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1. INTRODUCTION 

Inherited retinal dystrophies (IRDs) are a heterogeneous group of disorders 

characterized by mutations in one of more than 290 identified genes and loci 

(https://sph.uth.edu/retnet/disease.htm), resulting in the dysfunction or death of 

photoreceptors and the alteration of the retinal pigment epithelium (RPE), the 

choroid or the visual cycle pathways, ultimately leading to visual loss.1,2 IRDs may 

appear as syndromic traits, or be presented in a non-syndromic manner and it is 

estimated that 1 in 2300 individuals is affected by an IRD.3 Remarkably, a recent 

study by Irigoyen found that Retinitis Pigmentosa (a particular form of IRD) affects 

1 in 4244 people in Gipuzkoa.3 

1.1. CLASSIFICATION OF INHERITED RETINAL DYSTROPHIES 

Classifications of IRDs may be based on clinical features, age of onset, progression 

and/or affected retinal cells or areas. However, these are being replaced by disease 

groups based on molecular diagnosis. In order to simplify such classification as much 

as possible, IRDs will be divided according to affected retinal areas and to the 

progressive or stationary nature of each disease.4 Most commonly mutated genes will 

be exposed too.1 

1.1.1. Diffuse photoreceptor dystrophies 

1.1.1.1. Retinitis pigmentosa (RP) 

Retinitis Pigmentosa gives name to a group of diseases that diffusely affect the RPE 

and the photoreceptors and show altered electroretinograms (ERGs). Rod 

photoreceptor function is initially lost and in most cases cones are affected in 

advanced stages, leading to a complete loss of vision. The ability to seeing under dim 

light and peripheral vision are affected, driving patients to suffering from nyctalopia 

and tunnel vision. Funduscopic examination (Figure 1) shows three classic 

alterations: arteriolar attenuation, optic disc pallor and pigment accumulation causing 

bone spicule formation.3,4 
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Despite RP is a disease usually confined to the eye, 20 to 30% of patients suffer from 

non-ocular diseases, and those cases are part of more than 30 different syndromes.5 

Usher’s syndrome is the most frequent form, in which hearing impairment is 

associated with RP. Another major form is the recessively inherited Bardet-Biedl 

syndrome, which encompasses RP, obesity, polydactily, hypogenitalism, renal 

abnormalities and delayed psychomotor development. Mutations in more than 70 

genes are associated to RP; mutated RHO, USH2A and RPGR genes accounting for 

30% of cases.5 

Leber Congenital Amaurosis (LCA) gives name to a group of conditions within the 

RP group which associate early onset visual loss, nystagmus, slow pupillary 

reactions and altered rod and cone ERG responses.6,7 It usually derives in complete 

blindness by the third decade of life.8 Mutated genes that cause LCA phenotype 

include CEP290, RPE65, GUCY2D and CRB1.1 

1.1.1.2. Cone and cone-rod dystrophies 

Cone dystrophies lead to loss of visual acuity (VA) and colour perception starting at 

youth or adolescence. Peripheral visual field (VF) usually remains unaltered. Cone-

rod dystrophies feature progressive rod alterations as well.  

 

Figure 1. Funduscopy of an eye affected by retinitis pigmentosa. This figure shows the fundus 
examination of a patient affected by retinitis pigmentosa. Characteristic optic disc pallor and bone spicule 
formation can be seen. Courtesy of Irigoyen C.3 



 

 
 

1.1.2. Macular dystrophies

1.1.2.1. Stargardt's disease (STGD)

In this case, VA decreases

onset in the first two decades of life. Slow disease progression is common and yellow 

lipofuscin flecks and foveal atrophy are usually present in the fundus examination.

ABCA4, PROM1 and STGD2 would 

 

1.1.2.2. Vitelliform degenerations 

Best disease features bestrophin alterations that cause damage to RPE cells and 

lipofuscin accumulation in the macula, 

Eventually, the macular area becomes atrophic and VA decreases.

 

Other described macular dystrophies include dominant familial drusen, pattern 

dystrophies and Sorsby's macular dystrophy.

1.1.3. Choroidal dystrophies

Choroideremia (CHM) involves diffuse choroid, RPE, retinal vessel and 

photoreceptor degeneration. Pigmentation clusters accumulate in the macular area 

and annular scotomas progressively disturb the VF. Nyctalopia is also present. On 

the other hand, atrophia

RPE and choroid alterations. Panretinal hyperpigmentation is usually helpful for 

differentiating atrophia

2).4 The affected gene related to 

 

 

 

 

 

 

 
Figure 2. Fundus examination of an eye affected by choroideremia.
fundus showing choroidal vessels due to chorioretinal atrophy. Courtesy of Irigoyen C.

1.1.2. Macular dystrophies 

1.1.2.1. Stargardt's disease (STGD) 

In this case, VA decreases and colour vision abnormalities occur bilaterally with 

onset in the first two decades of life. Slow disease progression is common and yellow 

lipofuscin flecks and foveal atrophy are usually present in the fundus examination.

ABCA4, PROM1 and STGD2 would be among the affected genes.

1.1.2.2. Vitelliform degenerations  

Best disease features bestrophin alterations that cause damage to RPE cells and 

cin accumulation in the macula, in the form of egg like (vitelliform) clusters

macular area becomes atrophic and VA decreases.

Other described macular dystrophies include dominant familial drusen, pattern 

dystrophies and Sorsby's macular dystrophy.4 

dystrophies 

(CHM) involves diffuse choroid, RPE, retinal vessel and 

photoreceptor degeneration. Pigmentation clusters accumulate in the macular area 

and annular scotomas progressively disturb the VF. Nyctalopia is also present. On 

the other hand, atrophia gyrata encompasses serum ornithine level increases with 

RPE and choroid alterations. Panretinal hyperpigmentation is usually helpful for 

differentiating atrophia gyrata and choroideremia as it is absent in the latter (

The affected gene related to choroideremia is CHM gene.1 

Fundus examination of an eye affected by choroideremia. This figure shows a hypopigmented 
fundus showing choroidal vessels due to chorioretinal atrophy. Courtesy of Irigoyen C.3 
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and colour vision abnormalities occur bilaterally with 

onset in the first two decades of life. Slow disease progression is common and yellow 

lipofuscin flecks and foveal atrophy are usually present in the fundus examination.4 

be among the affected genes.1 

Best disease features bestrophin alterations that cause damage to RPE cells and 

egg like (vitelliform) clusters.4 

macular area becomes atrophic and VA decreases. 

Other described macular dystrophies include dominant familial drusen, pattern 

(CHM) involves diffuse choroid, RPE, retinal vessel and 

photoreceptor degeneration. Pigmentation clusters accumulate in the macular area 

and annular scotomas progressively disturb the VF. Nyctalopia is also present. On 

mpasses serum ornithine level increases with 

RPE and choroid alterations. Panretinal hyperpigmentation is usually helpful for 

gyrata and choroideremia as it is absent in the latter (Figure 

This figure shows a hypopigmented 
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1.1.4. Internal retinal and vitreoretinal dystrophies 

1.1.4.1. X linked juvenile retinoschisis (XLJR) 

Retinal layers split and cystic spaces and vitreous veils form in XLJR. Besides newly 

formed cavities, the first synapse between photoreceptors and bipolar cells is usually 

altered too. Visual acuity usually deteriorates in latest stages.4 

1.1.4.2. Goldmann-Favre syndrome 

Night blindness, increased blue light sensitivity and VF and ERG alterations 

characterize it. Nr2e3 gene alterations are present and rods can only be stimulated 

under bright light. Tissular studies have shown significant rod reduction and doubled 

cone quantity with up to 90% of short wave length stimulated cones (S cones).4 

1.1.5. Congenital stationary retinopathies 

1.1.5.1. Congenital achromatopsia 

It is characterized by very poor cone responses with normal rod ERG resulting in 

colour perception and VA impairment. Rod monochromatism (completely 

malfunctioning cones that only permit sight in a range of grey shades) and blue 

colour cone monochromatism are the two forms in which it is usually presented.4 

Mostly, it affects CNGA3, CNGB3 and GNAT2 genes.1,9 

1.1.5.2. Congenital stationary night blindness (CSNB) 

It is characterized by nyctalopia, nystagmus, strabismus and/or myopia from a very 

early onset. Eye fundus may be normal.4 

Other described IRDs include: familial exudative vitreoretinopathy, ocular-retinal 

developmental diseases and optic atrophy.  
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1.2. CURRENT THERAPIES  
 

Some available therapeutic options (Figure 3) have tried to reverse visual loss 

although none of them has proven to be definitive. Patients suffer from difficulties 

for performing daily activities and vision rehabilitation is usually offered with the 

hope to maintain an acceptable quality of life.10 Patient associations form invaluable 

supportive nets for patients.11 

 

 

 

 

 

 

 

 

 

 

1.2.1. Retinas with intact photoreceptors: first approaches 

1.2.1.1. Nutritional supplementation 

Nutritional supplements aim to improve visual function by giving patients certain 

substances such as vitamins or fatty acids. Vitamin A and β-carotene and lutein 

carotenoids have proven discrete ability to halt RP progression. Two early phase 

studies to evaluate the safety of oral QLT091001 (9-cis-retinyl acetate) in RP 

subjects with mutations in RPE65 have already finished (NCT01543906, 

NCT01014052) and show positive safety and VA/VF results.1,12 However, some 

research groups have solely reported positive ERG records, but neither VA nor VF 

Figure 3. Disease phases and associated therapeutic options for each stage. Earlier detection may provide 
wider unaffected retinal areas, with functioning cells that may be benefited from treatments such as gene therapy. 
Latest stages involve massive affection and require rescue treatments.  
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improvements and a detrimental effect seems to be associated to vitamin A 

supplements in patients with ABCA4 mutations.3,10 

Docosahexanoic acid (DHA) may be involved in rhodopsin regeneration. 

Nonetheless, no further improvement was achieved from DHA in patients already 

taking vitamin A in randomized trials, and just a temporary effect in those patients 

that had not been previously treated with vitamin A.13,14 Vitamin E has proven to be 

harmful and should be avoided.10,13 

Some particular conditions such as abetalipoproteinemia, alpha-tocopherol transport 

protein deficiency and Refsum’s disease benefit from nutritional supplements. This 

should be taken into account when treating newly diagnosed patients.3 

1.2.1.2. Gene therapy (GT) 

The objective of GT is to manipulate or provide wild type genes (Figure 4) to treat 

genetic diseases.15 Recessive diseases often benefit from gene supplementation as a 

means to forming functional proteins, whereas dominant diseases could require gene 

silencing and reduction of toxic protein influence.16 A difference is to be made 

between gene specific approaches in patients with well described mutations and gene 

independent strategies where more general approaches can be a solution for a wide 

range of diseases. Correct genotyping of patients is essential in order to conduct 

accurate therapeutic pathways.3 

 

 

 

 

 

 

 

Figure 4. In vivo gene therapy approach. An adeno-associated virus vector is being used for gene delivery. 
This vector contains the wild type or recombinant gene that intends to modify the patient's phenotype. Modified 
from Ovando-Roche P. et al.17 

Adeno-associated virus 

Target retinal tissue 
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1.2.1.3. Genome editing (CRISPR-Cas9) 

Novel mutations or gene insertions and deletions can be created via genomic 

modification. CRISPR associated nuclease (Cas9) and its attached guide RNA create 

double-strand breaks (DSB) in the host DNA.18 These are corrected by non-

homologous end joining (NHEJ) or via homology directed repair (HDR). NHEJ 

involves insertions and deletions leading to premature STOP codons and HDR 

results in specific genomic changes in the host DNA.17 

1.2.2. Preventing photoreceptor degeneration: damage prevention approaches 

Halting photoreceptor death by creating protective environments is intended when 

neuroprotective or neurotrophic therapy is used. Nutritional supplements and 

pharmacological therapies could also contribute to ameliorating this stage. 

1.2.2.1. Neurotrophic factors 

Several neurotrophic factors such as fibroblast growth factor 2 (FGF2) or ciliary 

neurotrophic factor (CNTF), the latter alone or in combination with adeno-associated 

viruses (AAVs), seem to halt retinal deterioration in preclinical studies.2,19 Rod 

derived cone viability factor (RdCVF) also induces cone survival in mice.16 

Of particular interest is the NT-501 implant for CNTF delivery using an encapsulated 

intraocular device. It has been tried in patients with RP and appears to be safe for up 

to 2 years. In terms of efficacy (VA and VF sensitivity), however, its beneficial 

effects remain to be seen.2 CNTF has also been tested for achromatopsia.20 Further 

studies or the consideration of alternative and clinically relevant parameters could 

prove more encouraging results.  

1.2.3. Photoreceptor and visual pathway signal substitutions: latest stages 

Latest stages usually involve extensive photoreceptor degeneration and selected 

devices should maintain visual function on behalf of non-working cells.  

 

 



 

 
 

1.2.3.1. Retinal cell transplantation 

Cell transplants would be suitable for patients in latest stages as substitutes of 

photoreceptor functions

clue of potential gene targets is available).

the correct stage and with a correct photoreceptor

their integration into the host retina and substitution of reti

it has been achieved in mouse models.

originated from donor cells could

subsequent visual improvement too.

embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs, 

Figure 5) and RPE cells are being tested for t

the use of retinal transplants in humans have reported promising results, particularly 

for Stargardt’s disease and for age

acuity gains were not as good as expected, but a good safety profi

for these ESC-derived transplants.

blood-retinal-barrier efficacy, and hiPSC cells could be a valid alternative with no 

requirements of immunosupresion, as they are or

 

1 

2  

A     B 

 

 

 

 

Figure 5: Image representation of 
taken from healthy (A1) and affected (A2) individuals. This can be associated to CRISPR/Cas9 strategy to correct 
disease causing mutations in affected individuals’ cells or to insert mutations in healthy individuals’ cells for 
investigational purposes (C). Disease models and potential therapeutic sources can be formed when 
differentiated into healthy (D1) or affected (D2) photoreceptors.  (WT: wild type, hiPSCs: human induced 
pluripotent stem cells). Modified from Ovando

Healthy 

Affected 
Extracted fibroblast 
reprogramming

1.2.3.1. Retinal cell transplantation  

Cell transplants would be suitable for patients in latest stages as substitutes of 

photoreceptor functions or for patients with unknown genetic alterations (where no 

clue of potential gene targets is available).11,17 The implantation of precursor cells at 

the correct stage and with a correct photoreceptor-like development, could allow 

their integration into the host retina and substitution of retinal cell functions

it has been achieved in mouse models.21 Hypotheses claim that trophic stimuli 

originated from donor cells could enhance host photoreceptor survival with 

subsequent visual improvement too.11,17 Neural stem cells, somatic cells,

embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs, 

) and RPE cells are being tested for transplantation.17 Two phase I trials for 

the use of retinal transplants in humans have reported promising results, particularly 

for Stargardt’s disease and for age-related macular degeneration (AMD). Visual 

acuity gains were not as good as expected, but a good safety profi

derived transplants.21 Interestingly, degenerated retinas could lose 

barrier efficacy, and hiPSC cells could be a valid alternative with no 

requirements of immunosupresion, as they are originated from the patie

            C                                 D 

Image representation of in vitro fibroblast reprogramming into human iPSC. 
taken from healthy (A1) and affected (A2) individuals. This can be associated to CRISPR/Cas9 strategy to correct 
disease causing mutations in affected individuals’ cells or to insert mutations in healthy individuals’ cells for 

tional purposes (C). Disease models and potential therapeutic sources can be formed when 
differentiated into healthy (D1) or affected (D2) photoreceptors.  (WT: wild type, hiPSCs: human induced 
pluripotent stem cells). Modified from Ovando-Roche P. et al.17 

Extracted fibroblast 
reprogramming 

hiPSCs (mutation 
correction / insertion) 

Differentiation into 
photoreceptors

Wt 

Mutant 
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Cell transplants would be suitable for patients in latest stages as substitutes of 
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nal cell functions.2 In fact, 
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enhance host photoreceptor survival with 
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embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs, 

Two phase I trials for 

the use of retinal transplants in humans have reported promising results, particularly 

related macular degeneration (AMD). Visual 

acuity gains were not as good as expected, but a good safety profile was discovered 

Interestingly, degenerated retinas could lose 

barrier efficacy, and hiPSC cells could be a valid alternative with no 

iginated from the patient’s cells.21 

fibroblast reprogramming into human iPSC. Fibroblasts (B) are 
taken from healthy (A1) and affected (A2) individuals. This can be associated to CRISPR/Cas9 strategy to correct 
disease causing mutations in affected individuals’ cells or to insert mutations in healthy individuals’ cells for 

tional purposes (C). Disease models and potential therapeutic sources can be formed when 
differentiated into healthy (D1) or affected (D2) photoreceptors.  (WT: wild type, hiPSCs: human induced 

Differentiation into 
photoreceptors 

Wt 

Mutant 



 

 
 

1.2.3.2. Retinal prostheses and sensory substitution devices

Retinal prostheses (Figure 6

travel directly to the inner retina, the optic nerve or even the visual cortex. Currently 

on the market, the Argus II, the Alpha AMS and the Iris implants are 

Camera recorded videos are converted 

electrodes located in the patient's retina.

convert tactile or auditory stimuli into visual sensory

motion and object location. These techniques might well be used as complementary 

of other approaches.  

 

 

 

 

 

 

1.2.3.3. Optogenetics

The transformation of retinal cells into 

electrical signals that mimic those produced by photoreceptors is part of 

optogenetics.2 Remaining cells in late stages of retinal diseases could be photo

sensitized and depolarized using light activated proteins or channels (via gene 

delivery) such as archaebacterial

pathways and visually stimulated behaviours.

Figure 6. Graphic representati
camera located in the goggles. 2. The processor transforms the image into electrical information that is sent 
back to the goggle receptor. 3. The electrical signal is sent to the retina
electrode net located in the retina is stimulated by the electrical pulses sent by the retinal implant. 5. The optic 
nerve transduces the retinal stimuli into the occipital cortex. 6. The brain perceives different light and
patterns dependent upon the different electrodes stimulated in the retinal implant. Courtesy of Irigoyen C.

Implant

Pocket 
processor

1.2.3.2. Retinal prostheses and sensory substitution devices 

(Figure 6) aim to transduce light into electrical impulses that 

travel directly to the inner retina, the optic nerve or even the visual cortex. Currently 

the Argus II, the Alpha AMS and the Iris implants are 

Camera recorded videos are converted into electrical signals, then

electrodes located in the patient's retina.10 Sensory substitution devices can even 

convert tactile or auditory stimuli into visual sensory-like information allowing 

motion and object location. These techniques might well be used as complementary 

 

1.2.3.3. Optogenetics 

The transformation of retinal cells into `artificial photoreceptors'

electrical signals that mimic those produced by photoreceptors is part of 

Remaining cells in late stages of retinal diseases could be photo

sensitized and depolarized using light activated proteins or channels (via gene 

elivery) such as archaebacterial halorhodopsin or channelrhodopsin,

pathways and visually stimulated behaviours.2,11,22 

Figure 6. Graphic representation of the Bionic Eye. 1. A processor receives an image sent by a video 
camera located in the goggles. 2. The processor transforms the image into electrical information that is sent 
back to the goggle receptor. 3. The electrical signal is sent to the retinal implant located in the eye. An 
electrode net located in the retina is stimulated by the electrical pulses sent by the retinal implant. 5. The optic 
nerve transduces the retinal stimuli into the occipital cortex. 6. The brain perceives different light and
patterns dependent upon the different electrodes stimulated in the retinal implant. Courtesy of Irigoyen C.

BIONIC EYE: 
retinal implant

Implant 

Pocket 
processor ATIS 

camera 

IR emisor 
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light into electrical impulses that 

travel directly to the inner retina, the optic nerve or even the visual cortex. Currently 

the Argus II, the Alpha AMS and the Iris implants are good examples. 

ctrical signals, then transmitted into 

Sensory substitution devices can even 

like information allowing 

motion and object location. These techniques might well be used as complementary 

`artificial photoreceptors' or the creation of 

electrical signals that mimic those produced by photoreceptors is part of 

Remaining cells in late stages of retinal diseases could be photo-

sensitized and depolarized using light activated proteins or channels (via gene 

halorhodopsin or channelrhodopsin, enabling visual 

1. A processor receives an image sent by a video 
camera located in the goggles. 2. The processor transforms the image into electrical information that is sent 

l implant located in the eye. An 
electrode net located in the retina is stimulated by the electrical pulses sent by the retinal implant. 5. The optic 
nerve transduces the retinal stimuli into the occipital cortex. 6. The brain perceives different light and shadow 
patterns dependent upon the different electrodes stimulated in the retinal implant. Courtesy of Irigoyen C.3 

BIONIC EYE: 
retinal implant 



10 
 

 
 

Table 1 exposes advantages and limitations of the different treatment options. 

Limited proof of efficacy is available, and results do not totally support any 

treatment. However, advances towards treating these severe ocular conditions are 

being made. 

 

 

Table 1. Summary of available treatments for IRDs. Several aspects concerning these treatments have been 
summarized. (CNTF: Ciliary Neurotrophic Factor, FDA: Food and Drug Administration, RP: retinitis pigmentosa, 
GT: gene therapy, CRISPR: clustered regularly interspaced short palindromic repeats). 

 

 

 

Inherited retinal dystrophies (IRDs) are rare diseases that profoundly compromise 

patients’ quality of life due to associated visual impairment. No cure is available and 

in most cases, treatments focus on preventing complications or ensuring an 

acceptable quality of life for these patients. It is claimed that gene therapy could 

radically change this scenario and improve visual function in patients with IRDs. 

Disease 

stage 

Treatment Vision improvement Limitations Additional 

considerations 

Early stages Nutritional  

supplements 

Vitamin A, beneficial in RP Limited improvement 

Vitamin E: harmful 

Limited evidence 

Liver toxicity, lung 

cancer risk in high risk 

patients, teratogenic 

GT Encouraging in animals and 

humans 

Different visual areas 

improved 

Genotyping needed 

Gene size 

Retinal degeneration 

despite visual gains 

Luxturna (Approved by 

FDA: 12-19-17)23 

CRISPR/Cas9 Preclinical  promising 

results (mice: Usher 

syndrome, rats: RP)24,25 

Ethical concerns Could be corrective in a 

single treatment session 

Halting 

degeneration 

Neurotrophic 

factors 

CNTF implants are safe 

 

No RP correction Could enhance GT 

Latest stages Cell  

transplants 

Early phase trials Ethical concerns (stem 

cells) 

Could combine with 

genome editing 

Retinal  

prostheses 

Motion sense 

Large object location 

Suboptimal visual gains Already commercialized 

Optogenetics Encouraging in mice and 

postmortem human retinas 

Possible phototoxicity Potentially useful for 

advanced stages 
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1.3. HISTORY OF GENE THERAPY AND CURRENT APPLICATIONS 

Rogers et al performed the first direct human GT trial in 1973 using the wild-type 

Shope papilloma virus for treating two patients with hyperargininemia based on gene 

deliveries by viruses already seen in nature.26 In 1990, two adenosine deaminase 

deficiency (ADA-SCID) patients were treated by Blaese and colleagues using ex vivo 

modified autologous T cells. A normal copy of adenosine deaminase was inserted 

into retroviral vectors and it was successfully integrated into the cellular genome.27 

Subsequent trials paved the way for success until 1999, when a teenager participant 

of an ornithine transcarbamylase (OTC) deficiency trial conducted by Wilson and 

colleagues died of a brutal immune response due to adenovirus administration. In 

2002, researchers reported 5 new acute T cell lymphoblastic leukaemia cases in 

participants of two Severe Combined Immunodeficiency trials (SCID-X1) as a result 

of insertional transactivation of LMO2 proto-oncogene and insertions/deletions of 

other genes.28 Insertional mutagenesis supposedly responsible for these cases is 

related to retroviral capacity of allowing the expression of endogenous oncogenes.28 

Several ethical concerns arose regarding patients’ safety and research was restricted.  

In 2003, the State Food and Drug Administration of China approved Gendicine, the 

first GT drug for commercial use (for head and neck squamous cell carcinoma) and 

in 2005, Oncorine was also approved in China to treat refractory nasopharyngeal 

cancer. In 2012, the European Commission approved Glybera (alipogene 

tiparvovec), the first GT product to be commercialized in Europe, which featured an 

Adeno-Associated vector and aimed at lipoprotein lipase deficiency (LPLD). The 

EMA also approved Strimvelis for the treatment of ADA-SCID. The FDA has 

recently validated Kymriah (tisagenlecleucel), Yescarta (axicabtagene ciloleucel) and 

Luxturna (voretigene neparvovec). This last one was approved in December 2017 to 

treat Leber Congenital Amaurosis type 2 (LCA2).23 

Despite all the drawbacks GT has suffered since it was first developed, positive 

results have arisen that encourage the idea that it could proximately be a useful 

treatment option for several diseases such as IRDs.26 
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2. OBJECTIVE 

Based on previously introduced premises, the main purpose of this project is to 

conduct a systematic review of the scientific literature to evaluate the safety and 

efficacy of gene therapy for the treatment of inherited retinal dystrophies. As a 

means to assessing this, the following objectives will have to be completed: 

1. Assessment of safety and efficacy of different gene therapy approaches (such 

as gene delivery and genome editing). 

- Review of gene therapy performance under clinical trial conditions. 

- Best gene therapy performance strategies: evaluation of different vectors 

and surgical techniques. 

2. Identification of current challenges faced by gene therapy. 

3. Evaluation of the most common mutations causing retinitis pigmentosa in 

Gipuzkoa. 

4. Quantification of the amount of potential candidates to be benefited from 

these approaches. Study of the applicability of worldwide advances to 

patients in the Donostia University Hospital. 

5. Assessment of future prospects in the treatment of IRDs. 
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3. METHODOLOGY 

For ensuring a complete and organized review, the main research question has been 

built in terms of the PICO system and would be as follows: 

Patient: patients suffering from inherited retinal dystrophies. No narrower 

patient group has been selected. The reasons for this include the difficulties of rare 

diseases to generate sufficient data for a narrower review and the interest of 

evaluating solutions for patients with many different IRDs. Many do not have a 

certain molecular diagnosis yet, all of this making it tough to select a single disease 

pathway to explore. 

Intervention: gene therapy. Genome editing has also been selected as part of gene 

therapy and a brief comment about optogenetics will be available too. 

(Comparison, if any): Due to heterogeneous and scarce information regarding each 

treatment, other therapies have been assessed but will not be strictly compared to GT. 

The primary outcome would be visual acuity gains. Secondary outcomes include: 

visual field gains, night vision changes, light sensitivity, brain responses to optical 

stimulation, nystagmus amelioration, functional vision improvements (the ability of 

sight to allow individuals to complete usual tasks) and self reported quality of vision. 

3.1. INFORMATION SOURCES AND SEARCH STRATEGY 

As it is a question related to an intervention, the best research studies for answering it 

would be randomised clinical trials. In addition, systematic reviews of the literature 

and if available, meta-analysis studies would be of the best quality. Non randomised 

clinical trials, observational studies and other types of studies could also be included, 

but quality aspects should be taken into account. 

For data gathering, Pubmed database, Cochrane Library and TRIP database were 

searched from inception to March 2018 (Figure 7). To complete a systematic search, 

reference lists from retrieved articles were examined for additional citations. No 

language restriction was initially applied. Articles in foreign languages were tried to 

be translated and if such translation was not possible, the article was excluded. 
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The following searching terms were used: `gene therapy´, `inherited retinal 

dystrophies´, `adeno associated virus´, `adenovirus´, `CNTF´, `lentivirus´, `nonviral´, 

`vector´, `subretinal´, `intravitreal´, `CRISPR-Cas9´, `treatment´, `history´, `Leber 

congenital amaurosis´, `retinitis pigmentosa´,  `achromatopsia´, `choroideremia´, `X 

linked retinoschisis´, `stargardt’s disease´, `Usher syndrome´, `cideciyan´, 

`maclaren´, `maguire´, `hauswirth´, `jacobson´, `Leber hereditary optic neuropathy´, 

`optogenetics´, `RPE65´, `CEP290´,  `ABCA4´, `RPGR´, `AMD´, `MYO7A´, 

`USH2A´, `briard dog´, `ZFN´, `TALEN´ and combinations thereof.  

Most articles were from the last 9 years (when the first clinical trials of gene therapy 

in IRDs were performed) but commonly referenced and highly regarded older 

publications were not excluded.  

Specific databases were also searched. Clinicaltrials.gov was interrogated for all the 

gene therapy related and retinally directed clinical trials developed in the past or in 

the present (https://clinicaltrials.gov/).29 

Retinal Network (RetNet) database was searched for updated information related to 

inherited retinal dystrophies (https://sph.uth.edu/retnet/disease.htm).1 Genetics home 

reference (https://ghr.nlm.nih.gov/) and Online Mendelian Inheritance in Man 

(https://www.omim.org/) databases were also searched for a complete understanding 

of inherited retinal diseases.7,30 

3.2. SELECTION CRITERIA 

Articles followed inclusion and exclusion criteria prior to being selected for this 

project. Inclusion criteria include research articles covering the different vectors for 

GT delivery in the human retina, the surgical techniques developed for human 

patients, current treatments for IRDs and genome editing in human ocular diseases. 

Research papers covering the results of the clinical trials made to assess GT in ocular 

diseases, particularly, in IRDs were also included. As additional information, articles 

including the history of GT in humans and institutional regulation papers regarding 

rare disease trials were read. 
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Moreover, the clinical trials studying gene therapy for IRDs and for other ocular 

conditions were listed (Appendix 2) based on Clinical Trials database 

(https://clinicaltrials.gov/). 

Exclusion criteria include preclinical studies not relevant to any of the clinical 

studies commented, GT for other medical purposes (other than studying its history), 

information related to the natural history of the diseases with no updated information 

about potential treatments and opinion essays or letters to newspapers (due to being 

merely hypothetical or too brief to be considered). Old articles containing inaccurate 

statements in the light of the available data were also discarded.  

This project has been developed as a review of the literature. As part of my academic 

pathway, I completed a three month internship at the Biodonostia Institute, and some 

of the lessons learned there have been added to this project too (Appendix 1).  

Therefore, the added value of this review includes: updated, exhaustively searched 

and comprehensively reviewed information of studies and available data from 

worldwide trusted sources. Medical concerns have been combined with research 

interests in order to provide high quality information for all kinds of professionals. 

Relevant topics in the GT area have been precisely addressed and conclusions 

summarize all the evidence and future approaches. 
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3.3. METHODOLOGICAL QUALITY ASSESSMENT AND SYNTHESIS 
 

CASP (Critical Appraisal Skills Programme) tools were initially selected to assess 

the quality of the evidence and the risk of bias (www.redcaspe.org).31 Particularly, 

tools for assessing clinical trials and systematic reviews were selected. The specific 

tool used for clinical trials comprises 11 items that study if the results are valid, of 

significant importance and applicable to our local population. For systematic 

reviews, 10 items assess those same aspects. A preliminary review of the clinical 

trials showed some differences with regards to methodology compared to traditional 

clinical trials for more prevalent diseases, and those differences can be explained if 

regulations and conditions for rare diseases are understood. 

Figure 7. Article selection process. This diagram shows the summary of the search and selection process. 
A search was performed in information databases and it was completed reading the reference lists from 
selected articles. *Discarded articles were related to: preclinical studies in animals (59 articles), cellular 
models (8 articles), old fashioned or partial reviews (8 articles), newspaper letters (7 articles), gene therapy for 
other diseases (6 articles), topics related to IRDs, beyond the scope of this review (114 articles). 

Pubmed, TRIP database and Cochrane 
library searched and relevant specific 

webpages were screened 

First selection based on title 

Review of titles and abstracts 

n= 196 

Skimming of relevant articles (n=51) 

Review of reference lists from selected 
articles and selection of potentially 

relevant articles to be assessed (n=40) 

Final selection: 51 references from database search + 
40 references retrieved from articles  n=91 

Inclusion and exclusion 
criteria applied* 
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Usual standards of methodological quality are not met by clinical trials evaluating 

therapies for rare diseases, and thus, updated regulatory statements by FDA and 

EMA were studied for methodological support of the gathered evidence.  

An orphan drug intends to treat a rare disease (defined by the FDA as a disease 

affecting less than 200,000 Americans) and faces challenges such as high patient 

heterogeneity, lack of reliable preclinical models or usually devastating diseases to 

be investigated in few patients.23 In the light of these problems, the international drug 

regulating agencies have developed programmes to support orphan drug 

development and offer scientific, technical and economic aids to those promoting 

research on this area. As a result of this, trials assessing orphan drug safety and 

efficacy do not meet all the criteria requested to other drugs and often benefit from 

accelerated marketing procedures. CASP tools and FDA and EMA regulatory aspects 

have therefore been combined when understanding and evaluating gathered data 

from studies. Having said that, advice from regulatory agencies and the unmet need 

of thousands of patients make this an exception. Undeniably, future research will be 

needed for extended recommendations to patients. Before prescribing these drugs or 

selecting patients for clinical trials, clinicians will have to explain all the light and 

shadows of the evidence and make individualized recommendations based on risk-

benefit and patient needs and concerns for each disease. Appendix 2 features a more 

developed assessment of the individual clinical trials. 

Because of the high heterogeneity in methodological quality, interventions and 

outcome measures in the studies, it was not feasible combining data in the means of a 

meta-analysis.  
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4. RESULTS 

4.1. GENE THERAPY 

Recombinant nucleic acids are used in gene therapy (GT) for repairing, regulating or 

replacing a disease causing genetic sequence.26 The modification of the genetic 

material can be performed in vivo, or be administered to cells ex vivo before patient 

delivery. Moreover, somatic cells or germ line cells can be targeted, the latter being 

capable of  transmitting changes to offspring.26 Recessive monogenic diseases are 

perfect candidates for GT as they usually comprise a functional protein absence and 

can be treated with gene replacement strategies, sometimes with partial replacement 

levels being enough for phenotype correction.16,32 Gain of function mutations (in 

autosomal dominant diseases) include toxic products that must be eliminated and 

therefore pose additional therapeutic challenges.16 Additional advantages when 

treating the eye include the easily reachable and immune privileged retina, which 

allows the prevention of severe immune responses to administered compounds. 

Additionally, the blood-retina barrier (formed by tight junctions between retinal 

capillary endothelial cells and RPE cells) permits the retention of the treatments 

within the eye, with reduced risks of affecting other tissues.16 Moreover, the eye can 

be explored by non-invasive methods such as optical coherence tomography (OCT) 

and autofluorescence (techniques that can also be used to assess clinical trial results), 

and if only one eye is treated, the contralateral eye works as a control.33 

4.1.1. Most widely used vectors 

Naked DNA is a large, hydrophilic and negatively charged molecule that is rarely 

able to enter cells on its own. As a result, vectors have been developed for gene 

transfer. Ideal vectors should be very specific to the targeted region, avoid the 

immune system so as not to generate any dangerous immune responses and have 

enough loading capacity for the required gene to be transported.34,35 Vectors can be 

viral or non-viral, and researchers usually prefer viral gene carriers, as broader 

experience in clinical trial and preclinical study conditions is available and more 

efficient transduction with viral vectors has been reported.16 
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4.1.1.1. Viral vectors  

Viruses possess special infectious features that enable viral DNA to be introduced 

into host cells.34,36 They can be enriched with phenotype correcting human genes that 

can be delivered to desired cells. Some concerning viral complications such as 

immunogenic responses, cytotoxicity and insertional mutagenesis are currently being 

addressed. The following viruses are commonly used for gene delivery (Table 2). 

4.1.1.1.1 Adeno-associated viruses (AAVs) 

AAVs belong to the Parvoviridae family and require coinfection with other viruses 

because they lack replicative functions.16 They hold small storing capacity (4.5-5kb), 

and the material transferred by them remains predominantly episomal (not contained 

within chromosomes) and on that account, insertional mutagenesis risk is reduced by 

leaving native DNA information unaltered in host cells.34 They can be eliminated by 

host humoral responses in previously exposed patients, but the retina remains almost 

unaffected due to aforementioned immune privilege status, so their immunogenicity 

rates are very low.16,37 Stable transgene expression has also been reported.32 These 

features have put AAVs in the spotlight. 

AAV genome takes form of a linear single stranded DNA. Two open reading frames 

(ORF) named cap and rep genes encode proteins required for replication and viral 

structure formation. Two palindromic inverted terminal repeat sequences (ITRs) 

enable DNA replication.38 During vector design, cap and rep genes are removed and 

the genetic sequence of interest is introduced instead.38 Moreover, capsid variants 

confer these viruses different cell tropisms. AAV serotypes 1, 2, 4, 6 and genetically 

engineered AAV2-7m8, rAAV2/1, rAAV2/4 and rAAV2/5 have been successfully 

used to target RPE cells.36,38 These cells have a phagocytic profile, and some studies 

claim that almost any AAV serotype could potentially reach them.32,36 AAV 

serotypes 2, 5-9 and recombinant AAV2-7m8 and AAV8BP2, allow gene transfer to 

the photoreceptors.39 More versatile AAV2/2 and rAAV2/5 can reach both RPE and 

photoreceptors.38 Speed and efficacy of transgene expression are improved using 

capsids of AAV5, AAV8 and AAV9.38-40 Retinal ganglion cells are reached via 

intravitreal AAV delivery with significantly less success than via subretinal 
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pathway.36 No easy approach for bipolar, horizontal and amacrine cells is available, 

as they are anatomically located between dense layers of cells. Müller cells can be 

approached intravitreally or subretinally.36 

Also interesting is the fact that answers to cargo capacity difficulties are being tested. 

Dual AAV mediated strategies combine genetic information contained in two AAVs. 

Subsequently, homologous recombination permits overlapping sequences,  

transplicing allows concatemerization of both sequences and hybrid dual vectors mix 

both strategies.36,38,41-43 Oversized AAV vectors and `gutless´ viruses  have also been 

reported.43 These could be useful approaches for gene delivery of larger genetic 

materials and particularly, mouse models of Stargardt’s disease (mutated ABCA4 

gene) and Usher1B (mutated MYO7A gene) have been studied. Although therapeutic 

levels of the gene of interest could be obtained, high heterogeneity between these 

approaches requests alternative solutions or further investigations. 

4.1.1.1.2. Adenoviruses (AdVs) 

Adenoviruses are lytic, non-enveloped double stranded DNA viruses from the 

Adenoviridae family. Most cells express AdV receptors and they can infect both 

dividing and non-dividing cells.38 In addition, their genes remain episomal, reducing 

undesirable mutation possibilities. Group C serotype 5 and group B serotype 35 have 

been particularly useful for gene transfers. Human infection by AdVs usually triggers 

mild febrile episodes, albeit immunocompromised patients may suffer severe 

immune reactions.44 Most people have faced community based contacts with AdVs 

and have created antibodies against them. People receiving AdV injections also 

develop antibodies that reduce subsequent gene transfer successes, hence making 

AdVs suitable for transient transgene expression.38,44 In order to reduce immune 

recognition, different AdV serotypes are being considered.44 

4.1.1.1.3. Lentiviruses (LV) 

Lentiviruses are enveloped, single-stranded RNA viruses of the Retroviridae family. 

They use reverse transcriptase to convert RNA into double stranded DNA. Their 

genetic information is integrated into the host cell genome (providing longer gene 

expression) and behave as mostly non-immunogenic in humans.45,46 Replicating and 
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non-replicating cells can be targeted and offspring cells can also be reached. 

Although these are remarkable advantages, two main drawbacks concerning LVs 

must be cautiously taken into account. The first would be the insertional mutagenesis 

that could arise from gene integration into cells and the second, the unlikely but 

possible option of these HIV-1 derived viruses of becoming actively replicative and 

disease causing. Genome editing strategies are being assessed for solving mutational 

problems that could arise and LVs are being improved by ensuring that potential 

integration remains away from oncogenes that could be activated.32 

4.1.1.1.4. Herpes simplex virus (HSV)  

Herpes simplex virus has also been used and has the advantage of its large size 

(50Kb).45 Although most humans present previous contact with HSV, it has 

successfully proven to avoid immune destruction. However, it is not frequently used 

for GT purposes. 

 Immunogenicity Cargo capacity Gene delivery  

AAV Mild 4.5-5Kb Episomal 

Adenovirus Moderate 26-45Kb45 Episomal 

Lentivirus Potentially severe 8-10Kb45,47 Integrating 

HSV Mild Up to 50Kb45 Episomal 

 

 

 

 

 

 

 

Table 2. Most frequent viral vectors and special features. This table summarizes remarkable features of each 
viral vector. AAVs have been widely used for gene therapy due to their interesting and helpful delivery 
characteristics. However, limited cargo capacity can be solved by novel strategies such as dual AAV vectors or 
by using different viral vector such as lentiviruses. (AAV: Adeno associated virus, HSV: Herpes simplex virus, Kb: 
Kilobase). 
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4.1.1.2. Non-viral vectors  

The creation of non-viral strategies intends to pose a valid alternative to viruses and 

their potential risks. 

4.1.1.2.1. Physical techniques  

Electroporation uses electric pulses through local electrodes to create pores in the 

cell membrane that disappear after gene delivery.48 However, target cells may end 

damaged and membrane trespassing is not always achieved. On the other hand,  

`gene gun´ technique uses DNA coated gold or silver particles to penetrate target 

cells using electricity. Low and transient gene expression have been reported.48 

Sonoporation uses ultrasounds and magnetofection uses magnetic forces to facilitate 

DNA transference.48 

4.1.1.2.2. Chemical techniques  

Nanoparticles have been studied for their large capacity and ease of production. 

Natural polymers such as chitosan show high biocompatibility and biodegradability 

(they are derived from exoskeletons). Several compounds such as calcium phosphate 

(CaP) have also shown the ability to improve DNA uptake by treated cells.37 

Lipid-based approaches (lipoplexes or lipid/DNA complexes) are also useful for 

transfections of DNA and they have been studied in X linked retinoschisis mice 

models.36 However, their high instability and possible retinal toxicity on 

administration pose some difficulties.48 

Both natural and syntethic polymers have also been tried for GT. Polyethylene glycol 

in particular, has shown ability to treat mice affected from Stargardt´s disease.36 

Non-viral strategies are capable of handling larger genes, but still do not compete 

against viral approaches due to lower transfection rates and dependency upon 

associated promoters. Strategies should focus on combining advantages from viral 

and non-viral tools. 
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4.1.2. Administration routes and surgical technique 

There are two main options for the surgeon to deliver the vector to the retina (Figure 

8): it can be injected intravitreally (vectors are diluted within the vitreous) or in the 

subretinal space (between the photoreceptors and the RPE).49,50 Intracameral, 

subconjunctival and suprachoroidal injections have also been described.37,38 

Generally, the injection route is selected according to the targeted cells' location for 

the best gene expression in the selected area (Figure 9). Thus, if the target is the 

inner retina, intravitreal route would be of choice, and if outer retina is our objective, 

subretinal route should be chosen. However, there is no standardized protocol that 

guides this decision. 

Intravitreal delivery has two main advantages: its simplicity of performance and its 

capability of direct drug delivery into the eye.51 Negative adverse events that could 

appear after intravitreal treatments include: ocular inflammation and/or haemorrhage, 

endophthalmitis, retinal detachment and cataract.37,49 It has also been related to more 

immune responses than subretinal delivery.37 Also interesting is to notice that 

intravitreal approach is widely used for treating age-related macular degeneration 

(AMD) with anti-VEGF.51 Therefore, it is an efficient route for some uses, albeit it is 

not sufficient for outer retinal treatment in some cases (not enough for targeting RPE 

and photoreceptors). Intravitreal route injections have proven to obtain inner retinal 

gene expression after 2-4 weeks after injection. Outer retinal expression of 

intravitreally delivered genes requires about 6-8 weeks.36 

Subretinal route injections usually include pars plana vitrectomy (PPV) with a 

subsequent retinotomy and viral vector injection into the subretinal space (the space 

between the photoreceptors and the RPE).37 This process is followed by a temporary 

retinal detachment but has the advantage of reaching RPE and photoreceptors in a 

direct manner (which are frequently affected in IRDs). If using a viral vector, it 

infects the host cell and makes it express new genetic material providing tools for 

correcting the treated disease.  
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The surgeon uses a surgical microscope to complete the procedure. Nowadays, there 

is the possibility to use an OCT during surgery that allows to locate the injection site 

in real-time.37,53 The formation of a subretinal bleb is usually expected and is used to 

confirm the adecuacy of the delivery (as the injected vector can spread across the 

subretinal space).51 Viral transmission should be guaranteed in the surgical subretinal 

procedure with the least possible damage. Vector reflux to the vitreous is one of the 

described drawbacks of this technique and should be taken into account if the risk of 

vitritis is to be avoided. A proposed change of this technique could be doing the 

injection under the internal limiting membrane.54 

Successful targeting of the retinal pigment epithelium (RPE) and photoreceptors 

involves an optimal gene therapy vector delivery into the subretinal space. An 

optimal surgery is critical for clinical efficacy and safety. Described possible 

complications associated to these surgeries are: vector reflux from the subretinal 

space to the vitreous and subsequent vitritis, excessive retinal stretch, macular holes, 

retinal detachment or air bubble formation in the injection system.37 

Figure 8. Intravitreal VS subretinal delivery of gene therapy to the retina. This image shows the difference 
between the two main injection types of retinal gene delivery: subretinal and intravitreal. Left image shows the 
subretinal approach in which a needle is inserted through the pars plana and the area between the 
photoreceptors and the RPE is reached after a vitrectomy, and the vector is injected. The intravitreal path is 
shown on right image and it can be seen how a needle passes through the pars plana and then delivers the 
vector in the vitreous cavity for a theoretically widespread distribution of the vector. Modified from Ochakovski 
GA.52 

Subretinal space Vitreous cavity 
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A study by Parikh and colleagues demonstrated a successful transcleral posterior 

approach that can be used for retinal gene therapy studies in mice as a form of 

facilitating retinal reattachment after the procedure and preserving eye integrity by 

minimizing complications.55 

As stated before, subretinal approach has proven to be better for reaching the RPE 

and the photoreceptors, and as these cells are usually affected in IRDs, subretinal 

delivery has been most widely tried in human clinical trials. 

4.1.3. Genome editing via CRISPR/Cas9 strategy 

A broad range of diseases in a limited resource environment, require treatments that 

cover the highest possible number of cases. CRISPR/Cas9 strategy has some 

interesting characteristics that could make it suitable for this to be achieved. 

CRISPR/Cas9 is a RNA-guided DNA editing tool which can be used to modify a 

DNA sequence in vitro or in vivo. It is based on a series of clustered repeat 

sequences present in achaea and some bacteria.56 Such sequences are formed by 

about 29 homologous nucleotides interspaced by nonrepetitive sequences of 32 

Intravitreal  approach                            Subretinal approach 

AAV2-7m8           AAV1-9 

AAV88P2           AAV2-7m8 

AAV2.3YF           AAV88P2  

AAV2.4YF           AAV2.3YF/ AAV2.4YF
  

 

AAV2 

AAV2-7m8           AAV2-7m8 

ShH10           ShH19 

AAV88P2 

AAV2.3YF/AAV2.4YF 

Figure 9. Genes amenable to retinal gene therapy and candidate viral vectors. In this image gene delivery 
routes and retinal cell types, location and interactions are shown. Indicated genes are candidates for gene 
therapy and affect related cells as marked in the picture. Some vectors used with this purpose are on the right 
side of the image. Modified from: Planul A.36 

LRAT, RPE65 

GNAT2 
CNGB3 
PRPH2 
RPGR 
CEP290 
RS1 
GUCY2D 
PDEb 
MYO7A 

CRB1 
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nucleotides. A series of genes located adjacent to these sequences were named Cas 

genes. CRISPR/Cas system is described to confer bacteriae resistance against viral 

infection.56 

A single guide RNA (sgRNA) guides a Cas9 nuclease to create a double-strand break 

(DSB) in the target DNA.57 DNA is binded to the Cas9 by matching PAM 

(protospacer adjacent motif) sequences.58 After this break is formed, two ways of 

repairing DNA have been described (Figure 10). Homology Directed Repair (HDR), 

wherein DNA repair is obtained by exchanging homologous DNA sequences 

(externally provided oligonucleotides, for instance) and Non-Homologous End 

Joining (NHEJ) where targeted regions are directly matched. The latter can cause 

random insertions or deletions which is a serious caveat to this approach.56,58 More 

complex approaches include the use of a transcription inhibitor or activator 

associated to Cas9.  

This system has shown greater efficiency and ability for editing genes in a 

multiplexed manner (that is, targeting various sites with various guide RNAs at the 

same time) than previous approaches such as zinc-finger nucleases (ZFNs) and 

transcription activator-like effector nucleases (TALENs). This is an interesting 

advantage in complex diseases where multiple genes contribute to the formation of 

an altered phenotype or where the cleavage and elimination of large DNA fragments 

is required.56 Cas9 and sgRNA complex have the capacity of integrating into the host 

genome and of passing on to offspring cells permiting stable knockout of selected 

genes.58 

In vivo gene therapy in RP and LCA animal models has also been tried.58,59 A 

remarkable approach has intended to transform a mutation sensitive cell type into a 

mutation resistant cell type by celular reprogramming, to eliminate mutation 

influence and tissular loss of function. Inactivating Nrl or Nr2e3 has demonstrated 

rod reprogramming into cone-like photoreceptors, making the rod specific mutation 

irrelevant and thus stimulating both rod and cone preservation in RP mice.49 

Cas 9 nucleases are limited by potential mutations associated with off-target DNA 

cleavages. Several strategies have been described to detect potential off-target 
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cleavage sites such as Next Generation Sequencing (NGS) strategies.56 They could be 

amenable to correction via further genome editing strategies. 

 

 

 

 

 

 

 

 

 

 

Vectors used in CRISPR/Cas system include integrating viruses and non-viral 

vectors which could be of help in this strategy as they are in gene replacement 

approaches.56, 60 AAVs and lentiviruses are the most commonly used viral vectors in 

CRISPR/Cas9. AAVs repeat to face the important drawback of small cargo capacity, 

in fact, Streptococcus pyogenes derived Cas9 protein and sgRNA form a sequence of 

about 4.2kb and the maximum capacity of AAV is about 4.5kb.  

Lentiviruses have recently been used for treating patients suffering from Burkitt’s 

lymphoma (eliminating Epstein-Barr virus genome from cells). This study showed 

lymphoma cell proliferation reduction and virus-infected cell apoptosis. Alas, non-

infected cells did not end affected by cytotoxicity systems.61 It is also being tested for 

eliminating HIV-1 genomic information from CD4+ T cells with promising results.60 

Multiple CRISPR/Cas9 associated clinical trials have been approved and started and 

some complicated diseases, such as cancer or HIV, may benefit from genome 

engineering in the foreseeable future.57 

sgRNA 

DSB 

Figure 10. CRISPR/Cas9 system possibilities for gene editing. A single guide RNA searches for a desired 
sequence that is cut off by the cas 9 nuclease. That double strand break (DSB) can be corrected by Non 
Homologous End Joining (NHEJ) or via Homology Directed Repair (HDR). NHEJ derives in insertions and 
deletions, as the replacing sequence is not intended to be exactly matching. HDR, leads to gene engineering with 
more precision. Modified from Ovando-Roche et al.17 
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This CRISPR/Cas9 revolutionary approach by Emmanuelle Charpentier and Jennifer 

Doudna has gained public recognition and was awarded with the Princesa de 

Asturias prize in 2015.62 The creation of various start-ups such as Editas Medicine, 

Intellia Therapeutics and Crispr therapeutics has also hit the market.  

4.1.4. Optogenetics 

Optogenetics is another therapeutic approach, potentially more suitable for retinas 

with advanced degeneration, as it could be capable of stimulating non functioning 

cells, and passing light derived stimuli to the brain. This can prove invaluable, as 

many patients enter clinical trials when advanced disease is already present. No 

definitive data on humans is yet available, but deeper research and increasing interest 

in this approach and in gene therapy, could bring important changes in the near 

future. In fact, two phase I/IIa open label studies of safety and tolerability of 

intravitreal RST-001 (channelrhodopsin-2) and GS030 (channelrhodopsin) in 

patients with advanced RP are being investigated (NCT02556736), 

(NCT03326336).1 

Possible phototoxicity associated to the high light irradiance required is a drawback 

that should be kept in mind.22  
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4.2. GENE THERAPY CLINICAL TRIALS REVIEW 

Multiple clinical trials have been already run to assess the safety and efficacy of gene 

therapy in humans (Figure 11). A precise review of the available evidence has been 

performed and the observed results will be analysed.  

 

 

 

 

4.2.1. Leber Congenital Amaurosis 

The RPE65 gene encodes a RPE specific 65kDa isomerase that performs a key role 

in the regeneration of visual pigments after exposure to external light.8 About 5-10% 

of LCA cases (LCA2, in particular) are caused by RPE65 protein defficiency and 

suffer from profound vision loss with relatively well preserved outer retinal 

structures until late stages.33,63 Enzyme substitution by gene augmentation started 

with promising studies in mice and Swedish Briard dogs (a natural animal model of 

the disease).32 Encouraged by these successes, three phase I clinical trials were 

simultaneously performed by Maguire et al. (NCT00516477), Bainbridge et al. 
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Figure 11. Quantitative representation of gene therapy clinical trials developed for IRDs’ treatment. 
This graphic shows the number of studies performed per particular retinal disease. Exact NCT numbers can 
be found throughout this chapter. Pubmed and www.clinicaltrials.gov where searched for exact numbers. 
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(NCT00643747) and Jacobson et al. (NCT00481546) to assess the safety of 

subretinally injected RPE65.32,64-67 

Maguire et al. used an AAV2 to subretinally deliver RPE65 DNA to 12 patients in 

their worst eye.64 The macula was targeted and the dose ceiling was established in 

1.5x1011 vector genomes. No serious adverse events or immune reactions were 

observed, even though transient post surgical vector exposure occurred in some 

patients from the highest dose cohort as reported from blood tests. Visual acuity 

gains were observed in 7 out of 12 patients, and 1 experimented VA loss. Gains in 

visual field (VF) were observed in all patients as well as self reported improved 

vision in low lit spaces. Scotomas were reduced if covered by injection sites. Adults 

with higher retinal deterioration improved to a lesser extent than children with better 

preserved retinas. The team reported sustained changes even after 3 years.68 Up to 11 

out of the 12 original patients were subsequently enrolled for contralateral eye 

treatment (NCT01208389).40 This approach involved further gains in visual function  

even in patients with preformed antibodies against AAV. Only mild adverse events 

were observed and all patients reported subjective vision changes, but no VA change 

was seen in nine patients’ objective tests. Brain plasticity adaptations in the form of 

newly activated cortical areas were seen in functional magnetic resonance imaging 

(fMRIs) performed to three patients under high and medium contrast stimuli.69 

Bainbridge et al. intended to analyse the effects of subretinal AAV2/2 expressing 

RPE65 cDNA in three young adults (as first results from a cohort of 12 patients 

reported).65 No serious adverse responses were reported, but mild post surgical 

inflammation occurred. No significant improvements were seen in VA, VF or 

electroretinogram (ERG). One of the patients improved in the microperimetry 

(p<0.05) and dark adapted perimetry tests. Despite macular inclusion, no 

improvement in central vision was reported. Possible explanations include the 

necessity of higher dosages or the congenital amblyopic effects related to these 

patients. In a three year period, improvement in retinal sensitivity was observed in 6 

out of 12 patients which showed decreasing trends after the first year of follow up. 

ERG responses remained non significant. Two patients experimented significant VA 

loss (of more than 15 letters on the ETDRS chart).63,70 
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Jacobson et al. also conducted a phase I trial to assess the safety of subretinal 

delivery of rAAV2-CBSB-hRPE65 in patients with mutated RPE65 gene 

(NCT00481546).67 Three young patients aged 21-24 were included and all of them 

self reported increased visual sensitivity in dim light environments in treated eyes. 

No systemic toxicity or vector associated serious immune responses occurred. One 

patient showed foveal thinning in the OCT examination. Posterior controls showed 

significant increases in light sensitivity in treated eyes (p<0.001) compared to control 

eyes (p>0.99) and same results were maintained by the end of the first year.71 

Furthermore, maintained visual improvement was seen after three years72 with 

similar photoreceptor loss in the treated and untreated retinal areas. Follow up proved 

visual deterioration by the 5th to 6th year for all patients.41,63 

 

Maguire et al. went a step further, following 3 subjects until 1.5 years after subretinal 

AAV2-hRPE65v2.73 Retinal function improvement seen in the short term trial was 

maintained through the extended follow up period and despite antibody formation 

against the vector in two patients, those did not lead to dangerous reactions and 

disappeared by the first year. Weleber and colleagues ran a phase I/II clinical trial 

including 12 patients to assess the safety and efficacy of GT 2 years after subretinal 

injection of rAAV2-CB-hRPE65 (NCT00749957). Surgery related common adverse 

events were ocular irritation and subconjunctival haemorrhage and solved within a 

month. As a whole, 9 out of 12 patients benefited from improvements in one or more 

visual function aspects. Further gains were seen in children.74  

LeMeur and colleagues attempted to use a rAAV2/4-RPE65 (NCT01496040). 

Nystagmus improved and a general trend towards vision function amelioration was 

observed, with sustained cortical responses.75 Cideciyan et al. evaluated 15 patients 

who had received GT and observed the formation of pseudofoveas in four of them 

which served for letter fixation in different light conditions. Light sensitivity was 

preserved as seen in cortical fMRI for the areas correlated to those pseudofoveas, 

exclusively.76 

In the light of these discoveries, a phase III clinical trial involving a subretinal 

injection of AAV2 and associated RPE65 started (NCT00999609).77 After 
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randomization, 20 patients received treatment, and 9 ended up as controls. Treated 

patients showed improvements of mean 1.8 lux (SD 1.1) in standardized multi-

luminance mobility test (MLMT) at one year vs 0.2 lux (SD 1.0) in the control group 

(difference of 1.6; 95% CI 0.72-2.41, p=0.0013). One third of treated patients 

improved 15 letters in VA and 13 of the 20 were able to complete the MLMT at 1 

lux one year after treatment (the lowest luminance assessed). These compared to no 

improvements in the control group. Full-field light sensitivity threshold for white 

light also got significantly better in treated patients. Furthermore, no treatment 

related serious adverse events occurred. These encouraging results led to the 

approval of voretigene neparvovec (Luxturna) by the FDA in December 2017. 

More genes can cause LCA and particularly, CEP290 mutations are most commonly 

reported. CEP290 is crucial in ciliogenesis and a study performed by Burnight and 

colleagues showed that an LV vector transporting CEP290 could transduce 

photoreceptor precursors derived from patients’ iPSCs in vitro and achieve 

deficiency corrections.78 Additionally, over-expression of genes could produce cell 

toxicity and should be carefully assessed when treating patients. A phase I/II clinical 

trial has recenly started to evaluate intravitreal delivery of CEP290 gene in 12 

patients (NCT03140969).29 

Important advances usually carry challenges too. Cideciyan et al. reported continued 

retinal degeneration and slow rod function despite GT.79,80 Incomplete transduction 

of retinal cells may prove inefficient for disease correction too.33 Moreover, long 

term protection against retinal degeneration in canine models has been proven both 

in early and more advanced stages.33 It is suggested though, that treatment within an 

early free of degeneration phase holds greater chances of being successful than later 

treatment to already altered photoreceptors. Probably, treatment should focus on 

combination strategies where retinal cell degeneration is also halted.  

 
4.2.2. Choroideremia 

CHM gene mutations associated to Rab escort protein 1 (REP1) alterations, are 

known causes of choroideremia. MacLaren et al. performed a phase I/II trial to assess 

the effects of subfoveal injection of AAV.REP1 in six patients between 35-63 years 
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(NCT01461213).53 Despite retinal detachment (usually related to visual loss) two 

patients with low baseline VA improved 21 and 11 letters. The rest of the 

participants with better baseline VA only gained between 1 to 3 letters. Dark adapted 

microperimetry increased from 23dB (SE1.1) to 25.3dB (1.3) after treatment (2.3 dB 

increase (95% CI 0.8-3.8)). A positive effect of treatment was also seen at 6 months 

(increased sensitivity in the treated eye of mean 1.7dB (SE1.0), p=0.04). Three and a 

half years after treatment, treated eyes preserved gained visual function (and non 

treated eyes gradually lost visual function).32,33 This research path is expected to 

continue in the form of a phase III clinical trial soon.32 

A significant number of phase I and II studies have been started for treating patients 

with confirmed CHM mutations: NCT02341807 (using AAV2-hCHM), 

NCT02077361 (rAAV2.REP1), NCT02553135 (AAV2-REP1), NCT02671539 

(rAAV2.REP1 in 6 patients) and NCT02407678 (REGENERATE study AAV2-

REP1 estimated to be in 30 participants).1,37 Results from these studies will guide 

future decisions. 

The search for an appropriate animal model has been fruitless and so iPSC based and 

fibroblast derived celular models have been generated. Particularly, proof of concept 

studies showed phenotype correction using AAV2/5 and AAV8 in preclinical 

conditions and could be of interest for future human trials.32,81 

4.2.3. Achromatopsia 

Clinical trials have been initiated to assess the safety of post-vitrectomy, subretinally 

injected and AAV mediated CNGA3 and CNGB3 (NCT02610582, NCT02599922, 

NCT02935517, NCT03001310).29 Used AAV serotypes (AAV5, rAAV8 and 

AAV2tYF) have preclinically rescued achromatopsia phenotypes.9 Secondarily, the 

trials focus on VA, color vision improvements and ERG changes. With potential 

future inclusions of younger patients, they will try to discover potential differences 

between the degree of benefit obtained by adults and children (as seen in younger 

dogs).9,33 Phase I/II trial on safety of CNTF implants for CNGB3 achromatopsia has 

been conducted (NCT01648452) and no gains in cone function have been observed 

despite preclinical positive results in dogs.20 
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4.2.4. Retinitis pigmentosa 

A MERTK (Mer tyrosine kinase) associated, RP related phase I clinical trial 

developed with the administration of subretinally (submacularly) injected MERTK in 

6 patients. Two of them showed peak gains of more than three lines of vision.82 One 

of both maintained visual improvement and the other lost it at 2-year control. Studies 

showed correct central macular thickness and though disease progression cannot be 

excluded, loss of visual gains may be associated to a posterior subcapsular cataract 

secondary to vitrectomy. This trial (NCT01482195) showed encouraging results for 

the safety outcome but MERTK expression levels may have been insufficient for 

stable positive results.33 GT in patients with mutated PDE6B gene and mutated 

RLBP1 gene are also being assessed (NCT03328130), (NCT03374652).29 

As for X linked RP, RPGR gene is also being tested in several clinical trials of recent 

start (NCT03116113), (NCT03252847), (NCT03316560).29 

4.2.5. Usher syndrome 

MYO7A gene absence leads to missing apical RPE melanosomes. It is involved in 

the Usher syndrome phenotype and forms a complementary DNA of about 7kb, 

which complicates the use of certain viruses due to exceeding their cargo 

capacities.47 First studies of MYO7A GT used lentiviruses and demonstrated 

irregular integration of the virus into host cells and non generalized cell rescue 

(although photoreceptor loss was reduced).32 The problem of protein overexpression 

was also seen as high expression levels of MYO7A were associated with cell toxicity 

and death.47 NCT01505062 and NCT02065011 trials use UshStat, which features 

equine infectious anemia virus (EIAV) vector, cytomegalovirus (CMV) promoter 

and MYO7A gene needed for disease rescue. No results are available yet but they 

should help clarify relevant aspects on safety and efficacy.29,33 

DNA-compacted nanoparticles, featuring compacted polyethyleneglycol-substituted 

polylysine 30-mers (CK30PEG) are also being investigated for Usher syndrome and 

although they provide lower transduction rates, an interesting 20kb cargo capacity 

will surely direct research into further efforts for carrying these to the market.32 
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4.2.6. Stargardt’s disease 

ABCA4 (ATP binding cassette transporter gene) participates in the transport of 

vitamin A derivatives in the visual cycle and its mutations have been associated to 

several retinal degeneration phenotypes, particularly, to Stargardt’s disease. 

Promising results after EIAV lentivirus carrying ABCA4 gene with a 

cytomegalovirus (CMV) promoter, resulted in the start of a phase I/II clinical trial by 

Oxford BioMedica for patients affected by STGD1 (NCT01367444).83 The lentivirus 

was selected due to larger cargo capacity necessary for ABCA4 delivery. It features 

subretinally delivered SAR422459 (a lentivirus and associated ABCA4 gene) at 3 

different concentrations.37 Data on long term safety is being collected and a follow 

up study has also been registered (NCT01736592).29 A phase IIb double blind, sham 

controlled trial using Zimura (avacincaptad pegol, intravitreally delivered 

complement C5 inhibitor) for STGD1 is also underway (NCT03364153).29,82 

Furthermore, an interesting clinical trial has been conducted using human embryonic 

stem cell derived RPE cells (MA09-hRPE) delivered to patients with different visual 

acuities in a phase I/II trial (NCT01345006) and results suggest a good safety profile 

and improvements in VA, VF and visual function in some patients.40 This data poses 

it as a potential future contribution to the treatment of Stargardt´s disease.37 

4.2.7. X linked retinoschisis 

Retinoschisin (RS1) protein is supposed to participate in cell adhesion and 

photoreceptor-bipolar cell synapse.33 Mutations in RS1 gene have been described as 

causing juvenile X linked retinoschisis. Two phase I/II clinical trials of intravitreally 

delivered RS1 are currently underway. NCT02416622 study comprises the 

assessment of dose escalation of rAAV2tYF-CBA-hRS1.1,33 Patients in the highest 

dose group, will also be randomized for complementary carbonic anhydrase inhibitor 

use.37 The schisis cavity sizes and the changes in visual parameters are going to be 

investigated. NCT02317887 study intends to cover patients with mild or moderate 

vision loss with intravitreal delivery of AAV8-scRS/IRBPhRS.40 
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4.2.8. Gene therapy for other ocular conditions 

Gene therapy has started to be tested for additional ocular conditions such as AMD. 

Several phase I studies by Racokzy et al, Heier et al proved that rAAV.sFLT-1 (a 

natural VEGF inhibitor) was safe for wet AMD both subretinally and 

intravitreally.84,85 Using this technique, the production of antiangiogenic factors 

could be produced in the exact location where is required.86-88 Moreover, 

NCT01678872 trial evaluated the LV driven and subretinally injected RetinoStat 

(featuring angiostatin and endostatin, against angiogenesis). A good safety profile 

and a sustained transgene expression were noticed, but no clear clinical beneficial 

effects were seen. This may be due to advanced patient disease, and should be 

evaluated in future trials.46 

After preclinical studies, human studies for the treatment of Leber Hereditary Optic 

Neuropathy (LHON) started.89 Wan and colleagues performed a study to assess the 

efficacy and safety of rAAV2-ND4 in patients affected by LHON. Intravitreal 

delivery of ND4 was used in nine patients with point mutations in mitochondrial 

DNA (NCT01267422).82,90 Nine month follow-up showed VA amelioration in six 

patients. These patients also ended with broader VFs. No serious adverse events were 

reported. A closely related study included fourteen patients to test the safety and 

efficacy of intravitreal injection of AAV2-P1ND4v2 (NCT02161380).91 Some phase 

III clinical trials of recent start could provide further evidence on the use of gene 

therapy for the treatment of LHON.29 
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5. INTERNSHIP AT BIODONOSTIA RESEARCH INSTITUTE 

In September 2017, I started an internship at the Biodonostia Research Institute with 

the `Lehen Aukera´ scholarship programme. I have had the opportunity to learn from 

the Sensorial Neurodegeneration research group. In combination with Cristina 

Irigoyen's guidance, I have learned about all the aspects related to inherited retinal 

disease, genotyping and gene therapy that are currently being explored at 

Biodonostia. 

5.1. GIPUZKOA'S MOST PREVALENT MUTATIONS 

In a study conducted at the Donostia University Hospital in San Sebastian, as part of 

the PhD dissertation of Cristina Irigoyen, a recount of the prevalence of disease 

causing genes in retinitis pigmentosa was performed (Table 3). 

Disease Affected genes Number of families affected Families of Gipuzkoan origin 

adRP RHO 9 1 

SNRNP200 8 - 

PRPF8 3  2 

arRP CERKL 5  4 

XLRP RP2 1 - 

Bardet-Biedl BBS1 2  1 

BBS12 1 1 

Usher syndrome USH2A 4 2 

 

Table 3. Gipuzkoa’s most prevalent retinitis pigmentosa mutations. This table shows the number of families 
affected by the most prevalent genes. The first column was not associated with a geographical area, and the 
second column, refers to patients from Gipuzkoan origin. Data was obtained from the Biodonostia Institute 
database. (ad: autosomal dominant, ar: autosomal recessive, XLRP: X linked retinitis pigmentosa). 
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5.2. POTENTIAL GENE THERAPY DERIVED BENEFITS IN THE 
DONOSTIA HOSPITAL PATIENT COHORT  
 

Having discussed gene therapy in depth, a measurement of the benefits that would 

potentially affect local patients from the Ophthalmology service in the Donostia 

University Hospital was done. Data were obtained from the Biodonostia Research 

Institute database. Appropriate informed consents for the storage and use of 

information derived from the samples had already been obtained by the Sensorial 

Neurodegeneration group at the Biodonostia Research Institute.  

The database includes 606 DNA samples, 214 affected index cases and a total 

number of 260 affected individuals (including indexes' families). 73 families have 

been specifically diagnosed and associated to disease causing mutations. 

www.clinicaltrials.gov database was searched on the 5th of March, 2018, looking for 

all the gene therapy clinical trials that were finished or were being conducted. 

Biodonostia Research Institute database was then compared to obtain the number of 

patients that could benefit if these trials led to approved products (Table 4). 

 

Genes under GT clinical trials Affected families Total number of affected patients 

CNGB3 1 1 

RLBP1 1 1 

CHM/REP1 1 2 

RPGR 1 3 

MYO7A 2 3 

CNGA3 2 3 

ABCA4 17 19 

TOTAL 25 32 

 

Table 4. Potential benefits of gene therapy in the Donostia University Hospital cohort. This table shows the 
number of patients from the Ophthalmology service in the Donostia University Hospital that could benefit from 
gene therapy that is currently being tested in human clinical trials. Data was obtained from the Biodonostia 
Institute database. 
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As stated, up to 32 patients could be benefited from the promising new therapies that 

could reach the market in the next few years. With new trends towards patient 

genotyping and exploration of potentially affected family members, the whole 

diagnostic and therapeutic process is rapidly changing. A huge effort has been 

already made, but research continues, and will hopefully answer to patient’s needs. 

Preclinical studies in animals also hold promising hopes for these patients. Gene 

therapy in RHO gene has been tested in animals and if successful, it could pass on to 

human trials which would pose hope for 9 more families.82 

A remarkable number of patients in the group are affected by mutations in USH2A 

(4 families), EYS (4 index cases), CERKL (5 families) and SNRP200 (8 families). 

Encouraging results always pave the way for future research and vector 

improvements and therapy advances could lead to solutions for them.  
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6. FUTURE 

Gene therapy is expected to form a solid response to IRDs. Although GT influence is 

still modest, it must be considered that new sequencing technologies and preclinical 

studies, will progressively give more answers to current concerns. After the approval 

of Luxturna last year, the way is being paved for future approvals of GT products 

that will produce information about long term effects and safety issues.  

 

6.1. LOCAL COMPANIES AT THE FOREFRONT 
 

Viralgen Vector Core, Asklepios Biopharmaceutical and Vive Biotech form part of 

gene therapy product producers in Gipuzkoa. Invaluable benefits to local and 

European communities in terms of gene therapy product availability are supposed to 

be guaranteed thanks to local work completed by these companies. Given that the 

future holds great promise on the field, Gipuzkoa may be a special protagonist in the 

whole developmental process of gene therapy for retinal dystrophies.  

 

6.2. FUTURE APPROACHES 

The future of gene therapy for IRDs will unite patients’ concerns and new patient 

profiles (in terms of genotyping and knowledge about more disease causing genes) 

with increasing strategies to offer safe and effective treatments. Creating multi-centre 

collaborative studies and international registries will offer richer databases and wiser 

conclusions that will create a path towards better and more homogenized treatments. 

Rare diseases will only be defeated if all efforts are put towards the same direction. 

Futhermore, different research areas combined will produce innovative tools for 

reversing or ameliorating every patient’s illness.  
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7. DISCUSSION 

Gene therapy for IRDs has proven to be a promising tool for massive changes in the 

approach of previously devastated patients. Visual improvements have been reported 

in several clinical trials assessing different vectors and targeting distinct diseases, 

thus posing hopes for thousands of people. Even patients with advanced degeneration 

might be benefited from therapies such as optogenetics. Furthermore, safety of 

treating both eyes has been reported, and no serious adverse events have happened so 

far that could compromise therapeutic success. However, although several clinical 

trials regarding GT have been performed and knowledge regarding IRDs is 

constantly growing, results have to be carefully taken into account.  

Few clinical trials have been conducted to date and they involved small cohorts of 

few individuals since retinal gene therapy targets diseases that affect a small number 

of patients. This does not meet usual trial criteria in terms of the number of patients 

that usually need to be tested before market approval. Besides, follow up studies 

cover short time periods with no safety reports from side effects associated to long 

time uses neither rare side effect reports only seen when applied to massive patient 

cohorts. Masking techniques do not always apply either. All of this increases the 

challenge of taking these drugs to human use. International drug agencies are 

currently working on supporting these drugs’ development, but longer follow ups 

and treatment to broader patient populations will justify vector choices and surgical 

procedure standardization towards stable and long term treatments of these diseases. 

In addition to this, high prices may prevent patients with no financial support from 

affording potentially life changing treatments. Luxturna, for example, is said to have 

a market pricing of 425000USD for each treated eye. International regulatory 

agencies have tried to technically and financially protect drug sponsors, but 

international health systems and patient organizations will have a tough path to 

protect patients’ interests and to preserve medical interventions for all the 

community.  

As previously said, safety and mutational problems also need to be considered. Gene 

expression must remain stable in some illnesses for patients to notice a real 
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improvement, but multiple GT sessions could compromise patient adherence to 

treatment or result in toxic outcomes for retinal cells. These negative or challenging 

aspects are currently being changed by scientific advances and it is expected that 

they will not pose a seriouscaveat to GT development. 

Uncertainties regarding standardized protocols and correct dosages for optimal 

phenotype correction still threaten the field. For perfect approaches, questions about 

whether treated retinal areas are enough will have to be answered. Presumably, GT 

will be more profitable in younger patients in earlier stages.64 Retinas with higher 

numbers of intact photoreceptors and structures may be more suitable for gene 

therapy approaches as those structures may make good use of the delivered proteins. 

However, no consistent information has been extracted on this topic, and further 

studies will be needed to correctly classify patients to the treatments that will benefit 

them the most. 

It is also capital to establish priorities in consensus with patients, determining the 

most important clinical outcomes that make patients’ lives easier. If patients’ quality 

of life is to be improved, we have to focus on relevant outcomes on which to focus 

future clinical trials. Devastating diseases, often request drastic solutions that intend 

to ameliorate patients’ daily life. Limited results are nowadays available and patient 

counseling must be careful, always explaining realistic outcomes and potential risks, 

before recommending emerging therapies.  

Research will be very important to overcome difficulties and to advance towards 

definitive solutions for IRDs. The need for reliable animal and cellular models is 

known, but preclinical discoveries merely orientate human studies. The scientific 

community should carefully assess those discoveries and put efforts for translating 

them into clinical practice. Novel strategies such as iPSC derived disease models will 

certainly be helpful for this purpose. 

However, there are solid reasons to be excited about what is coming. To begin with, 

aforementioned diseases are expected to have a treatment option soon owing to GT 

development. Diseases with existing therapies could also benefit from GT as a 

suitable approach for some candidates. If reported current low toxicity and low 
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immunogenicity are maintained, GT could be less altering than many other 

pharmacological products. A great amount of studies and clinical trials are being 

developed generating supportive data that answer previously commented questions 

and concerns. A local search of candidates for GT has also shown near benefits for 

Donostia University Hospital cohort. Moreover, GT also provides new ways for 

science development and for a deeper knowledge on human genetics and disease 

mechanisms.  

This discussion about GT has been reignited after successful proof of concept studies 

but consensus should be slowly reached in order to provide unified alternatives for 

vulnerable patients.  
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8. CONCLUSIONS 

1. Gene therapy has proven to be safe for bilateral ocular treatment in patients with 

inherited retinal dystrophies. No serious adverse events have compromised clinical 

trial development. 

2. Adeno-associated viral vectors (AAVs) are the most widely used vectors for gene 

therapy in IRDs due to benefitial safety and transduction efficacy results. 

3. Subretinal delivery of genes or genomic tools is preferred for the treatment of 

frequently affected photoreceptors and RPE. Intravitreal delivery is also being 

studied for inner retinal cell treatment. 

4. Results on efficacy of GT show positive trends, although no sustained 

improvement in all the outcomes of interest has been recorded.  

5. Recovered visual function appears to be of slow kinetics for some cells and 

processes; no perfect wild type phenotype recovery has been possible. 

6.  Patients in earlier stages seem to have higher improvements in visual function. 

7. Genome editing strategy CRISPR/Cas9 has proven to be benefitial in preclinical 

models and future research in humans could support this therapeutic pathway. 

8. Most commonly mutated genes in patients with retinitis pigmentosa include: RHO 

gene in autosomal dominant RP, CERKL gene in autosomal recessive RP and 

USH2A in autosomal recessive RP and Usher syndrome patients. 

9. A considerable number of affected patients from the Biodonostia Institute cohort 

could be benefited from treatments currently under clinical trials if participated as 

study subjects or if those compounds were commercialized. 

10. Future objectives include international collaboration for accurate diagnosis of 

patients, supportive scientific databases for better understanding of diseases and for 

preclinical model creation and projects that cover wider populations for treatment 

purposes.  
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APPENDIX 1: SUBRETINAL INJECTIONS IN MICE 

The purpose of this appendix is for the reader to learn about one possible technique 

of preclinical gene delivery to the retina that could be performed for investigational 

purposes (Figure 12). Local research groups have focused interests on this topic and 

gene therapy will surely continue to be at the forefront of research with interesting 

results for patients. I learned about one possible procedure during my internship at 

the Biodonostia Institute and solely intend to make an explanatory description of 

such technique. No analysis or comparison has been made and no statistical data 

have been included. Technique explanation and images on this appendix were 

courtesy of Anasagasti A. as part of his PhD collection. 

Rd10 mice can be used for subretinal delivery technique. General anesthesia is 

usually delivered subcutaneously before the procedure. Visual control of heart beats 

can be used as a safety procedure. Eyelid opening is expected to happen at day 13 

(P13). If the mice used in the process are younger, the eyelids should be opened 

using a thin needle and tweezers. A surgical microscope is then used during the 

process. Tropicamide intends to cause mydriasis due to its anticholinergic properties 

and topical ocular anesthesia must be applied to minimise suffering.  

The eyeball must be extruded from the orbit maintaining its unions to the eye cavity 

(with no total enucleation). Being the eye held by tweezers, a beveled needle is 

introduced posterior to the limbus (which should be appreciated as a white-to-grey 

stained area involving the eye posterior to the cornea). A blunt needle is then inserted 

in the small hole made by the first needle (the blunt needle reduces the risk of eye 

perforation and associated complications and subsequent deficient gene delivery). 

Once the vitreous cavity is crossed a vector is subretinally delivered. Fluorophores 

such as mCherry compound can be associated to such vector for posterior analysis 

under a fluorescence microscope. The injected fluid is also stained with a blue dye to 

externally prove that the injection has been successfully performed. A blue-to-

greenish colour seen through the pupil indicates that the injection is supposed to have 

occurred. Once the vector is injected, a bleb originates that allows the injected 

substance to spread over the widest possible subretinal area. The bleb is supposed to 

vanish after some time.  
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Complications that could arise from this procedure include holes in the posterior pole 

and vector reflux into the vitreous cavity. After the procedure, the eye must be 

replaced into the eye cavity and Methocel is usually applied for eye recovery.  

 

 

 

Figure 12. Training session of subretinal AAV8 and fluorophore delivery in mice. The left image shows the 
initial procedure of eye extrusion from the treated mouse. The whole procedure is performed with a surgical 
microscope. The right image shows part of the injection procedure where the researcher inserts the viral vector 
and the fluorophore in the subretinal space of the mouse. Images were courtesy of Anasagasti A.  

 

 

Two weeks later mice are sacrified after sedation with a mixture of isoflurane and 

oxygen. Such sacrifice can include CO2 and posterior cervical dislocation or only the 

latter procedure.  

Sample containers are used to hold the retinas. After this, eyes are enucleated and the 

limbus is cut with a scalpel and linearly separated with small scissors. The eye is 

moved until orientation allows a further cut and a `T´ form incision directed towards 

the optic nerve is performed. The choroid and sclera are removed with tweezers and 

once the lens and the retina are the only remaining structures, the eye is placed 

upside down, the lens remaining on top and it is removed. Small scalpel cuts are 

made in the remaining retina in order to flatten the retinal tissue for posterior 

processing (the lasting image ought to resemble a four leaf clover and flattening is 

essential for correct counting of stained areas). During this procedure, the RPE 

should also be removed in order to avoid autofluorescence signals.  



 

 
 

The flattened retinas a

preserved at 4ºC. Half an hou

after paraformaldehyde aspiration and samples a

Retinal flattened distribution is called whole mount. In the fluorescence microscope,
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Figure 13. Retinal whole mount images. 
fluorescence emission under a bright light filter. A clear image of a three and a half leaf clover can be observed. 
The second image shows different fluoresce emission in each half due to differences in vector transduced 
areas. The percentage of covered areas is measured after comparisons of the results obtained with different 
filters. In this particular case, an approximate area of 50
A Texas Red filter permits to read this 

The flattened retinas are treated with paraformaldehyde and the final samples can be

preserved at 4ºC. Half an hour later, Fluoromount reactant is applied to the samples 

dehyde aspiration and samples are covered with special slice covers.

Retinal flattened distribution is called whole mount. In the fluorescence microscope,

the Texas red filter is red and is able to read mCherry covered samples

of having applied it to studied samples (Figure 13, right). A simple bright light filter 

whole mount pictures in their natural shape (Figure 1

  

Figure 13. Retinal whole mount images. The first image shows the flatttened retina with no associated 
fluorescence emission under a bright light filter. A clear image of a three and a half leaf clover can be observed. 
The second image shows different fluoresce emission in each half due to differences in vector transduced 

he percentage of covered areas is measured after comparisons of the results obtained with different 
filters. In this particular case, an approximate area of 50-60% of the retina had been transfected with the vector. 
A Texas Red filter permits to read this mCherry+ sample. Images were courtesy of Anasagasti A
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retina with no associated 
fluorescence emission under a bright light filter. A clear image of a three and a half leaf clover can be observed. 
The second image shows different fluoresce emission in each half due to differences in vector transduced 

he percentage of covered areas is measured after comparisons of the results obtained with different 
60% of the retina had been transfected with the vector. 
Images were courtesy of Anasagasti A.  
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APPENDIX 2: METHODOLOGICAL INFORMATION ABOUT 
ASSESSED CLINICAL TRIALS OF GENE THERAPY ON IRD 

 

A summary of several methodology related aspects have been summarized in Table 

5.  

 

Phase Target 
disease 

NCT number Masking Allocation Estimated 
enrollment 
(number of 
patients) 

I LCA NCT00516477 OL NR 12 

I/II LCA NCT00643747 OL NR 12 

I LCA NCT00481546 OL NR 3 

I/II LCA NCT00749957 OL NR 12 

I/II LCA NCT01496040 OL NR 9 

I/II LCA NCT01208389 OL NR 12 

I/II LCA NCT02781480 OL NR 27 

I LCA NCT00821340 OL NR 10 

I/II LCA NCT02946879 - OBS 27 

I/II LCA NCT03140969 OL SEQ 12 

III LCA NCT00999609 OL R 31 

II CHM NCT02553135 OL NR 6 

I/II CHM NCT01461213 OL NR 14 

I/II CHM NCT02077361  OL NR 6 

II CHM NCT02671539 OL NR 6 

II CHM NCT02407678 OL R 30 

I/II CHM NCT02341807 OL NR 15 

I/II STGD NCT01367444 OL NR 46 

I/II STGD NCT01736592 OL NR 46 

IIb STGD NCT03364153 DB R 120 

I/II ACHM NCT02610582 OL NR 9 

I/II ACHM NCT02599922 OL NR 24 

I/II ACHM NCT02935517 OL NR 24 

I/II ACHM NCT03001310 OL NR 18 
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Table 5. Clinical trials’ methodological quality assessment. This table shows selected aspects related to 
methodological quality assessment performed to reviewed gene therapy clinical trials. As stated before, CASP 
tools have guided this assessment, and therefore, this table reflects some aspects that are evaluated by those 
tools, such as masking and allocation. Most trials are open label (OL) and non-randomized (NR). These aspects 
have to be taken into account as they reduce the quality of the study (randomized and blinded trials are preferred 
as combine reductions in the risks of bias and generally reduce the quality of the conclusions). Phase I trials are 
usually performed in healthy individuals, and rare diseases often select affected patients, and often combine 
phase I and II trials in a row (safety and efficacy are subsequently addressed). Even for early phase trials, few 
patients constitute each cohort. All these aspects have been considered for this project, and results that arise 
from these trials have been carefully considered.  

(LCA: Leber congenital amaurosis, RP: Retinitis Pigmentosa, XLRP: X linked Retinitis Pigmentosa, CHM: 
Choroideremia, ACHM: Achromatopsia, STGD: Stargardt’s disease, Usher S: Usher syndrome, XLRS: X linked 
retinoschisis, OL: open label, NR: non-randomized, R: randomized, OBS: observational study, PM: partially 
masked (mixture ofmasked and unmasked staff), SEQ: sequential assignment, p: patients).29 

I/II ACHM NCT03278873 OL NR 18 

I RP NCT01482195 OL NR 6 

I/II RP NCT03328130 OL NR 12 

I/II RP NCT02556736 OL NR 21 

I/II RP NCT03374657 PM NR 15 

I/II RP NCT03326336 OL SEQ 18 

I/II XLRP NCT03116113 OL NR 24 

I/II XLRP NCT03252847 OL NR 36 

I/II XLRP NCT03316560 OL NR 15 

I/II Usher S. NCT01505062 OL NR 18 

I/II Usher S. NCT02065011 OL NR 18 

I/II XLRS NCT02416622 OL NR 27 

I/II XLRS NCT02317887  OL NR 24 


