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Preface

After more than 70 years of life, machine learning [1] is at the edge of becom-
ing a classical field of study. Evolved from the fields of pattern recognition and
computational learning theory in artificial intelligence, machine learning ex-
plores the study and construction of algorithms that can learn from and make
predictions on data [2]. As early as 1959, computer gaming pioneer Arthur
Samuel defined it as “the field of study that gives computers the ability to
learn without being explicitly programmed” [3].

In those early days, symbolic approaches [4], which were broadly used in
artificial intelligence, dominated the field. Not until the 1990s did machine
learning become reorganised as a separate field with its own personality, and
it started to flourish benefiting from the increasing availability of digitised
information, and the possibility to distribute that via the Internet. Those
novel approaches shifted focus away from the rules induced by the symbolic
approaches towards methods and models borrowed from statistics and prob-
ability theory [B], which are still alive and kicking.

Nowadays, probably due to the fact that fashionable terms for naming
machine learning, such as big data [3] or data science [6], can be found every
other week in the public media, the field is becoming increasingly ubiquitous
with numerous applications in companies, transforming the way they carry
out their businesses. For instance, machine learning along with several other
IT technologies, under the catchy pseudonym of industrie 4.0 [7], is currently
revolutionising the manufacturing industry.

Thus, in this historical context of expansion, social acclamation and ubig-
uity, where, as it is said, being a data scientist (a practitioner of machine
learning) is the sexiest job of the century [g], this dissertation has the aim of
theoretically and methodologically make a humble contribution to the much-
publicised machine learning field, which is eager for novel solutions and tech-
niques.

Specifically, my contributions are focussed on the problem of classification.
Classification is defined as a statistical method used to build predicative mod-
els capable of separating and classifying new data objects [9]. Nowadays, this



2 0 Preface

methodology can be found in many appliances. For example, in email servers,
which are capable of filtering spam emails from the normal emails. However,
how can an email server learn to differentiate between junk and real emails
without being explicitly programmed to?

Suppose we have already been provided with a collection of emails, say [
of them, some of them junk and some of them real, and from these emails we
want to build ways to filter out spam. We refer to this collection as the training
set, which is, in general, a labelled set of data whose sole purpose is to build a
classifier. Now, from our training data, we need to determine which variables,
called features, we want to measure in order to assess whether future emails
are spam or not. This process is called feature engineering and its resulting
features can be ordinal or nominal random variables: an example of a discrete
feature in our spam classifier is whether the sender of an email comes from
a |.eus address or not, and an example of a continuous feature may be the
frequency of a certain word, like “free”, “visa”, or “winner”, in a particular
email. If n features are found, then our training dataset can be viewed as an
I xn matrix where each email is represented by a row vector of features. Then,
a spam classifier, which is a function mapping a vector of features into a vector
of class variables (here, of size 1), can be directly learnt by just providing this
matrix along with the already annotated class of each email to a classical su-
pervised learning algorithm [9]. However, note that every classifier comes with
an associated error: as you have probably noticed, sometimes, spam detectors
filter out some normal emails or even let some junk mail enter your mailbox.
Thus, since we are interested in minimising the associated error of the result-
ing classifier; selecting a representative and sufficient training dataset with
enough examples of each class, obtaining informative features, and choosing
an adequate supervised learning algorithm with proper parameters are usually
key concepts in solving a supervised classification problem.

The above exposed supervised learning procedure has been widely applied
and accepted in the machine learning community since it provides positive
results. Unfortunately, it has its limitations. In this dissertation, I study two
of these limitations and contribute to alleviate their negative impact in the
performance of the resulting classifiers:

First, having a sufficient labelled training set of training data is not always
possible. For example, suppose our required collection of emails is relatively
large and individually annotating all of them is intractable. In that case,
a set of techniques named semi-supervised learning [10] appears as an
exciting direction in the machine learning community. These techniques aim
at learning competitive classifiers from those learnt in supervised learning.
However, instead of learning from a huge labelled dataset, they use training
datasets composed of a small number of labelled examples and a huge number
of examples whose class variables are unknown.

Secondly, common supervised learning algorithms do not get along with
atypical objects. In other words, when a training dataset has very few an-
notated examples of some particular classes, the learning algorithm usually
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becomes biased towards the most probable classes ignoring those least proba-
ble classes under the assumption that it is dealing with either outliers or noisy
data. Returning to the spam filter example, imagine we live in a utopian world
where junk mail is rare. Then, our collection of size [ of emails would have
only a tiny portion of junk mail, let us say a proportion of 1 : 10,000. In that
case, the most probable scenario is that a classifier learnt using a supervised
learning approach will nearly always let the junk mail enter in your mailbox.
This problem is called the class-imbalance problem [I1] and is currently
puzzling not only the practitioners of machine learning, but also the machine
learning research community.

I hope you fancy reading the proposed new approaches, ideas and contri-
butions regarding these fascinating classification scenarios as much as I have
delighted in exploring them during these last few years.

0.1 Overview of the Dissertation

This document is divided into two separate parts: a self-explanatory intro-
duction to the contributions proposed in this dissertation and a collection of
scientific publications supporting those contributions.

Part T introduces the main contributions of this PhD work to the ma-
chine learning field and is composed of three chapters: Chapter [I| contains
a brief self-explanatory notational introduction to statistical classification.
Then, Chapter [2] sums up the main four contributions of this dissertation,
their origins and conclusions, and the potential future research lines gener-
ated from them. These are as follows:

1. Semi-supervised learning approaches to learn multi-dimensional classifiers.

2. A theoretical study on the probability of error of the optimal semi-
supervised multi-class learning technique.

3. A framework to theoretically studying the competitiveness of state-of-the-
art learning techniques and the adequateness of performance scores in the
class-imbalance domain.

4. A robust measure for characterising the class-imbalance extent of multi-
class problems.

Finally, some general conclusions and remarks on potential future work are
drawn in Chapter

Part II encompasses a collection of four of the published scientific articles
in order to give support for the previously mentioned main contributions. This
part is divided into Chapter [d] Chapter 5] Chapter[6} and Chapter[7] and they
correspond to the contributions 1-4, respectively.






Part 1

Introduction to the Main Contributions on
Classification
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A Brief Introduction to Contemporary
Classification

This chapter introduces the general notation and framework used throughout
the introductory part of this dissertation. Although this notation is based on
the published work, it has been defined in order to cover all the presented con-
tributions, which were made in different time periods and to address different
kinds of problems. Thus, slight notational differences exist between this intro-
ductory part of the global PhD work and the published works. Fortunately,
each published article contains its own notational introductory section.

In machine learning and statistics, classification stands for the statistical

problem of identifying the values ¢ = (cy,...,cpr) of a categorical vector of
class variables C = (C1,...,Cy) given a set of features X = (Xy,...,Xn)
of a new unlabelled observation x = (x1,...,2y), usually on the basis of a

training set of data D containing observations [12][13]. Here, M represents
the number of target variables and N the number of predictive features.
Each class variable, C}, is a discrete random variable of cardinality K; > 2,

which takes discrete values from the range {c(; 1), .., ¢(; k) }. Moreover, let
M
K= K; and k = max K

be the cardinality of the Cartesian product of all class variables and the max-
imum cardinality of the class variables, respectively, so that the random vari-
able, C, representing the joint probability of class variables, may also be a
discrete random variable with values in the range {cy,...,c K}B Each feature
X, may be a discrete or continuous random variable.

An example of classification could be assigning one or more diagnoses to
a given patient who has a described set of characteristics or features (gender,

! For simplicity of notation, the class subscript will not be used for the particular
and common case of having just one class variable (M = 1, the uni-dimensional
classical classification). The class variable will be written as C its realisation as c,
and its discrete values as c1, . .., ¢k, being K (= &, in this case) also its cardinality.
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Binary Multi-class M=1

uni-dimensional

) Multi-
i dimensional M>1

multi-dimensional

K =2 K> 2

Fig. 1.1: Types of classification problems depending on the shape of the target
variables.

blood pressure, glucose level, presence or absence of certain symptoms, etc.),
or the spam filtering problem discussed in the Preface.

1.1 Main Types of Classification Problems

Depending on the layout of the random variable representing the vector of
class variables C = (Cy,...,Cy), several major types of classification prob-
lems can be defined:

Firstly, although classical classification tasks focus on the prediction of a
single class variable C, many real-world domains consider a vector C composed
of more than one class variable. Therefore, it is reasonable to initially split the
classification problems into uni-dimensional classification problems (M = 1)
and multi-dimensional classification problems (M > 1). Despite the fact that
multi-dimensional problems may include uni-dimensional problems, the latter
have been studied longer and, therefore, they can be solved, in spite of its
debatable simplicity, by far more specific techniques. Thus, it is worth giving
some consideration to the uni-dimensional case in this categorisation.

Secondly, another key differential characteristic regards the number of val-
ues that the class variables can take, whether they are all binary (k = 2) or
whether they contain some multinomial class variables (k > 2). Moreover, in
this differentiation, the amount of learning techniques used to solve each kind
of classification problem is unbalanced; the amount of learning techniques
proposed by the community for binary class variables greatly outnumbers the
quantity of techniques capable of dealing with multinomial class variables.

Thus, combining these differentiations, four major types of classification
problems can be found in the literature. The following paragraphs, which
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are summarised in Figure introduce these major types, shortened by the
complexity of their classification task:

The binary classification problem (M = 1,k = 2) is the best under-
stood and the most studied classification problem in the literature due to its
simplicity. Only one class variable C' is to be identified from the features and
it can take only two different values; C' is either equal to ¢; or to co. Sev-
eral examples of binary classification problems can be found in the literature:
(i) intrusion detection systems [I4] for computer security violations, where a
single transaction is classified either as normal or as a threat, (ii) sarcasm
recognition [I5], where sentences are identified as sarcastic or non-sarcastic,
or even the identification of human genes associated with a certain disease
[16].

The multi-class classification framework (M = 1,k > 2), instead,
groups all the uni-dimensional classification problems where the binary con-
straint is not applied, i.e. the single target variable C' takes K > 2 values.
Although one digit is usually enough to bound most multi-class classification
problems, e.g. Anderson’s Iris data set [I7], in this major framework, we can
also find highly multi-class problems with a large set of possible class values
(K >> 2): from classifying a description of a flower as one of the over 300,000
known flowering plants [I8] to classifying a whistled tune as one of the over
30 million recorded songs [19].

A Multi-label classification problem (M > 1,k = 2) is the multi-
dimensionalisation of a binary classification problem [20]: several binary class
variables which may be statistically dependent, M > 1 and k = 2, must
be simultaneously inferred from the same set of features. Formally, each C;
is either equal to c(; 1) or c(; ). This kind of problem can be found in many
applications [I3]: a text document or a semantic scene can be assigned to mul-
tiple topics, a gene can have multiple biological functions, a patient may suffer
from multiple diseases, a patient may become resistant to multiple drugs for
HIV treatment, a physical device can break down due to multiple components
failing, etc.

Multi-dimensional classification (M > 1,k > 2) encompasses the clas-
sification problems where a set of probably dependent class variables has to be
simultaneously identified from the same set of predictive features, M > 1, and
their cardinalities may take any value equal or greater than 2, k > 2. Examples
of this kind of classification problems can be found in [21], [22] or [23], where
several intricate defects can appear in a stainless steel plate, several problems
in the fish recruitment forecasting field, or different attitudes of the author
(subjectivity, sentiment polarity level, will to influence) are characterised from
a given online text, respectively.

Roughly, the theoretical studies and methodological proposals for learn-
ing a classifier in the multi-class framework can be applied for binary prob-
lems, the ones used for multi-label problems can also be used for binary prob-
lems, and multi-dimensional research can be directly applied to either binary,
multi-class and multi-label problems. Moreover, by parameterising multi-class
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problems as (M = 1,k > 2), multi-label as (M > 1,k = 2), and multi-
dimensional as (M > 1,k > 2), multi-class and multi-label may encompass
binary problems, and the multi-dimensional classification framework may in-
clude the whole classification spectrum. The remaining potential appliances
are, in general, futile; they can only be assured for a limited set of specific
scenarios. The interested reader can find further information on the unfeasibil-
ity of using approaches for multi-class and multi-label classification to tackle
multi-dimensional classification problems in [23].

Due to the fact that the given definition of multi-dimensional classification
problems includes the whole classification spectrum, in the introductory part
of this dissertation, I will use it to describe the mathematical framework
encompassing the contributions introduced.

1.2 Learning of Classifiers

Formally, let us assume we are provided with a M-dimensional classification
problem 7 with a generative model p(x,c) which not only specifies how data
is generated from the symptoms (features) but also provides prior information
about the distribution of the different class variables. This generative model
is given by the following generalised joint probability density function:

plx, ) = p(c)p(x[c). (11)
Here, p(c) is a discrete distribution symbolising the joint probability distribu-
tion of the vector of class variables C and p(x|c) is the conditional distribu-
tion of the feature space. These generative probability distributions may be
parametrised by certain model parameters in some of the publications. They
can be sometimes written as p(x,c|@) and p(x|c, @), where 0 represents the
set of model parameters of the conditional probability distributions.

Then, solving a M-dimensional classification problem is equivalent to
defining, learning or inferring a function ¥(x) = €y able to make predic-
tions from features. This function is known as a classifier and maps a given
vector of observations x, drawn from the generative function of eq. , into
an instantiation ¢ of the vector of the class variables, written as ¢y, i.e.

Uizp Xx...xay—={1,..., K1} x...x{1,...,Kn}.
X+ C (1.2)

When the generative model p(x|c) is known and computations are pos-
sible, the generative probability distributions can be directly used to define
a rule capable of deciding to which configuration of class values an unseen
instance belongs to. However, the usage of these distributions in a decision
rule depends on how costly it is to make wrong predictions using the features
[24]. Examples of classification or decision problems with different costs can
be easily found in the literature: For instance, in the spam filtering example;
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it is more costly to filter out an important email than to let a junk mail enter
your mailbox. Another example is the Pascal’s wager [25], marked as the first
formal use of decision theory [26]. There, Pascal claimed that as long as there
is a positive probability of the existence of God, disbelieving in God always
comes with a higher cost than believing in God, since in the event of the ex-
istence of God, a belief (prediction of existence) means an eternity in heaven
and a disbelief (prediction of non-existence) means an eternity in hell. In the
event of non-existence, both decisions of belief and disbelief have very small
losses and gains, respectively. These costs, which are associated which every
correct and incorrect prediction made by the classifier, are usually defined in
a loss function [27]. Formally, this loss function, L(¥(x),c;) = ¢, is the cost
associated to the decision ¥(x) = ¢y when the true class vector is ¢; # ¢yp. As
previously mentioned, it has a deep influence on the learning of the classifier,
and, thus, in its resulting performance.

If we are dealing with a classification problem where the costs of misclas-
sifying any class variable are symmetrical and equal, and there is no cost for a
correct classification, we are assuming the well-known 0-1 loss function (¢ = 0
if ¢y = ¢;, and £ = 1 otherwise, [27]). In a such situation, the Bayes deci-
sion rule [28] can be directly used to classify new instances as it inherently
minimises this loss function. Formally, it is defined as follows:

Definition 1. Assuming the generative model, p(x,c), to be known, the Bayes
decision rule (BDR) is given by

¢p = argmax p(c;)p(x|c;). (1.3)

Here, ¢g is the categorical class vector assigned by the BDR to the observation
x. This rule has a corresponding probability of error

K
eg=1-— Zp(ci)/p(x|ci)dx (1.4)
i=1

2;

which is called the Bayes error and is the highest lower bound of the probability
of error of any classifier as proved in [28] and in [13]. In equation

2; = {x : p(ci)p(x|c;) — g}gfp(cf)p(X\cw) >0} (1.5)

represents the region where p(c;)p(x|c;) is mazimum and, so, the instances
are assigned to the vector of class variables c; by the BDR, for all i.

The BDR is the most adequate classifier when the total number of correct
classifications is to be maximised. Hence, it has enjoyed an excellent academi-
cal position among the traditional machine learning techniques [29]. However,
as previously put forward, in real-life problems, some types of misclassifica-
tions are more crucial — they come with higher misclassification costs — than
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others. Note that the BDR does not guarantee the correct prediction of the
classes with a low probability of occurrence since the prediction of the most
probable class values produces a greater overall number of correct classifica-
tions than correctly predicting the least probable values. Due to this, other
classifiers appear to overcome the limitations of the BDR, such as the other
omniscient protagonist of this dissertation; the EDR.

Definition 2. Assuming the generative model to be known, the equiprobable
Bayes decision rule (EDR) is given by

¢p = argmax p(x|c;). (1.6)

Here, ¢g is the categorical class vector assigned by the EDR to the observation
x. This rule has an associated probability of error

K
ep=1-— Z/p(x|ci)dx (1.7)

izlA,;

which corresponds to the arithmetical mean of the error in not classifying each
configuration of class vector as so. This error is the highest lower bound for
this arithmetical mean of any classifier as proved in this dissertation [30].
There,

Ai = {x: plxle;) — max p(x|ei) > 0} (1.8)

is the region where p(xX|c;) is mazimum and, so, the instances are assigned to
the vector of class variables c; by the EDR, for all i.

In order to clarify the behavioural difference between both decision rules
(BDR and EDR), let us consider the example illustrated in Figure imag-
ine we face a uni-dimensional binary classification problem with a generative
model given the following mixture joint density distribution [31]:

pl, ) = plen)plaler)L(c = 1) + plea)plales)ilc = o). (L9)

There, 1(F) is the indicator function with a value of 1 if the event E is
true, and O otherwise. This model is parametrised as follows: p(c;) = 0.85,
p(c2) = 0.15, and the conditional distributions follow two different normal dis-
tributions; p(z|c;) ~ N(3,0.75) and p(z|cz) ~ N(5,0.75). Figure[L.2] plots the
generative mixture model of the example; while the upper chart only shows
the mixture density distribution of both conditional feature probability dis-
tributions — p(z|c;) —, the lower chart shows the mixture density distribution
of the generative model p(z, ¢), i.e. the conditional feature probability distri-
butions multiplied by their class probabilities, — p(c;)p(z|c;) — Both views are
displayed in order to show the different behaviour of both decision rules.
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Fig. 1.2: Example of the decision regions provided by both the EDR and
the BDR to classify a set of observations from a given binary toy problem
p(x, ¢) parametrised as: p(c1) = 0.85, p(cz) = 0.15, p(x|ec1) ~ N(3,0.75), and
p(z|ez) ~ N(5,0.75).

Here, each decision rule can be simplified to a single value d in the abscissa,
splitting the feature space into two decision regions: (—oo,d) for the points
to be classified as ¢; and [d, c0), the other, for the points to be classified as
cz. The limiting points of the BDR and EDR, which are drawn with a blue
dashed line and a continuous purple line in the figure, are d = 4.5 and d = 4,
respectively. It is trivial to obtain those values from both Definition 1 and
Definition 2, respectively. As can be seen, the EDR divides the feature space
by density dominance in the upper chart and the BDR behaves equivalently
in the lower chart. By means of just this perception, it can be easily deduced
that the choice of one of these omniscient theoretical classifiers will impact
the performance of the classification: imagine we are supplied with a testing
sample of the generative problem composed of 22 instances — 17 of ¢; and 5 of
co —marked as Real in the figure. Note that the values z of these instances are
given by their position with respect to the abscissa and their classes by their
color; dark grey corresponds to ¢; and white to co. The EDR will classify those
instances as the sample row marked as EDR and the BDR as the sample row
marked as BDR. Then, it can be perceived that BDR obtains a greater overall
performance by correctly classifying 19 out of 22. The EDR, instead, aims at
balancing the number of correct classifications for both classes simultaneously.
This results in a degradation of the overall performance as it misclassifies more
instances of the class ¢;. Favourably, a better performance is obtained for the
minority class value co using this rule, 4 matches instead of 3.
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In short, this example shows us that the BDR fits in with problems where
the overall number of correct classifications has to be maximised. However, it
might ignore minority classes. On the contrary, the EDR is a proper classifier
for atypical events since it balances the number of correct classifications among
all classes including classes with low probability. Problems such as the stated
junk mail filter may benefit from this property. As a drawback, it tends to
increase the number of misclassifications in the most probable classes.

Many other decision rules can be defined in order to create classifiers which
favour certain classifications over others. The Bayes decision theory [20] is the
field studying this type of all-knowing classifiers. Authors skilled in this field
may argue that, both the BDR and the EDR are versions of the same de-
cision rule, called the (log-)likelihood ratio test [3I]. This assertion remains
within this field due to the fact that it usually narrows the classification spec-
trum to just uni-dimensional binary problems as most of the calculi becomes
intractable when the uni-dimensional binary constraint is relaxed. In this dis-
sertation, I make use of two different definitions, since the likelihood ratio test
loses the comprising property for similar decision rules but with different costs
when K > 2 or M > 1. Interested readers in the (Bayes) decision theory, other
existing loss functions, and decision rules can find an interesting introduction
in [32].

Unfortunately, the Bayes decision theory assumes a knowledge over the
faced classification problem which in most of the real-world cases is not of-
ten achievable: the generative model, along with the real class distribution,
is usually unknown. Fortunately, a random sample of the distribution of the
generative model, D, is often available. Thus, practitioners must infer a classi-
fier ¥ using a deterministic learning algorithm A over the training dataset D,
i.e. A(D) = ¥, in order to classify future unseen unlabelled instances. These
learning algorithms are usually defined to asymptotically (as |D| — oo) con-
verge to the behaviour of a decision rule, such as the BDR or the EDR, by
minimising a certain loss function [2§]. Thus, idealistically, the resulting clas-
sifiers will have a similar, but not greater, expected performance. However,
finite samples usually introduce some bias in the learning task decreasing the
classification performance. On the other side, we have the theoretical baseline
classifiers, which established the lowest expected performance of a classifier
to be considered competitive. The most used baseline classifier, which uses no
training data (D = ), is the random guessing of the class variables:

Definition 3. The classifier representing the random guessing of K differ-
ent configurations of M class variables is known as the uniformly random
classifier (RAND) and it is given by

ér = Unif{1, K}, (1.10)

where Unif{1, K} is the discrete uniformly random function which assigns a
categorical class configuration c; to an example x with probability 1/K. Both
the probability of error and the arithmetical mean of the error in classifying
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each configuration of class vector of this classifier coincides and are equal to

K-1

= (1.11)
Having introduced the theoretical performance bounds for the learnt clas-
sifiers, the following sections present a review of the most common types of
training datasets used in the literature and the most well-known learning algo-
rithms used to deal with each type of training datasets. Moreover, in Section
several characteristics of the finite training datasets which hamper the

classification performance are discussed.

1.2.1 Structure of the Available Training Dataset

Learning involves the ability to generalise from past experience in order to deal
with new situations that are related to this experience [33]. In statistical clas-
sification and when the generative model is unknown, this experience comes
in the form of a training dataset D, which may have different shapes. Depend-
ing on this, different learning approaches are used. Formally, let D = LU U
be defined as the available training dataset which may be composed of the
following two different sets:

o Let £ = {(xM,cM), ..., xD c)} = {(x(™,c™)}_, be defined as a
supervised training dataset of size [ drawn from the generative func-
tion. There, let the class labels {c(™}! _, be i.i.d. random values drawn
from p(c) and let each observation {x(™}!_, € £ be also an i.i.d. ran-
dom value but drawn from p(x|c). In other words, a supervised training
dataset is a set of observations where each observation not only contains
the features but also the real classes of the observation.

o LetU = {x ... ,x®} = {x(M}e_ | be defined as an unsupervised
training dataset of size u drawn from the generative function, where
each observation {x(™}¥ _, € U is also an i.i.d. random value but drawn
from p(x). In this case, the values of the classes for the observations are
not given, only features are available.

While other richer and more complete ways exist to taxonomise the spec-
trum of learning scenarios [34]; by means of my definition, three different kinds
of training datasets, and, thus, three classical major learning scenarios, which
ideally fit and cover the current PhD work, can be defined:

1. The most extensive work carried out in the machine learning community
assumes a labelled training dataset (D = L) to be available [35]. Under this
assumption, the goal is to infer the function ¥(x) as defined in equation
[[:2] This problem is known as supervised learning and the used learning
algorithm must be able to generalise from D to unseen situations in a
"reasonable” way [33].
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2. On the opposite side of the spectrum, an unlabelled dataset may be
provided. Here, the only possible goal is to find interesting coherent
structures in the data D = U. In other words, the problem of un-
supervised learning is fundamentally that of estimating a density
p(x) = ZZK:1 p(x|c;)p(c;) which is likely to have generated the training
dataset [10]. The density is written as a marginal density distribution of
the generative model due to the fact that the broadly used clustering tech-
nique [35] [12] aims at not only determining the number of classes present
in the density, but also at discovering the feature distributions of these
classes. However, as proved later in this dissertation, having no labels in
the training datasets produces classifiers no better than the RAND [36].
Other forms of unsupervised learning are, for instance, outlier detection
or unsupervised dimensionality reduction. Since, apart from clustering,
no other unsupervised learning directly relates to classification, this ma-
jor learning technique will not be further discussed in this dissertation.

3. Somewhat in the middle, the semi-supervised learning scenario arises
[10, 37, [38]. This problem assumes that the available training dataset is
composed of both labelled and unlabelled examples (D = LUU). An im-
portant motivation for dealing with this kind of datasets is that, in some
applications, gathering labels is relatively expensive or time-consuming,
compared to the cost of obtaining an unlabelled example. Consider, for
instance, the example of building a webpage classifier exposed in [39].
Whilst downloading billions of unlabelled webpages is straightforward,
reading them to assign labels is time-consuming. So, why not use un-
labelled observations to improve the performance of supervised learning
methods that only use a small labelled set, £, to train a classifier?

The following sections exhaustively review both supervised and semi-
supervised learning scenarios and their most important learning paradigms.

1.2.2 Major supervised learning paradigms

Roughly, the supervised learning process is carried out by means of an optimi-
sation algorithm provided with fully annotated training data, D = £, drawn
from eq. . It attempts to infer a mapping function ¥ that minimises a
certain loss function [27]. Here, most of the traditional learning algorithms
use the 0-1 loss or a surrogate loss which, by providing an upper bound for
it, is also expected to minimise the 0-1 loss [40]. Thus, these learning algo-
rithms usually have an asymptotic behaviour to the BDR. According to [41],
there are six major supervised learning paradigms: (i) decision trees, (ii) rules
extracted from decision trees, (iii) rule-based machine learning, (iv) statisti-
cal learning, (v) connectionism, and (vi) probabilistic approaches. I, however,
perceive rules extracted from decision trees and rule-based machine learning
as similar paradigms to decision trees. So, therefore, in this introductory part,
I only tackle the other remaining five approaches.
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Fig. 1.3: Using just the gender, the age and the number of siblings and parents
combined as features, a classifier can be learnt in order to predict whether the
person survived or died in the Titanic accident.

The most common approaches to supervised learning are the paradigms
which produce a rule, ¥, in the form of a tree-like model known as a decision
tree in order to discriminate among the values of the classes of the objects.
C4.5 [42] is the most utilised learning algorithm for decision trees. The nodes
in a decision tree correspond to selected object features, and the edges cor-
respond to predetermined alternative values for these attributes. Leaves of
the tree correspond to sets of objects with an identical classification vector of
classes [43]. Figureshows an example of a decision tree learnt from a super-
vised dataset composed of the list of RMS Titanic passengers and their main
features. Rules extracted from decision trees (e.g. C4.5Rules) and rule-based
machine learning (e.g. RIPPER [44]), instead, aim at producing classifiers
which typically take the form of a set of nested if-then expressions, i.e. {IF
"condition’, THEN ’result’}. It is trivial that the decision tree presented in
Figure can be straightforwardly transformed into the set of rules proposed
in Algorithm [I} A deep coverage of decision trees and rule/based machine
learning can be found in [43], the book used to write the previous lines.

Statistical learning [45] is a paradigm for machine learning drawing
from the fields of statistics and functional analysis. Probably, the most used
methods within this paradigm are support vector machines (SVM) classifier,
its multiple variants and similar kernel-based learning methods. Interested
readers of this learning strategy may refer to [46]. Briefly, support vector
machines find linear boundaries in their input space. However, not all feature
spaces for binary problems are linearly separable [47]. Fortunately, as happens
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Algorithm 1 Determining whether the person survived or died in the Titanic
accident
if Sex = Male then
if Age > 9.5 then
Died
else
if FamilyMembers > 2.5 then
Died
else

end if
end if
else

end if

with other linear methods, we can make the classifier more flexible by enlarg-
ing the feature space using basis expansions to a larger dimension, infinite in
some cases. Generally linear boundaries — hyperplanes — in the enlarged space
achieve better training-class separation, and translate to nonlinear boundaries
in the original space. This procedure is illustrated in Figure

Original Feature Space Enlarged Feature Space
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Fig. 1.4: How a paradigm such as SVM achieves a linear separability of the
space in an enlarged feature space. Image extracted from [48].

An important drawback of these classifiers based on the linear separabil-
ity of the feature space is that they are originally designed to solve uni-
dimensional binary classification problems. However, steps towards covering
uni-dimensional multi-class problems are being proposed [49].
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output layer
input layer
hidden layer

Fig. 1.5: Structure of an artificial neural network.

Connectionism covers a set of approaches in the field of artificial in-
telligence that attempts to represent mental or behavioural phenomena as
emergent processes of interconnected networks of simple units [50]. Artificial
neural networks [51] 52] are, currently and by far, the most popular con-
nectionist model used. They produce classification models vaguely inspired
by the biological neural networks that constitute animal brains in order to
categorise instances into classes. The typical structure of a neural network
classifier can be viewed in Figure[l.5] There, each circular node represents an
artificial neuron and an arrow represents a connection of one artificial neuron
to the input of another. The neurons, which are sorted in layers, are capable
of receiving, processing and transmitting a signal. As can be seen, to perform
a classification, three kinds of layers are required:

e The input layer serves as an input interface for the whole network. It feeds
the next (hidden) layer with the features of a new unseen instance.

e After a learning process which typically deals with the modification of
weights and activation thresholds by using a training dataset D, the hid-
den layer encapsulates several functions and weights over the inputs, i.e.
the model parameters which may or not activate an output signal on the
basis of the activation thresholds. Therefore, these neurons may produce
different signals and transmit them to the following layer. This hidden
layer may be present or absent in the network. Also, there might be sev-
eral hidden layers consecutively connected.

e Finally, the interface which has no successor is called the output layer. This
layer collects all the signals from the previous (hidden) layer and returns
the final prediction of the classification model.

Deep artificial neural networks, which are neural networks with a very large
number of hidden layers have attracted a great attention in the past few years.
Although powerful computer hardware such as GPU (Graphical Processing
Units) existed [53], not until 2012, when significant impacts in image and text
recognition fields were shown, can we talk of a real deep learning revolution
54, (5] 56]. In Figure we can see a schematic example of a deep neural
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Fig. 1.6: A deep artificial neural network to face recognition from the online
book Neural Networks and Deep Learning.

network architecture with its multiple hidden layers to classify images, in this
case to recognise different faces.

To the best of my knowledge, neither of the above discussed paradigms
is able to directly tackle multi-dimensional classification problems. To do so,
they either deal with each class variable in isolation and solve as many clas-
sification problems as class variables are present, or treat each configuration
of the vector of class variables as a different class value facing a highly multi-
class problem. Both approaches have important drawbacks: while the former
leaves out the dependencies among the class variables, the latter may suffer an
unfeasible number of combinations. Research on probabilistic approaches,
instead, recently, has found a reliable and efficient way to deal with multiple
class variables [57, [13]. These approaches make use of an induction algorithm
over the annotated training data in order to learn a probability distribution
p(x,c) or p(c|x). Note that the former distribution is a direct estimation of
the generative model defined in equation Afterwards, probabilistic classi-
fiers predict the values of the class variables of new unlabelled instances based
on a classification rule over the previous probability distribution. An example
of classification rule is the joint classification rule [58] for multi-dimensional
problems:

¢ = arg max p(c;|x). (1.12)
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This rule, which obtains better results than several other already proposed
rules [58], returns the most probable combination of values for the vector of
class values.

The taxonomy of the probabilistic approaches depends on the assumed
family of distributions of the classification rule. Within these approaches,
Bayesian networks (Naive Bayes, in particular) are the most well-known due
to the fact that they are powerful tools for knowledge representation and
inference under uncertainty conditions [59]. Moreover, efficient algorithms to
infer knowledge from data are available in the literature [60]. Since these
formalisms have a great presence in this dissertation, I devote the following
section to a detailed description of how they are used as a learning approach.

1.2.2.1 Multi-dimensional Bayesian Network Classifiers

Bayesian networks have been extensively used as classifiers [61] [62] and have
become a classical and well-known classification paradigm. In [I3], they are
defined as:

Definition 4. A Bayesian network over a finite set V.= {Z1,...,Z,},
n > 1, of nominal random variables is a pair B = (S, 0) where S is a directed
acyclic graph (DAGs) whose vertices correspond to the random variables and
0 is a set of parameters 0|pa(z) = p(z|Pa(z)), where pa(z) is a value of the
set of variables Pa(Z), parents of the Z wvariable in the graphical structure S.
Thus, the network B defines a joint probability distm'butz’mﬂ pB over Z given

by
p]B(Zh-“azn) = Hezi\pa(zi) (113)
=1

Conventionally, a Bayesian network classifier is a Bayesian network spe-
cially designed to solve classification problems in which instances described by
a set of discrete features have to be assigned to a class value. In my broader
vision of the classification spectrum, where an instance may be simultane-
ously assigned to several class variables, the term multi-dimensional Bayesian
network classifier [57][63] is used, instead, to denote the generalisation of the
classical Bayesian network classifiers. These classifiers model the relationships
between the variables by means of directed acyclic graphs (DAG) over the
class variables and over the feature variables separately, and, then, connect
both sets of variables by means of a bi-partite directed graph.

Definition 5. A multi-dimensional Bayesian network classifier is a
Bayesian network B = (S, 0), where the DAG structure S = (V, A) has the set
V of discrete random variables partitioned into the sets Vo = {C1,...,Cr},

2 Usually, Bayesian networks assume nominal or discrete random variables. For this
reason, I refer to the probabilities as p(-) instead of p(-). For numerical random
variables, other probabilistic graphical models are used.
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M > 1, of class variables, the set Vp = {X1,...,Xn} (N > 1) of features,
and the set of arcs A can be partitioned into the following three sets:

e Acr C Ve X Vi is composed of the arcs between the class variables and
the feature variables, so we can define the feature selection subgraph of S
as Scr = (V,Acr). This subgraph represents the selection of features that
seems relevant for classification given the class variables.

e Ac C Ve x Vi is composed of the arcs between the class variables, so we
can define the class subgraph of S induced by Vo as Sc = (Veo, Ac).

e Apr C Vg X Vg is composed of the arcs between the feature variables, so
we can define the feature subgraph of S induced by Vg as Sp = (Vp,AF).

Then, the joint probability distribution over V is defined as

M N
p]B(Xv C) = H 0c1|pa(cj) H gzci\pa(:ci)v (114)
j=1 i=1

and the corresponding classifier is defined by the following classification rule
as

¢p = arg max pg(c;|x) = arg max pg(c;)pp(x|c;). (1.15)

Figure[I.7]shows a multi-dimensional class Bayesian network classifier with
3 class variables and 5 features, and its partition into the three subgraphs.

Fig. 1.7: A multi-dimensional Bayesian network classifier and its division:
(a) Whole graph, (b) feature selection subgraph, (c) class subgraph, and (d)
feature subgraph.
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Depending on the structure of the three subgraphs, several sub-families
of multi-dimensional class network classifiers, which are consistent with their
broadly used uni-dimensional counterparts, are proposed in the state-of-the-
art literature [57, [58]:

e Multi-dimensional naive Bayes classifier (MDnB): the class subgraph and
the feature subgraph are empty and the feature selection subgraph is com-
plete. This is the multi-dimensionalisation of the well-known naive Bayes
classifier [4].

e Multi-dimensional tree-augmented Bayesian network classifier (MDTAN):
both the class subgraph and the feature subgraph are directed trees. It
could be viewed as the multi-dimensional version of the (uni-dimensional)
tree-augmented Bayesian network classifier (TAN) proposed in [64].

e Multi-dimensional J /K dependences Bayesian classifier (MD J /K ): This
structure is the multi-dimensional generalisation of the well-known K-DB
[65] classifier. It allows each class variable C; to have a maximum of J
dependences with other class variables C;, and each predictive variable X;
to have, apart from the class variables, a maximum of K parents.

Whilst induction algorithms to learn pg(x,c) for the first two structures
are already proposed in the literature [57], the MD J/K (already defined in
literature [58]) lacked that characteristic until the proposed manuscript [23].
Moreover, the presented work also addresses the computational burden of
the algorithms proposed in [57] by allowing our induction algorithm to ef-
ficiently perform a structural learning for MDTAN classifiers. Thus, in this
dissertation, the main sub-families of multi-dimensional class Bayesian net-
work classifiers were equipped with efficient learning algorithms.

1.2.3 The semi-supervised learning problem

Semi-supervised learning is a weakly supervised problem [34] concerned with
using unlabelled examples, that is, examples for which we know the features
but not their corresponding categories, to improve the performance of super-
vised learning methods that only use a limited labeled set to train a model
[39]. There are mainly two different approaches which can tackle this problem
[10]:

1. The usage of unsupervised techniques — mainly clustering — over U to
estimate the density p(x) = Zfil p(x|c;)p(c;) which is likely to have
generated the training dataset to, afterwards, use the annotated training
dataset, £, to label the regions of the density.

2. Use L to learn a classifier in a supervised manner and, then, use the
unlabelled data to improve that initial classifier.
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In this dissertation, both approaches were dealt with. Whilst the former is
assumed in my theoretical paper about semi-supervised learning [36] included
in Chapter [5], the latter is used to solve a real-world semi-supervised learning
problem in the included manuscript [23], which is shown in Chapter

Theoretically, the problem has been extensively studied in the litera-
ture. Works such as [31], B8] [66], 67, [68], [69] address and give answers to several
interesting questions: (i) How many unlabelled examples is each labelled in-
stance worth in terms of performance? (ii) How the probability of error of
the optimal procedure which may be proposed in this framework varies on the
values of I and u of labelled and unlabelled examples, respectively? (iii) What
1s the real contribution of the unlabelled training subset in the parameter esti-
mation of the model for the classifier? (iv) Does unlabelled data always help?
(v) What is the relationship between the learnt model misspecification with
respect to the generative model and the performance degradation perceived in
the classifier? (vi) What is the convergence rate to the minimum error of both
labelled and unlabelled subsets? However, all these previous works only focus
on binary classification problems. In the literature, only [70] faces the whole
uni-dimensional classification range. Due to this, in this dissertation, I devote
some research to proving that some answers provided by the previous works do
not straightforwardly generalise to the multi-class case. Moreover, in Chapter
I contribute to the literature with an optimal semi-supervised procedure
for the whole uni-dimensional classification problem and a study of the con-
vergence of probability of error for the optimal classifier. Thus, fundamental
limits in the performance of any multi-class semi-supervised classifier may be
established.

Methodologically, a set of diverse paradigms to semi-supervised learn-
ing has been proposed in the literature due to the high demand for solutions
to a multitude of practical problems where it is relatively expensive to pro-
duce labeled data [I0, [71], e.g. the automatic classification of web pages or
automatic medical diagnoses.

Unlike what happens in supervised learning, the proposal of semi-supervised
learning paradigms is still a subject undergoing intense study. While semi-
supervised learning may seem to be obviously helpful in any scenario, the
fact that these methods — Agsy, (£ UU) — can actually lead a worse perfor-
mance than their supervised counterparts — Asyp(£) — has been both widely
observed and described [72]. Due to this undesirable characteristic, a lot of
effort is being made in proposing “safe” semi-supervised learning algorithms
[73, [74].

Regarding the taxonomy of the semi-supervised learning setting, the
paradigms may be arranged in the following order: from (i) the techniques
where the improvement of performance is achieved by trial-and-error pro-
cesses, followed by (ii) the techniques where a set of hard-to-check assumptions
must hold to achieve improvements, and ending in (iii) the so-called robust
or safe semi-supervised techniques which ensure performance gain without
relying on assumptions that are not intrinsic to the classifier in hand.
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Early semi-supervised learning proposals were trial-and-error processes
such as self-training or expectation-maximisation (EM) algorithm
based approaches [38, [75]. With the main advantage that these approaches
can be applied to any supervised learning algorithm without making any as-
sumptions on the data, they work as follows: First, the parameters of the
classifier are estimated only on the labelled data. Using this trained classifier,
either the whole unlabelled subset, i, is labelled (or just the most confident
unlabelled examples) so that they can be added to the annotated training
dataset, £. Then, the classifier parameters are re-estimated using this new
labelled dataset in order to get a new classifier which is used to re-label the
subset U. This process is iteratively applied until a stop criterion is met, such
as the predicted labels of the unlabelled subset do not suffer any change.
Although they show practical success in some applications [23| [75], a trial-
and-error methodology with different supervised learning approaches is, in
some cases, computationally impracticable.

So, to avoid the time-consuming task of finding competitive semi-supervised
classifiers, some methods were proposed on the claim of David MacKay “You
cannot do inference without making assumptions” [76]. Thus, these methods
leverage the unlabelled data by introducing some assumptions linking the fea-
tures and the values of the class variables [73]. The most common assumptions
are the following:

e Smoothness or continuity assumption: If two instances are close in a high-
density region, they are likely to share the same values for the class vari-
ables.

o Cluster assumption: The data tend to form a finite number of clusters, and
points in the same cluster are more likely to share a label.

o Low density separation assumption: The decision boundaries should lie in
low-density regions.

o Manifold assumption: The data lie approximately on a manifold of a much
lower dimension than the input space.

The most popular methods based on assumptions are transductive sup-
port vector machines (TSVM) and graph-based methods [10]. While
the former directly implements the low-density separation assumption, the
latter approach is directly built on the manifold assumption. Although it is
claimed that this approach ensures an improved performance when the as-
sumptions are met [77], these assumptions are, in practise, hard to check
when the labelled training subset is limited. If these assumptions are not met,
the use of unlabelled data cannot guarantee any significant advantages over
learning a purely supervised learning problem [78]. Thus, the trial-and-error
property of the previous paradigm returns.

Current research [73, [74] attempts to guard against the possibility of de-
terioration in performance by not introducing additional assumptions. This
paradigm, called robust or safe semi-supervised learning, is still an on-
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going research topic and it could revolutionise the semi-supervised learning
field in the near future.

Lastly, since, in Chapter [4 I propose a new methodology to solve a real-
world semi-supervised learning problem [23], T would like to add a few lines on
my proposal. At the time I faced that problem, no other work on the literature
had dealt with a multi-dimensional classification problem in a semi-supervised
manner. Moreover, to the best of my knowledge, no safe semi-supervised learn-
ing paradigm had been proposed. Thus, I use the natural evolution of the field
in the uni-dimensional framework by proposing an EM algorithm based ap-
proach with its trial-and-error best classifier search disadvantage.

1.3 Evaluation of Classifiers

Classifiers often produce misclassifications. Thus, once a classifier is proposed,
its associated discerning skill needs to be measured. When the generative
function is assumed to be known, a common tool used for visualising the
performance of a classifier is the true confusion matrix of a given classifier, ¥
[79]. It is a square matrix of size K containing the mathematical expectations
of classifying, with a classifier ¥, an example of the configuration of classes c;
(rows) as the values c; (columns).

As previously mentioned, when the generative model is known, decision
rules using the generative model can be defined. In such situations, the true
confusion matriz, Ay = [a; ;]1<i j<i, can be directly calculated by taking
expectations:

Q5 = [Ex\c:ci [élI/ = Cj}- (1.16)
There, E[-] stands for the mathematical expectation. For instance, each ele-

ment of the true confusion matrix for the BDR applied to a multi-dimensional
problem with generative model p(x, c) is calculated as

a; j :p(ci)/p(x\ci)dx. (1.17)
£2;

When p(x, c) is unknown, an estimation of the true confusion matrix is
utilised instead. It is usually referred to as the empirical confusion matrix, or
simply as the confusion matrix. To perform such an estimation, labelled data
is required. They usually come in the form of an independent testing dataset,
Dyp. Similarly to the training dataset, Dy is also assumed to be sampled from
the generative model. Note that both subsets (D and D7) must be independent
sets in order to ensure a fair performance assessment. When data is limited,
there are supervised and semi-supervised methodsEI in the literature, such as

3 Unsupervised learning is left out in this section due to the fact that I assume the
availability of labelled data to evaluate the trained models to use the aforemen-
tioned assessment methods.
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(repeated) k-fold cross-validation, leave-one-out, etc [80], in order to fairly
and efficiently exploit all the available labelled data to both train and test the
classifier.

Concerning the estimation of the confusion matrix for a learning algorithm
in a dataset, it is performed in the following manner: The classifier ¥, which
has previously been trained using D, is used to classify all the labelled testing
data Dr. Afterwards, each element a; ; of the confusion matrix is filled by just
assigning the number of instances with real values c¢; which are classified as
values ¢; when the classifier ¥ is used. Formally and being 1(E) the indicator
function, the elements are calculated as:

ai;= Y 1 =cj). (1.18)

(X,Ci)EDT

As stated in [79], the confusion matrix is one of the most informative
performance summaries that a learning system can rely on. Among other in-
formation, it contains how accurate the classifier is on each configuration of
classes, and the way it tends to get confused among configurations. However,
it is often tedious not only when determining the overall behaviour of a clas-
sifier from the confusion matrix, but also when comparing several classifiers.
Therefore, quantity measures which summarise the confusion matrix are of-
ten preferred. These measures are known as numerical performance scores
[80]. Since the best behaviour may vary from one kind of problem to another,
there are many different and diverse performance scores in the community.
This diversity may, at times, obscure important information on the hypothe-
ses or algorithms under consideration [8I]. Thus, it is fundamental to check
in advance the adequateness of a numerical performance score for assessing a
determined classification problem so that the validity of the obtained results
can be ensured.

Moreover, in the literature, there are also other methods such as the graph-
ical performance scores [82] which, instead, produce a visual inspection output.
This output is capable of capturing the whole multi-objective nature of the
classifier and producing a richer, but more subjective — many simultaneous
behaviours must be taken into account by the practitioner —, assessment [80].
Unfortunately, as can easily be seen, these scores also possess the main draw-
backs of the confusion matrix. Thus, they are also usually summarised into a
single value in order to make a better comparison between classifiers.

1.3.1 Performance Assessment in the Uni-dimensional
Classification Setting

In the uni-dimensional classification problem framework, both numerical and
graphical performance scores have been broadly used. The numerical per-
formance scores, see Table can be mainly divided into two different
groups: local scores, which only focus on the behaviour of one target class
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Table 1.1: Numerical performance scores for the uni-dimensional framework
(by convention 0/0 = 1).

value, and global scores, which summarise the performance of the classifier
taking into account its behaviour in all the values for a unique class variable.

The most used local performance scores are precision P and recall R.
Whilst P? assesses to what extent the predictions of a certain class ¢; are cor-
rect, R? assesses to what extent all examples of a certain class ¢; are classified
as so. Introduced in the information retrieval field [83], another widely used
local score is the F-score [84]. This score weights the two previously defined
local performances for a given class value and depends on a parameter, 3,
provided by the practitioner. When 5 = 1, the obtained F-score is known as
the Fi-score and corresponds to the harmonic mean between the precision
and recall terms. This setting of the score is usually the one used in the lit-
erature [85] [86]. Unfortunately, for their local property, these scores lose the
global picture of the performance of the classifier; they are more useful when
applied to most, or even all, of the values of the class variable [81]. Therefore,
most of the global scores are just functions which, by taking local performance
scores applied to some/all classes, summarise the behaviour of the classifier
according to a determined subjective criterion.
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The most ubiquitous global performance scores are the classification accu-
racy, Acc and the classification error €, which are equivalent: Acc = 1 — e.
Whilst the former gives the ratio of the number of correct classifications over
the total number of cases in the testing dataset, the latter focuses on the mis-
classifications. Note that Acc can also be seen as a weighted arithmetic mean
over the K recalls. In this case, each recall R® is weighted on the number
of examples of the class value ¢; in the testing dataset. Although they are a
proper choice for maximising the overall number of correct classifications, the
performance on underrepresented classes has very little impact on the global
measure when compared to the overrepresented classes [81][86]. In those cases,
their use is pointless and the use of unweighted averages over the recalls is
preferred [30]. With this approach, all classes, over and underrepresented,
share a common consideration in the global score. The most-used scores in
the unbalanced scenario are the Pythagorean means — arithmetic (A), geo-
metric (G), and harmonic (H) means — over the recalls of the K-classes. In the
literature [80, 87, [88], they are referred to as a-mean, g-mean, and h-mean,
respectively. Other works, e.g. [30], also consider the maximum recall, maz,
and the minimum recall, min (among the classes), as global scores.

In this chapter, which focuses on classification, the class variables are as-
sumed to be categorical random variables, i.e. they have no logical order.
When this assumption is relaxed and the target variables are nominal or
ordinal values, then other numerical performance scores arise. In Chapter [4]
several numerical performance scores for ordinal class variables are introduced
and used due to necessities of the real-world problem confronted.

Regarding the graphical performance scores, a well-known score for
binary classification problems is the Receiver Operating Curve (ROC) [82]. Tt
allows the visualisation of the trade-off between the proportion of positives,
c1, that are correctly identified and the proportion of negative events, cs,
wrongly categorised as positive, proving that any classifier cannot increase the
number of true positives without also increasing the false positives [29] 89].
The area under the ROC curve (AUC) provides a single measure (numerical
score) of a classifier’s performance [90] — see Figure [1.8) — which properly fits
for the binary setting. Multi-class problems, instead, introduce the issue of
combining multiple pairwise discriminability values for which there are several
approaches in the literature [91] [©92].

1.3.2 Evaluation of Multi-dimensional Classification Approaches

By means of the definition of the confusion matrix used in eq. and
eq. , the use of either uni-dimensional numerical performance score
of Table [I.I] to assess multi-dimensional classifiers seems straightforward.
Unfortunately, in the published literature, only the classification accuracy
[22, 23], 58], 03] — out of the 6 global scores — presented is utilised. In those
works, it is called classification joint accuracy. An interesting potential fu-
ture research line, which I in-depth discuss in the future work section (Section
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Fig. 1.8: Example of a ROC plot. Two curves for two classifiers are plotted:
the dashed line represents the random classifier, RAND, whilst the solid line
is a classifier, ¥, behaving better than the random classifier.

, could be the study of how different uni-dimensional numerical perfor-
mance scores describe the behaviour of a multi-dimensional classifier.

Given the shape of the confusion matrix in the uni-dimensional case for
a single class variable, a totally different approach to assess the classifier is
to extract M independent confusion matrices, one for each class variable.
Then, by summarising each confusion matrix with a numerical performance
score and averaging the results, a global performance evaluation of the multi-
dimensional classifier can be extracted. This methodology has also been used
in the literature [23], going by the name of classification mean accuracy.
It obtains the classification accuracy of the classifier for each class variable
and, then, calculates the arithmetic mean of all the accuracies.

Finally, as put forward in the previous subsection, the categorical property
of the class variables can also be relaxed in this setting. In Chapter [4} due to
the requirements of the classification problem being dealt with, I also define,
describe and make use of a numerical multi-dimensional global performance
score for ordinal class variables.

1.4 Threats when Obtaining Acceptable Classifiers

As stated in [94]: “A training supervised or semi-supervised dataset D differs
from a random labelling of the classes in the difficulty of training a competitive
classifier capable of assigning values for the class variables to future data from
the same generative model. A random labelled dataset is improbable to be
the source of a classifier since not much can be learned from it about the
unseen points. Similarly, in real-world classification problems such learning
can usually be done with various degrees of difficulty which may produce
weak solutions unable to successfully predict future instances.”
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A classification problem can be difficult for different reasons. Thus, in this
dissertation, I refer to the common situations which degrade the discerning
skill of the trained classifiers as threats to obtain acceptable classifiers. These,
which have been long studied in the literature [89] 05], are mainly the fol-
lowing: (i) training set size [96], (ii) noise in the data [97], (iii) dispersity of
some classes and the presence of small disjuncts [98], degrees of overlapping
among the classes [99], and degree of unbalance among the values of the class
variables [100].

The threats, which have strong interdependences among them [89], are
briefly described in the following subsections. Unfortunately, since complex
classification settings lead to intricate casuistry which may hinder the de-
scription, when approach each threat, I will refer only to (uni-dimensional)
binary classification problems for the sake of clarity.

1.4.1 Training Set Size

In practise, the number of labelled examples to train a classifier is frequently
limited because labelling is either costly or time-consuming. As the estima-
tion of the parameters of the classifiers is dependent on the labelled examples,
in supervised learning, the scarcity of data directly translates into poor es-
timations and systems which cannot accurately classify future instances; the
induction algorithms do not have enough data to make a consistent general-
isation [33] about the inner distribution of the samples. Potential solutions
to this problem may be (i) gathering huge unlabelled datasets so that semi-
supervised learning techniques [I0] may be applied, or (ii) obtaining more
labelled data to train the classifier but only the crucial instances. More infor-
mation about the former approach can be found in Section Regarding
the latter, there are estimations of the required number of examples to ob-
tain valuable estimations for certain well-known probability distributions [96]
and estimations of the required class distribution [I0T] for certain supervised
learning paradigms.

1.4.2 Presence of Noise in the Data

The data which is corrupted or distorted is called noise. This property is
known to affect the way any data mining system behaves [I02]. Fortunately,
both the inductive bias [33] of the learning algorithm and the class frequencies
of the training dataset play important roles enabling the proposal of mitigating
approaches.

According to [33], the inductive or learning bias of a learning algorithm is
the set of assumptions that the learner uses to predict unseen examples which
are not encountered in the training dataset. This bias prevents overfitting —
classifiers whose models are too well trained on the training data but fail to
make predictions on new data — and fosters generalisation. In the event of
having all the class values appropriately represented in the training dataset
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common learning biases are currently able to handle noisy data. When facing
high levels of noise, [89] claims that the most robust classifiers are Bayesian
classifiers and SVM. In these cases, rule-based learning approaches are not
recommended as their performance degrades quicker in the degree of noisy
examples.

The most problematic issue, here, happens when noise is present for the
underrepresented class values, in areas of low density or in small training
datasets. As long as there are more underrepresented data than noise, ap-
proaches such as undersampling techniques [T03] may be applied to alleviate
the problem [104]. Alternatively, the learning bias must be adjusted to enable
the inclusion of both real data and noise in the learning process or either let
the inductive bias eliminate both noisy and true real data.

Finally, note that the noise can also be filtered or even corrected if it is
introduced in the training dataset by an external source. This last approach
is the most recommended to overcome this problematic issue.

1.4.3 Presence of Disperse Small Disjuncts

Small disjuncts are really small clusters of data in the training dataset which
may be mistaken as noise in the learning process [105]. Thus, they can be
eliminated by the inductive bias of the learning algorithm. When a class value
is composed of multiple and disperse small disjuncts, and these are removed
in the learning process, the overall performance will show a significant drop.

To deal with this complex case, we can consider small disjuncts as “neces-
sary noise” and make use of the same approaches of Section[I.4.2|but reversely
[105]. Thus, the classification problem can be approached by using sensitive
to noise solutions such as rule-induction techniques. Also, the induction bias
of the learning algorithm can be modified to overfit on small clusters. Fi-
nally, and among other approaches, the most effective approach is to obtain
additional training data [89].

1.4.4 Class-overlapping

The previous threats are only dependent on the training dataset, so any im-
provement on data might alleviate the problem. However there are threats
which only depends on the nature of the classification problem being dealt
with, i.e. they are dependent on the generative function p(x, c). The following
last two threats lie within this setting. First, I focus on class-overlapping, a
problem which originates in the local probability distribution of the feature
space p(x|c) [95], and it is regarded as one of the toughest pervasive problems
in classification [106].

Class overlap arises when objects belonging to different classes share the
same feature representation, i.e. 3x s.t. p(x|c1)p(x|cz) > 0, and it has a direct
relationship with the irreductible Bayes error — eq. —. The value of e
depends on the proportion of size of the feature space which is overlapped and
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(w,lci)

Fig. 1.9: The Gaussian conditional features distributions p(x|c) for a uni-
dimensional binary classification problem showing class-overlapping.

it is equal to 0 if and only if the classifier can be modelled using a deterministic
algorithm. When the uncertainty of the generative model increases (eg > 0),
the achievable performance improvement of a given trained classifier, ¥, over
a baseline classifier, such as RAND, gets narrower. Thus, the classification
problem becomes complex.

Figure shows a uni-dimensional problem showing class-overlapping. As
it can be seen, there is ambiguity about the real class value of any example
originated in the overlapped region. Fortunately, class-overlapping has only a
real dramatic effect when the overlapped regions are large and contain similar
number of training data for each class. In other words, both conditional feature
distributions are similar, p(x|c1) ~ p(x|c2), thus making the task of differen-
tiation between c; and co very difficult or, even, impossible. In the unlikely
scenario of having all the feature space overlapped and both classes sharing
a similar class probability, any classifier will show a similar performance to
RAND.

There are some methodological proposals to alleviate this problem [89].
Unfortunately, since it is an intrinsic property of the dealt classification prob-
lems, there is little room to overcome this threat. In this case, neither a larger
dataset is able to overcome the degradation. Finally, in practical applications,
exploring alternative class definitions, i.e. using different feature sets for the
objects to be classified, could be an approach to solve this complexity [107].

1.4.5 Class-imbalance

The class-imbalance problem is also dependent on the generative function but,
unlike class-overlapping, it arises from the class probability distribution, p(c),
and it is able to compromise the performance of the vast majority of stan-
dard learning algorithms [11]. Traditional learning algorithms assume a 0-1
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or a surrogate loss function and, thus, they expect balanced class distribu-
tion — Vi, p(¢;) ~ 1/K — or equal misclassification costs [28]. In other words,
they inherently maximise classification accuracy and have an asymptotic be-
haviour close to the BDR favouring an overall number of correct classifications
(keep in mind the example of Figure . Therefore, when they are presented
with complex training datasets sampled from skewed class distributions —
i s.t. p(c;) ~ 0 —, these algorithms fail to properly represent the distributive
characteristics of the data and resultantly provide dummy classifiers, always
classifying new data as the most probable value. Here, the class values with
the lowest probabilities are ignored. Furthermore, it also is worth pointing out
that the latter class values are commonly the ones having the highest interest
from a learning point of view. This implies a great classification cost when
they are not correctly predicted [89].

Whether a skewed class distribution produces a class-imbalance prob-
lem depends on the previously described class-overlapping issue. Figure [1.10
shows their relationship by plotting four binary classification scenarios shar-
ing two different degrees of class-imbalance and two different degrees of class-
overlapping. For each problem, the data has been created by sampling two bi-
variate Gaussian distributions. To simulate no class-overlapping, I choose two
Gaussians whose means are far from each other (Figures [1.10a| and [1.10b)),
and to simulate the opposite, I shorten the distance between these means

(Figures and |1.10d)). Regarding the class-imbalance setting, it is simu-
lated by sampling 1, 000 instances of each class for balanced problems (Figures

and , and by sampling 1,000 instances for the majority class and
only 10 samples for the minority, for the case of unbalanced problems (Fig-
ures [1.10b| and [1.10d)). By just having an overall look at Figure it can
be easily noticed how the combination of both factors (class-imbalance and
class-overlapping) has a straight effect on discriminating among the classes
and, therefore, on the performance of the trained classifier. When there is no
class-overlapping (eg = 0), as shown in the first row of the figures, the class
distribution does not hinder the predictive power of the resulting classifier.
In both scenarios, a simple and perfect discriminant linear classifier can be
easily drawn. This classifier is represented by a straight continuous line in the
figure. However, in the second row, the situation is completely different. When
both classes are balanced (Figure , a classifier with a tolerable recall for
both classes can be learned. Unfortunately, in the unbalanced scenario (Figure
, the lack of enough examples for the minority class hinders the process
of discriminating it; any intuitively chosen classifier will be incompetent, i.e.
it will have a low recall for the minority class. This example concurs with the
literature [99], where it is stated that (i) only when the class-overlapping is
non-zero, the influence of the class distribution on the competitiveness of the
inferred classifier is noticeable, and that (ii) the influence of class-overlapping
into the learning process is even stronger than class-imbalance.

In an attempt to overcome this threat, hundreds of methodological so-
lutions to the class-imbalance problem are currently proposed. They usually




1.4 Threats when Obtaining Acceptable Classifiers 35

(a) Balanced problem with no class- (b) Unbalanced problem with no class-
overlapping. overlapping.

(c) Balanced problem with class- (d) Unbalanced problem with class-
overlapping. overlapping.

Fig. 1.10: Relation between class-overlapping and class-imbalance.

attempt to find an adequate balance between the prediction powers of the
trained classifier for the most and the least probable class values. According
to [I03], the proposed solutions can be mainly categorised into the following
three major groups:

1. The development of inbuilt mechanisms [108], which change the classi-
fications strategies of the classifier to impose bias towards the minority
classes.

2. The usage of data sampling methods [109], which modify the estimated
class distribution (from the training dataset) in the learning algorithm so
that it can learn from a balance scenario.

3. The adoption of cost-sensitive learning methods [110], which assume higher
misclassifications costs for examples of the minority classes.

To the best of my knowledge, all literature is focused on unbalanced uni-
dimensional classification problems. However, within that setting, both the
multi-class framework [IT1] and the theoretical understandings of this intricate
issue [99, [10T], 107] are commonly left aside. Few works on the class-imbalance
literature can be found dealing with those cases. Here, it is worth mentioning
that, when the binary class constraint of a single target variable is relaxed,
the class-imbalance casuistry gets more complex, and, thus, new theoretical
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and methodological challenges that are not observed in binary problems arise
[I11]. Whilst in an unbalanced binary problem there is only one majority
class value — the most probable — and one minority class values — the least
probable —; in the multi-class framework, an unbalanced class distribution
may show multiple majority class values or multiple minority class values. In
this thesis, based on the class distribution, I formally catalogue the multi-class
classification problems into the following groups:

Definition 6. A K-class classification problem, 7, is balanced if it exhibits
a uniform distribution between its classes. Otherwise, it is considered to be
unbalanced. Formally,

1
v is balanced < Vi, p(c;) = 7 i.e. p(c) =e, (1.19)

where e is the special case of having K equiprobable class values.

Definition 7. A multi-class classification problem (K > 2) shows a multi-
magjority class-imbalance if most of the class values have a higher or equal
probability than equiprobability, i.e.

K
1 K
v is multi-majority <= Z]l <p(cl-) > K) > 5 (1.20)
i=1

Definition 8. An unbalanced classification problem, v, with K > 2, shows a
multi-minority class-imbalance when most of the class probabilities are below
the equiprobability. Formally,

K
1 K
v is multi-minority <= Z]l (p(cz-) < K) >3- (1.21)
i=1

In this dissertation, assuming the whole uni-dimensional spectrum (binary
+ multi-class), I pursue a theoretical understanding and formalisation of the
class-imbalance problem and I also propose a methodological advance. Whilst,
in Chapter [6] I shed some light, through a novel theoretical framework, on the
adequateness of the most commonly used performance scores to assess unbal-
anced multi-class problems as well as on the scores maximised in the most
popular methodological approaches; in Chapter [7} a class-imbalance metric
capable of suitably characterising the imbalance degree of a given multi-class
problem is proposed.



2

Main Contributions to Classification in a
Nutshell

This dissertation explores two different and intricate scenarios within the clas-
sification field: the semi-supervised learning framework and the class-imbalance
problem. Since each scenario has been explored from both theoretical and
methodological perspectives, four contributions, sorted in chronological or-
der, are summarised in this chapter:

e two theoretical studies exploring both the semi-supervised learning
(Section which digests Chapter [5)) and the class-imbalance (Section
summarising Chapter @ scenarios, and

e two different methodological advancements to the problem-solving
process. Section — summary of Chapter [ — corresponds to the semi-
supervised learning related contribution and Section sums up the ad-
vances proposed for the class-imbalance problem of Chapter

2.1 Semi-supervised Learning of Multi-dimensional
Classifiers

Encouraged by the requirements of a real-world problem in the context of
Sentiment Analysis [112] 113, 114, [115], the first contributions enriched the
state-of-the-art literature with not only a methodological extension of the
semi-supervised learning framework to the whole multi-dimensional
classification spectrum, but also a new supervised multi-dimensional
Bayesian network classifier learning algorithm.

Sentiment Analysis is a broad area defined as the computational study
of opinion, sentiments and emotions expressed in text [I12]. It mainly origi-
nated to meet the need for organisations to automatically find the opinions
or sentiments of the general public about their products and services, as ex-
pressed on the Internet. Within this domain, Socialware©, one of the most
relevant companies in mobilised opinion analysis in Europe, has been working
on an application slightly different to the traditional approaches. In this case,
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Class-variable Cardinality Values

Sentiment Polarity 5 {very negative, negative, neutral, positive, very positive}
Subjectivity 2 {objective,subjective}

Will to Influence 4 {none, question, complaint/recommendation, appeal}

Table 2.1: Target class variables of the faced multi-dimensional problem.

Feature Description
1 First Persons Verbs in the first person.
2 Second Persons Verbs in the second person.
3 Third Persons Verbs in the third person.
4 Relational Forms Phatic expressions, i.e. expressions performing a social task.
5 Agreement Expressions Expressions that show agreement or disagreement.
6 Request Sentences that express a certain degree of request.
7 Imperatives Imperative verbs in the second person.
8 Exhorts and Advice Exhortative verbs, e.g. recommend, advise, prevent, etc.
9 Sufficiency Expressions Expressions used to corroborate other sentences of the text.
10 Prediction Verbs Verbs in the future.
11 Authority Expressions that denote high degree of authority.
12 Questions Direct and indirect questions.
13 Positive Adjectives Positive adjectives.
14 Negative Adjectives Negative adjectives.

Table 2.2: Features of the faced multi-dimensional problem.

instead of studying a certain aspectEI of the text in isolation, the company
sought to characterise the costumers of a set of Spanish companies through
three different, but related, dimensions: their sentiment polarity towards the
product, the subjectivity of their online posts, and their will to influence on
other customers through their posts in several forums (see Table . As can
be noticed, I was dealing with a multi-dimensional classification problem.

Then, each post had to be represented as a set of features. Here, I relied
on the high levels of experience of the company on manually dealing with this
problem and, after properly testing them against the state-of-the-art alterna-
tives, I opted to use their 14 morphological features (Table .

In the end, the provided dataset consisted of 2, 542 posts written in Span-
ish. Since labelling is a laborious and time-consuming task, only 150 pieces
of text were manually labelled by an expert in Socialware© according to the
three different class variables exposed. The remaining 2, 392 posts were left as
unlabelled instances. Therefore, this multi-dimensional classification problem
had to be approached using semi-supervised learning techniques.

At the time I faced the problem, no other work on the literature had dealt
with a multi-dimensional classification problem in a semi-supervised manner.
Thus, I made use of the previous natural evolution of the semi-supervised
field in the uni-dimensional framework by proposing an EM algorithm based
approach to deal with multiple, and possibly related, class variables. This
approach has the main advantage that it can be directly applied to any su-
pervised learning algorithm. However, it is computationally costly. On that

L B.g. subjectivity classification [T16], sentiment polarity classification [I13], author-
ship identification [117], or affect analysis [I18].
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account, my first objective was to study the feasibility of using the available
learning algorithms [57] for the sub-families of multi-dimensional class network
classifiers in this context.

The real costly task in learning Bayesian networks from a dataset is the
structural learning process. Estimating the parameters for a given fixed net-
work is, instead, quite straightforward. So, I focused on analysing the former
and, after a review of the multi-dimensional family of Bayesian network classi-
fiers (MDnB, MDTAN, and MD J/K), the following conclusions were found:

1. As the MDnB has a fixed structure, here, it raised no computational
problem.

2. The proposed learning algorithm for MDTAN [57] follows a computation-
ally intensive wrapper method for both structural and parameter learning
tasks by maximising the joint accuracy of a given dataset. Fortunately,
the limited sizes of the dataset in question and multi-dimensional problem
allowed the use of this early learning algorithm.

3. The structure MD J/K has been already defined in the literature [58].
However, to the best of my knowledge, it possessed no associated learning
algorithm.

Because of this, a supervised filter learning algorithm for multi-dimensional
J/K dependences Bayesian network classifiers which uses statistical testing
over mutual information measures were proposed. Its ‘filter’ nature had a
favourable impact in reducing the computation time of the proposals. Another
advantage of the suggested algorithm is that, by setting both J and K to 1,
a MDTAN structure can be learnt in a shorter time than using the original
algorithm.

Algorithm 2 My version of the EM Algorithm [119]

Require: A training dataset D with both labelled and unlabelled data and
an initial model p](BK:O)(x, c) with a fixed structure and with an initial set

of parameters ©(K=0)
1: while the model p](BK)(x7 c¢) does not converge do

2:  E-STEP Use the current model p%BK)(X, c) to estimate the probability
of each configuration of class variables for each unlabelled instance.

3:  M-STEP Learn a new model p](BKH)(X, c¢) with structure and param-
eters @) given the estimated probabilities in the E-STEP.
4: end while
Ensure: A Bayesian network classifier ¢g, which takes an unlabelled instance
and predicts the class variables.

Afterwards, I proceeded with the extension of the previous family of learn-
ing algorithms to the semi-supervised learning framework and the eventual
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solution of the faced classification problem. The typical aim of the EM algo-
rithm in the semi-supervised framework is to find the parameters of a given
structure for the model pp(x, c) that maximises the likelihood of the data, us-
ing both labelled and unlabelled instances. However, in [72], it is stated that if
the correct structure of the real distribution of the data is obtained, unlabelled
data improve the performance of the trained Bayesian network classifier; oth-
erwise, unlabelled data can actually degrade performance. For this reason, it
seemed more appropriate to perform both structural and parametric searches
in order to find the real generative model. The proposed version of the EM
algorithm for multi-dimensional classification can be found in Algorithm
Note that this proposal is closer to the Bayesian structural EM algorithm
[120] rather than the original formulation [I19]. At that point, I tested my
battery of proposed semi-supervised learning algorithms (EM plus the fam-
ily of Bayesian network classifiers) over a set of designed artificial datasets.
The experimentation, which can be found in the appendices of Chapter [
concludes by claiming that more accurate multi-dimensional classifiers can be
found using these semi-supervised learning approaches.

Finally, in order to solve the real world problem being addressed using
the proposed methodologies, an exhaustive experimentation where two major
hypotheses were checked, was performed:

1. The uni-dimensional counterparts of the studied multi-dimensional Bayesian
network classifiers yield suboptimal solutions to this problem, i.e. the ex-
plicit use of the relationships among the class variables can be beneficial
to improve the recognition rates.

2. When there is a scarcity of labelled data, multi-dimensional techniques
can work effectively with huge sets of unlabelled data in order to improve
the classification rates.

Then, the given semi-supervised dataset was used to learn three differ-
ent (one for each class variable) uni-dimensional Bayesian network classi-
fiers — naive Bayes (nB), tree-augmented network classifier (TAN), and a
2-dependence Bayesian classifier (2DB) — and three sub-families of the multi-
dimensional Bayesian network classifiers - MDnB, MDTAN [57], and MD2/K
with K = 2,3, and 4 —. In order to compare both learning frameworks, all the
structures were learnt in both scenarios. As stated in the introduction, the
uni-dimensional approaches cannot be straightforwardly applied to deal with
multi-dimensional problems, so, in these cases, the dataset was divided into
three uni-dimensional independent datasets. Figure shows the obtained
results; whilst Figure sums up the joint accuracy of each learning al-
gorithm, Figures [2.1b} [2.1c] and [2.1d| show the accuracies obtained in each
class variable. The results confirmed both hypotheses and depicted the semi-
supervised version of the MDnB as the global best solution for the given real-
world problem. Probably due to the fact that, when applying rational criteria
in determining the predictive features of a problem ( i.e. the expert list of
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(a) Joint accuracies on the whole problem.

Sentiment Polarity Subjectivity

55
nB TAN 2DB  MDnB MDTAN MD1/1 MD22 MD2/3 MD2/4 nB TAN 20B MDnB  MDTAN MD1/1 MD2/2 MD2/3 MD2/4

(b) Accuracies on Sentiment Polarity. (c) Accuracies on Subjectivity.

Will to Influence

nB TAN 2DB  MDnB  MDTAN MD1/1 MD2/2 MD23 MD2/4

(d) Accuracies on Will to Influence.

Fig. 2.1: Estimated performance scores on the faced problems using both
uni-dimensional (nB, TAN, 2DB) and multi-dimensional classifiers (MDnB,
MDTAN, MD 1/1, MD 2/2, MD 2/3, MD 2/4) in both supervised (purple)
and semi-supervised learning (green) scenarios (20 X 5cv)

14 features), the resulting features are usually probabilistically independent
given the class variables [T121].

The solution of this Sentiment Analysis application throws interesting
methodological future work paths. Among them, ways to optimise the semi-
supervised learning algorithms to avoid computational burden and research to-
wards robust semi-supervised learning algorithms [73] [74] for multi-dimensional
classifiers are key. Regarding the text classification domain, two interesting re-
search paths remain open:

1. Affect Analysis [T18] aims at extracting a large number of potential emo-
tions from text [122], e.g. happiness, sadness, anger, hate, violence, ex-
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citement, fear, etc. Some of them are not mutually exclusive and certain
emotions may be correlated. Thus, multi-dimensional classification solu-
tions, both in supervised and semi-supervised frameworks, seem to be a
perfect match for this problem.

2. Here, I have proven that the same corpus can be used to identify several
target variables in the same classification task. Therefore, why not use the
proposed methodology to take advantage of the possible existing relation-
ships between the class variables to improve the recognition rates in the
characterisation of textual information?

2.2 A Study on Semi-supervised Learning of Multi-class
Classifiers

Over the course of this research project, I noticed that the majority of the the-
oretical works on semi-supervised learning (see Table I of [36]) solely focused
on standard binary problems. Furthermore, most of them do not straightfor-
wardly generalise to the multi-class setting. Thus, in an attempt to overcome
this limitation, here, in order to highlight the blocking issues to generalise
their framework, I particularly focus on the conclusions of the key research
problem proposed in [31}, [66], where the fundamental limits for the probability
of error of binary semi-supervised problems are drawn. Afterwards, I was able
to propose new general strategies to adapt their research by, specifically, con-
tributing with an optimal semi-supervised procedure for the whole
uni-dimensional problem and using it to study the convergence of
its optimal probability of error when multi-class labelled data are
scarce. By doing so, fundamental limits in performance of any uni-
dimensional classifier learnt in the semi-supervised scenario can be
established.

Before studying this key scenario, I deal with the case of dealing with no
labelled data at all. Under the assumption of having a mixture density [123] as
generative model, even with an infinite amount of unlabelled data to estimate
the correct model density, p(x), the generative model is only identifiable up
to a permutation, 7, of its single-components. In other words, I am able to
determine the whole distribution of class values but there is not a single clue
to the real mapping between them and the true class values of the generative
model. Here, I also prove that the probability of committing a classification
error, P.(l,u), where [ is the number of labelled data in the training subset
and v the number of unlabelled data, when there is no labelled data coincides
with that of the RAND classifier:

Pe(0,u) = %

Subsequently, I centre on the pioneering work of Castelli and Cover [31]
for binary problems with [ and u greater than 0. Under the assumptions

, Yu > 0. (2.1)
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Algorithm 3 Optimal theoretical procedure for SSL binary problems [31]
[66]
1: LEARNING TASK:

e Stage 1 Use unlabelled set U to obtain p(x) and, by identifiability, a
permutation 7 of its components (p(X|cr(1)), p(X|cx(2)); P(cx(1)), and
p(CTI'(2)))'

e Stage 2 By means of the likelihood ratio test and the labelled set L,
determine the correspondence between the real classes and the current
mixture components:

#(1) =1 and #(2) =2, or #(2) =1 and 7(1) = 2.

2: CLASSIFICATION TASK:

o Stage 3 Assign the sample x(?) to the class induced by the BDR using
the learned model.

of (i) learning the correct model density, p(x), using an infinite amount of
unlabelled examples, (ii) having the unlabelled samples distributed according
to a identifiable [123] mixture density p(x) = p(c1)p(x|e1) + plea)p(x|ez2),
and (iii) having p(c1), p(x|c1), p(c2) and p(x|c2) unknown, the authors define
the three-stage optimal procedure of Algorithm [3] It consists of two major
parts: (1) the learning task with two stages, where a model using both U —
Stage 1 — and £ — Stage 2 —, and (2) the classification task or Stage 3, where
the unseen instances are classified according to the previously learnt model.
This optimal procedure achieves the highest lower bound of the probability of
error of any semi-supervised classifier, since all the three stages are optimal.
Unfortunately, this optimal procedure cannot be transferred to the multi-class
scenario. Although both stage 1 and 3 can be straightforwardly used to deal
with multi-class classification problems, the optimality of Stage 2 can only be
guaranteed for K = 2 due to the fact that the likelihood ratio test is only
optimal for two simple hypotheses [60].

Based on the principle of maximum likelihood to determine the real per-
mutation, 7, between the components learnt using the unlabelled records and
the real class values, I propose an optimal learning strategy for Stage 2 called
PCgs1, (Permutation of Components in Semi-Supervised Learning). It returns,
in polynomial time on the number of class values K, the correspondence 7
with the highest likelihood function L(7;L). As proved, PCggy, is optimal
for the multi-class scenario. Therefore, the optimal theoretical procedure for
semi-supervised learning in the multi-class framework which can be used to
study the fundamental limits of the proposals in this setting is now as shown
in Algorithm [4

Additionally, since semi-supervised learning is applied to domains where
labelled data are very difficult to obtain, the minimum required amount of
labelled records to be used in Stage 2 of Algorithm [4]is studied. Whilst just
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Algorithm 4 Optimal theoretical procedure for SSL multi-class problems
1: LEARNING TASK:

e Stage 1 Use unlabelled set U to obtain f(x) and, by identifiability, a
permutation of its components (fr(;)(), and 1,(;),7 = 1,..., K).

e Stage 2 Use the labelled set £ to determine the correspondence between
the classes and the mixture components, i.e. the permutation of the
components 7, by means of my proposal PCsgy,;:
7t = argmax, L(m; L) = arg max, H1K:1 [ix,cyec Pei)p(x[ez-1(:))

2: CLASSIFICATION TASK:

o Stage 3 Assign the sample x(9) to the class induced by the BDR using
the learned model.

one labelled datum is needed in Algorithm [3| for binary problems [31], in
the multi-class framework, at least (K — 1) examples of different class values
are required. Thus, I am required to calculate [ as the expected minimum
number of instances needed to have a labelled set with (K — 1) different class
values among them. The minimum value for [ is set for balanced K-class
classification problems and it is given by the following formula:

1 if K =2
he = ;(—nj 6() (—1) x (KI;]')(K%)(K—l—k (Kj_j)) if K > 2
(2.2)

When the class probabilities differ from equiprobability, [, exponentially in-
creases in the variance between the probabilities as shown in the published
material.

Finally, I focus on how labelled records reduce the probability of commit-
ting a classification error when having a huge amount of unlabelled records.
Under the assumption of an infinite amount of unlabelled examples, in binary
problems, Algorithm [3] is used to prove that labelled records exponentially
reduce the probability of error P,.(l,00) to the Bayes error ep [31]. Formally,

P.(l,00) — ep = exp{ —1Z + o(l)},

where Z = —log {2\/p(cl)p(01) Ik \/p(x|cl)p(x|02)} is the Bhattacharyya dis-

tance between the densities p(x|c1) and p(x|cz) multiplied by a term equal
to log (24/p(c1)p(c2)). When the binary constraint is relaxed, the casuistry
of when an error is committed in Algorithm [d] becomes more complex. Thus,
different scenarios must be created and studied. After some algebra, I reach
the conclusion that, when there is no class-overlapping among the class values
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(eg = 0), the probability of error converges to 0 exponentially fast in the

sense that
0 ((KK*)Z> . (2.3)

However, when class-overlapping is present, the calculation of the conver-
gence rate for P.(l,00) requires extra assumptions. Under the assumption of
facing balanced multi-class classification problems, i.e. all priors are equiprob-
able, Vi,p(c;) = 1/K, I found that the optimal probability of error of multi-
class problems may decrease to eg exponentially fast in the number of labelled
data [. Formally,

2

P.(l,00) —ep §2exp{_2ll/(\_ }, (2.4)

where X\ € (0,1] depends on the degree of intersection among the components
of the mixture distribution and is defined by

A= %mjln { /Rj p(x|e;)dx — nzlz( /Rj p(x|cz)dx}. (2.5)

As seen in this upper bound, the threat of class-overlapping, discussed in
Section has a great influence in the performance of the resulting classifier.

In short, this work provides a general extension of previous key research
in semi-supervised learning to the whole uni-dimensional domain and proves
that, in this domain, the optimal probability of error decreases exponentially
fast in the number of labelled data of the training dataset. Besides, some
remarks on the impact of my proposal on the problem-solving of real-world
problems are included in the manuscript — see Chapter [5] —. As future work,
two interesting paths can be directly taken from the conclusions of this re-
search. First, in this research, I assume that there are an infinite amount of
unlabelled records but, which real number corresponds, in practise, to this
number? Secondly, I propose sample complexities for [ when I determine the
minimum number of labelled data required. However, how do the complexity
and dimensionality of the feature space impact on this matter?

2.3 A Study on the Competitiveness of Classifiers for
Unbalanced Problems

Many classification problems show significant differences among the probabil-
ities of the classes. This situation is known as the class-imbalance problem
[29, [100] and it is widely considered to be a major obstacle to build compet-
itive classifiers. Although a great methodological effort has been invested in
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proposing adequate algorithms and competitive solutions, the machine learn-
ing literature still lacks a solid theoretical foundation regarding the class-
imbalance problem [105] [107]. Therefore, this research focuses on pursuing
a theoretical understanding of this scenario through a novel frame-
work which enables the analysis on the most commonly used scores
to assess the performance of classifiers. Precisely, I aim at shedding some
light on the theoretical foundation of the class-imbalance problem by provid-
ing a framework capable of answering the following three key questions which
should certainly have an impact on future research:

Which performance scores are adequate to determine the competi-
tiveness of a classifier in unbalanced uni-dimensional domains? I seek
to determine which performance scores succeed in expressing the long studied
performance detriment [124] [125] resulting from learning, in a classical man-
nerEl, well-defined categories in moderate unbalanced scenarios. To accomplish
this task, I define a novel controlled framework where the other factors hinder-
ing the performance of the classifiers can be cancelled so that the contribution
of the class distribution to the performance scores can be legitimately quan-
tified in isolation. Specifically, I focus on the numerical performance scores
which can be expressed as Holder [126] (a.k.a. power or generalised) means
among the recalls of each class value [30]. Formally:

Let {R1,Ra,...,Ri} be the recalls obtained for a classifier, {(1,Cay...,Cx}
a series of non-negative weights s.t. Y. ¢; =1 and p € RU {+00, —00} an
affinely extended real number, then, a Hélder mean is a mean of the form:

M, - (Z QR?) y 206)
=1

Note that all the global scores defined in Table can be included in
these means. Now, these numerical performance scores can be defined as
general functions Sy (n,0) : (¥,n,0) — R, where ¥ is the used classifier,
n={m,n,...,nK}, where ; = p(c;) is the vector containing the class prob-
abilities, and @ represents the model parameters of the generative function.
Consequently, under the assumption of knowing the generative model, the
BDR classifier was used to define a valuable measure in my proposed con-
trolled framework:

Let © represent the space of parameters for a fixed family of distributions
over the feature space for classification problems with K classes. Let Sp(n,8)
be the value of a performance score, S, assessing the behaviour of the BDR
on a K-class classification problem, v, with a class distribution vector equal
to m and parameters @ € @. Also, let Sg(e, 0) be the value of S evaluating
the BDR inferred from the balanced version of ~v. Therefore, the influence

2 Minimising the 0-1 loss function. In this research, I assume the knowledge of the
generative model so that the BDR can be used.
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Fig. 2.2: Examples of the influence function for two opposite scores.

Function, 13-(n), of the K-class distribution m on the performance score S
using the BDR (W = B) as a classifier is defined as follows:

IS () = / Sn(e,0) — Su(n, 0)]d6. (2.7)
(2]

This function possesses the virtue of isolating the impact that the class
distribution has on the performance of the classifiers (here, the BDR) when
measured using the performance score, S; it returns the average influence
of the class distribution for every possible set of parameter values. Positive
values of ]If{(n) denote that the performance score S obtains, on average,
higher values for the BDR when it is used in a balanced scenario rather than
when it is inferred from a class distribution, 1. Negative values mean the
opposite; the BDR achieves, in general, worse values for S in the balanced
scenario.

By exploiting prior research [I4] 8T [107] on the expected behaviour of

the BDR when facing a skewed class distribution, the shape that an adequate
performance score should have for this influence function and, eventually,
discern among the adequate and inadequate scores for unbalanced domains
were determined:
A performance score S is successful in being adequate to determine the com-
petitiveness of a classifier ¥ in the class-imbalance scenario if, assuming a
scenario where a classifier is inferred by directly minimising a 0-1 loss (maz-
imising the classification accuracy),

1. its influence function is positive for almost any n # e, and
2. it shows a negative correlation to the minority class probability, i.e. 15-(n)
grows as the Euclidean distance between 1 and e gets larger.

Figure[2.2]shows, in the binary scenario, an example of an adequate perfor-
mance score whose influence function follows the previous properties (Figure
and an example of an inadequate performance score (Figure . Sub-
sequently, with this study, I find evidence to support that numerical scores
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are sufficient for this intricate domain and that the performance scores which
are unweighted Holder means with p < 1 (a-mean, g-mean, h-mean, and min)
among the recalls are the most appropriate to evaluate the competitiveness
of classifiers in unbalanced problems. In these cases, misclassifying the least
probable classes is highly penalised and this penalisation is increased as the
value of p decreases.

Which performance scores are maximised in the most common
learning solutions designed to deal with skewed classes? In this study,
a review of the state-of-the-art is performed in order to devise what decision
rules are behind the successful proposals of the literature, their competitive-
ness, and their inherently maximised scores. Particularly, I theoretically scru-
tinise data sampling [103] and cost-sensitive learning [I27], which are the
approaches that currently dominate the research efforts [I1]. I conclude that
most of the learning solutions proposed within those approaches are designed
to asymptotically converge to the EDR. Moreover, I mathematically prove that
the EDR is an optimal classifier for the unweighted Holder mean with p =1
(a-mean), and determine the advantages of the asymptotical usage of the EDR
to deal with practical class-imbalance problems. However, the optimality for
unweighted Holder means with p # 1 does not hold. Afterwards, the impli-
cations of proposing approaches to solve unbalanced problems by maximising
other p # 1 are discussed.

Can bounds guaranteeing the competitiveness of a classifier be pro-
vided for certain adequate performance scores? Yes, I finalise this re-
search by fulfilling the necessity of the community for a standardised set of
evaluation practices for proper comparisons among classifiers facing unbal-
anced data [II]. To be precise, I perform this task by providing two different
practical bounds for the performance scores expressed as unweighted Holder
means among the recalls with p € R U {+00, —o0}; a bound for the lowest
value of the performance score ensuring a competitive solution for unbalanced
problems and a bound for the highest value of the score indicating an incom-
petent solution (a classifier which is not better than the random classifier in
at least one class value). Here, the conclusions are also consistent with the
first study, using Holder means with p < 1 is presumed to be adequate for de-
termining the competitiveness of a classifier. In fact, both bounds coincide in
p = —oo. In Figure the regions created using both bounds can be viewed
for p € [-50,50] in both binary and ternary problems.

The principal limitations of this theoretical research are the assumptions
made; (i) the generative model is known, (ii) the concepts are well-defined, and
(iii) the performance scores are restricted to numerical scores sharing the form
of a Holder mean. Thus, as future work, I strongly believe that the research
lines should start by lessening those assumptions. In my humble opinion, the
first step should be the use of several practical classifiers as representative
classifiers rather than the BDR in a scenario where the generative is unknown.
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Fig. 2.3: Limiting values for the unweighted Hoélder means ensuring that a
given classifier is superior/inferior to the random guessing.

In short, with this set of theoretical contributions, I believe that, in the
uni-dimensional classification setting, the current distance towards the ideal
of defining more adequate learning systems capable of dealing with skewed
class distributions in the multi-class scenario has been shortened.

2.4 A Measure for the Class-Imbalance Extent of
Multi-class Problems

If it can be measured, it can be managed [128]. For that reason, several authors
[108], [109], 111 129] measure the class-imbalance degree of their experimental
databases so that a better understanding of the unbalanced classification prob-
lems being addressed might be achieved. However, to the best of my knowl-
edge, they use either tedious or suboptimaﬂ measures when the binary class
constraint is relaxed in the uni-dimensional classification framework. There-
fore, the last of the presented contributions is devoted to properly
measuring the problematic class-imbalance extent in both binary
and multi-class uni-dimensional problems.

To characterise the class-imbalance extent of a classification problem, prac-
titioners purposely use the distribution of class values available in the training
set, p(c), as an estimation of the real class skewness of the generative model,
p(c). For the sake of clarity, since all the summaries can be used indepen-
dently of the knowledge of the generative model, in this section, I also use
n=(m,n,...,NK), but denote indistinctly p(c) and p(c).

Here, the most straightforward measures are either writing down the em-
pirical class distribution [I09] or to directly transcribing the occurrences of all
class values of the dataset [I11]. Although they are very informative for show-
ing the degree of skewness at a glance, these measures become tedious when
K gets large. Thus, authors usually opt to calculate a summary of the empiri-

3 In terms of correlation with the performance detriment produced by the class-
imbalance situation.
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cal class distribution which is called imbalance-ratio (IR) [41]. It is calculated
dividing the maximum statistic, n;, by the minimum,
max; 1;

IR(n) = (2.8)

Hllnj nj

IR : nn — R is an injective function and, thus, an appropriate summary of
the class-imbalance extent for binary problems. However, when K outnum-
bers 2, the injection is lost — as shown in the toy problem presented in [I30].
There, diverse problems with different class-imbalance extents, indicating dif-
ferent complexities, share the same imbalance ratio. This may imply that IR,
in the multi-class setting, is not correlated with the hindrance produced by
skewed class distributions. So, in order to bridge this gap, I propose imbalance-
degree (ID) as a new summary which is capable of properly shortening class
distribution of both binary and multi-class classification problems into a single
value. Formally, the ID of a class distribution, n, is given by

ID(’!]) o dA(T’a e)

= da(om©) + (m—1), (2.9)

where m is the number of minority classes, d 4 is the chosen distance/similarity
function to instantiate ID, e is a balanced multi-class distribution with K-
class values, and t,, is the distribution showing exactly m minority classes
with the highest distance to e. The proposed distance/dissimilarity summary
has the following interesting properties:

1. By means of a single real value in the range [0, K), it not only summarises
the class distribution of a given problem, but also inherently expresses the
number of majority and minority classes.

2. Depending on the requirements of the experimental setup and the degree
of sensitivity sought, this measure can be instantiated with any common
distance/dissimilarity function. In this research, I test, from the metrics in
the vector space [13I]; Manhattan, Euclidean (EU) and Chebyshev (CH)
distances, and, from measures for probability distributions, the follow-
ing f-divergences [132]; Kullback-Leibler (KL) divergence [133], Hellinger
(HE) and total variation (TV) distances [134], and y?-divergence (CS)
[135).

3. A unique mapping between the multi-class distributions and the numer-
ical value of imbalance-degree is ensured for problems showing different
numbers of majority and minority classes. Therefore, diverse problems
cannot share a common numerical value as happens with imbalance-ratio.

Although the previous properties highlight an advantage of ID over IR,
some experimentation is required in order to determine which summary is
more appropriate to evidence the hindrance that skewed multi-class distri-
butions cause in the learning processes. By means of the supervised learning



2.4 A Measure for the Class-Imbalance Extent of Multi-class Problems 51

7 6 5 4 3 2 1

E — - - — [
IR J L } ~IDTV
IDcs EE— IDHE
IDcH——m—— -— IDku
IDkL

(a) CDD for the arithmetic mean among the recalls, A.

7 6 5 4 3 2 1
: - : —— e
IDcs —— L Due
IR —— \;IDTV
IDcCH—— ——IDxL

IDEU

(b) CDD for the geometric mean among the recalls, G.

7 6 5 4 3 2 1

[ o CE - r I |

| 1 1 T 71 1
IR — ——IDHE
IDcH—— IDTV
IDcs ——— -———IDkL
IDEU

(c) CDD for minimum recall obtained, min.

Fig. 2.4: Pearson correlation ranking between the performance of the super-
vised learning paradigms (see Section on the studied datasets and the
summaries, o = 0.05. The dissimilarity functions used to instantiate 1D are
specified in the subscript A = {EU,CH,KL,HE, TV ,CS}.

paradigms introduced in Section I estimate their performanceﬂ in a key
database [136] composed of 15 unbalanced datasets. Then, by just calculat-
ing the correlation between each summary and the resulting performances
scores, the appropriateness of either ID or IR can be easily checked. The ex-
perimental results clearly indicate ID as a proper summary choice and IR
as a suboptimal measure for multi-class problems; IR shows the worst Pear-
son correlations and significant differences (see Figure where the ranking
among the summaries is shown) are found between IR and ID. Finally, the
experimentation was concluded by arguing that instantiating ID using either
Hellinger or total variation distances produces significant robust summaries
of the class-imbalance extent.

This contribution may be extended in several ways, being the most di-
rect to perform a more exhaustive analysis over a larger number of dis-
tance/similarity functions, over a larger set of unbalanced problems or, even,
introducing other measures for the other hindering aspects [89] presented in
Section which may harm the performance of the trained classifiers.

4 Using the recommended a-mean, g-mean and minimum recall performance scores
to assess unbalanced classification problems [30].






3

General Conclusions, Future Work, and
Published Material

In this chapter, both general conclusions of this PhD work and potential future
paths to extend the contributions are presented. Furthermore, the publications
arising from this dissertation and included in Part [[I] are also listed.

3.1 Conclusions

Real-world problems are complex and challenging. They can come in all sizes,
shapes and varieties. However, when researching challenging situations on
classification, the theoretical and methodological efforts of the literature tend
to be biased towards simple classification schemas such as uni-dimensional
binary problems. Instead of simplifying the statements of real-world problems
so that the literature may be directly applied, this PhD dissertation opts
to relax the common assumption of simple classification tasks. This enables
me to push the existing classification schema boundaries further and to be
able to directly apply the philosophy of taking on the real-world classification
problems as they come. Specifically, here, I focus on generalising, from a both
theoretical and methodological point of view, two current distinguished and
defying situations called the semi-supervised learning paradigm and the class-
imbalance problem.

Semi-supervised learning [I0] is concerned with using unlabelled ex-
ample&ﬂ in the learning task so that the performance of supervised learning
methods that only use a limited labelled set to train the model can be im-
proved [39]. Nowadays, this technique is still a subject undergoing intense
study due to the fact that, in some applications, gathering labels for the
training dataset is relatively expensive or time-consuming compared to the
cost of obtaining unlabelled examples. Unfortunately, hardly any theoretical
or methodological solution of the literature assumes classification schemes be-
yond uni-dimensional binary problems. Thus, in this dissertation, I devote a

! examples for which the features are known but not their corresponding categories
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large research period to studying the semi-supervised learning paradigm but
applied to more complex classification scenarios such as multi-class and multi-
dimensional classification problems. The achieved contributions in that time
span are listed as follows:

1. An EM algorithm [IT9] based semi-supervised approach capable of dealing
with multiple class variables. This methodology enabled the extension of
the semi-supervised learning framework to the whole multi-dimensional
classification spectrum [57].

2. Tt is shown that, as happens in uni-dimensional classification [72], when
using the generative structure to train a multi-dimensional classifier in a
semi-supervised manner, the unlabelled data always helps. When there is
a mismatch between the generative and the assumed structures, perfor-
mance degradation of the trained classifier occurs.

3. A competent solution for a real-world multi-dimensional classification
problem in the context of Sentiment Analysis [T12] by means of the pre-
vious methodological advances. Specifically, a classifier capable of char-
acterising the comments of the customers of several Spanish companies
through three different, but related, dimensions was engineered. The sen-
timent of the users towards the product, the subjectivity of their online
post, and their will to influence on other customers was extracted.

4. Tt is also proven that the probability of committing a classification error
using a training dataset with no labelled data and any affinely extended
real number of unlabelled data coincides with that of using the RAND
classifier.

5. An optimal theoretical procedure for semi-supervised learning in the
multi-class framework which allows the study of the fundamental lim-
its of the methodological proposals in this setting. It is a generalisation of
the pioneering optimal procedure for binary problems proposed in [31].

6. Theoretically, the minimum number of labelled examples required to train
a multi-class classifier in a semi-supervised framework was also investi-
gated.

7. It is proven, by means of the proposed optimal procedure, that the opti-
mal probability of error in the semi-supervised framework might decrease
to the Bayes error exponentially fast, but no faster, and that the class-
overlapping [95] [106] had a direct influence on this convergence.

The second scenario, the class-imbalance problem [29] [100] arises from
the class probability distribution, p(c), of the generative model and it is able
to compromise the performance of the majority part of standard learning al-
gorithms [I1]. Traditional learning algorithms assume a 0-1 loss function and,
thus, they expect balanced class distribution or equal misclassification costs.
So, when they are presented with complex training datasets sampled from
skewed class distributions, these algorithms fail to properly learn the char-
acteristics of the generative model and resultantly provide dummy classifiers
always classifying incoming data as the most probable values [I07]. Nowa-
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days, it is a hot topic in the literature [89] and it is the subject of many
papers, workshops, special sessions, and dissertations. Unsuitably, the class-
imbalance literature is highly biased towards binary classification problems.
Thus, in this dissertation, I theoretically and methodological contribute to
that literature but assuming the whole uni-dimensional classification spec-
trum (binary 4+ multi-class). Precisely, the presented contributions regarding
the class-imbalance problem in this PhD work are the following:

1. A novel controlled theoretical framework where the other interdependent
factors (see Section threatening the performance of the trained clas-
sifier can be marginalised. By doing so, the contribution of the class dis-
tribution to the detriment of the performance of the classifier can be
legitimately quantified in isolation.

2. Under the assumption of knowing the generative model, the BDR was
used to define, in the suggested controlled framework, a valuable mea-
sure for the influence of the class-distribution in the score to assess the
performance of a classifier.

3. Evidence to support that numerical scores are sufficient to adequately as-
sess problems suffering from class skewness was found during this research
project. Previous work [11] argued the opposite.

4. Tt is claimed that the performance scores which are unweighted Holder
means [126] with p < 1 (a-mean, g-mean, h-mean, etc.) among the recalls
are the most appropriate to evaluate the competitiveness of classifiers in
unbalanced problems.

5. T discovered that most of the learning solutions proposed in the literature
under the approaches of data sampling [109] and cost-sensitive learning
[110] were designed to asymptotically converge to the EDR.

6. The EDR is an optimal classifier for the unweighted Holder mean with
p =1 (a-mean) as proven in this research work.

7. The necessity in the literature for a standardised set of evaluation practices
for proper comparisons among classifiers facing unbalanced data [41] was
fulfilled. This was achieved by providing two practical bounds for common
performance scores ensuring both competent and incompetent classifiers.

8. A new summary of any binary and multi-class class distribution, which is
capable of properly measuring the class-imbalance extent and which highly
correlates with the detriment produced by class skewness, was proposed.

Finally, there is a contribution of this dissertation that, although it was
key in the designed multi-dimensional semi-supervised methodological pro-
posal, cannot be added to either of the previous lists. I also contributed to the
supervised learning scenario by completing the family of multi-dimensional
Bayesian network induction algorithms [57]. Specifically, I proposed a compu-
tational efficient supervised filter algorithm for MD J/K [58] networks which
makes use of statistical testing over mutual information measures. Further-
more, this algorithm can also learn MDTAN structures in a much shorter time
than using the original learning algorithm proposed in [57].



56 3 General Conclusions, Future Work, and Published Material

3.2 Future Work

The potential future extensions of this PhD work are briefly discussed in the
following paragraphs.

In this dissertation, a particular real-world problem was solved by propos-
ing a methodology which generalises the semi-supervised learning frame-
work to the fresh multi-dimensional classification framework. Since it was an
early exploration of this classification schema, there is, undoubtedly, a lot of
work to be done here.

e Firstly, the collection of multi-dimensional classifiers is limited [23] 57} [58].
To the best of my knowledge, there are still no learning algorithms capable
of dealing with ordinal features without nominalising them. A variety of
these classifiers could significantly enrich the literature. Furthermore, I
would like to point out the necessity of proposing computational efficient
learning algorithms not only to ensure the scalability in the number of
features and class variables, but also to fight the computational burden
of semi-supervised learning techniques such as EM algorithm [I19] based
solutions.

e Secondly, different and diverse performance scores for multi-dimensional
classification problems are required. When facing a new real-world uni-
dimensional problem, there is always a positive probability of encounter-
ing at least one of the threats described in Section[T.4] When dealing with
multi-dimensional problem, just based on the number of class variables,
the probability of facing a threat is greater. Therefore, just having only a
couple of subjective performance scores [23] to assess a multi-dimensional
classifier seems to be a crucial limitation in this field. Consequently, I
strongly believe that it is imperative to perform an exhaustive analysis on
which uni-dimensional performance scores are adequate for being gener-
alised to the multi-dimensional setting.

e Thirdly, in situations where labelled data are costly, the proposed method-
ology can be extended to deal with unlabelled records for which not all
labels are missing.

e Fourthly, as advanced in the introduction, the natural evolution of the
semi-supervised field (Section can be used in the multi-dimensional
framework. In this path, the foundation stone was laid with the described
methodological proposal [23]. Consequently, learning algorithms leveraging
the unlabelled data by introducing some assumptions linking the features
and the class values might be proposed [73] in the literature.

In the literature review of the theoretical studies on semi-supervised learning,
I was only able to find one study [70] dealing with the multi-class setting.
However, it follows a different path than mine. Thus, instead of taking one
giant leap by assuming the whole classification schema, I limited my theoret-
ical scope to the uni-dimensional spectrum in order to settle this spectrum in
the literature. I still believe that taking such an assumption is burdensome,
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so my suggested future research lines focus on populating the literature with
valuable answers to theoretical semi-supervised questions in the multi-class
scenario. Specifically, the following three different issues are key:

Is there any number beyond which any extra additions of unlabelled data
does not decrease the probability of error?

In this dissertation, [ was calculated as the expected minimum number
of labelled data required in semi-supervised learning for uni-dimensional
domains assuming that the complexity and dimensionality of the feature
space do not affect its calculation. What happens if this assumption is
relaxed?

The pubished proposals follow a correct model assumption to study the
optimal probability of error. When this assumption does not hold, how
does the optimal probability of error varies in the number of labelled data,
1?7 Does it still exponentially decrease in [7

Finally, how do skewed class distributions affect the semi-supervised learn-
ing techniques? The optimal procedure for binary problems proposed in
[3I] can easily be modified to be optimal for the a-mean by just remov-
ing the priors in Stage 2 and by using the EDR in Stage 3. Thus, can
the proposed theoretical work in the multi-class framework also be eas-
ily adapted to study the intricate class-imbalance problem in the semi-
supervised framework?

Similarly to the semi-supervised learning framework, there was a lack of

supporting works in the class-imbalance literature. This absence also pre-
vented me from directly assuming a multi-dimensional framework. Thus, con-
cerning the uni-dimensional framework, there are a few paths to directly ex-
tend the introduced work:

Theoretically, the utilised novel framework to study the implication of the
class-imbalance to the performance of the trained classifier can be easily
complemented with several other classifiers rather than the BDR, other
literature methodologies to deal with class skewness can be analysed and
more performance scores can be tested.

Methodologically, a more exhaustive analysis of the summaries for the
class distributions of multi-class problems can also be proposed. A large
number of distance/dissimilarity functions over a larger set of problems,
or, even introducing other measures for the rest of threats which harm the
performance of the classifiers can be used.

It is important to remark that, in this case, I believe that the generalisation of
both works to the multi-dimensional scenario is approachable and beneficial
to the literature.

It can be easily seen that the theoretical framework proposed to study
the implication of the class distribution on the performance of the trained



58

3 General Conclusions, Future Work, and Published Material

classifier is directly generalisable using the global notation of this intro-
ductory part to the PhD dissertation. However, as happened in multi-
class with the multi-minority and multi-majority cases, new and different
class-imbalance scenarios will appear; an underrepresented nominal vector
of class variables is a totally different class-imbalance case than having
underrepresented class values for a given class variable. Moreover, the de-
pendences between the class-variables will have an impact on this intricate
threat. Having solved these adversities, the actual problem in this exten-
sion lies in the above mentioned limited amount of diverse performance
scores in the multi-dimensional framework. Thus, here, I also highlight the
necessity of an exhaustive study on the performance scores.

Secondly, measuring the class-imbalance extent of multi-dimensional real-
world problems also seems an upcoming step to take. Sadly, the introduced
measure does not generalise to multiple class variables due to the fact that,
first, it is necessary to establish which class distribution represents the bal-
ance scenario in multi-dimensional problems. Fortunately, the feasibility of
this future work has been ensured in the literature. Charte et al [I37] pro-
pose a generalisation of the imbalance-ratio to measure the class-imbalance
extent of multi-class classification problems.

3.3 List of Publications

As a result of this research project, several articles have been published in
JCR indexed journals. In this section, the articles selected to be included in
Part [ of this dissertation and their associated references are introduced.

Chapter |4 Approaching Sentiment Analysis by Using
Semi-supervised Learning of Multi-dimensional Classifiers

This article, cited more than 70 times, includes the contributions described
in Section of Part [l There, in order to solve a real-world problem re-
lated to the Sentiment Analysis domain, I not only propose the use of
multi-dimensional classification for Sentiment Analysis domains, but also
I contribute with a methodological extension of the multi-dimensional clas-
sification framework to the semi-supervised domain. Experimental results
in this real-world problem show the potential benefits of the proposed semi-
supervised multi-dimensional approach in Sentiment Analysis approaches.
This work is published in Neurocomputing (Q2, Impact Factor: 1.632) as:

J. Ortigosa-Herndandez, J.D. Rodriguez, L. Alzate, M. Lucania, I.
Inza and J.A. Lozano. Approaching Sentiment Analysis by Using Semi-
supervised Learning of Multi-dimensional Classifiers. Neurocomputing, vol.
92, pp. 98-115, Sep. 2012.
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Note: this work was published as a main paper and a separate supple-
mentary file containing an extra set of experiments. Inside Chapter [4]
both documents are included. Moreover, preliminary versions can be found
published in a national conference [138] and as an internal report [139].

Chapter |5 Semi-supervised Multi-class Classification Problems
with Scarcity of Labelled Data: A Theoretical Study

The contribution described in Section of Part [ is encompassed in a
manuscript published in a Q1 journal (Impact Factor: 6.018) named IEEFE
Transactions on Neural Networks and Learning Systems. It theoretically
investigates, under a set of assumptions, the optimal procedure to solve
multi-class classification problems in the semi-supervised setting, its as-
sociated probability of error and the minimum number of labelled data
required to perform such a task. Moreover, the potential practical impact
of the introduced proposals and the open challenges in semi-supervised
learning are also discussed. This theoretical research can be found pub-
lished as:

J. Ortigosa-Herndandez, 1. Inza and J.A. Lozano. Semisupervised Multi-
class Classification Problems With Scarcity of Labeled Data: A Theoretical
Study. IEEE Transactions on Neural Networks and Learning Systems, vol.
27 num. 12, pp. 2602-2614, Dec. 2016.

Note: Chapter [ includes both the main paper and supplementary file con-
taining mathematical proofs, artificial experiments and the source code.
Both files were integrated and published as a single document in an inter-
nal report [140].

Chapter [6} Towards Competitive Classifiers for Unbalanced
Multi-class Classification Problems: A Study on the Performance
Scores

This work aims at shedding some light on the theoretical foundation of the
class-imbalance problem by addressing the three key questions exposed in
Section of Part [l (i) which performance scores are adequate to deter-
mine the competitiveness of a classifier in unbalanced domains? (ii) Which
performance scores are maximised in the most common learning solutions
designed to deal with skewed class distributions? (iii) Can bounds guaran-
teeing the competitiveness of a classifier be provided for certain adequate
performance scores? This work is, at the present, under revision in Ma-
chine Learning, a prestigious JCR indexed journal in the second quartile
with an impact factor of 1.855.

J. Ortigosa-Hernandez, 1. Inza and J.A. Lozano. Towards Competitive
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Classifiers for Unbalanced Multi-class Classification Problems: A Study
on the Performance Scores. Submitted to Machine Learning (second re-
view process).

Note: A preliminary version of this research can also be consulted in the
public repository of electronic preprint arXiv [30], where it was published
with reference arXiv:1608.0898.

Chapter [7} Measuring the Class-imbalance Extent of Multi-class
Problems

This manuscript is published in Pattern Recognition Letters, a Q2 journal
with an impact factor of 1.952. It criticises the broad use of the imbalance-
ratio to measure the imbalance extent of all kinds of unbalanced problems.
Although it is an informative measure for binary problems, I prove that it
is not adequate for the whole classification spectrum since it is incapable
of completely and honestly describing disparity among the frequencies of
more than two classes in the multi-class scenario. In order to overcome
this drawback, a novel, normalised and sensitive measure for the class-
imbalance extent, able to deal with both binary and multi-class classifi-
cation problems, was proposed. This work presents the contribution de-
scribed in Section 2.4] of Part [l and it can be found in:

J. Ortigosa-Hernandez, 1. Inza and J.A. Lozano. Measuring the Class-
imbalance Extent of Multi-class Problems. Pattern Recognition Letters,
vol. 98, pp. 32-38, Oct. 2017.

Note: BIRD, the Institutional Repository Data of the Basque Centre for
Applied Mathematics, holds a technical report [I41] version of this re-
search.
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1. Introduction

ABSTRACT

Sentiment Analysis is defined as the computational study of opinions, sentiments and emotions
expressed in text. Within this broad field, most of the work has been focused on either Sentiment
Polarity classification, where a text is classified as having positive or negative sentiment, or Subjectivity
classification, in which a text is classified as being subjective or objective. However, in this paper, we
consider instead a real-world problem in which the attitude of the author is characterised by three
different (but related) target variables: Subjectivity, Sentiment Polarity, Will to Influence, unlike the
two previously stated problems, where there is only a single variable to be predicted. For that reason,
the (uni-dimensional) common approaches used in this area yield to suboptimal solutions to this
problem. Somewhat similar happens with multi-label learning techniques which cannot directly tackle
this problem. In order to bridge this gap, we propose, for the first time, the use of the novel multi-
dimensional classification paradigm in the Sentiment Analysis domain. This methodology is able to join
the different target variables in the same classification task so as to take advantage of the potential
statistical relations between them. In addition, and in order to take advantage of the huge amount of
unlabelled information available nowadays in this context, we propose the extension of the multi-
dimensional classification framework to the semi-supervised domain. Experimental results for this
problem show that our semi-supervised multi-dimensional approach outperforms the most common
Sentiment Analysis approaches, concluding that our approach is beneficial to improve the recognition
rates for this problem, and in extension, could be considered to solve future Sentiment Analysis
problems.

© 2012 Elsevier B.V. All rights reserved.

positive or negative sentiment [38]. However, motivated by
different real-world problems and applications, researchers have

Sentiment Analysis (SA), which is also known as Opinion
Mining, is a broad area defined as the computational study of
opinions, sentiments and emotions expressed in text [33]. It
mainly originated to meet the need for organisations to auto-
matically find the opinions or sentiments of the general public
about their products and services, as expressed on the Internet. A
fundamental methodology in many current SA applications and
problems is the well-known pattern recognition field called
classification [6].

Most of the work within this field has focused on the Sentiment
Polarity classification, i.e. determining if an opinionated text has

* Corresponding author.
E-mail addresses: jonathan.ortigosa@ehu.es (J. Ortigosa-Hernandez),
juandiego.rodriguez@ehu.es (J.D. Rodriguez),
leandro.alzate@asomo.net (L. Alzate), manuel.lucania@socialware.eu (M. Lucania),
inaki.inza@ehu.es (I. Inza), ja.lozano@ehu.es (J.A. Lozano).

0925-2312/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2012.01.030

considered a wide range of closely related problems over a variety
of different types of corpora [37]. As an example of these
problems, we can find the following: Subjectivity classification,
which consists of determining if a text is subjective or objective
[41], Authorship identification, which deals with the problem of
identifying the author of a given text [2] or Affect Analysis, which
recognises emotions in a text [1].

In an analogous fashion, a real-world application within this field
has recently been tackled in Socialware®,! one of the most relevant
companies in mobilised opinion analysis in Europe. The main goal of
this application is to determine the attitude of the customers that
write a post about a particular topic in a specific forum. The
characterisation of these costumers is performed in this problem

1 http://www.asomo.net/indexE.jsp
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by measuring three different dimensions: the sentiment, the sub-
jectivity and the potential influence of each post in the forum.

By just relying on the previous work done in the SA domain,
we can approach this problem by dividing it into three different
subproblems (one per each dimension to be classified) and tackle
them separately, i.e. study them in isolation by learning different
classifiers to predict the value of each target variable as if they
were independent.

However, some of the individual approaches explored in the
literature for each subproblem could be adapted to the others.
Moreover, a large number of papers [35,56] proposed approaches
for the problems of Sentiment Polarity classification and Subjec-
tivity classification, and sometimes by even using the same
corpus. This could indicate a certain degree of correlation between
these subproblems, and consequently between their target vari-
ables, as noticed in [37]. Nevertheless, this relation has never been
directly demonstrated due to the fact that, to the best of our
knowledge, no technique capable of dealing with several target
variables has ever been used to embrace SA problems. In spite of
that, it is relatively easy to notice the relation that exists between
the sentiment and subjectivity (a neutral review probably indi-
cates objectivity). So, why not learn a single classifier to classify
the three dimensions simultaneously so as to make use of the
statistical similarities between them? Finding a more predictive
classifier by means of this thought would demonstrate that there
is an actual relationship between these target variables. Also, in
extension to the SA domain, why not join some previously cited
problems in the same classification task in order to find more
accurate multi-dimensional classifiers that take advantage of their
closeness?

In order to embody this perception, we propose the use of the
recently proposed multi-dimensional Bayesian network classifica-
tion framework [53] to deal with multiple class classification
problems in the context of SA by solving a real-world application.
This methodology performs a simultaneous classification by exploit-
ing the relationships between the class variables to be predicted.
Note that, under this framework, several target variables could be
taken into account to enrich the SA problem and create market
intelligence.

Most papers have already addressed the SA task by building
classifiers that exclusively rely on labelled examples [33]. How-
ever, in practice, obtaining enough labelled examples for a
classifier may be costly and time consuming, an annotator has
to read loads of text to create a reliable corpus. And this problem
is accentuated when using multiple target variables. So, why not
make use of the huge amount of unlabelled data available on the
Internet to improve our solutions? Thus, the scarcity of labelled
data also motivates us to deal with unlabelled examples in a
semi-supervised framework when working with the exposed
multi-dimensional view.

Motivated by the aforementioned comments, the following
contributions are presented in this paper:

1. A novel and competitive methodology to solve the exposed
real-world SA application.

2. Aninnovative perspective to manage the SA domain by dealing
with several related problems in the same classification task.

3. The use of multi-dimensional class Bayesian network classi-
fiers as supervised methodology to solve these multi-dimen-
sional problems. This demonstrates that there is an actual
correlation between sentiment and subjectivity as previously
observed in several SA researches [35,37,56].

4. A supervised filter learning algorithm for multi-dimensional
J/K dependences Bayesian network classifiers.

5. The extension of multi-dimensional classification to the semi-
supervised framework by proposing a set of semi-supervised

learning algorithms. This demonstrates that more predictive
models can be found by making use of the unlabelled examples.

The rest of the paper is organised as follows. Section 2
describes the real multi-dimensional problem extracted from
the SA domain which is solved in this paper, reviews the work
related to SA and its problems, and motivates the use of multi-
dimensional approaches in this context. The multi-dimensional
supervised classification paradigm is defined in Section 3. Section
4 describes the multi-dimensional class Bayesian network classi-
fiers. A group of algorithms to learn different types of multi-
dimensional Bayesian classifiers in a supervised framework is
introduced in Section 5. Section 6 not only introduces the idea of
semi-supervised learning into the multi-dimensional classifica-
tion, but also extends the supervised algorithms presented in
Section 5 to the semi-supervised framework. Section 7 shows the
experimental results of applying the proposed multi-dimensional
classification algorithms using different feature sets to the real
problem stated in Section 3. Finally, Section 8 sums up the paper
with some conclusions and future work recommendations.

2. Problem statement and state-of-the-art review
2.1. The Sentiment Analysis domain

The concept of SA, motivated by different real-world applications
and business-intelligence requirements, has recently been inter-
preted more broadly to include many different types of analysis of
text, such as the treatment of opinion, sentiment or subjectivity [37].

Within this broad field, the most known problem is referred to as
Sentiment Polarity classification, in which the problem of classifying
documents by their overall sentiment is considered, i.e. determining
whether a review is positive or negative [38]. Several papers
have expanded this original goal by, for instance, adding a neutral
sentiment [56] or considering a multi-point scale [48] (e.g. one to
five stars for a review) or using sentences or phrases instead of
reviews as input of the sentiment classifier [56].

Work in Sentiment Polarity classification often assumes the
incoming documents to be opinionated [37]. For many applica-
tions, though, we may need to decide whether a given document
contains subjective information or not. This is referred to as
Subjectivity classification and has gained considerable attention
in the research community [41,42,54]. Due to its ability to
distinguish subjective texts from the factual ones, it is also of
great importance in SA. There are works in which a subjectivity
classifier is used to filter the objective documents from a dataset
before applying a sentiment classifier [56,35]. There are even
works in which the need to predict both the Sentiment
Polarity and the Subjectivity has been noticed [21]. As stated in
[37], “the problem of distinguishing subjective versus objective
instances has often proved to be more difficult than subsequent
polarity classification, so improvements in subjectivity classifica-
tion promise to positively impact sentiment classification”. From
this quotation we can infer that Sentiment Polarity classification
depends on Subjectivity classification and that there is a need to
improve the methodologies used in Subjectivity classification.

Other closely related problems can be found in the SA domain:
the set of problems called Viewpoints and Perspectives [37] which
includes problems such as classifying political texts as liberal or
conservative or placing texts along an ideological scale. Authorship
identification deals with the problem of identifying the author of a
given text [2]. Affection Analysis consists of extracting different types
of emotions or affects from texts [1]. Sarcasm Recognition deals with
the SA hard-nut problem of recognising sarcastic sentences [52].
More problems and applications are discussed in [37].
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2.2. The ASOMO problem: a multi-dimensional perspective of SA

In this paper, we deal with a recent real-world problem
studied in Socialware®. This problem is extracted from its ASOMO
service of mobilised opinion analysis and it has an underlying
multi-dimensional nature that can be viewed as an augmentation
of the classical problems of Sentiment Polarity classification and
Subjectivity classification.

The main goal of this application is to determine the attitude
of a customer when he writes a post about a particular topic in a
specific forum through three different dimensions: Sentiment
Polarity and Subjectivity (as widely used in the SA domain), and
a third one called Will to Influence, which is frequently used in
the framework of ASOMO. The latter is defined as the dimension
that rates the desire of the opinion holder to cause a certain
reaction in the potential readers of the text. While some people
leave a post on a forum to tell of their experience, others seek to
provoke a certain kind of reaction in the readers. In our applica-
tion, this class variable has four possible values: none (declarative
text), question (soft Will to Influence), complaint/recommenda-
tion (medium Will to Influence) and appellation (strong Will to
Influence). We use two example cases in order to introduce the
ASOMO problem:

e A customer who has bought an iPhone does not know how to
set up 3G on the phone, so he writes on a forum: “How can I
configure 3G on my iPhone?”.

e Another customer is upset with the iPhone battery lifetime
and writes in the same forum: “If you want long battery life,
then don’t buy an iPhone”.

The attitude of both customers is very different. The first one
has a doubt and writes to obtain a solution to his problem
{neutral sentiment, objective and soft Will to Influence} while
the second writes so as not to recommend the iPhone {negative
sentiment, subjective and strong Will to Influence}. Fig. 1 shows
one possible view of this problem and how we can translate the
attitude of the author in three different class variables that are
strongly correlated.

As previously mentioned, Will to Influence has four possible
values: declarative text, soft, medium and strong will to influence.
Sentiment Polarity, in this dataset, has five different labels as
occurs in the 1-5 star ratings. In addition to the three classic
values (positive, neutral and negative), it has the values “very
negative” and “very positive”. Note that in using this approach,
the label “neutral” in Sentiment Polarity is ambiguous, as hap-
pens in the SA literature [37]. So, it can be used as a label for the
objective text (no opinion) or as a label for the sentiment that lies
between positive and negative. As usual, Subjectivity has two

values: objective and subjective. Fig. 2 shows not only the label
distribution in the dataset for each different class variable (the
three bar diagrams on the left), but also the joint label distribu-
tion of these three class variables over the labelled subset of the
ASOMO dataset (the table on the right). Note that there are
configurations of the joint label distribution that are equal to
zero, this is because there are configurations of the class variables
which are not possible, e.g. {strong Will to Influence, negative
sentiment and objective}.

2.2.1. The ASOMO SA dataset

In order to deal with the previous problem, the ASOMO dataset
was collected by Socialware®. This corpus was extracted from a
single online discussion forum in which different customers of a
specific company had left their comments, doubts and views about
a single product. The forum consists of 2542 posts written in
Spanish, with an average of 94 + 74 words per post. One hundred
and fifty of these documents have been manually labelled by an
expert in Socialware® according to the exposed three different
dimensions and 2392 are left as unlabelled instances.

As a result of the extensive work carried out by Socialware® on
manually dealing with the ASOMO problem in the recent past,
high levels of experience and understanding of determining the
major factors that characterise the attitude of the customers have
been gained. These factors are the following: (1) the implication
of the author with the other customers in the forum, (2) the
position of authority of the customer, and (3) the subjective
language used in the text.

These broad factors have been helpful in detecting a list of 14
morphological features which characterise each analysed docu-
ment. In order to engineer this list of features, each document is
preprocessed using an open source morphological analyser [3,8].
Firstly, spelling in the entire corpus is checked. Then, the analyser
provides information related to the part-of-the-speech (PoS)
tagging [38]. Once the preprocessing task is performed, determin-
ing the values of the features is carried out by just looking for
specific patterns in the corpus. In the following paragraphs, a
detailed introduction of each factor is given, as well as a descrip-
tion of the features used in each factor.

The implication of the author: This factor covers the features
that are related with the interaction between the author and the
other customers in the forum. It consists of six different features
that are described in Table 1. For each feature, we show its
description and an example (with its translation into English) of
the type of pattern that matches with the feature.

The position of authority of the opinion holder is mainly
characterised by the purpose of the written post and it is related
to the potential influence on the readers of the forum. The author

SHARE KNOWLEDGE Objective text

Subijectivity

INTENTION
Why does the author

/

Attitude of
the author

GIVE AN OPINION Subjective text

What is the opinion of
the author?

Sentiment Polarity

write the post?

+ Will to Influence

Questions, Answers,
Wishes,
Complaints ...

Positive, Neutral or
Negative

©

Fig. 1. The vision of Socialware” of the problem of determining the attitude of the writers in a forum.



J. Ortigosa-Hernandez et al. / Neurocomputing 92 (2012) 98-115 101

Will to Influence distribution Conf. | Will to Inﬂ}xenoe Sentiment Pol.arity Subjectivity | Num
60 1 Declarative Very Negative No 0
2 Declarative Very Negative Yes 0
3 Declarative Negative No 0
4 Declarative Negative Yes 1
5 Declarative Neutral No 2
6 Declarative Neutral Yes 3
7 Declarative Positive No 0
8 Declarative Positive Yes 3
9 Declarative Very Positive No 0
10 Declarative Very Positive Yes 0
11 Soft WI Very Negative No 0
12 Soft WI Very Negative Yes 0
Declarative Soft WI  Medium WI  High Wi 13 Soft WI Negative No 0
14 Soft WI Negative Yes 12
Sentiment Polarity distribution 15 Soft WI Neutral No 12
16 Soft WI Neutral Yes 9
17 Soft WI Positive No 0
18 Soft WI Positive Yes 13
19 Soft WI Very Positive No 0
20 Soft WI Very Positive Yes 1
21 Medium WI Very Negative No 0
22 Medium WI Very Negative Yes 4
23 Medium WI Negative No 0
24 Medium WI Negative Yes 17
25 Medium WI Neutral No 3
26 Medium WI Neutral Yes 5
V.Neg Negative Neutral Positive V. Pos 27 Medium WI Positive No 0
28 Medium WI Positive Yes 11
Subjectivity distribution 29 Medium WI Very Positive No 0
150 30 Medium WI Very Positive Yes 3
31 High WI Very Negative No 0
32 High WI Very Negative Yes 5
1hlc 33 High WI Negative No 0
34 High WI Negative Yes 16
- 35 High WI Neutral No 7
36 High WI Neutral Yes 9
37 High WI Positive No 0
a8 38 High WI Positive Yes 8
39 High WI Very Positive No 0
40 High WI Very Positive Yes 6
0 Total Number of Posts 150

Objective Subjective

Fig. 2. Distribution of the labels of the three class variables over the labelled subset. The marginal distributions of Will to Influence, Sentiment Polarity and Subjectivity are
represented as bar diagrams (left) and the joint distribution is represented in a table (right).

Table 1
Subset of features related to the implication of the author with other customers.

Feature Description Example Translation
First persons Number of verbs in the fist person Contraté ... I hired ...
Second persons Number of verbs in the second person Tienes ... You have ...
Third persons Number of verbs in the third person Sabe ... He knows ...
Relational forms Number of phatic expressions, i.e. expressions (1) Hola (1) Hello
whose only function is to perform a social task (2) Gracias de antemano (2) Thanks in advance
Agreement expressions Number of expressions that show (1) Estoy de acuerdo contigo (1) I agree with you
agreement or disagreement (2) No tienes raz6n (2) You're wrong
Request Number of sentences that express (1) Me gustaria saber ... (1) I'd like to know ...
a certain degree of request (2) Alguien podria ... (2) I would appreciate it if someone could ...

could express advice, disapproval with a specific product, predic-
tions, etc. Table 2 shows the six features that are part of this
major factor.

Subjective language deals with the opinion of the author.
In order to determine this factor, we consider only the adjective
detected with the PoS recogniser, as commonly carried out in the

state-of-the-art literature [27]. Then, the adjectives are
classified in polarity terms by means of a hand-annotated
sentiment-lexicon. As a result of this task, we obtain two
features: Positive Adjectives and Negative Adjectives, which are
the number of positive and negative adjectives, respectively, in
the text.
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Table 2
Subset of features related to the position of authority of the customer.

Feature Description Example Translation
Imperatives Number of imperative verbs in the second person No compres Do not buy
Exhorts and Advice Number of exhort verbs, e.g. recommend, advise, prevent, etc. Te recomiendo ... I recommend that you ...
Sufficiency Expressions Number of expressions used to corroborate other sentences of the text (1) Por supuesto (1) Of course
(2) Naturalmente, ... (2) Naturally, ...
Prediction Verbs Number of verbs in the future (1) Voy a probar (1) I'm going to try
(2) Llamaré. (2) I'll call
Authority Number of expressions that denote high degree of authority, Si fuera tq, ... If I were you, ...
usually written in the subjunctive mode
Questions Number of question in the post, both direct and indirect (1) ¢ Qué tal es? (1) How is it?

(2) Dime qué te parece (2) Tell me what you think of it

The 14 features (the ASOMO features) are normalised to be in
the range [0,1] by dividing them by the maximal observed value.

2.3. The need for multi-dimensional classification techniques

In order to solve the typical problems of the SA domain (those
exposed in Section 2.1), there are two main types of techniques
that can be distinguished: Symbolic and Machine Learning [20].
The symbolic approach uses manually crafted rules and lexicons,
whereas the machine learning approach uses supervised or semi-
supervised learning to construct a model from a training corpus.
Due to the fact that the main proposal of this paper is to solve a
real SA problem by means of a novel machine learning technique,
this paper focuses on the latter. The machine learning approaches
have gained interest because of (1) their capability to model many
features and, in doing so, capturing context, (2) their easier
adaptability to changing input, and (3) the possibility to measure
the degree of uncertainty by which a classification is made [20].
Supervised methods that train from examples which have been
manually classified by humans are the most popular.

Most of the work that has been carried out in tuning up these
machine learning techniques (as also happens in text processing
tasks) has been dedicated to addressing the problem of converting a
piece of text into a feature vector (i.e. model features able to capture
the context of the text) in order to improve the recognition rates.
The most common approaches use the single lower cased words
(unigrams) as features, which in several cases reports pretty good
results as in [38]. However, other common approaches can be found,
such as n-grams [35] or PoS information [38]. A deeper study of such
work is beyond the scope of this paper. The reader who is interested
in feature engineering can consult [22], where there is an extensive
body of work that addresses feature selection for machine learning
approaches in general.

On the other hand, little research has been done on the
induction of the classifiers. Most of the existing works learn
either a naive Bayes [38,56] or a support vector machine (SVM)
[2,38], i.e. uni-dimensional classifiers able to predict a single
target variable. For that reason, the classification models used in
the SA literature seem inappropriate to model the three-dimen-
sional problem exposed in this paper. However, there are several
possibilities to adapt these uni-dimensional classifiers to multi-
dimensional classification problems, and the ASOMO problem is
no exception. Unfortunately, none of these approaches captures
exactly the underlying characteristics of the problem [44]:

e One approach is to develop multiple classifiers, one for each
class variable. However, this approach does not capture the
real characteristics of the problem, because it does not model
the correlations between the different class variables and so, it
does not take advantage of the information that they may

provide. It treats the class variables as if they were indepen-
dent. In the case of the previously exposed problem, it would
be splitting it into three different uni-dimensional problems,
one per each class variable.

e Another approach consists of constructing a single artificial
class variable that models all possible combinations of classes.
This class variable models the Cartesian product of all the class
variables. The problem of this approach arises because this
compound class variable can easily end up with an excessively
high cardinality. This leads to computational problems
because of the high number of parameters the model has to
estimate. Furthermore, the model does not reflect the real
structure of the classification problem either. By means of this
approach, the ASOMO problem would be redefined as a uni-
dimensional problem with a 40-label class variable.

The previous approaches are clearly insufficient for the resolu-
tion of problems where class variables have high cardinalities or
large degrees of correlation among them. The first approach does
not reflect the multi-dimensional nature of the problem because
it does not take into account any correlation among the class
variables. The second approach, however, does not consider the
possible conditional independences between the classes and
assumes models that are too complex. As can be seen in the
experiments section, these deficiencies in capturing the real
relationship between the class variables may cause a low perfor-
mance, so new techniques are required to bridge the gap between
the solutions offered by the learning algorithms used in the SA
literature and the multi-dimensional underlying nature of the
ASOMO problem.

Multi-label learning [51], which deals with problems with
several labels per each instance, could also be viewed as a
potential solution to this problem. However, as we show in the
following section, the ASOMO problem cannot be directly tackled
by the multi-label techniques. This problem is characterised for
having several class variables, instead of several labels.

Within this framework, in order to yield more adequate
models for problems with several target variables, multi-dimen-
sional classification appears. It is able to use the correlations and
conditional independencies between class variables in order to
help in the classification task in both supervised and semi-
supervised learning frameworks.

3. Multi-dimensional classification

In this section we present, in detail, the nature of the multi-
dimensional supervised classification paradigm and how to define
and evaluate a multi-dimensional classifier.
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3.1. Multi-dimensional supervised classification problems

A typical (uni-dimensional) supervised classification problem
consists of building a classifier from a labelled training dataset
(see Table 3) in order to predict the value of a class variable C
given a set of features X=(Xi,..,Xn) of an unseen unlabelled
instance X = (X1,. .,Xn).

If we suppose that (X,C) is a random vector with a joint
feature-class probability distribution p(x,c) then, a classifier  is
a function that maps a vector of features X into a single class
variable C

Y :{0,...,r1=1} x --- x {0,...,rp—1}—{0,...,t—1}
X—C

where r; and t are the number of possible values of each feature
X;,(i=1,...,n) and the class variable respectively.

A generalisation of this problem to the simultaneous predic-
tion of several class variables has recently been proposed in the
research community [5,17,40,43,44,53]. This generalisation is
known as multi-dimensional supervised classification. Its purpose
is to simultaneously predict the value of each class variable in
the class variable vector ¢=(cy,..,c;m) given the feature vector
X = (x1,..,Xp) of an unseen unlabelled instance. The training
dataset, in this multi-dimensional framework, is expressed as
shown in Table 4.

Thus, the classifier i becomes a function that maps a vector of
features X into a vector of class variables C

Yo{0,...,r1=1} x -+ x{0,...,rp—1}+—{0,...,t;—=1} x --- x {0, ... ,t;r—1}

X—C

where 1; and t; are the cardinalities of each feature X; (for
i=1,...,n)and each class variable C; (for j=1, ...,m) respectively.
Note that we consider all variables, both predictive features and
class variables, as discrete random variables.

A classifier is learnt from a training set (see Table 4) with a
classifier induction algorithm A(-). Given the induction algorithm
A(), which is assumed to be a deterministic function of the
training set, the multi-dimensional classifier obtained from a
training set D is denoted as yy = A(D).

3.2. Related areas
In this paper we deal with multi-dimensional classification
problems, and they must not be confused with other classification

tasks which have similar designations, e.g. multi-class [50]:

Table 3
A possible representation of a (uni-dimensional) labelled training dataset.

X X3 Xn C
(1) (1) . (1) (1
X3 X, Xn [4
) 2) 2) @)
Xy X5 Xy c
(N) (N) (N) (N)
X3 X5 Xn c
Table 4

Representation of a multi-dimensional labelled training dataset.

X1 X5 . Xn G (& Cmn
) (1) (1) ) ) M

X4 X5 X o ¢ Cin
) @) ) @) @) @

X§ X5 X cf c5 [o

(N) (N) (N) (N) (N)
X3 X Xn c Cm

problems with a single class variable that can take more than
two values, multi-task [9]: an inductive transfer approach, where
a main task is predicted with the help of the prediction of some
extra tasks, or multi-label classification [51]: where an instance can
be classified with several different labels.

Note, however, that a multi-label problem can be easily
modelled as a multi-dimensional classification problem where
each label or category is a binary class variable whose value is one
when the instance is included in that category or zero otherwise.
The opposite, which is redefining multi-dimensional problems as
multi-label problems, seems very unnatural and has an important
drawback: current multi-label methods cannot always handle the
multi-dimensional nature of this kind of problems (illustrated in
Example 1). This limitation gave rise to the development of multi-
dimensional techniques, which nowadays, is differentiated to
multi-label learning in the machine learning research community,
see for instance [5,44]. These concerns can be demonstrated by
setting up the following simple example:

Example 1. Suppose we consider a multi-dimensional problem
where we want to determine the sex, the colour of the eyes and
hair colour given several characteristics of a person (as repre-
sented in Table 5). The problem has five discrete predictive
variables and three class variables: Sex, Eyes and Hair. Sex have
two possible values: male and female, Eyes has three: blue, dark
and green, and Hair has four possible labels: black, blonde, brown
and ginger. Note that this kind of problem is similar to our
application due to the fact that both have several class variables
with more than two values.

If we wanted to tackle this problem by means of a multi-label
algorithm, we would have to force it to fit in the multi-label
framework. The most straightforward way to transfer it is to treat
each value of each class variable as one independent label, i.e.
treat each value Male, Female, Blue, Dark, etc. as a different label.
In order to accomplish that the following conversion has to be
done:

1. First, define each instance as a list of three labels (view the last
column of Table 5), one per each class variable.

2. Second, deal with the main drawback that this approach has:
there are several configuration of labels that are forbidden
and/or senseless in the original multi-dimensional problem.
For that reason, several restrictions to the multi-label techni-
que have to be added in order to reflect the true nature of the
problem. These constraints are the following:

(a) Fix the number of labels per each instance, e.g. forbid the
instances classified as {Male} or {Male, Blue, Black, Ginger}.
Each instance must have just three labels.

(b) Ensure that each instance has just one label per each class
variable of the original multi-dimensional problem. We
cannot classify an instance as {Male, Female}.

To the best of our knowledge, adapting multi-label techniques
by adding several restrictions to deal with this type of problems,
as stated in the previous paragraphs, has not been proposed by

Table 5
An example of a multi-dimensional problem and the most straightforward way to
transfer it to the multi-label domain.

inst. X; X X3 X5 Xs Sex Eyes  Hair List of labels

9

Male Blue Black {Male, Blue, Black}
Male Dark Brown {Male, Dark, Brown}
Female Dark Blonde {Female, Dark, Blonde}
Male Green Blonde {Male, Green, Blonde}
Female Blue Ginger {Female, Blue, Ginger}
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Multi-dimensional
problems

Hierarchichal
problems

Multi-label
problems

Structured
prediction
problems

Fig. 3. Well known multi-dimensional classification subproblems, such as multi-
label and multi-task learning, and structure prediction, contained in the set of
multi-dimensional problems.

the research community. Therefore, it is not possible to fit most of
the multi-dimensional problems (those that have at least one
class variable with more than two values) into the current multi-
label framework.

In analogous fashion, the exposed ASOMO problem cannot be
solved by means of a multi-label technique. It has two class
variables, Will to Influence and Sentiment polarity, with four and
five values, respectively. For that reason, multi-label techniques
cannot be applied to the application presented in this paper.

In addition to multi-label classification, other classification
tasks in pattern recognition can also naturally be modelled as a
multi-dimensional classification problem [5]. For instance, struc-
tured prediction [4,16], where there are several class variables
with a conditional structure among them, or hierarchical classifi-
cation [19], where there is a hierarchical structure (two or more
levels) among the class variables. Therefore, the multi-dimen-
sional techniques can be applied to these subproblems as the set
of multi-dimensional problems contains these well known sub-
problems, as shown in Fig. 3.

3.3. Multi-dimensional classification rule

In probabilistic classification, the induction multi-dimensional
algorithm learns a probability distribution p(x,c) or p(c|x) from
the training data and classifies a new unlabelled instance based
on it. For that purpose, a classification rule must be defined.

In uni-dimensional supervised classification, the most com-
mon classification rule returns the most likely class value given
the features

¢ = arg max({p(c|x1,...,Xn)}
Cc

The multi-dimensional nature of the problem allows us to
develop several classification rules that would make no sense in
single-class classification because they take into account multiple
class variables. Nevertheless, the previous one-dimensional classifi-
cation rule can be easily generalised to the prediction of more than
one class variable. In this case, the multi-dimensional classifier
returns the most probable combination of class variables given the
features. This rule is known as joint classification rule [44]

(€1, ...,6m)=arg max{p(ci, ...,Cm|X1, ....Xn)}

Although several other classification rules are proposed in
[44], it is shown that the joint classification rule obtains better
results.

3.4. Multi-dimensional classification evaluation

Once a classifier is constructed, its associated error needs to be
measured. The prediction error of a single-class classifier i is the
probability of the incorrect classification of an unlabelled instance
x and is denoted as €(y)

€W) =ph(X) # C) = Ex[0(c,y(X))]

where d(x,y) is a loss function whose results are 1 if x# y and 0 if
X=y.

However, in multi-dimensional classification, the correctness
of a classifier can be measured in two different ways:

e Joint evaluation: This consists of evaluating the estimated
values of all class variables simultaneously, that is, it only
counts a success if all the classes are correctly predicted, and
otherwise it counts an error

W) =ph(X) # ©) = Ex[d(¢, Y/ (X))]

This rule is the generalisation of the previous single-class
evaluation measure to multi-dimensional classification.

e Single evaluation: After a multi-dimensional learning process,
this consists of separately checking if each class is correctly
classified. For example, if we classify an instance x as
(¢1=0,6,=1) and the real value is (c; =0,c, =0), we count
¢ as a success and ¢, as an error. This approach provides
one performance measure for each class G (for j=1,...,m).
The output of this evaluation is a vector € of size m with the
performance function of the multi-dimensional classifier for
each of the class variables

(W) =p(h;(X) # Cj) = Ex[0(c;, ¥(X))]

where y;(x) is the estimation of the multi-dimensional classi-
fier for the j-th class variable.

Ideally, we would like to exactly calculate the error of a
classifier, but in most real world problems the feature-label
probability distribution p(x,c) is unknown. So, the prediction
error of a classifier y is also unknown; it cannot be computed
exactly, and thus, must be estimated from data.

Several approaches to estimate the prediction error can be
used. In this work, we use one of the most popular error
estimation techniques: k-fold cross-validation (k-cv) [49] in its
repeated version. In k-cv the dataset is divided into k folds, a
classifier is learnt using k—1 folds and an error value is calculated
by testing the learnt classifier in the remaining fold. Finally, the
k-cv estimation of the error is the average value of the errors
made in each fold. The repeated r times k-cv consists of estimat-
ing the error as the average of r k-cv estimations with different
random partitions into folds. This method considerably reduces
the variance of the error estimation [45].

In multi-dimensional classification we could be interested in
either learning the most accurate classifier for all class variables
simultaneously (measured with a joint evaluation) or in finding
the most accurate classifier for each single class variable (mea-
sured with single evaluations). In this paper, we are mainly
interested in using the joint evaluation for evaluation. However,
in our application to SA we also measure the performance of the
algorithms with a single evaluation per each class variable in
order to compare both types of evaluation and perform a deeper
analysis of the results.
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Fig. 4. A multi-dimensional Bayesian classifier and its division. (a) Complete graph, (

4. Multi-dimensional Bayesian network classifiers

In this section, multi-dimensional class Bayesian network
classifiers [5,53], which are able to deal with multiple class
variables to be predicted, are presented as a recent generalisation
of the classical Bayesian network classifiers [32].

4.1. Bayesian network classifiers

Bayesian networks are powerful tools for knowledge repre-
sentation and inference under uncertainty conditions [39]. These
formalisms have been extensively used as classifiers [31] and
have become a classical and well-known classification paradigm.

A Bayesian network is a pair B=(5,0) where S is a directed
acyclic graph (DAG) whose vertices correspond to random vari-
ables and whose arcs represent conditional (in)dependence rela-
tions among variables, and where @ is a set of parameters.

A Bayesian classifier is usually represented as a Bayesian
network with a particular structure. The class variable is on the
top of the graph and it is the parent of all predictive variables.

In spite of the popularity of Bayesian network classifiers, few
works have taken into account their generalisation to multiple class
variables [5,17,43,44,53]. In multi-dimensional classification, we con-
sider Bayesian networks over a finite set V= {Cy,...,Cn,X1,...,Xn}
where each class variable G and each feature X; takes a finite set of
values. @ is formed by parameters 7wy and Oy, where my =p
(Ci =c|Pa(Cy) = Pa(c;);) for each value ¢ that can take each class
variable G; and for each value assignment Pa(c;); to the set of the
parents of G. Similarly, 03 = p(X; = x|[Pa(X;) = Pa(x;);) for each value
X, that can take each feature X; and for each value assignment Pa(x;);
to the set of the parents of Xi.

Thus, the network B defines a joint probability distribution
p(c1,...,.Cm,X1,...,Xn) Which is given by

m n
Xn) = H Tijk H Ok

i=1 i=1

pC1, .. ,CmiX1, - ..

4.2. Structure of multi-dimensional class Bayesian network
classifiers

A multi-dimensional class Bayesian network classifier is a
generalisation of the classical one-class variable Bayesian classi-
fiers for domains with multiple class variables [53]. It models the
relationships between the variables by means of directed acyclic
graphs (DAG) over the class variables and over the feature

) feature selection subgraph, (c) class subgraph and (d) feature subgraph.

variables separately, and then connects the two sets of variables
by means of a bi-partite directed graph. So, the DAG structure
S=(V,A) has the set V of random variables partitioned into the
sets Vc={Cy,...,Cn}, m>1, of class variables and the set
Ve ={X1,...,.Xn} (n>1) of features. Moreover, the set of arcs A
can be partitioned into three sets: Acr, Ac and Ar with the
following properties:

® Acr =V x Vi is composed of the arcs between the class
variables and the feature variables, so we can define the
feature selection subgraph of S as Scr = (V,Acr). This subgraph
represents the selection of features that seems relevant for
classification given the class variables.

® Ac = V¢ x V¢ is composed of the arcs between the class
variables, so we can define the class subgraph of S induced
by V¢ as SC = (Vc,Ac).

e Ar =V x Vg is composed of the arcs between the feature
variables, so we can define the feature subgraph of S induced
by VE as Sp = (Vr,Af).

Fig. 4 shows a multi-dimensional class Bayesian network
classifier with 3 class variables and 5 features, and its partition
into the three subgraphs.

Depending on the structure of the three subgraphs, the
following sub-families? of multi-dimensional class network clas-
sifiers are proposed in the state-of-the-art literature:

e Multi-dimensional naive Bayes classifier (MDnB): The class
subgraph and the feature subgraph are empty and the feature
selection subgraph is complete.

e Multi-dimensional tree-augmented Bayesian network classifier
(MDTAN): Both the class subgraph and the feature subgraph
are directed trees. It could be viewed as the multi-dimensional
version of the (uni-dimensional) tree-augmented Bayesian
network classifier (TAN) proposed in [24].

e Multi-dimensional J/K dependences Bayesian classifier (MD J/K):
This structure is the multi-dimensional generalisation of the
well-known K-DB [47] classifier. It allows each class variable C;
to have a maximum of J dependences with other class vari-
ables G, and each predictive variable X; to have, apart from the
class variables, a maximum of K dependences with other
predictive variables.

2 In [53,17,43], instead of multi-dimensional, the term fully is used in order to
name the classifiers.
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In the following section, several algorithms are provided in
order to learn from a given dataset the previous sub-families of
multi-dimensional Bayesian network classifiers.

5. Learning multi-dimensional Bayesian network classifiers

As in the classic Bayesian network learning task, learning a
multi-dimensional class Bayesian network classifier from a train-
ing dataset consists of estimating its structure and its parameters.
These two subtasks are called structure learning and parameter
learning respectively. Due to the fact that each previously
introduced sub-family has different restrictions in its structure,
a different learning algorithm is needed for each one.

In this section, we provide algorithms for learning MDnB [53],
MDTAN [53] and MD J/K classifiers from a given dataset. The
MDnB and MD J/K learning algorithms use a filter approach, i.e.
the learning task precedes the classification evaluation. However,
as it is proposed in its original work [53], the MDTAN learning
algorithm is formulated as a wrapper approach [25], i.e. it tries to
find more accurate classifiers by taking advantage of the classi-
fication evaluation.

As Fig. 5 shows, in the MDnB classifier, each class variable is
parent of all the features, and each feature has only all the class
variables as parents. Conventionally, the class subgraph and the
feature subgraph are empty and the feature selection subgraph is
complete. This classifier assumes conditional independence
between each pair of features given the entire set of class
variables. Due to the fact that it has no structure learning (the
structure is fixed for a determined number of class variables and
features), learning a MDnB classifier consists of just estimating
the parameters @ of the actual model by using a training dataset
D. This is achieved by calculating the maximum likelihood
estimator (MLE) [15].

Instead, learning a MDTAN classifier consists of learning both
structure and parameters. A wrapper structure learning algorithm
is proposed in [53]. Its aim is to produce the MDTAN structure
(see Fig. 6) that maximises the accuracy from a given dataset. This
algorithm has a main part called Feature subset selection algorithm,

Fig. 5. An example of a multi-dimensional naive Bayes structure.

AN

Fig. 6. An example of a multi-dimensional tree-augmented network structure.

which follows a wrapper approach [25] by performing a local
search over the A structure. In order to obtain a MDTAN struc-
ture in each iteration, it generates a set of different Ac structures
from a current A and learns its class subgraph and feature
subgraph by using the following sub-algorithms:

1. Ac structure learning algorithm is the algorithm that learns the
structure between the class variables by building a maximum
weighted spanning [29] tree using mutual information.

2. Af structure learning algorithm learns the Ar subgraph by using
conditional mutual information, by means of the Chow and Liu
algorithm [11].

After that, the accuracies of all the learnt models are com-
puted. The iterative process continues by setting the Acr of the
best classifier, in terms of estimated accuracy, as current Ac. This
algorithm belongs to the hill-climbing family of optimisation
algorithms, i.e. when no improvement is achieved by generating
a new set of structures, the algorithm stops.

5.1. Multi-dimensional J/K dependences Bayesian classifier

The MD J/K (see Fig. 7), which is introduced in [44], is the
generalisation of the K dependence structure [47] to the multi-
dimensional framework. It is able to move through the spectrum
of allowable dependence in the multi-dimensional framework,
from the MDnB to the full multi-dimensional Bayesian classifier.
Note that from the setting ] = K =0, we can learn a MDnB, setting
J=K=1 a MDTAN structure is learned and so on. The full multi-
dimensional Bayesian classifier, which is the classifier that has the
three complete subgraphs, can be learnt by setting | = (m—1) and
K = (n—1), where m and n are the number of class variables and
predictive features respectively.

Although the MD J/K structure has been proposed in the state-
of-the-art literature, to the best of our knowledge, a specific MD J/
K learning algorithm for the multi-dimensional framework has
not been defined by the research community. To bridge this gap,
in this paper, we propose a filter algorithm in a supervised
learning framework capable of learning this type of structure
(see Algorithm 1).

In this algorithm, we do not directly use the mutual informa-
tion as measured in the previous MDTAN learning algorithm [53].
This is due to the fact that the mutual information is not
normalised when the cardinalities of the variables are different,
so we use an independence test to determine if a dependence
between two variables is strong enough to be part of the model: It

Fig. 7. An example of a multi-dimensional 2/3-dependence Bayesian network
structure.
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is known [30] that 2Nf(Xi,Xj) asymptotically follows a 2
distribution with (r;—1)(rj—1) degrees of freedom, where N is
thp number of cases, if X; and X; are independent, i.e. Limy_ 2
NI(Xf’Xf)W’X(zrrl)(rrl)'

Algorithm 1. A MD J/K structure learning algorithm using a filter
approach.

1. Learn the A structure

1. Calculate the p-value using the independence test for each
pair of class variables, and rank them.

2. Remove the p-value higher than the threshold
(1-s,)=0.10.

3. Use the ranking to add arcs between the class variables
fulfilling the conditions of no cycles between the class
variables and no more than J-parents per class.

2. Learn the Acr structure

1. Calculate the p-value using the independence test for each
pair G; and X; and rank them.

2. Remove the p-value higher than the threshold
(1-s,)=0.10.

3. Use the ranking to add arcs from the class variables to the
features.

3. Learn the Ar structure

1. Calculate the p-value using the conditional independence
test for each pair X; and X; given Pac(X;) and rank them.

2. Remove the p-value higher than the threshold
(1-s,)=0.10.

3. Use the ranking to add arcs between the class variables
fulfilling the conditions of no cycles between the features
and no more than K-parents per feature.

Based on this result, a statistical hypothesis test can be carried
out in a multi-dimensional Bayesian network classifier to check
the robust dependences in Ac. The null hypothesis Hy is that the
random variables G and G are independent. If the quantity
2Ni(Ci,Cj) surpasses a threshold s, for a given test size

“:/S X%ti—l)(rj—l) ds
where t; is the cardinality of C; and t; the cardinality of Cj, the null
hypothesis is rejected and a dependence between C; and C is
considered. Therefore the arc between these class variables is
included in the model. The dependences in Acr are calculated
using the same procedure, the null hypothesis Hy is that “The
random variables C; and X; are independent”. So, if ZNf(C,»,Xj)
surpasses the threshold s,, then the null hypothesis is rejected
and an arc is included in the model. This test was also used on
single-class Bayesian network classifiers to check the depen-
dences among the class variables and the features [7].

Using this approach, the structures Ac and Acr are learnt in steps
1 and 2 of Algorithm 1, respectively.

In order to calculate the structure Ar, we need to use the
conditional mutual information between a feature X; and a feature
X; given its class parents Pac(X;) to determine if the relation between
both predictive features should be included in the model. For that
purpose, we use the generalisation of the previous result to the case
of conditional mutual information as defined in [30]

LimNHmZNI(Xi,Xj ‘ Pac(Xj)) > X(zri—])(rj—l)(\Pat(Xj)\)

where r; is the cardinality of X;, rj the cardinality of X; and |Pac(X;)|
the cardinality of the class parents of X;.

Analogously to the hypothesis test previously described, based
on these results we can perform the following conditional
independence test: the null hypothesis assumes that the random
variables X; and X; are conditionally independent given Pac(X;).
So, if the quantity 2Nf(Ci,Cj\Pac(Xj)) surpasses a threshold s, for a
given test size

o0
— )
%= /S Xiti—1)6-1)(|Pacexy) ) 95

the null hypothesis is rejected and the random variables X; and X;
are considered dependent given Pac(Xj). Therefore, the arc is
included in the model. The structure Acr is learnt using this
hypothesis test in step 3 of Algorithm 1.

6. Semi-supervised multi-dimensional classification

In this section, we proceed with the extension of the previous
multi-dimensional learning algorithms to the semi-supervised
learning framework. When large amounts of labelled data are
available, one can apply familiar and powerful machine learning
techniques such as the previous multi-dimensional Bayesian net-
work algorithms in order to learn accurate classifiers. However,
when there is a scarcity of such labelled data and a huge amount of
unlabelled data, as happens in the SA domain, one can wonder if it is
possible to learn competitive classifiers from unlabelled data.

In this context, where the training dataset consists of labelled
and unlabelled data, the semi-supervised learning approach
[10,57,58] appears as a promising alternative. It is motivated from
the fact that in many real world problems, obtaining unlabelled data
is relatively easy, e.g. collecting posts from different blogs, while
labelling is expensive and/or labor intensive, due to the fact that the
tasks of labelling the training dataset is usually carried out by
human beings. Thus, it is highly desirable to have learning algo-
rithms that are able to incorporate a large number of unlabelled data
with a small number of labelled data when learning classifiers.

In the semi-supervised learning framework, the training data-
set D, as shown in Table 5, is divided into two parts: the subset of
instances D; for which labels are provided, and the subset Dy,
where the labels are not known. Therefore, we have a dataset of N
instances, where there are L labelled examples and (N—L) unla-
belled examples. Normally, (N—L) > L, i.e. the unlabelled subset
tends to have a very large amount of instances whilst the labelled
subset tends to have a small size.

Therefore, the aim of a semi-supervised learning algorithm is
to build more accurate classifiers using both labelled and unla-
belled data, rather than using exclusively labelled examples as
happens in supervised learning.

6.1. Learning multi-dimensional Bayesian network classifiers in the
semi-supervised framework

In this section, we propose the extension of multi-dimensional
Bayesian network classifiers to the semi-supervised learning
framework by using the EM algorithm [18]. Although this method
was proposed in [18] and was deeply analysed in [34], it had been
used much earlier, e.g. [26], and it is still widely used in many
recent semi-supervised learning algorithms, e.g. [13,14,36].

The aim of the EM algorithm as typically used in semi-
supervised learning is to find the parameters of the model that
maximise the likelihood of the data, using both labelled and
unlabelled instances. The iterative process, which ensures that
the likelihood is maximised in each step, works as follows: in the
Kth iteration the algorithm alternates between completing the
unlabelled instances by using the parameters ®® (E-step) and
updating the parameters of the model ®%* " using MLE with the



108 J. Ortigosa-Herndandez et al. / Neurocomputing 92 (2012) 98-115

whole dataset (M-step), i.e. the labelled data and the unlabelled
instances that have been previously classified in the E-Step. Note
that the structure remains fixed in the whole iterative process.

Although good results have been achieved with the EM
algorithm in uni-dimensional classification [13,36], we are con-
cerned about the restriction of only maximising the parameters of
a fixed structure in our extension of the EM algorithm to the
multi-dimensional domain, where there are several class vari-
ables to be predicted. As stated in [12], if the correct structure of
the real distribution of the data is obtained, unlabelled data
improve the classifier, otherwise, unlabelled data can actually
degrade performance. For this reason, it seems more appropriate
to perform a structural search in order to find the real model.
Thus, we perform several changes to the EM algorithm in order to
avoid fixing the structure of the model during the iterative
process. The proposal is shown in Algorithm 2.

Algorithm 2. Our version of the EM Algorithm.

Input A training dataset with both labelled and unlabelled
data (Table 6) and an initial model lp(":"’ with a fixed
structure and with an initial set of parameters @ =9,

1: while the model y® does not converge do

2:  E-STEP Use the current model % to estimate the
probability of each configuration of class variables for each
unlabelled instance.

3:  M-STEP Learn a new model y**V with structure and
parameters, given the estimated probabilities in the
E-STEP.

4: end while

Output classifier i, that takes an unlabelled instance and

predicts the class variables.

In this version of the EM algorithm, we want to find the model,
both structure and parameters, that maximises the likelihood of
the whole dataset. So, in this version, the iterative process is
performed as follows: in the Kth iteration, the algorithm alter-
nates between completing the unlabelled instance by the pre-
viously learnt model 1,//”0 (E-step) and learning a new model
w*+V by using a learning algorithm with the whole dataset, both
labelled and completed instances (M-step). In the semi-super-
vised learning research community, the input initial parameter
W¥=9 of the EM Algorithm is usually learnt from the labelled
subset D;. Hence, we will continue to use this modus operandi in
this version of the algorithm. Note that our version of the EM
algorithm is closer to the Bayesian structural EM algorithm
proposed in [23] rather than the original formulation of the
algorithm [18]. However, in the case of the MDnB classifier, it is
just a parametric search since it has a fixed structure.

Table 6
A formal representation of a multi-dimensional semi-supervised training dataset.

X1 Xa Xn (@] C Cmn
D, (1) (1) (1) (1) (1 (1)
L Xy X, Xn =} [ Cm
(2) (2) (2) (2) (2) (2)
X§ X5 X c ¢ Cm
(L) (L) (L) (L) (L) (L)
X X5 Xn c o3 e Crn
(L+1) (L+1) (L+1) ? 9 9
Dy X P ! ? ? ?
(L+2) (L+2) (L+2) ? ? ?
X X5 Xn
(N) (N) (N) ? ? ?
X3 X5 Xn

Using Algorithm 2, all the supervised learning approaches
proposed in the previous section can be straightforwardly used
in this semi-supervised scenario. The learning algorithm is used in
the M-step, where it learns a model using labelled and unlabelled
data that have been previously labelled in the E-step. So, applying
our adaptation of the EM Algorithm, we have extended the multi-
dimensional Bayesian network classifiers to the semi-supervised
learning framework.

7. Experimentation
7.1. Artificial experimentation

Before solving the ASOMO problem, we have tested our
proposed semi-supervised algorithms over a set of designed
artificial datasets as commonly carried out in the machine
learning research community. This has been done due to the fact
that, unfortunately, we cannot apply our proposals in the baseline
datasets of the SA domain. The multi-dimensional classification
paradigm has recently been proposed in the research community
[5,17,40,43,44,53], and, to the best of our knowledge, there are no
benchmark multi-dimensional datasets in this domain to test our
proposals as they consider just one target variable at a time
(usually sentiment polarity). So, in order to bridge this gap, we
provide a detailed report of these artificial experiments on several
synthetic datasets in the following website.>

The major conclusions extracted from this experimentation
can be summarised as follows:

1. As happens in the uni-dimensional framework [12], when
using the real structure to semi-supervisely learnt multi-
dimensional classifiers, the unlabelled data always help.

2. There is a tendency to achieve better classifiers in terms of
joint accuracy in the semi-supervised framework when the
used multi-dimensional algorithm can reach the generative
structure.

3. In the uni-dimensional approaches, performance degradation
occurs in the semi-supervised framework. This is probably due
to the fact that the uni-dimensional approaches are not able to
match the actual multi-dimensional structure of the problems.

4. Although there are small differences between the uni-dimen-
sional and the multi-dimensional approaches in the supervised
framework (only the MD J/K reports statistical differences), in
the semi-supervised framework these differences grow larger
(except for the case of the MDTAN learning algorithm, the
grest of the multi-dimensional approaches report statistical
differences).

5. In the semi-supervised framework, clearly the multi-dimen-
sional classifiers outperform the uni-dimensional techniques,
with the exception of the MDTAN classifier.

6. The MDnB learning algorithm [53] is very specific, it obtains
very good results when dealing with problems with an under-
lying MDnB structure, but when the generative models are
more complex, its rigid structure makes the algorithm lead to
very suboptimal solutions.

7. The MDTAN algorithm [53] also shows very poor performances
in the semi-supervised framework.

8. The MD J/K learning algorithms have great flexibility to
capture different types of complex structures, which results
in an improvement in terms of joint accuracy in the semi-
supervised framework.

3 http://www.sc.ehu.es/ccwbayes/members/jonathan/home/News_and_
Notables/Entries/2010/11/30_Artificial_Experiments_2010.html
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In brief, these artificial experiments show that not only the
multi-dimensional approaches statistically outperform the uni-
dimensional approaches in the supervised framework when deal-
ing with multi-dimensional problems, but also more accurate
classifiers can be found using the semi-supervised learning
framework.

7.2. Solving the ASOMO SA problem

Two different series of experiments with the ASOMO corpus
were performed: the first series (Section 7.2.1) shows the com-
parison between the ASOMO features and three different state-of-
the-art feature sets broadly used in the SA domain. The second
series (Section 7.2.2) is devoted to demonstrate that the addition
of unlabelled instances could achieve better results in this very
application. There, a multi-dimensional classification solution for
the ASOMO problem is proposed and analysed. By means of these
experiments in a real SA problem, we would like to shed some
light on the truthfulness of the following hypotheses:

1. The choice of the feature set is a key matter when dealing with
the exposed problem, and in extension, with the SA problems.

2. The uni-dimensional models obtained with the common
approaches of the SA domain yield suboptimal solutions to
the ASOMO problem.

3. The explicit use of the relationships between the class vari-
ables in this real-world problem can be beneficial to improve
their recognition rates, i.e. multi-dimensional techniques are
able to outperform the most common uni-dimensional
techniques.

4. When there is a scarcity of labelled data, multi-dimensional
techniques can work with unlabelled data in order to improve
the classification rates in this context.

7.2.1. Comparison between different feature sets in both
uni-dimensional and multi-dimensional learning scenarios

By means of this experiment, we evaluate the new feature set
proposed in Section 2 (the ASOMO features) with the most
commonly used in the related literature. If we only use them to
test the multi-dimensional Bayesian network classifiers in this
real dataset, it is difficult to assess their efficacy without using
other viable baseline methods. For this reason, we also use three
different commonly used feature sets in order to perform a
benchmark comparison: unigrams, unigrams+ bigrams and PoS.
In order to avoid computation burden, we limited consideration
to (1) the 357 unigrams that appear at least five times in our
150-post corpus, (2) the 563 unigrams and bigrams occurring at

Table 7

least five times, and (3) the PoS to 766 features. No stemming or
stoplists were used. These benchmark feature sets have been
constructed using the TagHelper tool [46]. Finally, since the
ASOMO features are continuous, they were discretised into three
values using equal frequency discretisation in order to apply the
algorithms proposed in this paper.

To assess the efficacy and efficiency of the exposed multi-
dimensional Bayesian network classifiers in this problem, we
conducted a comparison in the supervised framework between
the presented multi-dimensional classifiers and the two different
uni-dimensional attempts to adapt single-class classifiers to
multi-dimensional problems: (1) develop multiple uni-dimen-
sional classifiers and (2) construct a Cartesian product class
variable. In order to perform such comparison, we use naive
Bayes classifiers in the uni-dimensional attempts (one per each
class variable in the first uni-dimensional approach, and another
one for the compound class of the second) and a MDnB classifier
in the multi-dimensional solution. The parameters of both types
of models are calculated by MLE corrected with Laplace smooth-
ing and the forbidden configurations of the vector of class
variables have been taken into account in the learning process.
Note that this comparison is performed in the supervised
framework, so the 2392 unlabelled posts were not used in this
experiment.

The classification accuracies, which have been estimated via
20 runs of 5-fold non-stratified cross validation (20 x 5cv) [45],
are shown in Table 7. The results of using the four different
feature sets (unigrams, unigrams + bigrams, PoS, and the ASOMO
features) in conjunction with the three different learning
approaches (multiple uni-dimensional, Cartesian class variable,
and multi-dimensional classifiers) in a supervised framework are
shown. The first eight rows of Table 7 correspond to the two uni-
dimensional approaches while the last four correspond to the
multi-dimensional approach. In addition to the estimation of
the joint accuracy, the accuracies per each class variable are
also shown.

For each column, the best estimated accuracy rate is highlighted
in bold for each single class variable and the joint accuracy. More-
over, statistical hypothesis tests (Student’s t-test with o« = 0.05) have
been performed in order to determine if there are significant
statistical differences between the tested accuracies. For each
column, the symbol ‘i’ is used to mark the accuracies that are
statistically outperformed by the highlighted best estimated accu-
racy (in bold). The symbol ‘i’ corresponds to the accuracies that,
despite not being significantly worse, show a p-value on the
significant borderline (0.05 < p—value < 0.1). Besides, the CPU time
spent on learning a classification model with the 150 posts (for each
approach and feature set) is shown in the results.

Estimated accuracy values on the ASOMO dataset using three different types of feature sets in both uni and multi-dimensional scenarios (20 x 5cv).

Approach Classifier Feature set #feat. Will to influence Acc Sentiment P. Acc Subjectivity Acc Joint Acc Time (ms)
Uni-dimen. Multiple classif. Unigrams 357 51.83 +£2.79 33.00 +1.82 17890+ 2.16 +11.70 + 1.68 1011
Uni.+bigrams 563 14717 +2.47 32.90+1.96 179.47 +2.75 19.80 + 1.47 1470
PoS 766 147.57 +2.52 130.80 +2.75 166.33 +2.96 +9.43 + 1.65 1755
ASOMO feat. 14 55.07 +1.32 126.07 +2.09 182.17+1.35 +10.37 +2.30 110
Cartesian class Unigrams 357 N/A N/A N/A 9.90+2.35 32
Uni.+bigrams 563 N/A N/A N/A +8.87 +2.05 74
PoS 766 N/A N/A N/A 10.33 £2.11 106
ASOMO feat. 14 N/A N/A N/A 113.70 + 2.60 17
Multi-dimen. MDnB Unigrams 357 41.63 +3.74 131.00 +2.29 175.30+2.20 +10.23 +1.92 47
Uni.+bigrams 563 138.03 +3.33 3340 +2.37 174.27 +2.71 +9.63 + 2.05 107
PoS 766 139.50 +3.32 130.53 +£2.22 176.40 + 2.47 +9.86 + 1.93 122
ASOMO feat. 14 153.23 +1.62 130.87 +2.52 83.53 +0.69 1497 +1.94 17
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Based on the results of Table 7, different conclusions can be
extracted:

1. With respect to the feature set comparison, the ASOMO feature
set significantly outperforms the n-grams, not only in terms of
joint accuracy, but also in terms of accuracy of two (out of the
three) dimensions, i.e. in Will to Influence and in Subjectivity.
Also, as stated in [38], n-grams information is the most
effective feature set in the task of Sentiment Polarity classifi-
cation. However, the unigrams+bigrams feature set outper-
forms unigrams instead of the opposite as reported in [38].
Finally, the PoS approach obtains very low performance.

2. According to the comparison between the uni-dimensional and
multi-dimensional approaches, the best joint accuracy is given
by the MDnB model when using the ASOMO features. It signifi-
cantly outperforms both the multi-dimensional approaches with
the state-of-the-art feature sets, and the uni-dimensional
approaches. Looking at the class variables in isolation, the uni-
dimensional approaches only outperform the multi-dimensional
approach in the case of the Will to Influence target dimension.

3. An analysis of the CPU computational times show that, as
expected, learning one classifier per each class variable is the
most time-consuming. Next, multi-dimensional Bayesian net-
work classifiers are found. The least-time consuming approach
is the uni-dimensional learning process that uses a compound
class. Moreover, the number of features is also an important
issue with respect to the computational time. The ASOMO
feature set, which has only 14 attributes, is, by far, the least
time-consuming of the four different types of feature set.

However, in this problem, errors are not simply present or
absent, their magnitude can be computed, e.g. it is not the same to
misclassify a negative post as having a very negative sentiment or
misclassify it with a very positive sentiment. For that reason, in
addition to the accuracy term, we also estimate the numeric error
of each classifier. Note that the values of the three class variables
can be trivially translated into ordinal values without changing
their meaning. Therefore, using this approach, the previous exam-
ple could be exposed as: it is not the same misclassify a post, which
has its sentiment equal to 2, with a 1 or misclassify it with a 5.

In order to estimate the numeric error, we use the mean
absolute error (MAE) term [55], which is a measure broadly used
in evaluating numeric prediction. It is defined as the measure that
averages the magnitude of the individual errors without taking
their sign into account. It is given by the following formula:

N (xDy—cD
MAEc;(l#):—Z':l Wj\(,x =g

Table 8

where ; (xM) is the value of the class variable C; resulting from the
c1a551ﬁcat10n of the instance x® using the c13551ﬁer ¥;and c® is the
actual class value in that instance. N is the number of instances in
the test set. Note that the resulting error varies between 0 and
(|Gj|=1), where |Cj/| is the cardinality of the class variable C;.

In a similar way to the accuracy, we also compute a joint
measure for simultaneously characterising this error in all the
class variables. Due to this, we estimate the joint MAE (JMAE) for
each learning algorithm. It is the sum of the normalised value of
the MAE term in each class variable

JMAEe(y) = Z MAEej(d/)

|C; \—
Note that the JMAE term varies between 0 and m, being m the
number of class variables.

The MAE values of the exposed experimentation setup, which
have also been estimated via 20 runs of 5-fold non-stratified cross
validation [45], are shown in Table 8. It has the same shape as in
Table 7, i.e. each row represents each learning algorithm with a
specific feature set, and each column represents each class
variable and the JMAE value. The best estimated error per
classifier is also highlighted in bold and Student’s t-tests
(o =0.05) have been performed in order to study the significance
of estimated differences. Table 8 reports conclusions similar to
the ones extracted with the accuracy term:

1. The feature set comparison reports the same conclusions to
those obtained with the accuracy: the ASOMO feature set
significantly outperforms the n-grams and PoS, not only in
terms of joint accuracy, but also in terms of two (out of the
three) dimensions.

2. The best joint accuracy is given by the multi-dimensional
approach which uses the ASOMO feature set and it signifi-
cantly outperforms both the multi-dimensional approaches
with the state-of-the-art feature sets, and the uni-dimensional
approaches. With respect to the class variables in isolation, the
only case in which the uni-dimensional approaches outper-
form the multi-dimensional approach is in the Sentiment
Polarity target dimension.

In brief and regarding the feature set, for this specific problem,
we strongly recommend the use of the ASOMO features, not only
because of their performance, but also for their lower learning
times. The results also show that the multi-dimensional classifi-
cation approach to SA is a novel attractive point of view that
needs to be taken into account due to the fact that it could lead to
better results in terms of accuracy as well as in MAE. In addition,
learning a multi-dimensional classifier is faster than learning

Estimated mean absolute error rates on the ASOMO dataset using three different types of feature sets in both uni and multi-dimensional scenarios (20 x 5cv).

Approach Classifier Feature set #feat. Will to influence MAE Sentiment P. MAE Subjectivity MAE JMAE

Uni-dimen. Multiple classif. Unigrams 357 +0.632 + 0.040 11.048 + 0.042 0.211 +£0.017 +0.684 +0.025
Uni.+bigrams 563 +0.700 + 0.043 0.956 +0.043 10.196 +0.014 10.669 + 0.023
PoS 766 +0.878 +0.063 11.147 £ 0.052 10.339 + 0.043 10.918 + 0.054
ASOMO feat. 14 0.563 +0.014 +1.036 £+ 0.036 10.173 £ 0.011 10.620 +0.014
Cartesian class Unigrams 357 N/A N/A N/A 70.650 + 0.026
Uni.+bigrams 563 N/A N/A N/A 10.680 + 0.030
PoS 766 N/A N/A N/A 10.757 + 0.040
ASOMO feat. 14 N/A N/A N/A 10.640 £ 0.060

Multi-dimen. MDnB Unigrams 357 +0.788 + 0.049 +1.104 + 0.039 10.247 + 0.026 10.789 +0.031
Uni.+bigrams 563 +0.852 +0.052 +1.107 + 0.042 10.263 £+ 0.040 10.824 + 0.049
PoS 766 10.728 + 0.044 +1.037 £+ 0.040 +0.240 + 0.020 +0.742 +0.029

ASOMO feat. 14 0.559 + 0.029 11.019 £ 0.027 0.167 + 0.009 0.608 + 0.016
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different classifiers for each dimension. Although the reported
times are not a problem in the current supervised learning
settings, in the semi-supervised framework, where the computa-
tion time increases dramatically with the number of instances,
the learning process could be intractable.

7.2.2. Experiments with the ASOMO corpus in the supervised and
semi-supervised learning frameworks

With the knowledge that the ASOMO features can lead us to
better classification rates in this problem, we evaluated their
performance in both supervised and semi-supervised frame-
works. With this experiment we want to determine if the use of
unlabelled examples when learning a classifier can lead to better
solutions to the ASOMO problem. In order to do so, the following
experiment was performed: the ASOMO dataset has been used to
learn three different (uni-dimensional) Bayesian network classi-
fiers and three different sub-families of multi-dimensional classi-
fiers in both frameworks.

For uni-dimensional classification, naive Bayes classifier (nB),
tree-augmented Bayesian network classifier (TAN) [24] and a
2-dependence Bayesian classifier (2 DB) [47] have been chosen.
The uni-dimensional approach selected for these experiments is
that which consists of splitting the problem into three different
uni-dimensional problems (this is because it is more common in
the state-of-the-art solutions to solve different problems rather
than create an artificial class variable by means of the Cartesian
product). From the multi-dimensional aspect, MDnB, MDTAN,
MD1/1 and MD2/K (with K=2,3,4) structures have been selected.
MD1/1 is included as an algorithm able to learn MDTAN struc-
tures due to the poor performance shown by the MDTAN learning
algorithm [53] in the artificial experiments. Although both multi-
dimensional learning approaches learn MDTAN structures, each
learning algorithm follows a different path to come to that end.

While the MD 1/1 uses a filter approach, the MDTAN learning
algorithm follows a wrapper scheme.

The supervised learning procedure only uses the labelled
dataset (consisting of 150 documents), whilst the semi-super-
vised approach uses the 2532 posts (2392 unlabelled). Our multi-
dimensional extension of the EM algorithm is used in the latter
approach and it terminates after finding a local likelihood maxima
or after 250 unsuccessful trials.

Finally, the performance of each model has been estimated via 20
runs of 5-fold non-stratified cross validation. Due to fact that, in semi-
supervised learning, the labels of the unlabelled subset of instances
are unknown, only the labelled subset is divided into five folds to
estimate the performance of the proposed approaches. So, in each
iteration of the cross validation, a classifier is learnt with four labelled
folds and the whole unlabelled subset, and then it is tested in the
remaining labelled fold. This modified cross validation is illustrated in
Fig. 8 for the case of three folds. As done in the previous experiments,
we use the accuracy and the MAE terms as evaluation measures.

Table 9 shows the results of applying the different uni-
dimensional and multi-dimensional algorithms over the ASOMO
dataset in terms of accuracy and Table 10 in terms of MAE. Both
tables can be described as follows: for each classifier (row), the
joint performance and the single evaluation measure (for each
class variable) are shown. In order to simultaneously compare
uni-dimensional with respect to multi-dimensional approaches,
and supervised with respect to semi-supervised learning, the
results are highlighted as follows:

1. In order to compare the supervised and the semi-supervised
frameworks, for each type of classifier and accuracy measure
(class variable and joint performance), we have highlighted the
best single value and joint performance in bold (analysed per
row). Note that, in the case of the accuracy term (Table 9),
the highlighted values are the greatest values, while in the

X1 XC1 Cm Semi-supervised

1st Fold

X1 XnC1

supervised
Learning
Algorithm
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Learning
Algorithm
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Fig. 8. Applying 3-fold cross validation to a dataset with labelled and unlabelled instances.
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Accuracies on the ASOMO dataset with the ASOMO features in the supervised and the semi-supervised learning frameworks (20 x 5cv).

Classif. Labelled data (supervised learning) Labelled +unlabelled data (semi-supervised learning)
W. influence Acc  Sentiment P. Acc  Subjectivity Acc  Joint Acc W. influence Acc  Sentiment P. Acc  Subjectivity Acc ~ Joint Acc
nB 1155.07 £ 1.32 126.07 +2.09 18217 +£1.35 11037 +£230 56.70 +2.85 +121.97 £ 3.11 +158.07 +3.78 117.43 +£2.27
TAN 15293 +3.23 1126.30 +£2.16 180.10 + 1.46 19.47 +1.29 +148.77 + 3.44 129.00 + 3.69 +175.10 + 3.42 19.87+1.79
2DB 5713+185 12743 +2.82 182.30 + 1.57 11317 +£159  +154.13 +3.37 +124.80 +2.95 +161.30 +4.83 +18.60 + 2.08
MDnB 153.23 +1.62 130.87 + 2.52 83.53+0.69 11497 +£1.94  154.00 +2.08 3227 +141 83.63+ 055 1683+ 1.14
MDTAN  {52.60 + 348 1127.13 £2.43 182.57 £1.72 112.80+238  1131.10 +4.37 12943 +2.48 182.60 +1.37 118.97 £ 1.70
MD 1/1 56.67 +2.93 2997 +3.75 7817 + 2.59 15.63 + 2.00 +153.27 +£2.78 129.17 £2.54 177.90 +£2.20 11533 +£1.37
MD 2/2  56.60 +3.63 128.93 +2.36 17747 +2.24 15.17 £ 1.99 +153.30 + 2.08 128.77 £2.37 176.93 +£2.97 115.50 + 0.94
MD 2/3  56.70 + 2.87 29.87 +£3.20 177.03 +1.41 15.90 + 2.67 1152.77 +£1.53 130.77 +£2.25 177.90 +£2.20 16.63 +1.32
MD 2/4  56.97 +2.11 12853 £3.13 176.87 +2.39 15.57 + 2.41 +152.47 +2.05 29.30 + 3.02 17527 £3.24 11543 +£1.28
Table 10
Mean absolute error rates on the ASOMO dataset with the ASOMO features in the supervised and the semi-supervised learning frameworks (20 x 5cv).
Classif. Labelled data (supervised learning) Labelled + unlabelled data (semi-supervised learning)
W. influence MAE  Senti. P. MAE Subject. MAE JMAE W. influence MAE  Senti. P. MAE Subject. MAE JMAE
nB 10.563 + 0.014 1.036 + 0.036 0.173 £ 0.011 10.620 +0.014  110.613 +0.040 +11.209 + 0.069  130.421+0.036  110.986 + 0.041
TAN 10.614 + 0.041 111.044 £0.043 {0204 +£0.015 10.670+0.029 710.664 + 0.055 0.991 + 0.041 +10.225+0.038  1}0.718 +0.039
2DB 10.553 +0.028 1.035 + 0.053 0.171 + 0.009 0.614 +0.018 +10.636 + 0.041 $1.114+0.082  10.387 +£0.048  110.885 + 0.056
MDnB 10.559 + 0.029 1.019 + 0.027 +0.167 £0.009  10.608 +£0.016  0.549 + 0.019 1.002 + 0.028 0.612 + 0.005 0.596 + 0.007
MDTAN  {0.567 + 0.045 11.101 + 0.052 10.180+0.015 10.644+0.026 1}0.878 +0.075 $1.102 +0.028 10.172 £ 0.011 +10.750 + 0.027
MD 1/1  0.529 +0.034 11.056 + 0.032 10.219+0.022  10.659+0.029  {0.556 + 0.031 11.061 + 0.054 10.216 +0.018 10.666 + 0.015
MD 2/2  0.525+0.033 11.057 +£ 0.054 10222 +0.021 }0.660+0.034 10.560 + 0.040 11.075 +0.050 10.227 £0.023 +10.682 + 0.022
MD 2/3  0.531+0.032 11.061 + 0.032 10237 £0.034  }0.679+0.037  10.549 +0.016 11.048 +0.049 10.223 +£0.033 10.678 + 0.033
MD 2/4  0.529 +0.041 11.069 + 0.058 10.227 +£0.020  {0.670+0.031  110.579 +0.038 11.047 +£0.038 10.225 +0.023 10.680 + 0.021

case of the MAE (Table 10) they are the lowest. Pairwise
statistical hypothesis tests (Student’s t-test with o = 0.05) have
been performed in order to determine if there are significant
statistical differences between the values of the tested tech-
niques. We use the symbol ‘t’ to mark the values that are
statistically outperformed by the highlighted best estimated
measure (in bold).

2. To compare the performance between the uni-dimensional
and the multi-dimensional approaches, the best accuracy per
class variable, as well as the joint performance, has been
highlighted in italics. For each column, statistical hypothesis
tests (Student’s t-test with oo =0.05) have been performed in
order to determine if there are significant statistical differ-
ences. The symbol ‘i’ is used to mark the values that are
statistically worse than the best estimated value (in italics).

Several conclusions can be extracted from the supervised and
semi-supervised comparison in Tables 9 and 10 (analysed per
row):

. The uni-dimensional models tend to perform worse when they
are learnt using the semi-supervised learning framework. This
could be due to the fact that incorrect models tend to lead to
performance degradation in the semi-supervised framework
due to the fact that they are not able to match the underlying
generative structure [12]. This phenomenon occurs in both
evaluation measures.

. As occurs in the artificial experiments, the MDTAN approach
[53] tends to behave more similarly to the uni-dimensional
approaches rather than to the multi-dimensional approaches.

. With respect to the accuracy measure, in the multi-dimen-
sional scenario, the Will to Influence class variable tends to

degrade its performance in the semi-supervised scenario,
whilst Sentiment Polarity and Subjectivity tend to achieve
better single accuracies. In the uni-dimensional approach, the
opposite happens.

. The MAE results show that, unlike what happens in the uni-

dimensional framework where the semi-supervised degrada-
tion is significant, in the multi-dimensional scenario similar
results are reported for supervised and semi-supervised learn-
ing. However, there are cases in which the semi-supervised
learning algorithms obtain better results and in one case there
is a significant statistical gain.

. The MDnB method in its semi-supervised framework is the

best solution for the ASOMO problem. In terms of accuracy, it
obtains statistically significant better results in joint accuracy
and in the Sentiment Polarity target variable, as well as better
results in the other two variables. With respect to the MAE,
MDnB obtains statistically significant better results in joint
accuracy and in the Subjectivity dimension, as well as better
results in the other dimensions.

Regarding the comparison of the uni-dimensional and multi-

dimensional approaches (for each column), the following com-
ments can be extracted:

1. With the exception of Will to Influence, the single class

variables tend to achieve better accuracies in the multi-
dimensional approaches.

. The MAE terms show similar results to those found with the

accuracy evaluation measure. However, in this case, the
exception is provided by the estimated MAE obtained in the
Sentiment Polarity dimension in the semi-supervised version
of the uni-dimensional TAN algorithm.
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3. The multi-dimensional classification approach statistically
outperforms the uni-dimensional framework in terms of joint
accuracy.

4. MDnB is also the best technique in terms of global perfor-
mance, i.e. in accuracy and in MAE metrics.

One explanation for the surprising success of the MDnB could
be the use of the knowledge of the experts in engineering the
features, as stated in [28]: when applying rational criteria in
determining the predictive features of a problem, the resulting
features are usually probabilistically independent given the class
variables. This characteristic favours the learning scheme pro-
vided by the MDnB algorithm. Moreover, this is crucial in the
success obtained in the semi-supervised framework due to the
fact that it matches the actual underlying domain structure [12].

The MDnB assumes conditional independence between the
three class variables. In spite of this assumption, we cannot talk
about independence between the class variables as happens when
the problem is approached by several uni-dimensional classifiers.
Each class variable in this model uses the information of the
remaining class variables when it carries out the classification
task. It also simultaneously uses all the class variables to learn the
parameters of the structure. The success of this algorithm can
shed some light on the relation between the three variables used
in this problem: the multi-dimensional framework achieves
better results than the uni-dimensional counterparts. Therefore,
it seems that there is a certain relation between them. Further-
more, it can be seen that simultaneously using the information
of these class variables in the same classification task by means
of a multi-dimensional technique conceives better predictive
classifiers.

In conclusion, we show that the proposed semi-supervised
multi-dimensional formulation designs a novel perspective for
this kind of SA problems, opening new ways to deal with this
domain. In addition, it can also be seen that the explicit use of the
different class variables in the same classification task has
successfully solved the ASOMO problem, where the MDnB in a
semi-supervised framework is the best solution.

In conclusion, we show that the proposed semi-supervised
multi-dimensional formulation designs a novel perspective for
this kind of SA problems, opening new ways to deal with this
domain. In addition, it can also be seen that the explicit use of the
different class variables in the same classification task has
successfully solved the ASOMO problem, where the MDnB in a
semi-supervised framework is the best solution.

8. Conclusions and future work

In this paper, we solve a real-world multi-dimensional SA
problem. This real problem consists of characterising the attitude
of a customer when he writes a post about a particular topic in a
specific forum through three differently related dimensions: Will
to Influence, Polarity and Subjectivity.

Due to the fact that it has three different target variables, the
SA (uni-dimensional) state-of-the-art classification techniques
seem inappropriate. They do not match the underlying multi-
dimensional nature of this problem. The problem also cannot be
directly tackled by multi-label techniques. For that reason, we
propose the use of multi-dimensional Bayesian network classi-
fiers as a novel methodological tool which joins the different
target variables in the same classification task in order to exploit
the potential relationships between them. Within this methodol-
ogy, in this paper, we have proposed a new filter algorithm to
learn multi-dimensional J/K dependences Bayesian network struc-
tures in order to explore a wider range of structures while dealing
with this application.

Moreover, in order to avoid the arduous and time-consuming
task of labelling examples in this field, we extend, by means of the
EM algorithm, these multi-dimensional techniques to semi-
supervised learning framework so as to make use of the huge
amount of unlabelled data available on the Internet.

Experimental results of applying the proposed battery of
multi-dimensional learning algorithms to a corpus consisting of
2542 posts (150 manually labelled and 2392 unlabelled) show
that: (1) the uni-dimensional approaches cannot capture the
multi-dimensional underlying nature of this problem, (2) engi-
neering a suitable feature set is a key factor for obtaining better
solutions, (3) more accurate classifiers can be found using the
multi-dimensional approaches which perform a simultaneous
classification task, (4) the use of large amounts of unlabelled data
in a semi-supervised framework can be beneficial to improve the
recognition rates, and (5) the MDnB classifier in a semi-super-
vised framework is the best solution for this problem because it
matches the actual underlying domain structure [28,12].

The proposed multi-dimensional methodology can be improved
or extended in several ways. For instance, in the ASOMO multi-
dimensional problem, the values of all class variables are missing in
each sample of the unlabelled subset. However, by means of the EM
algorithm, the learning algorithms can be easily generalised to the
situation where not all the class variables are missing in all the
samples of the unlabelled data subset.

Besides, we are concerned about the scalability of the multi-
dimensional Bayesian network classifiers in the semi-supervised
framework. The computational burden is not a problem when dealing
with these datasets, but it could happen when the number of
variables increases. This could open a line in researching feature
subset selection techniques for multi-dimensional classification.

Regarding the application of multi-dimensional classification
to the SA domain, this work can be extended in a number of
different ways:

e The proposed multi-dimensional Bayesian network classifiers
can be directly applied to Affect Analysis. This area is con-
cerned with the analysis of text containing emotions and it is
associated with SA [1]. However, Affect Analysis tries to
extract a large number of potential emotions, e.g. happiness,
sadness, anger, hate, violence, excitement, fear, etc, instead of
just looking at the polarity of the text. Additionally, in the case
of Affect Analysis, the emotions are not mutually exclusive
and certain emotions may be correlated. So, this can easily be
viewed as a multi-label classification problem, a type of
problem in which multi-dimensional Bayesian network classi-
fiers have reported good results in the recent past [5].

Within SA, the same corpus can be used to deal with different
target dimensions. This could open different research lines in
adding more target variables in the same classification task so
as to take advantage of these existing relationships, engineering
a suitable feature set for working with several dimensions, etc.
For instance, in the works where the need to predict both the
Sentiment Polarity and the Subjectivity has been noticed [21].

Acknowledgements

This work has been partially supported by the Saiotek, Etortek
and Research Groups 2007-2012 (IT-242-07) programs (Basque
Government), TIN2008-06815-C02-01, TIN2010-14931, Consoli-
der Ingenio 2010-CSD2007-00018 projects and MEC-FPU Grant
AP2008-00766 (Spanish Ministry of Science and Innovation), and
COMBIOMED network in computational bio-medicine (Carlos III
Health Institute).



114 J. Ortigosa-Herndandez et al. / Neurocomputing 92 (2012) 98-115

References

[1] A. Abbasi, H. Chen, S. Thoms, T. Fu, Affect analysis of web forums and blogs
using correlation ensembles, IEEE Trans. Knowledge Data Eng. 20 (9) (2008)
1168-1180.

[2] S. Argamon, C. Whitelaw, P. Chase, S. Raj Hota, N. Garg, S. Levitan, Stylistic
text classification using functional lexical features, J. Am. Soc. Inf. Sci.
Technol. 58 (6) (2007) 802-822.

[3] J. Atserias, B. Casas, E. Comelles, M. Gonzalez, L. Padro, M. Padro, Freeling 1.3:
Syntactic and semantic services in an open-source NLP library, in: Proceed-
ings of the Fifth International Conference on Language Resources and
Evaluation (LREC'06), 2006, pp. 48-55.

[4] G. Baklr, B. Taskar, T. Hofmann, B. Scholkopf, A. Smola, S.V.N. Vishwanathan,
Predicting Structured Data, MIT Press, 2007.

[5] C. Bielza, G. Li, P. Larrafiaga, Multi-dimensional classification with Bayesian
networks, Int. J. Approx. Reason. 52 (6) (2011) 705-727.

[6] C.M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics), Springer, 2006.

[7] R. Blanco, Learning Bayesian Networks from Data with Factorisation and
Classification Purposes. Applications in Biomedicine. PhD Thesis, University
of the Basque Country, 2005.

[8] X. Carreras, I. Chao, L. Padro, M. Padro, An open-source suite of language
analyzers, in: Proceedings of the Fourth International Conference on
Language Resources and Evaluation, vol. 10, 2006, pp. 239-242.

[9] R. Caruana, Multitask learning, Machine Learning 28 (1997) 41-75.

[10] O. Chapelle, B. Scholkopf, A. Zien, Semi-Supervised Learning, The MIT Press, 2006.

[11] C.I Chow, S. Member, C.N. Liu, Approximating discrete probability distribu-
tions with dependence trees, IEEE Trans. Inf. Theory 14 (1968) 462-467.

[12] L Cohen, Semisupervised Learning of Classifiers with Application to Human-
Computer Interaction, PhD thesis, University of Illinois at Urbana-Cham-
paign, 2003.

[13] I. Cohen, F.G. Cozman, A. Bronstein, The effect of unlabeled data on
generative classifiers, with application to model selection, in: Proceedings
of the SPIE 93 Conference on Geometric Methods in Computer Vision, 2002.

[14] L Cohen, F.G. Cozman, N. Sebe, M.C. Cirelo, T.S. Huang, Semisupervised learning of
classifiers: theory, algorithms and their application to human-computer interac-
tion, IEEE Trans. Pattern Anal. Mach. Intell. 26 (12) (2004) 1553-1567.

[15] G. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic
networks from data, Mach. Learn. 9 (1992) 309-347.

[16] H. Daumé, D. Marcu, Learning as search optimization: approximate large
margin methods for structured prediction, in: Proceedings of the 22nd
International Conference on Machine Learning, 2005, pp. 169-176.

[17] P.R. de Waal, L.C. van der Gaag, Inference and learning multi-dimensional
Bayesian network classifiers, Lect. Notes Artif. Intell. 4724 (2007) 501-511.

[18] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm, J. R. Stat. Soc. Series B (Methodological) 39 (1) (1977) 1-38.

[19] S. Dumais, Hierarchical classification of web content, in: Proceedings of the
23rd Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2000, pp. 256-263.

[20] E. Boiy, M.F. Moens, A machine learning approach to sentiment analysis in
multilingual web text, Inf. Retrieval 12 (5) (2009) 526-558.

[21] A. Esuli, F. Sebastiani, Sentiwordnet: a publicly available lexical resource for
opinion mining, in: Proceedings of the Fifth Conference on Language
Resources and Evaluation (LREC06), 2006, pp. 417-422.

[22] G. Forman, An extensive empirical study of feature selection metrics for text
classification, J. Mach. Learn. 3 (2003) 1289-1305.

[23] N. Friedman, The Bayesian structural EM algorithm, in: Proceedings of the
14th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
Publishers, 1998, pp. 129-138.

[24] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Mach.
Learn. 29 (2-3) (1997) 131-163.

[25] J.H. George, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection
problem, in: Machine Learning, Proceedings of the Eleventh International
Conference, 1994, pp. 121-129.

[26] H.Hartley, Maximum likelihood estimation from incomplete data, Biometrics
14 (1958) 174-194.

[27] V. Hatzivassiloglou, .M. Wiebe, Effects of adjective orientation and grad-
ability on sentence subjectivity, in: Proceedings of the 18th Conference on
Computational linguistics, 2000, pp. 299-305.

[28] R. Kohavi, Wrappers for Performance Enhancement and Oblivious Decision
Graphs. PhD Thesis, Stanford University, 1995.

[29] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling
salesman problem, Proc. Am. Math. Soc. 7 (1) (1956) 48-50.

[30] S. Kullback, Information Theory and Statistics, Wiley, 1959.

[31] P. Langley, W. Iba, K. Thompson, An analysis of Bayesian classifiers, in: Proceed-
ings of the 10th National Conference on Artificial Intelligence, 1992, pp. 223-228.

[32] P. Larrafiaga, J.A. Lozano, ].M. Pefia, I. Inza, Special issue on probabilistic
graphical models for classification, Mach. Learn. 59 (3) (2005).

[33] B. Liu, Sentiment analysis and subjectivity, in: N. Indurkhya, F.J. Damerau (Eds.),
Handbook of Natural Language Processing, second ed., Chapman & Hall, 2010.

[34] GJ. Mclachlan, T. Krishnan, The EM Algorithm and Extensions, Wiley-
Interscience, 1997.

[35] V. Ng, S. Dasgupta, S.M.N. Arifin, Examining the role of linguistic knowledge
sources in the automatic identification and classification of reviews, in:
Proceedings of the COLING/ACL Conference, 2006, pp. 611-618.

[36] K. Nigam, A. McCallum, S. Thrun, T. Mitchell, Text classification from labeled
and unlabeled documents using EM, Mach. Learn. 39 (2) (2000) 103-134.

[37] B. Pang, L. Lee, Opinion mining and sentiment analysis, Foundations and
Trends in Information Retrieval 2 (1-2) (2008) 1-135.

[38] B. Pang, L. Lee, S. Vaithyanathan, Thumbs up? Sentiment classification
using machine learning techniques, in: Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP'02), 2002,
pp- 79-86.

[39] ]. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann Publishers Inc., 1988.

[40] M. Qazi, G. Fung, S. Krishnan, R. Rosales, H. Steck, R.B. Rao, D. Poldermans, D.
Chandrasekaran, Automated heart wall motion abnormality detection from
ultrasound images using Bayesian networks, in: IJCAI'07: Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Morgan
Kaufmann Publishers Inc., 2007, pp. 519-525.

[41] E. Riloff, J. Wiebe, Learning extraction patterns for subjective expressions, in:
Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP'03), 2003, pp. 105-112.

[42] E. Riloff, J. Wiebe, T. Wilson, Learning subjective nouns using extraction
pattern bootstrapping, in: Proceedings of the Seventh Conference on Natural
Language Learning, 2003, pp. 25-32.

[43] ].D. Rodriguez, J.A. Lozano, Multi-objective learning of multi-dimensional
Bayesian classifiers, in: Eighth Conference on Hybrid Intelligent Systems
(HIS’08), September 2008, pp. 501-506.

[44] ].D. Rodriguez, ].A. Lozano, Learning Bayesian Network Classifiers for Multi-
dimensional Supervised Classification Problems by Means of a Multi-objec-
tive Approach. Technical Report EHU-KZAA-TR-3-2010, Department of Com-
puter Science and Artificial Intelligence, University of the Basque Country,
San Sebastian, Spain, 2010.

[45] ].D. Rodriguez, A. Perez, J.A. Lozano, Sensitivity analysis of k-fold cross-
validation in prediction error estimation, IEEE Trans. Pattern Anal. Mach.
Intell. 32 (3) (2010) 569-574.

[46] C. Rose, Y.C. Wang, Y. Cui, ]. Arguello, K. Stegmann, A. Weinberger, F. Fischer,
Analyzing collaborative learning processes automatically: exploiting the
advances of computational linguistics in computer-supported collaborative
learning, Int. J. Computer-Supported Collab. Learn. 3 (3) (2007).

[47] M. Sahami, Learning limited dependence Bayesian classifiers, in: AAAI Press
(Ed.), Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), 1996, pp. 335-338.

[48] B. Snyder, R. Barzilay, Multiple aspect ranking using the good grief algorithm,
in: Proceedings of the Joint Human Language Technology/North American
Chapter of the ACL Conference (HLT-NAACL), 2007, pp. 300-307.

[49] M. Stone, Cross-validatory choice and assessment of statistical predictions,
J. R. Stat. Soc. B 36 (1) (1974) 111-147.

[50] D.M.J. Tax, RP.W Duin, Using two-class classifiers for multiclass classifica-
tion, in: Proceedings of 16th International Conference on Pattern Recognition,
2002, pp. 124-127.

[51] G. Tsoumakas, I. Katakis, Multi label classification: an overview, Int. J. Data
Warehousing Mining 3 (3) (2007) 1-13.

[52] O. Tsur, D. Davidiv, A. Rappoport, ICWSM a great catchy name: semi-
supervised recognition of sarcastic sentences in product reviews, in: Pro-
ceedings of the International AAAI Conference on Weblogs and Social
Media—ICWSM10, 2010.

[53] L.C. van der Gaag, P.R. de Waal, Multi-dimensional Bayesian network
classifiers, in: Proceedings of the Third European Workshop in Probabilistic
Graphical Models, 2006, pp. 107-114.

[54] ]. Wiebe, T. Wilson, R. Bruce, N. Bell, M. Martin, Learning subjective language,
Comput. Ling. 30 (3) (2004) 277-308.

[55] L.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, in: Morgan Kaufmann Series in Data Management Systems,
second ed., Morgan Kaufmann, 2005.

[56] H. Yu, V. Hatzivassiloglou, Towards answering opinion questions: separating
facts from opinions and identifying the polarity of opinion sentences,
in: Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2003.

[57] X. Zhu, Semi-supervised Learning Literature Survey. Technical Report 1530,
Department of Computer Sciences, University of Wisconsin, Madison, 2005.

[58] X. Zhu, A.B. Goldberg, Introduction to Semi-Supervised Learning, Synthesis
Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool
Publishers, 2009.

Jonathan Ortigosa-Hernandez received an MSc
degree in Computer Science from The University of the
Basque Country, Donostia-San Sebastian, Spain in 2008,
and a BSc in Informatics from Coventry University,
United Kingdom, in the same year. In 2009, he received
a FPU fellowship from the Spanish Ministry of Educa-
tion. Since then, he has been a PhD student in The
University of the Basque Country and a member of the
Intelligent Systems Group research team. His research
interests are multi-dimensional classification, semi-
supervised learning, and sentiment and affect analysis.
http://www.sc.ehu.es/ccwbayes/members/jonathan



J. Ortigosa-Hernandez et al. / Neurocomputing 92 (2012) 98-115 115

Juan Diego Rodriguez received his MSc in Computer
Science from The University of the Basque Country in
2002. At present, he is a PhD student and a member of
the Intelligent Systems Group. His research interests
include evaluation techniques on supervised classifi-
cation, Bayesian networks and multi-dimensional
Bayesian classification. He has been published in top
refereed machine learning journals such as IEEE
TPAMIL http://www.sc.ehu.es/ccwbayes/members/
juandiego/

Leandro Alzate received a BA in Arts from The Uni-
versity of the Basque Country, Bilbao, Spain in 1997. In
2003, he received an MBA in Business Intelligence
from Universitat Oberta de Catalunya, Barcelona, Spain.
He is one of the founders of Socialware®, where he
worked in the areas of Product Innovation and R+D+1
from 2000 to 2010. His main interests are NLP and
sentiment analysis.

Manuel Lucania received his MSc degree in Computer
Science Engineering from ICAI University (Universidad
Pontificia Comillas), Madrid, Spain in 2007. From 2006
to 2008, he worked as an IT consultant in network
security at Hewlett-Packard, Madrid. After that,
between 2008 and 2009, he worked in Comunicaciones
Galileo, Madrid, developing a syntactic and semantic
analyser for the Spanish language. Since 2009, he has
led the ASOMOs R&D Natural Language Processing and
Text Mining projects for sentiment analysis and repu-
tation monitoring at Socialware®. His main interests
are NLP, advanced Sentiment Analysis based on the
psychology theories of Plutchik, linguistic problem-
solving, web crawling, data analysis and algorithm
design.

Ifaki Inza received his PhD in computer science from
The University of the Basque Country in 2002 and he is a
member of the Intelligent Systems Group research team.
He is an associate professor in The University of the
Basque Country. Some of his main interests are in
feature selection methods, Bayesian networks and
applications to biological domains. He has eight book
chapters in six books and 31 publications in refereed
journals and conferences, some of them in top
machine learning and biology journals such as Bioin-
formatics, Machine Learning, IEEE TPAMI or Artificial
Intelligence in Medicine. www.sc.ehu.es/ccwbayes/
members/inaki.htm

Jose A. Lozano received an MSc degree in mathematics
and an MSc degree in computer science from the The
University of the Basque Country, Spain, in 1991 and
1992 respectively, and a PhD degree in computer
science from the University of the Basque Country,
Spain, in 1998. Since 2008 he is s full professor in the
Department of Computer Science and Artificial Intelli-
gence in The University of the Basque Country, where he
leads the Intelligent Systems Group. He is the co-author
of more than 50 ISI journal publications and co-editor
of the first book published about Estimation of Dis-
tribution Algorithms. His major research interests
include machine learning, pattern analysis, evolution-
ary computation, data mining, metaheuristic algorithms, and real-world applica-
tions. Prof. Lozano is associate editor of IEEE Transactions on Evolutionary
Computation and a member of the editorial board of Evolutionary Computation
journal, Soft Computing and another three journals. www.sc.ehu.es/ccwbayes/
members/jalozano



Appendices for the article entitled “Approaching Sentiment
Analysis by Using Semi-supervised Learning of
Multi-dimensional Classifiers’

Jonathan Ortigosa-Hernandez, Inaki Inza, and Jose A. Lozano

Contents

1 Appendix A. Artificial Experiments
1.1 Simulation of datasets
1.2 Experimental Setup
1.3 Results

1.3.1 Uni-dimensional and multi-dimensional learning algorithms comparison
1.3.2 Learning the generative structure . . . . . . . . ... ... ... ...
1.3.3 Reaching the generative structure . . . . ... ... ... ... ...
1.3.4 Supervised and semi-supervised learning frameworks comparison . .
1.3.5 Behaviour of the learning algorithms in the semi-supervised framework 12
1.4 General conclusions . . . . . . . ... 12

O © 00 g W whN =

—_

1 Appendix A. Artificial Experiments

In this report, we execute the proposed battery of semi-supervised multi-dimensional learn-
ing algorithms over a set of designed artificial datasets as commonly carried out in the ma-
chine learning research community. These experiments are performed in order to demon-
strate that the proposed algorithms are able to take advantage of the underlying nature of
the multi-dimensional problems even in the presence of a small set of labelled data and a
huge set of unlabelled data. By means of these experiments, we would like to shed some
light on the following questions:

1. Are there significant differences between the uni-dimensional and the multi-dimensional
supervised learning algorithms when there is a scarcity of labelled examples? Are
there significant differences between the uni-dimensional and the multi-dimensional
semi-supervised learning algorithms?

2. If the correct structure of the generative model is obtained, do unlabelled data im-
prove the classifier?



3. If the learning algorithm can lead to the correct structure of the generative model,
do unlabelled data improve the classifier?

4. Can adding unlabelled data contribute to an increase in the classification performance
(in terms of joint accuracy) when there is a small amount of labelled data in a multi-
dimensional framework?

5. Do multi-dimensional classifiers performs better than uni-dimensional classifiers in a
multi-dimensional semi-supervised framework?

1.1 Simulation of datasets

In order to carry out the experimentation process required to evaluate our proposals, we
use a set of artificial multi-dimensional datasets. These datasets are sampled from multi-
dimensional feature-class variable probability distributions p(x,c) represented as multi-
dimensional Bayesian network classifiers. These classifiers have been created in four steps:
First, the structure of the multi-dimensional Bayesian network classifier was created. Sec-
ond, the parameters of the classifiers were obtained by sampling a Dirichlet distribution.
Third, a dataset from each classifier was sampled. Finally, the semi-supervised nature of
the sampled dataset, i.e. both subsets of labelled and unlabelled data, was generated by
choosing instances at random for both types of data subsets. The entire process of creating
the artificial datasets has been performed by means of the free software ICLAB library [1].

The following sub-families of multi-dimensional Bayesian network structures have been
chosen for this experimentation: MDnB, MDTAN, MD 2/2 and MD 2/3. A number of 5
different structures per each sub-family with a different number of features (from 5 to 20)
and a different number of class variables (from 2 to 4) have randomly been created. The
cardinality of the features ranges from 2 to 4 and the cardinality of the class variables from
2 to 3. By means of these sub-families and structures we are trying to cover a broad range of
structures of different complexity in order to check the statement “performance degradation
may occur whenever the modelling assumptions adopted for a particular classifier do not
match the characteristics of the distribution generating the data [5]”. In order to generate
the parameters of the classifiers which are defined by the previous structures, a different
Dirichlet distribution with all its parameters equal to one is sampled per each classifier.
The associated optimal Bayes accuracies (the opposite to Bayes errors) of the resulting
classifiers can be seen in Table 1, measured as percentages.

Once the multi-dimensional Bayesian network classifiers have been constructed, a dataset
from each of them is sampled. Specifically, we sample 20 artificial datasets (5 for each dif-
ferent sub-family) of 15,100 instances. Then, we divide each dataset into two different
parts: a training set of 10, 100 instances used to learn the classifiers, and a test set of 5,000
samples used to estimate the prediction error of the classifiers. In order to simulate the
semi-supervised nature of the training dataset, 100 instances were chosen at random to



form the subset Dy, in which labelled instances are i.i.d. as in p(x,c). The labels of the
class variables of the remaining 10,000 instances are removed.

All the datasets, as well as the structures and the parameters of the designed classifiers,
can be found in the following website!.

1.2 Experimental Setup

Once the semi-supervised multi-dimensional datasets are created, we use them to perform
the following set of experiments. In the evaluation phase, we proposed nine different algo-
rithms to learn the classifiers from the sampled datasets. The first four algorithms are the
approaches explicitly designed for multi-dimensional classification proposed in the paper:
MDnB, MDTAN, MD 1/1. MD 2/2 and MD 2/3. Due to the fact that MDTAN learning
algorithm [13] follows a wrapper approach, the MD 1/1 is included in these experiments
as a filter approach in order to establish a comparison between both techniques. The
others are the well-known uni-dimensional approaches: naive Bayes classifier (nB), tree-
augmented network classifier (TAN) [8] and two K dependence Bayesian classifiers [12]
(one setting K = 2, 2-DB, and the other setting K = 3, 3-DB). As stated in the article,
the uni-dimensional approach cannot be straightforwardly applied to deal with the multi-
dimensional problems, so, we divided the multi-dimensional problem into several one-class
variable tasks and tackled them as independent.

In order to compare the supervised and the semi-supervised frameworks, all the algo-
rithms are learnt in both scenarios. In the case of supervised learning the algorithms are
straightforwardly applied to the 100 instances of the labelled subset. When learning in the
semi-supervised framework, on the contrary, the algorithms are used, as proposed in this
work, in conjunction with our extension of the EM algorithm (Algorithm 2 of the article)
and applied to the whole training dataset (100 labelled + 10,000 unlabelled). The EM
algorithm terminates after finding a local likelihood maxima or after 250 unsuccessful tri-
als. The parameters of the model are calculated by maximum likelihood estimation (MLE)
[4], corrected with Laplace smoothing. The estimation method for performance evaluation
metrics is hold-out [10]. In hold-out, a subset of instances is chosen randomly from the
initial dataset to form a training set used to learn a classifier, and the remaining instances
are retained as the testing data, used to estimate the error of the classifier. This method
has been chosen in order to evaluate all the algorithms in the same testing set, avoiding
the variance of the error estimation given by the cross-validation methods [11]. Finally,
the performance evaluation is performed by the joint evaluation criteria.

1.3 Results

Table 1 shows the results of the nine algorithms over the 20 datasets when they are applied
in the supervised scenario. Table 2 shows, instead, their results in the semi-supervised

1
http://www.sc.ehu.es/ccwbayes/members/jonathan/home/ISG/News_and_Notables/Entries/2010/11/30_IMACS_2011.html



framework. Each value in both tables corresponds to the joint accuracy obtained for each
algorithm when the learnt classifier is evaluated in the testing set of 5,000 samples. The
accuracies in bold (per row) correspond to the technique with the best accuracy in just
the labelled dataset (Table 1), and the best in the whole dataset (Table 2). Moreover, the
best joint accuracy per dataset (per row in Tables 1 and 2) is highlighted in bold italics.

In order to answer the questions proposed in the introduction of this report, we have
performed an exhaustive analysis of the results of Tables 1 and 2. The following sections
summarise the studies made to shed some light on the questions. In each section, the
conclusions that answer these questions have been underlined.
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1.3.1 Uni-dimensional and multi-dimensional learning algorithms comparison

Firstly, we want to determine if there are significant differences between the uni-dimensional
and the multi-dimensional learning algorithms in both learning frameworks, i.e. in the
supervised and semi-supervised learning frameworks. In order to do so, for each table, we
compare the 20 results obtained by each uni-dimensional algorithm with those obtained
by its multi-dimensional generalisation, i.e. nB with MDnB, TAN with MDTAN and so
on. This comparison is made per columns (in Tables 1 and 2) by means of the Wilcoxon
signed-rank test with o = 0.05, a non-parametric statistical hypothesis test. The null
hypothesis is that ”Both classifiers have the same distribution, i.e. there is no statistical
difference in the behaviour of both learning algorithms”. The use of this non-parametric
test is justified: the Kolmogorov-Smirnov test (o = 0.05) rejects the Gaussian assumption
of the results.

The results of the Wilcoxon test can be found in Table 3. The first 5 rows correspond
to the supervised framework (Table 1) and the last 5 to the semi-supervised (Table 2).
The rows in Table 3 are as follows; the learning algorithms involved in the comparison, the
means (per column) of both algorithms, the p-value of the null hypothesis and the result
of the Wilcoxon test (if the null hypothesis is accepted or rejected) are shown. Moreover,
the greatest mean per row is highlighted in bold.

Framework Comparison Uni-D Mean | Multi-D Mean | p-value Hy
nB vs MDnB 51.72 53.65 0.34 | Accepted
TAN vs MDTAN 53.35 51.69 0.15 | Accepted
Supervised TAN vs MD1/1 53.35 54.35 0.10 | Accepted
2DB vs MD2/2 49.86 53.563 | > 0.01 | Rejected
3DB vs MD2/3 47.82 53.07 | > 0.01 | Rejected
nB vs MDnB 29.44 52.02 | > 0.01 | Rejected
TAN vs MDTAN 38.27 38.99 0.37 | Accepted
Semi-supervised | TAN vs MD1/1 38.27 56.29 | > 0.01 | Rejected
2DB vs MD2/2 29.53 56.74 | > 0.01 | Rejected
3DB vs MD2/3 31.54 56.48 | > 0.01 | Rejected

Table 3: Results of the Wilcoxon signed-rank test (o« = 0.05) of comparing the results in the
20 datasets of each uni-dimensional algorithm with its generalisation to the multi-dimensional
framework.

From Table 3, the following comments can be extracted: In most of the cases, the
multi-dimensional approach obtains the best results in terms of mean joint accuracy. Al-
though there are small differences between the uni-dimensional and the multi-dimensional
approaches in the supervised framework (only the MD 2/3 and MD 2/3 report statistical
differences), in the semi-supervised framework these differences grow larger (except for the
case of the MDTAN learning algorithm, the rest of the multi-dimensional approaches report
statistical differences). In this framework, the multi-dimensional approaches lead to better
results, while performance degradation occurs in the uni-dimensional ones, where the mean



accuracies drop dramatically. A reason to explain this could be that the uni-dimensional
approaches cannot match the underlying multi-dimensional nature of the generative struc-
tures. Moreover, the good results obtained by the MD J/K highlight the flexibility of this
kind of learning algorithms to capture different types of structures.

1.3.2 Learning the generative structure

We are concerned about the fact that there are situations in which the addition of unlabelled
data causes degradation of the performance of the classifier [3], in contrast to the improve-
ment of performance when adding unlabelled data, as happens with the uni-dimensional
approaches in the previous section.

Many researchers, in order to prevent these situations, have proposed in the literature
certain assumptions [2][14] that must be held when learning in a semi-supervised frame-
work. One of the most important assumptions is the hypothesis presented in [3] which
states that “If the correct structure of the generative model is obtained, unlabelled data
improve the classifier, otherwise, unlabelled data can actually degrade performance”. So
therefore, we need to test if this hypothesis is verified in the proposed multi-dimensional
domains. Hence, we fix, for each dataset, the structure that generates the data and learn
the parameters of the model in the supervised (MLE) and semi-supervised (using the EM
algorithm as defined in [6]) frameworks.

The results of this learning process in the 20 databases are shown in Table 4. The
“LABELLED” column shows the accuracies obtained in all the datasets by using just
supervised learning whilst the “ALL DATA” column shows the accuracies of the semi-
supervised learning process. The column “(1 — ep)” shows the optimal Bayes accuracy.

Based on these results, we can conclude that, as happens in the uni-dimensional frame-
work [3], when using the real structure in the multi-dimensional framework, the unlabelled
data always helps.



Family | Dataset | (1 —ep) | LABELLED | ALL DATA | Helps?
NBO1 93.93 88.48 92.16 Yes
NBO02 93.25 89.90 91.06 Yes
MDnB NBO3 91.65 88.29 89.09 Yes
NB04 74.36 65.57 67.33 Yes
NBO05 66.45 59.44 60.43 Yes
TAO01 66.860 66.69 66.79 Yes
TAO02 47.61 43.56 43.80 Yes
MDTAN TAO03 56.80 50.53 50.89 Yes
TA04 64.21 58.57 60.77 Yes
TAO05 58.75 49.99 50.71 Yes
2201 66.26 62.04 63.86 Yes
2202 65.44 60.10 60.77 Yes
MD2/2 2203 61.72 50.22 51.24 Yes
2204 84.85 83.46 83.65 Yes

2205 50.28 47.82 47.82 | Equal
2301 57.56 53.32 54.30 Yes
2302 69.11 67.26 67.62 Yes
MD2/3 2303 50.31 43.45 45.22 No
2304 78.45 75.36 75.78 Yes
2305 61.54 57.34 57.40 Yes

Table 4: Accuracies obtained by supplying the EM Algorithm (as it is usually used in semi-
supervised learning) with the structure that generates the data.

1.3.3 Reaching the generative structure

In almost all problems that we face in the machine learning field, there is no clue for the
generative structure of the dataset. For that reason, we want to check if we can reach the
generative structure and, therefore, obtain better results in terms of accuracy using the
specific semi-supervised learning algorithms in each multi-dimensional Bayesian network
family.

In order to do so, we check the 5 results obtained by each multi-dimensional algorithm
in the family where it can lead to the generative structured, i.e. the MDnB learning
algorithm in the MDnB structure family, etc. To answer the main question of this section,
we compare the 5 results obtained in the supervised framework (Table 1) with the results
obtained in the semi-supervised framework (Table 2). This comparison is made with a
Wilcoxon signed-rank test with & = 0.05 (the Kolmogorov-Smirnov test (o = 0.05) reject
the Gaussian assumption).

Table 5 sums up the results of the statistical test. The rows are as follows; the family
of multi-dimensional Bayesian network in which the learning algorithm is applied, the
learning algorithm used, the means (over just 5 results) of the learning algorithm in both
supervised (Table 1) and semi-supervised frameworks (Table 2), the p-value of the null
hypothesis and the result of the Wilcoxon test are shown. Moreover, the greatest mean
per row is highlighted in bold.



Famiiy Algorithm | Supervised Mean | Semi-supervised Mean | p-value Hop
MDnB MDnB 78.34 80.07 0.02 | Rejected
MDTAN 43.13 40.13 0.11 | Accepted
MDTAN MD 1/1 47.47 49.16 0.02 | Rejected
MD 2/2 MD 2/2 54.02 55.64 0.11 | Accepted
MD 2/3 MD 2/3 52.40 52.93 0.34 | Accepted

Table 5: Results of the Wilcoxon signed-rank test (o« = 0.05) of comparing the results of both
supervised and semi-supervised frameworks using the multi-dimensional algorithms that can lead
to the generative structure in the five datasets of each family.

From these results, the following comments can be made:

e With the exception of the MDTAN learning algorithm, in the semi-supervised frame-
work the learning algorithms lead to better results.

e Although it is difficult to obtain significant differences with only 5 results per each
framework, in two cases (MDnB and MD 1/1) the differences are significant. So, we
can claim that there is a tendency to better results in the semi-supervised framework
when the used algorithm can lead to the generative structure.

e From the results obtained in this section and Section 4.1, it seems that the MDTAN
algorithm proposed in [13] leads to very sub-optimal solutions.

1.3.4 Supervised and semi-supervised learning frameworks comparison

Once tested the algorithms that can reach the generative structure, a wider comparison
has to be made. In this section, we compare the behaviour of each learning algorithm
(both uni-dimensional and multi-dimensional ones) in both supervised and semi-supervised
scenarios.

To achieve this task, we compare by means of a Wilcoxon signed-rank test (o = 0.05)
the results obtained in all the datasets in both supervised (Table 1) and semi-supervised
learning (Table 2) frameworks, i.e. comparing the accuracies per columns, e.g. the nB
column in Table 1 with the nB column in Table 2, etc.
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Scenario Algorithm | Supervised Mean | Semi-supervised Mean | p-value Ho
nB 51.72 29.43 | > 0.01 | Rejected
Uni-dimensional TAN 53.35 38.27 | > 0.01 | Rejected
2DB 49.86 29.54 | > 0.01 | Rejected
3DB 47.83 31.54 | >0.01 | Rejected
MDnB 53.65 52.02 | > 0.01 | Rejected
MDTAN 51.69 39.00 | > 0.01 | Rejected
Multi-dimensional MD1/1 54.35 56.29 0.01 | Rejected
MD2/2 53.53 56.74 | > 0.01 | Rejected
MD2/3 53.07 56.48 | > 0.01 | Rejected

Table 6: Results of the Wilcoxon signed-rank test (o = 0.05) of comparing the 20 results of each
learning algorithm in both supervised and semi-supervised frameworks

Table 6 shows the results of the statistical test. The rows are as follows; the learning
algorithm, the means of the learning algorithm in both supervised (Table 1) and semi-
supervised frameworks (Table 2), the p-value of the null hypothesis and the result of the
Wilcoxon test are shown. Moreover, the greatest mean per row is highlighted in bold.

From the results, the following conclusions can be extracted:

e All the learning algorithms behave differently in both learning frameworks.

e In the uni-dimensional approaches, performance degradation occurs in the semi-
supervised framework. This is probably because “If the correct structure of the
generative model is obtained, unlabelled data improve the classifier, otherwise, unla-
belled data can actually degrade performance” [3].

e With respect to the MD J/K learning algorithms, an improvement in terms of accu-
racy in the semi-supervised framework is observed. As stated before, this highlights
the flexibility of this kind of learning algorithms to capture different types of complex
structures.

e The MDnB learning algorithm reports significant performance degradation in the
semi-supervised, while in the previous section, it reports significant improvement
when learning MDnB structures. It denotes that the MDnB learning algorithm is very
specific, it obtains very good results while dealing with problems with an underlying
MDnB structure, but when the generative models are a bit complex, its rigid structure
makes the algorithm lead to very sub-optimal solutions.

e In this comparison, the MDTAN algorithm also shows very poor performances in the
semi-supervised framework. In addition, from the numerical results (means), it seems
to be closer to the uni-dimensional approaches rather than to the multi-dimensional
ones.
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1.3.5 Behaviour of the learning algorithms in the semi-supervised framework

After showing the potential of semi-supervised learning, we are going to check whether
statistical differences exist among the semi-supervised classifiers: not only between the
multi-dimensional approaches, but also among the uni-dimensional ones. Specifically, we
use Friedman test [7] with a Shaffer’s static post-hoc test with v = 0.1 as recommended
in [9]. The test results are represented by means of critical difference diagrams [7], which
show the mean ranks of each algorithm across all the domains in a numbered line. If there
is no statistically significant difference between two algorithms, they are connected in the
diagram by a straight line.
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Figure 1: Accuracy ranking using both labelled and unlabelled data for the different algorithms
on the 20 artificial datasets, a = 0.05.

From the critical difference diagram (see Figure 1), we confirm the sensations extracted
from the previous sections and deduce that, in the semi-supervised framework, clearly the
multi-dimensional classifiers outperform the uni-dimensional techniques, with the exception
of the MDTAN classifier.

1.4 General conclusions

From the experimental results shown in this report, the following major conclusions, that
answer the experimental questions, can be extracted:

1. As happens in the uni-dimensional framework [3], when using the real structure
to semi-supervisely learnt multi-dimensional classifiers, the unlabelled data always
helps.

2. There is a tendency to achieve better classifiers in terms of joint accuracy in the
semi-supervised framework when the used multi-dimensional algorithm can reach
the generative structure.
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. In the uni-dimensional approaches, performance degradation occurs in the semi-

supervised framework. This is probably due to the fact that the uni-dimensional
approaches are not able to match the actual multi-dimensional structure of the prob-
lems.

Although there are small differences between the uni-dimensional and the multi-
dimensional approaches in the supervised framework (only the MD 2/2 and MD 2/3
report statistical differences), in the semi-supervised framework, these differences
grow larger (except for the case of the MDTAN learning algorithm, the rest of the
multi-dimensional approaches report statistical differences).

. In the semi-supervised framework, clearly the multi-dimensional classifiers outper-

form the uni-dimensional techniques, with the exception of the MDTAN classifier.

. The MDnB learning algorithm [13] is very specific, it obtains very good results when

dealing with problems with an underlying MDnB structure, but when the generative
models are more complex, its rigid structure makes the algorithm lead to very sub-
optimal solutions.

The MDTAN algorithm [13] also shows very poor performances in the semi-supervised
framework.

. The MD J/K learning algorithms have great flexibility to capture different types of

complex structures that results in an improvement in terms of joint accuracy in the
semi-supervised framework.
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Problems with Scarcity of Labelled Data: A
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How is an error possible in mathematics?
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Abstract—In recent years, the performance of semi-supervised
learning has been theoretically investigated. However, most of
this theoretical development has focussed on binary classification
problems. In this paper, we take it a step further by extending the
work of Castelli and Cover [1] [2] to the multi-class paradigm.
Particularly, we consider the key problem in semi-supervised
learning of classifying an unseen instance x into one of K
different classes, using a training dataset sampled from a mixture
density distribution and composed of [ labelled records and u
unlabelled examples. Even under the assumption of identifiability
of the mixture and having infinite unlabelled examples, labelled
records are needed to determine the K decision regions. There-
fore, in this paper, we first investigate the minimum number
of labelled examples needed to accomplish that task. Then, we
propose an optimal multi-class learning algorithm which is a
generalisation of the optimal procedure proposed in the literature
for binary problems. Finally, we make use of this generalisation
to study the probability of error when the binary class constraint
is relaxed.

Index Terms—Semi-supervised learning, probability of error,
labelled and unlabelled samples, multi-class classification.

I. INTRODUCTION

HROUGHOUT recent years, the problem of learning

from both labelled and unlabelled observations has been
of practical relevance. In many applications, an enormous
amount of unlabelled examples is available with little cost,
whilst obtaining enough labelled examples to learn a classifier
may be costly and time consuming. In such cases, semi-
supervised learning (SSL) [3] appears to be a tool that is able
to obtain accurate classifiers in such circumstances.

Within the state-of-the-art literature, SSL has been em-
pirically and theoretically studied. Regarding the practical
applications, it has been used to tackle (i) binary problems [4],
(i1) problems with multiple class values [5], or even (iii) multi-
dimensional problems [6], where several multi-class variables
have to be predicted simultaneously. The probability of error
of SSL has also been theoretically investigated. However, the
scope of the studied problems does not cover the entire range
of the practical applications. The majority of the theoretical
works proposed in this area have mainly focussed on standard
binary problems [1] [2] [7] [8]. To the best of our knowledge,
only in [9], is multi-class framework explicitly tackled; yet, it
has been studied with a slightly different perspective as how
it is in this paper. Moreover, most of the works assume the
datasets have a large enough number of labelled observations
[8] [9], which is an unnatural situation in this scenario.

The authors are with the Intelligent Systems Group in the Department of
Computer Science and Artificial Intelligence, Computer Science Faculty, The
University of the Basque Country, Donostia-San Sebastidn, 20018, Spain
E-mail: jonathan.ortigosa@ehu.es

For those reasons, we think that it is interesting and de-
manding to generalise several of the theoretical findings of
the state-of-the-art literature in SSL binary problems to the
scenarios where there are more than two classes, concentrating
on the cases where the number of labelled observations is
minimal. However, as we show throughout the whole paper,
the previous state-of-the-art studies do not straightforwardly
work for multi-class problems, so there are several theoretical
gaps that must be covered.

Therefore, in order to allow a potential enlargement of the
scope of the theoretically studied SSL problems, in this paper,
we first perform an exhaustive review of the previous theoret-
ical findings. It is focussed on the frameworks utilised in each
study, the feasibility of their conclusions to the multi-class
frameworks and the remaining open questions found in them.
So, guided by this, we contribute with a natural extension to
the multi-class paradigm of the SSL binary framework already
proposed by Castelli and Cover [1] [2]. This extension is
performed by addressing the following issues:

« First, the proposal of an optimal theoretical SSL algo-
rithm able to work in the multi-class framework: PCsg;.
(Permutation of Components in Semi-Supervised Learn-
ing). It is a natural extension of the optimal procedure
proposed in [1] and [2] for binary problems.

e Even under the assumption of having oo unlabelled
records and identifiability of the decision regions, labelled
samples are still needed to determine the labels of the K
decision regions. However, what is the minimum number
of labelled records needed to uniquely determine the
decision regions? In the case of binary problems, just one
labelled datum is needed [1]. In the multi-class scenario,
however, the calculation of this value becomes more
complex. For that reason, in this paper, we define and
calculate [ as the expected minimum number of labelled
records to uniquely determine those K decision regions.

o A formula to calculate the probability of error, P,(l, c0)
(given [ labelled instances and an infinite number of
unlabelled records), for SSL problems where the binary
constraint is relaxed and the pairwise intersections among
the decision regions are empty. When the regions are
non-mutually disjoint, upper and lower bounds are given
for P.(l,00), generalising the statements of [1] [2] to
the multi-class scenario. In both scenarios, P.(l,c0)
decreases to the Bayes error exponentially fast in [.

The rest of the paper is structured as follows: In Section
II, the notation, the properties and the proposed multi-class
framework are introduced. Then, the state-of-the-art literature
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is reviewed in Section III. Section IV reviews the framework
proposed in [1] and [2] for binary problems, highlighting
the issues that must be solved before extending it. Our
algorithm PCggy, is proposed in Section V. In that section, the
Voting learning procedure [9], the recently proposed multi-
class approximated method, is also introduced. In Section VI,
the problem of determining the minimum number of labelled
records needed to determine the decision regions in the multi-
class framework is tackled. Whilst Section VII is devoted to
the calculation of the probability of error in the SSL multi-
class scenario, in Section VIII, we carry out an empirical
experimentation on the contributions of this paper. Then, the
issue of extending the contributions of this paper to practical
SSL is approached in Section IX. Finally, Section X provides
a summary of the paper.

Furthermore, due to the limited space, some appendices are
placed in a separated document available to download from our
website!. There, Appendix A contains mathematical proofs for
the less crucial theorems. Appendix B presents supplementary
experimental results. Finally, Appendix C shows the source
code used to ensure the replicability of the exposed studies.

II. GENERAL NOTATION AND FRAMEWORK

Firstly, we introduce the multi-class framework which will
be used throughout the rest of the paper and which has been
borrowed and extended from that proposed by Castelli and
Cover in the key works [1] and [2] for binary problems.

A. Framework

As we want to study the optimal probability of error P, (I, u)
of classifying the instance (x(9),¢(?)) in the SSL multi-class
scenario having [ labelled instances and w unlabelled records,
the following framework is proposed: Let D = L U U
be a training dataset of a common SSL problem with K
classes which can be divided into two different subsets: L,
the set of [ labelled examples {(x(M), M), ..., (xV, 0} =
{(x™), M) . and U, the set of u unlabelled examples
{(xM x@ . xW) = {x(™1u _ Due to the fact that the
applications of SSL deal with very few labelled examples
and a huge amount of unlabelled data (I/u ~ 0) [3], the
theoretical studies usually make the reasonable assumption of
having [ > 0 labelled and oo unlabelled records. Moreover,
with this assumption and by proposing an optimal learning
algorithm, we can establish a fundamental limit in the perfor-
mance of any existing SSL multi-class algorithm. Therefore,
unless otherwise specified, we assume that u = oo. Then, let
the class labels {c™}!_, be [ i.i.d. random values where
the prior probability of observing a sample of class ¢; is
n, = P(C = Ci) > 0,1 = 1,...,K and Zﬂ?z:l We
also assume that each observation x € L is i.i.d. according
to a mixture component f(x|C = ¢;;0;) € F, where F is a
function set containing the mixture components of a mixture
density. There, 8, stands for the set of the parameters of the
mixture component i, being 8 = (61,05, ...,0k) the vector
of the parameters of the whole mixture. For simplicity of

Iwww.sc.ehu.es/ccwbayes/members/jonathan/home/error.html

notation, henceforth, we denote f(x|C = ¢;;60;) by fi(x).
Then, we define the mixture joint density, which generates
the labelled samples, as

K
f(x,¢) = mei(X)l(c= ¢i), (1)

where the function 1(c = ¢;) is 1 if ¢ = ¢;, and 0 otherwise,

i.e. each mixture component models just one class value.
The infinite unlabelled samples appear to be i.i.d. random

variables distributed according to the mixture density given by

K
f(x) = Z i fi (%) )

and which corresponds to the marginal of f(x,c¢) on x.

Let (x(9, ¢(?)) be a instance to be classified and distributed
according to the joint density (1). As we want to infer ¢(*) from
the observation x(?), when Vi, f;(x) and 7; are known, the
optimal classifier is given by the Bayes decision rule (BDR)

¢ = argmaxn; f;(x*)) 3)

with a corresponding probability of error

K
eg=1— Zm/fi(x)d)g %)
=1

which is called the Bayes error and is the highest lower bound
of the probability of error of any classification rule. There,

R; = {x:nfi(x) — max ni fir(x) > 0} 5)

is the region where 7; f;(x) is maximum and so the instances
are assigned to the class ¢;. However, this classifier cannot be
used in practise as, in general, f;(x) and 7); are unknown.

B. Identifiability

Having an infinite amount of unlabelled examples (u = 00)
available is equivalent to knowing f(x), i.e. the mixture den-
sity can almost surely be recovered from the unlabelled data
[1]. So, in order to be able to take advantage of the information
provided by the unlabelled data, in this framework, we assume
that the mixture f(x) is identifiable, i.e. the components of the
mixture f1(x),..., fx(x) € F and the class priors 11, ..., Nk
can be uniquely decomposed from the density function. This
assumption is well-grounded since it holds for most of the
well-known distributions. In the continuous case and having
a finite K, f(x) is identifiable iff F is said to be linearly
independent [10]. i.e. for real constants «;,i =1,2,..., K,

K
Zaifi(x) =0= Vi,ai =0.
i=1

Particularly, it has also been shown that the mixtures of
univariate Gaussian, Gamma, exponential, Cauchy and Poisson
functions are identifiable iff there are no empty components
(Vi,3x s. t. fi(x) # 0), and there are not two components
with the same parameters (Vi # j,3x s. t. fi(x) # f;(x)). In
general, discrete distributions are not identifiable, except for
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the case of binomial and multinomial distributions. They are
identifiable if K < oo [11] [12] [13].

C. Probability of error in the absence of labelled examples

Next, if the generative model is identifiable, we can re-
cover all the single-component distributions and all the class
priors of the generative model from just the unlabelled data.
However, it is only identifiable up to a permutation 7 of
its single-components. That is, in a scenario of absence of
labelled data, each recovered component can be labelled with
a conventional name j which does not necessarily coincide
with the real label ¢ of the component. This permutation can
be defined as 7 = (w(1),...,7(K)) € Sk, where each
element 7(j) = ¢ denotes that the j-th decomposed component
distribution, i.e. fr(;)(x), is associated to the i-th class value,
and Sk represents the set of all possible component-label
correspondences. Then, the mixture distribution (eq. (2)) can
be expressed as follows:

K K
F&) = mifi(x) =D 0oy o) (),
i=1 j=1

where 7. is the unknown correct correspondence between real
labels 7 and decomposed components j, which cannot be deter-
mined without labelled records. Generalising the conclusions
of [3] for binary problems, it can be seen that, by means of the
infinite unlabelled records, the set containing all the possible
models which can generate the data is reduced to just only
a set containing K! possibilities (where the real generative
model is included). Unfortunately, without labelled data, this
reduction is pointless, as shown in the following theorem:

Theorem 1. (Probability of error with no labelled data)* The
probability of error of classifying a new sample (x(o), C(O)) of
a K-class problem with any classifier learnt with no labelled
examples and any uw > 0 number of unlabelled samples
coincides with the probability of error of the random classifier,
which it is equal to

(K-1)
- 6

K ©)
Then, in SSL, the use of several labelled examples is crucial.

Only for [ > 0, the unlabelled records influence the reduction
of the probability of error.

P.(0,u) =¢ey = , Yu > 0.

III. LITERATURE REVIEW

The probability of error of SSL has been investigated in the
literature. Throughout recent years, several key results have
been presented on this topic. Although these papers theoret-
ically approach SSL by means of different frameworks and
under different assumptions, their findings are equivalent in
most of the cases. In the following paragraphs, we taxonomise
these theoretical proposals into three different subsets assumed
in the SLL community (a summary can be found in Table I):

2This holds true independently of the value of the class priors 71, . . ., nx.

1) Papers which deal with correct models3, i.e. the semi-

supervisely learned models match the generative models,

2) works in which incorrect models are assumed, i.e. the

models do not match the generative distribution, and

3) papers dealing with imperfect models, i.e. those mod-

els which, despite not matching the generative models
perfectly, have a presumedly small error.

Although incorrect models and imperfect models have been
clearly defined in the literature, they are almost equivalent.
Neither of them match the generative distribution of the
data which causes performance degradation of the learned
classifiers. The subtle difference relies on the perspective of the
authors towards them. While the authors who deal with incor-
rect models only perceive the degradation of the performance,
the authors dealing with imperfect models study the impact
of the difference between the generative and learnt models on
the resulting error, or they even try to improve the safeness
of SSL techniques. In the following paragraphs, we review
several contributions to these three different approaches.

A. Correct models

1) Ratsaby and Venkatesh [7]: The authors try to shed
some light on the question “How many unlabelled examples
is each labelled example worth?” under the Probably Approx-
imately Correct (PAC) learning framework. Their goal is to
determine how the error rate depends on the sample sizes [ and
u, and on the dimensionality n. In order to achieve this goal,
several assumptions are made: (1) Learning the correct model.
(2) Two-class multivariate Gaussian mixture problem with
equal unit variance matrices (6; = {u;, I}). (3) Equiprobable
class priors, i.e. n; = 1/2. (4) x is n-dimensional.

With the aim of reaching a rough measure on the value
of one labelled example in terms of unlabelled samples, the
authors calculate how many unlabelled records must be added
to a supervised algorithm to remove just one labelled record
while keeping a similar error. The result is the following:

n

USSL zn

(lsup —lssr)

~ e35logn’

where uggy, is the number of unlabelled examples in a semi-
supervised problem, [gy p is the number of labelled instances
in a purely labelled problem, [sgsz, is the number of labelled
examples in the semi-supervised problem, z is a constant, € is
the upper bound of the error with at least (1 — §) confidence,
and n is the dimensionality. They conclude that unlabelled
data are extremely helpful due to the fact that they reduce
the demands on the number of labelled examples. Then, each
labelled datum is more valuable and the probability of error
decreases exponentially fast in [ggy,, not polynomially fast in
lsup, as happens in supervised learning.

2) Castelli and Cover [1] [2]: The same conclusion as
in the previous work is reached but from the perspective
of the decision theory framework and by weakening several
assumptions. The detailed explanation of their findings can be
found in Section IV.

3Note that, by the assumptions of an infinite number of unlabelled examples
and identifiability, our paper relies on this category.
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Model | Ref. Framework Addressed Question Assumed Model MC | Conclusion
[7] PAC learning | How many unlabelled | Multi-variate Gaussian mixture | No | If the parametric model
examples is each la- | model with unit covariance ma- assumptions are satisfied,
belled example worth? trices and equiprobable classes. labelled examples are
5 [1], [2] | Decision the- | How the optimal proba- | Identifiable mixture densities. No exponentially more Valuab}e
53| ory bility of error varies in [ than gnlabelled examples in
é and u? reducing the error.
8 [14] Parameter es- | What is the contribution | Generic parametric models | Yes | Unlabelled data always helps
timation of unlabelled data in the | p(z,c|0) = p(x|0)p(c|x,0). due to the fact that the Fisher
parameter estimation? information is increased.
[4] Bayesian Does unlabelled data Naive Bayes, and No | Unlabelled data only helps
— networks always help? Tree-augmented naive Bayes. when the learned matches
8 the generative model.
[ [15] Parameter es- | What is the relationship | Identifiable mixture densities | No | As the number of unlabelled
% timation between the model mis- | (Gaussian mixtures for the ex- record increases, the proba-
& specification and perfor- | amples). bility of degradation is pos-
Z - o s
= mance degradation? itive with incorrect model.
[8] Density esti- | What is the value of | Two equiprobable | No | The error is reduced expo-
6 mation labelled and unlabelled | n-dimensional spherical nentially with the number of
3| data when the assumed | Gaussian mixtures. Let e be labelled records until e. After
E densities do not follow | the difference between them. that, the error is only reduced
& the parametric model? polynomially fast.
E 9] Density esti- | What is the convergence | Identifiable mixture densities. Yes | Similar results to [1] and [2]
mation rate of the error? for the multi-class scenario.

TABLE I: Summary of the theoretical SSL state-of-the-art literature (MC = multi-class).

3) Zhang and Oles [14]: The authors address the problem
of the value of unlabelled data, i.e. how unlabelled records help
in reducing the probability of error, by analysing their efficacy
in the estimation of the parameters of the model. They argue
that unlabelled examples have a positive impact on the efficacy
of the estimations of the real model parameters 0, in the cases
of combining both (1) parametric generative models defined
as p(z, c|0) = p(x|0)p(c|z, ), and (2) SSL techniques where
a classifier is trained with labelled and unlabelled data in
an iterative manner. Then, the authors claim that under the
correct model assumption, adding unlabelled data always helps
because Fisher information is increased:

T4u) (8) = 1,(0) + 1.(6),

where [(;1,(@) is the Fisher information of 6 using both
labelled and unlabelled subsets, I;(8) using the labelled subset,
and I,,(0) using the unlabelled data.

4) Cohen et al. [4]: The authors address the question of
whether unlabelled data always helps. By means of Bayesian
network classifiers (naive Bayes and tree augmented naive
Bayes models), they focus on the convergence of the semi-
supervised maximum likelihood estimator of the model, 6*,.
They argue that the limiting value of the MLE, as the num-
ber of labelled and unlabelled records increases, is a linear
combination of the supervised and unsupervised expected log-
likelihood functions:

0 = argmax [5E[10gp(c,><\0)] +(1 - ﬁ)E[logp(X\o)]],

where [ is the probability of sampling labelled data, i.e. the
ratio of the amount of labelled and unlabelled observations.
They conclude that unlabelled examples always improve the
performance when the correct model assumption is met, and
may degrade it when the opposite happens.

B. Incorrect models

1) Yang and Priebe [15]: Under the assumption of learning
the correct model, SSL techniques seem to work appropriately.
However, when this requirement is not met, performance
degradation may occur in the classifiers as unlabelled examples
are introduced. Therefore, in order to study the degradation,
the authors define 0] as the limiting value of the supervised
MLE (as the number of labelled data increases) of the real
model parameters 6, and @, as the limit of the unsupervised
MLE (as the number of unlabelled records increases) of
0, assuming that the generative model is a finite Gaussian
mixture model (8; = {u;,0}) and the estimators exist under
mild regularity conditions. First, the authors corroborate the
achievements of [1] when the correct model assumption is
met by proving that both limits tend to the same parameter
value. However, when the learnt model is misspecified, the
supervised and the semi-supervised MLE parameters may
converge to different values, i.e. 8] # 0. They also state
that for any fixed finite [ or [ — oo, as {/u — 0, the limit
of the maxima of the semi-supervised likelihood parameters
is the unsupervised MLE limit @, and degradation may
appear: If P.(f(x,c|0])) < P.(f(x,c|0.)), then for a given
misspecified model, 3, s.t.

ILm P.(l,u) = P{P.(f(x,c

07)) < Pe(f(x,¢l6,))} > 0.

That is, for incorrect models, SSL yields degradation with
positive probability as u — oo.

C. Imperfect models

1) Sinha and Belkin [8]: The authors focus on the situation
when the correct model assumption is only satisfied to a
certain degree of precision, either because the assumed model
is correct but the dataset is imperfect or because the assumed
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model does not follow the generative model. For the purpose
of this paper, we aim for the latter case. There, € is defined
as a perturbation size, i.e. a rough measure that indicates to
what extent the true model differs from the assumed model.

It is proved that, under the assumption of having two
equiprobable spherical Gaussian mixture components as gen-
erative models, as labelled examples are added to a training
set with infinite unlabelled records, the probability of error
is reduced exponentially in the number of labelled examples
(as argued in previous works) but only until ep + €. After
that, the perturbation € is only reduced polynomially fast in [.
Moreover, they also state that, for a positive perturbation size,
there is a number of unlabelled examples that beyond which
any extra additions do not decrease the probability of error.

2) Chen and Li [9]: Although the authors extend the
findings of [8] by assuming an imperfect model, it is better
to remark their efforts to theoretically deal with the multi-
class framework. Under the correct model assumption, they
show that labelled examples reduce the probability of error
exponentially fast, as happens in binary problems. They also
proposed an approximated algorithm (called Voting) that can
utilise the unlabelled data efficiently, i.e. achieving a fast
convergence rate. Although, to the best of our knowledge, it
is the only theoretical algorithm proposed for the multi-class
framework, it does not achieve the optimal probability of error
as we demonstrate throughout the paper.

IV. SEMI-SUPERVISED LEARNING IN BINARY PROBLEMS

In this section, we review the key works [1] and [2] high-
lighting why new strategies must be adopted in the multi-class
scenario since they cannot be straightforwardly generalised.

A. Obtaining the binary classifier

Under the assumptions of (i) learning the correct model,
(i1) having the unlabelled samples distributed according to the
identifiable mixture density f(x) = 11 f1(x) + n2f2(x), and
(iii) having f1(-), f2(-), m1, and 72 (= 1 — 1) unknown, the
authors define a procedure (see Algorithm 1) to obtain the
optimal binary classifier in SSL.

Algorithm 1 Optimal theoretical procedure for SSL binary
problems [1] [2]

1: LEARNING TASK:

o Stage I Use unlabelled set U/ to obtain f(x) and,
by identifiability, a permutation of its components
(le'(l)( )’ fTr(2)( )’ Nr(1)» and 7771'(2))

e Stage 2 By means of the likelihood ratio test and the
labelled set £, determine the correspondence between
the real classes and the current mixture components:
#(1) =1 and #(2) =2, or 7#(2) =1 and (1) = 2.

2: CLASSIFICATION TASK:

o Stage 3 Assign the sample x(9) to the class induced
by the BDR using the learned model.

The procedure can be divided into two major parts: (a) the
learning task, where a model is learnt using the training dataset

D, and (b) the classification task, where the unseen instances
are classified according to the previously learnt model. The
learning task is split into two stages. First, the components of
the mixture are identified by means of the unlabelled subset
U (Stage 1), and then, the labelled subset £ is used in the
likelihood ratio test to assign a class to each component (Stage
2). Finally, the classification task is composed of just one
stage, namely Stage 3, in which the BDR is used to determine
the class of the unseen instance given the assignment of the
two previously made mixture components.

According to [1], this procedure is optimal, i.e. it achieves
the highest lower bound of the probability of error of any semi-
supervised classifier, since all the three stages are optimal. By
means of identifiability and the correct model assumption, the
recovered components are a permutation of the components of
the unknown real model. The likelihood ratio test is optimal
for two simple hypotheses and the BDR (eq. (3)) is the
optimal classification rule. Unfortunately, this optimal proce-
dure cannot be directly transferred to the multi-class scenario.
Although, both Stage 1 and Stage 3 can be straightforwardly
used to deal with K' > 2 classes, the optimality of Stage 2 can
only be guaranteed for K = 2. In the multi-class framework,
new procedures must be proposed for Stage 2 as we need to
deal with more than two simple hypotheses. In Section V, we
tackle this problem.

B. Minimum number of labelled examples

Labelled records are needed to correctly determine the cor-
respondence between the classes and the decomposed mixture
components (Stage 2 of Algorithm 1). But, how many labelled
examples are needed to carry out such a task?

It is shown in [1] that, for the case of K = 2, just one
labelled example is enough. Once the two components have
been identified (as fr(1)(-) and fr(2)(-)) in Stage 1, with
just one labelled datum (x,¢;), the correspondence 7 can
be, correctly or incorrectly, uniquely determined. By means
of the likelihood ratio test (Stage 2), the component that is
maximum (f¢;(-)) in the region R; where the instance lies
is labelled with the label of the instance (w(j) = 4). Then,
the other component is labelled by a process of elimination.
But is just one labelled example enough to assign a label to
each component in the multi-class paradigm? The answer is
no. With more than two classes and a labelled datum, we can
only identify just one component, the one where the datum
seems to belong to. For the rest of the components, there is
not enough information in the subset £. So, how much labelled
data is needed to uniquely determine the correspondence m of
a K class problem? We deal with this issue in Section VI.

C. Probability of error

Under the proposed binary framework, the probability of er-
ror, P.(l,u), is calculated in [1]. First of all, the authors prove
for the case of binary problems that (P, (0,u) = 1/2,Vu >0
(Theorem 1)). Then, they stated that with infinite labelled ex-
amples the Bayes error is reached (P.(co,u) = ep,Vu > 0),
and that the probability of error of having just one labelled
example and no unlabelled data is P.(1,0) < 2mm2 < 1/2.
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After all these specific scenarios, the authors make use of
Algorithm 1 to study the value of P, (I, 00). First, they analyse
the case of P.(1,00), where only one labelled datum plus
infinite unlabelled records are available. Under the correct
model assumption and by identifiability, Stage 1 cannot lead to
a classification error. Therefore, in this case, a classification
error only occurs when either Stage 2 or Stage 3 yields an
incorrect answer, i.e. either (i) the classes of the mixture
components are reversed or either (ii) the BDR misclassifies
the instance. When both Stage 2 and Stage 3 result in wrong
answers (the classes of the mixtures are reversed and the BDR
misclassifies the instance), both mistakes cancel each other out
in the 2-class scenario. Let the event A = {error in Stage 2},
then P(A) = ep and the probability of error is calculated as:

P.(1,00) = P(¢© £ ¢(0)) =
P(e® £ (OA)P(A) + P # (DA P(A) =
= (1 — €B)€B + 63(1 — eB) = 263(1 — eB).

In general, for the case of [ labelled examples, the authors
follow a similar reasoning to the calculation of P.(1,00), i.e.
determining when an error is committed in just one of the two
previously exposed stages (Stage 2 and Stage 3). However,
in this general case, P(A) does not coincide with ep, and
therefore it must be calculated. Under these premises, they
reach the conclusion that the probability of error is:

P.(l,00) — ep = exp{ —1Z + o(l)},

where Z = — log {2m VA fg(x)dx} is the Bhat-
tacharyya distance between the densities fi(x) and fo(x)
multiplied by a term equal to log (2,/7172). In [2], they extend
their work to the case of u < oo, reaching to

P.(l,u) —ep = O(%) +exp{ —1Z +o(l)}.
The authors conclude that, in the case of binary problems,
it turns out that unlabelled samples are only polynomially
valuable, whilst labelled samples are exponentially valuable
in reducing the error. So then, what is the probability of error,
P.(l,00), when the binary class constraint is relaxed? Does
this conclusion still hold in those cases? In Section VII, our
main objective is to address these.

V. SEMI-SUPERVISED MULTI-CLASS LEARNING
STRATEGIES

Guided by the aforementioned concerns, we now tackle the
first of them; proposing a strategy for Stage 2 which is able
to determine a correspondence 7 by using a labelled set £
with K > 2 classes, i.e. to assign each mixture component
to a specific class. In the following subsections, we first
introduce Voting [9] as the only method for Stage 2 where the
binary constraint is relaxed which has already been proposed
in the literature. However, since it does not make optimal
usage of the data, we propose PCggr,, an optimal multi-class
learning strategy for Stage 2, which is a natural extension and
generalisation of the one proposed by [1]. So, in the studied
scenario, the whole multi-class procedure remains as can be
seen in Algorithm 2.

Algorithm 2 Theoretical procedure for SSL multi-class prob-
lems

1: LEARNING TASK:

e Stage 1 Use unlabelled set U/ to obtain f(x) and,
by identifiability, a permutation of its components
(fr)(+)s and 15y, 5 = 1, ., K.

e Stage 2 Use the labelled set £ to determine the
correspondence between the classes and the mixture
components, i.e. the permutation of the components 7,
by means of the semi-supervised multi-class learning
procedure: (i) Voting [9], or (ii) our proposal PCsgy,

2: CLASSIFICATION TASK:

o Stage 3 Assign the sample x(9) to the class induced
by the BDR using the learned model.

A. Voting

In [9], the authors propose Voting as a simple method to
determine the permutation 7 by extending the majority vote
method for binary problems [16] to the multi-class framework.

There, it is assumed that the regions R; (see equation 5)
are known by identifiability, and that the observations of L,
ie {x(M x® . xO}, can be split into K different subsets
named L;, for i = {1,..., K}, such that, each £; stands for
the set containing all the observations in £ of the class value
¢;. Under these premises, the learning method is as follows:
First, it counts the labels in each region and then, assigns
the permutation which maximises the total number of counts.
Formally, it can be defined as follows:

K

7y = argmax V(m; L) = argmaXZ |Li N Re—1py]. (7)
i=1

where |£; N R.-1(;| is the number of examples of class ¢;

found in the region R -1;. Although Voting is asymptotically

optimal (as [ — ©0), it does not make optimal usage of the

dataset when [ is relatively small, the natural domain for SSL.

B. PCssy,

Due to the aforementioned drawbacks of the Voting pro-
cedure, we propose a new theoretical SSL strategy which
makes optimal usage of the labelled data. It is named PCggsp
(Permutation of Components in Semi-Supervised Learning),
and it uses the principle of maximum likelihood to determine
the label permutation 7 of the previously decomposed com-
ponents. It not only coincides with the method for Stage 2 of
Cover and Castelli for K = 2 ( [1] and [2]), but also it is a
natural extension of that method to the multi-class framework.
Formally, the learning strategy is as follows:

K
7p = arg max L(m; L) = arg m;;iXH H Nifr-13)(x). (8)
i=1x€L;
Briefly, PCssp. works as follows: it returns the correspondence
7 between the classes and the identified components with the
highest likelihood function L(7; £). The following theorem
proves the optimality of our proposal:
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Theorem 2. (Optimality of PCssy) PCssy is an optimum
learning procedure for Stage 2 of Algorithm 2.

Proof: Let m* = argmax, P(w|L) be the BDR for
classifying a labelled subset into one of the K! different
possible permutations. Since it is the optimal classifier, PCggy,
can be proved to be optimum if both classifiers are equivalent,
i.e. m* = ,, VL. To prove this statement, we reduce the BDR
to PCgssr by rewriting the optimal rule as

7" = argmax Pr{m, L} = argmax f(L|m)P(w),

where the notation Pr{-} is used to omit measure-theoretical
details for the sake of clarity. Regarding f(L|m), as max
measures of disjoint events are independent and fixing 7, we
reach the conclusion that it is equal to the likelihood:

f(L]m)

HHm (x|7~1(2))

an f(Lilm) =
i=1x€eL;

= H 1T nifer(x)

i=1xeLl;

= L(m; L)

Concerning the model priors P(7), it is reasonable to assume
them to be uniformly distributed (as in the key work of
Cover and Castelli [1]), which holds when the components
are indexed in a random uniform manner. Therefore,

7 = argmax f(L|r)P(r) = argmax L(m; L) = 7,

C. Computational complexities of both procedures

While the solution of eq. (7) (Voting) and eq. (8) (PCssr) for
a given L can be straightforwardly obtained by an exhaustive
search over the K! factorial permutations, this process can be
simplified, in terms of computational complexity, by rewrit-
ing both equations as linear assignment problems and, then,
using the Hungarian [22] to find the solution. Therefore, we
consider [n); = |£; N R;|] as the cost matrix for a Voting
strategy where each element nU represents the number of
labelled examples with class value ¢ appearing in R; and
NP = [nf, = Y cr, 108 fr-1(;)(x)] as the square matrix
representing the cost matrix of PCgsp, where each element
nf; is the log-likelihood of labelled examples with class value
i regarding the component fr-1(;. Then, by applying the
Hungarian algorithm over these cost matrices, the optimal
assignment4 7 of labels, given a cost matrix, is achieved in
polynomial time (O(K?)). This transformation also solves the
original ambiguity of Voting; in [9], further details are not
provided about how Voting deals with the ties.

VI. MINIMUM NUMBER OF LABELLED EXAMPLES

SSL is usually applied in domains where labelled data are
very expensive and/or difficult to obtain, but crucial (eq. (6)).
For that reason, we think it is necessary to tackle the second

4Do not confuse the optimal solution for a linear assignment problem with
the optimal probability of error. Under this setting, PCss remains as an
optimal algorithm and Voting as a sub-optimal algorithm.

issue of Section IV: the minimal number of labelled data
needed in Stage 2 of Algorithm 2 to unambiguously determine
a permutation. Under the proposed framework, this issue can
be translated into the calculation of the minimum number
of labelled data needed to uniquely determine one possible
permutation 7 without leaving any possibility to chance. Note
that, when there is ambiguity, ep cannot be reached.

As stated, in binary problems, just one labelled example is
enough. It can also be easily seen that, in general, (K — 1)
labelled instances with different label values are needed to do
so and the remaining component is determined by a process
of elimination. However, we cannot ensure having (K — 1)
different labels in a particular labelled set £ due to the
randomness of the data [17]. Hence, for multi-class problems,
expectations must be taken. We need to calculate [, i.e.
the expected minimum number of instances needed to have
a labelled set with (K — 1) different class values among them.

A. The expected minimum number of labelled examples

First, we determine [x under the assumption of having all
class priors equiprobable. This calculation is given by:

Theorem 3. (Minimum number of labelled examples) Let the
Sfamily of mixtures F be linearly independent. Let K < oo be
the number of classes and the number of mixture components.
Let the class priors be equiprobable, i.e. Yi,n; = n = 1/K.
Then, the expected minimum number of labelled instances
needed to uniquely determine the class labels of the K
components of a mixture is :

L vicas
z:; ( )J*l)

K — j\(K-2) (K — j)
) (e B

iFK>2
Ix =

<.

X

Figure la shows the growth of {x for K = {2,...,80}
when the priors are equiprobable, i.e. n; = 1/K,Vi. It can
be seen that it grows linearly in the number of classes K.
This growth is due to the fact that this assumption among
the priors is a hard constraint for the minimum labelled
examples required. However, we want to remark the main
benefit of calculating [ i for equiprobable priors; it is the lower
expected bound of labelled examples needed for any possible
configuration of K different class priors. For that reason, in
practise, the study of [ gains great importance for high values
of K, such as in the recently proposed highly multi-class
scenario [18], where K > 1,000. In [18], the authors deal with
the problem of image classification in a supervised manner.
However, since huge amounts of unlabelled images can be
easily gathered, it is a matter of time to make use of unlabelled
data in highly multi-class problems, as in [4] [19]. For such
problems, lx can be of vital importance for being a lower
bound of the required labelled data. As an illustration, Table
II presents, for each dataset used in [18], its correspondent [ .

B. Relations between the class priors and |k

Now, we relax the assumption of equiprobability. In the first
place, we start calculating i for ternary problems:
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Figure 1: Minimal number of labelled data, [j.

Problem K Ik
16K ImageNet | 15,589 143,911
22K ImageNet | 21,841 208,992
21K WebData | 21,171 201,921
97K WebData | 96,812 | 1.07 x 10°

TABLE II: [ for highly multi-class problems [18].

Theorem 4. (Minimum labelled examples for ternary prob-

lems) Let f(x) be identifiable and let K = 3 be the number of

classes with priors 1; > 0, Zle 1; = 1. Then, the expected

minimum number of labelled instances needed to uniquely

determine the class labels of the components of the mixture is
3 .-

2 .

i=1

l3

(10)

When we want to determine [ for K > 4 with non-
equiprobable class priors, it becomes intractable. Therefore,
in order to avoid such a combinatorial explosion and to obtain
an idea of the evolution of lx with respect to the priors,
we perform an empirical study to determine the growth of
lx when the class priors are non-equiprobable for the cases
K = {2,...,10}; We generate a population of size 50,000
independent samplings by a Dirichlet distribution with all its
K hyper parameters set to 1. Since the Dirichlet distribution is
the conjugate of the multinomial distribution [20], each sample
of the population represents a vector of class prior probabilities
n = (n1,...,nk) uniformly distributed along the domain of
7. Then, for each sample 7, we calculate [ by means of
a Monte Carlo method by averaging the minimum number of
instances needed to have (K —1) different classes over 10,000

independent samplings. In order to be able to show the results
in a two-dimensional figure, we also calculate the variance
of each sample 7, i.e. Var(n) = + Zfil(ni —1)2%, where
n = % Zf; ;. Note that the variance is highly correlated
to the degree of imbalance among the priors. Then, Figure
1b shows the result of this simulation; how [x grows as the
variance is increased. There, it can be seen that the lowest
value of [x for every K always fits with the equiprobability
(Var(n) = 0), and from that point all the [k values expo-
nentially grow as the variance is increased. Only for K = 2,
it remains constant. Here, it can be clearly noticed that the
multi-class framework is much harder, at least in the number
of labelled examples needed, than the binary scenario.

VII. PROBABILITY OF ERROR IN THE MULTI-CLASS
FRAMEWORK

In this section, we deal with the last highlighted concern of
Section IV; determining the probability of error P,.(l,00) in
the multi-class scenario under the correct model assumption.

In binary problems, the probability of error is calculated
by exploiting the inherent characteristic of Algorithm 1: a
classification error happens when either Stage 2 or 3 of
Algorithm 1 yields an incorrect answer; but when both stages
result in wrong answers, the mistakes cancel each other out
[1], [2]. Unfortunately, this characteristic does not apply for the
multi-class scenario. Here, the casuistry gets more complex; a
classification error also occurs when either Stage 2 or Stage 3
of Algorithm 2 yields an incorrect answer. However, when
both stages result in wrong answers, the mistakes do not
necessarily cancel each other out. What’s more, most of the
mistakes in both stages lead to a final misclassification. Driven
by these thoughts, we calculate the probability of error when
a determined labelled subset £ is given to derive the obtained
results to the case when just the number of labelled records [ is
given. The following lemma formulates the probability of error
for any learning procedure for Stage 2, including Voting and
PCss1, when the BDR is applied over a returned permutation:

Lemma 1. Let L be a labelled subset distributed according
to a generative model f(x,c). Let the marginal of f(x,c) on
x be an identifiable mixture density f(x) = Zfil 7 fi(x)
which represents the distribution of the infinite unlabelled
records. Let T be the correspondence returned by the learning
procedure T1(-), (Stage 2 of Algorithm 2), and let R, —1;) be
defined as in eq. (5). Then, the probability of committing an
error in classifying an unseen instance with the BDR after
assuming the correspondence T is

K
Pelm) =1=>"m |

Although the previous lemma formulates the probability of
error of Stage 3 in Algorithm 2 independently of the learning
procedure used for Stage 2, we are interesting in calculating
the probability of error of the whole procedure for a given
number of labelled data [:

fi(x)dx.

w1

an

Theorem 5. (Probability of error) The probability of error
of classifying an unseen instance in the multi-class scenario,
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given [ labelled records and infinite unlabelled records, is’:

= Z P(1I; = w)P(e|r),

TESK

(12)

where P(II; = 7) denotes the probability of choosing, using
the learning procedure I1(-), the permutation 7 given [ labelled
data (Stage 2 of Algorithm 2) and P(e|r) the probability of
misclassification with the BDR after assuming the correspon-
dence 7 (Stage 3 of Algorithm 2). Finally, Sk represents the
set of all possible permutations of size K representing all the
correspondences between labels and components.

Proof: First, we define I = {£ | |£| = [} as the set
containing all the possible labelled subsets with cardinality [
and formulate P, (I, c0) as

. (1, 00) /Pe|ﬁ

Unfortunately, the number of labelled sets with cardinality [
is infinite (except for the case of [ = 0). Therefore, we need
to rewrite this equation by partitioning IL into several disjoint
sets Ly, i.e. L=, cq, Lxr AVa,b, Ly, NLy, = (. Each L,
stands for {L | |£] = l/\H( )=} Then by the distribution
property, the probability can be rewritten as

Po(l,o0) = Y /}L P(e|L)P(L)dL,

In this case, the probability P(e|L),VL € L, will be equal to
the P(e|r) (eq. (11)) since the returned permutation is 7. Due
to the fact that P(e|w) is constant, it can be extracted from

the integrand as a common factor. Finally, as P(II; = )
is, by definition f]L P(L)dL, we rewrite the formula as that
presented in the theorem. ]

However, we are interested in calculating, under certain
assumptions, the convergence rate of the probability of error in
the multi-class framework. When possible, we also calculate
a formula depending on [ and K. For that reason, in the
following sections we calculate it for two scenarios; (i) when
there are no pairwise intersections among the components and
(ii) when the components intersect among themselves.

A. Mutually disjoint components

When the pairwise intersection among the components is
empty, there is no chance of committing an error using the
BDR in the supervised scenario, i.e. ep = 0. However, in
the SSL framework, a classification error may occur when the
correspondence 7 is determined (Stage 2).

In order to calculate the error, we take advantage of the
main property of this scenario; with just one labelled datum
of the class ¢; in the labelled subset, we can unequivocally
determine 7.(j). Therefore, the calculation of the error turns
into the calculation of the probability that a certain number
z < min(K,1) of labels appear in [ labelled records. Under the
assumption of having all priors equiprobable, the probability
of error is calculated based on this reasoning as follows:

SNote that eq. (12) fits with the one proposed for binary problems in [1]
(pp. 107, eq. (7)): P(I1; = wc)P(e|mc) + P(I; = 7c) P(e|mc).

0.8
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Number of labelled records
Figure 2: P,.(l,00) for K = {2,...,10} (lower lines are lower
values of K) for mutually disjoint components (eg = 0).

Theorem 6. (Probability of error with zero Bayes error) Let
the mixture density f(x) be an identifiable mixture. Let K be
the number of classes and the number of mixture components.
Let the class priors be equiprobable, i.e. Vi,m; = n = i
Then, the probability of error P.(l,0), given I > 0 labelled
records and infinite unlabelled records when the components

are mutually disjoint is given by:

min(K—2,1)
z=1

where Py . and PRy, are the number of z-permutations
without repetition and l-permutations with repetition of K,
respectively. So(l, z) is the Stirling number of 2™ kind [21].

P.(l,00) =

PK,zS2(laz) z+1
PRy, (1 K ) a3

Corollary 1. When the components are mutually disjoint,
P,.(1,00) converges to 0 exponentially fast in the sense of that

(%))

Figure 2 illustrates the variation of the error under the
assumptions of models with equiprobable priors and eg = 0
for K from 2 to 10. There, it can be seen that the probability
of error converges exponentially fast to zero in [. Also, note
that, in this scenario, both Voting and PCggy, are equivalent.
Both of them obtain the optimal probability of error (eq. (13)).

(14)

B. Mutually non-disjoint components

When the ep > 0, we provide an upper bound (Theorem
7) of P.(l,00) in order to determine the convergence rate in
l of the optimal probability of error (Corollary 2). Here, we
assume having all priors equiprobable, Vi, 7, =n =1/K.

Theorem 7. (Upper bound of the error) When the components
are not mutually disjoint and all the priors are equiprobable,
the optimal probability of error of a model composed by K
different identifiable mixture components is upper bounded by
—I\2

Pe(lvoO) —ep < 2€Xp{ 2K }7

where X € (0, 1] depends on the degree of intersection among

15)
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the components of the mixture distribution and is defined by

.
A= ijm{/Rj fi(x)dx—r?ix/Rj fz(x)dx}. (16)

Corollary 2. The probability of error, P.(l,00), decreases to
ep, at least, exponentially fast in the number of labelled data.

The previous calculi prove that the optimal probability of
error converges exponentially fast in [ multiplied by a constant
A € (0,1]. The latter only depends on the intrinsic character-
istics of the components of the mixture; whilst models with
mutually disjoint components show a value of A = 1, models
with a high level of overlapping show values of A ~ 0.
Note that, for values of A close to 0, the decrease of the
probability of error will be slower since, in problems with a
high intersection of components, the process of discriminating
the classes is intricate. In those cases, more labelled data
will be required. However, is this upper bound good enough?
Can the probability of error decrease faster? To answer these
questions, we provide a lower bound of the optimal probability
of error assuming the particular scenario of having a model
composed by Gaussian mixture components with the same
variance, i.e. @ = {u1,...,ux,o} and each 0; = {p;,0}.

Theorem 8. (Lower bound of the error) Assuming that the
model is a Gaussian identifiable mixture of K components
with the same variance (o) and equiprobable priors. Let 0yp
be the largest distance between the means of two components
and Q(-) a polynomial of degree 3. Then, the probability of
error for non-disjoint components is lower bounded by

K!(l—eB) _ (K— 1)!
(1 +eXp{Q(%\ﬂ>})(KI—1)

It can be easily noticed that, in the case of assuming
a Gaussian mixture, both bounds are quite close, leaving
not much room for improvement in the upper bound; they
converge exponentially fast in [ to ep. Note also that, in this
scenario, dp; € (0,00) plays the role of the constant X in
the general solution; values of J,; close to zero represent
problems with a high intersection of components and a slower
decrease of the probability of error. This can give us an idea
that the optimal probability of error without any assumptions
on the model will also converge exponentially fast, not faster.
In the general case, it cannot decrease faster than this specific
scenario.

P.(l,00) —ep > (17)

VIII. EXPERIMENTAL STUDIES

In the previous sections, we have proposed an optimal
learning procedure, PCsgy,, for the multi-class problem in the
SSL scenario. By Theorem 2, when the correct model assump-
tion is met, any learning procedure, including the previously
proposed Voting strategy [9], will achieve an upper or equal
probability of error than PCgsp. However, under the same
assumption, does PCgsgr, significantly outperform Voting, or do
both algorithms share a similar probability of error? Moreover,
another interesting question arises in this framework; how does
PCss1. behave when the correct model assumption is not met?

To answer these questions a generative model with the
following characteristics is assumed: since it must be simply

10

enough to be able to fully interpret the results and complex
enough to be able to represent real world problems, we as-
sume a generative model composed by K univariate Gaussian
identifiable mixture components with unit variances and whose
means are separated by a fixed factor § € R, i.e. 0; = {u;, 0},
where p; = 6(¢ — 1) and o; = 1. This factor determines the
degree of overlapping among the classes. Also, we assume
equiprobable class priors®. Regarding the learning procedures,
we make use of both PCgg, and Voting, as they are, to the
best of our knowledge, the only two theoretical procedures
proposed in the literature for this problem. The behaviour
of both learning procedures is simulated by a Monte Carlo
method; the probability of error of each procedure and each
value of [ is estimated by averaging the resulting probability
of error over 10,000 independent trials (labelled datasets)’.
Then, the first experiment is carried out to address the
first question, i.e. determining whether a significant difference
between PCgsp. and Voting exists. To do so, we have studied
the behaviour of both procedures assuming the previous gen-
erative model for values® of K = {3,4,5,6}. However, due
to the limiting space, in this paper, we only show the results
for the ternary problems. Higher values of K can be found
in Appendix B. Specifically, the probability of error of both
PCss. (PP (l,00) = P.(l,00)) and Voting (P (I, 0)) learn-
ing algorithms has been calculated for [ = {0, ..., 4.} for
three different levels of intersection among the components,
§ = {0.25,1, 5}. These three different ¢ values can be assumed
to correspond to complex, medium and easy problems.
Figure 3 shows the behaviour of the probability of error
for PCgs, and Voting as [ increases in the studied ternary
problem. Specifically, the different levels of intersection § =
{0.25,1,5} are represented by Figure 3a, Figure 3b, and
Figure 3c, respectively. All the figures share the same shape.
The x-axis represents the number of labelled data [ and
the y-axis represents the excess of risk of both procedures
[2], i.e. PY(l,00) — ep or PF(l,00) — ep. Note that, the
z-axis is differently scaled for each problem due to the
fact that complex problems require more labelled data (eq.
(15)). Moreover, since eg varies for different values of J, the
y-axis is also not equally scaled for the three scenarios. The
corresponding Bayes error values for each § = {0.25,1, 5} are
ep = {0.6004,0.4114,0.0083}, respectively. Then, the upper
decreasing curve (grey colour) is the excess of risk of Voting
and the lower decreasing curve (black colour) corresponds
to PCgs. The vertical line is lx. As can be seen, the
experiment coincides with the theoretical advances proposed
in the paper: (i) the probability of error of both learning
algorithms decreases exponentially fast in [ (Theorem 7) and
PCgg always dominates Voting. It always achieves a lower (or
equal) probability of error (Theorem 2). (ii) When ep ~ 0,
i.e. higher values of §, both algorithms behave similarly in

®Note that if we consider unequal standard deviation, multivariate features,
other geometry or non-normal probability densities, it may not be possible to
perform all the calculations, e.g. the Bayes error.

7For the sake of honesty, the same datasets are sampled for each procedure
and each set of parameters. Moreover, the cases where the correspondence
cannot unambiguously be determined are equally resolved for both procedures.

8Both learning algorithms are equivalent for binary problems.
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Figure 3: Probability of error of Voting [9] (upper) and PCsg;, (lower curve) for K = 3 (Ix = 2.5).
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Figure 4: Absolute differences between Voting and PCsg, i.e. P) (I,00) — PF(l,00), for K = 3.

terms of probability of error (Theorem 6). (iii) In the opposite
case, i.e. when ¢ is small, the room for improvement is quite
narrow (e.g. eg —ep ~ 0.06, for 6 = 0.25) and the complexity
of the problem is really high. There, the probability of error
of any algorithm will show a slower decrease in [ (Theorem 7
and 8) and more labelled data will be required to achieve the
best classifier. (iv) Finally, the results show that ep is never
achieved with less than [y labelled examples (Theorem 3).

In order to properly quantify the magnitude of the absolute
difference between the two theoretical SSL procedures, we
also introduce Figure 4. There, the differences between the
probabilities of error of both Voting and PCggy, are shown for
each [. Figures 4a, 4b, and 4c represent the previously defined
complex, medium and easy problems, respectively. The y-axis
in each figure is scaled between 0 and the highest difference
found in the simulation. In general, the differences between
the procedure show a similar shape throughout the problems.
First, the difference between the probability of error of both
theoretical procedures is 0 for both [ = 0 (Theorem 1) and
[ = 1. After that, it grows until a determined value of .
Finally, beyond that point, the difference starts to decrease
to 0, the point where Voting reaches ep. Additionally, the
results also reveal that, although the absolute differences vary
for determined values of J, the relative differences (w.r.t. the
available room for improvement, i.e. ey — ep) are greater for
lower values of ¢. Then, we can conclude that PCsg;, achieves
a much better relative performance than Voting for low values
of 4.

Appendix B shows that the results for that higher values of
K (lyae = 50) are similar to K = 3. The main difference is
that, for higher multi-class problems, the behaviour of K = 3
is horizontally stretched when [ > 1 due to the fact that both
procedures need a higher value of [ to reach ep.
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0.0 n . n n
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Figure 5: Evolution of the probability of error of PCgs, when
the correct model assumption is not met.

The second experiment is devoted to studying the behaviour
of PCgsr. when the correct model assumption is not fulfilled,
that is, when there is not enough unlabelled data to make a
good estimation of the mixture density. To do so, we simulate
that an incorrect model is obtained by a simple mechanism:
the learnt model is also a K univariate Gaussian identifiable
mixture components with unit variances and whose means are
separated by a fixed factor §. The class priors of this problem
are also equiprobable. However, it is shifted a v factor to
the left. In this setting, v varies in an arithmetic progression
with a fixed difference of 0.25 from 0 to 5. Figure 5 sums
up the behaviour of PCsgp for K = 3 and § = 2.5 (similar
behaviours are found for different configurations). There, the
black curve represents the correct model (v = 0), the grey
curves correspond to different values of v > 0 (lower lines
represent lower values of v), and the horizontal dashed line is
ep. As can be seen, when this assumption does not hold, ep
can no be reached. When there is a slight difference among the
models, reasonable performance can still be achieved, and the



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

labelled data exponentially reduces the probability of error up
to a difference ¢ between the asymptotic value of PCggp and
ep [8]. This asymptotic value coincides with the unsupervised
MLE, discussed in [15]. However, when v grows, the reduction
displays a more linear behaviour and the difference e becomes
higher. At the extreme, here v = 5, the probability of error,
practically remains constant in /. This means that, in extreme
cases of model misspecification, P (l,u),Vi,u ~ (K —1)/K,
i.e. the use of the labelled data does not reduce the probability
of error [4] [15].

IX. REMARKS ON THE PROBLEM-SOLVING IN
SEMI-SUPERVISED LEARNING AND OPEN CHALLENGES

Although our main aim is to theoretically study the prob-
ability of error in the multi-class scenario, we want not only
to discuss the potential impact of the theories presented in
the designing of new practical learning algorithms, but also
some challenges appearing in both theoretical and practical
SSL scenarios. Thus, imagine we want to face a real-world
problem using the theoretical advances presented in this paper.
There, we basically face three different key questions:

1) How much unlabelled data should we gather? Through-
out the paper, we highlight the importance of the labelled
records; if the correct assumption is met, they always help
in making the labelled examples to reduce the probability of
error faster than in supervised learning [4]. When u = oo, the
generative model can almost surely be recovered, therefore,
the correct model assumption is met. However, in practical
SSL, u is always finite. Moreover, there are also generative
models which are not identifiable or, even, they do not follow
mixture densities. For these practical cases, more general
assumptions are used in order to support that the correct model
can be learned. The assumptions are the following: smoothness
assumption, cluster assumption and manifold assumption® [3].
However, these assumptions are hard to check in practise. They
can only be tested by a trial-and-error procedure. If these
assumptions are not met, the use of unlabelled data cannot
guarantee any significant advantages over learning a purely
supervised learning problem [23], so SSL techniques are not
a good choice to solve the problem. In the opposite case,
unlabelled data may help the performance of the classifier.
There, we recommend the use of as much unlabelled data
available so that a solid estimation of the generative model can
be obtained by the learning algorithm and the correct model
assumption can be met. Provided we have a good estimation
of the model we can overtake, or even mitigate, the problems
shown in the second experiment (incorrect model ass.). We
emphasise that the problem of meeting the correct model
assumption is still a challenging crucial issue. Another possible
challenge for future work regarding the unlabelled data could
be solved by [8], but assuming the correct model: Is there any
number beyond which any extra additions of unlabelled data
do not decrease the probability of error? In other words, which

9Smoothness assumption: Points which are close to each other are likely
to share a label. Cluster assumption: The data tend to form discrete clusters,
and points in the same cluster are more likely to share a label. Manifold
assumption: The data lie approximately on a manifold of much lower
dimension than the input space.

12

real number, in practise, corresponds to the infinite number of
unlabelled records, broadly used in theoretical works.

2) How much labelled data is required? In order to avoid
making assumptions about the generative model, when the
labelled data are neither expensive nor difficult to obtain,
we strongly believe that supervised learning techniques are
more appropriate. In the opposite case, if the correct model
assumption is met, we have proved that, in general, ep is never
achieved for labelled sets with a cardinality lower than [x as
expressed in Theorem 3. This holds true independently of the
degree of imbalance and the degree of intersection among the
components. Therefore, a higher number of labelled records
must be collected. However, when the degree of imbalance
grows, more labelled are required for the same purpose (Ix
for non-equiprobable priors). Analogously, for problems with
a high intersection, the decrease of the probability of error
is slower and, although [ expects that ep can be reached,
a much higher number of labelled data is probably required
to reach it. So, we can conclude that this question is still a
challenging issue. For this reason, we think that it is interesting
to, in the future, propose sample complexities for /, not only on
the unbalanced degree of the priors, but also on the complexity
and dimensionality of the feature space. Sample complexities
seem to be crucial in SSL, where labelled data are scarce.

3) Which SSL learning procedure can be used? In cases
where the family of the generative model is known and the
number of unlabelled examples is enough to obtain a good
estimation, Algorithm 2 can be directly applied to the problem.
There, both PCggp, and Voting [9] can be used as learning
procedures. However, PCss;. seems to be a more appropriate
choice, not only due to its theoretical properties, but also for
matching the time complexity of Voting. On the contrary, when
the family of the generative model is unknown, we cannot use
the generative densities. In those cases, we can use the theoret-
ical advances of this paper to design a practical algorithm for
Stage 2. For problems with linear decision boundaries, such
as the Gaussian classification of the experiments, a simple
procedure for determining the components can be proposed
based on the nearest-centroid classifier [24]. However, instead
of classifying the data, the labelled samples can be used to
determine the label of the centroids. Formally, by sphering
each centroid and classifying it according to the class values of
the labelled data in that sphered space. In a manner analogous
to the theoretical methodology proposed in this paper, in
this very case, we can also follow a Voting methodology by
counting the majority class of labelled data in the sphered
space or the PCsgy,, determining the minimum distance in the
possible permutations. This can be another interesting potential
future work; proposing practical learning procedures for both
linear and non-linear decision boundaries. Finally, and within
this framework, it could be also interesting to investigate a
competitive, or even optimal, procedure to correctly specify
the classifier, using labelled data, when the correct model
assumption is not met, similarly to [8] and [9].

X. CONCLUSION

In this paper, we perform a study on the SSL multi-class
framework, since most of the works deal with just binary
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problems [1] [2]. For that reason, we take it a step further by
extending the work of Castelli and Cover [1] [2] to the multi-
class paradigm. Particularly, we consider the key problem in
SSL of classifying an unseen instance x(*) into one of K
different classes, using a training dataset composed of [ la-
belled records and u = co unlabelled examples. However, the
previous studies do not straightforwardly work for multi-class
problems, so, in this paper, we make three main contributions:
(i) PCssr, an optimal theoretical multi-class learning algorithm
for SSL problems, is proposed. (ii) We investigate the expected
minimum number, [ g, of labelled data needed to determine the
K decision regions. (iii) We study the optimal probability of
error when the binary constraint is relaxed, concluding that
labelled data exponentially reduces the probability of error. A
discussion on the impact of our proposals in solving real-world
problems finalises the paper.
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1 Appendix A. Mathematical proofs

This appendix provides the mathematical proofs of the theoretical results in our paper
“Semi-supervised multi-class classification problems with scarcity of labelled
data: A theoretical study”

1.1 Theorem 1

Theorem 1. (Probability of error with no labelled data)' The probability of error of
classifying a new sample (x(o), c(o)) of a K-class problem with any classifier learnt with no
labelled examples and any v > 0 number of unlabelled samples coincides with the probability
of error random classifier. In both cases, it remains constant to

(K —1)
K

P.(0,u) =eg = , Yu>0. (1)
Proof.

- When f(x) is unknown: When there are not enough unlabelled records (u < o) to
determine the mixture density (and its components), the class ¢(9) of the unseen distance
must be determined by the uniformly random classifier. In such a case, let the event A be
defined as the probability of correctly choosing the right class for ¢(©) over a choice of K
different classes; P(A) = 1/K. Then, the probability of committing an error is

(K —1)
K

P.(0,u) =1—-P(A) = ,Vu < oo.

- When f(x) is known: With oo unlabelled examples, the mixture is identifiable up
to a permutation 7 of the components. Let the observation x(9) be drawn from the J-th
decomposed component, fr(;)(-), i the unknown true label such that 7.(j) = 4, and let us
define the following two events:

By 2 {0 () fro(yy (X)) — max Me(37) Fre ) (V) > 0}

Ba & {0 () fre iy (X)) — max Me(37) Fre(ry (V) < 0}

Bj is the event which represents achieving a correct answer in the application of the
Bayes decision rule over x(9) and By represents the opposite- By the definition, P(B;) =
(1 —ep) and P(Bz2) = ep. Then, the probability of error is

Pe(0,00) =P #c0)=1- P =) =
=1—- P9 = cO|B))P(B;) — P& = 0| By) P(By) =
=1—P(m,)(1 —ep) — P(ma)ep.

!This holds true independently of the value of the class priors 71, ..., k.



where 7, and 7, are two permutations such that 7,(j) = i and m,(j’) = i.As no labelled
data are provided to determine the correspondence 7, it has to be randomly chosen. Then,
the probability of choosing those permutations is P(m,) = P(m) = (K — 1)I/K! = 1/K.
After substituting these probabilities in the previous formula and after some algebra, we
obtain the same expression:

(K -1)

P.(0,00) = I

1.2 Theorem 2

Theorem 2. (Optimality of PCgssr) PCssy, is an optimum learning procedure for Stage
2 of Algorithm 2.

Proof. The proof of this theorem can be found in the manuscript. O

1.3 Theorem 3

Theorem 3. (Minimum number of labelled examples) Let the family of miztures F
be linearly independent. Let K < oo be the number of classes and the number of mizture
components. Let the class priors be equiprobable, i.e. Yi,n; =n = 1/K. Then, the expected
minimum number of labelled instances needed to uniquely determine the class labels of the
K components of a mizture is :

1 if K =2
I = ;2(*1)j ([;) (j—1)x ifK > 2 -
X(Klzj)m—m(K_lJr(Kf_—j))

Proof. The proof for K = 2 can be found in [1]. For higher values of K, let Lx be a
random variable representing the minimum number of instances needed to obtain examples
of (K — 1) different classes. Assuming equiprobability, P(Lx =1[), for [ > (K — 1), is a
fraction whose numerator is the number of favourable cases and whose denominator is the
number of all possible cases:

_ PrSy(l—1,K —2)

P(Lg =1) Pl

where Py is the number of permutations of K elements, Sa(-,-) is the Stirling number of
second kind, and PR is the number of [-permutations of K elements with repetition
(formulae in [2]). Then, we calculate the expectation of the random variable Lg in [
as lx = E[Lkg]) = > o1 IP(Lx = 1). After some algebra, we reach equation (2), for
K > 2. 0



1.4 Theorem 4

Theorem 4. (Minimum labelled examples for ternary problems) Let f(x) be iden-
tifiable and let K = 3 be the number of classes with priors n; > 0, Zf’zl 1n; = 1. Then,
the expected minimum number of labelled instances needed to uniquely determine the class
labels of the components of the mizture is

53:2+ZL. (3)

Proof. Let Lz be a random variable representing the minimum number of instances needed
to obtain two different labels. Assuming each class ¢; has a prior #; and Z?:1 n = 1,
P(L3 =) has the following form:

P(Ls=1)=n"" 1 =m) +nS V(1 = m2) + 0V (1 = ).

Which stands for the probability of having (I — 1) labelled examples of one class, and just
one example of one of the two other classes. Then, we calculate the expectation of L3 in .
After some algebra, we reach the equation (3). O

1.5 Lemma 1

Lemma 1. Let L be a labelled subset distributed according to a generative model f(x,c). Let
the marginal of f(x,c¢) on x be an identifiable mixture density f(x) = Efil 0 fi(Xx) which
represents the distribution of the infinite unlabelled records. Let m be the correspondence
returned by the learning procedure 11(-), (Stage 2 of Algorithm 2), and let R.—1(;) be defined
as

Re—1y = {X ey frr (i) (%) — max Ne—1(ity fe—10iry (X) > 0}

Then, the probability of committing an error in classifying an unseen instance with the
BDR after assuming the correspondence m is

K
Plelr)=1-> /R fi(x)dx. (4)
=1

1)

Proof. According to Algorithm 2, a correct prediction occurs depending on whether the
optimal classification rule, which assumes a learnt correspondence m, over the unseen in-
stance x, hits the real class value (¢;). If the region where f;(x) is maximum is R; (it holds
that i = m.(j)), there are only two cases in which the real class is correctly predicted:

Case 1: if x € R; AN w(j) =i
Case 2: if x € Rjiz; N w(j') =i

4



As can be seen, in both cases, the region to where x belongs can be named as 7~ !(i),
which is equal to j in Case 1, and to j’ in Case 2. Therefore, the probability of correctly
classifying x is just the probability of x being in the region labelled as i, i.e. Ry -1(; and

this formula can be easily generalised to all the possible values of i in the range {1,..., K}
as:
K
Pem =Y m [ fiix,
i=1 YR

After that we can reach formula (4) taking into account that the probability of error is the
opposite to the probability of a correct classification, P(e|r) =1 — P(e|n). O

1.6 Theorem 5

Theorem 5. (Probability of error) The probability of error of classifying an unseen
instance in the multi-class scenario, given [ labelled records and infinite unlabelled records,
18:

P(l,00) = Y P(Il; = m)P(e|m), (5)
TESK
where P(II; = ) denotes the probability of choosing, using the learning procedure I1(+), the
permutation 7 given | labelled data (Stage 2 of Algorithm 2) and P(e|r) the probability of
misclassification with the BDR after assuming the correspondence m (Stage 3 of Algorithm
2)%. Finally, Sk represents the set of all possible permutations of size K representing all
the correspondences between labels and components.

Proof. The mathematical proof of this theorem is in the manuscript. O

1.7 Theorem 6

Theorem 6. (Probability of error with zero Bayes error) Let the mizture density
f(x) be an identifiable mizture. Let K be the number of classes and the number of mixture
components. Let the class priors be equiprobable, i.e. Vi,n; =n = % Then, the probability
of error P.(l,00), given I > 0 labelled records and infinite unlabelled records when the

components are mutually disjoint is given by:

min(K—2,)

.Sl
Plloo) = 3 PKI’DRQIEJZ)(I—Z;), (6)

where Pk . and PRk are the number of z-permutations without repetition and l-permutations
with repetition of K, respectively. Sa(l,z) is the Stirling number of 2" kind[2].

*Note that eq. (5) fits with the one proposed for binary problems in [1] (pp. 107, eq. (7)): P(Il; =
me)P(e|me) + P(IL; = @) P(e|e).



Proof. To determine the probability of error, we just need to calculate the probability of
finding z < min(K, ) different labels in I. When z > (K — 1) (see definition of lx) we
reach the real model, so, the probability of error is ep, which is zero. Therefore, we can
define the probability as follows:

min(K—2,0)

P(loo)= 3 P(¥=2)Pel2), 7)

z=1

where U; is a random variable representing the number of different labels, z in [ and P(e|z)
is the probability of committing a classification error knowing the real correspondence of
z labels with their components.

Regarding P(VU; = z), as all the priors are equiprobable; it is a fraction whose numerator
is the number of selecting just z classes of K multiplied by the way of ordering them, and
whose denominator is the number of all possible cases:

Px .S(1, 2z
P(lez)zKﬁRil ).

Then, P(e|z) can be decomposed into the sum of the probability of misclassifying when we
find a particular label among the labelled subset and the probability of misclassifying it
when we do not have that label to identify a mixture: P(e|z) = Pr{i € z} xPr{e|i}+Pr{i ¢
z} x Pr{eli}, where {i € z} corresponds to the event that the unseen instance has the same
label as one of the labels that appears in the labelled subset, {i ¢ z} is the opposite, and
Pr{eli} is the probability of misclassifying an instance of class i. By solving the previous
formula, we obtain that P(e|z) is equal to

K-z (K-2)!-(HK-z-1)! z+1

z
?XOJr 7 K —2) =1- 7k (8)

Finally, by substituting the calculations of P(¥; = z) and P(e|z) in equation (7), we reach
formula (6). O

1.8 Corollary 1

Corollary 1. When the components are mutually disjoint, Pe(l,00) converges to 0 expo-

nentially fast in the sense of that
K —1\!
¢ << K ) ) ’ 9)

Proof. 1t is trivial to calculate the convergence order from the previous theorem. O



1.9 Theorem 7

Theorem 7. (Upper bound of the error) When the components are not mutually
disjoint and all the priors are equiprobable, the optimal probability of error of a model
composed by K different identifiable mizture components is upper bounded by

)\2

-1
Pe(l,OO) —ep < QGXP{ 2K }a (10)

where A € (0,1] depends on the degree of intersection among the components of the mizture
distribution and is defined by

A= [1(rnj1n{/R] fi(x)dx—nzlzx/Rj fz(x)dx}. (11)

Proof. Let the Voting learning procedure [3] be defined as the function ¥ : I. — Sk, where
L € L is the labelled set and 7, € Sk is the permutation of components returned by
Voting. In [3], the excess of risk of the Voting procedure, (¢(X)), is defined as

K
EE[Z/ (1.3 Fre) () —77m<j>fm<j>(x))dx]’ (12)

—
J R;

where Ef,[-] is the expectation with respect to the labelled sample and, 7.(j) and 7, (j)
correspond to the true class and the Voting bet of the j-th component, respectively. In
that paper, they prove that ¢(X) < 2exp{—I\?/2K}.

Then, we just need to prove that P.(l,00) — ep < €(3;). By means of the linearity
property of both the integral and the expectation over equation (12), we reach

K K
By / o) et (X)e| = B | S / Mo (3) Fo () (X)X |

J R; J R;

There, the first term is equal to (1 — ep) since 7.(j) = i (equation (4)). Then, the second
is equal to [} (1 — P(e|£))P(L)dL (where Voting is implicitly contained), which, following
the same reasoning as in the proof of theorem 5, it is equal to

PY(l,00) = Y P(; =m)P(e|r).

TESK

Note that, here, P (I, 00) is used instead of P.(I,o0) to denote that the Voting classifier is
used, not the optimal one. Then, by Theorem 2 (P) (I,00) > P.(l,00),Vl), we can reach
the conclusion of equation (10); P.(l, c0) is upper bounded by (%), which, in turn, is upper
bounded by 2 exp{—I\2/2K}. O



1.10 Corollary 2

Corollary 2. The probability of error, P.(l,00), decreases to ep, at least, exponentially
fast in the number of labelled data.

Proof. 1t is trivial to calculate the convergence order from Theorem 7 of the manuscript. [

1.11 Theorem 8

Lemma 2. Assuming all the priors to be equiprobable and that the model is a Gaussian
identifiable mizture of K components with the same variance (o), let dpr be the largest
distance between the means of two components and let ®(-) be the CDF of a standard
Gaussian distribution. Then, it holds that

. Sus (K1-1)
min (I = 7) > (1-®(34VD)) . (13)
Proof. First, P(Il; = ) can be rewritten as:

> Pl 1k) x PA((ls - 1)) = ), (14)

(L, ) EGY

which is the decomposition of the probability in terms of the number of labelled examples of
each class ¢; in [, i.e. [;,V 1 <i < K. There, P((l1,...,lx)) is the probability of having the
distribution of labelled samples (I1,...,lx) in I, P(II(({1,...,lx)) = 7) is the probability
of obtaining the permutation 7 with a determined distribution of labelled samples. Qé( is
the set containing all possible distributions of labels defined as the set containing all the
integer partitions of [ in exactly K addenda, but including zeros and taking into account
the order of addenda. Formally, it is defined as

K
gé( = {(71772a o 7/7K)| ZIYZ =1 /\FYZ € {07 17 N "l}’vz}'
z=1
Then, we define P(II((l1,...,lx)) = 7) in terms of the components of the mixture as
K I
H H nfwfl(i) (xa>
P i=1a=1 >1 ,
K I
argmax{] [ [ [ nfrr(za)}
i=1la=1

where f;(x) is the density function of the component j. For simplicity of notation, from
now on, we rename the numerator as f. and the denominator as arg max, s-{f.}.



Then, by defining the permutation wp as the furthest permutation to =, i.e. 7p =
argmax,; S5 ltr—1() — fiz=1(|; 1t holds that

l l
minp(—JE 1) —p(—Fe 1) e
T \arg m;gx{ff} arg max {f:}
TH#T TH#TD

As there is no independency between the permutations, we cannot express the second term
of the formula (15) as a product of mp being greater than or equal to any other permutation
7. For that reason, we use the chain rule to decompose the formula in such a way that the
first term of the chain has, VI > 0, the lowest probability:

[ i1
fr O y
P( D 7) > £l x P(zzz_fl >l 121)
P ) P(frp 2 I7.) g fro = ful frp = Fr. mﬂ2 frp 2 fr,
(16)
Since we assume a mixture of Gaussian components (0 = {u1,...,ux,0}), doing some

calculations over the first term of the chain in formula (16) we reach the conclusion that
it is equal to

K
1
P(frp 2 fr)  =1-0 (20 D liliagrn = %1(1))2)

and bounded to (17)
1-a (L iz-a? ) :1-@(@\/1
- 20 p M 20 '

where dy; = max{(,uﬂ;(i) = P ) } is the largest distance between two means. As

equation (17) is, by definition of TI'D, the lowest term in the product of equation (16), we
can lower bound it by substituting the product by equation (17) to the (K! — 1) (number
of terms in the chain rule) power. Then, substituting this value in equation (14), we reach
formula (13): min,; P(II; = 7) is greater than or equal to

1

( (5M\/) ZP (I, .. ). (18)

O]

Theorem 8. (Lower bound of the error) Assuming that the model is a Gaussian
identifiable mizture of K components with the same variance (o) and equiprobable priors.
Let 0ps be the largest distance between the means of two components and Q(-) a polynomial
of degree 3. Then, the probability of error for non-disjoint components is lower bounded by

K\(1—eg) — (K —1)!
(1 + exp{Q(Ge vy} Y

P.(l,0) —ep >

(19)



Proof. First, we decompose formula (10) of the main manuscript as follows:

P.(l,0) = P(Il; = ) P(e
+ > Pl = 7)P(e|n). (20)

It can be easily seen that, when [ increases, whilst P(I; = m.) grows to 1, the remaining
P(II; = ),V # m. decrease to 0.

Since P(e|m.) is, by definition, equal to eg and P(Il; = mc) =1=3_ cq,\, P(IL =),
by just substituting equation (13) of the previous lemma in (20) and subtracting ep in
both terms, we can lower bound the error (P.(l,00) — ep) by

(1o)X Pl o1
TE€SK\ e

There, we start by calculating > P(e|m). Note that:

TESK \Te
> Plelm)= > Ple|r) —ep (22)
TESK \Te TESK
> Plelr) =K'= Y P(e|r) (23)
TESK TESK

By substituting formula (9) of Lemma 1 (in the manuscript) in equation (23), we obtain

S Plelm) = K - ZZ /f, (24)

TESK TeSK i=1 —1(0)
- z

By distributive property of addition and the fact that (K — 1)! permutations of Sx share
the same element in the same position, formula (24) can be rewritten as

1

> Plelr) = K1 - 1'22/;2

TESK =1 j= 1R

where j = 771(i). Then, we can substitute the result in formula (22) obtaining

> Plelm)=K!'— (K -1)! —ep. (25)

TESK \Te

Secondly, as there is no closed form expression for the normal cumulative density function,
we approximate ®(z) by an inverse exponential as proposed by Page in [4]:

®(z) ~ @7 () = 1 — (1 + exp{Q(x)}) ™, (26)

10



where Q(z) = 1.5976x + 0.0705659922% and the absolute error e = |®(x) — ®F2e¢(z)| <
1.4 x 107%,Vz > 0. Then, by substituting the formulas (26) and (25) in (21) and after
some algebra, we reach formula (19). O
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2 Appendix B. Supplementary data for the empirical study

The results in this supplementary data for K = {4,5,6} show a similar style to that
presented in the manuscript for K = 3. The generative model and the strategies used are
the same as in Section VIII (manuscript). However, in these problems, we set l,q, = 50.
Whilst Figure 1, Figure 3 and Figure 5 shows the excess of risk of both Voting and PCgg,
for the values of K = {4,5,6}, respectively, Figure 2, Figure 4 and Figure 6 present the
absolute differences between the probability of error of both learning procedures for the
respective values of K = {4,5,6}. In each figure, the subfigure (a) stands for complex
problems (§ = 0.25), subfigure (b) for problems showing medium complexity (6 = 1)
and subfigure (c) shows the performance for easy problems showing a small degree of
intersection among the components (§ = 5).

0.250]
0.060) 0.600]

0.200]

0.040) 0.150 0.400

Excess of risk
Excess of risk
Excess of risk

o
=
S

0.020 ] 0.200
0.050)

—_—
0.00 10 20 30 40 0.00G 10 20 30 40 0.000 10 20 30 40

Number of labelled records Number of labelled records Number of labelled records

(a) Complex (6 = 0.25). (b) Medium (6 = 1). (c) Easy (6 =5)

Figure 1: Probability of error of Voting [3] (upper) and PCggy, (lower curve) for K = 4
(I = 4.33).

0.015|

0.040] 0.004|

0.010]

Difference
Difference

0.020] 0.002]

Difference

0.005]

0.00 0 10 20 30 40 0.00G 10 20 30 40 0.000 10 20 30 40

(a) Complex (6 = 0.25). (b) Medium (§ = 1). (c) Easy (6 = 5)

Figure 2: Absolute differences between Voting [3] and PCggy,, i.e. PY(l,00) — PF(l,00),
for K = 4.
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k] % 0.200 k]
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3 0.040 2 0.150 g 0400
g 4 4
8 8 8
& ¢ ¢
w w 0.100] w
0.020 0.200)
0.050
0.00 10 20 30 ) 0.00 10 20 30 % 0000 10 20 30 %
Number of labelled records Number of labelled records Number of labelled records

(a) Complex (6 = 0.25). (b) Medium (6 = 1). (c) Easy (6 =5)

Figure 3: Probability of error of Voting [3] (upper) and PCsggr, (lower curve) for K = 5
(Ix = 6.42).
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3 3 9
8 8 8
& 0.010 & 5
s s s
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0.00 10 20 30 40 0.00 10 20 30 40 0000 10 20 30 20
Number of labelled records Number of labelled records Number of labelled records

(a) Complex (6 = 0.25). (b) Medium (6 = 1). (c) Easy (6 =5)

Figure 4: Absolute differences between Voting [3] and PCgsgy,, i.e. PY(l,00) — PF(l,00),
for K = 5.
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Figure 5: Probability of error of Voting [3] (upper) and PCsggr, (lower curve) for K = 6
(lx = 8.7).
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Figure 6: Absolute differences between Voting [3] and PCgsgy,, i.e. PY(l,00) — PF(l,00),
for K = 6.
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3 Appendix C. Source code

The Mathematica package [5] available to download from our website contains the formulae
presented in the manuscript. Besides, it also contains some experiments used to study the
behaviour of the probability of error of both Voting [3] and PCggy, learning algorithms.

3.1 [;-related functions

1) The function LKEQ [K] calculates the I value for a problem with K equiprobable clases.
—LKEQ [K]

Input parameters:
K Number of classes.
Output:
A real number, I.

2) The function LKEQPlot [maxK] prints a figure of the [ values for problems of {1..maxK}
equiprobable classes. The Figure 2a of the manuscript has been created with this function.
——LKEQPlot [maxK]

Input parameters:
maxK Number of classes.
Output:
Plot in the standard output.

3) LKPriors[priors, nRep] use a Monte Carlo method with nRep repetitions to approxi-
mate [j for a problem with Length[priors] non-equiprobable priors given by the variable
priors.

——LKPriors[priors, nRep]

Input parameters:
priors List containing K class priors.
nRep Number of repetitions.
Output:
A real number, .

4) LKSampling[K, samplesize, nRep] applies LKPriors[priors, nRep] with nRep rep-
etitions over a population of class priors of size samplesize which are generated from a
Dirichlet distribution with all the alpha hyper-parameters equal to 1.

15



——LKSampling[K, samplesize, nRep]

Input parameters:

K Number of classes.
samplesize Population size.
nRep Number of repetitions for LKPriors[...].

Output:
A list of I, one per each sample of the population.

5) The eq. (8) of Theorem 4 corresponds to L3[n1,n2,n3]. It calculates I3 for a ternary
problem with priors n1, n2 and n3.
——L3[n1,n2,n3]

Input parameters:
nl Class prior of the class c;
n2 Class prior of the class ¢
n3 Class prior of the class c3
Output:
A real number, [3.

6) L3P1lot [] plots L3[n1,n2,n3] assuming that ni=1; and n2, n3= (1 —1n;)/(K —1).
——L3Plot[]

Input parameters:

Output:
Plot in the standard output.

3.2 Functions related to the probability of error

7) The function ZeroEB[K,maxL] calculates the probability of error for [ = 0..maxL for a
K-class problem when there is no intersection among the components.
ZeroEB [K ,maxL]

Input parameters:
K Number of classes.
maxL Maximum number of labelled examples.
Output:
Summary of results in the standard output.
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8) MCPCSSL[K,distance,sigma,maxL,nRep] uses a Monte Carlo method with nRep rep-
etitions to approximate P.(l,00) for | = {0..maxL} assuming a mixture of K Gaussian.
distance represents the distance between the adjacent means and sigma is the variance.
—MCPCSSL[K,distance, sigma,maxL,nRep]

Input parameters:
K Number of classes.
distance Distance between the means of adjacent components.

sigma  Variance of the Gaussian components.

maxL Maximum number of labelled examples.

nRep Number of repetitions for the Monte Carlo method.
Output:

Summary of results in the standard output.

9) The function MCPCSSLBiased[K,distance,sigma,maxL,bias, nRep] uses a Monte Carlo
method with nRep repetitions to approximate P.(l,00) for I = {0..maxL} assuming a a gen-
erative model composed of a mixture of K Gaussian. distance represents the distance
between the adjacent means and sigma is the variance. In this simulation the learnt model
is also a mixture of Gaussian components, but they are shifted a factor bias to the right,
i.e. fi; — pu; = bias. This function corresponds to the second experiment of the manuscript.
——MCPCSSLBiased[K,distance,sigma,maxL,bias, nRep]

Input parameters:
K Number of classes.
distance Distance between the means of adjacent components.

sigma  Variance of the Gaussian components.

maxL Maximum number of labelled examples.

bias Bias between the learnt and the generative models.

nRep Number of repetitions for the Monte Carlo method.
Output:

Summary of results in the standard output.

10) MCVOTING[K,distance,sigma,maxL,bias, nRep] uses a Monte Carlo method with
nRep repetitions to approximate the probability of error of Voting for [ = {0..maxL} as-
suming a mixture of K Gaussian. distance represents the distance between the adjacent
means and sigma is the variance.
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—MCVOTING[K,distance,sigma,maxL,bias, nRep]

Input parameters:
K Number of classes.
distance Distance between the means of adjacent components.

sigma  Variance of the Gaussian components.

maxL Maximum number of labelled examples.

nRep Number of repetitions for the Monte Carlo method.
Output:

Summary of results in the standard output.

11) MCComparison[K,distance,sigma,maxL,bias, nRep] uses a Monte Carlo method
with nRep repetitions to approximate the probability of error of both PCggr, and Voting
for | = {0..maxL} assuming a mixture of K Gaussian. distance represents the distance
between the adjacent means and sigma is the variance.

——MCComparison[K,distance,sigma,maxL,bias, nRep]

Input parameters:
K Number of classes.
distance Distance between the means of adjacent components.

sigma  Variance of the Gaussian components.

maxL Maximum number of labelled examples.

nRep Number of repetitions for the Monte Carlo method.
Output:

Summary of results in the standard output.

3.3 Examples of the executions of the package

Figure 7 and Figure 8 shows two executions of the package to calculate [ and 3.
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infi}=

)=

Outfd]=

Inij5]=

7=

Out[7)=

Outil=

<« " /Users/johnny/Desktop/ErrorPackage/Probability0fError.m"
E= 107 (+Number of classess)

LEEQ [K] (wequiprobabilityw)
19.2897

LKEQPlot [K] (+Flot I_K from 1 to Ks)
Lk

Expested number of lahelled data

L L . . . Wumber of classes
2 4 ] B 1]

LEMOEQ([{0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}, 10000]
(«Approximate L_K given equiprobable priors (Monte Carle, 10000 rep.) =)

19.2544
LKNoEQ[{0.5, 0.05, 0.05, 0.05, 0.05, 0.05, 0.15, 0.05, 0.02, 0.03}, 10000]
(«Approximate 1_K given non-equiprobable priors (Monte Carlo, 10000 rep.) #)

42.7741

Figure 7: An example of the use of the [;-related functions.
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Infiof= L3Valua[l/3,; 173, 1/3] (+«Calculate 1_3 when the priors are squiprobablew)

5
Ouilitl= —
2

In[11)= Livalue[0.98, 0.01, 0.01]
(#Calculate 1 3 when the priers are non-equiprobablew)

[, R — [ . .

oufii]= 50.0202

In{12p= L3Plot[] («Plot the variatiom of 1_3 as presented in Figure 2b of the paperw) 1]

1Lk
Expected pumber of labelled daty
100 -

- . : - t— Probability of n_1
on 02 04 06 [E] 14

Figure 8: An example of the calculation of /3.

Figure 9 shows an example of how, in cases of mutually non-intersecting components,
the probability of error is calculated.
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ZeroEB[10, 50] (#Probability of error (1l=0..50) of a 10-class problems)
PROBABILITY OF ERROR WHEN THE COMPONENTS ARE MUTUALLY DISJOINT (eB=0)

P(l,):{0.90000, 0.80000, 0.71000, 0.62900, 0.55610, 0.49049, 0.43144, 0.37830, 0.33047, 0.28742,
.24871, 0.21401, 0.18305, 0.15561, 0.13150, 0.11049, 0.092333, 0.076781, 0.063562, 0.052405,
.043050, 0.035251, 0.028783, 0.023442, 0.019050, 0.015450, 0.012509, 0.010113, 0.0081651,
.0065847, 0.0053049, 0.0042700, 0.0034344, 0.0027604, 0.0022174, 0.0017803, 0.0014287,
.0011461, 0.00091910, 0.00073682, 0.00059054, 0.00047319, 0.00037908, 0.00030364,

.00024317, 0.00019472, 0.00015590, 0.00012481, 0.000099913, 0.000079975, 0.000064011}

o0 00O

ILLUSTRATION OF THE VARIATION OF THE PROBABILITIES OF ERROR
10

0.8

0.8

0.4

0.2

Figure 9: An execution of ZeroEB[K,maxL].

Whilst Figure 10 shows how the probability of error of PCggy, is calculated with the
Mathematica package, Figure 8 provides an example of the calculation of the probability
of error of PCssr, when the correct model assumption is not met.
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MCPCSSL[3, 0.7, 1, 5, 100000)

CHARACTERISTICS OF THE PROBLEM

- 3 classes and mixture components which follow Gaussian distributions N(u,c).

- eg: 0.484226 (Bayes error).

- The distance between the means of two adjacent components is 0.7.

- ¢ is equal to 1.

- P(l,=) for 1-{0,...5} is approximated by means of a Monte Carlo method (100 000rep.).

- The possible correspondences n between components and clases are:
({1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}

PROBABILITY OF ERROR[PCSSL] m,m]_z P([y=n) P({errBDR|m)
Probability of error given a correspondence n

P({errBDR|m): {0.484226, 0.594563, 0.594563, 0.757887, 0.757887, 0.810874}
Probability of a correspondence n with 1 labelled examples
P(llg=m): {0.16640, 0.16544, 0.16838, 0.16757, 0.16544, 0.16677}
P(Il;=m): {0.25898, 0.20327, 0.20180, 0.12022, 0.12049, 0.095240}
P(llz=m): {0.33557, 0.20917, 0.20822, 0.089740, 0.090650, 0.066650}
P(lla=m): {0.39566, 0.20608, 0.20877, 0.070520, 0.068990, 0.049980}
P(llg=m): {0.44164, 0.20500, 0.20155, 0.055760, 0.057270, 0.038780}
P(llg=m): {0.48554, 0.19825, 0.19587, 0.045580, 0.043870, 0.030890}
Probability of error

P(l,=):[{0.666666, 0.625903, 0.601416, 0.584504, 0.572683, 0.562281}

Illustration of the variation of the probability of error

10~
08+
0.8 H
— PCSSL
04+ — Bayes Error
02t
0 1 2 3 4 5

Figure 10: Calculating the optimal probability of error using PCsgr,.
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Inf40):= MCPCSSLBiased[3, 2, 1, 5, 10000, 1.8]
CEARACTERISTICS OF THE PROBLEM

- The CORRECT MODEL ASSUMPTION is NOT met. There is a bias of
1.8 between the means of the generative and the learnt model.

- 3 classes and mixture components which follow Gaussian distributions N{u,oc).
- eg: 0.21154 (Bayes error).

- The distance between the means of two adjacent components is 2.

- ¢ is equal to 1.

- P(l,=) for 1={0,...5} is approximated by means of a Monte Carlo method (10 000rep.

- The possible correspondences 5 between components and clases are:
({1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}]

PROBABILITY OF ERROR[PCSSL] P(l,mJ_Z P(l,=n) P(errBDR|rn)
Probability of error given a correspondence o

P(errBDR|m): {0.21154, 0.61423, 0.61423, 0.89423, 0.89423, 0.77154)}
Probability of a correspondence 5 with 1 labelled examples

P(My=n): {0.16930, 0.15980, 0.17210, 0.16350, 0.17220, 0.16310}

P(My=n): {0.40380, 0.18880, 0.19400, 0.051700, 0.049700, 0.11200}
P(My=n): {0.63310, 0.13550, 0.14290, 0.020300, 0.018500, 0.049700}
P(My=n): {0.78210, 0.086700, 0.098400, 0.0054000, 0.0062000, 0.021200}
P(My=n): {0.86280, 0.059600, 0.065100, 0.0023000, 0.0027000, 0.0075000}
P(Mg=n): {0.91050, 0.040900, 0.043400, 0.0016000, 0.0010000, 0.0026000}
Probability of error

P(l,=):{0.75443, 0.677062, 0.629596, 0.604935, 0.593281, 0.58749}

Illustration of the variation of the probability of error

10
o8l
06 \

— Biased PCSSL
0al —— Bayes Error
02

0 1 2 3 4 5

Figure 11: An execution of PCsgr, when the correct mo