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Abstract
Wepropose and analyze, focusing on non-adiabatic effects, a technique ofmanipulating quantum
spin systems based on local ‘cutting’ and ‘stitching’ of theHeisenberg exchange coupling between
the spins. This first operation is cutting of a bond separating a single spin from a linear chain, or of
two neighboring bonds for a ring-shaped array of spins.We show that the disconnected spin can be
in the ground state with a high-fidelity even after a non-adiabatic process. Next, we consider
inverse operation of stitching these bonds to increase the system size.We show that the optimal
control algorithm can be found by using common numerical procedures with a simple two-
parametric control function able to produce a high-fidelity cutting and stitching. These results
can be applied formanipulating ensembles of quantum dots, considered as prospective
elements for quantum information technologies, and for design ofmachines based on quantum
thermodynamics.

1. Introduction

Theory of quantum control and its applications [1, 2] attract considerable attention of researchers. The abilities
of producing and transforming quantum states on demand become important also in connectionwith research
on quantum computation and information [3]. The problems in thisfield are usually related to the studies of the
system evolution under time-dependentHamiltonians and the resulting preparation of the desiredfinal states
with themaximumpossible fidelity.

In general, these problems can be formulated as follows. Assume that we impose an external control on a
given quantum system in such away that its initialHamiltonianHi and thefinalHamiltonian after timeT,Hf, are
known.Wewant to achieve the ground state ofHf as a result of the unitary evolution governed by a time-
dependentHamiltonianH(t), withH(0)=Hi andH(T)=Hf, whose initial state is the ground state ofHi. The
adiabatic passage is awell-knownway [4] to realize this process. However, in order to satisfy the conditions of the
adiabatic theorem, one has to implement the evolution of slow-varyingHamiltonian for a very long time, where
decoherencemay ruin the quantumness of the system.

One of the strategies for quantum control is the ‘adiabaticity shortcut’ [5] to allow the design of the
HamiltonianH(t) in such away that the system terminates at the ground state ofHf at a relatively shortT. There
are lots of proposals formaking such adiabatic-like passages in afinite, short time; for instance, the proposal of
transitionless quantumdriving [6, 7], pulse/noise control [8, 9], and invariant-based inverse engineering [5].
However, these proposals require the ability to control the entire quantum system [10–12]. For example, to cut a
spin chain in a short timewith ‘adiabatic shortcut’, one has to control and changewith time each single spin and
each spin–spin interaction bond [13] in the chain.
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In thepresent paper,we investigate the shortcut via only local controlof a complexquantumsystemdescribedby
theHeisenbergmodel for interacting spins in an externalmagneticfield. First,we focus on theproblemof ‘cutting’or
disentangling of a such system into twoparts. Second,we consider inverseproblemof stitching of two systems into
one—the processwhich canbe characterized as a quantumassembly. In general, the current adiabatic quantum
computationorquantumannealing [14] is amultipartite stitchingprocess, as implemented, for example, inD-wave
quantumprocessors.The initialHamiltonianHimaydescribe anon-interacting independent spin system, andwith
timeevolution the system is stitched as a correlated entity describedby the site-bond spinmodelHf, such as the Ising
model.Ourdirect numerical simulations show that suchkindof control canbe achievedwith ahigh-fidelity in the
non-adiabatic domain.These quantumprocesseswith afinite timeduration canbe also interesting as anon-adiabatic
counterpart to a local quenchdynamics of a suddenly cut and stitched spin chains [15], and forbond impurity chain
cutting [16]. Another relatedfield is the quantumthermodynamics [17], or the physics of quantumheatmachines
[18–21], whereonepart of the spin chain canbe considered as aworkingmedium, connected to anddisconnected
fromtheother part,whichplays the role of a thermal reservoir.

In general, such a spin system can be realized in an ensemble of quantumdots, proposed as hardware
elements for quantum information processing [22] aswell as in other spin-based systemswith a similar
prospective [23]. The single spinmanipulation in a quantumdot has become awell-controllable procedure
[24, 25] by now. The spin–spin interaction, strongly dependent on the electron tunneling rate between the dots
can be controlled electrically by a fast gating of the tunneling channels [26].

2. Separation of a quantum system

2.1. General description: evolution andfidelities
Herewe describe the problem in general, without referring to a specific system. Let us assume that some joint
quantum system consists of two parts: A andB. Initially, there is an interaction betweenA andB, such that the
ground state y ñ∣ 0 of the joint A+B system generally cannot be presented as a direct product of A andB states:
y j jñ ¹ ñ Ä ñ∣ ∣ ∣0 0A 0B , where j ñ∣ ( )0A B is the ground state of systemA(B). Assume that initial Hamiltonian of this
joint systemhas the form:

= + ( )H H V , 1i 0

whereV corresponds to the interaction betweenA andBparts.We can alsowrite the following relation:
y l y+ ñ = ñ( )∣ ∣H V0 0 min 0 , where lmin is theminimal eigenvalue of theHamiltonian(1). Let us assume the

‘switch-off’ of theVinteractionwhile the unitary evolutionU(t) is governed by the time-dependent
Hamiltonian = +( ) ( )H t H g t V0 , with initial state y y= ñ = ñ∣ ( ) ∣t 0 0 ,  =( )g t 0 1, and  =( )g t T 0,
whereT is the time of cutting. The state at time t can bewritten as y yñ = ñ∣ ( ) ( )∣t U t 0 , where

 ò= -
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )U t H s sexp i d , 2

t

0

with  denoting the time-ordering. Here and belowwe use the units with  º 1. To characterize the evolution
of the subsystemsA andBwe introduce their reduced densitymatrices presented as traces over the other one:

r y y= ñá( ) ∣ ( ) ( )∣ ( )( ) ( )t t ttr . 3A B B A

After the interactionVbetweenAandB is switchedoff,wemay considerAandBas two separate systems,which
however, canbe entangled.Our goal is tomake the switch-off process in suchaway that the systemA isfinally in its
ground state (seefigure1) regardless of thefinal state of the systemB.Although the sizes of these systems are different,
their purities r ( )( ) ttr A B

2 andentropies r r= -( ) ( ) ( )( ) ( ) ( )S t t ttr lnA B A B A B are equal to eachother [27].
ThefinalHamiltonian can bewritten as  = = +( )H t T H H H0 0A 0B, where H0A and H0B have their own

ground states j l jñ = ñ∣ ∣( ) ( ) ( ) ( )H0A B 0A B min A B 0A B . To trace the proximity of A system to the ground state of H0A,
we introduce time-dependent parameter

j r j= á ñ( ) ∣ ( )∣ ( )f t t , 4c 0A A 0A

and the resulting fidelity of the cutting process º ( )f f T .C c
A complementary general parameter, describing the proximity of the state at given t to the ground state ofH

(t), y ñ∣ ( )t ,0 is defined as:

y y= á ñ( ) ∣ ( )∣ ( ) ∣ ( )f t t t , 5g 0

and corresponding fidelity º ( )f f T .G g It is easy to prove the inequality: f fC G, such that the fG is the lower
bound for fC.Wewill usefG to describe the reverse problem for controllably entangling initially separated A and
Bparts into the joint A+B system.

2
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Before proceeding to the numerical analysis, we notice the importance of the commutator [H0,V]. It is easy
to see from equation (2) by usingMagnus andZassenhaus [28] formulas that if [H0,V]=0, thefidelities fC and
fG do not depend on g(t). Therefore, we assume that ¹[ ]H V, 00 .

Since the propagator(2) for our problem is not presentable in a closed analytical form, one cannot produce
an exact equation for g(t) assuring a shortcut to adiabaticity. In general, several numerical algorithms for optimal
control of quantum systems have been proposed (see, e.g. [29]) and implemented [30]. Recently, an optimized
algorithmhas been developed for the control pulses for practical qubits [31].

In thispaper,wepresentnumerical results of the successful optimizationof theg(t) functionbychoosing
appropriate set ofparameters for its representation.The targetfidelityfCor fG, being a functional of g(t), becomes thena
functionof theseparameters.Wewill showhow this set canbeoptimized, study theproperties of theoptimal solutions,
andprovide apicture inbasicphysical andmathematical termsexplainingmain features of theproposedalgorithm.

2.2. Themodel: Heisenberg chain inmagneticfield
Weconsider a chainwithN spins (see figure 2)placed in a uniform externalmagneticfieldwith the following
Hamiltonian

å ås s s= +
=

-

+
=

( )H J B , 6
n

N

n n
n

N

n
z

1

1

1
1

where s s s s= ( ), ,n n
x

n
y

n
z is the Paulimatrix vector,B is the externalmagnetic field along the z direction, J=±1

for (anti-) ferromagnetic coupling, and n is the spin number. For the ring-shaped array we add s s-J N 1 term to
equation (6) to assure the systemperiodicity.We consider thewhole chain as the A+B system and thefirst

Figure 1. Schematic illustration of quantum system separation into two parts.

Figure 2. Schematic illustration of a spin system cutting: (a) linear chain and (b) ring-shaped array of spins. SubsystemAcorresponds
to the single spin. All other spins form subsystemB.
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spin as the A system (seefigure 2). In such a case, we have s s s= å + å=
-

+ =H J Bn
N

n n n
N

n
z

0 2
1

1 1 and s s=V J ,1 2

while for a ring-shaped array s s s s= +V J J N1 2 1 . After separating this single spin, we obtain s=H B z
0A 1 with

the eigenvalue l = -BminA and spin-down eigenstate j ñ = ñ∣ ∣0A 1. Thus, we have satisfied ¹[ ]H V, 0,0 where
the time dependence of the coupling is due to the time dependence of the exchange interaction in the
corresponding bonds. It is obvious that for a ferromagnetic couplingwith J<0, the ground state of the A+B
system is disentangled [32]with y j jñ = ñ Ä ñ∣ ∣ ∣0 0A 0B and therefore the cuttingwith the fC=1 can bemade
instantaneously. Thus, we concentrate only on the nontrivial anti-ferromagnetic coupling J>0 and take J=1
as the energy unit.

2.3. Parametrization of g(t) and numerical results
Webeginwith a polynomial representation of g(t) in the form:

 å=
+

>
=

⎜ ⎟
⎧
⎨⎪
⎩⎪

⎛
⎝

⎞
⎠( ) ( )g t

a
t

T
t T

t T

1 , for 0 ,

0, for ,

7
n

K

n

n

1

where a2,K, aK are free parameters and = - + + + +( )a a a a1 ... K1 2 3 . Thus, the fidelity is a function of
¼a a, , K2 as º ( )f f a a a T, ,..., ,C C K2 3 . In the realizationwith the simplest linear decrease of theV term,where

a1=−1, and an>1=0, we define

º = =
¥ ¥

( ) ( )f f T f f0, 0,...,0, ; lim lim 1. 8C C
T

C
T

C0 0

Our goal is tofind a set of parameters = { }a a aa , ,..., K2 3 whichmaximizes the fidelity fC for a non-adiabatic
process with a givenfinite timeT. Tofind the propera, we use Broyden–Fletcher–Goldfarb–Shanno (BFGS)
optimizationmethod [33].

Infigure 3we show fC for optimized cutting and fC0 for non-optimized cutting as a function ofT for the ring-
shaped and linear chains withN=6 and 7, J=1, andB=2.We use two free parameters a2, and a3,
withK=3 in equation (7). Numerical simulations have been performed by using a Python SciPy packagewith

Figure 3.Comparison of fidelities for optimized ( fC, red squares) and non-optimized ( fC0, blue circles) cutting: ring-shaped array
(a)N=6, (b)N=7; linear chain (c)N=6 and (d)N=7with the difference between the results for odd- and even-N being partially
related to the formation of the spin singlets for even-N [32].Magnetic fieldB=2 and spin–spin interaction J=1.
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the built-in BFGS optimizationmethod.Unitary operator in equation (2)was approximatedwith 300 time
steps, and the error infidelities is less than0.001. Gradient for BFGSwas approximated as afinite difference with
a step of0.1 in the parameter space. Note, that themagnetic fieldB should not be very high, because in such a
case the ground state becomes fully spin polarized and disentangled. Infigure 4we show the optimal shape of the
control functiong(t) for the ring-shaped array of spins. The linear chain has a similar shape of g(t). Obviously, g
(t) becomes closer to the simple linear dependencewith increasing the cutting timeT. Numerical data for this
setting is presented in table 1. As can be seen from figure 3 and table 1, the same high value of fC can be achieved
in two different ways: by a slow linear adiabatic turning off the interaction, and via amore complicated but faster
switching. Thus this secondway for achieving the demanded state can be considered as the adiabaticity shortcut.

Infigure 5we show fC as a function of the parameter a2 (a3)with afixed at the optimal value a3 (a2). Here
T=0.6 for the ring-shaped array withN=6, J=1, andB=2, where the optimal values are a2=54.31 and
a3=−36.33 (the optimal values correspond to the red dashed vertical lines in figure 5 and are shown in the
second column in table 1). As can be seen infigure 5when parameters a2 and a3 have a small deviation (≈2%)
from their optimal values, our proposal is still efficient. The parametera3must be tunedwithmore accuracy
than parametera2.

Infigure 6, we show the time-dependent fg(t) in equation (5) and fc(t) in equation (4) for optimized andnon-
optimized (linear) cutting protocols. One can see that while in themiddle of the optimized process, fc(t) can be
smaller than that for the non-optimized cutting, at t=T, it becomes higher.Moreover, as can be seen from the
behavior offg(t), optimized process is less adiabatic than the non-optimized one duringmost of the evolution
time.However, asmentioned above, we are interested only in the final state.

In addition, we note that even in the case of the energy-levels crossing in the cutting process (i.e. when at
some time t′wehave ¢ = ¢( ) ( )E t E t ,0 1 where E0(t) andE1(t) is the ground and thefirst excited state energy of the
instantaneousH(t), respectively), which happens, e.g., in a ring-shaped arraywithN=7,B=2, J=1, the
behavior of fC (or fC0 corresponding to the linear switch-off) is the same aswithout the crossing. Fidelities fC and
fC0 increase up to 1with the evolution timeT (see figure 3(b)). However, calculated fG=0 here,meaning that A
andBparts become disentangled after cutting, with Abeing in its ground state and B in a pure state orthogonal to
the ground one.

2.4. Robustness of the control
Nowwe consider the influence of the ‘apparatus’noise [34, 35] in the control function g(t) on thefidelity of
cutting. The noise is simulated as a set of rectangular pulses with afixed lengthΔt and the random
strengthD -( )g r1 2 , whereΔg is a characteristic strength, and r is a randomnumber in the half-interval
[0, 1). This noise is added to the smooth g(t) given by equation (7) for the linear chain. The results of simulations

Figure 4.Optimized control functiong(t) for the ring-shaped arraywithN=6,B=2, J=1 for cutting timesT=0.3, 0.6, 2. The
shape of g(t) corresponds to the parametrization given by(7)with two free parameters. FidelityfC0 corresponds to linear time
dependence of g(t).

Table 1.Non-optimized and optimized fidelity for ring-
shaped array of spins withN=6,B=2, J=1.

T=0.3 T=0.6 T=0.9 T=2

fC0 0.830 0.865 0.910 0.996

fC 0.938 0.990 0.998 0.999

a2 122.8 54.3 20.0 0.87

a3 −82.0 −36.3 −13.5 −0.72

5

New J. Phys. 20 (2018) 105006 PVPyshkin et al



presented infigure 7 lead to conclusion that our proposal is robust against smallfluctuations in the control
function. Also, as can be seen infigure 7, a noise with a high characteristic frequency influences thefidelity less
than thatwith a low frequency.

2.5.Other ( )‐g t realizations
Sincewe are not restricted in choosing the parametrization of the control function g(t), here we compare the
results of different representations. According to the boundary conditions, we canwrite g(t) as follows:

 å p
=

- +

>
=

⎜ ⎟
⎧
⎨⎪
⎩⎪

⎛
⎝

⎞
⎠( ) ( )g t

t

T
b

n t

T
t T

t T

1 sin , for 0 ,

0, for ,

9
n

K

n
1

where b1,K, bK are free parameters. To compare the parametrizations in equations (7) and (9), we chose K= 2
in equation (9) and repeat the optimization for the cutting of a ring-shaped array. The results are presented in
figure 8. As can be seen in the figure, the effectiveness of the optimization algorithm for different g(t)
representations is almost the same.

Since in our simulationswe use the gradient-based BFGS optimizationmethod, we do not need to calculate
thefidelity fC for each b on a specially chosen dense grid. Nevertheless, it is instructive to look at the ‘landscape’
of fC as a function of two free parameters andmake sure that the optimization algorithmworks correctly.
Moreover, this datamay be of independent interest. Infigure 9, we show the landscapes corresponding to
different parametrizations of g(t) and the same physical setting (ring-shaped array,N= 6,T=0.6, J= 1, and

Figure 5.Target fidelity as a function of variation of control parameters around its optimal values. Parameters are: ring-shaped array
withN=6 spins,B=2, J=1,T=0.6 (second column in table 1).

Figure 6.Time dependence fg(t) (red dashed lines) and fc(t) (blue solid lines) for the optimized (bold) and non-optimized (thin)
cutting. The system is a ring-shaped array of spins withN=6,B=2, J=1 for cutting timeT=0.6.
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B= 2). Intersections of white lines infigures 9(a), (b) are positioned at the optimal sets of parameters
corresponding to the results of the BFGS algorithm. For both realizations, the optimalfidelities and control
functions are very close to each other. It is interesting to observe that both the landscapes have a feature in
common. The point corresponding to the best fC is located on the same high-fidelity ‘island’ as the (0, 0)-point,
making it the right initial state for the global-minimum search algorithm, as it was employed in our simulations.

We can also consider g(t) as a sequence ofK rectangular pulses whose amplitudes form the set of free
parameters = { }c cc ,..., K1 , and the duration of each pulse isΔt=T/K:

å q q= - - D - - D
=

( ) [ ( ( ) ) ( )] ( )g t c t n t t n t1 , 10
n

K

n
1

where θ(t) is theHeaviside step function.
Infigures 10(a)–(c), we show the optimal shape of g(t) forK=2, and infigures 10(d)–(f)K=9 is used. Our

setting is the same as infigure 4. By comparing the first row infigure 10with the shapes infigure 4 (dashed lines),
we see the correspondence between the shapes of smooth and pulse controls.Moreover, the optimization time
for a pulsed shapewithK≈10 ismuch faster than the parametrized optimizationwith smooth shape ofg(t)
even forK=2. This is because for optimization of a smooth g(t), the algorithmdivides the [0,T] interval into
more than 100 pieces to accurately calculate the propagator(2)while for the pulse control the evolution interval
is divided into the given number ofK pieces.

Figure 7.The influence of noise with characteristic strengthΔg to thefidelityfC of cutting a linear spin chain. Error bars correspond
to the standard deviation (50 randomnoise realization for each pointwasmade). HereN=6,B=2, J=1, andT=0.6.

Figure 8.Comparison of fidelities for optimized ( fC, red squares) and non-optimized ( fC0, blue circles) cutting for ring-shaped array
(a)N=6, (b)N=7.Magnetic fieldB=2 and spin–spin interaction J=1. Equation (9)has been used for parametrization of g(t).
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3. Stitching of spin chain

Nowwe consider the opposite process: a stitching of quantum system. In this setting, we have a disentangled
initial state of the A+B system,which is the ground state of theHamiltonianH0. Then, we switch on the
interactionV betweenA andB systems, and the desirable final state of the joint A+B system is the ground state
of theHamiltonianH0+V. This approach, which offers a new class of operations such as increasing the size of
a quantum system, is of a practical importance, being a possible way of initializing a spin chain for quantum
information processing (see e.g. [36]).

Since both states of the A andBparts are important at the start and at the end of the stitching, we use
thefidelity fG to describe this process. Thuswe have to satisfymore strict condition in order to achieve the
high-fidelity: the energy gap between the two lowest states of theHamiltonian = + ( )H H g t V0 cannot be zero
for any Î( ) ( )g t 0, 1 . This requirement originating from the adiabatic theorem is not applicable to the chain
cutting, where only the final state of the A system is essential.

Figure 9. Fidelity landscapes for cutting of ring-shaped array(N = 6) as a function of two free parameters for different types of
parametrization: (a) equation (7) and (b) equation (9). The time of cutting isT=0.6,B=2, and J=1. Vertical and horizontal white
lines correspond to the optimized parameters found by using BFGS optimization algorithm. The behavior offidelity at the cross-
sections determined by thewhite lines in (a) is shown infigure (5).

Figure 10.Optimized control functiong(t) for the ring-shaped arraywithN=6,B=2, J=1 for cutting timesT=0.3, 0.6, 0.9.
Subplots (a)–(c) corresponds to the pulse control(10)with two free parameters (K = 2); subplots (d)–(f) corresponds to the pulse
control(10)withK=9. FidelityfC0 corresponds to the linear time dependence of g(t). Dashed lines show the optimal
parametrization given by(7)with two free parameters.
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Herewe consider parametrization of the control function for the stitching process g(t) expressed in the same
way as for the cutting (7) by changing  -t T t :

 å=
+

-

>
=

⎜ ⎟
⎧
⎨⎪
⎩⎪

⎛
⎝

⎞
⎠( ) ( )g t

d
T t

T
t T

t T

1 , for 0 ,

1, for ,

11
n

K

n

n

1

where + å == d1 0.n
K

n1 In addition, as in the case of cutting, we also use here the fidelity fG0, similar to that
defined in equation (8). Note that the polynomial parametrization of g(t) does not imply that the optimal control
shape for stitching can be directly reconstructed from the optimal g(t) for the corresponding cutting since the
optimal sets of parameters are essentially different for these processes. As an examplewe show infigure 11 the
results for the optimization of the stitching process for a ring-shaped array.

Here wemake a general comment related to the cutting and stitching processes. The ground states of the
initial and finalHamiltonians can be degenerate for the cutting or stitching process. In such a case we have the
ground state subspace, andwe have to choose the initial ground state y ñ∣ 0 in such away that y yá ¢ñ ∣ 10 0 for
y¢ñ∣ 0 being a non-degenerate ground state of theHamiltonian d= + +( ( ) )H H g g V00 , where g(0)=1 and
d  -g 0 (g(0)=0 and d  +g 0) for the cutting (stitching) process.

4.Discussion

As can be seen from the shapes of control functions g(t) infigure 10, they have similar patterns for all cases of
cutting, clearly seen for the fast processes. In all these patterns, the interactionV enters a ferromagnetic domain
with g<0 at the beginning, and jumps back to a strong anti-ferromagnetic coupling before the end of the
process (see figures 4(a), (b)). This behavior can be explained by the following heuristic arguments. In the
adiabatic limit (  ¥T ) almost linear g(t)-dependence is the sufficient control for high outputfidelity, as
shown infigure 4(c). First, let us assume, that a non-adiabatic control whichwe have found for afiniteT=T0

has positive derivative + >( )g td 0 d 0 in the case of a smooth control (see red dashed lines infigure 12), or the
amplitude offirst pulsec1>1 in the case of a pulse control (equation (10)).With the increase inT, the shape of
the control functionmust transform into a linear g(t) continuously (red arrows infigure 12). This continuity
implies that the derivative +( )g td 0 d will become negative  +  -( )g t Td 0 d 1 (orfirst pulse amplitude
will go to 1−1/K )with increasing timeT. Therefore, for some intermediate ¢ >T T ,0 the derivate should
become zero, + =( )g td 0 d 0 (or c1=1). However, this vanishing derivatemeans that for this particular value
= ¢T T the control loses the efficiency, since at the beginning of the interval ¢[ ]T0, it does not influence the

system.On the contrary, if + <( )g td 0 d 0, forT=T0 (or c1<1) one canmake continuous transformation of
the control function to  ¥T without crossing such ‘no-control’ point when + =( )g td 0 d 0. The same
reasoning canbemade for the g(t)-behavior near thefinal t=Tpoint,where onemust have - <( )g T td 0 d 0
or cK>0 for the continuous andpulsed control, respectively.After analyzing all these options,we are left with the
only possibility to have + <( )g td 0 d 0 and - <( )g T td 0 d 0, as confirmedbyournumerical simulations.
This behavior of g(t) forT<1 agreeswellwith the physical picture of formation of the spin ground state in the
Zeemanfield.The initial decrease in g(t) to negative values forms a ferromagnetic coupling of the spin that is going
to be separated (systemA)with thenearest neighbor(s) from the rest of the chain (systemB). This coupling

Figure 11.Comparison offidelities for optimized ( fG, red squares) and non-optimized ( ¢fG0, blue circles) stitching for ring-shaped
array (a)N=6, (b)N=7.MagneticfieldB=2 for (a) andB=2.2 for (b). Spin–spin interactionJ=1.
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decreases the quantumfluctuations in the correspondingHeisenberg spin–spin bond and the spins forming this
bond together become easier orientedby theZeemanfield.

This general behavior of the control function is corroborated by the analysis offigure 9 (b): the peak of the
high-fidelity island is located at a negative value ofb2parameter while b1 is close to zero, corresponding to a fast
change in the sign of the exchange coupling at the corresponding bond. By using parametrization(9) and
inequalities + <( )g td 0 d 0 and - <( )g T td 0 d 0, one can analytically write the restrictions on b1 andb2 as:
(i) p< -b b1 2 22 1 and (ii) p< +b b1 2 22 1 . Subsequent numerical analysis shows that the high-fidelity
islands are located below the lines corresponding to these inequalities, in agreementwith our reasoning. Note
that the above reasoning is valid only if the requirements of the adiabatic theorem can be satisfied in the  ¥T
limit, i.e. in the absence of the energy-levels crossings for Î [ ]g 0, 1 .

The amplitude of g(t) increases with decreasing ofT, as expected from the time-energy uncertainty relation
and quantum speed limit [37]. However, it is easy to see that for effective control this amplitude should not be
very large. To prove this, let us consider the pulse-shaped g(t), where the evolution during the pulse can be
described by » - -( ) [ ( ) ]U t g Vtexp i 1 . Thus, due to the local nature ofV, the initial state cannot be changed
to the demanded one by such evolution. Therefore, in the limit T 0 (y y( )T 0), the increase in g(t)V
cannotmake the fidelity fChigher than the non-optimized f .C0 As a result, optimized and non-optimized curves
merge in the anti-adiabatic limitT=1 (T=0.01 infigure 3).

In general, our exact numerical simulations are limited by small number of spinsN since even forN<10
the optimization takes a relatively long time.However, the control function does not strongly depend onN for
long chains. Taking into account that the spinwave velocity (e.g. [38, 39]) is of the order of J, one can see that
during the timeT the non-equilibrium spinwave propagate from the perturbed bond the distance (in the units
of the spin–spin separation) of the order of JT. Therefore, forN?JT, the g(t)− function should be onlyweakly
N-dependent. However, the effect of parity, that is the difference between odd and evenN can influence the
shape of g(t).

Althoughwe presented here cutting protocols for detachment of a single spin from a chain, our results go far
beyond preparation of a spin 1/2 in the ground state. First, we demonstrated here the proof of concept of the
high-fidelity non-adiabatic separation of a complex system, which is a new type of a quantumoperation. Second,
our proposal workswell whenwe cutmore than a single spin. For example, the non-optimized linear cutting of
two spins fromN=5 open chainwithB=2.1 andT=0.6 yields »f 0.26.C0 However, our calculations
demonstrate that under the pulse-shape control(10)withK=2 and c1=−5.4, c2=4.1 the target fidelity
becomesfC≈0.79. Third, we note that cutting a single spinwith the perfect fidelity fC≈1means that the
remaining part of the chain is in a known pure (not necessarily the ground) state, which in its turn can be
transformed by unitary operations to a desirable pure state ofN−1 spins.

5. Conclusion

Wehave shown the feasibility of the unitary non-adiabatic cutting and stitching of complex quantum systems
with a demanded high-fidelity output. The key feature of our proposal is the possibility of using local control
instead of the global one. The optimal shape of the control function can be found by the gradient numerical
optimization.We show that even a simple two-parametric control can be effective for cutting and stitching the
complex quantum systemwith a high-fidelity. Since our approach is numerically exact, this proposal is directly
applicable only for relatively small quantum systems.However, the increase in the system size is not expected to

Figure 12. Schematic illustration of possible and impossible behavior of optimal g(t)near t=0 and t=T. Red dashed lines
correspond to a predetermined ineffective control and green solid lines correspond to a control, which can be effective. Black solid
lines belong to a family of controls, which are all efficient in the limit  ¥T . Green and red arrows correspond to changing the
gradientdg/dtwhen the timeT goes from a finite value to infinity. There intermediate points with dg/dt=0 (black dots) correspond
to initially ineffective control.
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modify our results qualitatively. Evenwhen the time of the process is short, a demanded fidelity can be achieved,
and thus shortcut to adiabaticity can be realized. Different parametrizations of the control function can be used
with a high-fidelity of the results robust against small variations of parameters and noise in the control. Our
results can stimulate further investigations in the adiabaticity shortcut problems, including application in
quantumheat transfer and annealing processes. From the experimental point of view, they can be realized by the
electrical control of spin states in ensembles of quantumdots, where themodulation of spin–spin interaction,
including change in the sign of the exchange coupling J [26] can be done by gating the interdot tunneling and the
states inside the dots on the time scale as short as 10−2 ns, assuring a highly coherent evolution.
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