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Abstract: Gamma titanium aluminides (γ-TiAl) present an excellent behavior under high temperature
conditions, being a feasible alternative to nickel-based superalloy components in the aeroengine
sector. However, considered as a difficult to cut material, process cutting parameters require special
study to guarantee component quality. In this work, a developed drilling mechanistic model is
a useful tool in order to predict drilling force (Fz) and torque (Tc) for optimal drilling conditions.
The model is a helping tool to select operational parameters for the material to cut by providing the
programmer predicted drilling forces (Fz) and torque (Tc) values. This will allow the avoidance of
operational parameters that will cause excessively high force and torque values that could damage
quality. The model is validated for three types of Gamma-TiAl alloys. Integral hard metal end-drilling
tools and different cutting parameters (feeds and cutting speeds) are tested for three different sized
holes for each alloy.
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1. Introduction

Aeronautics is an emerging sector; aircraft manufacturing predictions estimate doubling of the
current fleet by the year 2033, in order to satisfy passenger’s increment demand that grows at a rate of
4.2% per year [1]. Components manufacturing for the aeronautic sector is a high value added process,
and, concretely, motor components require special attention because they represent one of the most
expensive (20%) components [2]. The aviation industry will try to satisfy manufacturing demand
according to regulation requirements regarding efficiency, noise, fuel consumption and contamination.
Therefore, new materials and manufacturing processes are under development by aeronautic sector
manufacturers. In this sense, γ-TiAl alloys are a feasible replacement for nickel-based alloys frequently
used for compressor blades and stator in gas turbine aeroengines [3–5]. Moreover, titanium alloys are
also interesting for bio-medical engineering, automobile sector and chemical industries [6].

Gamma titanium aluminide intermetallics present excellent strength-weight ratio, and corrosion
resistance at high temperature [7,8]. However, it is considered a difficult to cut material [9,10] due to
its poor tensile and low room temperature ductility (<2%). Besides, high heat values are generated
during γ-TiAl machining due to low thermal conductivity o the material. Consequently, tool and
workpiece wear is accelerated [11], tool life is reduced [12] and workpiece integrity is affected [13].
Moreover, γ-TiAl reacts chemically with many materials causing material adhesion.
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Several studies have considered γ-TiAl a difficult to cut material regarding turning [14,15],
grinding [16], high speed milling [17–19], drilling and micro-drilling [20].

In this sense, high machining conditions can cause irreversible consequences such as surface
cracking, hardened layers and tensile residual stresses [21]. Optimal machining strategies and
parameters are studied for electrochemical machining [22], turning [23,24], and milling [25] related
to cutting temperature technique evaluation, and, appropriate machining conditions in order to
reduce tool wear and increase tool life. Milling studies have also investigated the effects of operating
parameters and conditions on tool life and surface integrity when milling γ-TiAl alloys [26–28].

In relation to lubrication techniques, some studies [29] focus on cryogenic lubrication
(liquid nitrogen) obtaining cutting feed value increments while tool life is maintained.

Machining processes modelling is also a hot topic for difficult to cut materials. In this sense,
two-dimensional models [30] were developed for cutting parameters such as cutting speed and feed
influence determination. Numerical and experimental analyses of residual stresses generated in the
machining of Ti6A14V titanium alloy are developed [31]. Empirical models are also used for thrust and
torque values prediction in composites. Other techniques such as response surface methodology (RSM)
and finite element analysis (FEA) are implemented for milling [32] and drilling [33] process parameter
analysis. In addition, finite element models are also developed for performance characteristics such
as hole quality prediction [34]. Other techniques are focused on the side of monitoring. For instance,
power consumption during drilling is a key magnitude in predictive/preventive techniques [35,36].

Considering γ-TiAl promising application possibilities, drilling machinability studies are a focus of
interest due to presented machinability problems, drilling being one of the most frequent processes for
component assembly. In this work, the developed drilling mechanistic model is a useful tool in order
to predict drilling force (Fz) and torque (Tc) for optimal drilling conditions determination. The model
is validated for three types of Gamma-TiAl alloys. Integral hard metal end-drilling tools and different
cutting parameters (feeds and cutting speeds) are tested for three different sized holes for each alloy.

2. Experimental Procedure

2.1. Material

Four different titanium alloys are tested in performed drilling tests: Ti-6Al-4V and three
different γ-TiAl alloys (TNB, extruded MoCuSi and ingot MoCuSi). Table 1 shows the tested alloys’
mechanical properties.

Table 1. Mechanical properties comparison between TiAl alloys.

Property TNB Ti–6Al–4V
(Annealed)

MoCuSi
Extruded

MoCuSi
Ingot

Density (g/cm3) 3.86 4.49 3.74 3.88
Specific modulus
(GPa/(mg·m−3)) 43 24 43 37

Tensile strength (MPa) 683 1087 607 689
Specific strength (MPa/(g·cm−3)) 192 947 198 180

Yield strength (MPa) 589 942 589 570
Ductility (%) 1.9 7.8 1.7 2.4

Fracture toughness (MPa·m1/2) 23 52 23 20
Thermal conductivity

(W/(m·K)) 24 8.6 24 19

Maximum operating
temperature (◦C) 900 615 900 865

γ-TiAl alloys present higher aluminum percentage in comparison to other titanium alloys such as
Ti-6Al-4V, 43–48% in γ-TiAl and 6% in Ti-6Al-4V, improving thermal conductivity in γ-TiAl. On the other
hand, ductile transition temperature occurring between 600 and 800 ◦C, depending on the microstructure
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and grain size alloys, is increased for alloys with higher titanium percentage [12]. The intermetallic
TiAl provides low density [37] as well as high mechanical strength under high temperatures and
corrosive environments. The intermetallic γ-TiAl superalloys offer excellent mechanical properties [38],
with low density (4 gr/cm3), high resistance at high temperatures, low electrical and thermal conductivity,
oxidation resistance, ultimate strength of 1000 MPa and Young’ s modulus of 160 GPa.

MoCuSi alloy [Ti-(43–46) Al-(1–2) Mo-(0.2) Si-Cu] is used at low temperatures with high resistance
below 650 ◦C, and, TNB alloy [Ti-(44–45) Al-(5–10) Nb-(0.2–0.4) C] resists very high temperatures
maintaining high resistance and oxidation values. Regarding MoCuSi alloys, the material is presented
in both, extruded and ingot structure. Extruded alloys present an oriented structure oriented in the
extrusion direction whereas melted alloys present a structure without any preferable orientation,
typical of no extruded or laminated materials. The ingot structure is directly obtained from the VAR
(Vacuum Arc Remelting) process. For extruded structures, material is extruded at 1200 ◦C and smaller
sized grains are obtained with superior creep strain, yield strength and KIC.

2.2. Equipment

Machining tests were performed in a vertical CNC milling machine, Kondia® model B640
(Kondia, Elgoibar, Spain), with maximum rotational speed of 10,000 rpm and 25 kW. During the
tests, process-cutting conditions are measured and recorded. For the axial/thrust (Fz) and radial
(Fx, Fy) cutting forces, and, Z axis (Tc) torque measurements, a dynamometric Kistler® equipment
9257B (Kistler, Winterthur, Switzerland) was used (Figure 1).
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Figure 1. Kondia® model B640 (left) and Kistler® 9257B dynamometer (right).

2.3. Machining Conditions

Drilling tests were carried out for the described four titanium alloys (Table 1). As can be seen in
Table 2, for each material, tested feed values are 0.05 and 0.1 mm/rev for calibration tests and 0.06 and
0.08 mm/rev for validation tests, and, D = 3, 4, 5, 6, 7 mm (pilot holes) and 8.5 mm holes (final holes)
were drilled in each case (Figure 2). The drilled depth is 20 mm. D = 3, 4, 5, 6, 7 mm (pilot holes) and
8.5 mm holes (final holes) are used for calibration, and, D = 4–6 mm (pilot holes) and 8.5 mm holes
(final holes) are used for the validation tests.

Table 2. Machining conditions for the 8.5 mm hole.

Material vc [m/min] n [rev/min] f [mm/rev] f [mm/rev]

Ti-6Al-4V 50 1874 0.05 0.1
TNB 15 1874 0.05 0.1

MoCuSi Extruded 15 562 0.05 0.1
MoCuSi Ingot 15 562 0.05 0.1
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Figure 2. Experimental holes set–up.

The selected tool is a solid carbide drill (Mitsubishi®, Tokyo, Japan, MPS0850S-DIN-C, Figure 3).
During the machining operations, cutting forces, torque and power consumption were recorded.
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Figure 3. Cutting tool geometry.

One of the critical aspects when drilling γ-TiAl is chip evacuation and heat dissipation. Internal
lubrication is directly applied on the cutting edge, due to the poor thermal conductivity of these
alloys. Specially designed for low machinability materials, Rhenus® FU W (Table 3, Rhenus,
Mönchengladbach, Germany) coolant was used. Internal coolant pressure is set to 8.5 bar.

Table 3. Properties of Rhenus® FU 70 W coolant.

Concentrated Emulsion

Viscosity 20 ◦C
(mm2/s)

Content of
mineral oil %

pH Value 5%
concentration

Protection against
corrosion (DIN 51360/1)

Approx. 150 Approx. 33 Approx. 9,0 Note 0 al 2%

3. Cutting Forces Prediction Mechanistic Model

Predictive cutting forces mechanistic models help programmers with cutting parameter selection.
Especially when drilling low machinability titanium alloys, it is interesting to simulate different
machining conditions in order to decide whether the estimated cutting forces values lead to an
optimum machining process.

This section explains the modelling of cutting forces and torque in drilling. Since the cutting speed
varies along the drill’s lips, the way the cutting force coefficients are introduced inside the model is a
crucial issue. There have been a number of attempts based on orthogonal-oblique transformation [39]
and mechanistic models [40].

The cutting edge is divided into discrete elements in the drill axis (j = 1 to n elements) and the
global cutting force and torque are obtained by summing the elemental contributions along each lip
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(i = 1 to Z). As it can be seen in Figure 4, while Fx and Fy are coupled due to tool rotation leading to the
radial Fr and tangential Ft cutting force components, Fz is directly obtained from the axial component Fa.
Here, we will focus on the thrust force (Equation (1)) in Z direction and torque (Equation (2)), which are
critical parameters when characterizing tool life. These magnitudes are calculated as:

Fz(t) =
Z

∑
i=1

n

∑
j=1

Kc,z(h, r) · ∆z · h (1)

Tc(t) =
Z

∑
i=1

n

∑
j=1

Kt,z(h, r) · ∆z · h · r (2)

where Kz and KT are the corresponding thrust force and torque coefficients, ∆z is the axial width of a
differential element, h the chip thickness (here, h = 0.5f·sin70◦) and r the tool radius. As usual, the thrust
cutting force and torque coefficients need to be calibrated. Here, 4 different titanium alloys were tested:
(1) Ti-6Al-4V, taken as reference; (2) TNB and MoCuSi types, (3) extruded and (4) ingot types. Under this
approach, the cutting force coefficients were assumed a function of the feedrate (or h) and radial distance
of the cutting point to drill axis as quadratic functions. First, a0-a5 and b0-b5 coefficients in Equations (3)
and (4) are identified from a linear regression for the four types of materials from a set of experiments.

Kz(h, r) = a0 + a1 · h + a2 · r + a3 · hr + a4 · r2 + a5 · h2 (3)

KT(h, r) = b0 + b1 · h + b2 · r + b3 · hr + b4 · r2 + b5 · h2 (4)
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4. Results

The mechanistic model is valid for vc = 50 m/min (Ti-6Al-4V), and vc = 15 m/min
(TNB, and extruded/ingot types), the cutting speed at the tool diameter D. To identify the cutting
coefficients, 10 tests were done. After a pilot hole, the hole was finished at D = 8.5 mm. Five different
pilot hole diameters (D0 = 3, 4, 5, 6, 7 mm) and two feed rates (f = 0.05–0.1 mm) were programmed.

The corresponding functions for the cutting coefficients are summarized in Table 8 with the
obtained coefficients of polynomial functions Kz and KT in Equations (3) and (4).

4.1. Results for Ti-6Al-4V Alloy

As can be seen, both experimental and the predicted thrust force and torque values are higher for
higher feed rate values (Figure 5). Table 4 shows the experimental data for both variables during the
calibration of the cutting coefficients. While the curve Fz reflects almost a linear tendency, the torque is
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approximated as a curve with an inflexion (third order). At the same time, the higher the dispersion,
the lower is the difference between the pilot and final hole diameters.

Table 4. Experimental results for Fz [N] and Tc [Nm] in Ti-6Al-4V alloy.

D0 [mm]
Fz [N] Tc [Nm]

f [mm/rev] f [mm/rev]

0.05 0.1 0.05 0.1

3 591 723 3.1 3.9
4 460 565 2.4 3.7
5 319 440 2.1 3.4
6 242 332 1.9 3.2
7 169 225 1.8 3.1

Materials 2018, 11, x FOR PEER REVIEW  6 of 13 

 

torque is approximated as a curve with an inflexion (third order). At the same time, the higher the 
dispersion, the lower is the difference between the pilot and final hole diameters. 

Table 4. Experimental results for Fz [N] and Tc [Nm] in Ti-6Al-4V alloy. 

D0 [mm] 
Fz [N] Tc [Nm] 

f [mm/rev] f [mm/rev] 
0.05 0.1 0.05 0.1 

3 591 723 3.1 3.9 
4 460 565 2.4 3.7 
5 319 440 2.1 3.4 
6 242 332 1.9 3.2 
7 169 225 1.8 3.1 

 

 
(a) 

 
(b) 

Figure 5. Fz [N] (a) and Tc [Nm] (b) for Ti-6Al-4V alloy drilling experimental and mechanistic model 
values. 

4.2. Results for TNB Alloy 

Thrust force values (Figure 6a) show higher values for higher feed rate values but are not 
doubled when doubling the feed rate. However, the cutting tool behaved correctly despite that the 
cutting force increased ×1.33 and cutting torque increased ×1.5–2, with respect to Ti4Al6V. When feed 
rates values are multiplied ×2, torque values are multiplied ×1.3 approximately. Table 5 shows again 
the experimental data necessary to obtain the polynomials of the cutting coefficients. A higher 
dispersion is seen for the cutting torque Tc as the pilot hole diameter approaches the final hole 
diameter (Figure 6b). 

3 3.5 4 4.5 5 5.5 6 6.5 70

200

400

600

800

1000

1200

Pilot hole diameter D0 [mm]

Fz
 [N

]

 

 

f=0.05mm/rev (mod.)
f=0.10mm/rev (mod.)
f=0.05mm/rev (exp.)
f=0.10mm/rev (exp.)

3 3.5 4 4.5 5 5.5 6 6.5 70

5

10

15

Pilot hole diameter D0 [mm]

Tc
 [N

m
]

 

 

f=0.05mm/rev (mod.)
f=0.10mm/rev (mod.)
f=0.05mm/rev (exp.)
f=0.10mm/rev (exp.)

Figure 5. Fz [N] (a) and Tc [Nm] (b) for Ti-6Al-4V alloy drilling experimental and mechanistic
model values.

4.2. Results for TNB Alloy

Thrust force values (Figure 6a) show higher values for higher feed rate values but are not doubled
when doubling the feed rate. However, the cutting tool behaved correctly despite that the cutting
force increased ×1.33 and cutting torque increased ×1.5–2, with respect to Ti4Al6V. When feed rates
values are multiplied ×2, torque values are multiplied ×1.3 approximately. Table 5 shows again the
experimental data necessary to obtain the polynomials of the cutting coefficients. A higher dispersion is
seen for the cutting torque Tc as the pilot hole diameter approaches the final hole diameter (Figure 6b).
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Table 5. Experimental results for Fz [N] and Tc [Nm] in TNB alloy.

D0 [mm]
Fz [N] Tc [Nm]

f [mm/rev] f [mm/rev]

0.05 0.1 0.05 0.1

3 802 954 5.8 7.0
4 631 765 5.3 6.7
5 476 575 4.3 6.1
6 343 421 4.0 6.0
7 240 259 3.5 5.7
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Figure 6. Fz [N] (a) and Tc [Nm] (b) for TNB alloy drilling experimental and mechanistic model values.

4.3. Results for Ingot MoCuSi Alloy

Ingot MoCuSi alloys are harder Ti-6Al-4V alloys and TNB alloys. Table 6 shows the main
values. This statement was verified on sight of Figure 7. The axial force Fz and cutting torque Tc are
higher regarding previous alloys. Focusing on cutting torque (Figure 7b), when the feed rate value is
multiplied ×2, torque values are multiplied ×1.1 approximately.
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Table 6. Experimental results for Fz [N] and Tc [Nm] in ingot MoCuSi alloy.

D0 [mm]
Fz [N] Tc [Nm]

f [mm/rev] f [mm/rev]

0.05 0.1 0.05 0.1

3 852 906 6.0 8.7
4 702 775 5.5 8.3
5 525 600 4.8 7.5
6 419 466 4.6 7.3
7 275 290 4.0 7.0
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4.4. Results for Extruded MoCuSi Alloy

MoCuSi extruded alloys present the highest hardness values in comparison to the latter ones.
While the results for the cutting torque Tc are quite similar to the ingot MoCuSi alloy (both results are
almost identical), the thrust force is more dramatic for the extruded MoCuSi alloy. Regarding cutting
torque (Figure 8b), when the feed rate value is multiplied by two, torque values are multiplied ×1.2
approximately (see also results in Table 7).
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Table 7. Experimental results for Fz [N] and Tc [Nm] in extruded MoCuSi alloy.

D0 [mm]
Fz [N] Tc [Nm]

f [mm/rev] f [mm/rev]

0.05 0.1 0.05 0.1

3 925 1050 6.5 9.3
4 751 860 6.1 8.6
5 550 621 5.5 8.0
6 427 475 4.7 7.7
7 280 292 4.0 7.5
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model values.

Using the above experimental results, the coefficients in Equations (3) and (4) are obtained and
then the corresponding polynomial functions are built (Table 8).

Table 8. Obtained coefficients for the polynomials in Equations (3) and (4).

Materials
Kz(h,r) KT(h,r)

a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 b5

Ti-6Al-4V 13,159 −93,861 −3,225 −10,986 977.11 −7,056.0 39.646 −68.280 −21.597 −41.882 5.253 −5.171

TNB 19,860 −217,630 −3,830 17,235 855.42 −16,347.1 77.853 −283.109 −36.204 −61.168 8.334 −21.331

MoCuSi
(ingot) 23,445 −270,543 −4,028 20,962 688.07 −20,320 90.152 −274.538 −45.120 −17.808 9.663 −20.703

MoCuSi
(extruded) 24,016 −282,289 −4,270 24,114 860.73 −21,202 84.201 −120.895 −45.120 −17.808 9.663 −20.703
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For model validation, different combinations of parameters were tested within the window
parameters. New pilot hole drills and final drill of D = 8.5 mm were used for these tests. Eight different
tests were programmed to put the model to work. Table 9 presents the conditions for these validation tests.

Table 9. Cutting conditions for the validation tests.

Materials Vc [m/min] D0 [m/min] f [mm/rev] # Test

Ti-6Al-4V 50
4 0.06 1
6 0.08 2

TNB 15
4 0.06 3
6 0.08 4

MoCuSi (ingot) 15
4 0.06 5
6 0.08 6

MoCuSi
(extruded) 15

4 0.06 7
6 0.08 8

Figure 9 shows the results from the simulated values using the model described and the
experimentally measured values. The model presents a good correlation with the real thrust forces
and cutting torques. For the cutting forces, the maximum relative error between the predicted and
measured values was 8% while for the cutting torque the worst case was found to be 13%. The model
behaves well in the targeted interval of feed rates, with higher deviations, the higher is the programmed
feed. On the other hand, the mechanistic model seems less sensitive to the range of tested pilot hole
diameters and final hole diameters. A higher dispersion is seen also in the torque values with respect
to thrust forces that can be predicted with very good agreement.
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5. Conclusions

This work presents the machinability results for four different titanium alloys. Currently there are
few data about machining of γ-TiAl. The obtained results reflect that:

• These alloys present a much smaller machinability than conventional titanium alloys.
• The presented mechanistic stationary model is capable of simulating the thrust force and cutting

torque in the drilling process. The influence of vibratory effects, lateral vibrations or runout was
not considered. After model calibration, validation tests were done, showing a good agreement.

• Experimental drilling tests done to evaluate the machinability of these difficult-to-cut materials
(the high cost of the tested materials (approx. 400 €/kg) limited the number of tests and a
stronger experimental design) show that the obtained cutting coefficients present a quasi-linear
dependence on the pilot hole D0 for the axial force Fz, while a cubic is more suitable in the case of
Tc.

• Machining problems during drilling tests confirm that these are very brittle materials,
so operational parameter determination is essential for chipping and cracking avoidance of
components during machining processes [41,42].

• Experiments demonstrated large differences between the more conventional Ti6Al4V alloy and
the three γ-TiAl intermetallic alloys. As the mechanical properties of extruded/ingot alloys
are higher than those of the TNB alloy, this trend is inversely true for the machinability grade.
Tests proved that MoCuSi alloys are the toughest materials.

• Despite the good results during the validation, a statistical approach would be desirable to test any
differences in material series, machine tools, as well as to build more complete models. Wear studies
including process damping effects can be subjects for future research works.
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