATH COMPUTATION ALGORITHM 159

Administrative
Domain B

Administrative
Domain A

Figure 5.5.: Ingress and egress nodes facing users or other domains in a network.

-1

Source Destination

Figure 5.6.: Selection of paths of less than nps4x hops.

network with n nodes a path of n — 1 hops (also known as traversing edges)
is a feasible path, it is not desirable in terms of resource consumption. As
a consequence, the algorithm has been designed to only accept the paths
with a maximum number of hops, defined as ny;4x. The procedure to
obtain all the possible paths from 1 to nj;4x hops consists on executing
a variation of the BFS [219] algorithm that does not keep track of the
visited nodes. The algorithm is executed on a loop for every n in the
range 1 to njrax, and all the paths of the same length are stored in an
indexed map named pathMap to facilitate the future retrieval of the paths
of certain lengths per source and destination pair.

Figure 5.6 illustrates a network of 8 nodes with ny;ax = n/2 =4 and
the paths that the path pre-computation algorithm would compute, which
in this case is 4 instead of the 14 available paths with non-repeating edges.
Algorithm 1 describes in a simplified manner the procedure followed to
compute the set of possible paths to be used in the on-demand path
computation phase described in the next subsection.

The structure of the pathMap is detailed below:

1 public class PathMap {
Map<PairOfNodes, PathsList> pathMap;

private class PairOfNodes {

160

SUPPORT FOR ADVANCE RESERVATIONS

Algorithm 1 Path Pre-Computation Algorithm

1: function PATHPRECOMPUTATION(topology) > Computes a set of possible paths

between pairs of source and destination nodes
nodes < filter EgressNodes(topology)
for all pair of nodes do
for all i <+ 1,np;4x do
possible Paths < computePaths;(topology, srcNode, dstNode)
end for
pathLists|i] < possible Paths
end for
9: pathMap[srcNode, dst Node] < pathLists
10: end function

Node source;
Node destination;

}
private class PathsList {
Map<Integer, List<Paths>> pathList;

52.2 ON-DEMAND PHASE

The second phase of the path computation consists on the randomization
of the list of the possible paths provided by the PCE for a given pair of
source and destination nodes. As mentioned before, the PCE in the pre-
computation phase generates a map in which it stores a list of possible
paths per each combination of ingress and egress nodes, arranged taken
into account the number of hops. Figure 5.7 depicts the content of the
pathMap that is computed by the PCE in the pre-computation stage for
the specific network topology included in the example.

When a new service reservation occurs, the service manager requests
the list of possible paths to the PCE, by simply specifying the source
and destination nodes. Then, the PCE checks the pathMap and returns
the list of possible paths for that pair of nodes. It is worth noting
that this approach results in the PCE providing identical path lists for
services originating and terminating in the same nodes. As a consequence,

there is an increasing possibility of congesting some network resources

5.2 PATH COMPUTATION ALGORITHM

pathMap = {
[A.B]{
[1]:{[S1,541},
[2]:{[S1,52,54],[S1,53,54]}
b
[B,A]{

@ B [1]:{[s4,511},
[2]:{[S4,52,51],[54,53,51]}

}

Figure 5.7.: Structure to store the pre-computed paths.

while others remain underutilized. These kinds of algorithms are usually
referred to as greedy algorithms, since they always try to provide the best
path to every request, which in turn results in the congestion of those
paths.

In order to solve the greedy algorithm problem, the algorithm used
in the on-demand phase randomizes the list of possible paths so that
requests with the same source and destination nodes are assigned with a
different list of possible paths. Please note that the set of possible paths
is the same, what varies is the order in which the paths are listed. The
randomization is applied to the set of paths of the same length, in order to
prioritize at all times the shortest paths. This is precisely the reason why
the pathMap arranges the list of paths per each source and destination
pair using blocks of paths of the same length. The procedure to obtain
the randomized list of possible paths is described in Algorithm 2.

Using the network described in Figure 5.7, the following example
illustrates the output of the On-Demand Path Computation Algorithm

Algorithm 2 On-Demand Path Computation Algorithm

1: function ONDEMANDPATHCOMPUTATION(srcNode, dstNode) > Provides an
ordered list of possible paths between the given source and destination nodes
pairO f Nodes < [srcNode, dstNode|
list Paths <+ pathMap(pairO f Nodes)
pathsList < |
for i < 1,np;ax do
paths < randomizePathList(listPaths.get(i))
pathsList.append(paths)

end for
9: return pathsList
10: end function

161

162

SUPPORT FOR ADVANCE RESERVATIONS

for two consecutive path computation requests using the same source and
destination nodes as parameters.

Request 1: OndemandPathComputation (A, B)

Output:

pathsList = {
[S1,s4]1,
[S1,S2,S4]1,
[S1,S3,54]}

Request 2: OndemandPathComputation (A, B)

Output:

pathsList = {
[S1,54],
[S1,S3,541,
[S1,52,S4]1}

53 DATA STRUCTURES FOR ADVANCE RESERVA-
TIONS IN SDN

This section presents the data structures that make possible the support
for advance reservations in the DynPaC framework. The solution is
compliant with the reservation model described in Section 5.1 and satisfies
the objectives presented in Chapter I. It is based on the utilization of two
data structures and a set of algorithms specifically designed to support
advance reservations in SDN. Firstly, the network snapshot data structure
is used to represent the network state in terms of resource consumption
at a specific period of time. Secondly, the NSTree data structure provides
the means to arrange multiple network snapshots making possible the

efficient reservation of new service requests.

53.1 NETWORK SNAPSHOT

One of the main contributions of the proposed solution is the utilization

of network snapshots, which are defined as follows:

Definition 2. A network snapshot represents the state of the network

during a specific period of time in terms of network resource consumption.

5.3 DATA STRUCTURES FOR ADVANCE RESERVATIONS IN SDN

It is identified by a unique identifier and its start and end times. A

network snapshot stores the following information:
e Identificator (ID): Unique identifier.

e Start Time (sT): Time at which the services that coexist in the
network snapshot and that are not already installed must be installed

in the network elements.

e End Time (eT): Time at which the services that coexist in the
network snapshot and that do not continue in the next network
snapshot must be removed from the network elements.

o Concurrent Services: Connectivity services to be provided simulta-

neously during a specific period of time.

o Consumption Vector: Vector that summarizes the resource avail-
ability in terms of available bandwidth per network edge in a given
network snapshot. Depending on the use case additional information
such as VLAN tag availability can be stored.

e Optimal Paths: A map that stores the optimal path for a given
service in a given network snapshot.

e Relocation Alternatives: A set of alternatives to rearrange the

services into alternative paths.

In other words, a network snapshot represents the available resources
in the whole network and provides information about the concurrent
services during a specific period of time. This approach is possible thanks
to the centralized nature of SDN. It differs from the classical approach in
advance reservation systems (see Chapter III), where the network resource
consumption is kept for each link of the network independently. As a
result of that approach, each link can have different resource consumption
variations over time, depending on the flows carried by each link at each
time interval.

On the contrary, the approach presented in this thesis makes easier
the utilization of more flexible data structures, without predetermined
time slots that limit the time for which the system accepts reservations
in advanced and making possible the computation of the paths prior to
the reservation itself, resulting in a lower tsesy)p-

163

164

SUPPORT FOR ADVANCE RESERVATIONS

Snapshot 1

Snapshot 2

Service 1

L2 L3 L4 LS

o] e e]]

L2 L3

[15 ‘

o]l Ce e]]

Snapshot 3

CoJL)

L4 Ls

]l]

L

L4 LS

o o]

Service 2

Concurrent Services

TOTAL
OCCUPIED
BW

K[
O

12 3] L5 ‘

[o]fw]le][Lo]

L2 3 4 13 ‘

8 o

Gl |

N~
BW,

Figure 5.8.: Network resource consumption evolution represented with network
snapshosts.

Figure 5.8 depicts the evolution of the network resources consumption
when two services are requested, generating three different network
snapshots, the first one when only service 1 exists, the second one when
service 1 and service 2 coexist and the third one when only service 2

exists.

53.2 NSTREE

It is a characteristic of advance reservation systems the need to keep track
of all the bookable resources over time. As a consequence, one of the main
problems of these kinds of systems is that checking for available resources
needs to be done for each time interval affected by the new service request,
in this case, for each network snapshot. In such a scenario, this section
presents the NSTree, a custom data structure designed to support efficient
service reservations in SDN.

In general, since a new service reservation request can overlap multiple
network snapshots, each of them must be analyzed independently. If and
only if all the overlapped network snapshots have enough resources to
accept the new demand, the requested service is accepted. Since tcpeck
impacts directly tsetup, the minimization of t.pecr contributes to the
minimization of tgetyp. The NSTree has been designed to prioritize the
minimization of t.pect over the minimization of ¢,p4qze. On the one hand,
because the checking phase is executed both for accepted and rejected

5.3 DATA STRUCTURES FOR ADVANCE RESERVATIONS IN SDN

8031010 CA3 | [54755) N NIGE NSO [23454)
~, ! ! .,
s A 1 » a
0 | 38 42 5, 80 | 8 | | & |
cA2 Eoy cA3 | NS8 - NS9
NS4 | (86756 1| NS6 | [54785] ! 31 " nowasa
N \ P o
' " \‘ e~

X | h | N ~~) a

31 | 3 |, 2 | | so | 55 \/ ‘/f’/ e
NS2 > NS3 B NS4 NS5 = NS6 [L \s L

[1061058] | | [88766] % [8881010] [59785] % [748910] “a// y \d:

[Ly Loy L, Loy Ls]
<VLANj, ..., VLANy>

Figure 5.9.: Design of the NSTree data structure.

service requests. On the other hand, because it is desirable to tell the
user as soon as possible whether the demand can be satisfied or not.

The easiest way to arrange the network snapshots is using a
chronologically ordered list. In that case, the checking phase takes up to
O(n), being n the number of network snapshots in the list. Taking into
account that each service request can generate up to 2n 4+ 1 new network
snapshots and that the framework presented in this paper is expected to
handle thousands of service requests per month [220], it is of uttermost
importance to reduce the time of the checking stage.

The NSTree presented in this section arranges the network snapshots
in a way that reduces the amount of network snapshots being analyzed
at the check phase, with a minimal penalization in terms of memory
consumption due to the utilization of auxiliary nodes. The structure of
the NSTree is depicted in Figure 5.9.

5.3.2.1 NODE TYPES

The NSTree is comprised of three different types of nodes, namely root,
Network Snapshot (NS) and Common Ancestor (CA). Each node in the
NSTree keeps track of the information specified in the network snapshot

definition of the previous section. In addition, in order to arrange the

165

166 SUPPORT FOR ADVANCE RESERVATIONS

different nodes and make feasible the traversal of the NSTree, each node
keeps track of the following information:

e Next Node: A pointer to the next node in the NSTree.
e Parent: A pointer to the parent of the node.
e Children: List of pointers to the child nodes of the given node.

o Second Pointer Node (SPN): A pointer to a node in the NSTree
that allows to split the NSTree in two halves.

The following subsections describe the different types of nodes in detail,
where it is also specified the default values utilized for a subset of the fields

of the network snapshot data structure.
e Root

An auxiliary node that represents the root of the tree. By definition,
only a single node of this type can exist in the NSTree. To ease
computation, the root is considered to have an start time and an end
time equal to infinite (which in practice takes the highest value of the
data type used to represent time). This allows to use the root node as a
regular node in the NSTree and facilitates the insertion of the first and
the last nodes in the NSTree. As opposite to the NSs and CAs, it does
not keep track of any resource consumption or concurrent services. In
summary, the root node is characterized as follows (please note that only
the most relevant fields are included):

e ID: ROOT

o sT: 00

o eT: o0

o Concurrent Services: Not Applicable (NA)
o Consumption Vector: NA

e Optimal Path: NA

o Parent: NA

e Relocation Alternatives: NA

5.3 DATA STRUCTURES FOR ADVANCE RESERVATIONS IN SDN

e Network Snapshot

A node in the tree that represents a network snapshot. It is identified by
its start and end times and keeps track of the resources that are available
in the period of time that it represents. As specified in Section 5.3.1, the
resource availability is represented through a consumption vector, where
each index at the consumption vector provides information about the
amount of available bandwidth in a specific link. Each NS points to the
next node in chronological order, which can be either another NS or a
CA. In addition, it also points to its parent node, which in this case can
be the root node or a CA, but never an NS. A particularity of the NS
nodes is that they do not have any children nor an SPN, since they are
always leafs in the NSTree. In summary, the NS nodes are characterized
as follows (please note that only the most relevant fields are included):

e ID: NS + <No>
e sT: start time of the concurrent services

e ¢T: end time of the concurrent services
e Children: NA

e SPN: NA
e Common Ancestor

An auxiliary node that aggregates a set of consecutive children nodes
(which can be both NS or CA nodes). It represents a wider time interval
where a set of common resources are ensured to be available through
the whole time interval, regardless of network snapshot variations. It is
identified by a start time, equal to the minimum start time among the
start times of its children nodes and an end time, equal to the maximum
end time among the end times of its children nodes.

It contains a list with its children nodes arranged in chronological order
and keeps track of the consumed resources with a consumption vector
built from the minimum values of the consumption vectors of all its
children nodes. As the NS nodes, it has a pointer to the next node in
chronological order, which can be both a CA or an NS. More precisely,

167

168

SUPPORT FOR ADVANCE RESERVATIONS

the next node is the next node of its last child in chronological order. In
addition it also has a pointer to its parent node, which can be either the
root or a CA node and a pointer to the SPN that splits the sub-tree in two
halves of equal amount of NS nodes. It is worth noting that the CA does
not keep a list of the optimal paths nor of the relocation alternatives,
since the same service can be provided through different paths in NS
nodes aggregated under the same CA. In summary, the CA nodes are
characterized as follows (please note that only the most relevant fields
are included):

e ID: CA + <No>

o sT: start time of the first child

e eT: end time of the last child

e Concurrent Services: NA

o Consumption Vector: computed using Algorithm 3
e Optimal Path: NA

e Relocation Alternatives: NA

As a remark, the utilization of SPNs allows a more efficient traversal
of the NSTree. Each node in the NSTree of type root or C'A contains two
pointers that split the tree in two halves, each with the same amount of
nodes of type NS (in case of an odd number of NS nodes, the first half is
always the biggest one). The first pointer points to the first NS node in
chronological order and the second pointer points to the node ensuring

Algorithm 3 CA consumption vector computation algorithm

1: function CACONSUMPTIONVECTOR(CA)

2: vector < |] > Empty array
3 children < children of the CA

4 for i <~ 1, number of links do

5: vector[i] < minyeechitdren vectore[i]
6: end for

7 propagate consumption vector upwards
8 return vector

9: end function

5.3 DATA STRUCTURES FOR ADVANCE RESERVATIONS IN SDN

the same amount of nodes of NS type in the two halves, that is, the SPN.

In order to determine at which node the algorithms in charge of handling
the reservation or removal of the services must start, it is only necessary
to store the start time of the SPN. This way, by simply comparing the
start time of the new service reservation and the start time of the SPN it
can be ensured that only the correct half is analyzed.

5.3.22 NODE GENERATION PROCESS

Every time a new service reservation is done, the NSTree needs to be
updated to reflect the new resource availability for future requests, which
results in new NS nodes being added or updated at the NSTree. In
addition, the generation of new NSs may require the generation of CA
nodes for their aggregation. This characteristic of the NSTree makes
necessary the evaluation of consecutive nodes, in order to determine if
they have to be aggregated into a new CA or an existing one. As a
consequence, the algorithms described in Section 5.4 have been designed
to operate on a per-NSTree node basis.

Every time a new service reservation is requested, it is compared
chronologically against all the nodes that it overlaps in time. In order
to handle this efficiently, a Divide & Conquer-like approach is followed,

where the original problem is divided into multiple smaller sub-problems’.

In every step of the process, a subset of the time for which the service
reservation has been requested is analyzed, which is referred to as
Analyzed Time Slot (aTime). The aTime comprises the period of time
between the end time of the Predecessor NSTree Node (pNode) (the node
analyzed in the previous step) and the end time of the Analyzed NSTree
Node (aNode) (the node being analyzed in the current step). Once the
analysis of a given aTime has finished, that period of time is subtracted
from the service reservation request, in order to continue analyzing the
next node in chronological order. It is worth noting that in every step of
the process, the analysis encompasses two well defined phases. First, the
lapse of time between the end time of the pNode and the start time of
the aNode is tackled, since it requires the generation of a new NS node.
Second, the lapse of time corresponding to the duration of the aNode

Please note the Divide & Conquer paradigm uses recursion to solve problems, technique
that it is not followed here

169

170

SUPPORT FOR ADVANCE RESERVATIONS

aTime aTime
Service A Service A
pNode — — — -NextNode— — —p= aNode pNode % % New NS node % —+ aNode
sT eT sT eT sT el sT eT
Before = After >

Figure 5.10.: Node generation process case 0: no overlapping.

itself is analyzed, phase that requires updating the aNode in order to
update the resource availability to reflect the resources consumed by the
new service reservation, and the generation of additional NSs depending
on how the service overlaps the aNode.

This approach allows to reduce the node generation or update to five
different cases, which differ from each other depending on how the service
reservation overlaps the aTime. The five cases considered in this solution
are (Case 0) No overlapping, (Case 1) Back overlapping, (Case 2) Partial
overlapping, (Case 3) Front overlapping and (Case 4) Full overlapping.
The case of post-overlapping? is not considered, since it can be seen as a
no overlapping case over the next node being analyzed. This is achieved
by considering the root as the pNode of the first node in chronological
order and the last aNode. Please note that during the same aTime it
is possible to have simultaneously a Case 0 and another case from the

remaining ones.
Case 0: No overlapping

This case correspond to service requests whose start time is lower than
the start time of the aNode, which is depicted in Figure 5.10. In this case,
it is necessary to create a new NS, since a gap between the pNode and
the aNode represents a period of time in which no services are reserved.
That is, the gap represents a period of time where the network is empty
and no network resources are being consumed. Therefore, once the new
NS is created, only the resources consumed by the new service request
will exist.

During the analysis of the aTime, it can occur to have a service

reservation request whose end time is higher than the start time of

A post overlapping will correspond with a situation in which the service reservation
ends after the aNode

5.3 DATA STRUCTURES FOR ADVANCE RESERVATIONS IN SDN

aTime aTime
Service A Service A

pNode]— - aNode % — > ‘
eT sT

eT sT

pNode%*{ PredNS ‘ aNode %—-» }
eT

sT eT

sT

v
4

Before After

Figure 5.11.: Node generation process case 1: back overlapping.

the aNode. When this happens, the period of time related to the no
overlapping case is subtracted from the service reservation and the aTime
is updated, in order to continue with the analysis, since a Case 3 or a Case

4 can occur.
Case 1: Back overlapping

When the service reservation request’s start time is higher than the
aNode start time, the aNode needs to be split in two, as depicted in Figure
5.11. First, a new NS is created equal to the aNode but with an end time
equal to the start time of the service request minus one. This node is
named Predecessor Network Snapshot (PredNS) and represents the part
of the original aNode in which the service did not overlap. Second, the
aNode is shortened, with a new start time equal to the start time of the
service request. In this case, since a new service needs to coexist with the
previously reserved services in that node, the resources are updated, in
order to reflect the new situation. Once the nodes are created or updated,
the pointers that allow to traverse the NSTree in chronological order are
updated. The PredNS becames the next node of the pNode, while it points
to the aNode. Please note that when the service reservation’s end time is
higher than the aTime’s end time, the analysis continues with the next
node in the NSTree. This involves the aNode being considered the new
pNode and the next NSTree node in chronological order being treated as
the new aNode, resulting in the aTime being updated to reflect the new
analyzed time span.

Case 2: Partial overlapping

The case of partial overlapping reflects the case in which the service
request fully overlaps the aNode but the start time of the service is higher

171

172

SUPPORT FOR ADVANCE RESERVATIONS

aTime aTime
Service A Service A
-~ -
pNode — —» aNode F — > ‘ pNode ‘L - PredNS | aNode | SuccNS — —
ST eT ST eT ST eT ST eT

Before o After

Figure 5.12.: Node generation process case 2: partial overlapping.

aTime aTime

Service A Service A

pNode }‘— >

sT el sT eT sT eT sT eT

pNode — —» aNode F — > ‘

aNode I SuccNS F—-» ‘

Before g After

Figure 5.13.: Node generation process case 3: front overlapping.

than the start time of the aNode and the end time of the service is lower
than the end time of the aNode, as depicted in 5.12. This situation results
in the aNode being split in three nodes. The first one is the PredNS, and
it is a copy of the aNode but with the end time equal to the service start
time minus one. The second node is the aNode itself, whose start and end
times are updated to match the ones of the service. This is the only node
in which the service request needs to be added in order to reflect the new
resource availability. Finally, as in the case of the PredNS, the Successor
Network Snapshot (SuccNS) is a copy of the aNode prior to the insertion
of the new service, with a start time equal to the service end time plus
one. As in the previous case, the pointers are updated in order to ensure
the chronological ordering.

Case 3: Front overlapping

In this case, the start time of the service reservation request corresponds
with the start time of the aNode, as illustrated in Figure 5.13. However,
the end time of the service reservation request is lower than the end time
of the aNode, which results in the original aNode being split in two. On
the one hand, the original aNode is shortened, with an end time equal to
the one of the service reservation request. After this, the service is added
to the aNode, and the resources of this node updated. On the other hand,
the remaining part of the aNode that is not overlapped by the service

5.3 DATA STRUCTURES FOR ADVANCE RESERVATIONS IN SDN

aTime aTime

Service A Service A

v
4

Before After

Figure 5.14.: Node generation process case 4: full overlapping.

reservation conforms a new node, referred to as SuccNS, which maintains
the same resource availability that the aNode previous to the addition of
the new service. Of course, the pointers that allow to traverse the NSTree
in chronological order are updated, in such a way that now the aNode
points to the SuccNS and the latter one points to the node that the aNode
was pointing prior to the split.

Case 4: Full overlapping

The final case corresponds with the case in which the service reservation
fully overlaps the aNode, with the particularity that both the service and
the aNode have identical start and end times, as shown in Figure 5.14. In
this case, the service is added to the node, and the start and end times
of the aNode and the pointers remain unchanged.

5.3.2.3 NODE AGGREGATION POLICY

The utilization of the CA nodes imposes a penalization in memory and
they are only useful when they allow to reduce the amount of NSs being
analyzed when a new service reservation is requested. Hence, the amount
of CA nodes that are created in the NSTree needs to be kept to the
minimum in order to improve the fse,p. For instance, considering a
binary balanced NSTree, where each CA would be the combination of
two child nodes, the amount of CA nodes generated would be very big
and not necessarily beneficial. The criteria used to aggregate multiple
NSTree nodes into a CA depends on the nature of the connectivity service
being provided and the use case. As such, this section presents the node
aggregation policy used in the advanced reservation system presented in
this thesis.

173

174

SUPPORT FOR ADVANCE RESERVATIONS

In advance reservation systems, particularly in the ones used in the
REN environment, services are usually requested for a long period of time.
As a result, it is highly probable for service reservations separated less
than the average duration of the service requests to be simultaneously
overlapped by new demands. Therefore, and taking into account this
particularity of advance reservation systems in the REN environment, it
has been decided to use a time-based aggregation policy. Two consecutive
nodes, either two NSs, two CAs or an NS and a CA are paired together
into the same CA as defined below:

Definition 3. Two consecutive nodes can be aggregated into a CA if and
only if there is less than & between the end time of the former node and
the start time of the latter node.

Therefore, § defines the minimum amount of time that needs to exist
between two consecutive nodes not to be aggregated into a common CA.
With such a strategy, every time a new node is created in the NSTree, it
is necessary to check whether a rearrangement of the NSTree is necessary
or not. That is, it is necessary to check if new CAs have to be created or
if existing ones have to be updated with new child nodes.

The procedures used for the rearrangement of the NSTree always
consider the separation between the pNode and the new node for the
formation of the CAs. The aggregation is performed when there is at
most d between the end time of the pNode and the start time of aNode.
The methods utilized for the rearrangement of the NSTree are described
in Algorithm 4, which differentiates the following cases.

Case A: Consecutive Network Snapshots aggregated into the same
Common Ancestor

As will be later explained in Section 5.4, when a new NS is created,
it inherits the parent of its pNode. As such, it is possible to have two
consecutive nodes separated less than § automatically aggregated into a
common CA3. As depicted in Figure 5.15, when a new NS is created,
identified as A, if the parent of the predecessor NS identified as P is
already a CA, the new NS is automatically aggregated into the CA, with

Please note that in order to inherit the a parent CA it is check if the time span between
the nodes is less than §

5.3 DATA STRUCTURES FOR ADVANCE RESERVATIONS IN SDN

Algorithm 4 NSTree rearrangement method

1: function REARRANGETREE(pNode, aNode)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:

if pNode.eT + 6 > aNode.sT then

if Case B then
pNodeBis <+ copy(pNode)
pNode <+ upgrade2C A(pNode)
pNode.addChildren(pNodeBis,aNode)

end if

if Case C then
ca < pNode.get Parent()
ca.addChildren(aNode)

end if

if Case D then
pNodeBis + copy(pNode)
pNode + upgrade2C A(pNode)
ca < aNode.get Parent()
pNode.addChildren(pNodeBis, ca.getChildren()

end if

if Case E then
cal < pNode.get Parent()
ca2 < aNode.get Parent()
calbis + copy(cal)
ca + upgrade2C A(cal)
ca.addChildren(calbis, ca2)

end if

end if

26: end function

175

176

SUPPORT FOR ADVANCE RESERVATIONS

Before the rearrangement After the rearrangement

Figure 5.15.: Rearrangement Case A: Two consecutive NS aggregated into the
same CA

Before the rearrangement After the rearrangement

Figure 5.16.: Rearrangement Case B: Two consecutive NS children of the root
node.

no further rearrangements required if the time lapse between A and P is
shorter than §.

Case B: Consecutive Network Snapshots children of the root node

In this case, as depicted in Figure 5.16, the pNode marked as P and
the new node identified as A are both children of the root node. When
less than § exists between the two nodes, it is necessary to create a new
CA in order to aggregate them. The approach followed in this solution is
to upgrade the pNode to became a CA, which allows to keep the pointers
that guarantee the chronological ordering. Then, a copy of the pNode
identified as Px* in the figure is aggregated as first child of the CA, while
the new node is aggregated as the second child.

5.3 DATA STRUCTURES FOR ADVANCE RESERVATIONS IN SDN 177

Before the rearrangement After the rearrangement

Figure 5.17.: Rearrangement Case C: Predecessor Network Snapshot aggregated
into a Common Ancestor.

Before the rearrangement After the rearrangement

Figure 5.18.: Rearrangement Case D: New node aggregated into a Common
Ancestor.

Case C: Predecessor Network Snapshot aggregated into a Common

Ancestor

The case when the pNode is aggregated into a CA but the new node
is a child of the root node is illustrated in Figure 5.17. When there is less
than 0 between the pNode, marked as P, and the new node marked as A,
it is necessary to convert the new node in a child node of the CA. Once
that is done, the CA node is updated with the resources consumed by the
new node and the pointer to the next node of the CA is retrieved from
the new node.

178

SUPPORT FOR ADVANCE RESERVATIONS

Before the rearrangement After the rearrangement

Figure 5.19.: Rearrangement Case E: Consecutive nodes aggregated into
different Common Ancestors.

Case D: New node aggregated into a Common Ancestor

In this occasion, the pNode identified as P in Figure 5.18 is a child of
the root node, while the new node, identified as A is aggregated into a CA.
In order to ensure the chronological ordering, it is necessary to upgrade
the pNode to become a CA. Then, a copy of the pNode identified as Px is
added as the first child of the newly created CA, while the new node and
the rest of the children of the initial CA are transfered to the new one.
Once all the children have been aggregated into the new CA, the initial
CA is removed from the NSTree.

Case E: Consecutive nodes aggregated into different Common Ancestors

Finally, as depicted in Figure 5.19, when the pNode identified as P is
aggregated into C'A1 but the new node identified as A is aggregated into
a different CA, identified as C' A2, it is necessary to create a higher height
CA to aggregate both, CAl and C'A2, identified as C'A3 in the figure.
This situation can occur when there is a Case 0 (no overlapping) followed
by a Case 1 (back), Case 2 (partial) or Case 3 (front) overlapping. In
this case, the new NS node generated in the Case 0 can be aggregated
in the C A1 and the aNode has resulted in the generation of the C A2 as
a consequence of the aNode overlap. Although the most simple approach
would be to transfer the child nodes of the C'A2 to C' A1, the algorithm

5.4 OPERATIONS SUPPORTED BY THE NSTREE

checks whether the number of child nodes in both C A1 and C A2 is similar
or on the contrary, is unbalanced. In the latter case, it is preferable to

keep the pNode aggregated in C'Al and the aNode aggregated in C'A2.

Notwithstanding, since less than § exists between pNode and aNode, it
is guaranteed that less than § exists between C' A1l and C'A2, therefore
being possible the aggregation of these two CA nodes into the higher
length C' A3.

54 OPERATIONS SUPPORTED BY THE NSTREE

The set of operations that need to be supported by the NSTree data
structure are the reservation of a mew service, the removal of a given
service and the programmatic removal of a network snapshot, which
are detailed below. Please note that the programmatic installation of
a network snapshot is not described because it does not require any
modifications in the NSTree.

541 RESERVATION OF A NEW SERVICE

In our reservation model, every time a new service reservation is requested,
the system must first check in every affected NS whether there are enough
resources to satisfy the demand or not, and if positive, update the NSTree
accordingly to reflect the new situation. These two phases, check and
update, are described in the following subsections.

54.1.1 PHASE I: CHECK

The approach followed to determine whether there are enough resources or
not consists of traversing the tree chronologically, starting from the correct
half. Every time a node overlaps in time with the service reservation
request, it is necessary to check whether the node has enough resources

to accept the request or not during the time interval that it represents.

This is achieved by comparing the consumption vector of the node with
the vector describing the resource consumption of the service using a
specific path. Since the PCE provides a set of possible paths for every
service request, ordered according the the number of hops, the algorithm

checks all the possible paths, until a suitable one is found. Once a suitable

179

180

SUPPORT FOR ADVANCE RESERVATIONS

path is found, the time interval analyzed is subtracted from the original
service request. This procedure is repeated, until there is no time pending
to be analyzed.

The algorithm ends with a negative result when a NS does not
have enough resources to provide the service. Otherwise, the algorithm
considers that the service demand can be satisfied. The output of the
algorithm will be false if the service is rejected and true if the service
is accepted. In the last case, the algorithm also returns the predecessor
node, which is the last node not affected by the new service reservation
request. This approach allows to minimize the NSTree traversal in the
next phase.

In order to keep track of the time interval pending to be analyzed we
use the Remaining Service Time (RST) variable. The RST is a duple that
specifies the sT and the eT of the time interval pending to be analyzed.
RST is initialized with the start and end times of the requested service,
and the sT is updated every time it is checked that a NS or a CA have
enough resources. The details of the first phase are shown in Algorithm
5. It is worth mentioning that prior to the execution of the algorithm a
procedure is executed to discard the service reservation requests that do
not satisfy the timing constraints presented in Section 5.1 or exceed the
resources handled by the advance reservation system (i.e., VLAN tags
out of a specific range or bandwidth reservation requests that exceed the

maximum bandwidth of the network).

5.4.1.2 PHASE II: UPDATE

Every service reservation request accepted by the advance reservation
system requires the update of the NSTree. As mentioned before, the
pNode returned by Algorithm 5 is used to start the NSTree traversal that
allows us to perform the necessary updates. The algorithm (described in
Algorithm 6), uses the RST variable initialized with the service start time
and end time to know when to terminate the update phase.

In a nutshell; the algorithm starts by initializing the RST variable and
obtaining the aNode, which is the next node in chronological order of the
pNode. As long as the RST is not empty, the algorithm will check first
if a new NS node needs to be created in the gap between the end time
of the pNode and the start time of the aNode. This step corresponds to

5.4 OPERATIONS SUPPORTED BY THE NSTREE

Algorithm 5 Check resources algorithm

1: function CHECK(service, NSTree)

2: RST <« (service.sT, service.eT')
3: aNode,pNode < root
4: nodes « |]
5: predecessor Found < false
6: children < getChildrenSince RST (aNode)
7 if Ichildren is empty then
8: nodes.push(children)
9: end if
10: while RST and nodes are not empty do
11: if !predecessor F'ound then
12: pNode < aNode
13: end if
14: for all alNode < nodes do
15: if !laNode overlaps RST then
16: clear RST
17: predecessor Found <+ true
18: else
19: if aNode has resources then
20: update RST
21: nodes.remove(aNode)
22: predecessor Found < true
23: else
24: if aNode is C A then
25: children < getChildren(aNode, RST.sT)
26: nodes.push(children)
27: else
28: return null
29: end if
30: end if
31: end if
32: end for

33: end while
34: return pNode
35: end function

181

182

SUPPORT FOR ADVANCE RESERVATIONS

the no overlapping case described in Section 5.3.2.2. If positive, a new
NS is created and the appropriate NSTree rearrangement is performed,
as described in Algorithm 4.

Once the no overlapping has been solved and the RST variable has been
updated by removing the time interval corresponding to the new NS node,
it is necessary to continue with the analysis of the same aNode. Since
updating the RST guarantees that no further no overlapping is possible
until the end time of the aNode, the analysis continues by considering the
rest of the cases (1 to 4).

When the RST overlaps the aNode additional nodes will be created,
with the exception of the full overlapping. As such, the particularities of
each of the cases need to be handled properly. On the one hand, in the case
of a back overlapping a PredNS is created as a copy of the aNode. On the
other hand, in the case of a front overlapping a SuccNS is created as a copy
of the aNode. In case of a partial overlapping both nodes are created. In
any case, the aNode is left as the only node to be updated by the addition
of the new service. Once the nodes have been created, the algorithm for
the rearrangement of the NSTree is executed again. It is worth noting
that when a SuccNS or a PredNS is created, these can be aggregated in
conjunction with the aNode into a CA. Once the overlapping of the aNode
has been handled, the RST is updated, to continue with the analysis of
the rest of the nodes in the NSTree affected by the new service request.

Figure 5.20 illustrates the case when the aNode is a child of the root
node, which requires the upgrade of the aNode and the addition of the
PredNS represented as A—, a copy of the aNode, represented as Ax and
the SuccNS represented as A+ as children. Please note that the figure is
illustrating the case of the partial overlapping, for a back overlapping or a
front overlapping the SuccNS or the PredNS will be missing respectively.

Similarly, Figure 5.21 depicts the case in which the aNode is already
the child of a CA. In this case the rearrangement is simpler, since only the
PredNS and the SuccNS need to be added as children of the same CA. The
procedures to perform such rearrangement are described in Algorithm 7.

Once the new nodes have been created and the rearrangement of the
NSTree has been performed and the NSTree is balanced, it is necessary
to update the affected nodes with the addition of the new service. This
means that not only the NSs need to be updated, but also the CAs of

5.4 OPERATIONS SUPPORTED BY THE NSTREE

Algorithm 6 NSTree update for accepted services algorithm

1: function NSTREEUPDATEACCEPT(service, NSTree, pNode)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:

RST < (service.sT, service.eT)
alNode < pNode.get Next
solvedNodes = |]
while RST is not empty do
if aNode is solved then
update RST
continue with next node
else
if Case 0 then
create newN S
add service to newN S
else
if Case 1 then
create PredNS from aNode
end if
if Case 2 then
create PredNS from aNode
create SuccNS from aNode
end if
if Case 3 then
create SuccNS from aNode
end if
update aNode
rearrangeT'ree()
add service to alNode > Includes Case 4
balanceTree()
pNode < alNode
alNode < alNode.nextNode
end if
update RST
end if
end while

34: end function

183

184

SUPPORT FOR ADVANCE RESERVATIONS

Before the overlapping After the overlapping

Figure 5.20.: Creation of a CA from a NS with root parent.

Before the overlapping After the overlapping

Figure 5.21.: Creation of a CA from a NS with CA parent.

which the NSs are descendant of. The procedure used to add the service
is described in Algorithm 8.

In order to ensure that the services are not being switched constantly
from one path to a different path when the network snapshot changes,
the algorithm uses two strategies. Firstly, it always tries to assign the
most stable path for a given service request. That is achieved by using
the aggregated utilization information contained at the CAs as long as it
is possible. Therefore, it is necessary to go from the NS being updated
to the CA with the highest height and add the service using the CA
consumption vector. If there is a common solution, all the children nodes
affected by the service request are marked as solved after propagating the
solution for the service downwards.

It is worth noting, that once the solution is spread, a set of relocation
alternatives can be generated for each NS, which will be different
since a different set of concurrent services exists in each of them. The
relocation alternatives are generated to support the relocation of flows

5.4 OPERATIONS SUPPORTED BY THE NSTREE

Algorithm 7 Create a new CA algorithm

1: function CREATECA (PredNS,node, SuccNS)
2: parent < node.parent

if parent is not CA then
parent < newC A
node.parent < parent
newC A.addChildren(node)

end if

PredN S.parent < parent

SuccN S.parent < parent

10: parent.addChildren(PredNS)
11: parent.addChildren(SuceNS)
12: return parent

13: end function

into alternative paths, as it will be further explained in Chapter VI.

Secondly, it tries to propagate the solution that is already valid for the
same service in the pNode into the newly created NSs. Please note that
in Case 0 the newly requested service is the only service that will exist in
the NS created as a consequence of the no overlapping, and therefore, no
pNode needs to be sent as parameter.

As mentioned before, after adding the service to all the possible nodes,
it is necessary to update the consumption vector of the CAs affected
by the update. In order to facilitate this task, when a possible path is
found for the CA with the highest possible height, that CA and the
other CAs previously identified in the Step 1 are added to a queue. That
queue is later used to update in order, from the lowest height to the
highest height the aggregated consumption vectors. The computation of
the consumption vector of a given CA is described in Algorithm 3. As in
the case of the check phase, the algorithm is executed per each node until
the RST is empty.

542 REMOVAL OF A SERVICE

The second operation that the NSTree supports is the removal of a
service reservation. This operation can affect multiple network snapshots,
depending on the duration of the service, with a running time of O(n),
being n the number of network snapshots. The procedure is described in

185

186 SUPPORT FOR ADVANCE RESERVATIONS

Algorithm 8 Add Service to a NS algorithm

1: function ADDSERVICE(RST, aNode, pN ode)
2: CAstack.add(aNode)

3: parent < aNode.getParent()
4: while parent.overlaps(RST) do > Step 1
5: CAstack.add(parent)
6: parent <— parent.getParent()
I8 end while
8: while node < CAstack.peek() do
9: path <+ node.getOptimal Path/()
10: if path exists then
11: propagate solution to descending NS's
12: generateRelocation Alternatives()
13: update C'As
14: else
15: C Astack.pop()
16: end if
17: end while
18: returnlist of solved nodes

19: end function

Algorithm 9, which stops when a network snapshot is found that does not
contain the service in its concurrent services list.

It needs to be taken into account that the removal of a service
reservation can also affect the NSTree structure itself, resulting in the
removal of not only NS nodes, but also CAs. As a consequence, every time
an NS node is updated, it is necessary to check whether more concurrent
services exist or not. If the service being removed is the only concurrent
service in the analyzed NS node, this results in the deletion of that NS
node.

On the other hand, it is also necessary to check whether consecutive
NS nodes need to be merged or not. After the removal of a service, it is
possible to have two consecutive NS nodes, the pNode and aNode, with
the same concurrent services. We refer to this situation as pNode being
soft equivalent to aNode. Meaning that the same concurrent services exist,
but they do not have necessarily the same resources reserved. In that case,
it is possible to remove aNode just by extending the duration of the pNode
until the end time of the aNode.

Once the aNode has been removed or merged with the pNode, it should
be checked whether the parent CA needs to be removed or not. More

5.4 OPERATIONS SUPPORTED BY THE NSTREE

precisely, when the parent CA is left with a single child, the CA node
needs to be replaced by that child.

Finally, once the NSTree has been rearranged and the corresponding
NS and CA nodes have been removed, it is necessary to progress the
release of the network resources upwards. That is, the resources released
at the aNode need to be released in the necessary parent CAs.

543 PROGRAMMATIC REMOVAL OF A NETWORK SNAPSHOT

The third operation supported by the NSTree is the programmatic
removal of a network snapshot. This operation occurs when an active
network snapshot reaches its end time, that is, when the network snapshot
expires, and it is described in Algorithm 10. At that moment, it is
necessary to remove the NS node representing the finalized network
snapshot, and update any CA directly or indirectly aggregating that NS
node. As in the case of a service removal, if by removing the NS node the
CA is left with a single child, the CA is replaced by the child.

By definition, the expiration of a network snapshot necessarily involves

the removal or the insertion of at least one service in the network.

However, it is also possible to have services that remain unchanged when
transitioning from a network snapshot to another. As a consequence, every
time a network snapshot expires, it is necessary to perform the operations:

e Check which services need to be relocated onto alternative paths
and trigger the necessary re-programming of the network devices

involved.

e Remove the services that do not longer exist in the next network
snapshot.

¢ Install the new services.

187

188

SUPPORT FOR ADVANCE RESERVATIONS

Algorithm 9 NSTree update for remove services algorithm

1: function NSTREEUPDATEREMOVE(service, NSTree)
2: aNode < root. firstChild

3: pNode < root

4: stop < false

5: while !stop do

6: if service exists in aNode then

7 RemoveService(service,aNode, pNode)
8: if service does not exists in aNode.nextNode then
9: stop < true

10: end if

11: end if

12: pNode < aNode

13: aNode < aNode.nextNode

14: end while

15: end function

16: function REMOVESERVICE(service, aNode, pNode)
17: parent <— aNode.get Parent

18: aNode.releaseResources()

19: if aNode is empty then

20: remove aN ode

21: else

22: if aNode.softEqual(pNode) then
23: aNode.merge(pNode)

24: end if

25: if aNode.softEqual(aNode.nextNode) then
26: aNode.merge(aNode.nextNode)
27: end if

28: end if

29: if parent has single child then

30: fromCa2N S(parent)

31: end if

32: while parent is CA do

33: update parent consumption vector
34: parent < parent.getParent

35: end while
36: end function

5.4 OPERATIONS SUPPORTED BY THE NSTREE

A

Igorithm 10 Programmatic removal of a network snapshot algorithm

10:
11:
12:
13:
14:
15:

1
2
3
4
5:
6
7
8
9

: function PROGRAMMATICREMOVALOFNS(NS)
parent < NS.getParent()
if parent is root then
if parent.getChildren().size > 1 then
root.nextNode <— NS.nextNode
else
root.nextNode < null
end if
else
if parent.getChildren().size == 2 then
fromCa2N S(parent)
end if
end if
parent.removeChildren(N S)
end function

189

Optimization Techniques

"Premature optimization is the root of all evil (or at
least most of it) in programming."
— Donald Knuth

Even if the path computation algorithm has been designed to avoid
some resources to be under-utilized while others remain over-utilized,
there are other optimization techniques that can be applied to improve
the network resource consumption and increase the SAR. As such,
this chapter presents two optimization techniques that exploit the
flow-based nature of SDN technologies, namely flow relocation and
flow disaggregation. First, the flow relocation technique leverages the
high programmability of SDN to dynamically relocate services into
alternative paths. Second, the flow disaggregation technique is used to
split original services into more granular sub-services easier to relocate,
taking advantage of the higher granularity available to forward the traffic
at the OpenFlow devices.

6.1 FLOW RELOCATION

Usually, core networks present a high degree of redundancy and resource
over-provisioning to deal with unexpected network failures in an efficient
manner. As a result, it is assumed that multiple paths exist between the
same pair of source and destination nodes. Furthermore, these paths may
be equally good in terms of QoS metrics, like hop count (the constraint

191

192

OPTIMIZATION TECHNIQUES

Before the flow relocation

I $3 (70%)

[a]

After the flow relocation

S1 (80%)

Figure 6.1.: Flow relocation.

that we use in our path computation algorithm), or other metrics such
as latency, cost, etc. However, even if load balancing techniques are
used to optimize the network resource consumption, the utilization of
routing algorithms can lead to the rapid congestion of the optimal paths.
Moreover, having different pairs of source and destination nodes may
cause uneven network resource utilization. As a result, service requests
may be rejected unnecessarily, therefore reducing the SAR of the system
[70].

6.1 FLOW RELOCATION

Algorithm 11 Flow relocation algorithm

1: procedure FLOWRELOCATION(service)
2: NS2BeUpdated <]

3: while Check do

4: if NS has not resources then

5: relocationAlternatives <— N S.alternatives()

6: while relocation Alternatives is not empty do

T alternative < relocationAlternative.peek()

8: vector <+ consumptionV ector(alternative)

9: if vector has resources for new service then
10: NS2BeUpdated.add(N S, vector, alternative)
11: break
12: else
13: relocation Alternatives.pop()

14: end if

15: end while

16: end if

17: if Service can be accepted in all NSs then

18: for all NS in NS2BeUpdated do

19: NS.consumptionVector < NS2BeUpdated.get(NS).getVector()
20: NS.optimal Paths < N S2BeUpdated.get(NS).get Alternative()
21: updateC A()

22: end for

23: end if

24: end while
25: end procedure

In some cases, the rejection of a service reservation request may be

a consequence of the order in which the prior services were requested.

Since the algorithm always tries to provide the best paths, inevitably
some resources become unavailable faster than others. Notwithstanding,
a different distribution of the services across the network may solve this
problem.

In such a scenario, the solution presented in this thesis includes
a mechanism to relocate the flows into alternative paths, called flow
relocation, which is described in Algorithm 11. This strategy is possible
thanks to the utilization of network snapshots, which allow the association
of the same service request to different paths through time.

The flow relocation algorithm leverages the fact that relocation
alternatives are generated when a service is accepted in a NS. When
during the check phase a service cannot be accepted into the NS with the

193

194

OPTIMIZATION TECHNIQUES

current arrangement of services, it takes the list of relocation alternatives
and checks whether with any of them the acceptance of the service is
possible. Since in order to accept the service all the affected network
snapshots must be analyzed, the relocation alternative for a given NS is
stored in a list, and it is only applied if the remaining NSs are also able
to allocate the service.

Figure 6.1 illustrates a network with three already accepted services
being provided through the shortest paths. When a new service demand
is received, and given that the current service distribution does not allow
the acceptance of this new service, the flows B and C are relocated onto
alternative paths, making possible the acceptance of the new service D.
It is worth noting that the flow relocation mechanism is embedded in
the solution in the Service Manager, and it is automatically implemented
when a service reservation demand is processed.

However, the utilization of the flow relocation mechanism entails some
challenges. First, although it may be necessary, it is undesirable to move
the services from one path to another. Even if OpenFlow provides the
means to achieve this with a minimum packet loss thanks to the priority-
based forwarding, which allows to install the alternative path with a
higher priority prior to the removal of the previous one, it needs to be
assumed that there will always be some losses. This is precisely why in
Algorithm 8 the paths are first computed using the information from
the CAs and then propagated towards the NSs. This way, the same
path is valid in consecutive network snapshots, hence, reducing the flow
relocation.

On the contrary, there are other situations in which the relocation of a
service may be done without any packet loss. That is the case of services
scheduled for the future that have not been installed in the network. In
such a case, when all the paths for the newly requested service are not
valid, a relocation alternative may be tested. This occurs first at the
check phase, since the consumption vector always reflects the available
resources for a given choice of paths. In case there is no room for the
service, once a NS node without the necessary resources is found, the
relocation of the services is tried, prior to the rejection of the service
request. In addition, the relocation of backup path neither entails any

6.2 FLOW DISAGGREGATION

packet loss, since resources are reserved but the associated paths are not
effectively installed in the network.

The flow relocation mechanism can also differentiate among different
types of services. There are some scenarios, though, in which the flow
relocation may only be applied to specific service types. For instance, the
system may differentiate between low priority services such as best effort
services which can be relocated and high priority services that due to
specific constraints as high availability or minimum latency do not accept
any flow relocation.

6.2 FLOW DISAGGREGATION

The second technique used in DynPaC to increase the SAR is the flow
disaggregation. In a nutshell, flow disaggregation splits an original service
into a set of smaller sub-services that are easier to relocate. Therefore,
this technique is tightly coupled to the previous one. As an example of
this technique, Figure 6.2 represents the case in which the service D is
only accepted in the network once the service B is disaggregated into two
smaller sub-flows easier to relocate.

Traffic splitting has always been used in TE. However, as pointed
out in the Section 2 of Chapter I, the traditional approaches present
some limitations related to unrealistic traffic splitting ratios and packet
reordering. Taking into account those limitations, the flow disaggregation
mechanism presented in this thesis takes into account the real-time

traffic pattern information that is available through the REST API.

Furthermore, it leverages the high granularity achievable at the OpenFlow
forwarding devices to split the original service into a less disruptive and
more realistic way.

The flow disaggregation mechanism, which is described in Algorithm
12, uses the interface towards the traffic analyzer to retrieve information
about the traffic pattern of the services. As such, once a service is about
to be discarded after the execution of the flow relocation mechanism, the
service manager gets the information of the services currently provided
in the network. This last point is important, since the flow relocation
mechanism relies on the traffic pattern, it can only be applied to services

actually running in the network.

195

196 OPTIMIZATION TECHNIQUES

Before the flow disaggregation

S1 (80%)

After the flow disaggregation

Figure 6.2.: Flow disaggregation.

Once it retrieves the list of services that can be disaggregated, the flow
disaggregation mechanism removes from the consumption vector of the
current NS the resources that are consumed by these services. Please note
that this step does not remove the services from the network elements.
Then, it checks whether the new service can be accepted in the current NS.
If negative, the service is automatically rejected. If positive, the algorithm
generates a set of disaggregation alternatives taking into account the set

6.2 FLOW DISAGGREGATION

of services that can be disaggregated and the disaggregation information
provided by the traffic analyzer for each of them.

Then, it checks if any of the disaggregation alternatives can be accepted
in the current NS. It is worth noting, that in order to consider a
disaggregation alternative valid, all the sub-services associated with all
the services contained in the disaggregation alternative must be accepted
in the NS. Then, if a disaggregation alternative is found and the service
can be accepted in the remaining NSs that it affects to, the current NS is
updated with the new consumption vector and optimal paths, so as the
affected CAs, and the new service is accepted.

Finally, once the new service has been accepted for a given
disaggregation alternative, the network elements are updated to remove
the original flow entries associated to the original services and install the

new flow entries of the sub-services.

197

198

OPTIMIZATION TECHNIQUES

A

Igorithm 12 Flow Disaggregation Algorithm

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

1
2
3
4:
5:
6.
7
8
9

: procedure FLOWDISAGGREGATIONALGORITHM(service)
selected Alternative < null
if currentN S has not resources then
disaggServices < Traf ficAnalyzer.getServices()
for all serviceD in disaggServices do
currentN S.consumptionV ector.remove(serviceD)
end for
if service can be accepted in currentNS then
disaggregationAlternatives < generateD As(disaggServices)
for alternative in disaggregationAlternatives do
if alternative is valid then
selected Alternative < alternative
break
end if
end for
if selected Alternative is not null then
if all remaining NSs can accept new service then
currentN S.load Alternative(alternative)
Updatenetworkelements
accept new service
end if
end if
end if
else
reject new service
end if
end procedure

Part IV

VALIDATION

Functional Validation

"No matter how slick the demo is in rehearsal, when
you do it in front of a live audience, the probability
of a flawless presentation is inversely proportional
to the number of people watching, raised to the
power of the amount of money involved."

— Mark Gibbs

This chapter presents the functional validation conducted to establish
that the DynPaC framework satisfies the objectives presented in Chapter
L.

It is worth noting that the implementation of the DynPaC framework is
part of the efforts conducted by the pan-European REN GEANT and the
homonym H2020 project to improve its current BoD service provisioning
tool. As a consequence, in addition to a set of experiments demonstrated
in international conferences, the tests conducted in a laboratory owned
by GEANT are described, which were used to validate the DynPaC
framework against a set of requirements proposed by their network

operations team.

7.1 SUITABILITY OF THE DYNPAC FRAMEWORK
FOR TE AND OPTIMIZATION TECHNIQUES

The first demonstration described in this section took place in the
FEuropean Workshop of Software-Defined Networks of 2015 held in Bilbao
[221]. This section describes the objectives of the demonstration, the

201

202

FUNCTIONAL VALIDATION

scenario that was used and the description of the experiments that were
performed.

OBJECTIVE

The main objective of this demonstration was to to prove that the
DynPaC framework is able to support the provisioning of resilient
L2 services with bandwidth guarantees. More precisely, the functional
objectives of this demonstration are listed below:

e Demonstrate the capability of the framework to program the
network devices at the specific times at which the service

reservations must start or expire.

¢ Demonstrate the creation of different network snapshots depending
on how the service reservations overlap with each other.

¢ Demonstrate the capability of the framework to install a backup
path for the affected services already provisioned in the case of a
link failure.

¢ Demonstrate the capability of the framework to relocate already
installed services into alternative paths, in order to support the
acceptance of a new service request that otherwise would be
rejected.

¢ Demonstrate the capability of the framework to retrieve information
from an external traffic analyzer and use that information to
disaggregate an original service into multiple sub-services easier to
relocate. As in the previous case, the goal is to accept a new service
demand that without this mechanism would be rejected.

SCENARIO

This section describes the scenario that was used to demonstrate the
functionalities supported by the DynPaC framework.

In order to implement the DynPaC framework, the ODP network
operating system was selected, since it was the most powerful SDN

7.1 TE AND OPTIMIZATION TECHNIQUES 203

@ listentoevents
DynPac (] oweactomensrmode
GUI
(] oven ot most

Traffic
Pattern
Analyzer

\ / \\
Flow Topology Switch -
[Programmer [Manager Manager VT
J

Figure 7.1.: Implementation of the DynPaC framework with ODP.

Figure 7.2.: Topology used for the EWSDN 2015 demonstration.

controller at that time. Figure 7.1 depicts the architecture of this first
implementation of the DynPaC framework, which re-uses the Topology
Manager, the Switch Manager and the Flow Rules Manager modules
already included in the ODP Hydrogen release. In addition, ODP was
extended with four custom modules and a REST API, where the logic
of the advance reservation mechanism and the techniques to improve the
network resource utilization were implemented.

Please note that in this first release of the DynPaC framework,
the architecture does not correspond exactly with the one presented
in Chapter IV. This is the consequence of a continuous refactoring
process of the software, which has allowed to improve the architecture
of the framework. In addition, the network snapshot database used in
this version operated in linear time, and the PCE did not implement

204

FUNCTIONAL VALIDATION

-
[

Figure 7.3.: Video of the EWSDN 2015 demonstration.

the path pruning techniques described in Chapter V. However, this
implementation represents the starting point of the DynPaC framework,
and the algorithms presented in this thesis have been designed to
increase the performance of the solution for its implementation on a real
deployment (scheduled for the end of 2017).

The demonstration was run on an Ubuntu 14.04 virtual machine with
4 GB of RAM and two dedicated cores of an Intel CORE i7. The network
was emulated using mininet, where the topology illustrated in Figure 7.2
comprised of four nodes and six OVS switches with OpenFlow 1.0 support
was used. As mentioned before, the controller selected for this first release
of the DynPaC framework was the Hydrogen release of ODP.

DESCRIPTION OF THE EXPERIMENTS

A video with the experiments conducted for this demonstration is
available through the following QR code (see Figure 7.3). The three
experiments that were conducted are described below:

e Resilience: this first experiment shows how the resilience
mechanism works in order to guarantee the service provisioning even
in the case of a link failure. It shows the primary path programmed
into the network devices and how in case of failure, the flow entries
associated to the primary path are deleted while the flow entries
associated to the backup path are installed.

e Advance reservations: the second experiment deals with advance
reservations. It demonstrates how the DynPaC framework generates
the different network snapshots to represent the network state over
time, each of which considers the different combinations of paths

7.2 MULTI-DOMAIN E2E INVOLVING OPENFLOW DOMAINS

valid for the concurrent services. This experiment consists of the
reservation of a service that generates a first snapshot, and how
the request of three different services from the same source to the
same destination but with different start and end times generate
three additional snapshots. This approach allows to reserve the same
resources for the three additional services, since they do not overlap

in time.

e Flow disaggregation: the third experiment shows how the
disaggregation algorithm works. This experiment consists of the
request of three services to the DynPaC framework that make
impossible the provisioning of a fourth service keeping the current
network condition. When the service manager detects that there
are no available resources to accept the service request, it uses the
flow disaggregation algorithm to find a set of sub-services in which
an already installed service can be divided to ease its relocation,
freeing enough resources in the network to accept the new service.

The three experiments were successful, and demonstrated the feasibility
of the DynPaC framework to support TE in SDN, and the viability
of utilizing the flow relocation and flow disaggregation techniques for

network resource optimization.

7.2 MULTI-DOMAIN E2E INVOLVING OPENFLOW DO-
MAINS

As mentioned in Section IV, DynPaC includes a REST interface that
allows its interconnection with external elements, such as orchestrators
and multi-domain agents. The demonstration that is described here took
place at the Supercomputing Conference of 2014 [222].

OBJECTIVE

As presented in [223], the connection-oriented multi-domain OpenFlow
is based on the utilization of an OpenFlow controller as the NRM. This
approach is consistent with the foundations of the NSF, since the NSI-CS
service remains technology agnostic, whereas the management of the intra-

205

206 FUNCTIONAL VALIDATION

REST

NSA @ NSA @ NSA
REST

DyrP: DyrP: DyrP:

o o To
&3 (]
_m T e S e~ . - T
L;IA]:’\E.I& 5 @ @ “VIDEO STREAM“ @ @ > & E 4
EHU-OEF GTS PSNC a

OF Domain 1 OF Domain 2 OF Domain 3

Figure 7.4.: Demo scenario for multi-domain OpenFlow based on NSI
CONTEST and DynPaC results.

domain topology and the setup of the paths inside the domain rely on
the OpenFlow controller. Furthermore, the NSI-CS protocol is flexible
enough to express services in terms of OpenFlow matching fields by simply
adding information to the Service Termination Point (STP) description.
It is worth remarking that the implementation of the connection-oriented
multi-domain OpenFlow was possible thanks to the work carried out by
two GEANT Open Call projects: NSI CONTEST and DynPaC.

In such a context, the main goal of this demonstration was to prove the
suitability of the DynPaC framework as NRM for OpenFlow domains.

SCENARIO

In order to prove the feasibility of the proposal, the following setup was
implemented and demonstrated at the Supercomputing 2014 conference
held in New Orleans. The demo scenario consisted of three domains
interconnected using RedIRIS, GEANT and PIONIER. [224] networks.

As depicted in Figure 7.4, one of the domains was located at the
University of the Basque Country (UPV/EHU), formed by 4 NEC IP8800
switches with OpenFlow 1.0. The second domain was a testbed created
via the GEANT Testbed Services (GTS) [225], where three OVSs were
instantiated in virtual machines provisioned in Amsterdam, Bratislava
and Copenhagen. Finally, a third domain was deployed at PSNC, the
Polish NREN, formed by 2 Juniper MX80 switches. Each of the domains
was controlled by a DynPaC controller acting as the NRM of that domain.
Finally, a client host was attached to the UPV/EHU domain and a server
host to the PSNC domain.

7.2 MULTI-DOMAIN OPENFLOW

NSI-CS
NSA
A
Java API
A
Topology Service |« > DynPaC ~ quugst and' > REST
Telnet Technology Telnet | Monitoring service
Manager
A
Open Daylight
DynPaC
NRM
OpenFlow 1.0

Figure 7.5.: Modules of a NRM for OpenFlow domains based on DynPaC.

Figure 7.5 describes all the involved modules and interfaces for the
establishment of multi-domain L2 connectivity services. On the one hand,

the NRM provides the discovery and provisioning functions to the NSA.

Moreover, through the Topology Service module, it exchanges information
about the available STPs with the rest of the Network Services Interface
(NSI) domains. It also provides a REST interface for the integration with
the GUI. Finally, it uses the same version of the DynPaC framework
that was described in the previous section for the provisioning of the 1.2
connectivity circuits in each of the OpenFlow domains.

On the other hand, the NRM is comprised of the DynPaC Technology
Manager that interconnects with the NSA using Java APIs. It uses
DynPaC for network resource discovery and local configuration to identify
the STPs of each domain. Then, it shares the NSI domain’s topology
with other domains and gets the actual global NSI topology. It also
redirects the client requests during the E2E connection, generates the
valid NSI XML request messages and uses the NSI-CS protocol to
make the multi-domain reservations. As mentioned before, the DynPaC
Technology Manager in each domain gets the local reservation requests

and triggers the service provisioning using the DynPaC REST interface.

Finally, it also monitors the status of the reservation request.

207

208

FUNCTIONAL VALIDATION

Figure 7.6.: Video of the Supercomputing 2014 demonstration.

DESCRIPTION OF THE EXPERIMENT

During the demonstration, a user requested a service using the GUI,
specifying the source and destination nodes, and the start and end times.
With that information, a script was launched that requested a VLAN
service from the client located in UPV/EHU to the server located in
PSNC. The reservation was requested first to the NSA located at PSNC,
available through a public IP address. After that initial request, the NSA
of PSNC made the same request to the GTS’s NSA, request that finally
reached the NSA of the UPV/EHU domain. With this procedure, it was
checked whether it was possible to deploy the requested service in all the
involved domains from the given source to the given destination or not.

Once the service request was accepted by all the domains, each NSA
communicated with the DynPaC framework of its corresponding domain
to request a path between the STPs of that domain, in order to provide
the requested E2E service.

At the start time of the service reservation, the DynPaC framework
automatically installed the necessary flows in the flow tables of all the
involved nodes within its domain. Once the path was established from the
client to the server, the establishment of the multi-domain L2 connectivity
circuit was demonstrated by streaming a video from a VLC server located
at the PSNC server. A video of this demonstration is available through
the following QR code (see Figure 7.6).

7.3 MULTI-DOMAIN E2E INVOLVING HETEROGENEOUS DOMAINS

7.3 MULTI-DOMAIN E2E INVOLVING HETEROGE-
NEOUS DOMAINS

Currently, the pan-European REN GEANT offers the BoD service
through the AutoBAHN provisioning tool [24], which allows to request
short term, high capacity and E2E connectivity services through a
web interface. Furthermore, AutoBAHN is compliant with the NSI-CS
protocol, which makes possible the establishment of multi-domain
connections. However, the AutoBAHN provisioning tool is not currently
prepared to operate over software-defined networks.

In such a scenario, the Joint Research Activity of the GEANT 4 H2020
project focused on Future Network Services has implemented a solution
based on the DynPaC framework to provide multi-domain BoD services
using SDN technologies that is compliant with the NSI-CS protocol.
This approach allows to clear the pace for a migration towards SDN
technologies that will allow to improve TE and QoS, while the strategic
connections with other RENs are kept intact thanks to the NSI-CS
support.

The SDN-based BoD service provisioning was demonstrated at the
IEEE Conference of Network Softwardization 2016, which was held in
Seoul. It is worth mentioning, that this demonstration was awarded with
the Best Demo Award of the conference. In addition, this demonstration
was also presented in the GEANT Symposium 2016, and in the Terena
Networking Conference 2016. As in the previous cases, this section
presents the objective of the demonstration, the scenario that was used
and the description of the demonstration.

OBJECTIVE

All in all, the main objective of this demo is to show how the
proposed solution is able to provide multi-domain BoD services involving
heterogeneous transport technologies, how the QoS constraints such as
rate limiting are enforced at the SDN domains and how network resilience
is supported satisfying the required QoS constraints.

209

210

FUNCTIONAL VALIDATION

. RestAP| 5
{ DynPaC app
Service “ otD
Manager Services
DynpacTopologyAbstr NetworkProgrammer
EdgePortService ApplicationService
TopologyService FlowObjectiveService

Figure 7.7.: Implementation of the DynPaC framework with ONOS.

SCENARIO

As mentioned before, in multi-domain scenarios, the DynPaC framework
is used as the NRM of OpenFlow domains. In the NSF, the NRM is the
element in charge of the intra-domain path computation, whereas the
NSA controls the multi-domain connection through the NSI-CS protocol.
The NSAs are also in charge of the topology information exchange, which
in this case is achieved by connecting each NSA to a central repository
where the intra-domain topology information is stored.

It is worth mentioning that, as described in [226], the DynPaC
framework went through a refactoring process after the demonstration
presented in the section before. The second release of the framework,
which was the one used for this demonstration, has been implemented as
an application running at the ONOS controller, which provides a basic
set of services and features, such as device, link or host discovery. The
details of the implementation used for this demonstration are depicted
in Figure 7.7, where the red modules are ONOS modules and the blue
modules are custom DynPaC modules. The set of algorithms and data
structures utilized in this second release are the same ones that were used
in the ODP implementation.

As depicted in Figure 7.8, the scenario used for the demonstration
consists of two OpenFlow-enabled domains interconnected through the
GEANT legacy BoD domain, which is an MPLS domain. The first
OpenFlow domain is located at the GEANT’s Cambridge premises and it

7.3 HETEROGENEOUS MULTI-DOMAIN

Corsa Corsa Juniper Junper ovs ;
MX MX oVvs
(Dom 1) SDN (Dom 2) Non-SDN (Dom 3) SDN
Cambridge Lab Géant BoD AMRES

Figure 7.8.: Scenario for multi-domain BoD service provisioning involving three
heterogeneous domains.

consists of two Corsa whiteboxes with rate limiting capabilities and two
Pica 8 virtual switch instances. The second OpenFlow domain is located
at the AMRES premises, the Serbian NREN, and it consists of five OVSs
interconnected to each other using a full mesh network. All the OpenFlow
devices used in both domains are OpenFlow 1.3 capable.

DESCRIPTION OF THE DEMONSTRATION

This demonstration consisted of the request of two BoD services from
a client located at the Cambridge premises to a server located at the
AMRES premises. The services were requested using the GEANT BoD
portal, where the following information was provided:

e Source domain.

e Source STP.

e Destination domain.
e Destination STP.

e Start time.

211

212

FUNCTIONAL VALIDATION

e FEnd time.

e Ingress VLAN.
e Egress VLAN.
o Bandwidth.

e Resilience mechanism (Gold or Regular).

In order to demonstrate the resilience capabilities of the DynPaC

framework, the following two services were requested.

o Gold service: a 50 Mbps service with a guaranteed backup path.

o Regular service: a 20 Mbps service without a guaranteed backup
path.

Once the services’ start time reached, the elements involved in the
three domains were successfully programmed, and the services appeared
as provisioned in the BoD portal. At that moment, it was possible to inject
traffic in both services using iperf, and to check with speedometer how the
rate limiting was successfully enforced at the Cambridge domain’s Corsa
whiteboxes.

Finally, in order to demonstrate the resilience capabilities of the
DynPaC framework, the link interconnecting the Corsa whiteboxes was
disabled, to force the installation of the backup path of the Gold service.
At that moment, it was possible to see that the OpenFlow switches at the
Cambridge domain were re-programmed and how the traffic exchanged
using the Gold service continued without any disruption, involving in this
case the Pica 8 switches, whereas the traffic exchanged using the Regular
service stopped. Please note that although it is possible to have Regular
services with restoration capabilities, it was decided not to compute any
backup path to demonstrate that resilience is a feature that can be
handled on a per service basis.

A video of the demonstration is available through the following QR
code (see Figure 7.9).

7.4 GEANT REQUIREMENTS TESTS

Figure 7.9.: Video of the NetSOFT 2016 demonstration.

74 GEANT REQUIREMENTS TESTS

As mentioned before, the development of the DynPaC framework has
been included as one of the use cases in the GEANT 4 project, in order
to use it as the NRM of OpenFlow domains in the future SDN-based
BoD service [226]. As such, this section presents the requirements that
the framework should satisfy, the scenario that was used to conduct the
tests and the obtained results.

741 REQUIREMENTS

The first step in the deployment of the future SDN-based BoD service
consisted of the specification of the functional requirements that the
SDN application acting as an NRM should satisfy. This process involved
GEANT network operators, users and BoD, SDN and NSI-CS specialists,
and the output is summarized in Table 7.1.

First, the automated network topology discovery was appointed as a
must have feature. Currently, AutoBAHN lacks this functionality; the

topology discovery is performed manually, which can be error prone.

Second, the identification of the STPs was also designated as a must
have feature. As mentioned before, in NSI-CS, the STPs represent the
points that the users can use to start or terminate a service. They consist

of a port, and optionally, of the range of available VLANs in that port.

The identification of the STPs is absolutely necessary because they are
the only network resources visible from the NSAs. Therefore, the BoD
solution must be able to identify the edge nodes of the network domain,
and only expose to the NSA the ports and VLANSs that the users can use
in each of them. In this regard, the SDN application must also provide

213

214

FUNCTIONAL VALIDATION

Table 7.1.: Requirements for an SDN-based NRM.

Requirement Description

Topology discovery ~ 'The NRM must be able to discover the intra-domain network topology automatically.

X . . The NRM must be able to identify the STPs of the intra-domain topology, as a set of of ports and
STP identification)
the associate VLAN range.

. The NRM must be able to detect changes in the intra-domain topology and react upon those changes
Network updates . e
to provide resilience.

L2 VLAN circuit The NRM must be able to install an end-to-end L2 VLAN circuit across the nodes that conform the
provisioning path, since it is the type of circuit provided by most BoD provisioning tools.

VLAN Translation The NRM must be able to support VLAN translation in order to optimize the resources utilization.

The NRM must be able to compute the paths taking into account the state of the network and the

eful PCE
Stateful PC available resources (VLANs and bandwidth).

Time-dependent The NRM must keep track of how the resources’ consumption evolves over time in order to support

TED the scheduling functionality.

Ad The NRM must support advance service reservations in order to optimize the resources utilization;
vance

. therefore, the associated circuits must only be provisioned from the service start time to the service
reservations .
end time.

Rate limiti The NRM must be able to add, modify and delete per-flow meters in the network devices in order
ate limitin,
9 to enforce the SLA subscribed between Géant and the user in terms of maximum bandwidth.

The NRM must have a well-defined interface to communicate with the NSA. This interface must
Interface towards

NSA support the advertisement of STPs (port and available VLAN range) and provide the means to
an

check, add, remove, modify, provision and release a service reservation.

an interface towards the NSA, to expose the aforementioned STPs, to
support the request of new service demands from the NSA and to permit
the NSA to handle the life-cycle of the services.

It was also agreed that the solution must also be able to detect network
updates. Since one of the limitations that must be solved in AutoBAHN is
the lack of failure recovery capabilities, the SDN-based BoD solution must
be able to automatically detect network changes. This feature is necessary
to guarantee that in case of failure, the SDN application implementing the
NRM for the SDN domain will be able to keep provisioning the services
through alternative paths. Furthermore, the SDN application requires
updated topological information in order to compute the optimal paths
and guarantee the SLAs subscribed with the users.

In the provisioning of the BoD service, the SLA subscribed with the
user requires the SDN application to have an up-to-date knowledge of the
network resources consumed over time. BoD services are reserved for a
certain period of time, to be delivered at the present moment or in the
future. Therefore, the solution must support advance reservations and
the automatic programming of the network devices at the specified times.

7.4 GEANT REQUIREMENTS TESTS

As a consequence, this requires an stateful PCE with a time-dependent
TED to keep track of the resources consumed or reserved by the scheduled
services. This would allow the computation of the optimal paths for the
new service demands, taking into account the available bandwidth and
VLANS in the network.

In addition, the BoD service must ensure that the user is able to obtain
the requested bandwidth at all times. As a consequence, the network
devices must be able to limit the bandwidth associated to each flow
independently, to enforce the QoS subscribed between GEANT and the
users. The network devices must support rate limiting, and the NRM
must have the capability to add, delete and modify the meters.

Finally, the multi-domain BoD service provisioning requires L2 VLAN
circuits in each of the domains involved. Moreover, as supported in
AutoBAHN, the SDN-based solution must be able to handle VLAN
translation. This feature not only eases the interconnection between
domains, as different VLANs can be use in each domain, but it also

improves the network resources utilization.

742 SCENARIO

The scenario used to conduct the functional validation was deployed at
GEANT’s premises, and it is illustrated in Figure 7.10. The list below

summarizes the equipment that was used:

e Corsa whiteboxes: Two Corsa 6400 whiteboxes with rate limiting
capabilities. Corsa is a novel SDN equipment manufacturer that uses
customized FPGAs to construct pure OpenFlow datapaths with
OpenFlow 1.3 support. The Corsa whiteboxes support a wide range
of pipelines, that are delivered to satisfy the needs of specific use
cases. As such, Corsa provided a custom pipeline to support the
BoD use case, including support for VLAN translation and rate

limiting.

e Pica8: In order to increase the redundancy of the network, two
virtual instances of a Pica8 were included in the deployment. The
Pica8 virtual switches support OpenFlow 1.3, but do not have rate

limiting capabilities.

215

216

FUNCTIONAL VALIDATION

Control VM

&

Host A

100 Mbps
S

Figure 7.10.: Cambridge laboratory deployment for functional validation.

e Host VMs: Two virtual hosts with 1 GB of RAM were created in
order to inject and receive traffic. The two hosts were attached to
the Corsa whiteboxes, since they are the only devices in the network
with rate limiting capabilities.

¢ Controller VM: A virtual machine with 4 GB of RAM was
deployed in order to run the ONOS controller, the DynPaC
application and the NSA of the domain.

743 RESULTS

This section summarizes the results of the experiments conducted in the
Cambridge laboratory in order to test the suitability of the DynPaC
framework to act as the NRM of the future SDN-based BoD service. On
the one hand, Table 7.2 summarizes the test results, marked with v if
the test was successful and marked with X if the test failed, and identifies
which of the requirements proposed by GEANT it validates. On the other
hand, the remaining tables of this section present the procedures used to
conduct the tests and the obtained result.

Table 7.2.:

7.4 GEANT REQUIREMENTS TESTS

Summary of the functional validation tests.

Test Topology STP

No. Discovery Identification

Interface Network Advance Stateful Time Rate VLAN VLAN
to NSA Updates Reservation PCE TED Limiting circuit translation

1 v

2

Table 7.3.: Test 1 - DynPaC topology abstraction.

Procedure

1. Install DynPaC and check that the topology is retrieved
at start time and that the graph is abstracted correctly.

Input

Number of hosts, devices and links and how they are
interconnected.

Pass / Fail Criteria

Pass criteria: The topology is abstracted correctly and the
maximum consumption vector is computed correctly.

Fail criteria: (1) The topology is not retrieved. (2) The

topology is retrieved but the maximum consumption vector
is not correctly computed.

Expected output

1. Check at ONOS that all the devices are detected.
2. Check at ONOS that all the hosts are detected.
3. Check at ONOS that all the links are detected.

4. Activate the DynPaC application.

5. Check that DynPaC abstracts the topology correctly
and that the maximum consumption vector represents the
maximum available bandwidth in each undirected link.

Observations

No remarkable observations

Status

Success

217

218 FUNCTIONAL VALIDATION

Table 7.4.: Test 2 - Programmatic VLAN circuit establishment.

1. Reserve Service A with VLAN 10 from startTime to
endTime.

2. Check at the ONOS controller that the flow entries have
been installed in the flow tables of the Corsa whiteboxes at

start Time.
3. Generate tagged traffic and check that the traffic is
Procedure
correctly received.
4. Check at the ONOS controller that the flow entries have
been removed from the flow tables of the Corsa whiteboxes
at the endTime.
5. Check that the traffic is no longer received at the
destination node.
Input Ports and switches where the two hosts are connected.

Pass criteria: The tagged traffic is received at the
destination node only from startTime to endTime.

Pass / Fail Criteria Fail criteria: (1) The tagged traffic is not received at the
destination node from startTime to endTime. (2) The
traffic is received before the startTime. (3) The traffic is
received after the endTime.

1. Check at ONOS that the flow tables of the Corsa
whiteboxes are empty before the startTime.

2. Check at ONOS that the flow entries for the VLAN 10
have been installed in the Corsa whiteboxes at startTime.

3. Generate tagged traffic using iperf at the source node.
Expected output 4. Check at the destination node that the tagged traffic is
received correctly.

5. Check at ONOS that the flow entries for the VLAN 10
have been removed from the Corsa whiteboxes at endTime.

6. Check at the destination node that the tagged traffic is
no longer received.

Observations No remarkable observations.

Status Success

7.4 GEANT REQUIREMENTS TESTS 219

Table 7.5.: Test 3 - Programmatic VLAN circuit establishment with VLAN

translation.

Programmatic VLAN circuit establishment with VLAN translation

1. Reserve Service A with an ingress VLAN 10 and egress
VLAN 20 from startTime to endTime.

2. Check at the ONOS controller that the flow entries have
been installed in the flow tables of the Corsa whiteboxes at
startTime.

3. Generate traffic with the VLAN 10 and check that the
traffic is correctly received with the VLAN 20.

4. Check at the ONOS controller that the flow entries have
been removed from the flow tables of the Corsa whiteboxes
at the endTime.

Procedure

5. Check that the traffic is no longer received at the
destination node.

Input Ports and switches where the two hosts are connected.

Pass criteria: The traffic is received at the destination node
only from startTime to endTime and the VLAN tag has
been changed.

Fail criteria: (1) The tagged traffic is not received. (2) The
traffic is received before the startTime or after the endTime.
(4) The traffic is received with the VLAN 10.

1. Check at ONOS that the flow tables of the Corsa
whiteboxes are empty before the startTime.

2. Check at ONOS that the flow entries for the VLAN 10
have been installed in the Corsa whiteboxes at startTime
and an action to translate the VLAN is included.

Pass / Fail Criteria

3. Generate tagged traffic using iperf at the source node
Expected output with the VLAN 10.

4. Check at the destination node that the tagged traffic is
received correctly with the VLAN 20.
5. Check at ONOS that the flow entries for the VLAN 10

have been removed from the Corsa whiteboxes at endTime.

6. Check at the destination node that the tagged traffic is
no longer received.

Observations No remarkable observations.

Status Success

220

FUNCTIONAL VALIDATION

Table 7.6.: Test 4 - Rate limiting.

1. Reserve Service A with 10 Mbps of peak bandwidth with
VLAN 10.

2. Reserve Service B with 20 Mbps of peak bandwidth with
VLAN 20.

Procedure 3. Check at the ONOS controller that the flow entries have
been installed in the flow tables of the Corsa whiteboxes.
4. Check at the Corsa whiteboxes the created meters.

5. Generate traffic for both VLANs and check that it is
limited at the Corsa whiteboxes.

Input Ports and switches where the two hosts are connected.

Pass / Fail Criteria Pass criteria: The traffic of each flow is correctly limited.

Fail criteria: The traffic of each flow is not correctly limited.
1. Check at ONOS if there is a flow entry for the VLAN 10
whose output is a meter.

2. Check at ONOS if there is a flow entry for the VLAN 20
whose output is a meter.

Expected output 3. Check at the Corsa whiteboxes that the referenced meter
is the correct one.
4. Inject traffic for each VLAN using two iperf clients.

5. Check at the destination host that the traffic of each
VLAN is limited to the specified values.

In order to be able to operate with meters at the Corsa
devices it has been needed to implement a driver at the
Observations ONOS controller specific to the pipeline utilized in the use
case. This driver was developed by Corsa with the input of
the GN4-1 project members.

Status Success

7.4 GEANT REQUIREMENTS TESTS

Table 7.7.: Test 5 - Port status notification.

1. Tear down one of the ports of the Corsa whitebox.

2. Check if the controller receives a notification about the
new port status.

Procedure
3. Restore the port at the Corsa whitebox.
4. Check if the controller receives a notification about the
new port status.

Input None.

Pass / Fail Criteria

Pass criteria: The ONOS controller is notified about the
new port status.

Fail criteria: The ONOS controller is not notified about the
new port status.

Expected output

1. Check if after tearing down the port the switch sends the
OFPT_PORT_STATUS message.

2. Check if ONOS receives correctly the port status
notification.

3. Check if after restoring the port the switch sends the
OFPT_PORT_STATUS message.

4. Check if ONOS receives correctly the port status
notification.

Observations

No remarkable observations.

Status

Success

Table 7.8.: Test 6 - Interface towards NSA.

Procedure

1. Request a services using the REST interface.

2. Check if the service has been requested correctly.

Input

API calls of the REST interface.

Pass / Fail Criteria

Pass criteria: The service is requested correctly.

Fail criteria: The service is not requested correctly.

Expected output

1. Use the REST API to request a new service.

2. Check at the ONOS log if the request has been received
correctly..

Observations

No remarkable observations

Status

Success

221

222 FUNCTIONAL VALIDATION

Table 7.9.: Test 7 - STP discovery.

STP discovery

1. Start ONOS and install the DynPaC application.
2. Check if DynPaC identifies correctly the set of STPs.

Procedure

Input Ingress and egress nodes and ports in the topology.

Pass criteria: The STPs are correctly identified by DynPaC.

Pass / Fail Criteria Fail criteria: The STPs are not correctly identified by

DynPaC.

1. Start ONOS and activate the DynPaC application.
Expected output 2. Check using the DynPaC CLI if the STPs are correctly

identified.
Observations No remarkable observations
Status Success

744 CONCLUSIONS

In summary, it can be concluded that the DynPaC framework satisfies the
requirements identified by the GEANT’s network operations teams for the
future SDN-based BoD service with multi-domain capabilities. Through a
set of demonstrators in international conferences, it has been proven that
the framework is able to provide resilient L2 services where the maximum
reserved bandwidth is enforced through meters at the OpenFlow devices.
The framework can operate as a stand-alone application for a single
domain, or act as a NRM in multi-domain scenarios thanks to the
REST API that it exposes, which can be further used by other kinds
of orchestrators [227]. In addition, the framework has been tested in a
laboratory with real OpenFlow devices, in order to check if the solution
would work in the future SDN-based BoD deployment.

Performance Evaluation

'T am putting myself to the fullest possible use,
which is all T think that any conscious entity can
ever hope to do."

— HAL 9000 (2001: A space odissey)

This chapter presents the performance evaluation conducted to validate
the suitability of the DynPaC framework and the data structures and
algorithms it relies on to handle advance reservations. As such, a set
of experiments have been designed to evaluate the performance of the
solution in terms of the time required to accept or reject a new service
reservation request (tsetup) and the SAR, since these are the most common
parameters used to evaluate advance reservation systems.

First, the impact of the number of alternative paths on the network
resource utilization that is achieved and the setup time are evaluated
using different topologies, which has allowed to study the suitability of
the path computation strategy. Second, the impact of the number of links
in the network has been measured, to study its impact on the setup time
and check whether the topology abstraction used in DynPaC is efficient or
not to handle advance reservations. In addition, an analysis of the effect
of the requested peak bandwidth has been conducted, to evaluate the
effectiveness of the check and update algorithms at the time of accepting
a new service reservation depending on its size. Finally, the effect that
the aggregation of multiple NSs into CAs has in the admission control

process has been analyzed, where multiple values of § have been used and

223

224

PERFORMANCE EVALUATION

the setup time and the SAR have been measured in order to state the
suitability of the node aggregation policy.

8.1 ANALYSIS OF THE IMPACT OF THE NUMBER OF
ALTERNATIVE PATHS IN THE SETUP TIME AND
THE RESOURCE UTILIZATION

As described in Chapter V, the path computation is handled by means
of two different algorithms. Firstly, the path pre-computation algorithm
generates a set of alternative paths. Secondly, the on-demand path
computation algorithm randomizes the set of alternative paths taking
into account their hop number in order to enhance the network resource
utilization. With such a strategy, the first experiment aims to state the
impact of the number of alternative paths generated on the path pre-
computation phase on the achieved network resource utilization, so as in
the admission control process.

For this experiment, five different topologies have been used: four full
mesh topologies of 5, 6, 7 and 8 nodes respectively and the topology
of the ESNet network, which consists of 22 nodes and 66 links. In each
topology, a set of concurrent services for the same period of time have
been requested. With this approach the analysis gets simplified, since a
single network snapshot is created where all the requested services coexist
with each other.

It must be taken into account that for each topology the number of
concurrent services has been selected to ensure the over-subscription of
the overall network capacity. This way, it has been possible to study
whether the number of alternative paths has an impact or not in the
overall network resource utilization.

In order to conduct the tests, an Ubuntu 14.04 virtual machine with
6 GB of RAM and an Intel CORE i7 vPro processor has been used.
The DynPaC framework has been implemented as an application running
in ONOS 1.7 and the network has been emulated using mininet, where
the switches are OVSs with OpenFlow 1.3 support. As a consequence,
unlike when simulation tools are utilized, the experiments may have
been affected by several factors of the deployment setup, such as the
performance of the machine that has been used to run the experiments,

8.1 IMPACT OF THE NUMBER OF ALTERNATIVE PATHS

the utilization of a virtual machine, both the host and the guest operating
systems or the performance of the ONOS controller, where the DynPaC
application runs concurrently with multiple applications. In such an
environment, although the obtained results are consistent, there are
several values that excel when compared to the remaining values, which
according to the author of this thesis, is a consequence of the setup that
has been used.

8.1.1 FULL MESH NETWORKS

The first experiment has been conducted over a 5 node full mesh network,
where 200 concurrent services with random source and destination nodes
to ensure an even utilization of the network resources, and with a peak
bandwidth ranging from 300 Mbps to 1 Gbps on steps of 50 Mbps have
been requested. Each test has been repeated 30 times for four different
values of njsax, which limits the number of hops that the generated
alternative paths can have.

The obtained results are depicted in Figure 8.1, where the following
information is presented: (1) the median values of the on-demand path
computation time (tondemand) (see Figure 8.1a), (2) the check time (¢cpecr)
(see Figure 8.1b), (3) the update time (Tipgate) (see Figure 8.1c), (4)
the overall setup time (fetup), computed as the sum of the on-demand
path computation time the check time and the update time, as expressed
in equation 8.1 (see Figure 8.1d), (5) the number of rejected services
(see Figure 8.1¢e), (6) the SAR (see Figure 8.1f), (7) the overall available
bandwidth (see Figure 8.1g) and (8) the probability of rejecting a given

service (see Figure 8.1h) depending on the number of concurrent services.

tsetup = tondemand t teheck + tupdate (81)

The same experiment has been repeated for the remaining full mesh
topologies. On the one hand, for the 6 node full mesh network, depicted
in Figure 8.2, 350 concurrent services have been requested, while for the
7 node full mesh network, depicted in Figure 8.3, 400 concurrent and for
the 8 node full mesh network 600 concurrent services have been requested

225

226 PERFORMANCE EVALUATION

respectively. In all the cases a peak bandwidth ranging from 300 Mbps to
1000 Gbps on steps of 50 Mbps have been used!.

1 Please note that the time required to accept or reject the first requested service is
higher since the NSTree has to be created.

8.1 IMPACT OF THE NUMBER OF ALTERNATIVE PATHS

53\/\‘_‘/\A_
EIL =

0 20 40 61 80 100 120 140 160 180
Mo. Concurrent Services

200

(a) On-demand path computation

time.

0 20 40 60 80 100 120 140 160 180
Mo. Concurrent Services

(c) Update time.

200

0 20 40 61 80 100 120 140 16O 18D
Mo. Concurrent Services

(e) No. Rejected services.

9000

200

000

7000

000

5000

4000

3000

2000
e \\

z

H i i H T
0 20 40 60 80 100 120 140 B0 180 200

Mo. Concurrent Services

(g) Overall available bandwidt

Figure 8.1.: Effect of the path diversity in a 5 node full mesh network.

h.

Time (ms)

0 20 40 61 80 100 120 140 16D 180 200
No. Concurrent Services

(b) Check time.

; D
0 20 40 60 80 100 120 140 B0 180 200
No. Concurrent Services

(d) Setup time.

100

SAR

0 20 40 B0 80 100 120 140 1B 180 200
No. Concurrent Services

(f) Service Acceptance Ratio.

Probailiy of rejection

d i i i
0 20 40 60 80 100 120 140 B0 180 200

No. Concurrent Services

(h) Prob. service rejection.

227

228 PERFORMANCE EVALUATION

35 9
n=1 n=1
n=2 8 n=2
Ed i n=4
n=5 7 n=5
Py
B
20 =
£ £s
2 g
£ 15 =4
3
10
2
5
‘ A A
0 0
1) 50 100 150 200 250 300 350 1) 50 100 150 200 250 300 350
Mo. Concurrent Senvices Mo. Concurrent Services

(a) On-demand path computation (b) Check time.

time.
2 5
n=1 ne 1
18 n=2 0 n=2
n=4 n=4
1 n=5 ES n=5
14
El
-1 -
z g
o 10 o
3 3
£ £
£ S
15
6
N 0
2 5 A
o ,
0 50 0 10 20 20 w0 0 0 50 00 10 20 20 w0 %0
No. Cancurrent Senices No. Cancurrent Senices

(c) Update time. (d) Setup time.

140 100
20 %
El
100
£ 8
& e
H g om
] 3
3 8
« 75
2
0
! e
n=2
2 - net
n=5
0 & L
o w0 18 20 25 W0 3 o 0 1@ 20 25 W0 3
Ne. Concurrent Services No. Coneurrent Services
(e) No. Rejected services. (f) Service Acceptance Ratio.
10000 1
9000 09 n=t
n=2
6000 08 n=4
n=5s
7000 _o7
6000 S
5000 s
4000 204
3000 Bk
2000 02
1000 01
) ; ; ; ;) an A ; ; ;
o s 0 18 20 2% w0 3 o s 10 180 20 2% 0 30
Ne. Concurrent Services No. Coneurrent Services

(g) Overall available bandwidth. (h) Prob. service rejection.

Figure 8.2.: Effect of the path diversity in a 6 node full mesh network.

8.1 IMPACT OF THE NUMBER OF ALTERNATIVE PATHS 229

120

100

Time (ms)

7AY
0 s 10 150 200 260 300 30 400
Mo. Concurrent Services

(a) On-demand path computation

time.

0 s 10 150 200 260 300 380 400
Mo. Concurrent Services

(c) Update time.

No. Rejected Services

] s 10 150 200 260 300 30 400
Mo. Concurrent Services

(e) No. Rejected services.

10000

9000

000

7000

000

5000

4000

3000

2000

1000

0 i i
0 s 10

150 200 260 300 30 400
Mo. Concurrent Services

(g) Overall available bandwidth.

P
n=1
n=2
n=5
x n=6
15
g
£
T
5
E A A
o
50

0 100 10 200 260 300 30 4m

No. Concurrent Services

(b) Check time.

120

100

Time (ms)

L A

0 s 10 150 200 260 300 380 400
No. Concurrent Services

(d) Setup time.

100

SAR

] s 10 150 200 260 300 380 400
No. Concurrent Services

(f) Service Acceptance Ratio.

Probailiy of rejection

i i |
0 s 10 150 200 260 300 380 400

No. Concurrent Services

(h) Prob. service rejection.

Figure 8.3.: Effect of the path diversity in a 7 node full mesh network.

230 PERFORMANCE EVALUATION

a0 140
n=1
700 n=3
- 120
600 n=?
10
500
7 7 @
£ £
= 2
5 5
£ S|
Ery
0
2m
100 L »
0 AN 0
0 10 20 30 40 500 600 0 10 200 30 400 500 600
No. Cancurrent Senices No. Cancurrent Senices

(a) On-demand path computation (b) Check time.

time.
50 900
1
4% 3 800
5
o 7 700
k]
00
s .
z E sm
o 25 o
£ £
£ £ a0
E o =
3m
15
0 2m
5 100
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
No. Concurrent Seices No. Concurrent Senices

(c) Update time. (d) Setup time.

200 100
180
95
160
, 140 0
; 120
H 85
3 100 %
: g
> 0
o 80
= 7%
40
70
20
o B5 L
a 100 200 300 400 500 600 a 100 200 300 400 500 600
No. Concurrent Services No. Concurrent Services
(e) No. Rejected services. (f) Service Acceptance Ratio.
10000 1
9000 09
8000 08
2 7000 _ 07
= 2
= 6000 8 05
2 5o 08
2 4000 E 04
= &
z 3000 03
2000 02
1000 a1
o ; ; ; h o A ; ;
o 100 200 400 500 600 o 100 200 300 400 500 600
No. Concurrent Services No. Concurrent Services

(g) Overall Available Bandwidth. (h) Prob. service rejection.

Figure 8.4.: Effect of the path diversity in a 8 node full mesh network.

8.1 IMPACT OF THE NUMBER OF ALTERNATIVE PATHS

Table 8.1.: Summary of the results obtained for the full mesh topologies.

Topology naax Meant, (ms) 95% Conf Min t, (ms) Max t, (ms) Ser (95%) SAR (%)

1 0,88 0,12 0,76 1,00 163 88,36
2 1,20 0,23 0,98 1,43 141 97,76
Mesh 5 !
3 1,63 0,42 1,22 2,05 137 98,80
4 1,89 0,46 1,43 2,36 138 98,80
1 1,05 0,20 0,84 1,25 243 89,79
2 1,29 0,26 1,03 1,55 208 98,76
Mesh 6
4 1,92 0,34 1,58 2,26 204 98,65
5 2,66 0,52 2,15 3,18 205 99,20
1 0,98 0,10 0,87 1,08 347 88,07
2 1,21 1 1, 1, 2 .92
Mesh 7 , 0,15 06 36 87 98,9
5 6,70 0,71 6,00 7,41 287 99,56
6 10,94 1,38 9,56 12,32 284 99,61
1 0,92 0,10 0,83 1,02 462 88,20
3 2,08 0,41 1,66 2,49 377 99,48
Mesh 8 - - -
5 22,50 2,08 20,41 24,58 376 99,62
7 158,63 4,84 153,79 163,47 380 99,62

8.1.1.1 DISCUSSION

Table 8.1 summarizes the values obtained for the different topologies
analyzed in this section. On the one hand, the average median tgetup
expressed in ms, where the 95% confidence interval and the minimum
and maximum values are also included are represented depending on the
value of np;4x. On the other hand, the number of concurrent services at
which a 95% of the network resource utilization is achieved is indicated
(Ser (95%) in the table), so as the SAR, expressed as a percentage.
Regarding the tctyp, it is worth mentioning that it is clearly affected by
the number of alternative paths that are computed. This is the result of all
measured times, tondemand, teheck and typdate, being affected by the number
of alternative paths. Notwithstanding, as it is appreciated specially in
Figures 8.4b and 8.4c, the impact on the f.pecr and fypgate is minimal,
within the fraction of the milliseconds, compared to the impact in the
tondemand- Lhe reason is on the kind of operation that is performed in
each phase. On the one hand, both tcpecr and typdate require comparison
operations on the array used to represent the consumption vector, which
are not computationally intensive as it will be further explained in
Section 8.2. On the other hand, the on-demand path computation time

is heavily affected by the number of alternative paths, given the fact

231

232

PERFORMANCE EVALUATION

that the randomization process needs to be applied over the whole set of
alternative paths. Therefore, the higher the number of alternative paths
is the higher the ,,4emand is-

It is worth mentioning that the lower times achieved in the tetyp
when the number of concurrent services increases is the result of the
increasing number of rejected services. This is a consequence of splitting
the admission control process in two different phases. Given that for
the rejected services the update procedure is not executed, the tgerup
decreases. As it is appreciated in Figure 8.4c, the number of concurrent
services at which the value of t,c4,,, decreases correlates with the number
of concurrent services at which the services start to be rejected (see Figure
8.4e).

As appreciated both in the graphics and in Table 8.1, the network
resource utilization gets improved when the nasax is higher than one.
This can be concluded by looking at the concurrent service number at
which the 95% of the network utilization is achieved. In general, the
optimization of the network resource utilization is achieved earlier when
nyax is higher than one, resulting in a higher SAR at that precise
moment. That is, the probability of the services being accepted in the
network increases, resulting in an increase of around the 10% in the SAR
to achieve the desired network resource utilization.

The enhancement that is achieved in terms of network resource
utilization thanks to the pre-computation of multiple alternative paths in
an 8 node full mesh network is also depicted in Figure 8.5. In the figure,
the network resource utilization that is achieved depending on the service
rejection probability is represented as a percentage of the overall network
capacity that is used. As illustrated, by a certain rejection probability,
the network resource utilization that is achieved when values of nasax
higher than one are used is always better than the one achieved with a
single path alternative.

However, there is a point in which the number of rejected services is
equal regardless of the value of nps4x. This is appreciated in the figures
where the number of rejected services is depicted, it corresponds with
the concurrent service number at which all the lines intersect. From that
moment, in the case of ny;ax equal to 1, the SAR obtained is better
than the SAR obtained for higher values of njs4x. This is a consequence

8.1 IMPACT OF THE NUMBER OF ALTERNATIVE PATHS

Utilizat
N %

Netwark R
T
& ||||

05
Rejection probability

Figure 8.5.: Overall network resource utilization for a 8 node full mesh topology.

0 1
1 2 3 4

ml 0,030429006 0,020744266 0,033628394 0,043158554
m2 0,037065808 0,049577254 0,097917715 0,641515842
3 0,063835985 0,296881959 0,556040795 2,918847455
4 0,089557596 0,327871664 1,821276327 7,558661897

Figure 8.6.: Path pre-computation time.

of having almost a 100% of probability of rejecting new services when
higher values of nyr4x are utilized, since the network resource utilization
is already optimized. Therefore, the values obtained from that moment
are not representative, although the author of this theses has decided to
depict them to illustrate the phenomena.

Nevertheless, there is no appreciative improvement when more than two
hop path alternatives are utilized. This is consistent with the research
conducted by Microsoft for the design of SWAN [129], where they
concluded that for their use case, a set of 15 alternative paths were
sufficient to achieve the optimal network resource utilization. Given the
fact that with the variation of the nj;4x is hard to state at which number
of path alternatives the highest resource utilization is achieved, a more

fine grained evaluation will be performed with the ESNet topology.

233

234

PERFORMANCE EVALUATION

Notwithstanding, taking into account the low impact achieved for these
kinds of network in terms of resource utilization when more than two
hops’ alternative paths are computed, it is worth studying the impact
that generating such alternatives has in the solution. As illustrated in
Figure 8.6, the time required to compute all the possible paths up to
nyAx hops increases exponentially. Even if the number of alternatives is
limited, computing all the alternatives up to ny;4x takes a considerable
amount of time, which is dependent on the number of nodes and links in
the network. In fact, the time required to compute all the alternatives for a
10 node full mesh network takes an unacceptable time for the requirements
of the system, and the amount of alternatives generated also results in an
unacceptable memory consumption.

Therefore, it can be concluded that taking into account that
higher number of alternative paths impacts negatively on the memory
consumption of the solution, the amount of alternative paths should
be kept to the minimum. The amount of alternative paths should be
tailored to suit the requirements of the use case, and take into account
the resilience mechanisms implemented by the solution. In this regard,
it is worth noting that no resilience mechanisms have been utilized to
conduct the tests, in order to simplify the analysis. Nevertheless, it is
worth remarking that the fsesy, in all the cases is in the order of the
milliseconds. Taking into account that the establishment of these kinds
of circuits in RENs can even require several days, it is a remarkable
improvement.

8.1 IMPACT OF THE NUMBER OF ALTERNATIVE PATHS

LIGO PNWG PNNL
== =0

PANTEX

== sna

y I @kep-asa

ELPA HOUS seel@ © @sesem

Figure 8.7.: Topology of the ESNet network.

8.1.2 ESNET NETWORK

Since with the variation of np;ax the set of alternative paths does not
increase linearly, an additional constraint has been added to the path pre-
computation algorithm used for the ESNet topology, which is depicted in
Figure 8.7. In this case, the algorithm finds the set of K-shortest paths
that do not exceed the maximum ny;4x hop number.

In this case, the tests have been conducted for different values of K,
that is, of alternative paths. On the one hand, Figure 8.8 depicts the cases
where the set of alternative paths ranges from 1 to 4, whereas Figure 8.9
illustrates the cases where the set of alternative paths has been limited
to 1, 10, 100 and 1000. For each test, 200 services have been requested,
with a peak bandwidth ranging from 300 Mbps to 1 Gbps in steps of 50
Mbps.

235

236

PERFORMANCE EVALUATION

0 20 40 61 80 100 120 140 160 180 200
No. Concurrent Senices

(a) On-demand path computation

time.

Time (ms)

L

0 20 40 60 80 100 120 140 B0 180 200
No. Concurrent Senices

(c) Update time.

No. Rejected Services

0 20 40 61 80 100 120 140 160 18D 200
No. Concurrent Senices

(e) No. Rejected services.

10000

9000

8000

7000

6000

Overall available BW (Mhps)

5000

\
mnnns

i i i i
20 40 B0 80 100 120 140 160 180 200
No. Concurrent Senices

(g) Overall available bandwidth.

Time (ms)

0 20 40 61 80 100 120 140 160 180 200
No. Concurrent Senices

(b) Check time.

0 H
0 20 40 60 80 100 120 140 B0 180 200
No. Concurrent Senices

(d) Setup time.

0 20 40 B0 80 100 120 140 160 18D 200
No. Concurrent Senices

(f) Service Acceptance Ratio.

05

Probaility of rejection

0 f i i H i i i i
0 20 40 60 80 100 120 140 B0 180 200

No. Concurrent Senices

(h) Prob. Service Rejection

Figure 8.8.: Effect of the path diversity in the ESNet network.

8.1 IMPACT OF THE NUMBER OF ALTERNATIVE PATHS

Time (ms)

0 20 40 61 80 100 120 140 B0 180 200
Mo. Concurrent Services

(a) On-demand path computation

time.

n = 1000

s)% AW
0 20 4 B 8 0 120 140 10 180 200
Mo. Cancurrent Services

(c) Update time.

0 20 40 B0 80 100 120 140 1B 18D 200
Mo. Concurrent Services

(e) No. Rejected services.

10000 T T

9000

000
7000
000

5000

4000

3000 i H i i H i i i i
0 20 40 60 80 100 120 140 B0 180 200
Mo. Concurrent Services

(g) Overall available bandwidth.

15

g
:
£
5
o
a 0 40 B0 80 100 120 140 160 180 200
Mo. Concurrent Services
(b) Check time.
B0
50
n =1000

0 20 40 60 80 100 120 140 B0 180 200
No. Concurrent Services

(d) Setup time.

n=1
n=10
n=100
n=1000

0 20 40 B0 80 100 120 140 1B 180 200
No. Concurrent Services

(f) Service Acceptance Ratio.

04

Probailiy of rejection

) AN I
o 20 40 B0 80 100 120
Mo. Concurrent Services

i i i
140 1B0 180 200

(h) Prob. Service Rejection

Figure 8.9.: Effect of the path diversity in the ESNet network.

237

238

PERFORMANCE EVALUATION

Table 8.2.: Summary of the results obtained for the ESNet topology.

Topology nyax Paths Mean t; (ms) 95% Conf Min t; (ms) Max t; (ms) Ser. (40%) SAR (%)

11 1 1,05 0,14 0,91 1,19 171 62,19
11 2 1,13 0,17 0,96 1,29 138 70,46
11 3 1,24 0,19 1,05 1,43 95 86,84
ESNet 11 4 1,34 0,25 1,08 1,61 89 92,23
11 10 1,72 0,37 1,35 2,09 81 96,25
11 100 6,28 0,83 5,44 7,11 73 98,84
11 1000 8,29 2,04 6,24 10,34 75 99,34

8.1.2.1 DISCUSSION

Table 8.2 presents the average median tget,, expressed in ms, where the
95% confidence interval and the minimum and maximum values are also
represented depending on the value of the number of alternative paths.
On the other hand, the number of concurrent services at which the 40%
of the network resource utilization is achieved is indicated (the selection
of this value is later explained), so as the SAR, expressed as a percentage.

As it happened in the case of the full mesh network, the utilization
of more alternative paths makes possible to achieve the optimal network
resource utilization earlier, and with a lower penalty in terms of rejected
services. It is worth remarking, that in this case, the difference between
utilizing one alternative path or four results in almost a 30% of higher
SAR, which is a considerable improvement. Notwithstanding, although
the utilization of more than four alternative paths continues to improve
the SAR, the effect is not that prominent. This is the consequence of the
topology that has been used, where only the points that connect ESNet
with other RENs have been included as source and destination end-points.
Given the low level of path diversity that exists in these nodes, the links
get oversubscribed rapidly, while the inner links of the topology remain
under-utilized. This is also the reason of selecting the 40% of resource
utilization as the optimization objective, since in RENs like GEANT, the
inter-REN traffic is usually around that percentage.

As in the case of the full mesh networks, when analyzing the network
resource utilization that is achieved for a given rejection probability,
the benefit of pre-computing multiple path-alternatives is demonstrated.
Figure 8.10 depicts the overall network resource utilization that is
achieved for a given service rejection probability depending on the number

8.1 IMPACT OF THE NUMBER OF ALTERNATIVE PATHS

Metwork utilization

03
Rejection probability

Figure 8.10.: Overall network resource utilization in the ESNet topology.

of alternative paths, which increases with the number of alternative paths
that are used.

All in all, the obtained results are very promising, taking into account
that the average median setup time remains in the order of the
milliseconds when applied to a real REN’s topology. This results validate
the suitability of the advance reservation mechanism for its utilization in
RENS.

239

240

PERFORMANCE EVALUATION

On-Demand Path Computation Time (Mesh-9)
70 T T T T T T T

nmnmwnn
N0
I

si= =353 =i
]
I

g 1
) / \V}\ /l’\ ‘

N el b ARy
‘\;/_ NN i \:__.\u Y u

| . . L |
1] a0 100 150 200 250 300 350 400 450 500
Mao. Concurrent Services

Figure 8.11.: Impact of the number of nodes in the setup time.

8.2 ANALYSIS OF THE IMPACT OF THE NUMBER OF
LINKS ON THE SETUP TIME

As mentioned in Chapter V, the setup time considers both the check time
and the update time, at least for the accepted services. All in all, these
two times are dependent on the number of network links in the network,
since in order to check or update the values of the nodes in the NSTree,
it is necessary to operate over the consumption vector. In a nutshell, the
consumption vector represents the aggregated available bandwidth for
each unidirectional link in the network graph.

The consumption vector is implemented as a one dimensional array,
therefore, the check or update operations are dependent on the size of
this array. Notwithstanding, the utilization of a consumption vector that
summarizes the availability of the network resources allows to perform
this operations in O(k), being k the number of unidirectional links in the
network graph. On the one hand, the checking phase only requires the
comparison between the consumption vector computed for the alternative
path being tested and the consumption vector of the given node in
the NSTree. On the other hand, the update phase only requires the
subtraction of the consumption vector computed for the alternative path
being tested and the consumption vector of the given node in the NSTree.

Figure 8.11 depicts the values obtained for the first 500 concurrent
services requested for the four full mesh networks presented in the

8.2 ANALYSIS OF THE IMPACT OF THE NUMBER OF LINKS

previous section and the ESNet network. The number of links is n (n —
1)/2 for the full mesh topologies, where n is the number of nodes and 66
in the case of the ESNet topology.

As it can be deducted, for the full mesh networks, the setup time

is constant regardless of the already accepted services in the network

snapshot, although the value gets slightly affected by the size of the array.

On the other hand, for the ESNet topology there is a higher variation on
the setup time. This is a consequence of the lower SAR achieved with the
ESNet topology, since the update phase is only executed for the accepted
services. Notwithstanding, in all the cases the median setup time remains
below the 30 ms, which as mentioned before, satisfies the requirements of
an advance reservation system in a RENSs.

241

242

PERFORMANCE EVALUATION

8.3 ANALYSIS OF THE IMPACT OF THE REQUESTED
BANDWIDTH ON THE SETUP TIME AND THE
NUMBER OF REJECTED SERVICES

This experiment aims to demonstrate how the algorithms used in the
DynPaC framework behave independent on the amount of bandwidth
requested for the given services. In that regard, a set of tests have
been conducted using service requests for a single network snapshot with
random source and destination nodes to ensure a uniform distribution,
as depicted in Figure 8.12, where the 8 node full mesh network has been
used. The selected peak bandwidth values to conduct this experiment are
1 Mbps (see Figure 8.12a), 10 Mbps (see Figure 8.12b), 100 Mbps (see
Figure 8.12¢), 1 Gbps (see Figure 8.12d), 10 Gbps (see Figure 8.12e) and
random values of bandwidth between 10 Mbps and 500 Mbps (see Figure
8.12f).

Please note that the number of concurrent services has been limited
taking into account the amount of bandwidth requested by the services,
since for higher values of bandwidth, lower concurrent services can be
accepted in the network. For each case, the setup time as an output of
the number of concurrent services is provided. It is worth remarking that
for all the cases, the setup time remains below the 2 ms.

Nevertheless, as depicted in the graphics the setup time gets decreased
for higher values of concurrent services as a consequence of a higher
amount of services being rejected, since for the rejected services, the
update phase is not executed. Please note that the higher setup time
obtained for the first service reservation is the consequence of creating
the NSTree.

8.3 ANALYSIS OF THE IMPACT OF THE REQUESTED BANDWIDTH

Time (me)

Time (ms)

o

edian setup time (ms)
0. of discarded senices

l,k"\k.“ .
; 1 i i ; ; H iy
o 500 1000 1500 2000 2500 3000 3500 4000
Nurmber of concurrent services
(a) 1 Mbps.
T T 200
edian setup time (ms) P
1
o. of discarded senices K
H ’
i
I {150
i
1
I
i
i
! 100
!
I3
i
FSSS S SO N NS SN S0P B N
o 100 200 300 400 500 60O 700 BOO SO0
Murmber of concurrent senices
(c) 100 Mbps.
T T 100

edian setup time (ms)
of discarded senvices

i i i i i
0 40 &0 60 70
Mumber of concurrent serices

(e) 10 Gbps.

Mo of services

Ma. of services

Mo, of services

Time (me)

Time (ms)

Time (ms)

8 1
edian setup time (ms)
0. of discarded senices
B 0.5
L S T s o
2 -05
0 ; 1 i i ; ; 1 iy
o 500 1000 1500 2000 2500 3000 3500 4000
Nurmber of concurent services
(b) 10 Mbps.
10 T T 200
edian setup time (ms)
0. of discarded senices
= .
0 S L i i H i i o
o 20 40 B0 80 100 120 140 160 180
Mumber of concurrent senices
(d) 1 Gbps.
10 T T 200
edian setup time (ms)
0. of discarded services
4
s
r
i
,I
s / 100
4
/!
4
0

L S I T |
o a0 100 150 200 250 300

H R i
360 400 480
Mumber of concurrent serices

(f) Random bandwidth.

Figure 8.12.: Effect of the requested bandwidth.

Mo of services

Ma. of services

Mo, of services

243

244

PERFORMANCE EVALUATION

8.4 ANALYSIS OF THE IMPACT OF THE AGGREGA-
TION POLICY

One of the main contributions of this thesis is the NSTree, a hierarchical
data structure where the network snapshots are aggregated into common
ancestors depending on time constraints. As a consequence, this section
evaluates the impact of the aggregation policy in the performance of the
system. The experiment evaluates the impact of the selected § on the
performance of the solution, where § refers to the time that needs to exist
between two nodes in the NSTree to be aggregated into a common CA.
More precisely, four different values of o have been used: none, one day,
one week and one month?.

For this experiment, the ESNet topology has been used, in order to
asses the suitability of the aggregation policy in a real REN’s topology,
where 500 services have been requested. The requested services have been
generated using the following parameters:

¢ Random bandwidth from 100 Mbps to 2 Gbps.

e Random start time and random end time, ensuring a duration

between 1 day and 4 weeks.

e Random source and destination nodes to ensure a uniform
distribution of the service requests.

First of all, even if the value of is modified, the number of network
snapshots that are generated remain constant (see Figure 8.13c). This is
the expected behavior, since the variation of the d does not affect how
the network snapshots are generated, which only depend on the service
start and end times and their relative overlapping.

Of the analysis of the graphics illustrated in Figure 8.13 can be
deducted that, on the one hand, there is no significant impact on the check
time (see Figure 8.13a). Even if the number of generated CAs varies (see
Figure 8.13d), the only operation that is performed in each of the nodes
is the comparison of the consumption vectors, since there is no need to
create or update the nodes in the NSTree.

Please note that for the none case, CAs are still created as a consequence of the

overlapping cases.

8.4 ANALYSIS OF THE IMPACT OF THE AGGREGATION POLICY

On the other hand, the effect on the update phase can be seen in
Figure 8.13b). It must be taken into account that in the update phase, a
lower number of CAs imposes a higher number of calls to the add service
algorithm presented in Chapter VI. As such, for the case where no ¢ is
specified, and therefore, a lower number of CAs are generated, the time
required to update the NSTree is higher.

Regarding the number of rejected services (see Figure 8.13e), there
is a minimal difference for the different values of deltas. This is the
expected behavior, since the rejection of a service ultimately depends on
the resources available in each network snapshot. The generation of CA
reduces the time required to state whether a service can be accepted or
not, but it does not have an impact on the fact that a service reservation
will only be accepted if there are enough resources in the network. For
the concurrent service number 500, the number of rejected services varies
between 12 and 20, which translates as a difference of the 0,016%. This is
a value that is not statistically significant, and the result of the random
request of resources.

The same happens with the overall network utilization (see Figure
8.13f). In the end, the generation of CAs eases the admission control
process, but ultimately, the network has a set of determined resources,
and the utilization of the same service reservation pattern results in the
same overall network utilization.

As it can be concluded, the utilization of a hierarchical structure, where
the CAs aggregate multiple NSTree nodes and advertise a set of common
resources that are available through a wider time span, results in a lower
tupdate- However, the effect of the aggregation is not very prominent in
the case of the topeck, given the simple operations that are performed in
this phase. Moreover, the introduction of this strategy does not have an
impact in the number of network snapshots that are generated, neither
in the number of rejected services nor in the overall network resource

utilization, since these parameters are independent on the number of CAs.

245

246

PERFORMANCE EVALUATION

7
5 ane day
one week
one month
5
T 4
£
5
3
2
1 H
e
Y i N N N
o 50 100 180 200 250 300 350 400 450 600
Mo Concurrent Services
(a) Check time.
900 T T
00 ———one day
one week
700 one manth
£ 600
g sm
z
g 400
3
El 300
200
100
q A T S SN SN S R SR
o 50 100 150 200 250 300 350 400 450 500
No. Concurrent Services
(c) Number of NS nodes.
£ : T
ane day
—uone week
B —— one month
15
3
&1
E
5
o ‘ L
o &0 100 180 200 250 300 350 400 460 500

MNo. Concurrent Services

(e) Number of rejected services.

40
B one day
one week
EY one month
25
£
o 20
£
£
15
1o
’ N
sl N T S S S M N
o 50 100 150 200 250 300 350 400 450 500
Mo Concurrent Services
(b) Setup time.
45 T T
0 ———one day
one week
35 one manth
EEY
2
£
£ 20
H
S 15
E
10
5
q A S S SN S S S R
o 50 100 150 200 260 300 350 400 450 500
No. Concurrent Services
(d) Number of CA nodes.
o1 : T
ane day
0.09 —one week
= qgne manth

o
=1
2

o
=
=]

Avallable Bandwidth (Msps)
o
5
=]

0.05

&0

H i i H i H i i
100 180 200 250 300 350 400 450
MNo. Concurrent Services

500

(f) Overall available bandwidth.

Figure 8.13.: Effect of the value of delta.

Part V

CONCLUSIONS

Conclusions and future work

"The voyage was long. By the end of it, Val had
finished the first volume of her history of the bugger
wars and transmitted it by ansible, under

Demosthenes’ name..."
— Orson Scott Card

9.1 INTRODUCTION

This chapter summarizes the main contributions and conclusions of this
PhD thesis, and presents a comprehensive list of publications where the
results of this research effort have been disseminated and the projects
that have funded this work.

In a nutshell, the main contribution of this PhD thesis is a generic
framework for TE in SDN called DynPaC with support for advance
reservations that enables the introduction of novel TE strategies that
leverage the benefits of SDN. During the four years in which this work has
been carried out, the DynPaC framework has evolved from a prototype
implemented in ODP to be an application running in ONOS. More
importantly, by the end of 2017, the pan-European REN GEANT will
launch the pilot of the SDN-based BoD service. In this pilot, DynPaC will
be used to control a set of Corsa whiteboxes distributed across Europe,
providing access to this new service to real users from the research and
academic community. By the end of the GN4-2 project, which is the

249

250

CONCLUSIONS AND FUTURE WORK

project actually co-funding this research work, it is expected to have the
DynPaC application on a Technology Readiness Level (TRL) 8.

Furthermore, during the last year, both GEANT and the University
of the Basque Country have been included as official contributors to
the open source ONOS project. In this regard, the Open Networking
Laboratory in charge of the development of ONOS has agreed to include
the DynPaC framework as an official application. Furthermore, some of
the functionalities included in the DynPaC framework are planned to be
included in future releases of the core ONOS controller.

Moreover, I would like to emphasize that the output of this PhD
thesis is not only theoretical, but also practical. All the algorithms, data
structures and functionalities have been conceived to create a real product,
viable for its utilization not only in RENs but also in other scenarios. And
this is, according to this PhD candidate, the most important outcome of
this research effort.

9.2 CONTRIBUTIONS

As demonstrated throughout this document, the DynPaC framework is
able to support advance reservations in SDN domains, and satisfies the
set of requirements identified for the future BoD service of RENs. The
following list summarizes the most relevant contributions of this research

work:

1. Analysis of current solutions for TE in SDN: An initial in-
depth analysis of current TE solutions based on SDN technologies
has proved the impact of the protocols operating at the D-CPI
interface in TE. Furthermore, taking that study as basis, a
representative set of TE solutions that rely on D-CPI protocols have
been evaluated, in order to identify their strengths and limitations
regarding their support for TE and their applicability to different
use cases, making special emphasis on their suitability for the RENs.
As a result of this evaluation, it has been possible to detect the need
of a generic framework for TE in SDN. Moreover, it has also been
possible to identify the set of features that the framework should
provide.

9.2 CONTRIBUTIONS 251

2. Analysis of the impact of the data structures to support
advance reservations: Although the framework proposed in this
PhD thesis aims to support a wide range of use cases, it has been
designed to support advance reservations, since it is a desired feature
in RENs and represents one of the most challenging aspects of TE.
As such, an analysis of classic and current approaches to support
these kinds of reservations has been conducted. More precisely, the
analysis has been focused on the impact that the data structures
utilized to handle time constraints has on the performance of the
advance reservation solution. This study has allowed to identify a set
of characteristics that the data structures used to handle advance
reservations in the DynPaC framework should consider.

3. Design of a generic framework for TE in SDN: As stated
before, one of the main contributions of this research work is a
generic framework for TE in SDN, named DynPaC. The framework
follows a modular approach, facilitating the introduction of new
functionalities and the upgrade of the existing ones. In addition,
it has been designed to leverage the logically centralized control
plane of SDN and its high programmability, providing the means to
include novel TE strategies.

4. Available resource management on a per network basis:
Another relevant contribution of this PhD thesis is the design
of a data structure to handle the time constraints of advance
reservations on a per network basis, as opposed to the classical
approaches where resource management is handled on a per link
basis. The DynPaC framework relies on network snapshots, which
allow to represent a period of time during which the network
resource consumption stays in a stable state, consequence of having
a determined set of concurrent services reserved for that specific

period of time.

5. Hierarchical aggregation of network snapshots to reduce
the time complexity of the solution: A novel data structure
to handle the time constraints in an efficient manner has been
designed. The NSTree arranges the network snapshots hierarchically,
aggregating different network snapshots into common ancestors

252

CONCLUSIONS AND FUTURE WORK

depending on their relative separation in terms of time. In addition,
this approach allows to ensure the utilization of the same path
for a given service during wider time intervals, since the paths
are computed first using the available resources at the common
ancestors that aggregate multiple network snapshots. This increases
the network stability and reduces the packet loss, since the SDN
devices are not constantly programmed to install the new paths
and remove the old ones. Furthermore, this also improves the time
required to update the NSTree nodes, since instead of computing a
path for each network snapshot, the common solution is propagated
downwards the data structure until the network snapshots.

. Failure recovery capabilities: The DynPaC framework has been

designed to support a wide range of failure recovery approaches.
On the one hand, DynPaC supports service protection, where the
resources that would be consumed by the backup path are also
reserved. On the other hand, it also supports service restoration,
where a backup path can be computed on-demand for a service
affected by a network failure by simply re-requesting the service
using the updated network topology.

. TE optimization techniques to improve the network

resource utilization: In order to improve the network resource
utilization a set of TE techniques have been proposed, namely
flow relocation and flow disaggregation. Both techniques seek to
accept in the network new service reservation requests that with
the actual set of reservations would be rejected, by preempting the
already accepted services into alternative but equally valid paths.
On the one hand, flow relocation allows to assign different paths
for both already installed and reserved services. On the other hand,
flow disaggregation is applied to services actually installed in the
network, which are divided into smaller and easier to relocate sub-
services thanks to the information provided by an external entity
about their traffic pattern.

. Support for multi-domain capabilities: Given the relevance

that multi-domain connectivity services have in RENs, the DynPaC
framework has been designed to be compliant with the NSF

9.3 DISSEMINATION OF THE RESULTS

framework. DynPaC supports an asynchronous operational mode
that allows an external entity, in this particular case an NSA, to
handle the life-cycle of the services. In addition, the REST interface
designed to facilitate the communication with the NSA can also be
used for its integration with other kinds of orchestrators.

9. Performance evaluation of the advance reservation mecha-
nism: In order to state the suitability of the data structures and
the associated algorithms designed to support advance reservations
in SDN, a performance evaluation has been conducted. The results
show that the DynPaC framework is able to handle thousands of
service reservations requests for different periods of time, and that
the admission control mechanism is able to compute the optimal
paths in the order of the milliseconds. Taking into account that
current BoD services usually involve network operators manually
configuring network devices and that the process, especially in
the multi-domain case, can take even days, this is a considerable

improvement.

9.3 DISSEMINATION OF THE RESULTS

The contributions and results of this PhD thesis have been disseminated
in a varied range of journals and international conferences and workshops.
As such, the following subsections present the list of associated
publications, so as the list of projects in which this PhD work has been

carried out.

9.3.1 PUBLICATIONS IN INTERNATIONAL JOURNALS

At the moment of writing this PhD thesis, a single article has been
published in an indexed journal. Notwithstanding, this PhD candidate is
currently working on a set of articles to present the algorithms and their
performance evaluation to be submitted in the near future. Nevertheless,
it is worth remarking that the published article has been accepted in the
most relevant journal in the area of Telecommunications and Computer
networks, the IEEE Communications surveys and tutorials. In addition,
the DynPaC framework and its multi-domain capabilities have also been

253

254 CONCLUSIONS AND FUTURE WORK

published as selected papers of the Terena Networking Conference, which
is one of the most prestigious conferences in the REN environment.

¢ A survey on the contributions of Software-Defined
Networking to Traffic Engineering. [87]

— Journal: IEEE Communication Surveys and Tutorials
— Year: 2017

— Impact factor: 9.22 (Q1)

Citations: 1

e DynPaC: Dynamic and Adaptive Traffic Engineering for
SDNSs. [Selected paper| [228]

— Journal: Selected papers of Terena Networking Conference
2015 (ISBN: 978-90-77559-25-3)

— Year: 2015
e Multi-domain Software Defined Networking: Exploring
possibilities. [Selected paper| [223]

— Journal: Selected papers of Terena Networking Conference
2014 (ISBN: 978-90-77559-24-6)

— Year: 2014

9.3.2 PUBLICATIONS IN PROCEEDINGS OF INTERNATIONAL
CONFERENCES

The DynPaC framework has been published in the proceedings of multiple
international conferences of special relevance to the topic of this PhD
thesis, as listed below:

o Towards an SDN-based bandwidth on demand service for
the European research community. [226]

— Conference: International Conference on Networked Systems
— Year: 2017

e Multi-domain bandwidth on demand service provisioning
using SDN. [229]

9.3 DISSEMINATION OF THE RESULTS

— Conference: IEEE Conference on Network Softwarization
— Year: 2016
— C(litations: 3

e« DynPaC: A Path Computation Framework for SDN. [230]
— Conference: European Workshop on Software Defined Net-

works
— Year: 2015
— Clitations: 6

9.3.3 ORAL COMMUNICATIONS

During the development of this PhD thesis, this PhD candidate has also

participated in the following set of international events as speaker:

e SDN-enabled AutoBAHN. Envisioning future BoD ser-
vices. [231]

— Conference: Terena Networking Conference
— Year: 2016
e Adapting the SDN-based BoD application to the particu-
larities of the Corsa HW datapath. [232]
— Conference: GEANT Symposium
— Year: 2016

o Demonstration of the multi-domain BoD application. [233]
— Conference: GEANT Symposium
— Year: 2016
e A solution for connection-oriented multi-domain SDN
based on NSI. [234]
— Conference: Terena Networking Conference
— Year: 2015

e Demonstration of connection-oriented multi-domain Open-
Flow. [222]

255

256 CONCLUSIONS AND FUTURE WORK

— Conference: International Conference on Supercomputing

— Year: 2014

9.34 OTHER PUBLICATIONS RELATED TO THIS PHD THESIS

This PhD thesis is the result of many years of research in SDN. As
such, the following list summarizes a comprehensive list of publications,
including indexed journals and international conferences, that although
they do not present the research work conducted for this PhD thesis, are
relevant to the field:

« Empowering GEANT deployments with ONOS brigades.
[235]

— Conference: Terena Networking Conference
— Type: Oral communication

— Year: 2017

« GEANT SDX - SDN based Open eXchange Point. [236]
— Conference: IEEE Conference on Network Softwarization
— Type: Demonstrator
— Year: 2016
— C(litations: 1
e An architecture for dynamic QoS management at Layer 2
for DOCSIS access networks using OpenFlow. [237]
— Journal: Computer Networks
— Year: 2016
— Impact factor: 1.446 (Q2)
o Selfdeploying Service Graphs over ELwUD (EHU-OEF
Lightweight UNIFY Domain). [227]
— Conference: IEEE Conference on Network Softwarization
— Type: Demonstrator

— Year: 2015

9.3 DISSEMINATION OF THE RESULTS 257

e Integrating complex legacy systems under OpenFlow
control: The DOCSIS use case. [238]

— Conference: European Workshop on Software Defined Net-

works

Type: Oral communication

Year: 2014

— Citations: 3

o FlowNAC: Flow-based network access control. [239]

— Conference: European Workshop on Software Defined Net-

works

Type: Oral communication
— Year: 2014
— C(litations: 24
e The EHU-OEF: An OpenFlow-based Layer-2 experimental
facility. [240]
— Journal: Computer Networks (Q2)
— Year: 2014
— Impact factor: 1.22 (Q2)
— Citations: 10
e Deploying a virtual network function over a software
defined network infrastructure: experiences deploying an

access control VNF in the University of Basque Country’s
OpenFlow enabled facility. [Selected paper| [241]

— Conference: Terena Networking Conference

— Type: Oral communication
— Year: 2014
e Enriched slices in EHU-OEF empowered by NFV: the
Access Control NFV use case.
— Conference: Open Networking Summit 2014

— Type: Demonstrator

258 CONCLUSIONS AND FUTURE WORK

— Year: 2014
¢ Access Control NFV enforcement at the EHU-OpenFlow
enabled facility. [242]
— Conference: IEEE Globecom Industrial Forum & Exhibits
— Type: Demonstrator
— Year: 2013
¢ Solucién de virtualizacién de nivel 2 basada en prefijos para
plataformas de experimentacién. [243]
— Conference: Jornadas Técnicas RedIRIS 2012
— Type: Oral communication
— Year: 2012
e Implementing layer 2 network virtualization using Open-
Flow: Challenges and solutions. [244]

— Conference: European Workshop on Software Defined Net-

works
— Type: Oral communication
— Year: 2012
— C(litations: 33

9.3.5 PARTICIPATION IN PROJECTS

This PhD thesis is the result of the work conducted as a researcher
associated to the 12T Research Group of the University of the Basque
Country (UPV/EHU) from 2013 to 2017. During that period of time,
the PhD candidate has participated in the following national and
international projects related to the research topic of this PhD thesis.

e Despliegue seguro de servicios con Redes Definidas por Software y
Virtualizacion de Funciones de Red (S&N-SEC).

— Funding entity: Spanish ministry of Economy and Competi-

tiveness.

— Participants: UPV/EHU

9.3 DISSEMINATION OF THE RESULTS 259

— Duration: 1-1-2014 to 31-12-2016

Main researcher: Eduardo Juan Jacob Taquet and Juan José
Unzilla Galan.

— Number of participating researchers: 8

Project budget: 105.391,00 €

e H2020-EINFRA-2014-2 GN4 — Phase 2.
— Funding entity: Furopean Community (H2020(

— Participants: ASNET-AM, ACOnet, AzRENA, BASNET,
Belnet, BREN, CARNet, CyNET, CESNET, EENet, DANTE,
TERENA, RENATER, GRENA, DFN, GRNET, NIIFI,
HEAnet, ITUCC, GARR, SigmaNet, LITNET, RESTENA,
MARnet, University of Malta, RENAM, MREN, SURFnet,
NORDUnet, PSNC, FCCN, RoEduNet, eARENA, AMRES,
SANET, ARNES, RedIRIS, SWITCH, ULAKBIM, JANET,
URAN.

Duration: 01-05-2016 to 31-12-2018.

— Main researcher: Eduardo Juan Jacob Taquet
Number of participating researchers: : 3 (UPV/EHU)
— Project budget: 86.953,25 €

o H2020-EINFRA-2014-2 GN4 — Phase 1.
— Funding entity: European Community (H2020)

— Participants: ASNET-AM, ACOnet, AzRENA, BASNET,
Belnet, BREN, CARNet, CyNET, CESNET, EENet, DANTE,
TERENA, RENATER, GRENA, DFN, GRNET, NIIFI,
HEAnet, TUCC, GARR, SigmaNet, LITNET, RESTENA,
MARnet, University of Malta, RENAM, MREN, SURFnet,
NORDUnet, PSNC, FCCN, RoEduNet, eARENA, AMRES,
SANET, ARNES, RedIRIS, SWITCH, ULAKBIM, JANET,
URAN.

— Duration: 01-04-2015 to 31-03-2016
— Main researcher: Eduardo Juan Jacob Taquet

— Number of participating researchers: 4 (UPV/EHU)

260 CONCLUSIONS AND FUTURE WORK

— Project budget: 53.600 €

e Dynamic Path Computation Framework (DynPaC), Open Call
project associated to INFRA-2013-1.2.1 - GEANT Multi-Gigabit
European Research and Education Network and Associated Services
(GN3plus).

— Funding entity: Furopean Community (FP7)

— Participants: ASNET-AM, ACOnet, AzRENA, BASNET,
Belnet, BREN, CARNet, CyNET, CESNET, EENet, DANTE,
TERENA, RENATER, GRENA, DFN, GRNET, NIIFI,
HEAnet, IUCC, GARR, SigmaNet, LITNET, RESTENA,
MARnet, University of Malta, RENAM, MREN, SURFnet,
NORDUnet, PSNC, FCCN, RoEduNet, eARENA, AMRES,
SANET, ARNES, RedIRIS, SWITCH, ULAKBIM, JANET,
URAN, EHU

Duration: 24-10-2013 to 23-03-2015

— Main researcher: Eduardo Juan Jacob Taquet
— Number of participating researchers: 2 (UPV/EHU)
— Project budget: 148.320,00€ UPV/EHU)

« GEANT Multi-Gigabit European Research and Education Network
and Associated Services (GN3plus).

— Funding entity: European Community (FP7)

— Participants: ASNET-AM, ACOnet, AzRENA, BASNET,
Belnet, BREN, CARNet, CyNET, CESNET, EENet, DANTE,
TERENA, RENATER, GRENA, DFN, GRNET, NIIFI,
HEAnet, TUCC, GARR, SigmaNet, LITNET, RESTENA,
MARnet, University of Malta, RENAM, MREN, SURFnet,
NORDUnet, PSNC, FCCN, RoEduNet, eARENA, AMRES,
SANET, ARNES, RedIRIS, SWITCH, ULAKBIM, JANET,
URAN

— Duration: 01-4-2013 to 31-09-2015
— Main researcher: Eduardo Juan Jacob Taquet

— Number of participating researchers: 2

— Project budget: 41.800.000,00 (65.145,60 € UPV/EHU)

9.4 FUTURE WORK AND RESEARCH LINES

9.4 FUTURE WORK AND RESEARCH LINES

Finally, given the fact that TE and path computation in SDN is a very
important topic, as demonstrated by the growing interest of the industry
in this regard, further work will be conducted in the future. Although
there has been a lot of progress beyond the current state of the art and
the obtained results are very promising, we will continue working to make
DynPaC production ready. As such, the following list summarizes the

future work and research lines:

e Application of the DynPaC framework to non-OpenFlow
networks: Although one of the main features of the DynPaC
framework is that it has been designed to be technology agnostic,
its current implementation is focused on OpenFlow networks and
their capabilities. Notwithstanding, MPLS is still the most popular
forwarding technology among NSPs and RENs. In such a scenario,
there are plans to evolve the DynPaC framework to handle the
particularities of such networks, and extend it to operate with
BGP-LS/PCEP in order to provide a valid solution for those
network operators still reluctant to adopt OpenFlow. In that regard,
there are also plans to compare the effectiveness of the solution in
OpenFlow and MPLS networks, in order to determine the impact
of the distributed LDP used in MPLS versus the out-of-band

mechanisms available in OpenFlow to control the network elements.

o Utilization of statistical analysis techniques to identify
traffic patterns: As mentioned before, the DynPaC framework

relies on an external element to retrieve the information about the

traffic patterns of the already installed services to disaggregate them.

Notwithstanding, it has not been specified how that information is
obtained. In that regard, there are plans to analyze traffic patterns,
for instance, by using machine learning algorithms to find the

optimal ways of disaggregating the services.

e Enhancement of the path computation algorithm: Although
the path pre-computation strategy is valid for the requirements
of RENSs, there is plenty of room for improvement. After some
discussions with the network operations team of GEANT, further

261

262

CONCLUSIONS AND FUTURE WORK

research will be done to generate better alternative paths taking
into account the topology of the network and current traffic loads.

¢ Deployment of the SDN-based BoD pilot service: As pointed
out in the previous section, the next step is to deploy the DynPaC
framework to provide the BoD service to a selected group of users
across Europe. The main idea of this pilot deployment is to gather
the feedback from the users, in order to improve the solution to
satisfy their needs.

All in all, this is a very relevant research work which has attracted
other RENs besides GEANT and ISPs. As such, the author of this PhD
thesis is confident that this research effort will result on the participation
of the University of the Basque Country in more research projects related
to SDN and the Future Internet. Moreover, it is expected that the future
work presented in this section will result in new final degree projects and
PhD thesis.

Part VI

APPENDIX

14

19

Appendix: Reservations generator
script

For the performance evaluation a set of scripts have been used to generate
the service reservations and request them to DynPaC using the REST

interface. An example of such an script is provided below:

import pycurl

from urllib import urlencode
import random

import Jjson

from StringIO import StringIO
import csv

from datetime import date
import commands

import datetime

from sys import argv

import time
arg = argv

def getNodePairs():

return random.sample (set (nodes), 2)

def getEdgePort (node) :

return random.sample (set (egressPorts[node]), 1) [0]

def getDates () :
start_date = datetime.datetime.today () .replace (
day=1, month=7, year=2017, hour=0, minute=0,
second=0, microsecond=0) .toordinal ()
end_date = datetime.datetime.today () .replace (day
=1, month=12, year=2017, hour=23, minute=59,
second=59, microsecond=0) .toordinal ()

265

266 APPENDIX: RESERVATIONS GENERATOR SCRIPT

24 random_startdate = datetime.datetime.fromordinal (
random.randint (start_date, end_date))
durationl = datetime.timedelta (hours=random.
randint (0, 24))
random_startdate = random_startdate + durationl
duration = datetime.timedelta (weeks=random.
randint (0, 3), days=random.randint (0,7), hours=
random.randint (0, 24))
random_enddate = random_startdate + duration
29 reservation = (random_enddate - random_startdate)
.total_seconds ()
dates = []
dates.append (random_startdate.date () .strftime ("%d
[T/ %Y "))
dates.append (random_enddate.date () .strftime ("%d/%
my/%Y"))
dates.append (random_startdate.time () .strftime ("%H
M %S "))
34 dates.append (random_enddate.time () .strftime ("%H:%
M:%S"))
dates.append (reservation)

return dates

Retrieve edge nodes and ports

39
for 1 in range (11, 31):
print "Iteration:" + str (i)
commands.getoutput ('onos—app localhost reinstall!
~/dynpac/target /dynpac—1.0—SNAPSHOT . oar ’)
time.sleep (60)
44
buffer = StringIO()
c = pycurl.Curl ()
c.setopt (c.URL, ’http://localhost:8181/controller
/web/dynpacServices//node—ports’)
c.setopt (c.WRITEDATA, buffer)
49 c.perform/()
c.close ()
nodePorts = json.loads (buffer.getvalue())

egressPorts = {}

o4

59

64

69

74

79

APPENDIX: RESERVATIONS GENERATOR SCRIPT

for key in nodePorts.keys():
if len(nodePorts[key] [’ ports’]) > 0:
ports = []
for port in nodePorts[key] [’ ports
ar

if port != 'LOCAL’:

ports.append (port
)

egressPorts[key] = ports
nodes = egressPorts.keys ()
file _name = ’esnet th 40 ' + str(i) + ’.csv’
with open (file_name, ’wb’) as csvfile:
wr = csv.writer(csvfile, quoting=csv.
QUOTE_ALL)

wr.writerow ([’SERVICE’, "SOURCE’,
DESTINATION’, 'BW’, ’START’, ’'END’, °’
DURATION’, ’'RESULT’, ’INIT TIME’, ’FP
TIME’, °'CHECK TIME’, ’'UPDATE TIME’, ~’
PROCESS TIME’, °NS’, ’CA’, 'REST TIME’,
"OCCUPATION 1)

for 1 in range(l,int(arg[l])+1):
[src, dst] = getNodePairs/()
inport = getEdgePort (src)
outport = getEdgePort (dst)

name = "test" + str (i)

bandwidth = random.randrange (0,
5000, 500)

vlian = str (i)

[startDate, endDate, sT, eT,
duration] = getDates|()

bOdy = ,{\"SerViCeType\“:\uVLAN
\",\"ingressPort\":\"’ +
inport + ’\",\"egressPort\":\"

267

268

84

89

94

99

APPENDIX: RESERVATIONS GENERATOR SCRIPT

’ + outport + ’\'",\"endDate
\":\"’ + endDate + ’\",\"
bandwidth\":\"’ + str(
bandwidth) + 7\",\"
vlanIdIngress\":\"’ + vlan +
\",\"vlanIldEgress\":\"’ + vlan
+ 2\",\"name\":\"’ + name + ’
J\"startTime\":\"’ + sT + ~’
,N\"endTime\":\"’ + eT + ~’
J\"solicitService\":\"true
,\"startDate\":\" "’ +
startDate + “\"}’

\||
\||
\u
\||

buffer2 = StringIO()

c = pycurl.Curl ()

c.setopt (c.URL, ’http://localhost
:8181/controller /web/
dynpacServices//service’)

post_data = {’x—page—url’: ’
dynpacServices’, ’body’: body,

action ':’add’, ’srcNodeld’:

src, 'dstNodeld ':dst}

postfields = urlencode (post_data)

c.setopt (c.POSTFIELDS, postfields
)

c.setopt (c.WRITEDATA, buffer2)

c.perform()

statusDescriptor = buffer2.
getvalue () .split ("#")
descriptor = statusDescriptor[0]
if (len(statusDescriptor) > 1):
time_stamps =
statusDescriptor([1l].

Spllt (||$u)
initialTime = time_stamps
[0]

fpTime = time_stamps[1]
checkTime = time_stamps
[2]

104

109

114

119

APPENDIX: RESERVATIONS GENERATOR SCRIPT

updateTime = time_stamps

[3]
processTime = time_stamps
[4]
numberNs = time_stamps|[5]
numberCs = time_stamps|[6]

result_1list
result_list
result_list
result_1list
result_1list

result_list

= []
.append (name)
.append(src)

.append (bandwidth)

(

(
.append (dst)

(

(

.append (startDate +

//" + sT)

result_1list
+ eT)
result_list

.append (endDate + "//"

.append (duration)

if (c.getinfo (c.RESPONSE_CODE) ==

200) :

result_list.append/(

if

descriptor)
(len (statusDescriptor)
> 1):
result_list.
append (
initialTime)
result_list.
append (fpTime)
result_list.
append (
checkTime)
result_list.
append (
updateTime)
result_list.
append (
processTime)
result_list.
append (

numberNs)

269

270 APPENDIX: RESERVATIONS GENERATOR SCRIPT

124 result_list.
append (
numberCs)

else:
result_list.
append ("NA")
result_list.

append ('NA")

result_list.
append ("NA")

129 result_list.
append ('NA")

result_list.
append ("NA")

result_list.
append ('"NA")

result_list.
append ("NA")

else:
134 result_list.append("
failure")

result_list.append("NA")
result_list.append("NA")
result_list.append("NA")
result_list.append("'NA")
139 result_list.append("NA")
result_list.append("NA")
result_list.append("NA")

result_list.append(c.getinfo(c.
TOTAL_TIME))
144

c.close ()

buffer3 = StringIO()
c = pycurl.Curl ()

149 c.setopt (c.URL, ’http://localhost
:8181/ controller /web/
dynpacServices//avg—bandwidth’
)

c.setopt (c.WRITEDATA, buffer3)

154

159

APPENDIX: RESERVATIONS GENERATOR SCRIPT

c.perform()

c.close ()

avg_bw = json.loads (buffer3.
getvalue ())

#print type (avg_bw)

avg = 0

size =1

for s in avg_bw:
avg = avg + float (s)
size = size + 1

bw = avg / size

result_list.append (bw)

wr.writerow (result_list)

271

Bibliography

Kate Greene. “TR10: Software-Defined Networking.” In: MIT
Technology Review (2009). Accessed: 2016-05-25. URL: http://
www2 . technologyreview.com/article /412194 /trl10-
software-defined-networking/.

The Top 5 Emerging Technology Trends of 2014. http://www.
avaya.com/usa/perspectives/articles/the-top-5-

five-emerging-technology—-trends—-of-2014. Accessed:
2014-06-24.

Cisco’s SDN solutions. http://www.cisco.com/c/en/us/
solutions/software-defined-networking/overview.
html. Accessed: 2016-06-22.

HP SDN Solutions. accessed: 2016-05-25. 2015. URL: http://
www8.hp.com/us/en/networking/sdn/portfolio.html.

NEC SDN Solutions. accessed: 2016-05-25. 2015. URL: http://

www.nec.com/en/global/solutions/sdn/.
Corsa. Accessed: 2016-05-25. URL: http://www.corsa.com/.

ONF. “OpenFlow Switch Specification 1.5.0.” In: OpenFlow - Open
Networking Foundation (2013).

Nabil Damouny and John Harcourt. OpenFlow-Enabled Hybrid
Cloud Services Connect Enterprise and Service Provider Data
Centers. en-gb. Ed. by Mitch Auster. ONF Solution Brief. accessed:
2016-05-25. 2012. URL: https://www.opennetworking.org/
sdn-resources/technical-library#pub.

Suresh Katukam et al. SDN in the Campus Environment. en-gb.
Ed. by Marc LeClerc. ONF Solution Brief. accessed: 2016-05-25.
2013. URL: https : / / www . opennetworking . org / sdn -

resources/technical-library#pub.

273

http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.avaya.com/usa/perspectives/articles/the-top-5-five-emerging-technology-trends-of-2014
http://www.avaya.com/usa/perspectives/articles/the-top-5-five-emerging-technology-trends-of-2014
http://www.avaya.com/usa/perspectives/articles/the-top-5-five-emerging-technology-trends-of-2014
http://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
http://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
http://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
http://www8.hp.com/us/en/networking/sdn/portfolio.html
http://www8.hp.com/us/en/networking/sdn/portfolio.html
http://www.nec.com/en/global/solutions/sdn/
http://www.nec.com/en/global/solutions/sdn/
http://www.corsa.com/
https://www.opennetworking.org/sdn-resources/technical-library#pub
https://www.opennetworking.org/sdn-resources/technical-library#pub
https://www.opennetworking.org/sdn-resources/technical-library#pub
https://www.opennetworking.org/sdn-resources/technical-library#pub

274

[10]

[11]

[21]
[22]

23]

Bibliography

Nick McKeown et al. “OpenFlow: enabling innovation in campus
networks” In: ACM SIGCOMM Computer Communication
Review 38.2 (2008), pp. 69-74.

David Allan et al. OpenFlow-enabled SDN and Network Functions
Virtualization. en-gb. Ed. by Michael Zimmerman. ONF Solution
Brief. accessed: 2016-05-25. 2014. URL: https : / / www .
opennetworking . org / sdn — resources / technical -

library#pub.

D. Awduche et al. Overview and Principles of Internet Traffic
Engineering. RFC 3272. RFC Editor, 2002.

D. Awduche et al. Requirements for Traffic Engineering Over
MPLS. RFC 2702. RFC Editor, 1999.

AT&T. ATET Research areas. Tech. rep. accessed: 2016-05-25.
2016. URL: http://www.research.att.com/evergreen/
what_we_do/research.html.

Internet?. accessed: 2017-05-14. URL: http://www.internet2.
edu/.

ESnet. Accessed: 2017-05-14. URL: http://www.es.net/.

Canarie. accessed: 2017-05-14. URL: https://www.canarie.

ca/network/.

Kreonet. Accessed: 2017-05-15. URL: http://www.nisn.re.
kr/eng/action.do?menuld=50030.

Sinet. Accessed: 2017-05-15. URL: https://www. sinet . ad.
jp/en/top-en.

RedIRIS. accessed: 2017-05-14. URL: https://www.rediris.
es/.

Géant. accessed: 2017-05-14. URL: https://www.geant .org/.
Géant Services Portfolio. accessed: 2017-05-14. URL: https://

www.geant .org/Services.

ESnet’s OSCARS with FloodLight. Accessed: 2016-05-25. URL:
https://github.com/hsr/oscars—gui.

https://www.opennetworking.org/sdn-resources/technical-library#pub
https://www.opennetworking.org/sdn-resources/technical-library#pub
https://www.opennetworking.org/sdn-resources/technical-library#pub
http://www.research.att.com/evergreen/what_we_do/research.html
http://www.research.att.com/evergreen/what_we_do/research.html
http://www.internet2.edu/
http://www.internet2.edu/
http://www.es.net/
https://www.canarie.ca/network/
https://www.canarie.ca/network/
http://www.nisn.re.kr/eng/action.do?menuId=50030
http://www.nisn.re.kr/eng/action.do?menuId=50030
https://www.sinet.ad.jp/en/top-en
https://www.sinet.ad.jp/en/top-en
https://www.rediris.es/
https://www.rediris.es/
https://www.geant.org/
https://www.geant.org/Services
https://www.geant.org/Services
https://github.com/hsr/oscars-gui

[24]

[25]

[28]

[29]

[30]

Bibliography

AutoBAHN. Accessed: 2016-05-25. URL: http : / / geant3 .

archive . geant .net/service/autobahn/pages/home.

aspx.

L. Zuo and M. M. Zhu. “Concurrent Bandwidth Reservation
Strategies for Big Data Transfers in High-Performance Networks.”

In: IEEE Transactions on Network and Service Management 12.2

(2015), pp. 232—-247. 1SSN: 1932-4537. DOI: 10.1109/TNSM.2015.

2430358.

L. Zuo, M. Khaleel, M. M. Zhu, and C. Q. Wu. “On Fixed-Path
Variable-Bandwidth Scheduling in High-Performance Networks.”
In: 2013 IEEFE International Conference on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing. 2013, pp. 23-30. DOI: 10.1109/
GreenCom-1iThings-CPSCom.2013.30.

T. Orawiwattanakul, H. Otsuki, E. Kawai, and S. Shimojo.

“Dynamic Time Scheduling in Advance Bandwidth Reservation.”
In: 2012 26th International Conference on Advanced Information
Networking and Applications Workshops. 2012, pp. 885-890. DOI:
10.1109/WAINA.2012.26.

L. Zuo and M. M. Zhu. “Improved Scheduling Algorithms for
Single-Path Multiple Bandwidth Reservation Requests.” In: 2016

IEEE Trustcom/BigDataSE/ISPA. 2016, pp. 1692-1699. por: 10.

1109/TrustCom.2016.0259.

Lina Battestilli et al. “EnLIGHTened computing: An architecture
for co-allocating network, compute, and other grid resources
for high-end applications.” In: High Capacity Optical Networks
and FEnabling Technologies, 2007. HONET 2007. International
Symposium on. IEEE. 2007, pp. 1-8.

Michiaki Hayashi, Hideaki Tanaka, and Masatoshi Suzuki.

“Advance reservation-based network resource manger for optical

networks.” In: Optical Fiber communication/National Fiber Optic

Engineers Conference, 2008. OFC/NFOEC 2008. Conference on.

IEEE. 2008, pp. 1-3.

275

http://geant3.archive.geant.net/service/autobahn/pages/home.aspx
http://geant3.archive.geant.net/service/autobahn/pages/home.aspx
http://geant3.archive.geant.net/service/autobahn/pages/home.aspx
https://doi.org/10.1109/TNSM.2015.2430358
https://doi.org/10.1109/TNSM.2015.2430358
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.30
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.30
https://doi.org/10.1109/WAINA.2012.26
https://doi.org/10.1109/TrustCom.2016.0259
https://doi.org/10.1109/TrustCom.2016.0259

276

[31]

32]

Bibliography

Atsuko Takefusa et al. “G-lambda: Coordination of a grid
scheduler and lambda path service over GMPLS. In: Future
Generation Computer Systems 22.8 (2006), pp. 868-875.

Alexander Willner et al. “Harmony-advance reservations in
heterogeneous multi-domain environments.” In: NETWORKING
2009 (2009), pp. 871-882.

Sergi Figuerola et al. “PHOSPHORUS: Single-step on-demand
services across multi-domain networks for e-science.” In: Asia-
Pacific Optical Communications. International Society for Optics
and Photonics. 2007, pp. 67842X-67842X.

Klara Nahrstedt and Ralf Steinmetz. “Resource management in
networked multimedia systems.” In: leee Computer 28.5 (1995),
pp- 52-63.

Anindo Banerjea et al. “The Tenet real-time protocol suite: Design,
implementation, and experiences.” In: IEEE/ACM Transactions
on networking 4.1 (1996), pp. 1-10.

James Roberts and Keqgiang Liao. “Traffic models for telecommu-
nication services with advance capacity reservation.” In: Computer
Networks and ISDN Systems 10.3-4 (1985), pp. 221-229.

Thomas DC Little and Dinesh Venkatesh. “Prospects for
interactive video-on-demand.” In: IEEE multimedia 1.3 (1994),
pp. 14-24.

D. Wischik and A. Greenberg. “Admission control for booking
ahead shared resources.” In: INFOCOM ’98. Seventeenth Annual
Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEFE. Vol. 2. 1998, 873-882 vol.2. DOLI:
10.1109/INFCOM.1998.665112.

Xiangfei Zhu and Malathi Veeraraghavan. “Analysis and design
of book-ahead bandwidth-sharing mechanisms.” In: IFEFE Trans-
actions on Communications 56.12 (2008).

Mikael Degermark, Torsten Kohler, Stephen Pink, and Olov
Schelen. “Advance reservations for predictive service.” In: Network
and Operating Systems Support for Digital Audio and Video.
Springer. 1995, pp. 1-15.

https://doi.org/10.1109/INFCOM.1998.665112

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Bibliography

Jun Zheng and Hussein T Mouftah. “Routing and wavelength
assignment for advance reservation in wavelength-routed WDM
optical networks.” In: Communications, 2002. ICC 2002. IEEFE
International Conference on. Vol. 5. IEEE. 2002, pp. 2722-2726.

Savera Tanwir, Lina Battestilli, Harry Perros, and Gigi Karmous-
Edwards. “Dynamic scheduling of network resources with advance
reservations in optical grids.” In: International Journal of Network
Management 18.2 (2008), pp. 79-105.

Gerd E Keiser. “A review of WDM technology and applications.”
In: Optical Fiber Technology 5.1 (1999), pp. 3-39.

Rajiv Ramaswami and Kumar N Sivarajan. “Routing and
wavelength assignment in all-optical networks.” In: IEEE/ACM
Transactions on Networking (TON) 3.5 (1995), pp. 489-500.

Neal Charbonneau and Vinod M Vokkarane. “A survey of advance
reservation routing and wavelength assignment in wavelength-
routed WDM networks” In: IEEE Communications Surveys &
Tutorials 14.4 (2012), pp. 1037-1064.

S. Sahni et al. “Bandwidth Scheduling and Path Computation
Algorithms for Connection-Oriented Networks.” In: Networking,
2007. ICN °07. Sizth International Conference on. 2007, pp. 47-47.
DOI: 10.1109/ICN.2007.27.

Antonio Sanchez-Monge and Krzysztof Grzegorz Szarkowicz.
MPLS in the SDN Era. O'Reilly Media, Inc., 2015.

Michal Piéro and Deepankar Medhi. Routing, flow, and capacity
design in communication and computer networks. 1st ed. Elsevier,
2004. 1sBN: 9780125571890.

Martin Suchara et al. “Network Architecture for Joint Failure
Recovery and Traffic Engineering.” In: Proceedings of the ACM
SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS). New York,
NY, USA: ACM, 2011, pp. 97-108. DOI: 10 .1145/1993744 .
1993756.

277

https://doi.org/10.1109/ICN.2007.27
https://doi.org/10.1145/1993744.1993756
https://doi.org/10.1145/1993744.1993756

278

[50]

[52]

[53]

Bibliography

Andreas Kassler et al. “Towards QoE-driven multimedia service
negotiation and path optimization with Software Defined
Nnetworking.” In: Proceedings of the 20th International Conference
on Software, Telecommunications and Computer Networks (Soft-
COM). IEEE. 2012, pp. 1-5.

Sushant Jain et al. “B4: Experience with a Globally-deployed
Software Defined WAN." In: Proceedings of the 2013 conference
of the ACM Special Interest Group on Data Communication
(SIGCOMM). New York, NY, USA, 2013, pp. 3-14. por: 10 .
1145/2486001.2486019.

Siddhartha Sen, David Shue, Sunghwan Thm, and Michael J. Freed-
man. “Scalable, Optimal Flow Routing in Datacenters via Local
Link Balancing.” In: Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies (CoNEXT).
New York, NY, USA: ACM, 2013, pp. 151-162. por: 10.1145/
2535372.2535397.

Zhanfeng Jia and P. Varaiya. “Heuristic methods for delay
constrained least cost routing using kappa;-shortest-paths.” In:
IEEE Transactions on Automatic Control 51.4 (2006), pp. 707-712.
ISSN: 0018-9286. po1: 10.1109/TAC.2006.872827.

S. Rai, B. Mukherjee, and O. Deshpande. “IP resilience within an
autonomous system: current approaches, challenges, and future
directions.” In: IEEE Communications Magazine 43.10 (2005),
pp- 142-149. 1ssn: 0163-6804. po1: 10 . 1109 / MCOM . 2005 .
1522138.

V. Foteinos et al. “Operator-Friendly Traffic Engineering in
IP/MPLS Core Networks.” In: IEEE Transactions on Network and
Service Management 11.3 (2014), pp. 333-349.

Sergiu Nedevschi et al. “Reducing Network Energy Consumption
via Sleeping and Rate-Adaptation.” In: NSDI Vol. 8. 2008,
pp. 323-336.

ETSL. Quality of FExperience (QoE) requirements for real-time
communication services. Tech. rep. TR 102 643 V1. 2009.

https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2535372.2535397
https://doi.org/10.1145/2535372.2535397
https://doi.org/10.1109/TAC.2006.872827
https://doi.org/10.1109/MCOM.2005.1522138
https://doi.org/10.1109/MCOM.2005.1522138

[58]

Bibliography

I. Foster et al. “A distributed resource management architecture
that supports advance reservations and co-allocation.” In: IWQoS
’99. Seventh International Workshop on Quality of Service. 1999,
pp. 27-36. DOL: 10.1109/IWQ0S.1999.766475.

Daniel O Awduche. “MPLS and traffic engineering in IP networks.”
In: IEEE Communications Magazine 37.12 (1999), pp. 42-47.

John McQuillan, Ira Richer, and Eric Rosen. “The new routing
algorithm for the ARPANET” In: IEEE Transactions on
Communications 28.5 (1980), pp. 711-719.

R. Cole, D. Shur, and C. Villamizar. IP over ATM: A Framework
Document. RFC 1932. RFC Editor, 1996.

I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod
Routing Architecture. RFC 1992. RFC Editor, 1996.

Kathleen Nichols, Steven Blake, Fred Baker, and David L. Black.

Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers. RFC 2474. RFC Editor, 1998.

Christian E Hopps. Analysis of an equal-cost multi-path algorithm.

Tech. rep. 2000.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label
Switching Architecture. RFC 3031. RFC Editor, 2001. URL: http:
//www.rfc—editor.org/rfc/rfc3031.txt.

A. Farrel, J.-P. Vasseur, and J. Ash. A Path Computation Element
(PCE)-Based Architecture. RFC 4655. RFC Editor, 2006. URL:
http://www.rfc-editor.org/rfc/rfcd655.txt.

Takehiro Tsuritani, Masanori Miyazawa, Shuntaro Kashihara,
and Tomohiro Otani. “Optical Path Computation Element
interworking with Network Management System for Transparent
Mesh Networks.” In: Proceedings of the National Fiber Optic
Engineers Conference (NFOEC). Optical Society of America. 2008,
NWF5.

Ka-Cheong Leung, Victor O. K. Li, and Daiqin Yang. “An
Overview of Packet Reordering in Transmission Control Protocol
(TCP): Problems, Solutions, and Challenges.” In: IEEFE Transac-

279

https://doi.org/10.1109/IWQOS.1999.766475
http://www.rfc-editor.org/rfc/rfc3031.txt
http://www.rfc-editor.org/rfc/rfc3031.txt
http://www.rfc-editor.org/rfc/rfc4655.txt

280

[72]

[73]

[74]

Bibliography

tions on Parallel and Distributed Systems 18.4 (2007), pp. 522-535.
DOI: 10.1109/TPDS.2007.1011.

Mohammad Alizadeh et al. “CONGA: Distributed congestion-
aware load balancing for datacenters” In: ACM SIGCOMM
Computer Communication Review. Vol. 44. 4. ACM. 2014,
pp- 503-514.

Abhinav Pathak et al. “Latency inflation with MPLS-based traffic
engineering.” In: Proceedings of the 2011 ACM SIGCOMM confer-
ence on Internet measurement (IMC). ACM. 2011, pp. 463-472.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The road
to SDN: an intellectual history of programmable networks.” In:
ACM SIGCOMM Computer Communication Review 44.2 (2014),
pp. 87-98.

Andrew T Campbell, Irene Katzela, Kazuho Miki, and John
Vicente. “Open signaling for ATM, internet and mobile networks
(OPENSIG’98).” In: ACM SIGCOMM Computer Communication
Review 29.1 (1999), pp. 97-108.

David L Tennenhouse and David J Wetherall. “Towards an active
network architecture.” In: Proceedings of the 2002 DARPA Active
NEtworks Conference and Exposition (DANCE). IEEE. 2002,
pp. 2-15.

Jacobus E van der Merwe and Tan M Leslie. “Switchlets
and dynamic virtual ATM networks.” In: Proceedings of the
Fifth IFIP/IEEFE International Symposium on Integrated Network
Management. Springer. 1997, pp. 355-368.

Matthew Caesar et al. “Design and implementation of a routing
control platform.” In: Proceedings of the 2nd Symposium on
Networked Systems Design € Implementation (NSDI). USENIX
Association. 2005, pp. 15-28.

Jennifer Rexford et al. “Network-wide decision making: Toward a
wafer-thin control plane.” In: Proceedings of the Third Workshop
on Hot Topics in Networks (HotNets). 2004, pp. 59-64.

Open Networking Foundation. Accessed: 2016-05-25. URL: https:
//www.opennetworking.org/.

https://doi.org/10.1109/TPDS.2007.1011
https://www.opennetworking.org/
https://www.opennetworking.org/

Bibliography

ONF. Software-Defined Networking: The New Norm for Networks.
2012.

SDNRG. https://irtf.org/sdnrg. Accessed: 2014-06-24.

E. Haleplidis et al. Software-Defined Networking (SDN): Layers
and Architecture Terminology. RFC 7426. http://www.rfc—
editor .org/rfc/rfc7426 . txt. RFC Editor, 2015. URL:
http://www.rfc-editor.org/rfc/rfc7426.txt.

ONF Market Education Committee et al. “Software-Defined
Networking: Arquitecture Overview.” In: ONF White Paper. Palo
Alto, US: Open Networking Foundation (2013).

Xuezhi Jiang, Mingwei Xu, and Qi Li. “Compact Route
Computation: Improving Parallel BGP Route Processing for
Scalable Routers.” In: Proceedings of the 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW). IEEE. 2011, pp. 1496-1501.

Sugam Agarwal, Murali Kodialam, and TV Lakshman. “Traffic
engineering in software defined networks.” In: Proceedings of the
32nd IEEE International Conference on Computer Communica-
tions (INFOCOM). IEEE. 2013, pp. 2211-2219.

Pedro S Pisa et al. “Openflow and xen-based virtual network mi-
gration.” In: Communications: Wireless in Developing Countries
and Networks of the Future. Springer, 2010, pp. 170-181.

P. Garg and Y. Wang. Network Virtualization Using Generic
Routing Encapsulation. RFC 7637. RFC Editor, 2015.

M. Mahalingam et al. Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2
Networks over Layer 8 Networks. RFC 7637. RFC Editor, 2014.

A. Mendiola, J. Astorga, E. Jacob, and M. Higuero. “A Survey
on the Contributions of Software-Defined Networking to Traffic
Engineering.” In: IEEE Communications Surveys Tutorials 19.2
(2017), pp. 918-953. 1SSN: 1553-877X. DOI: 10 .1109 / COMST .
2016.2633579.

281

https://irtf.org/sdnrg
http://www.rfc-editor.org/rfc/rfc7426.txt
http://www.rfc-editor.org/rfc/rfc7426.txt
http://www.rfc-editor.org/rfc/rfc7426.txt
https://doi.org/10.1109/COMST.2016.2633579
https://doi.org/10.1109/COMST.2016.2633579

282

[88]

[100]

Bibliography

A. Farrel, J.-P. Vasseur, and J. Ash. A Path Computation Element
(PCE)-Based Architecture. RFC 4655. RFC Editor, 2006. URL:
http://www.rfc-editor.org/rfc/rfcd655.txt.

ForCES Working Group. Accessed: 2016-05-25. URL: http: //

datatracker.ietf.org/wg/forces/charter/.

Evangelos Haleplidis et al. “Software-Defined Networking: Ex-
perimenting with the control to forwarding plane interface.” In:
Proceedings of the 2012 European Workshop on Software Defined
Networking (EWSDN). IEEE. 2012, pp. 91-96.

L. Yang, R. Dantu, T. Anderson, and R. Gopal. Forwarding
and Control Element Separation (ForCES) Framework. RFC 3746.
RFC Editor, 2004.

A. Crouch et al. Forwarding and Control Element Separation
(ForCES) Applicability Statement. RFC 6041. RFC Editor, 2010.

E. Haleplidis, K. Ogawa, W. Wang, and J. Hadi Salim.
Implementation Report for Forwarding and Control Element
Separation (ForCES). RFC 6053. RFC Editor, 2010.

J. Halpern and J. Hadi Salim. Forwarding and Control Element
Separation (ForCES) Forwarding Element Model. RFC 5812. RFC
Editor, 2010.

Evangelos Haleplidis et al. “Network programmability with
ForCES” In: IEEE Communications Surveys € Tutorials 17.3
(2015), pp. 1423-1440.

NOX. Accessed: 2016-05-25. URL: http://www.noxrepo.orqg/
nox/about-nox/.

POX. Accessed: 2016-05-25. URL: http://www.noxrepo.org/
pox/about—-pox/.

Trema. Accessed: 2016-05-25. URL: http://trema.github.
io/trema/.

Ryu. Accessed: 2016-05-25. URL: http://osrg.github.io/
ryu/.

FloodLight. Accessed: 2016-05-25. URL: http : / / www .
projectfloodlight.org/floodlight/.

http://www.rfc-editor.org/rfc/rfc4655.txt
http://datatracker.ietf.org/wg/forces/charter/
http://datatracker.ietf.org/wg/forces/charter/
http://www.noxrepo.org/nox/about-nox/
http://www.noxrepo.org/nox/about-nox/
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
http://trema.github.io/trema/
http://trema.github.io/trema/
http://osrg.github.io/ryu/
http://osrg.github.io/ryu/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]

[111]

Bibliography

Beacon. Accessed: 2016-05-25. URL: https : / / openflow .

stanford.edu/display/Beacon/Home.

Zheng Cai, Alan L Cox, and TS Eugene Ng Maestro. A system for
scalable OpenFlow control. Tech. rep. Technical Report TR10-08,
Rice University, 2010.

Andreas Voellmy, Bryan Ford, Paul Hudak, and Y Richard
Yang. “Scaling Software-defined Network Controllers on Multicore
Servers.” In: YaleCS TR1468 (2012).

Jazxon. Accessed: 2016-05-25. URL: http : / / jaxon . onuos .

org/.

SNAC. Accessed: 2016-05-25. URL: http://www.openflowhub.

org/display/Snac/SNAC+Home.

Teemu Koponen et al. “Onix: A Distributed Control Platform
for Large-scale Production Networks.” In: Proceedings of the
9th USENIX conference on Operating systems design and
implementation (OSDI). Vol. 10. 2010, pp. 1-6.

Amin Tootoonchian and Yashar Ganjali. “Hyperflow: a distributed
control plane for openflow.” In: Proceedings of the 2010
Internet Network Management Workshop/Workshop on Research

on Enterprise Networking (INM/WREN). USENIX Association.

2010, pp. 3-3.
Helios. Accessed: 2016-05-25. URL: http://www.nec.com/.

Rob Sherwood et al. “FlowVisor: A Network Virtualization
Layer.” In: (2009). accessed: 2016-05-25. URL: http : / /
OpenFlowSwitch . org/downloads /technicalreports /
openflow-tr-2009-1-flowvisor.pdf.

OpenVirteX. accessed: URL: http://tools.onlab.us/ovx.

html.

Zdravko Bozakov and Panagiotis Papadimitriou. “Autoslice:
automated and scalable slicing for software-defined networks.” In:
Proceedings of the 2012 ACM conference on CoNEXT student
workshop. ACM. 2012, pp. 3—4.

283

https://openflow.stanford.edu/display/Beacon/Home
https://openflow.stanford.edu/display/Beacon/Home
http://jaxon.onuos.org/
http://jaxon.onuos.org/
http://www.openflowhub.org/display/Snac/SNAC+Home
http://www.openflowhub.org/display/Snac/SNAC+Home
http://www.nec.com/
http://OpenFlowSwitch.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://OpenFlowSwitch.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://OpenFlowSwitch.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://tools.onlab.us/ovx.html
http://tools.onlab.us/ovx.html

284

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Bibliography

M. F. Bari et al. “Data Center Network Virtualization: A Survey.”
In: IEEE Communications Surveys & Tutorials 15.2 (2013),
pp. 909-928. 1ssN: 1553-877X. DOI: 10 . 1109/ SURV . 2012 .
090512.00043.

Piotr Rygielski and Samuel Kounev. “Network virtualization for
QoS-aware resource management in cloud data centers: a survey.”
In: PIK-Praxis der Informationsverarbeitung und Kommunikation
36.1 (2013), pp. 55-64.

Andreas Blenk, Arsany Basta, Martin Reisslein, and Wolfgang
Kellerer. “Survey on network virtualization hypervisors for
software defined networking.” In: IEEE Communications Surveys
€ Tutorials 18.1 (2016), pp. 655-685.

Open Network Operating System. accessed: 2016-05-25. URL: http:

//www.onosproject.org/.

Open Daylight Project. accessed: 2016-05-25. URL: http://www.
opendaylight.org/.

Cisco ONE. accessed: 2016-05-25. URL: http : / / www .

cisco.com/web/solutions/trends /open_network _

environment/indepth.html.

Alexander Shalimov et al. “Advanced study of SDN/OpenFlow
controllers.” In: Proceedings of the 9th Central & Fastern Furopean
Software Engineering Conference in Russia (CEE-SECR). ACM.
2013, p. 1.

IDR Working Group. Accessed: 2016-05-25. URL: http : / /
datatracker.ietf.org/wg/idr/charter/.

H. Gredler et al. North-Bound Distribution of Link-State and
Traffic Engineering (TE) Information Using BGP. RFC 7752. RFC
Editor, 2016.

Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4
(BGP-4). RFC 4271. RFC Editor, 2006.

Cisco ONE. Accessed: 2016-05-25. URL: http : / / www .
cisco.com/web/solutions /trends / open_network_

environment/indepth.html.

https://doi.org/10.1109/SURV.2012.090512.00043
https://doi.org/10.1109/SURV.2012.090512.00043
http://www.onosproject.org/
http://www.onosproject.org/
http://www.opendaylight.org/
http://www.opendaylight.org/
http://www.cisco.com/web/solutions/trends/open_network_environment/indepth.html
http://www.cisco.com/web/solutions/trends/open_network_environment/indepth.html
http://www.cisco.com/web/solutions/trends/open_network_environment/indepth.html
http://datatracker.ietf.org/wg/idr/charter/
http://datatracker.ietf.org/wg/idr/charter/
http://www.cisco.com/web/solutions/trends/open_network_environment/indepth.html
http://www.cisco.com/web/solutions/trends/open_network_environment/indepth.html
http://www.cisco.com/web/solutions/trends/open_network_environment/indepth.html

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Bibliography

J. Ash and J.L. Le Roux. Path Computation Element (PCE)
Communication Protocol Generic Requirements. RFC 4657. RFC
Editor, 2006.

D. Awduche et al. RSVP-TE: Extensions to RSVP for LSP
Tunnels. RFC 3209. RFC Editor, 2001.

Ramon Casellas et al. “IDEALIST control plane architecture
for multi-domain flexi-grid optical networks.” In: Proceedings of

the 2014 European Conference on Networks and Communications
(EuCNC). IEEE. 2014, pp. 1-5.

Dan-Dan Wang, Li-Gang Dong, Fu-Rong Zhou, and Wei-Ming
Wang. “Study of OSPF Routing Optimization among Forwarding
Elements in the ForCES Router.” In: Information Technology
Journal 12.2 (2013), pp. 351-356.

Marc Koerner and Odej Kao. “Multiple service load-balancing
with OpenFlow.” In: Proceedings of the 15th IEEE International
Conference on High Performance Switching and Routing (HPSR).
IEEE. 2012, pp. 210-214.

Zhuge Bin et al. “Resource scheduling algorithm and ecnomic
model in ForCES networks.” In: China Communications 11.3
(2014), pp. 91-103.

Chi-Yao Hong et al. “Achieving high utilization with software-
driven WAN.” In: Proceedings of the 2013 conference of the ACM
Special Interest Group on Data Communication (SIGCOMM).
Vol. 43. 4. ACM. 2013, pp. 15-26.

C. P. Guok et al. “A User Driven Dynamic Circuit Network
Implementation.” In: 2008 IEEE Globecom Workshops. 2008,
pp. 1-5. DOI: 10.1109/GLOCOMW. 2008 .ECP . 14.

Mark Boddie et al. “On extending ESnet’s OSCARS with a multi-
domain anycast service.” In: Proceedings of the 16th International
Conference on Optical Network Design and Modeling (ONDM).
IEEE. 2012, pp. 1-6.

Edsger W Dijkstra. “A note on two problems in connexion with
graphs.” In: Numerische mathematik 1.1 (1959), pp. 269-271.

285

https://doi.org/10.1109/GLOCOMW.2008.ECP.14

286

[133]

[134]

[135]

[136]

[137]

138

[139]

[140]

[141]

[142]

Bibliography

OLiMPS’s OSCARS with Floodlight. URL: https://github.
com/mbredel/floodlight-olimps.

Saurav Das, Ali Sharafat, Guru Parulkar, and Nick McKeown.
“MPLS with a simple OPEN control plane.” In: Proceedings of
the 2011 Optical Fiber Communication Conference (OFC). Optical
Society of America. 2011, OWP2.

Saurav Das et al. “Application-aware aggregation and traffic
engineering in a converged packet-circuit network.” In: Proceedings
of the 2011 National Fiber Optic Engineers Conference (NFOEC).
Optical Society of America. 2011, NThD3.

Ariff Premji. “Using MPLS auto-bandwidth in MPLS networks.”
In: Wireline and Wireless Carriers, Juniper Networks, Inc (2005).

M Gharbaoui et al. “On virtualization-aware traffic engineering
in OpenFlow Data Centers networks.” In: Proceedings of the 201/
IEEE Network Operations and Management Symposium (NOMS).
2014, pp. 1-8.

Davide Adami et al. “Effective resource control strategies using
openflow in cloud data center.” In: Integrated Network Manage-
ment (IM 2013), 2013 IFIP/IEEFE International Symposium on.
IEEE. 2013, pp. 568-574.

Ori Gerstel, Masahiko Jinno, Andrew Lord, and SJ Ben Yoo.
“Elastic optical networking: A new dawn for the optical layer?”
In: IEEE Communications Magazine 50.2 (2012).

D. King and A. Farrel. A PCE-Based Architecture for Application-
Based Network Operations. RFC 7491. RFC Editor, 2015.

Ioan Turus, Josva Kleist, and Anna Manolova Fagertun.
“Evaluation of flex-grid architecture for nren optical networks.”
In: Proceedings of Thc2014 (2014).

Ramon Casellas et al. “First Multi-partner Demonstration of
BGP-LS enabled Inter-domain EON control with H-PCE.” In:
Proceedings of the Optical Fiber Communication Conference
(OFC). Optical Society of America. 2015, Th1A—4.

https://github.com/mbredel/floodlight-olimps
https://github.com/mbredel/floodlight-olimps

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Bibliography

Ramon Casellas et al. “SDN Orchestration of OpenFlow and
GMPLS Flexi-Grid Networks With a Stateful Hierarchical PCE
[Invited].” In: Journal of Optical Communications and Networking
7.1 (2015), A106-A117.

Marta Cuaresma et al. “Experimental demonstration of H-
PCE with BPG-LS in elastic optical networks.” In: Proceedings
of the 39th FEuropean Conference and FEzhibition on Optical
Communication (ECOC). 2013, pp. 1-3.

Ricardo Martinez et al. “Experimental validation of active
frontend—Backend stateful PCE operations in flexgrid optical
network re-optimization.” In: Proceedings of the 2014 FEuropean
Conference on Optical Communication (ECOC). IEEE. 2014,
pp- 1-3.

B. Fortz and M. Thorup. “Internet traffic engineering by
optimizing OSPF weights.” In: Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications
Societies (Cat. No.00CH37064). Vol. 2. 2000, 519-528 vol.2. DOI:
10.1109/INFCOM.2000.832225.

A. Ghanwani et al. “Traffic engineering standards in IP-networks
using MPLS” In: IEEE Communications Magazine 37.12 (1999),
pp. 49-53. 18SN: 0163-6804. DOI: 10.1109/35.809384.

R. Zhang-Shen and N. McKeown. “Designing a Fault-Tolerant
Network Using Valiant Load-Balancing.” In: IEEE INFOCOM
2008 - The 27th Conference on Computer Communications. 2008.
DOI: 10.1109/INFOCOM.2008.305.

E. Oki and A. Iwaki. “Load-Balanced IP Routing Scheme Based
on Shortest Paths in Hose Model” In: IEEE Transactions on
Communications 58.7 (2010), pp. 2088-2096. 1sSN: 0090-6778. DOI:
10.1109/TCOMM.2010.07.090219.

Wolfgang Braun and Michael Menth. “Load-dependent flow
splitting for traffic engineering in resilient OpenFlow networks.” In:

Proceedings of the 2015 International Conference and Workshops
on Networked Systems (NetSys). 2015, pp. 1-5.

287

https://doi.org/10.1109/INFCOM.2000.832225
https://doi.org/10.1109/35.809384
https://doi.org/10.1109/INFOCOM.2008.305
https://doi.org/10.1109/TCOMM.2010.07.090219

288

[151]

[152]

[153]

[154]

[155]

[156]

[157]

158]

Bibliography

S. Jouet, C. Perkins, and D. Pezaros. “OTCP: SDN-managed
congestion control for data center networks” In: NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium. 2016, pp. 171-179. por: 10 .1109 /NOMS . 2016 .
7502810.

S. Kim, J. Son, A. Talukder, and C. S. Hong. “Congestion
prevention mechanism based on Q-leaning for efficient routing
in SDN.” In: 2016 International Conference on Information
Networking (ICOIN). 2016, pp. 124-128. po1: 10.1109/ICOIN.
2016.7427100.

John Bresnahan et al. “Globus GridFTP: what’s new in 2007.” In:
Proceedings of the first international conference on Networks for
grid applications. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering). 2007, p. 19.

Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida.
“A multipath controller for accelerating GridFTP transfer over
SDN.” In: Proceedings of the 11th IEEFE International Conference
on e-Science (e-Science). 2015, pp. 439-447.

Suoheng Li et al. “Flexible Traffic Engineering: When OpenFlow
Meets Multi-Protocol IP-Forwarding.” In: IEEE Communications
Letters 18.10 (2014), pp. 1699-1702.

Fung Po Tso and D Pezaros. “Baatdaat: Measurement-Based Flow
Scheduling for Cloud Data Centers.” In: Proceedings of the 2013
IEEE Symposium on Computers and Communications (ISCC).
2013, pp. 765-770. DOI: 10.1109/ISCC.2013.6755041.

Ramona Trestian, Gabriel-Miro Muntean, and Kostas Katrinis.
“MiceTrap: Scalable traffic engineering of datacenter mice flows
using OpenFlow.” In: Proceedings of the 2013 IFIP/IEEE
International Symposium on Integrated Network Management
(IM). TEEE. 2013, pp. 904-907.

Di Zhong, Weiming Wang, and Chuanhuang Li. “The implemen-
tation of multiple virtual FEs and their backup in the ForCES
Router.” In: Proceedings of the 2nd International Workshop on
Intelligent Systems and Applications (ISA). IEEE. 2010, pp. 1-4.

https://doi.org/10.1109/NOMS.2016.7502810
https://doi.org/10.1109/NOMS.2016.7502810
https://doi.org/10.1109/ICOIN.2016.7427100
https://doi.org/10.1109/ICOIN.2016.7427100
https://doi.org/10.1109/ISCC.2013.6755041

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Bibliography

Kien Nguyen, Quang Tran Minh, and Shigeki Yamada. “A
Software-Defined Networking approach for Disaster-Resilient
WANSs.” In: Proceedings of the 22nd International Conference on
Computer Communications and Networks (ICCCN). IEEE. 2013,
pp. 1-5.

S. Sharma et al. “Enabling fast failure recovery in OpenFlow
networks.” In: 2011 8th International Workshop on the Design

of Reliable Communication Networks (DRCN). 2011, pp. 164-171.
DOI: 10.1109/DRCN.2011.6076899.

D. Staessens et al. “Software defined networking: Meeting carrier
grade requirements.” In: 2011 18th IEEE Workshop on Local
Metropolitan Area Networks (LANMAN). 2011, pp. 1-6.

S. S. W. Lee et al. “Software-based fast failure recovery for
resilient OpenFlow networks.” In: 2015 7th International Workshop
on Reliable Networks Design and Modeling (RNDM). 2015,
pp. 194-200. DOI: 10.1109/RNDM.2015.7325229.

S. Sharma et al. “Fast failure recovery for in-band OpenFlow
networks.” In: 2018 9th International Conference on the Design
of Reliable Communication Networks (DRCN). 2013, pp. 52-59.

N. L. M. v. Adrichem, B. J. v. Asten, and F. A. Kuipers. “Fast
Recovery in Software-Defined Networks.” In: 2014 Third European

Workshop on Software Defined Networks. 2014, pp. 61-66. DOI: 10.

1109/EWSDN.2014.13.

K. Jeong, J. Kim, and Y. T. Kim. “QoS-aware Network Oper-
ating System for software defined networking with Generalized
OpenFlows.” In: 2012 IEEE Network Operations and Management

Symposium. 2012, pp. 1167-1174. por: 10.1109/NOMS . 2012 .

6212044.

Evangelos Haleplidis et al. “Network programmability with
ForCES” In: IEEE Communications Surveys € Tutorials 17.3
(2015), pp. 1423-1440.

Kwang-Tae Jeong, Chang-Hwan Lee, and Young-Tak Kim.
“Performance analysis of multi-layered protection switching
with control-forwarding separation.” In: Proceedings of the 14th

289

https://doi.org/10.1109/DRCN.2011.6076899
https://doi.org/10.1109/RNDM.2015.7325229
https://doi.org/10.1109/EWSDN.2014.13
https://doi.org/10.1109/EWSDN.2014.13
https://doi.org/10.1109/NOMS.2012.6212044
https://doi.org/10.1109/NOMS.2012.6212044

290

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

Bibliography

Asia-Pacific Network Operations and Management Symposium
(APNOMS). IEEE. 2012, pp. 1-4.

M. Shand and S. Bryant. IP Fast Reroute Framework. RFC 5714.
RFC Editor, 2010.

Seung-Hun Yoon, Djakhongir Siradjev, and Young-Tak Kim.
“Management of DiffServ-over-MPLS transit networks with
BFD/OAM in ForCES architecture.” In: Large Scale Management
of Distributed Systems. Springer, 2006, pp. 136-148.

Kevin Phemius and Mathieu Bouet. “Implementing OpenFlow-
based resilient network services.” In: Proceedings of the 1st IEEE
International Conference on Cloud Networking (CLOUDNET).
IEEE. 2012, pp. 212-214.

H. Nam, K. H. Kim, J. Y. Kim, and H. Schulzrinne. “Towards
QoE-aware video streaming using SDN.” In: 2014 IEEE Global
Communications Conference. 2014, pp. 1317-1322. D0I1: 10.1109/
GLOCOM.2014.7036990.

E. Liotou et al. “An SDN QoE-service for dynamically enhancing
the performance of OTT applications.” In: 2015 Seventh
International Workshop on Quality of Multimedia Experience
(QoMEX). 2015, pp. 1-2. por: 10 . 1109 / QoMEX . 2015 .
7148106.

A. Farshad et al. “Leveraging SDN to provide an in-network
QoE measurement framework.” In: 2015 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS).
2015, pp. 239-244. po1: 10.1109/INFCOMW.2015.7179391.

Peter Dely, Andreas Kassler, and Nico Bayer. “Openflow for
wireless mesh networks.” In: Computer Communications and
Networks (ICCCN), 2011 Proceedings of 20th International
Conference on. IEEE. 2011, pp. 1-6.

Damon Wischik and Albert Greenberg. “Admission control for
booking ahead shared resources.” In: INFOCOM’98. Seventeenth
Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IFEFE. Vol. 2. IEEE. 1998,
pp. 873-882.

https://doi.org/10.1109/GLOCOM.2014.7036990
https://doi.org/10.1109/GLOCOM.2014.7036990
https://doi.org/10.1109/QoMEX.2015.7148106
https://doi.org/10.1109/QoMEX.2015.7148106
https://doi.org/10.1109/INFCOMW.2015.7179391

[176]

[177]

[178]

[179]

[180]

[181]

[182]

Bibliography

J. Gehr and J. Schneider. “Measuring Fragmentation of Two-
Dimensional Resources Applied to Advance Reservation Grid
Scheduling.” In: 2009 9th IEEE/ACM International Symposium

on Cluster Computing and the Grid. 2009, pp. 276-283. DOI: 10.

1109/CCGRID.2009.81.

E. Soltanaghaei and M. Veeraraghavan. “Multi-option, multi-class
path scheduling methods for advance reservation systems.” In:
2015 IEEE 16th International Conference on High Performance
Switching and Routing (HPSR). 2015, pp. 1-8. por: 10.1109/
HPSR.2015.7483080.

Y. Wang, C. Q. Wu, and A. Hou. “Periodic Scheduling of Deadline-
Constrained Bandwidth Reservations for Scientific Collaboration.”
In: 2016 IEEE 18th International Conference on High Perfor-
mance Computing and Communications; IEEE 14th International

Conference on Smart City; IEEE 2nd International Conference
on Data Science and Systems (HPCC/SmartCity/DSS). 2016,

pp- 150-157. por: 10.1109/HPCC— SmartCity-DSS.2016.

0032.

P. Dharam, C. Q. Wu, and N. S. V. Rao. “Advance Bandwidth
Scheduling in Software-Defined Networks.” In: 2015 IEEE Global
Communications Conference (GLOBECOM). 2015, pp. 1-6. DOL:
10.1109/GLOCOM.2015.7416950.

L-O Burchard. “Analysis of data structures for admission control
of advance reservation requests” In: IEEFE Transactions on
Knowledge and Data Engineering 17.3 (2005), pp. 413-424.

Jun Zheng and H. T. Mouftah. “Routing and wavelength
assignment for advance reservation in wavelength-routed WDM
optical networks” In: 2002 IEEE International Conference
on Communications. Conference Proceedings. I1CC 2002 (Cat.
No.02CH37333). Vol. 5. 2002, 27222726 vol.5. DO1: 10.1109/
ICC.2002.997338.

Pragatheeswaran Angu and Byrav Ramamurthy. “Continuous
and parallel optimization of dynamic bandwidth scheduling
in WDM networks.” In: Global Telecommunications Conference

(GLOBECOM 2010), 2010 IEEE. IEEE. 2010, pp. 1-6.

291

https://doi.org/10.1109/CCGRID.2009.81
https://doi.org/10.1109/CCGRID.2009.81
https://doi.org/10.1109/HPSR.2015.7483080
https://doi.org/10.1109/HPSR.2015.7483080
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0032
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0032
https://doi.org/10.1109/GLOCOM.2015.7416950
https://doi.org/10.1109/ICC.2002.997338
https://doi.org/10.1109/ICC.2002.997338

292

[183]

[184]

[185]

[186]

[187]

[188]

[189]
[190]

Bibliography

Chongyang Xie and Nasir Ghani. “A prioritized routing
algorithm for multi-domain optical networks supporting advance
reservation.” In: High Capacity Optical Networks and Enabling
Technologies, 2008. HONET 2008. International Symposium on.
IEEE. 2008, pp. 211-215.

T. D. Wallace and A. Shami. “Connection management
algorithm for advance lightpath reservation in WDM networks.”
In: Broadband Communications, Networks and Systems, 2007.
BROADNETS 2007. Fourth International Conference on. 2007,
pp. 837-844. DOI: 10.1109/BROADNETS.2007.4550520.

Fun-Sung Jung, Yan Li, Sanjay Ranka, and Sartaj Sahni.
“Performance evaluation of routing and wavelength assignment
algorithms for optical networks.” In: 2008 IEEE Symposium on
Computers and Communications. 2008, pp. 62-67. DO1: 10.1109/
ISCC.2008.4625738.

J. Kuri, N. Puech, M. Gagnaire, and E. Dotaro. “Routing
foreseeable lightpath demands using a tabu search meta-heuristic.”
In: Global Telecommunications Conference, 2002. GLOBECOM
'02. IEEE. Vol. 3. 2002, 2803-2807 vol.3. bDO1: 10.1109/GLOCOM.
2002.1189140.

L. O. Burchard, H. U. Heiss, and C. A. F. De Rose.
“Performance issues of bandwidth reservations for grid computing.”
In: Proceedings. 15th Symposium on Computer Architecture and
High Performance Computing. 2003, pp. 82-90. po1: 10.1109/
CAHPC.2003.1250324.

Ying Chen, Arunita Jaekel, and Ataul Bari. “Resource allocation
strategies for a non-continuous sliding window traffic model
in WDM networks.” In: Broadband Communications, Networks,
and Systems, 2009. BROADNETS 2009. Sizth International
Conference on. IEEE. 2009, pp. 1-7.

R Sedgewick and KD Wayne. Algorithms. 4th. 2011.

Robert Endre Tarjan. Data structures and network algorithms.

SIAM, 1983.

https://doi.org/10.1109/BROADNETS.2007.4550520
https://doi.org/10.1109/ISCC.2008.4625738
https://doi.org/10.1109/ISCC.2008.4625738
https://doi.org/10.1109/GLOCOM.2002.1189140
https://doi.org/10.1109/GLOCOM.2002.1189140
https://doi.org/10.1109/CAHPC.2003.1250324
https://doi.org/10.1109/CAHPC.2003.1250324

[191]

[192]

193]

[194]

[195]

[196]

[197]

[198]

Bibliography

Paul E Black. Dictionary of algorithms and data structures.
National Institute of Standards and Technology Gaithersburg,
2004.

Emmanouel A Varvarigos and Vishal Sharma. “An efficient
reservation connection control protocol for gigabit networks.”
In: Computer Networks and ISDN Systems 30.12 (1998),
pp. 1135-1156.

Emmanouel Manos Varvarigos, Vasileios Sourlas, and Konstanti-
nos Christodoulopoulos. “Routing and scheduling connections
in networks that support advance reservations.” In: Computer
Networks 52.15 (2008), pp. 2988-3006.

Olov Schelén, Andreas Nilsson, Joakim Norrgard, and Stephen
Pink. “Performance of QoS agents for provisioning network
resources.” In: Quality of Service, 1999. IWQ05°99. 1999 Seventh
International Workshop on. IEEE. 1999, pp. 17-26.

Olov Schelén and Stephen Pink. “Resource sharing in advance
reservation agents.” In: Journal of High Speed Networks 7.3, 4
(1998), pp. 213—-228.

Roch A Guérin and Ariel Orda. “Networks with advance
reservations: The routing perspective” In: INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEFE. Vol. 1. IEEE. 2000,
pp. 118-127.

L-O Burchard, Barry Linnert, and Joerg Schneider. “Rerouting
strategies for networks with advance reservations.” In: e-Science
and Grid Computing, 2005. First International Conference on.
IEEE. 2005, 8pp.

L. O. Burchard, B. Linnert, and J. Schneider. “A distributed
load-based failure recovery mechanism for advance reservation
environments.” In: CCGrid 2005. IEEE International Symposium
on Cluster Computing and the Grid, 2005. Vol. 2. 2005, 1071-1078
Vol. 2. DO1: 10.1109/CCGRID.2005.1558679.

293

https://doi.org/10.1109/CCGRID.2005.1558679

294

[199]

[200]

[201]

[202]

203

[204]

[205]

206]

207]

Bibliography

Tao Wang and Jianer Chen. “Bandwidth tree-a data structure for
routing in networks with advanced reservations.” In: Performance,
Computing, and Communications Conference, 2002. 21st IEEE
International. IEEE. 2002, pp. 37-44.

Joseph B Kruskal. “On the shortest spanning subtree of a graph
and the traveling salesman problem.” In: Proceedings of the
American Mathematical society 7.1 (1956), pp. 48-50.

Lars Wolf et al. “Issues of reserving resources in advance.” In:
Network and Operating Systems Support for Digital Audio and
Video. Springer. 1995, pp. 28-38.

Lars C Wolf and Ralf Steinmetz. “Concepts for resource
reservation in advance.” In: Multimedia Tools and Applications 4.3
(1997), pp. 255-278.

Mugurel Ionut Andreica and Nicolae Tapus. “Efficient data
structures for online QoS-constrained data transfer scheduling.”
In: Parallel and Distributed Computing, 2008. ISPDC’08. Inter-
national Symposium on. IEEE. 2008, pp. 285-292.

Mugurel Ionut Andreica. “Optimal Scheduling of File Transfers
with Divisible Sizes on Multiple Disjoint Paths.” In: Proceedings of
the IEEE Romania International Conference” Communications’,
2008.(ISBN: 978-606-521-008-0). 2008, pp. 155-158.

M. I. Andreica and N. Tapus. “Optimal Offline TCP Sender
Buffer Management Strategy.” In: 2008 International Conference
on Communication Theory, Reliability, and Quality of Service.
2008, pp. 41-46. po1: 10.1109/CTRQ.2008.11.

J. Schneider and B. Linnert. “Efficiently Managing Advance
Reservations Using Lists of Free Blocks” In: 2011 23rd
International Symposium on Computer Architecture and High
Performance Computing. 2011, pp. 183-190. por: 10 . 1109/
SBAC-PAD.2011.25.

M. Balman, E. Chaniotakisy, A. Shoshani, and A. Sim. “A Flexible
Reservation Algorithm for Advance Network Provisioning.” In:
2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. 2010, pp. 1-11. DOT:
10.1109/SC.2010.4.

https://doi.org/10.1109/CTRQ.2008.11
https://doi.org/10.1109/SBAC-PAD.2011.25
https://doi.org/10.1109/SBAC-PAD.2011.25
https://doi.org/10.1109/SC.2010.4

208]

209

[210]

[211]

[212]

213]

[214]

[215]

216]

Bibliography

Maryam Barshan, Hendrik Moens, Jeroen Famaey, and Filip De
Turck. “Deadline-aware advance reservation scheduling algorithms
for media production networks.” In: Computer Communications 77
(2016), pp. 26-40.

Sahel Sahhaf et al. “Resilient algorithms for advance bandwidth
reservation in media production networks.” In: Design of Reliable
Communication Networks (DRCN), 2016 12th International
Conference on the. IEEE. 2016, pp. 130-137.

Maryam Barshan, Hendrik Moens, and Bruno Volckaert.

“Dynamic adaptive advance bandwidth reservation in media
production networks.” In: NetSoft Conference and Workshops
(NetSoft), 2016 IEEE. IEEE. 2016, pp. 58-62.

E. Mannie. Generalized Multi-Protocol Label Switching (GMPLS)
Architecture. RFC 3945. RFC Editor, 2004.

Lester R Ford and Delbert R Fulkerson. “Maximal flow through
a network.” In: Canadian journal of Mathematics 8.3 (1956),
pp- 399-404.

Michael L Fredman and Robert Endre Tarjan. “Fibonacci heaps
and their uses in improved network optimization algorithms.” In:

Journal of the ACM (JACM) 34.3 (1987), pp. 596-615.

F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska.

“Efficient topology discovery in software defined networks.” In:
2014 8th International Conference on Signal Processing and
Communication Systems (ICSPCS). 2014, pp. 1-8. DOI: 10.1109/
ICSPCS.2014.7021050.

D. Katz and D. Ward. Bidirectional Forwarding Detection (BFD).

RFC 5880. RFC Editor, 2010.

A. Autenrieth and A. Kirstadter. “Engineering end-to-end
IP resilience using resilience-differentiated QoS.” In: IEEE
Communications Magazine 40.1 (2002), pp. 50-57. 1SSN: 0163-6804.
DOI: 10.1109/35.9780409.

295

https://doi.org/10.1109/ICSPCS.2014.7021050
https://doi.org/10.1109/ICSPCS.2014.7021050
https://doi.org/10.1109/35.978049

296

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

Bibliography

Christos Argyropoulos, Dimitrios Kalogeras, Georgios Androuli-
dakis, and Vasilis Maglaris. “PaFloMon—A Slice Aware Passive
Flow Monitoring Framework for OpenFlow Enabled Experimental
Facilities.” In: Software Defined Networking (EWSDN), 2012
FEuropean Workshop on. IEEE. 2012, pp. 97-102.

Guy Roberts et al. “NSI Connection Service v2. 0.” In: GFD. 212
(2014), pp. 1-119.

Chin Yang Lee. “An algorithm for path connections and its
applications.” In: IRFE transactions on electronic computers 3
(1961), pp. 346-365.

ESnet. OSCARS Circuits. accessed: 2017-03-15. 2017. URL:
https://my.es.net/oscars/list.

Alaitz Mendiola et al. “DynPaC: A Path Computation Framework
for SDN.” In: Software Defined Networks (EWSDN), 2015 Fourth
European Workshop on. IEEE. 2015, pp. 119-120.

A. Mendiola et al. NSI based multi-domain connection provisioning
across OpenFlow domains. IEEE/ACM Conference on Supercoput-
ing. 2014. URL: https://goo.gl/YOmgxr.

Eduardo Jacob et al. “Multi-domain Software Defined Networking:
Exploring possibilities.” 1In: Selected papers of the Terena
Networking Conference (2014). 1SSN: 978-90-77559-24-6.

Pionier Network. Accessed: 2017-05-15. URL: http : / / www .

pionier.net.pl/online/en/.

GEANT Testbed Service. Accessed: 2017-05-15. URL: https :
/ / www . geant . org / Services / Connectivity _ and
network/GTS.

Alaitz Mendiola et al. “Towards an SDN-based bandwidth
on demand service for the European research community.” In:

Networked Systems (NetSys), 2017 International Conference on.
IEEE. 2017, pp. 1-6.

Jokin Garay et al. “Self-deploying Service Graphs over ELwUD
(EHU-OEF Lightweight UNIFY Domain).” In: Network Soft-
warization (NetSoft), 2015 1st IEEE Conference on. IEEE. 2015,

pp. 1-2.

https://my.es.net/oscars/list
https://goo.gl/Y0mqxr
http://www.pionier.net.pl/online/en/
http://www.pionier.net.pl/online/en/
https://www.geant.org/Services/Connectivity_and_network/GTS
https://www.geant.org/Services/Connectivity_and_network/GTS
https://www.geant.org/Services/Connectivity_and_network/GTS

[228]

[229]

230]

[231]

[232]

233

[234]

[235]

[236]

[237]

[238]

Bibliography

J. Astorga et al. “DynPaC: Dynamic and Adaptive Traffic
Engineering for SDNs” In: Selected papers of the Terena
Networking Conference (2015). 1SSN: 978-90-77559-25-3.

Alaitz Mendiola et al. “Multi-domain bandwidth on demand
service provisioning wusing SDN.” In: 2016 IEEE NetSoft
Conference and Workshops (NetSoft). IEEE. 2016, pp. 353-354.

Alaitz Mendiola et al. “DynPaC: a path computation framework
for SDN.” In: Proceedings of the Fourth FEuropean Workshop on
Software Defined Networks (EWSDN). IEEE. 2015, pp. 119-120.

A. Mendiola et al. SDN-enabled AutoBAHN. Envisioning future

BoD services. accessed: 2017-05-23. 2016. URL: https://tnclé6.

geant.org/core/user/809.

A. Mendiola. Adapting the SDN-based BoD application to the
particularities of the Corsa HW datapath. GEANT Symposium
2016. 2016.

A. Mendiola, J. Ortiz, J. Aznar, and A. Juszczyk. Demonstration

of the multi-domain BoD application. GEANT Symposium 2016.

2016.

A. Mendiola et al. A solution for connection-oriented multi-domain
SDN based on NSI. accessed: 2017-05-23. 2015. URL: https://
tnclb5.terena.org/core/user/8009.

L. Prete et al. Empowering GEANT deployments with ONOS
brigades (accepted). accessed: 2017-05-23. 2017. URL: https://
tncl7.geant.org/core/user/1333.

Pier Luigi Ventre et al. “GEANT SDX - SDN based Open
eXchange Point” In: 2016 IEEE NetSoft Conference and
Workshops (NetSoft). IEEE. 2016, pp. 345-346.

Alaitz Mendiola et al. “An architecture for dynamic QoS
management at Layer 2 for DOCSIS access networks using
OpenFlow.” In: Computer Networks 94 (2016), pp. 112-128.

Victor Fuentes et al. “Integrating complex legacy systems under
OpenFlow control: The DOCSIS use case” In: 2014 Third
FEuropean Workshop on Software Defined Networks. IEEE. 2014,
pp. 37-42.

297

https://tnc16.geant.org/core/user/809
https://tnc16.geant.org/core/user/809
https://tnc15.terena.org/core/user/809
https://tnc15.terena.org/core/user/809
https://tnc17.geant.org/core/user/1333
https://tnc17.geant.org/core/user/1333

298

239]

[240]

[241]

[242]

[243]

[244]

Bibliography

Jon Matias et al. “FlowNAC: Flow-based network access control.”
In: 2014 Third European Workshop on Software Defined Networks.
IEEE. 2014, pp. 79-84.

Jon Matias et al. “The EHU-OEF: An OpenFlow-based Layer-2
experimental facility.” In: Computer Networks 63 (2014), pp. 101—
127.

Eduardo Jacob et al. “Deploying a virtual network function over
a software defined network infrastructure: experiences deploying
an access control VNF in the University of Basque Country’s
OpenFlow enabled facility.” In: ().

J. Matias, E. Jacob, C. Pinedo, and A. Mendiola. Access Control
NFV enforcement at the EHU-OpenFlow Enabled Facility. IEEE
Global Communications Conference. 2013. URL: https://goo.
gl/1PelH5.

J. Matias et al. Access Control NFV enforcement at the EHU-
OpenFlow Enabled Facility. Jornadas Técnicas de RedIRIS. 2012.
URL: https://goo.gl/jBVaYL.

J. Matias et al. “Implementing Layer 2 Network Virtualization
Using OpenFlow: Challenges and Solutions.” In: Proceedings of
the 2012 FEuropean Workshop on Software Defined Networking
(EWSDN). 2012, pp. 30-35. DOL: 10.1109/EWSDN.2012.18.

https://goo.gl/lPelH5
https://goo.gl/lPelH5
https://goo.gl/jBVaYL
https://doi.org/10.1109/EWSDN.2012.18

	Dedication
	Abstract
	Laburpena
	Resumen
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	1 Introduction
	1.1 Introduction
	1.2 Context
	1.2.1 Research and Education Networks
	1.2.2 Traffic Engineering in packet networks
	1.2.3 Software-Defined Networking

	1.3 Problem statement and motivation
	1.4 Objectives
	1.5 Contributions
	1.6 Content of the document

	State of the Art
	2 Traffic Engineering Frameworks in Software-Defined Networks
	2.1 Introduction
	2.1.1 Impact of the SDN interface type to TE
	2.1.2 Overview of the most relevant D-CPI Protocols

	2.2 TE frameworks for network resource utilization optimization
	2.2.1 Bin et al. proposal
	2.2.2 B4
	2.2.3 SWAN
	2.2.4 OSCARS
	2.2.5 OPEN
	2.2.6 OFVN
	2.2.7 IDEALIST

	2.3 TE frameworks for congestion minimization
	2.3.1 Huang et al. proposal
	2.3.2 Li et al. proposal
	2.3.3 BaatDaat
	2.3.4 MiceTrap

	2.4 TE frameworks for packet loss minimization
	2.4.1 QNOX
	2.4.2 Yoon et al. proposal
	2.4.3 Phemius et al. proposal

	2.5 TE frameworks for QoE maximization
	2.5.1 Kassler et al. proposal

	2.6 Summary of SDN-based TE frameworks
	2.7 Conclusions

	3 Algorithms and Data Structures for Advance Reservations
	3.1 Introduction
	3.1.1 Fundamentals of advance reservations
	3.1.2 Algorithms and data structures

	3.2 Resource management on a per link basis
	3.2.1 Schelén et al. proposal
	3.2.2 Guerin and Ariel proposal
	3.2.3 Burchard proposal
	3.2.4 Wang and Chen proposal

	3.3 Alternative resource management approaches
	3.3.1 Wolf and Steinmetz proposal
	3.3.2 Andreica et al. proposal
	3.3.3 Schneider and Linnert proposal
	3.3.4 Balman et al. proposal
	3.3.5 Barshan et al. proposal

	3.4 Comparison of advance reservation solutions
	3.5 Conclusions

	Proposal
	4 A generic framework for traffic engineering in SDN
	4.1 Modules
	4.1.1 Path computation element (PCE)
	4.1.2 Topology abstractor
	4.1.3 Resilience module
	4.1.4 Monitoring module
	4.1.5 Network programmer
	4.1.6 Service manager

	4.2 Interface towards external elements
	4.2.1 Traffic Analyzers
	4.2.2 Orchestrators

	5 Support for advance reservations
	5.1 Reservation model
	5.1.1 Definition
	5.1.2 Timing constraints

	5.2 Path computation algorithm
	5.2.1 Pre-computation phase
	5.2.2 On-demand phase

	5.3 Data structures for advance reservations in SDN
	5.3.1 Network Snapshot
	5.3.2 NSTree

	5.4 Operations supported by the NSTree
	5.4.1 Reservation of a new service
	5.4.2 Removal of a service
	5.4.3 Programmatic removal of a network snapshot

	6 Optimization Techniques
	6.1 Flow relocation
	6.2 Flow disaggregation

	Validation
	7 Functional Validation
	7.1 Suitability of the DynPaC framework for TE and optimization techniques
	7.2 Multi-domain E2E involving OpenFlow domains
	7.3 Multi-domain E2E involving heterogeneous domains
	7.4 GÉANT Requirements Tests
	7.4.1 Requirements
	7.4.2 Scenario
	7.4.3 Results
	7.4.4 Conclusions

	8 Performance Evaluation
	8.1 Analysis of the impact of the number of alternative paths in the setup time and the resource utilization
	8.1.1 Full mesh networks
	8.1.2 ESNet network

	8.2 Analysis of the impact of the number of links on the setup time
	8.3 Analysis of the impact of the requested bandwidth on the setup time and the number of rejected services
	8.4 Analysis of the impact of the aggregation policy

	Conclusions
	9 Conclusions and future work
	9.1 Introduction
	9.2 Contributions
	9.3 Dissemination of the results
	9.3.1 Publications in international journals
	9.3.2 Publications in proceedings of international conferences
	9.3.3 Oral communications
	9.3.4 Other publications related to this PhD thesis
	9.3.5 Participation in projects

	9.4 Future work and research lines

	Appendix
	A Appendix: Reservations generator script
	Bibliography

