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Abstract

We propose and analyze, focusing on non-adiabatic effects, a technique of manipulating quantum
spin systems based on local ‘cutting’ and ‘stitching’ of the Heisenberg exchange coupling between
the spins. This first operation is cutting of a bond separating a single spin from a linear chain, or of
two neighboring bonds for a ring-shaped array of spins. We show that the disconnected spin can be
in the ground state with a high-fidelity even after a non-adiabatic process. Next, we consider
inverse operation of stitching these bonds to increase the system size. We show that the optimal
control algorithm can be found by using common numerical procedures with a simple two-
parametric control function able to produce a high-fidelity cutting and stitching. These results
can be applied for manipulating ensembles of quantum dots, considered as prospective

elements for quantum information technologies, and for design of machines based on quantum
thermodynamics.

1. Introduction

Theory of quantum control and its applications [ 1, 2] attract considerable attention of researchers. The abilities
of producing and transforming quantum states on demand become important also in connection with research
on quantum computation and information [3]. The problems in this field are usually related to the studies of the
system evolution under time-dependent Hamiltonians and the resulting preparation of the desired final states
with the maximum possible fidelity.

In general, these problems can be formulated as follows. Assume that we impose an external control on a
given quantum system in such a way that its initial Hamiltonian H; and the final Hamiltonian after time T, Hy are
known. We want to achieve the ground state of Hras a result of the unitary evolution governed by a time-
dependent Hamiltonian H(t), with H(0) = H;and H(T) = Hjy whose initial state is the ground state of H;. The
adiabatic passage is a well-known way [4] to realize this process. However, in order to satisfy the conditions of the
adiabatic theorem, one has to implement the evolution of slow-varying Hamiltonian for a very long time, where
decoherence may ruin the quantumness of the system.

One of the strategies for quantum control is the ‘adiabaticity shortcut’ [5] to allow the design of the
Hamiltonian H(#) in such a way that the system terminates at the ground state of Hyat a relatively short T. There
are lots of proposals for making such adiabatic-like passages in a finite, short time; for instance, the proposal of
transitionless quantum driving [6, 7], pulse/noise control [8, 9], and invariant-based inverse engineering [5].
However, these proposals require the ability to control the entire quantum system [10—12]. For example, to cuta
spin chain in a short time with ‘adiabatic shortcut’, one has to control and change with time each single spin and
each spin—spin interaction bond [13] in the chain.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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In the present paper, we investigate the shortcut via only local control of a complex quantum system described by
the Heisenberg model for interacting spins in an external magnetic field. First, we focus on the problem of ‘cutting’ or
disentangling of a such system into two parts. Second, we consider inverse problem of stitching of two systems into
one—the process which can be characterized as a quantum assembly. In general, the current adiabatic quantum
computation or quantum annealing [ 14] is a multipartite stitching process, as implemented, for example, in D-wave
quantum processors. The initial Hamiltonian H; may describe a non-interacting independent spin system, and with
time evolution the system is stitched as a correlated entity described by the site-bond spin model H such as the Ising
model. Our direct numerical simulations show that such kind of control can be achieved with a high-fidelity in the
non-adiabatic domain. These quantum processes with a finite time duration can be also interesting as a non-adiabatic
counterpart to alocal quench dynamics of a suddenly cut and stitched spin chains [15], and for bond impurity chain
cutting [16]. Another related field is the quantum thermodynamics [ 17], or the physics of quantum heat machines
[18-21], where one part of the spin chain can be considered as a working medium, connected to and disconnected
from the other part, which plays the role of a thermal reservoir.

In general, such a spin system can be realized in an ensemble of quantum dots, proposed as hardware
elements for quantum information processing [22] as well as in other spin-based systems with a similar
prospective [23]. The single spin manipulation in a quantum dot has become a well-controllable procedure
[24,25] by now. The spin—spin interaction, strongly dependent on the electron tunneling rate between the dots
can be controlled electrically by a fast gating of the tunneling channels [26].

2. Separation of a quantum system

2.1. General description: evolution and fidelities

Here we describe the problem in general, without referring to a specific system. Let us assume that some joint
quantum system consists of two parts: A and B. Initially, there is an interaction between A and B, such that the
ground state |ty) of the joint A+B system generally cannot be presented as a direct product of A and B states:
[%0) = |wga) @ |pp), where [, p)) is the ground state of system A(B). Assume that initial Hamiltonian of this
joint system has the form:

Hi=Hy+V, ey

where V corresponds to the interaction between A and B parts. We can also write the following relation:

(Hy + V)|%o) = Amin|%0), where Apy, is the minimal eigenvalue of the Hamiltonian (1). Let us assume the
‘switch-off’ of the V interaction while the unitary evolution U(t) is governed by the time-dependent
Hamiltonian H (t) = Hy + g(¢)V,withinitial state [¢)(t = 0)) = |¢), g(t < 0) = L,and g(t > T) = 0,
where T'is the time of cutting. The state at time ¢ can be written as [¢)(#)) = U (¢)|1)y), where

U = Texp[—iftH(s)ds], @)
0

with 7 denoting the time-ordering. Here and below we use the units with /2 = 1. To characterize the evolution
of the subsystems A and B we introduce their reduced density matrices presented as traces over the other one:

Pae)(t) = trpayl P (1) (Y (0)]. (3)

After the interaction V between A and B is switched off, we may consider A and B as two separate systems, which
however, can be entangled. Our goal is to make the switch-off process in such a way that the system A is finally in its
ground state (see figure 1) regardless of the final state of the system B. Although the sizes of these systems are different,
their purities tr,oi(B) (t) and entropies Syp)(t) = —trpy ) (£)In p, ) (1) are equal to each other [27].

The final Hamiltonian can be writtenas H(t > T) = Hy, = Hya + Hyg, where Hy, and Hyg have their own
ground states Hoa(s)| Ppas)) = Amin A®)|Poas))- T trace the proximity of A system to the ground state of Hoa,
we introduce time-dependent parameter

L=y (@oaloa O 1oa) > 4)

and the resulting fidelity of the cutting process f- = f.(T).
A complementary general parameter, describing the proximity of the state at given ¢ to the ground state of H

(®), |1 (£)), is defined as:

£, = (o ®) 1, 5)
and corresponding fidelity f; = f, (T). Itis easy to prove the inequality: f. > f;, such that the fg is the lower
bound for fc. We will use f to describe the reverse problem for controllably entangling initially separated A and
B parts into the joint A+B system.
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Figure 1. Schematic illustration of quantum system separation into two parts.

(b)
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Figure 2. Schematic illustration of a spin system cutting: (a) linear chain and (b) ring-shaped array of spins. Subsystem A corresponds
to the single spin. All other spins form subsystem B.

Before proceeding to the numerical analysis, we notice the importance of the commutator [Hy, V]. Itis easy
to see from equation (2) by using Magnus and Zassenhaus [28] formulas that if [Hy, V] = 0, the fidelities fcand
fc donot depend on g(¥). Therefore, we assume that [Hy, V] = 0.

Since the propagator (2) for our problem is not presentable in a closed analytical form, one cannot produce
an exact equation for g(f) assuring a shortcut to adiabaticity. In general, several numerical algorithms for optimal
control of quantum systems have been proposed (see, e.g. [29]) and implemented [30]. Recently, an optimized
algorithm has been developed for the control pulses for practical qubits [31].

In this paper, we present numerical results of the successful optimization of the g(#) function by choosing
appropriate set of parameters for its representation. The target fidelity fc or fg, being a functional of g(f), becomes then a
function of these parameters. We will show how this set can be optimized, study the properties of the optimal solutions,
and provide a picture in basic physical and mathematical terms explaining main features of the proposed algorithm.

2.2. The model: Heisenberg chain in magnetic field
We consider a chain with N spins (see figure 2) placed in a uniform external magnetic field with the following
Hamiltonian

N-1 N
H=]Y 0,0,:1+ BY_ o}, (6)
n=1 n=1

where o0, = (07}, 0}, 0%) is the Pauli matrix vector, Bis the external magnetic field along the z direction, ] = +1
for (anti-) ferromagnetic coupling, and 7 is the spin number. For the ring-shaped array we add Joy 03— term to
equation (6)to assure the system periodicity. We consider the whole chain as the A + B system and the first

3
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Figure 3. Comparison of fidelities for optimized ( fc, red squares) and non-optimized ( fcy, blue circles) cutting: ring-shaped array
(@) N = 6,(b) N = 7;linear chain (c) N = 6 and (d) N = 7 with the difference between the results for odd- and even-N being partially
related to the formation of the spin singlets for even-N [32]. Magnetic field B = 2 and spin—spin interaction ] = 1.

spin as the A system (see figure 2). In such a case, we have Hy = ]ZHN:_; 0,0, 1+ BZHN:I orand V = Jojo,,

while for a ring-shaped array V = Joy0, + Jojon. After separating this single spin, we obtain Hyy = Bo} with
the eigenvalue Apina = —B and spin-down eigenstate | ¢,) = || )1. Thus, we have satisfied [Hy, V] = 0, where
the time dependence of the coupling is due to the time dependence of the exchange interaction in the
corresponding bonds. It is obvious that for a ferromagnetic coupling with J < 0, the ground state ofthe A + B
system is disentangled [32] with |1p) = |¢pa) ® |ppp) and therefore the cutting with the fo = 1 can be made
instantaneously. Thus, we concentrate only on the nontrivial anti-ferromagnetic couplingJ > Oand take ] = 1
as the energy unit.

2.3.Parametrization of g(#) and numerical results
We begin with a polynomial representation of g(¢) in the form:

K t n
1—|—Zan(—), for0 <t<T,
n=1 T

g = (7
0, fort > T,
where a,, ..., agare free parametersand a; = —(1 + a, + a3 + ... + ag). Thus, the fidelity is a function of
a, ..., ax as fo = f-(ay, a3 ..., ag, T).Intherealization with the simplest linear decrease of the V term, where
a, = —1,anda,~, = 0,wedefine
feo = 100, 0,...,0, T); lim fo = lim fo, = 1. 8)
T—00 T—00

Our goal is to find a set of parameters a = {a,, as,...,ax } which maximizes the fidelity f for a non-adiabatic
process with a given finite time T. To find the proper a, we use Broyden—Fletcher—Goldfarb—Shanno (BFGS)
optimization method [33].

In figure 3 we show fc for optimized cutting and f¢, for non-optimized cutting as a function of T for the ring-
shaped and linear chains with N = 6and 7,] = 1,and B = 2. We use two free parameters a,, and as,
with K = 3inequation (7). Numerical simulations have been performed by using a Python SciPy package with

4
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Figure 4. Optimized control function g(¢) for the ring-shaped array with N = 6, B = 2,] = 1 for cutting times T = 0.3, 0.6, 2. The
shape of g(#) corresponds to the parametrization given by (7) with two free parameters. Fidelity fo, corresponds to linear time
dependence of g(#).

Table 1. Non-optimized and optimized fidelity for ring-
shaped array of spins withN = 6,B = 2,] = 1.

T=03 T=0.6 T=09 T=2
foo 0.830 0.865 0.910 0.996
fc 0.938 0.990 0.998 0.999
a, 122.8 54.3 20.0 0.87
as —82.0 —36.3 —13.5 —0.72

the built-in BFGS optimization method. Unitary operator in equation (2) was approximated with 300 time
steps, and the error in fidelities is less than 0.001. Gradient for BFGS was approximated as a finite difference with
astep of 0.1 in the parameter space. Note, that the magnetic field B should not be very high, because in such a
case the ground state becomes fully spin polarized and disentangled. In figure 4 we show the optimal shape of the
control function g(¢) for the ring-shaped array of spins. The linear chain has a similar shape of g(¢). Obviously, g
(t) becomes closer to the simple linear dependence with increasing the cutting time T. Numerical data for this
setting is presented in table 1. As can be seen from figure 3 and table 1, the same high value of f- can be achieved
in two different ways: by a slow linear adiabatic turning off the interaction, and via a more complicated but faster
switching. Thus this second way for achieving the demanded state can be considered as the adiabaticity shortcut.

In figure 5 we show fcas a function of the parameter a, (a3) with a fixed at the optimal value a5 (a,). Here
T = 0.6 for the ring-shaped array with N = 6,] = 1,and B = 2, where the optimal values are a, = 54.31 and
a; = —36.33 (the optimal values correspond to the red dashed vertical lines in figure 5 and are shown in the
second column in table 1). As can be seen in figure 5 when parameters a, and a; have a small deviation (~2%)
from their optimal values, our proposal is still efficient. The parameter a; must be tuned with more accuracy
than parameter a,.

In figure 6, we show the time-dependent f,(t) in equation (5) and f(t) in equation (4) for optimized and non-
optimized (linear) cutting protocols. One can see that while in the middle of the optimized process, f.(t) can be
smaller than that for the non-optimized cutting, at ¢ = T, it becomes higher. Moreover, as can be seen from the
behavior of f,(t), optimized process is less adiabatic than the non-optimized one during most of the evolution
time. However, as mentioned above, we are interested only in the final state.

In addition, we note that even in the case of the energy-levels crossing in the cutting process (i.e. when at
some time ' we have E(t') = E;(¢'), where Ey(t) and E,(¥) is the ground and the first excited state energy of the
instantaneous H(?), respectively), which happens, e.g., in aring-shaped arraywith N = 7,B = 2,] = 1, the
behavior of f¢ (or f¢y corresponding to the linear switch-off) is the same as without the crossing. Fidelities fcand
fooincrease up to 1 with the evolution time T (see figure 3(b)). However, calculated fg = 0 here, meaning that A
and B parts become disentangled after cutting, with A being in its ground state and B in a pure state orthogonal to
the ground one.

2.4. Robustness of the control

Now we consider the influence of the ‘apparatus’ noise [34, 35] in the control function g(f) on the fidelity of
cutting. The noise is simulated as a set of rectangular pulses with a fixed length Atand the random

strength Ag(1/2 — r), where Agisa characteristic strength, and r is a random number in the half-interval

[0, 1). This noise is added to the smooth g(#) given by equation (7) for the linear chain. The results of simulations
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Figure 5. Target fidelity as a function of variation of control parameters around its optimal values. Parameters are: ring-shaped array
with N = 6spins, B = 2,] = 1, T = 0.6 (second column in table 1).

fe(t), fo(t)

Figure 6. Time dependence fi(?) (red dashed lines) and f.(#) (blue solid lines) for the optimized (bold) and non-optimized (thin)
cutting. The system is a ring-shaped array of spins with N = 6, B = 2,] = 1 for cutting time T' = 0.6.

presented in figure 7 lead to conclusion that our proposal is robust against small fluctuations in the control
function. Also, as can be seen in figure 7, a noise with a high characteristic frequency influences the fidelity less
than that with alow frequency.

2.5. Other g (t)- realizations
Since we are not restricted in choosing the parametrization of the control function g(¢), here we compare the
results of different representations. According to the boundary conditions, we can write g(#) as follows:

K
1— r + ansin(%m), foro <t< T,

() = 2 ©)

0, fort > T,

where by, ..., by are free parameters. To compare the parametrizations in equations (7) and (9), we chose K = 2
in equation (9) and repeat the optimization for the cutting of a ring-shaped array. The results are presented in
figure 8. As can be seen in the figure, the effectiveness of the optimization algorithm for different g()
representations is almost the same.

Since in our simulations we use the gradient-based BFGS optimization method, we do not need to calculate
the fidelity fc for each b on a specially chosen dense grid. Nevertheless, it is instructive to look at the ‘landscape’
of fcas a function of two free parameters and make sure that the optimization algorithm works correctly.
Moreover, this data may be of independent interest. In figure 9, we show the landscapes corresponding to
different parametrizations of g() and the same physical setting (ring-shaped array, N=6, T = 0.6,] = 1,and

6
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Figure 7. The influence of noise with characteristic strength Agto the fidelity fcof cuttingalinear spin chain. Error bars correspond
to the standard deviation (50 random noise realization for each point was made). Here N = 6, B = 2,] = 1,and T = 0.6.
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Figure 8. Comparison of fidelities for optimized ( fc, red squares) and non-optimized ( fo, blue circles) cutting for ring-shaped array
(a) N = 6,(b) N = 7.Magnetic field B = 2 and spin—spin interaction ] = 1. Equation (9) has been used for parametrization of g(¢).

B =2).Intersections of white lines in figures 9(a), (b) are positioned at the optimal sets of parameters
corresponding to the results of the BFGS algorithm. For both realizations, the optimal fidelities and control
functions are very close to each other. It is interesting to observe that both the landscapes have a feature in
common. The point corresponding to the best f-is located on the same high-fidelity ‘island’ as the (0, 0)-point,
making it the right initial state for the global-minimum search algorithm, as it was employed in our simulations.

We can also consider g(¢) as a sequence of K rectangular pulses whose amplitudes form the set of free
parameters ¢ = {q,...,cx }, and the duration of each pulseis At = T/K:

K
g = Z 0@ — (n — 1)Ar) — 0@ — nAv)], (10)

n=1

where 6(¢) is the Heaviside step function.

In figures 10(a)—(c), we show the optimal shape of g(#) for K = 2, and in figures 10(d)—(f) K = 9is used. Our
setting is the same as in figure 4. By comparing the first row in figure 10 with the shapes in figure 4 (dashed lines),
we see the correspondence between the shapes of smooth and pulse controls. Moreover, the optimization time
for a pulsed shape with K ~ 10 is much faster than the parametrized optimization with smooth shape of g(f)
even for K = 2. This is because for optimization of a smooth g(t), the algorithm divides the [0, T] interval into
more than 100 pieces to accurately calculate the propagator (2) while for the pulse control the evolution interval
is divided into the given number of K pieces.
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Figure 9. Fidelity landscapes for cutting of ring-shaped array (N = 6) as a function of two free parameters for different types of
parametrization: (a) equation (7) and (b) equation (9). The time of cuttingis T = 0.6, B = 2,and ] = 1. Vertical and horizontal white
lines correspond to the optimized parameters found by using BFGS optimization algorithm. The behavior of fidelity at the cross-
sections determined by the white lines in (a) is shown in figure (5).
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Figure 10. Optimized control function g(f) for the ring-shaped array with N = 6, B = 2,] = 1 for cutting times T = 0.3, 0.6, 0.9.
Subplots (a)—(c) corresponds to the pulse control (10) with two free parameters (K = 2); subplots (d)—(f) corresponds to the pulse
control (10) with K = 9. Fidelity fco corresponds to the linear time dependence of g(#). Dashed lines show the optimal
parametrization given by (7) with two free parameters.

3. Stitching of spin chain

Now we consider the opposite process: a stitching of quantum system. In this setting, we have a disentangled
initial state of the A4B system, which is the ground state of the Hamiltonian H,. Then, we switch on the
interaction Vbetween A and B systems, and the desirable final state of the joint A+B system is the ground state
of the Hamiltonian Hy + V. This approach, which offers a new class of operations such as increasing the size of
aquantum system, is of a practical importance, being a possible way of initializing a spin chain for quantum
information processing (see e.g. [36]).

Since both states of the A and B parts are important at the start and at the end of the stitching, we use
the fidelity f; to describe this process. Thus we have to satisfy more strict condition in order to achieve the
high-fidelity: the energy gap between the two lowest states of the Hamiltonian H = Hy + g(t) V cannot be zero
forany g(¢) € (0, 1). This requirement originating from the adiabatic theorem is not applicable to the chain
cutting, where only the final state of the A system is essential.
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Figure 11. Comparison of fidelities for optimized ( fg, red squares) and non-optimized (féo, blue circles) stitching for ring-shaped
array (a) N = 6,(b) N = 7. Magnetic field B = 2 for (a) and B = 2.2 for (b). Spin—spin interaction J = 1.

Here we consider parametrization of the control function for the stitching process g(#) expressed in the same
way as for the cutting (7) by changing t — T — ¢:

K j—
1+ > dn(T d
n=1 T

1, fort > T,

n
), for0 <t<T,

g = (11)

where 1 + °X_, d, = 0.Inaddition, as in the case of cutting, we also use here the fidelity f;, similar to that
defined in equation (8). Note that the polynomial parametrization of g(f) does not imply that the optimal control
shape for stitching can be directly reconstructed from the optimal g(#) for the corresponding cutting since the
optimal sets of parameters are essentially different for these processes. As an example we show in figure 11 the
results for the optimization of the stitching process for a ring-shaped array.

Here we make a general comment related to the cutting and stitching processes. The ground states of the
initial and final Hamiltonians can be degenerate for the cutting or stitching process. In such a case we have the
ground state subspace, and we have to choose the initial ground state |1,) in such a way that (/g|y) — 1for
|105) being a non-degenerate ground state of the Hamiltonian H = Hy + (g(0) + )V, where g(0) = 1and
6g — —0(g(0) = 0and 6g — +0) for the cutting (stitching) process.

4. Discussion

As can be seen from the shapes of control functions g(f) in figure 10, they have similar patterns for all cases of
cutting, clearly seen for the fast processes. In all these patterns, the interaction Venters a ferromagnetic domain
with ¢ < 0at the beginning, and jumps back to a strong anti-ferromagnetic coupling before the end of the
process (see figures 4(a), (b)). This behavior can be explained by the following heuristic arguments. In the
adiabatic limit (T — o00) almost linear g(t)-dependence is the sufficient control for high output fidelity, as
shown in figure 4(c). First, let us assume, that a non-adiabatic control which we have found for a finite T = T
has positive derivative dg (+0)/dt > 0 in the case of a smooth control (see red dashed lines in figure 12), or the
amplitude of first pulse ¢; > 1in the case of a pulse control (equation (10)). With the increase in T, the shape of
the control function must transform into a linear g(f) continuously (red arrows in figure 12). This continuity
implies that the derivative dg (+0) /dt will become negative dg(+0)/dt — —1/T (or first pulse amplitude
willgoto1 — 1/K) withincreasing time T. Therefore, for some intermediate T’ > Ty, the derivate should
become zero, dg(4-0) /dt = 0 (orc¢; = 1). However, this vanishing derivate means that for this particular value
T = T’ the control loses the efficiency, since at the beginning of the interval [0, T'] it does not influence the
system. On the contrary, if dg(+0) /dt < 0, for T = T, (or¢; < 1) one can make continuous transformation of
the control functionto T — oo without crossing such ‘no-control’ point when dg (+0) /dt = 0. The same
reasoning can be made for the g(f)-behavior near the final t = T'point, where one must have dg(T — 0) /dt < 0
or cx > 0 for the continuous and pulsed control, respectively. After analyzing all these options, we are left with the
only possibility to have dg (4+0) /df < 0and dg(T — 0)/dt < 0, as confirmed by our numerical simulations.
This behavior of g(#) for T < 1 agrees well with the physical picture of formation of the spin ground state in the
Zeeman field. The initial decrease in g(f) to negative values forms a ferromagnetic coupling of the spin that is going
to be separated (system A) with the nearest neighbor(s) from the rest of the chain (system B). This coupling
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0 A&T t

Figure 12. Schematic illustration of possible and impossible behavior of optimal g(f) near t = 0 and t = T. Red dashed lines
correspond to a predetermined ineffective control and green solid lines correspond to a control, which can be effective. Black solid
lines belong to a family of controls, which are all efficient in the limit T'— oo. Green and red arrows correspond to changing the
gradient dg/d¢when the time T goes from a finite value to infinity. There intermediate points with dg/d¢ = 0 (black dots) correspond
to initially ineffective control.

decreases the quantum fluctuations in the corresponding Heisenberg spin—spin bond and the spins forming this
bond together become easier oriented by the Zeeman field.

This general behavior of the control function is corroborated by the analysis of figure 9 (b): the peak of the
high-fidelity island is located at a negative value of b, parameter while b, is close to zero, corresponding to a fast
change in the sign of the exchange coupling at the corresponding bond. By using parametrization (9) and
inequalities dg(40) /df < 0and dg(T — 0) /dt < 0, one can analytically write the restrictions on b, and b, as:
(1) by < 1/2w — by/2and (ii) b, < 1/27 + by /2. Subsequent numerical analysis shows that the high-fidelity
islands are located below the lines corresponding to these inequalities, in agreement with our reasoning. Note
that the above reasoning is valid only if the requirements of the adiabatic theorem can be satisfied inthe T — oo
limit, i.e. in the absence of the energy-levels crossings for g € [0, 1].

The amplitude of g(#) increases with decreasing of T, as expected from the time-energy uncertainty relation
and quantum speed limit [37]. However, it is easy to see that for effective control this amplitude should not be
very large. To prove this, let us consider the pulse-shaped g(#), where the evolution during the pulse can be
described by U (t) ~ exp[—i(g — 1) Vt]. Thus, due to the local nature of V, the initial state cannot be changed
to the demanded one by such evolution. Therefore, in the limit T — 0 (¢ (T) — 1)), the increase in g(£) V'
cannot make the fidelity fc higher than the non-optimized f. Asaresult, optimized and non-optimized curves
merge in the anti-adiabatic limit T < 1 (T = 0.01 in figure 3).

In general, our exact numerical simulations are limited by small number of spins N since even for N < 10
the optimization takes a relatively long time. However, the control function does not strongly depend on N for
long chains. Taking into account that the spin wave velocity (e.g. [38, 39]) is of the order of ], one can see that
during the time T the non-equilibrium spin wave propagate from the perturbed bond the distance (in the units
of the spin—spin separation) of the order of JT. Therefore, for N > JT, the g(t)— function should be only weakly
N-dependent. However, the effect of parity, that is the difference between odd and even N can influence the
shape of g(1).

Although we presented here cutting protocols for detachment of a single spin from a chain, our results go far
beyond preparation of a spin 1/2 in the ground state. First, we demonstrated here the proof of concept of the
high-fidelity non-adiabatic separation of a complex system, which is a new type of a quantum operation. Second,
our proposal works well when we cut more than a single spin. For example, the non-optimized linear cutting of
two spins from N = 5 open chainwith B = 2.1and T = 0.6yields f., ~ 0.26. However, our calculations
demonstrate that under the pulse-shape control (10) with K = 2and ¢; = —5.4, ¢, = 4.1 the target fidelity
becomes fc = 0.79. Third, we note that cutting a single spin with the perfect fidelity fc ~ 1 means that the
remaining part of the chain is in a known pure (not necessarily the ground) state, which in its turn can be
transformed by unitary operations to a desirable pure state of N — 1 spins.

5. Conclusion

We have shown the feasibility of the unitary non-adiabatic cutting and stitching of complex quantum systems
with a demanded high-fidelity output. The key feature of our proposal is the possibility of using local control
instead of the global one. The optimal shape of the control function can be found by the gradient numerical
optimization. We show that even a simple two-parametric control can be effective for cutting and stitching the
complex quantum system with a high-fidelity. Since our approach is numerically exact, this proposal is directly
applicable only for relatively small quantum systems. However, the increase in the system size is not expected to
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modify our results qualitatively. Even when the time of the process is short, a demanded fidelity can be achieved,
and thus shortcut to adiabaticity can be realized. Different parametrizations of the control function can be used
with a high-fidelity of the results robust against small variations of parameters and noise in the control. Our
results can stimulate further investigations in the adiabaticity shortcut problems, including application in
quantum heat transfer and annealing processes. From the experimental point of view, they can be realized by the
electrical control of spin states in ensembles of quantum dots, where the modulation of spin—spin interaction,
including change in the sign of the exchange coupling J [26] can be done by gating the interdot tunneling and the
states inside the dots on the time scale as short as 10~ % ns, assuring a highly coherent evolution.
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