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Preface

After more than 70 years of life, machine learning [1] is at the edge of becom-
ing a classical field of study. Evolved from the fields of pattern recognition and
computational learning theory in artificial intelligence, machine learning ex-
plores the study and construction of algorithms that can learn from and make
predictions on data [2]. As early as 1959, computer gaming pioneer Arthur
Samuel defined it as “the field of study that gives computers the ability to
learn without being explicitly programmed” [3].

In those early days, symbolic approaches [4], which were broadly used in
artificial intelligence, dominated the field. Not until the 1990s did machine
learning become reorganised as a separate field with its own personality, and
it started to flourish benefiting from the increasing availability of digitised
information, and the possibility to distribute that via the Internet. Those
novel approaches shifted focus away from the rules induced by the symbolic
approaches towards methods and models borrowed from statistics and prob-
ability theory [5], which are still alive and kicking.

Nowadays, probably due to the fact that fashionable terms for naming
machine learning, such as big data [3] or data science [6], can be found every
other week in the public media, the field is becoming increasingly ubiquitous
with numerous applications in companies, transforming the way they carry
out their businesses. For instance, machine learning along with several other
IT technologies, under the catchy pseudonym of industrie 4.0 [7], is currently
revolutionising the manufacturing industry.

Thus, in this historical context of expansion, social acclamation and ubiq-
uity, where, as it is said, being a data scientist (a practitioner of machine
learning) is the sexiest job of the century [8], this dissertation has the aim of
theoretically and methodologically make a humble contribution to the much-
publicised machine learning field, which is eager for novel solutions and tech-
niques.

Specifically, my contributions are focussed on the problem of classification.
Classification is defined as a statistical method used to build predicative mod-
els capable of separating and classifying new data objects [9]. Nowadays, this
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methodology can be found in many appliances. For example, in email servers,
which are capable of filtering spam emails from the normal emails. However,
how can an email server learn to differentiate between junk and real emails
without being explicitly programmed to?

Suppose we have already been provided with a collection of emails, say l
of them, some of them junk and some of them real, and from these emails we
want to build ways to filter out spam. We refer to this collection as the training
set, which is, in general, a labelled set of data whose sole purpose is to build a
classifier. Now, from our training data, we need to determine which variables,
called features, we want to measure in order to assess whether future emails
are spam or not. This process is called feature engineering and its resulting
features can be ordinal or nominal random variables: an example of a discrete
feature in our spam classifier is whether the sender of an email comes from
a .eus address or not, and an example of a continuous feature may be the
frequency of a certain word, like “free”, “visa”, or “winner”, in a particular
email. If n features are found, then our training dataset can be viewed as an
l×n matrix where each email is represented by a row vector of features. Then,
a spam classifier, which is a function mapping a vector of features into a vector
of class variables (here, of size 1), can be directly learnt by just providing this
matrix along with the already annotated class of each email to a classical su-
pervised learning algorithm [9]. However, note that every classifier comes with
an associated error: as you have probably noticed, sometimes, spam detectors
filter out some normal emails or even let some junk mail enter your mailbox.
Thus, since we are interested in minimising the associated error of the result-
ing classifier; selecting a representative and sufficient training dataset with
enough examples of each class, obtaining informative features, and choosing
an adequate supervised learning algorithm with proper parameters are usually
key concepts in solving a supervised classification problem.

The above exposed supervised learning procedure has been widely applied
and accepted in the machine learning community since it provides positive
results. Unfortunately, it has its limitations. In this dissertation, I study two
of these limitations and contribute to alleviate their negative impact in the
performance of the resulting classifiers:

First, having a sufficient labelled training set of training data is not always
possible. For example, suppose our required collection of emails is relatively
large and individually annotating all of them is intractable. In that case,
a set of techniques named semi-supervised learning [10] appears as an
exciting direction in the machine learning community. These techniques aim
at learning competitive classifiers from those learnt in supervised learning.
However, instead of learning from a huge labelled dataset, they use training
datasets composed of a small number of labelled examples and a huge number
of examples whose class variables are unknown.

Secondly, common supervised learning algorithms do not get along with
atypical objects. In other words, when a training dataset has very few an-
notated examples of some particular classes, the learning algorithm usually

.eus
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becomes biased towards the most probable classes ignoring those least proba-
ble classes under the assumption that it is dealing with either outliers or noisy
data. Returning to the spam filter example, imagine we live in a utopian world
where junk mail is rare. Then, our collection of size l of emails would have
only a tiny portion of junk mail, let us say a proportion of 1 : 10, 000. In that
case, the most probable scenario is that a classifier learnt using a supervised
learning approach will nearly always let the junk mail enter in your mailbox.
This problem is called the class-imbalance problem [11] and is currently
puzzling not only the practitioners of machine learning, but also the machine
learning research community.

I hope you fancy reading the proposed new approaches, ideas and contri-
butions regarding these fascinating classification scenarios as much as I have
delighted in exploring them during these last few years.

0.1 Overview of the Dissertation

This document is divided into two separate parts: a self-explanatory intro-
duction to the contributions proposed in this dissertation and a collection of
scientific publications supporting those contributions.

Part I introduces the main contributions of this PhD work to the ma-
chine learning field and is composed of three chapters: Chapter 1 contains
a brief self-explanatory notational introduction to statistical classification.
Then, Chapter 2 sums up the main four contributions of this dissertation,
their origins and conclusions, and the potential future research lines gener-
ated from them. These are as follows:

1. Semi-supervised learning approaches to learn multi-dimensional classifiers.
2. A theoretical study on the probability of error of the optimal semi-

supervised multi-class learning technique.
3. A framework to theoretically studying the competitiveness of state-of-the-

art learning techniques and the adequateness of performance scores in the
class-imbalance domain.

4. A robust measure for characterising the class-imbalance extent of multi-
class problems.

Finally, some general conclusions and remarks on potential future work are
drawn in Chapter 3.

Part II encompasses a collection of four of the published scientific articles
in order to give support for the previously mentioned main contributions. This
part is divided into Chapter 4, Chapter 5, Chapter 6, and Chapter 7, and they
correspond to the contributions 1-4, respectively.





Part I

Introduction to the Main Contributions on
Classification





1

A Brief Introduction to Contemporary
Classification

This chapter introduces the general notation and framework used throughout
the introductory part of this dissertation. Although this notation is based on
the published work, it has been defined in order to cover all the presented con-
tributions, which were made in different time periods and to address different
kinds of problems. Thus, slight notational differences exist between this intro-
ductory part of the global PhD work and the published works. Fortunately,
each published article contains its own notational introductory section.

In machine learning and statistics, classification stands for the statistical
problem of identifying the values c = (c1, . . . , cM ) of a categorical vector of
class variables C = (C1, . . . , CM ) given a set of features X = (X1, . . . , XN )
of a new unlabelled observation x = (x1, . . . , xN ), usually on the basis of a
training set of data D containing observations [12][13]. Here, M represents
the number of target variables and N the number of predictive features.

Each class variable, Cj , is a discrete random variable of cardinality Kj ≥ 2,
which takes discrete values from the range {c(j,1), . . . , c(j,Kj)}. Moreover, let

K =

M∏

j=1

Kj and κ = max
j
Kj

be the cardinality of the Cartesian product of all class variables and the max-
imum cardinality of the class variables, respectively, so that the random vari-
able, C, representing the joint probability of class variables, may also be a
discrete random variable with values in the range {c1, . . . , cK}1. Each feature
Xi may be a discrete or continuous random variable.

An example of classification could be assigning one or more diagnoses to
a given patient who has a described set of characteristics or features (gender,

1 For simplicity of notation, the class subscript will not be used for the particular
and common case of having just one class variable (M = 1, the uni-dimensional
classical classification). The class variable will be written as C, its realisation as c,
and its discrete values as c1, . . . , cK , being K(= κ, in this case) also its cardinality.
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Binary Multi-class

Multi-label
Multi-

dimensional

uni-dimensional

multi-dimensional

κ = 2κ = 2 κ > 2κ > 2

M = 1M = 1

M > 1M > 1

Fig. 1.1: Types of classification problems depending on the shape of the target
variables.

blood pressure, glucose level, presence or absence of certain symptoms, etc.),
or the spam filtering problem discussed in the Preface.

1.1 Main Types of Classification Problems

Depending on the layout of the random variable representing the vector of
class variables C = (C1, . . . , CM ), several major types of classification prob-
lems can be defined:

Firstly, although classical classification tasks focus on the prediction of a
single class variable C, many real-world domains consider a vector C composed
of more than one class variable. Therefore, it is reasonable to initially split the
classification problems into uni-dimensional classification problems (M = 1)
and multi-dimensional classification problems (M > 1). Despite the fact that
multi-dimensional problems may include uni-dimensional problems, the latter
have been studied longer and, therefore, they can be solved, in spite of its
debatable simplicity, by far more specific techniques. Thus, it is worth giving
some consideration to the uni-dimensional case in this categorisation.

Secondly, another key differential characteristic regards the number of val-
ues that the class variables can take, whether they are all binary (κ = 2) or
whether they contain some multinomial class variables (κ > 2). Moreover, in
this differentiation, the amount of learning techniques used to solve each kind
of classification problem is unbalanced; the amount of learning techniques
proposed by the community for binary class variables greatly outnumbers the
quantity of techniques capable of dealing with multinomial class variables.

Thus, combining these differentiations, four major types of classification
problems can be found in the literature. The following paragraphs, which
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are summarised in Figure 1.1, introduce these major types, shortened by the
complexity of their classification task:

The binary classification problem (M = 1, κ = 2) is the best under-
stood and the most studied classification problem in the literature due to its
simplicity. Only one class variable C is to be identified from the features and
it can take only two different values; C is either equal to c1 or to c2. Sev-
eral examples of binary classification problems can be found in the literature:
(i) intrusion detection systems [14] for computer security violations, where a
single transaction is classified either as normal or as a threat, (ii) sarcasm
recognition [15], where sentences are identified as sarcastic or non-sarcastic,
or even the identification of human genes associated with a certain disease
[16].

The multi-class classification framework (M = 1, κ > 2), instead,
groups all the uni-dimensional classification problems where the binary con-
straint is not applied, i.e. the single target variable C takes K > 2 values.
Although one digit is usually enough to bound most multi-class classification
problems, e.g. Anderson’s Iris data set [17], in this major framework, we can
also find highly multi-class problems with a large set of possible class values
(K >> 2): from classifying a description of a flower as one of the over 300, 000
known flowering plants [18] to classifying a whistled tune as one of the over
30 million recorded songs [19].

A Multi-label classification problem (M > 1, κ = 2) is the multi-
dimensionalisation of a binary classification problem [20]: several binary class
variables which may be statistically dependent, M > 1 and κ = 2, must
be simultaneously inferred from the same set of features. Formally, each Cj
is either equal to c(j,1) or c(j,2). This kind of problem can be found in many
applications [13]: a text document or a semantic scene can be assigned to mul-
tiple topics, a gene can have multiple biological functions, a patient may suffer
from multiple diseases, a patient may become resistant to multiple drugs for
HIV treatment, a physical device can break down due to multiple components
failing, etc.

Multi-dimensional classification (M > 1, κ > 2) encompasses the clas-
sification problems where a set of probably dependent class variables has to be
simultaneously identified from the same set of predictive features, M > 1, and
their cardinalities may take any value equal or greater than 2, κ > 2. Examples
of this kind of classification problems can be found in [21], [22] or [23], where
several intricate defects can appear in a stainless steel plate, several problems
in the fish recruitment forecasting field, or different attitudes of the author
(subjectivity, sentiment polarity level, will to influence) are characterised from
a given online text, respectively.

Roughly, the theoretical studies and methodological proposals for learn-
ing a classifier in the multi-class framework can be applied for binary prob-
lems, the ones used for multi-label problems can also be used for binary prob-
lems, and multi-dimensional research can be directly applied to either binary,
multi-class and multi-label problems. Moreover, by parameterising multi-class
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problems as (M = 1, κ ≥ 2), multi-label as (M ≥ 1, κ = 2), and multi-
dimensional as (M ≥ 1, κ ≥ 2), multi-class and multi-label may encompass
binary problems, and the multi-dimensional classification framework may in-
clude the whole classification spectrum. The remaining potential appliances
are, in general, futile; they can only be assured for a limited set of specific
scenarios. The interested reader can find further information on the unfeasibil-
ity of using approaches for multi-class and multi-label classification to tackle
multi-dimensional classification problems in [23].

Due to the fact that the given definition of multi-dimensional classification
problems includes the whole classification spectrum, in the introductory part
of this dissertation, I will use it to describe the mathematical framework
encompassing the contributions introduced.

1.2 Learning of Classifiers

Formally, let us assume we are provided with a M -dimensional classification
problem γ with a generative model ρ(x, c) which not only specifies how data
is generated from the symptoms (features) but also provides prior information
about the distribution of the different class variables. This generative model
is given by the following generalised joint probability density function:

ρ(x, c) = p(c)ρ(x|c). (1.1)

Here, p(c) is a discrete distribution symbolising the joint probability distribu-
tion of the vector of class variables C and ρ(x|c) is the conditional distribu-
tion of the feature space. These generative probability distributions may be
parametrised by certain model parameters in some of the publications. They
can be sometimes written as ρ(x, c|θ) and ρ(x|c,θ), where θ represents the
set of model parameters of the conditional probability distributions.

Then, solving a M -dimensional classification problem is equivalent to
defining, learning or inferring a function Ψ(x) = ĉΨ able to make predic-
tions from features. This function is known as a classifier and maps a given
vector of observations x, drawn from the generative function of eq. (1.1), into
an instantiation c of the vector of the class variables, written as ĉΨ , i.e.

Ψ : x1 × . . .× xN 7→ {1, . . . ,K1} × . . .× {1, . . . ,KM}.
x 7→ c (1.2)

When the generative model ρ(x|c) is known and computations are pos-
sible, the generative probability distributions can be directly used to define
a rule capable of deciding to which configuration of class values an unseen
instance belongs to. However, the usage of these distributions in a decision
rule depends on how costly it is to make wrong predictions using the features
[24]. Examples of classification or decision problems with different costs can
be easily found in the literature: For instance, in the spam filtering example;
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it is more costly to filter out an important email than to let a junk mail enter
your mailbox. Another example is the Pascal’s wager [25], marked as the first
formal use of decision theory [26]. There, Pascal claimed that as long as there
is a positive probability of the existence of God, disbelieving in God always
comes with a higher cost than believing in God, since in the event of the ex-
istence of God, a belief (prediction of existence) means an eternity in heaven
and a disbelief (prediction of non-existence) means an eternity in hell. In the
event of non-existence, both decisions of belief and disbelief have very small
losses and gains, respectively. These costs, which are associated which every
correct and incorrect prediction made by the classifier, are usually defined in
a loss function [27]. Formally, this loss function, L(Ψ(x), ci) = `, is the cost
associated to the decision Ψ(x) = ĉΨ when the true class vector is ci 6= ĉΨ . As
previously mentioned, it has a deep influence on the learning of the classifier,
and, thus, in its resulting performance.

If we are dealing with a classification problem where the costs of misclas-
sifying any class variable are symmetrical and equal, and there is no cost for a
correct classification, we are assuming the well-known 0-1 loss function (` = 0
if ĉΨ = ci, and ` = 1 otherwise, [27]). In a such situation, the Bayes deci-
sion rule [28] can be directly used to classify new instances as it inherently
minimises this loss function. Formally, it is defined as follows:

Definition 1. Assuming the generative model, ρ(x, c), to be known, the Bayes
decision rule (BDR) is given by

ĉB = arg max
i
p(ci)ρ(x|ci). (1.3)

Here, ĉB is the categorical class vector assigned by the BDR to the observation
x. This rule has a corresponding probability of error

eB = 1−
K∑

i=1

p(ci)

∫

Ωi

ρ(x|ci)dx (1.4)

which is called the Bayes error and is the highest lower bound of the probability
of error of any classifier as proved in [28] and in [13]. In equation 1.4,

Ωi = {x : p(ci)ρ(x|ci)−max
i′ 6=i

p(ci′)ρ(x|ci′) > 0} (1.5)

represents the region where p(ci)ρ(x|ci) is maximum and, so, the instances
are assigned to the vector of class variables ci by the BDR, for all i.

The BDR is the most adequate classifier when the total number of correct
classifications is to be maximised. Hence, it has enjoyed an excellent academi-
cal position among the traditional machine learning techniques [29]. However,
as previously put forward, in real-life problems, some types of misclassifica-
tions are more crucial – they come with higher misclassification costs – than
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others. Note that the BDR does not guarantee the correct prediction of the
classes with a low probability of occurrence since the prediction of the most
probable class values produces a greater overall number of correct classifica-
tions than correctly predicting the least probable values. Due to this, other
classifiers appear to overcome the limitations of the BDR, such as the other
omniscient protagonist of this dissertation; the EDR.

Definition 2. Assuming the generative model to be known, the equiprobable
Bayes decision rule (EDR) is given by

ĉE = arg max
i
ρ(x|ci). (1.6)

Here, ĉE is the categorical class vector assigned by the EDR to the observation
x. This rule has an associated probability of error

eE = 1−
K∑

i=1

∫

Ai

ρ(x|ci)dx (1.7)

which corresponds to the arithmetical mean of the error in not classifying each
configuration of class vector as so. This error is the highest lower bound for
this arithmetical mean of any classifier as proved in this dissertation [30].
There,

Ai = {x : ρ(x|ci)−max
i′ 6=i

ρ(x|ci′) > 0} (1.8)

is the region where ρ(x|ci) is maximum and, so, the instances are assigned to
the vector of class variables ci by the EDR, for all i.

In order to clarify the behavioural difference between both decision rules
(BDR and EDR), let us consider the example illustrated in Figure 1.2: imag-
ine we face a uni-dimensional binary classification problem with a generative
model given the following mixture joint density distribution [31]:

ρ(x, c) = p(c1)ρ(x|c1)1(c = c1) + p(c2)ρ(x|c2)1(c = c2). (1.9)

There, 1(E) is the indicator function with a value of 1 if the event E is
true, and 0 otherwise. This model is parametrised as follows: p(c1) = 0.85,
p(c2) = 0.15, and the conditional distributions follow two different normal dis-
tributions; ρ(x|c1) ∼ N(3, 0.75) and ρ(x|c2) ∼ N(5, 0.75). Figure 1.2 plots the
generative mixture model of the example; while the upper chart only shows
the mixture density distribution of both conditional feature probability dis-
tributions – ρ(x|ci) –, the lower chart shows the mixture density distribution
of the generative model ρ(x, c), i.e. the conditional feature probability distri-
butions multiplied by their class probabilities, – p(ci)ρ(x|ci) –. Both views are
displayed in order to show the different behaviour of both decision rules.
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EDR

BDR

Real

Fig. 1.2: Example of the decision regions provided by both the EDR and
the BDR to classify a set of observations from a given binary toy problem
p(x, c) parametrised as: p(c1) = 0.85, p(c2) = 0.15, p(x|c1) ∼ N(3, 0.75), and
p(x|c2) ∼ N(5, 0.75).

Here, each decision rule can be simplified to a single value d in the abscissa,
splitting the feature space into two decision regions: (−∞, d) for the points
to be classified as c1 and [d,∞), the other, for the points to be classified as
c2. The limiting points of the BDR and EDR, which are drawn with a blue
dashed line and a continuous purple line in the figure, are d = 4.5 and d = 4,
respectively. It is trivial to obtain those values from both Definition 1 and
Definition 2, respectively. As can be seen, the EDR divides the feature space
by density dominance in the upper chart and the BDR behaves equivalently
in the lower chart. By means of just this perception, it can be easily deduced
that the choice of one of these omniscient theoretical classifiers will impact
the performance of the classification: imagine we are supplied with a testing
sample of the generative problem composed of 22 instances – 17 of c1 and 5 of
c2 – marked as Real in the figure. Note that the values x of these instances are
given by their position with respect to the abscissa and their classes by their
color; dark grey corresponds to c1 and white to c2. The EDR will classify those
instances as the sample row marked as EDR and the BDR as the sample row
marked as BDR. Then, it can be perceived that BDR obtains a greater overall
performance by correctly classifying 19 out of 22. The EDR, instead, aims at
balancing the number of correct classifications for both classes simultaneously.
This results in a degradation of the overall performance as it misclassifies more
instances of the class c1. Favourably, a better performance is obtained for the
minority class value c2 using this rule, 4 matches instead of 3.
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In short, this example shows us that the BDR fits in with problems where
the overall number of correct classifications has to be maximised. However, it
might ignore minority classes. On the contrary, the EDR is a proper classifier
for atypical events since it balances the number of correct classifications among
all classes including classes with low probability. Problems such as the stated
junk mail filter may benefit from this property. As a drawback, it tends to
increase the number of misclassifications in the most probable classes.

Many other decision rules can be defined in order to create classifiers which
favour certain classifications over others. The Bayes decision theory [26] is the
field studying this type of all-knowing classifiers. Authors skilled in this field
may argue that, both the BDR and the EDR are versions of the same de-
cision rule, called the (log-)likelihood ratio test [31]. This assertion remains
within this field due to the fact that it usually narrows the classification spec-
trum to just uni-dimensional binary problems as most of the calculi becomes
intractable when the uni-dimensional binary constraint is relaxed. In this dis-
sertation, I make use of two different definitions, since the likelihood ratio test
loses the comprising property for similar decision rules but with different costs
when K > 2 or M > 1. Interested readers in the (Bayes) decision theory, other
existing loss functions, and decision rules can find an interesting introduction
in [32].

Unfortunately, the Bayes decision theory assumes a knowledge over the
faced classification problem which in most of the real-world cases is not of-
ten achievable: the generative model, along with the real class distribution,
is usually unknown. Fortunately, a random sample of the distribution of the
generative model, D, is often available. Thus, practitioners must infer a classi-
fier Ψ using a deterministic learning algorithm A over the training dataset D,
i.e. A(D) = Ψ , in order to classify future unseen unlabelled instances. These
learning algorithms are usually defined to asymptotically (as |D| → ∞) con-
verge to the behaviour of a decision rule, such as the BDR or the EDR, by
minimising a certain loss function [28]. Thus, idealistically, the resulting clas-
sifiers will have a similar, but not greater, expected performance. However,
finite samples usually introduce some bias in the learning task decreasing the
classification performance. On the other side, we have the theoretical baseline
classifiers, which established the lowest expected performance of a classifier
to be considered competitive. The most used baseline classifier, which uses no
training data (D = ∅), is the random guessing of the class variables:

Definition 3. The classifier representing the random guessing of K differ-
ent configurations of M class variables is known as the uniformly random
classifier (RAND) and it is given by

ĉR = Unif{1,K}. (1.10)

where Unif{1,K} is the discrete uniformly random function which assigns a
categorical class configuration ci to an example x with probability 1/K. Both
the probability of error and the arithmetical mean of the error in classifying
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each configuration of class vector of this classifier coincides and are equal to

K − 1

K
. (1.11)

Having introduced the theoretical performance bounds for the learnt clas-
sifiers, the following sections present a review of the most common types of
training datasets used in the literature and the most well-known learning algo-
rithms used to deal with each type of training datasets. Moreover, in Section
1.4, several characteristics of the finite training datasets which hamper the
classification performance are discussed.

1.2.1 Structure of the Available Training Dataset

Learning involves the ability to generalise from past experience in order to deal
with new situations that are related to this experience [33]. In statistical clas-
sification and when the generative model is unknown, this experience comes
in the form of a training dataset D, which may have different shapes. Depend-
ing on this, different learning approaches are used. Formally, let D = L ∪ U
be defined as the available training dataset which may be composed of the
following two different sets:

� Let L = {(x(1), c(1)), . . . , (x(l), c(l))} = {(x(n), c(n))}ln=1 be defined as a
supervised training dataset of size l drawn from the generative func-
tion. There, let the class labels {c(n)}ln=1 be i.i.d. random values drawn
from p(c) and let each observation {x(n)}ln=1 ∈ L be also an i.i.d. ran-
dom value but drawn from ρ(x|c). In other words, a supervised training
dataset is a set of observations where each observation not only contains
the features but also the real classes of the observation.

� Let U = {x(1), . . . ,x(u)} = {x(m)}um=1 be defined as an unsupervised
training dataset of size u drawn from the generative function, where
each observation {x(m)}um=1 ∈ U is also an i.i.d. random value but drawn
from ρ(x). In this case, the values of the classes for the observations are
not given, only features are available.

While other richer and more complete ways exist to taxonomise the spec-
trum of learning scenarios [34]; by means of my definition, three different kinds
of training datasets, and, thus, three classical major learning scenarios, which
ideally fit and cover the current PhD work, can be defined:

1. The most extensive work carried out in the machine learning community
assumes a labelled training dataset (D = L) to be available [35]. Under this
assumption, the goal is to infer the function Ψ(x) as defined in equation
1.2. This problem is known as supervised learning and the used learning
algorithm must be able to generalise from D to unseen situations in a
”reasonable” way [33].
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2. On the opposite side of the spectrum, an unlabelled dataset may be
provided. Here, the only possible goal is to find interesting coherent
structures in the data D = U . In other words, the problem of un-
supervised learning is fundamentally that of estimating a density
ρ(x) =

∑K
i=1 ρ(x|ci)p(ci) which is likely to have generated the training

dataset [10]. The density is written as a marginal density distribution of
the generative model due to the fact that the broadly used clustering tech-
nique [35, 12] aims at not only determining the number of classes present
in the density, but also at discovering the feature distributions of these
classes. However, as proved later in this dissertation, having no labels in
the training datasets produces classifiers no better than the RAND [36].
Other forms of unsupervised learning are, for instance, outlier detection
or unsupervised dimensionality reduction. Since, apart from clustering,
no other unsupervised learning directly relates to classification, this ma-
jor learning technique will not be further discussed in this dissertation.

3. Somewhat in the middle, the semi-supervised learning scenario arises
[10, 37, 38]. This problem assumes that the available training dataset is
composed of both labelled and unlabelled examples (D = L ∪ U). An im-
portant motivation for dealing with this kind of datasets is that, in some
applications, gathering labels is relatively expensive or time-consuming,
compared to the cost of obtaining an unlabelled example. Consider, for
instance, the example of building a webpage classifier exposed in [39].
Whilst downloading billions of unlabelled webpages is straightforward,
reading them to assign labels is time-consuming. So, why not use un-
labelled observations to improve the performance of supervised learning
methods that only use a small labelled set, L, to train a classifier?

The following sections exhaustively review both supervised and semi-
supervised learning scenarios and their most important learning paradigms.

1.2.2 Major supervised learning paradigms

Roughly, the supervised learning process is carried out by means of an optimi-
sation algorithm provided with fully annotated training data, D = L, drawn
from eq. (1.1). It attempts to infer a mapping function Ψ that minimises a
certain loss function [27]. Here, most of the traditional learning algorithms
use the 0-1 loss or a surrogate loss which, by providing an upper bound for
it, is also expected to minimise the 0-1 loss [40]. Thus, these learning algo-
rithms usually have an asymptotic behaviour to the BDR. According to [41],
there are six major supervised learning paradigms: (i) decision trees, (ii) rules
extracted from decision trees, (iii) rule-based machine learning, (iv) statisti-
cal learning, (v) connectionism, and (vi) probabilistic approaches. I, however,
perceive rules extracted from decision trees and rule-based machine learning
as similar paradigms to decision trees. So, therefore, in this introductory part,
I only tackle the other remaining five approaches.
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Fig. 1.3: Using just the gender, the age and the number of siblings and parents
combined as features, a classifier can be learnt in order to predict whether the
person survived or died in the Titanic accident.

The most common approaches to supervised learning are the paradigms
which produce a rule, Ψ , in the form of a tree-like model known as a decision
tree in order to discriminate among the values of the classes of the objects.
C4.5 [42] is the most utilised learning algorithm for decision trees. The nodes
in a decision tree correspond to selected object features, and the edges cor-
respond to predetermined alternative values for these attributes. Leaves of
the tree correspond to sets of objects with an identical classification vector of
classes [43]. Figure 1.3 shows an example of a decision tree learnt from a super-
vised dataset composed of the list of RMS Titanic passengers and their main
features. Rules extracted from decision trees (e.g. C4.5Rules) and rule-based
machine learning (e.g. RIPPER [44]), instead, aim at producing classifiers
which typically take the form of a set of nested if-then expressions, i.e. {IF
’condition’, THEN ’result’}. It is trivial that the decision tree presented in
Figure 1.3 can be straightforwardly transformed into the set of rules proposed
in Algorithm 1. A deep coverage of decision trees and rule/based machine
learning can be found in [43], the book used to write the previous lines.

Statistical learning [45] is a paradigm for machine learning drawing
from the fields of statistics and functional analysis. Probably, the most used
methods within this paradigm are support vector machines (SVM) classifier,
its multiple variants and similar kernel-based learning methods. Interested
readers of this learning strategy may refer to [46]. Briefly, support vector
machines find linear boundaries in their input space. However, not all feature
spaces for binary problems are linearly separable [47]. Fortunately, as happens
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Algorithm 1 Determining whether the person survived or died in the Titanic
accident

if Sex = Male then
if Age > 9.5 then

Died
else

if FamilyMembers > 2.5 then
Died

else
Survived

end if
end if

else
Survived

end if

with other linear methods, we can make the classifier more flexible by enlarg-
ing the feature space using basis expansions to a larger dimension, infinite in
some cases. Generally linear boundaries – hyperplanes – in the enlarged space
achieve better training-class separation, and translate to nonlinear boundaries
in the original space. This procedure is illustrated in Figure 1.4.

Original Feature Space Enlarged Feature Space

Fig. 1.4: How a paradigm such as SVM achieves a linear separability of the
space in an enlarged feature space. Image extracted from [48].

An important drawback of these classifiers based on the linear separabil-
ity of the feature space is that they are originally designed to solve uni-
dimensional binary classification problems. However, steps towards covering
uni-dimensional multi-class problems are being proposed [49].
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Fig. 1.5: Structure of an artificial neural network.

Connectionism covers a set of approaches in the field of artificial in-
telligence that attempts to represent mental or behavioural phenomena as
emergent processes of interconnected networks of simple units [50]. Artificial
neural networks [51, 52] are, currently and by far, the most popular con-
nectionist model used. They produce classification models vaguely inspired
by the biological neural networks that constitute animal brains in order to
categorise instances into classes. The typical structure of a neural network
classifier can be viewed in Figure 1.5. There, each circular node represents an
artificial neuron and an arrow represents a connection of one artificial neuron
to the input of another. The neurons, which are sorted in layers, are capable
of receiving, processing and transmitting a signal. As can be seen, to perform
a classification, three kinds of layers are required:

� The input layer serves as an input interface for the whole network. It feeds
the next (hidden) layer with the features of a new unseen instance.

� After a learning process which typically deals with the modification of
weights and activation thresholds by using a training dataset D, the hid-
den layer encapsulates several functions and weights over the inputs, i.e.
the model parameters which may or not activate an output signal on the
basis of the activation thresholds. Therefore, these neurons may produce
different signals and transmit them to the following layer. This hidden
layer may be present or absent in the network. Also, there might be sev-
eral hidden layers consecutively connected.

� Finally, the interface which has no successor is called the output layer. This
layer collects all the signals from the previous (hidden) layer and returns
the final prediction of the classification model.

Deep artificial neural networks, which are neural networks with a very large
number of hidden layers have attracted a great attention in the past few years.
Although powerful computer hardware such as GPU (Graphical Processing
Units) existed [53], not until 2012, when significant impacts in image and text
recognition fields were shown, can we talk of a real deep learning revolution
[54, 55, 56]. In Figure 1.6, we can see a schematic example of a deep neural
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Fig. 1.6: A deep artificial neural network to face recognition from the online
book Neural Networks and Deep Learning.

network architecture with its multiple hidden layers to classify images, in this
case to recognise different faces.

To the best of my knowledge, neither of the above discussed paradigms
is able to directly tackle multi-dimensional classification problems. To do so,
they either deal with each class variable in isolation and solve as many clas-
sification problems as class variables are present, or treat each configuration
of the vector of class variables as a different class value facing a highly multi-
class problem. Both approaches have important drawbacks: while the former
leaves out the dependencies among the class variables, the latter may suffer an
unfeasible number of combinations. Research on probabilistic approaches,
instead, recently, has found a reliable and efficient way to deal with multiple
class variables [57, 13]. These approaches make use of an induction algorithm
over the annotated training data in order to learn a probability distribution
ρ̂(x, c) or ρ̂(c|x). Note that the former distribution is a direct estimation of
the generative model defined in equation 1.1. Afterwards, probabilistic classi-
fiers predict the values of the class variables of new unlabelled instances based
on a classification rule over the previous probability distribution. An example
of classification rule is the joint classification rule [58] for multi-dimensional
problems:

ĉ = arg max
i
ρ̂(ci|x). (1.12)
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This rule, which obtains better results than several other already proposed
rules [58], returns the most probable combination of values for the vector of
class values.

The taxonomy of the probabilistic approaches depends on the assumed
family of distributions of the classification rule. Within these approaches,
Bayesian networks (Näıve Bayes, in particular) are the most well-known due
to the fact that they are powerful tools for knowledge representation and
inference under uncertainty conditions [59]. Moreover, efficient algorithms to
infer knowledge from data are available in the literature [60]. Since these
formalisms have a great presence in this dissertation, I devote the following
section to a detailed description of how they are used as a learning approach.

1.2.2.1 Multi-dimensional Bayesian Network Classifiers

Bayesian networks have been extensively used as classifiers [61, 62] and have
become a classical and well-known classification paradigm. In [13], they are
defined as:

Definition 4. A Bayesian network over a finite set V = {Z1, . . . , Zn},
n ≥ 1, of nominal random variables is a pair B = (S,θ) where S is a directed
acyclic graph (DAGs) whose vertices correspond to the random variables and
θ is a set of parameters θz|pa(z) = p(z|pa(z)), where pa(z) is a value of the
set of variables Pa(Z), parents of the Z variable in the graphical structure S.
Thus, the network B defines a joint probability distribution2 pB over Z given
by

pB(z1, . . . , zn) =

n∏

i=1

θzi|pa(zi) (1.13)

Conventionally, a Bayesian network classifier is a Bayesian network spe-
cially designed to solve classification problems in which instances described by
a set of discrete features have to be assigned to a class value. In my broader
vision of the classification spectrum, where an instance may be simultane-
ously assigned to several class variables, the term multi-dimensional Bayesian
network classifier [57][63] is used, instead, to denote the generalisation of the
classical Bayesian network classifiers. These classifiers model the relationships
between the variables by means of directed acyclic graphs (DAG) over the
class variables and over the feature variables separately, and, then, connect
both sets of variables by means of a bi-partite directed graph.

Definition 5. A multi-dimensional Bayesian network classifier is a
Bayesian network B = (S,θ), where the DAG structure S = (V,A) has the set
V of discrete random variables partitioned into the sets VC = {C1, . . . , CM},
2 Usually, Bayesian networks assume nominal or discrete random variables. For this

reason, I refer to the probabilities as p(·) instead of ρ(·). For numerical random
variables, other probabilistic graphical models are used.
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M ≥ 1, of class variables, the set VF = {X1, . . . , XN} (N ≥ 1) of features,
and the set of arcs A can be partitioned into the following three sets:

� ACF ⊆ VC ×VF is composed of the arcs between the class variables and
the feature variables, so we can define the feature selection subgraph of S
as SCF = (V,ACF ). This subgraph represents the selection of features that
seems relevant for classification given the class variables.

� AC ⊆ VC ×VC is composed of the arcs between the class variables, so we
can define the class subgraph of S induced by VC as SC = (VC ,AC).

� AF ⊆ VF ×VF is composed of the arcs between the feature variables, so
we can define the feature subgraph of S induced by VF as SF = (VF ,AF ).

Then, the joint probability distribution over V is defined as

pB(x, c) =

M∏

j=1

θcj |pa(cj)

N∏

i=1

θxi|pa(xi), (1.14)

and the corresponding classifier is defined by the following classification rule
as

ĉB = arg max
i
pB(ci|x) = arg max

i
pB(ci)pB(x|ci). (1.15)

Figure 1.7 shows a multi-dimensional class Bayesian network classifier with
3 class variables and 5 features, and its partition into the three subgraphs.

X1

C1

C2

C3

X2

X3

X4 X5 X1

C1 C2 C3

X2 X3 X4 X5

C1 C2C3 X1 X2

X3

X4 X5

(a) (b)

(c) (d)

Fig. 1.7: A multi-dimensional Bayesian network classifier and its division:
(a) Whole graph, (b) feature selection subgraph, (c) class subgraph, and (d)
feature subgraph.
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Depending on the structure of the three subgraphs, several sub-families
of multi-dimensional class network classifiers, which are consistent with their
broadly used uni-dimensional counterparts, are proposed in the state-of-the-
art literature [57, 58]:

� Multi-dimensional näıve Bayes classifier (MDnB): the class subgraph and
the feature subgraph are empty and the feature selection subgraph is com-
plete. This is the multi-dimensionalisation of the well-known näıve Bayes
classifier [4].

� Multi-dimensional tree-augmented Bayesian network classifier (MDTAN):
both the class subgraph and the feature subgraph are directed trees. It
could be viewed as the multi-dimensional version of the (uni-dimensional)
tree-augmented Bayesian network classifier (TAN) proposed in [64].

� Multi-dimensional J/K dependences Bayesian classifier (MD J/K): This
structure is the multi-dimensional generalisation of the well-known K-DB
[65] classifier. It allows each class variable Ci to have a maximum of J
dependences with other class variables Cj , and each predictive variable Xi

to have, apart from the class variables, a maximum of K parents.

Whilst induction algorithms to learn pB(x, c) for the first two structures
are already proposed in the literature [57], the MD J/K (already defined in
literature [58]) lacked that characteristic until the proposed manuscript [23].
Moreover, the presented work also addresses the computational burden of
the algorithms proposed in [57] by allowing our induction algorithm to ef-
ficiently perform a structural learning for MDTAN classifiers. Thus, in this
dissertation, the main sub-families of multi-dimensional class Bayesian net-
work classifiers were equipped with efficient learning algorithms.

1.2.3 The semi-supervised learning problem

Semi-supervised learning is a weakly supervised problem [34] concerned with
using unlabelled examples, that is, examples for which we know the features
but not their corresponding categories, to improve the performance of super-
vised learning methods that only use a limited labeled set to train a model
[39]. There are mainly two different approaches which can tackle this problem
[10]:

1. The usage of unsupervised techniques – mainly clustering – over U to
estimate the density ρ(x) =

∑K
i=1 ρ(x|ci)p(ci) which is likely to have

generated the training dataset to, afterwards, use the annotated training
dataset, L, to label the regions of the density.

2. Use L to learn a classifier in a supervised manner and, then, use the
unlabelled data to improve that initial classifier.
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In this dissertation, both approaches were dealt with. Whilst the former is
assumed in my theoretical paper about semi-supervised learning [36] included
in Chapter 5, the latter is used to solve a real-world semi-supervised learning
problem in the included manuscript [23], which is shown in Chapter 4.

Theoretically, the problem has been extensively studied in the litera-
ture. Works such as [31, 38, 66, 67, 68, 69] address and give answers to several
interesting questions: (i) How many unlabelled examples is each labelled in-
stance worth in terms of performance? (ii) How the probability of error of
the optimal procedure which may be proposed in this framework varies on the
values of l and u of labelled and unlabelled examples, respectively? (iii) What
is the real contribution of the unlabelled training subset in the parameter esti-
mation of the model for the classifier? (iv) Does unlabelled data always help?
(v) What is the relationship between the learnt model misspecification with
respect to the generative model and the performance degradation perceived in
the classifier? (vi) What is the convergence rate to the minimum error of both
labelled and unlabelled subsets? However, all these previous works only focus
on binary classification problems. In the literature, only [70] faces the whole
uni-dimensional classification range. Due to this, in this dissertation, I devote
some research to proving that some answers provided by the previous works do
not straightforwardly generalise to the multi-class case. Moreover, in Chapter
5, I contribute to the literature with an optimal semi-supervised procedure
for the whole uni-dimensional classification problem and a study of the con-
vergence of probability of error for the optimal classifier. Thus, fundamental
limits in the performance of any multi-class semi-supervised classifier may be
established.

Methodologically, a set of diverse paradigms to semi-supervised learn-
ing has been proposed in the literature due to the high demand for solutions
to a multitude of practical problems where it is relatively expensive to pro-
duce labeled data [10, 71], e.g. the automatic classification of web pages or
automatic medical diagnoses.

Unlike what happens in supervised learning, the proposal of semi-supervised
learning paradigms is still a subject undergoing intense study. While semi-
supervised learning may seem to be obviously helpful in any scenario, the
fact that these methods – ASSL(L ∪ U) – can actually lead a worse perfor-
mance than their supervised counterparts – ASUP(L) – has been both widely
observed and described [72]. Due to this undesirable characteristic, a lot of
effort is being made in proposing “safe” semi-supervised learning algorithms
[73, 74].

Regarding the taxonomy of the semi-supervised learning setting, the
paradigms may be arranged in the following order: from (i) the techniques
where the improvement of performance is achieved by trial-and-error pro-
cesses, followed by (ii) the techniques where a set of hard-to-check assumptions
must hold to achieve improvements, and ending in (iii) the so-called robust
or safe semi-supervised techniques which ensure performance gain without
relying on assumptions that are not intrinsic to the classifier in hand.
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Early semi-supervised learning proposals were trial-and-error processes
such as self-training or expectation-maximisation (EM) algorithm
based approaches [38, 75]. With the main advantage that these approaches
can be applied to any supervised learning algorithm without making any as-
sumptions on the data, they work as follows: First, the parameters of the
classifier are estimated only on the labelled data. Using this trained classifier,
either the whole unlabelled subset, U , is labelled (or just the most confident
unlabelled examples) so that they can be added to the annotated training
dataset, L. Then, the classifier parameters are re-estimated using this new
labelled dataset in order to get a new classifier which is used to re-label the
subset U . This process is iteratively applied until a stop criterion is met, such
as the predicted labels of the unlabelled subset do not suffer any change.
Although they show practical success in some applications [23, 75], a trial-
and-error methodology with different supervised learning approaches is, in
some cases, computationally impracticable.

So, to avoid the time-consuming task of finding competitive semi-supervised
classifiers, some methods were proposed on the claim of David MacKay “You
cannot do inference without making assumptions” [76]. Thus, these methods
leverage the unlabelled data by introducing some assumptions linking the fea-
tures and the values of the class variables [73]. The most common assumptions
are the following:

� Smoothness or continuity assumption: If two instances are close in a high-
density region, they are likely to share the same values for the class vari-
ables.

� Cluster assumption: The data tend to form a finite number of clusters, and
points in the same cluster are more likely to share a label.

� Low density separation assumption: The decision boundaries should lie in
low-density regions.

� Manifold assumption: The data lie approximately on a manifold of a much
lower dimension than the input space.

The most popular methods based on assumptions are transductive sup-
port vector machines (TSVM) and graph-based methods [10]. While
the former directly implements the low-density separation assumption, the
latter approach is directly built on the manifold assumption. Although it is
claimed that this approach ensures an improved performance when the as-
sumptions are met [77], these assumptions are, in practise, hard to check
when the labelled training subset is limited. If these assumptions are not met,
the use of unlabelled data cannot guarantee any significant advantages over
learning a purely supervised learning problem [78]. Thus, the trial-and-error
property of the previous paradigm returns.

Current research [73, 74] attempts to guard against the possibility of de-
terioration in performance by not introducing additional assumptions. This
paradigm, called robust or safe semi-supervised learning, is still an on-
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going research topic and it could revolutionise the semi-supervised learning
field in the near future.

Lastly, since, in Chapter 4, I propose a new methodology to solve a real-
world semi-supervised learning problem [23], I would like to add a few lines on
my proposal. At the time I faced that problem, no other work on the literature
had dealt with a multi-dimensional classification problem in a semi-supervised
manner. Moreover, to the best of my knowledge, no safe semi-supervised learn-
ing paradigm had been proposed. Thus, I use the natural evolution of the field
in the uni-dimensional framework by proposing an EM algorithm based ap-
proach with its trial-and-error best classifier search disadvantage.

1.3 Evaluation of Classifiers

Classifiers often produce misclassifications. Thus, once a classifier is proposed,
its associated discerning skill needs to be measured. When the generative
function is assumed to be known, a common tool used for visualising the
performance of a classifier is the true confusion matrix of a given classifier, Ψ
[79]. It is a square matrix of size K containing the mathematical expectations
of classifying, with a classifier Ψ , an example of the configuration of classes ci
(rows) as the values cj (columns).

As previously mentioned, when the generative model is known, decision
rules using the generative model can be defined. In such situations, the true
confusion matrix, AΨ = [ai,j ]1≤i,j≤K , can be directly calculated by taking
expectations:

ai,j = Ex|c=ci
[ĉΨ = cj ]. (1.16)

There, E[·] stands for the mathematical expectation. For instance, each ele-
ment of the true confusion matrix for the BDR applied to a multi-dimensional
problem with generative model ρ(x, c) is calculated as

ai,j = p(ci)

∫

Ωj

ρ(x|ci)dx. (1.17)

When ρ(x, c) is unknown, an estimation of the true confusion matrix is
utilised instead. It is usually referred to as the empirical confusion matrix, or
simply as the confusion matrix. To perform such an estimation, labelled data
is required. They usually come in the form of an independent testing dataset,
DT . Similarly to the training dataset, DT is also assumed to be sampled from
the generative model. Note that both subsets (D andDT ) must be independent
sets in order to ensure a fair performance assessment. When data is limited,
there are supervised and semi-supervised methods3 in the literature, such as

3 Unsupervised learning is left out in this section due to the fact that I assume the
availability of labelled data to evaluate the trained models to use the aforemen-
tioned assessment methods.
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(repeated) k-fold cross-validation, leave-one-out, etc [80], in order to fairly
and efficiently exploit all the available labelled data to both train and test the
classifier.

Concerning the estimation of the confusion matrix for a learning algorithm
in a dataset, it is performed in the following manner: The classifier Ψ , which
has previously been trained using D, is used to classify all the labelled testing
data DT . Afterwards, each element ai,j of the confusion matrix is filled by just
assigning the number of instances with real values ci which are classified as
values ci when the classifier Ψ is used. Formally and being 1(E) the indicator
function, the elements are calculated as:

ai,j =
∑

(x,ci)∈DT

1(ĉΨ = cj). (1.18)

As stated in [79], the confusion matrix is one of the most informative
performance summaries that a learning system can rely on. Among other in-
formation, it contains how accurate the classifier is on each configuration of
classes, and the way it tends to get confused among configurations. However,
it is often tedious not only when determining the overall behaviour of a clas-
sifier from the confusion matrix, but also when comparing several classifiers.
Therefore, quantity measures which summarise the confusion matrix are of-
ten preferred. These measures are known as numerical performance scores
[80]. Since the best behaviour may vary from one kind of problem to another,
there are many different and diverse performance scores in the community.
This diversity may, at times, obscure important information on the hypothe-
ses or algorithms under consideration [81]. Thus, it is fundamental to check
in advance the adequateness of a numerical performance score for assessing a
determined classification problem so that the validity of the obtained results
can be ensured.

Moreover, in the literature, there are also other methods such as the graph-
ical performance scores [82] which, instead, produce a visual inspection output.
This output is capable of capturing the whole multi-objective nature of the
classifier and producing a richer, but more subjective – many simultaneous
behaviours must be taken into account by the practitioner –, assessment [80].
Unfortunately, as can easily be seen, these scores also possess the main draw-
backs of the confusion matrix. Thus, they are also usually summarised into a
single value in order to make a better comparison between classifiers.

1.3.1 Performance Assessment in the Uni-dimensional
Classification Setting

In the uni-dimensional classification problem framework, both numerical and
graphical performance scores have been broadly used. The numerical per-
formance scores, see Table 1.1, can be mainly divided into two different
groups: local scores, which only focus on the behaviour of one target class
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Name Notation Formula

L
o
c
a
l

sc
o
re

s

Precision Pi ai,i

(
K∑

j=1

aj,i

)−1

Recall Ri ai,i

(
K∑

j=1

ai,j

)−1

F-score F iβ
(β2 + 1)RiPi
β2Ri + Pi

G
lo

b
a
l

sc
o
re

s

Classification accuracy Acc
K∑

i=1

ai,i

(
K∑

i=1

K∑

j=1

ai,j

)−1

Arithmetic mean among
the recalls (a-mean)

A
K∑

i=1

1

K
Ri

Geometric mean among
the recalls (g-mean)

G K

√√√√
K∏

i=1

Ri

Harmonic mean among
the recalls (h-mean)

H K

(
K∑

i=1

1

Ri

)−1

Maximum value among
the recalls

max max
i
Ri

Minimum value among
the recalls

min min
i
Ri

Table 1.1: Numerical performance scores for the uni-dimensional framework
(by convention 0/0 = 1).

value, and global scores, which summarise the performance of the classifier
taking into account its behaviour in all the values for a unique class variable.

The most used local performance scores are precision Pi and recall Ri.
Whilst Pi assesses to what extent the predictions of a certain class ci are cor-
rect, Ri assesses to what extent all examples of a certain class ci are classified
as so. Introduced in the information retrieval field [83], another widely used
local score is the F-score [84]. This score weights the two previously defined
local performances for a given class value and depends on a parameter, β,
provided by the practitioner. When β = 1, the obtained F-score is known as
the F1-score and corresponds to the harmonic mean between the precision
and recall terms. This setting of the score is usually the one used in the lit-
erature [85, 86]. Unfortunately, for their local property, these scores lose the
global picture of the performance of the classifier; they are more useful when
applied to most, or even all, of the values of the class variable [81]. Therefore,
most of the global scores are just functions which, by taking local performance
scores applied to some/all classes, summarise the behaviour of the classifier
according to a determined subjective criterion.
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The most ubiquitous global performance scores are the classification accu-
racy, Acc and the classification error ε, which are equivalent: Acc = 1 − ε.
Whilst the former gives the ratio of the number of correct classifications over
the total number of cases in the testing dataset, the latter focuses on the mis-
classifications. Note that Acc can also be seen as a weighted arithmetic mean
over the K recalls. In this case, each recall Ri is weighted on the number
of examples of the class value ci in the testing dataset. Although they are a
proper choice for maximising the overall number of correct classifications, the
performance on underrepresented classes has very little impact on the global
measure when compared to the overrepresented classes [81][86]. In those cases,
their use is pointless and the use of unweighted averages over the recalls is
preferred [30]. With this approach, all classes, over and underrepresented,
share a common consideration in the global score. The most-used scores in
the unbalanced scenario are the Pythagorean means – arithmetic (A), geo-
metric (G), and harmonic (H) means – over the recalls of the K-classes. In the
literature [80, 87, 88], they are referred to as a-mean, g-mean, and h-mean,
respectively. Other works, e.g. [30], also consider the maximum recall, max,
and the minimum recall, min (among the classes), as global scores.

In this chapter, which focuses on classification, the class variables are as-
sumed to be categorical random variables, i.e. they have no logical order.
When this assumption is relaxed and the target variables are nominal or
ordinal values, then other numerical performance scores arise. In Chapter 4,
several numerical performance scores for ordinal class variables are introduced
and used due to necessities of the real-world problem confronted.

Regarding the graphical performance scores, a well-known score for
binary classification problems is the Receiver Operating Curve (ROC) [82]. It
allows the visualisation of the trade-off between the proportion of positives,
c1, that are correctly identified and the proportion of negative events, c2,
wrongly categorised as positive, proving that any classifier cannot increase the
number of true positives without also increasing the false positives [29, 89].
The area under the ROC curve (AUC) provides a single measure (numerical
score) of a classifier’s performance [90] – see Figure 1.8 – which properly fits
for the binary setting. Multi-class problems, instead, introduce the issue of
combining multiple pairwise discriminability values for which there are several
approaches in the literature [91, 92].

1.3.2 Evaluation of Multi-dimensional Classification Approaches

By means of the definition of the confusion matrix used in eq. (1.16) and
eq. (1.17), the use of either uni-dimensional numerical performance score
of Table 1.1 to assess multi-dimensional classifiers seems straightforward.
Unfortunately, in the published literature, only the classification accuracy
[22, 23, 58, 93] – out of the 6 global scores – presented is utilised. In those
works, it is called classification joint accuracy. An interesting potential fu-
ture research line, which I in-depth discuss in the future work section (Section
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Fig. 1.8: Example of a ROC plot. Two curves for two classifiers are plotted:
the dashed line represents the random classifier, RAND, whilst the solid line
is a classifier, Ψ , behaving better than the random classifier.

3.1), could be the study of how different uni-dimensional numerical perfor-
mance scores describe the behaviour of a multi-dimensional classifier.

Given the shape of the confusion matrix in the uni-dimensional case for
a single class variable, a totally different approach to assess the classifier is
to extract M independent confusion matrices, one for each class variable.
Then, by summarising each confusion matrix with a numerical performance
score and averaging the results, a global performance evaluation of the multi-
dimensional classifier can be extracted. This methodology has also been used
in the literature [23], going by the name of classification mean accuracy.
It obtains the classification accuracy of the classifier for each class variable
and, then, calculates the arithmetic mean of all the accuracies.

Finally, as put forward in the previous subsection, the categorical property
of the class variables can also be relaxed in this setting. In Chapter 4, due to
the requirements of the classification problem being dealt with, I also define,
describe and make use of a numerical multi-dimensional global performance
score for ordinal class variables.

1.4 Threats when Obtaining Acceptable Classifiers

As stated in [94]: “A training supervised or semi-supervised dataset D differs
from a random labelling of the classes in the difficulty of training a competitive
classifier capable of assigning values for the class variables to future data from
the same generative model. A random labelled dataset is improbable to be
the source of a classifier since not much can be learned from it about the
unseen points. Similarly, in real-world classification problems such learning
can usually be done with various degrees of difficulty which may produce
weak solutions unable to successfully predict future instances.”
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A classification problem can be difficult for different reasons. Thus, in this
dissertation, I refer to the common situations which degrade the discerning
skill of the trained classifiers as threats to obtain acceptable classifiers. These,
which have been long studied in the literature [89, 95], are mainly the fol-
lowing: (i) training set size [96], (ii) noise in the data [97], (iii) dispersity of
some classes and the presence of small disjuncts [98], degrees of overlapping
among the classes [99], and degree of unbalance among the values of the class
variables [100].

The threats, which have strong interdependences among them [89], are
briefly described in the following subsections. Unfortunately, since complex
classification settings lead to intricate casuistry which may hinder the de-
scription, when approach each threat, I will refer only to (uni-dimensional)
binary classification problems for the sake of clarity.

1.4.1 Training Set Size

In practise, the number of labelled examples to train a classifier is frequently
limited because labelling is either costly or time-consuming. As the estima-
tion of the parameters of the classifiers is dependent on the labelled examples,
in supervised learning, the scarcity of data directly translates into poor es-
timations and systems which cannot accurately classify future instances; the
induction algorithms do not have enough data to make a consistent general-
isation [33] about the inner distribution of the samples. Potential solutions
to this problem may be (i) gathering huge unlabelled datasets so that semi-
supervised learning techniques [10] may be applied, or (ii) obtaining more
labelled data to train the classifier but only the crucial instances. More infor-
mation about the former approach can be found in Section 1.2.3. Regarding
the latter, there are estimations of the required number of examples to ob-
tain valuable estimations for certain well-known probability distributions [96]
and estimations of the required class distribution [101] for certain supervised
learning paradigms.

1.4.2 Presence of Noise in the Data

The data which is corrupted or distorted is called noise. This property is
known to affect the way any data mining system behaves [102]. Fortunately,
both the inductive bias [33] of the learning algorithm and the class frequencies
of the training dataset play important roles enabling the proposal of mitigating
approaches.

According to [33], the inductive or learning bias of a learning algorithm is
the set of assumptions that the learner uses to predict unseen examples which
are not encountered in the training dataset. This bias prevents overfitting –
classifiers whose models are too well trained on the training data but fail to
make predictions on new data – and fosters generalisation. In the event of
having all the class values appropriately represented in the training dataset
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common learning biases are currently able to handle noisy data. When facing
high levels of noise, [89] claims that the most robust classifiers are Bayesian
classifiers and SVM. In these cases, rule-based learning approaches are not
recommended as their performance degrades quicker in the degree of noisy
examples.

The most problematic issue, here, happens when noise is present for the
underrepresented class values, in areas of low density or in small training
datasets. As long as there are more underrepresented data than noise, ap-
proaches such as undersampling techniques [103] may be applied to alleviate
the problem [104]. Alternatively, the learning bias must be adjusted to enable
the inclusion of both real data and noise in the learning process or either let
the inductive bias eliminate both noisy and true real data.

Finally, note that the noise can also be filtered or even corrected if it is
introduced in the training dataset by an external source. This last approach
is the most recommended to overcome this problematic issue.

1.4.3 Presence of Disperse Small Disjuncts

Small disjuncts are really small clusters of data in the training dataset which
may be mistaken as noise in the learning process [105]. Thus, they can be
eliminated by the inductive bias of the learning algorithm. When a class value
is composed of multiple and disperse small disjuncts, and these are removed
in the learning process, the overall performance will show a significant drop.

To deal with this complex case, we can consider small disjuncts as “neces-
sary noise” and make use of the same approaches of Section 1.4.2 but reversely
[105]. Thus, the classification problem can be approached by using sensitive
to noise solutions such as rule-induction techniques. Also, the induction bias
of the learning algorithm can be modified to overfit on small clusters. Fi-
nally, and among other approaches, the most effective approach is to obtain
additional training data [89].

1.4.4 Class-overlapping

The previous threats are only dependent on the training dataset, so any im-
provement on data might alleviate the problem. However there are threats
which only depends on the nature of the classification problem being dealt
with, i.e. they are dependent on the generative function ρ(x, c). The following
last two threats lie within this setting. First, I focus on class-overlapping, a
problem which originates in the local probability distribution of the feature
space ρ(x|c) [95], and it is regarded as one of the toughest pervasive problems
in classification [106].

Class overlap arises when objects belonging to different classes share the
same feature representation, i.e. ∃x s.t. ρ(x|c1)ρ(x|c2) > 0, and it has a direct
relationship with the irreductible Bayes error – eq. 1.4 –. The value of eB
depends on the proportion of size of the feature space which is overlapped and
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(x, ci)

eB

ρ(x, c1) ρ(x, c2)

Fig. 1.9: The Gaussian conditional features distributions ρ(x|c) for a uni-
dimensional binary classification problem showing class-overlapping.

it is equal to 0 if and only if the classifier can be modelled using a deterministic
algorithm. When the uncertainty of the generative model increases (eB > 0),
the achievable performance improvement of a given trained classifier, Ψ , over
a baseline classifier, such as RAND, gets narrower. Thus, the classification
problem becomes complex.

Figure 1.9 shows a uni-dimensional problem showing class-overlapping. As
it can be seen, there is ambiguity about the real class value of any example
originated in the overlapped region. Fortunately, class-overlapping has only a
real dramatic effect when the overlapped regions are large and contain similar
number of training data for each class. In other words, both conditional feature
distributions are similar, ρ(x|c1) ∼ ρ(x|c2), thus making the task of differen-
tiation between c1 and c2 very difficult or, even, impossible. In the unlikely
scenario of having all the feature space overlapped and both classes sharing
a similar class probability, any classifier will show a similar performance to
RAND.

There are some methodological proposals to alleviate this problem [89].
Unfortunately, since it is an intrinsic property of the dealt classification prob-
lems, there is little room to overcome this threat. In this case, neither a larger
dataset is able to overcome the degradation. Finally, in practical applications,
exploring alternative class definitions, i.e. using different feature sets for the
objects to be classified, could be an approach to solve this complexity [107].

1.4.5 Class-imbalance

The class-imbalance problem is also dependent on the generative function but,
unlike class-overlapping, it arises from the class probability distribution, p(c),
and it is able to compromise the performance of the vast majority of stan-
dard learning algorithms [11]. Traditional learning algorithms assume a 0-1
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or a surrogate loss function and, thus, they expect balanced class distribu-
tion – ∀i, p(ci) ∼ 1/K – or equal misclassification costs [28]. In other words,
they inherently maximise classification accuracy and have an asymptotic be-
haviour close to the BDR favouring an overall number of correct classifications
(keep in mind the example of Figure 1.2). Therefore, when they are presented
with complex training datasets sampled from skewed class distributions –
∃i s.t. p(ci) ∼ 0 –, these algorithms fail to properly represent the distributive
characteristics of the data and resultantly provide dummy classifiers, always
classifying new data as the most probable value. Here, the class values with
the lowest probabilities are ignored. Furthermore, it also is worth pointing out
that the latter class values are commonly the ones having the highest interest
from a learning point of view. This implies a great classification cost when
they are not correctly predicted [89].

Whether a skewed class distribution produces a class-imbalance prob-
lem depends on the previously described class-overlapping issue. Figure 1.10
shows their relationship by plotting four binary classification scenarios shar-
ing two different degrees of class-imbalance and two different degrees of class-
overlapping. For each problem, the data has been created by sampling two bi-
variate Gaussian distributions. To simulate no class-overlapping, I choose two
Gaussians whose means are far from each other (Figures 1.10a and 1.10b),
and to simulate the opposite, I shorten the distance between these means
(Figures 1.10c and 1.10d). Regarding the class-imbalance setting, it is simu-
lated by sampling 1, 000 instances of each class for balanced problems (Figures
1.10a and 1.10c), and by sampling 1, 000 instances for the majority class and
only 10 samples for the minority, for the case of unbalanced problems (Fig-
ures 1.10b and 1.10d). By just having an overall look at Figure 1.10, it can
be easily noticed how the combination of both factors (class-imbalance and
class-overlapping) has a straight effect on discriminating among the classes
and, therefore, on the performance of the trained classifier. When there is no
class-overlapping (eB = 0), as shown in the first row of the figures, the class
distribution does not hinder the predictive power of the resulting classifier.
In both scenarios, a simple and perfect discriminant linear classifier can be
easily drawn. This classifier is represented by a straight continuous line in the
figure. However, in the second row, the situation is completely different. When
both classes are balanced (Figure 1.10c), a classifier with a tolerable recall for
both classes can be learned. Unfortunately, in the unbalanced scenario (Figure
1.10d), the lack of enough examples for the minority class hinders the process
of discriminating it; any intuitively chosen classifier will be incompetent, i.e.
it will have a low recall for the minority class. This example concurs with the
literature [99], where it is stated that (i) only when the class-overlapping is
non-zero, the influence of the class distribution on the competitiveness of the
inferred classifier is noticeable, and that (ii) the influence of class-overlapping
into the learning process is even stronger than class-imbalance.

In an attempt to overcome this threat, hundreds of methodological so-
lutions to the class-imbalance problem are currently proposed. They usually
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(a) Balanced problem with no class-
overlapping.
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(b) Unbalanced problem with no class-
overlapping.
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(c) Balanced problem with class-
overlapping.
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(d) Unbalanced problem with class-
overlapping.

Fig. 1.10: Relation between class-overlapping and class-imbalance.

attempt to find an adequate balance between the prediction powers of the
trained classifier for the most and the least probable class values. According
to [103], the proposed solutions can be mainly categorised into the following
three major groups:

1. The development of inbuilt mechanisms [108], which change the classi-
fications strategies of the classifier to impose bias towards the minority
classes.

2. The usage of data sampling methods [109], which modify the estimated
class distribution (from the training dataset) in the learning algorithm so
that it can learn from a balance scenario.

3. The adoption of cost-sensitive learning methods [110], which assume higher
misclassifications costs for examples of the minority classes.

To the best of my knowledge, all literature is focused on unbalanced uni-
dimensional classification problems. However, within that setting, both the
multi-class framework [111] and the theoretical understandings of this intricate
issue [99, 101, 107] are commonly left aside. Few works on the class-imbalance
literature can be found dealing with those cases. Here, it is worth mentioning
that, when the binary class constraint of a single target variable is relaxed,
the class-imbalance casuistry gets more complex, and, thus, new theoretical
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and methodological challenges that are not observed in binary problems arise
[111]. Whilst in an unbalanced binary problem there is only one majority
class value – the most probable – and one minority class values – the least
probable –; in the multi-class framework, an unbalanced class distribution
may show multiple majority class values or multiple minority class values. In
this thesis, based on the class distribution, I formally catalogue the multi-class
classification problems into the following groups:

Definition 6. A K-class classification problem, γ, is balanced if it exhibits
a uniform distribution between its classes. Otherwise, it is considered to be
unbalanced. Formally,

γ is balanced ⇐⇒ ∀i, p(ci) =
1

K
, i.e. p(c) = e, (1.19)

where e is the special case of having K equiprobable class values.

Definition 7. A multi-class classification problem (K > 2) shows a multi-
majority class-imbalance if most of the class values have a higher or equal
probability than equiprobability, i.e.

γ is multi-majority ⇐⇒
K∑

i=1

1

(
p(ci) ≥

1

K

)
≥ K

2
. (1.20)

Definition 8. An unbalanced classification problem, γ, with K > 2, shows a
multi-minority class-imbalance when most of the class probabilities are below
the equiprobability. Formally,

γ is multi-minority ⇐⇒
K∑

i=1

1

(
p(ci) <

1

K

)
>
K

2
. (1.21)

In this dissertation, assuming the whole uni-dimensional spectrum (binary
+ multi-class), I pursue a theoretical understanding and formalisation of the
class-imbalance problem and I also propose a methodological advance. Whilst,
in Chapter 6, I shed some light, through a novel theoretical framework, on the
adequateness of the most commonly used performance scores to assess unbal-
anced multi-class problems as well as on the scores maximised in the most
popular methodological approaches; in Chapter 7, a class-imbalance metric
capable of suitably characterising the imbalance degree of a given multi-class
problem is proposed.



2

Main Contributions to Classification in a
Nutshell

This dissertation explores two different and intricate scenarios within the clas-
sification field: the semi-supervised learning framework and the class-imbalance
problem. Since each scenario has been explored from both theoretical and
methodological perspectives, four contributions, sorted in chronological or-
der, are summarised in this chapter:

� two theoretical studies exploring both the semi-supervised learning
(Section 2.2, which digests Chapter 5) and the class-imbalance (Section
2.3, summarising Chapter 6) scenarios, and

� two different methodological advancements to the problem-solving
process. Section 2.1 – summary of Chapter 4 – corresponds to the semi-
supervised learning related contribution and Section 2.4 sums up the ad-
vances proposed for the class-imbalance problem of Chapter 7.

2.1 Semi-supervised Learning of Multi-dimensional
Classifiers

Encouraged by the requirements of a real-world problem in the context of
Sentiment Analysis [112, 113, 114, 115], the first contributions enriched the
state-of-the-art literature with not only a methodological extension of the
semi-supervised learning framework to the whole multi-dimensional
classification spectrum, but also a new supervised multi-dimensional
Bayesian network classifier learning algorithm.

Sentiment Analysis is a broad area defined as the computational study
of opinion, sentiments and emotions expressed in text [112]. It mainly origi-
nated to meet the need for organisations to automatically find the opinions
or sentiments of the general public about their products and services, as ex-
pressed on the Internet. Within this domain, Socialware©, one of the most
relevant companies in mobilised opinion analysis in Europe, has been working
on an application slightly different to the traditional approaches. In this case,
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Class-variable Cardinality Values
Sentiment Polarity 5 {very negative, negative, neutral, positive, very positive}
Subjectivity 2 {objective,subjective}
Will to Influence 4 {none, question, complaint/recommendation, appeal}

Table 2.1: Target class variables of the faced multi-dimensional problem.

Feature Description
1 First Persons Verbs in the first person.
2 Second Persons Verbs in the second person.
3 Third Persons Verbs in the third person.
4 Relational Forms Phatic expressions, i.e. expressions performing a social task.
5 Agreement Expressions Expressions that show agreement or disagreement.
6 Request Sentences that express a certain degree of request.
7 Imperatives Imperative verbs in the second person.
8 Exhorts and Advice Exhortative verbs, e.g. recommend, advise, prevent, etc.
9 Sufficiency Expressions Expressions used to corroborate other sentences of the text.
10 Prediction Verbs Verbs in the future.
11 Authority Expressions that denote high degree of authority.
12 Questions Direct and indirect questions.
13 Positive Adjectives Positive adjectives.
14 Negative Adjectives Negative adjectives.

Table 2.2: Features of the faced multi-dimensional problem.

instead of studying a certain aspect1 of the text in isolation, the company
sought to characterise the costumers of a set of Spanish companies through
three different, but related, dimensions: their sentiment polarity towards the
product, the subjectivity of their online posts, and their will to influence on
other customers through their posts in several forums (see Table 2.1). As can
be noticed, I was dealing with a multi-dimensional classification problem.

Then, each post had to be represented as a set of features. Here, I relied
on the high levels of experience of the company on manually dealing with this
problem and, after properly testing them against the state-of-the-art alterna-
tives, I opted to use their 14 morphological features (Table 2.2).

In the end, the provided dataset consisted of 2, 542 posts written in Span-
ish. Since labelling is a laborious and time-consuming task, only 150 pieces
of text were manually labelled by an expert in Socialware© according to the
three different class variables exposed. The remaining 2, 392 posts were left as
unlabelled instances. Therefore, this multi-dimensional classification problem
had to be approached using semi-supervised learning techniques.

At the time I faced the problem, no other work on the literature had dealt
with a multi-dimensional classification problem in a semi-supervised manner.
Thus, I made use of the previous natural evolution of the semi-supervised
field in the uni-dimensional framework by proposing an EM algorithm based
approach to deal with multiple, and possibly related, class variables. This
approach has the main advantage that it can be directly applied to any su-
pervised learning algorithm. However, it is computationally costly. On that

1 E.g. subjectivity classification [116], sentiment polarity classification [113], author-
ship identification [117], or affect analysis [118].
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account, my first objective was to study the feasibility of using the available
learning algorithms [57] for the sub-families of multi-dimensional class network
classifiers in this context.

The real costly task in learning Bayesian networks from a dataset is the
structural learning process. Estimating the parameters for a given fixed net-
work is, instead, quite straightforward. So, I focused on analysing the former
and, after a review of the multi-dimensional family of Bayesian network classi-
fiers (MDnB, MDTAN, and MD J/K), the following conclusions were found:

1. As the MDnB has a fixed structure, here, it raised no computational
problem.

2. The proposed learning algorithm for MDTAN [57] follows a computation-
ally intensive wrapper method for both structural and parameter learning
tasks by maximising the joint accuracy of a given dataset. Fortunately,
the limited sizes of the dataset in question and multi-dimensional problem
allowed the use of this early learning algorithm.

3. The structure MD J/K has been already defined in the literature [58].
However, to the best of my knowledge, it possessed no associated learning
algorithm.

Because of this, a supervised filter learning algorithm for multi-dimensional
J/K dependences Bayesian network classifiers which uses statistical testing
over mutual information measures were proposed. Its ‘filter’ nature had a
favourable impact in reducing the computation time of the proposals. Another
advantage of the suggested algorithm is that, by setting both J and K to 1,
a MDTAN structure can be learnt in a shorter time than using the original
algorithm.

Algorithm 2 My version of the EM Algorithm [119]

Require: A training dataset D with both labelled and unlabelled data and

an initial model p
(K=0)
B (x, c) with a fixed structure and with an initial set

of parameters Θ(K=0).

1: while the model p
(K)
B (x, c) does not converge do

2: E-STEP Use the current model p
(K)
B (x, c) to estimate the probability

of each configuration of class variables for each unlabelled instance.

3: M-STEP Learn a new model p
(K+1)
B (x, c) with structure and param-

eters Θ(K), given the estimated probabilities in the E-STEP.
4: end while

Ensure: A Bayesian network classifier ψB, which takes an unlabelled instance
and predicts the class variables.

Afterwards, I proceeded with the extension of the previous family of learn-
ing algorithms to the semi-supervised learning framework and the eventual
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solution of the faced classification problem. The typical aim of the EM algo-
rithm in the semi-supervised framework is to find the parameters of a given
structure for the model pB(x, c) that maximises the likelihood of the data, us-
ing both labelled and unlabelled instances. However, in [72], it is stated that if
the correct structure of the real distribution of the data is obtained, unlabelled
data improve the performance of the trained Bayesian network classifier; oth-
erwise, unlabelled data can actually degrade performance. For this reason, it
seemed more appropriate to perform both structural and parametric searches
in order to find the real generative model. The proposed version of the EM
algorithm for multi-dimensional classification can be found in Algorithm 2.
Note that this proposal is closer to the Bayesian structural EM algorithm
[120] rather than the original formulation [119]. At that point, I tested my
battery of proposed semi-supervised learning algorithms (EM plus the fam-
ily of Bayesian network classifiers) over a set of designed artificial datasets.
The experimentation, which can be found in the appendices of Chapter 4,
concludes by claiming that more accurate multi-dimensional classifiers can be
found using these semi-supervised learning approaches.

Finally, in order to solve the real world problem being addressed using
the proposed methodologies, an exhaustive experimentation where two major
hypotheses were checked, was performed:

1. The uni-dimensional counterparts of the studied multi-dimensional Bayesian
network classifiers yield suboptimal solutions to this problem, i.e. the ex-
plicit use of the relationships among the class variables can be beneficial
to improve the recognition rates.

2. When there is a scarcity of labelled data, multi-dimensional techniques
can work effectively with huge sets of unlabelled data in order to improve
the classification rates.

Then, the given semi-supervised dataset was used to learn three differ-
ent (one for each class variable) uni-dimensional Bayesian network classi-
fiers – näıve Bayes (nB), tree-augmented network classifier (TAN), and a
2-dependence Bayesian classifier (2DB) – and three sub-families of the multi-
dimensional Bayesian network classifiers – MDnB, MDTAN [57], and MD2/K
with K = 2, 3, and 4 –. In order to compare both learning frameworks, all the
structures were learnt in both scenarios. As stated in the introduction, the
uni-dimensional approaches cannot be straightforwardly applied to deal with
multi-dimensional problems, so, in these cases, the dataset was divided into
three uni-dimensional independent datasets. Figure 2.1 shows the obtained
results; whilst Figure 2.1a sums up the joint accuracy of each learning al-
gorithm, Figures 2.1b, 2.1c, and 2.1d show the accuracies obtained in each
class variable. The results confirmed both hypotheses and depicted the semi-
supervised version of the MDnB as the global best solution for the given real-
world problem. Probably due to the fact that, when applying rational criteria
in determining the predictive features of a problem ( i.e. the expert list of
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(a) Joint accuracies on the whole problem.

(b) Accuracies on Sentiment Polarity. (c) Accuracies on Subjectivity.

(d) Accuracies on Will to Influence.

Fig. 2.1: Estimated performance scores on the faced problems using both
uni-dimensional (nB, TAN, 2DB) and multi-dimensional classifiers (MDnB,
MDTAN, MD 1/1, MD 2/2, MD 2/3, MD 2/4) in both supervised (purple)
and semi-supervised learning (green) scenarios (20× 5cv)

14 features), the resulting features are usually probabilistically independent
given the class variables [121].

The solution of this Sentiment Analysis application throws interesting
methodological future work paths. Among them, ways to optimise the semi-
supervised learning algorithms to avoid computational burden and research to-
wards robust semi-supervised learning algorithms [73, 74] for multi-dimensional
classifiers are key. Regarding the text classification domain, two interesting re-
search paths remain open:

1. Affect Analysis [118] aims at extracting a large number of potential emo-
tions from text [122], e.g. happiness, sadness, anger, hate, violence, ex-
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citement, fear, etc. Some of them are not mutually exclusive and certain
emotions may be correlated. Thus, multi-dimensional classification solu-
tions, both in supervised and semi-supervised frameworks, seem to be a
perfect match for this problem.

2. Here, I have proven that the same corpus can be used to identify several
target variables in the same classification task. Therefore, why not use the
proposed methodology to take advantage of the possible existing relation-
ships between the class variables to improve the recognition rates in the
characterisation of textual information?

2.2 A Study on Semi-supervised Learning of Multi-class
Classifiers

Over the course of this research project, I noticed that the majority of the the-
oretical works on semi-supervised learning (see Table I of [36]) solely focused
on standard binary problems. Furthermore, most of them do not straightfor-
wardly generalise to the multi-class setting. Thus, in an attempt to overcome
this limitation, here, in order to highlight the blocking issues to generalise
their framework, I particularly focus on the conclusions of the key research
problem proposed in [31, 66], where the fundamental limits for the probability
of error of binary semi-supervised problems are drawn. Afterwards, I was able
to propose new general strategies to adapt their research by, specifically, con-
tributing with an optimal semi-supervised procedure for the whole
uni-dimensional problem and using it to study the convergence of
its optimal probability of error when multi-class labelled data are
scarce. By doing so, fundamental limits in performance of any uni-
dimensional classifier learnt in the semi-supervised scenario can be
established.

Before studying this key scenario, I deal with the case of dealing with no
labelled data at all. Under the assumption of having a mixture density [123] as
generative model, even with an infinite amount of unlabelled data to estimate
the correct model density, ρ(x), the generative model is only identifiable up
to a permutation, π, of its single-components. In other words, I am able to
determine the whole distribution of class values but there is not a single clue
to the real mapping between them and the true class values of the generative
model. Here, I also prove that the probability of committing a classification
error, Pe(l, u), where l is the number of labelled data in the training subset
and u the number of unlabelled data, when there is no labelled data coincides
with that of the RAND classifier:

Pe(0, u) =
(K − 1)

K
, ∀u ≥ 0. (2.1)

Subsequently, I centre on the pioneering work of Castelli and Cover [31]
for binary problems with l and u greater than 0. Under the assumptions
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Algorithm 3 Optimal theoretical procedure for SSL binary problems [31]
[66]

1: LEARNING TASK:

� Stage 1 Use unlabelled set U to obtain ρ(x) and, by identifiability, a
permutation π of its components (ρ(x|cπ(1)), ρ(x|cπ(2)), p(cπ(1)), and
p(cπ(2))).

� Stage 2 By means of the likelihood ratio test and the labelled set L,
determine the correspondence between the real classes and the current
mixture components:
π̂(1) = 1 and π̂(2) = 2, or π̂(2) = 1 and π̂(1) = 2.

2: CLASSIFICATION TASK:

� Stage 3 Assign the sample x(0) to the class induced by the BDR using
the learned model.

of (i) learning the correct model density, ρ(x), using an infinite amount of
unlabelled examples, (ii) having the unlabelled samples distributed according
to a identifiable [123] mixture density ρ(x) = p(c1)ρ(x|c1) + p(c2)ρ(x|c2),
and (iii) having p(c1), ρ(x|c1), p(c2) and ρ(x|c2) unknown, the authors define
the three-stage optimal procedure of Algorithm 3. It consists of two major
parts: (1) the learning task with two stages, where a model using both U –
Stage 1 – and L – Stage 2 –, and (2) the classification task or Stage 3, where
the unseen instances are classified according to the previously learnt model.
This optimal procedure achieves the highest lower bound of the probability of
error of any semi-supervised classifier, since all the three stages are optimal.
Unfortunately, this optimal procedure cannot be transferred to the multi-class
scenario. Although both stage 1 and 3 can be straightforwardly used to deal
with multi-class classification problems, the optimality of Stage 2 can only be
guaranteed for K = 2 due to the fact that the likelihood ratio test is only
optimal for two simple hypotheses [66].

Based on the principle of maximum likelihood to determine the real per-
mutation, π, between the components learnt using the unlabelled records and
the real class values, I propose an optimal learning strategy for Stage 2 called
PCSSL (Permutation of Components in Semi-Supervised Learning). It returns,
in polynomial time on the number of class values K, the correspondence π
with the highest likelihood function L(π;L). As proved, PCSSL is optimal
for the multi-class scenario. Therefore, the optimal theoretical procedure for
semi-supervised learning in the multi-class framework which can be used to
study the fundamental limits of the proposals in this setting is now as shown
in Algorithm 4.

Additionally, since semi-supervised learning is applied to domains where
labelled data are very difficult to obtain, the minimum required amount of
labelled records to be used in Stage 2 of Algorithm 4 is studied. Whilst just
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Algorithm 4 Optimal theoretical procedure for SSL multi-class problems

1: LEARNING TASK:

� Stage 1 Use unlabelled set U to obtain f(x) and, by identifiability, a
permutation of its components (fπ(j)(· ), and ηπ(j), j = 1, ...,K).

� Stage 2 Use the labelled set L to determine the correspondence between
the classes and the mixture components, i.e. the permutation of the
components π̂, by means of my proposal PCSSL:
π̂ = arg maxπ L(π;L) = arg maxπ

∏K
i=1

∏
(x,ci)∈L p(ci)ρ(x|cπ−1(i))

2: CLASSIFICATION TASK:

� Stage 3 Assign the sample x(0) to the class induced by the BDR using
the learned model.

one labelled datum is needed in Algorithm 3 for binary problems [31], in
the multi-class framework, at least (K − 1) examples of different class values
are required. Thus, I am required to calculate lk as the expected minimum
number of instances needed to have a labelled set with (K − 1) different class
values among them. The minimum value for lk is set for balanced K-class
classification problems and it is given by the following formula:

lK =





1 if K = 2
K−1∑

j=2

(−1)j
(
K
j

)
(j − 1)×

(K − j
K

)(K−2)(
K − 1 +

(K − j)
j

)
if K > 2

(2.2)

When the class probabilities differ from equiprobability, lk exponentially in-
creases in the variance between the probabilities as shown in the published
material.

Finally, I focus on how labelled records reduce the probability of commit-
ting a classification error when having a huge amount of unlabelled records.
Under the assumption of an infinite amount of unlabelled examples, in binary
problems, Algorithm 3 is used to prove that labelled records exponentially
reduce the probability of error Pe(l,∞) to the Bayes error eB [31]. Formally,

Pe(l,∞)− eB = exp
{
− lZ + o(l)

}
,

where Z = − log
{

2
√
p(c1)p(c1)

∫ √
ρ(x|c1)ρ(x|c2)

}
is the Bhattacharyya dis-

tance between the densities ρ(x|c1) and ρ(x|c2) multiplied by a term equal
to log (2

√
p(c1)p(c2)). When the binary constraint is relaxed, the casuistry

of when an error is committed in Algorithm 4 becomes more complex. Thus,
different scenarios must be created and studied. After some algebra, I reach
the conclusion that, when there is no class-overlapping among the class values



2.3 A Study on the Competitiveness of Classifiers for Unbalanced Problems 45

(eB = 0), the probability of error converges to 0 exponentially fast in the
sense that

o

((
K − 1

K

)l)
. (2.3)

However, when class-overlapping is present, the calculation of the conver-
gence rate for Pe(l,∞) requires extra assumptions. Under the assumption of
facing balanced multi-class classification problems, i.e. all priors are equiprob-
able, ∀i, p(ci) = 1/K, I found that the optimal probability of error of multi-
class problems may decrease to eB exponentially fast in the number of labelled
data l. Formally,

Pe(l,∞)− eB ≤ 2 exp
{−lλ2

2K

}
, (2.4)

where λ ∈ (0, 1] depends on the degree of intersection among the components
of the mixture distribution and is defined by

λ =
1

K
min
j

{∫

Rj

ρ(x|ci)dx−max
z 6=i

∫

Rj

ρ(x|cz)dx
}
. (2.5)

As seen in this upper bound, the threat of class-overlapping, discussed in
Section 1.4, has a great influence in the performance of the resulting classifier.

In short, this work provides a general extension of previous key research
in semi-supervised learning to the whole uni-dimensional domain and proves
that, in this domain, the optimal probability of error decreases exponentially
fast in the number of labelled data of the training dataset. Besides, some
remarks on the impact of my proposal on the problem-solving of real-world
problems are included in the manuscript – see Chapter 5 –. As future work,
two interesting paths can be directly taken from the conclusions of this re-
search. First, in this research, I assume that there are an infinite amount of
unlabelled records but, which real number corresponds, in practise, to this
number? Secondly, I propose sample complexities for l when I determine the
minimum number of labelled data required. However, how do the complexity
and dimensionality of the feature space impact on this matter?

2.3 A Study on the Competitiveness of Classifiers for
Unbalanced Problems

Many classification problems show significant differences among the probabil-
ities of the classes. This situation is known as the class-imbalance problem
[29, 100] and it is widely considered to be a major obstacle to build compet-
itive classifiers. Although a great methodological effort has been invested in
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proposing adequate algorithms and competitive solutions, the machine learn-
ing literature still lacks a solid theoretical foundation regarding the class-
imbalance problem [105, 107]. Therefore, this research focuses on pursuing
a theoretical understanding of this scenario through a novel frame-
work which enables the analysis on the most commonly used scores
to assess the performance of classifiers. Precisely, I aim at shedding some
light on the theoretical foundation of the class-imbalance problem by provid-
ing a framework capable of answering the following three key questions which
should certainly have an impact on future research:
Which performance scores are adequate to determine the competi-
tiveness of a classifier in unbalanced uni-dimensional domains? I seek
to determine which performance scores succeed in expressing the long studied
performance detriment [124, 125] resulting from learning, in a classical man-
ner2, well-defined categories in moderate unbalanced scenarios. To accomplish
this task, I define a novel controlled framework where the other factors hinder-
ing the performance of the classifiers can be cancelled so that the contribution
of the class distribution to the performance scores can be legitimately quan-
tified in isolation. Specifically, I focus on the numerical performance scores
which can be expressed as Hölder [126] (a.k.a. power or generalised) means
among the recalls of each class value [30]. Formally:
Let {R1,R2, . . . ,RK} be the recalls obtained for a classifier, {ζ1, ζ2, . . . , ζK}
a series of non-negative weights s.t.

∑
i ζi = 1 and p ∈ R ∪ {+∞,−∞} an

affinely extended real number, then, a Hölder mean is a mean of the form:

Mp =

(
n∑

i=1

ζiRpi

) 1
p

. (2.6)

Note that all the global scores defined in Table 1.1 can be included in
these means. Now, these numerical performance scores can be defined as
general functions SΨ (η,θ) : (Ψ,η,θ) 7→ R, where Ψ is the used classifier,
η = {η1, η2, . . . , ηK}, where ηi = p(ci) is the vector containing the class prob-
abilities, and θ represents the model parameters of the generative function.
Consequently, under the assumption of knowing the generative model, the
BDR classifier was used to define a valuable measure in my proposed con-
trolled framework:
Let Θ represent the space of parameters for a fixed family of distributions
over the feature space for classification problems with K classes. Let SB(η,θ)
be the value of a performance score, S, assessing the behaviour of the BDR
on a K-class classification problem, γ, with a class distribution vector equal
to η and parameters θ ∈ Θ. Also, let SB(e,θ) be the value of S evaluating
the BDR inferred from the balanced version of γ. Therefore, the influence

2 Minimising the 0-1 loss function. In this research, I assume the knowledge of the
generative model so that the BDR can be used.
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Fig. 2.2: Examples of the influence function for two opposite scores.

function, ISK(η), of the K-class distribution η on the performance score S
using the BDR (Ψ = B) as a classifier is defined as follows:

ISK(η) =

∫

Θ

[SB(e,θ)− SB(η,θ)]dθ. (2.7)

This function possesses the virtue of isolating the impact that the class
distribution has on the performance of the classifiers (here, the BDR) when
measured using the performance score, S; it returns the average influence
of the class distribution for every possible set of parameter values. Positive
values of ISK(η) denote that the performance score S obtains, on average,
higher values for the BDR when it is used in a balanced scenario rather than
when it is inferred from a class distribution, η. Negative values mean the
opposite; the BDR achieves, in general, worse values for S in the balanced
scenario.

By exploiting prior research [14, 81, 107] on the expected behaviour of
the BDR when facing a skewed class distribution, the shape that an adequate
performance score should have for this influence function and, eventually,
discern among the adequate and inadequate scores for unbalanced domains
were determined:
A performance score S is successful in being adequate to determine the com-
petitiveness of a classifier Ψ in the class-imbalance scenario if, assuming a
scenario where a classifier is inferred by directly minimising a 0-1 loss (max-
imising the classification accuracy),

1. its influence function is positive for almost any η 6= e, and
2. it shows a negative correlation to the minority class probability, i.e. ISK(η)

grows as the Euclidean distance between η and e gets larger.

Figure 2.2 shows, in the binary scenario, an example of an adequate perfor-
mance score whose influence function follows the previous properties (Figure
2.2a) and an example of an inadequate performance score (Figure 2.2b). Sub-
sequently, with this study, I find evidence to support that numerical scores
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are sufficient for this intricate domain and that the performance scores which
are unweighted Hölder means with p ≤ 1 (a-mean, g-mean, h-mean, and min)
among the recalls are the most appropriate to evaluate the competitiveness
of classifiers in unbalanced problems. In these cases, misclassifying the least
probable classes is highly penalised and this penalisation is increased as the
value of p decreases.
Which performance scores are maximised in the most common
learning solutions designed to deal with skewed classes? In this study,
a review of the state-of-the-art is performed in order to devise what decision
rules are behind the successful proposals of the literature, their competitive-
ness, and their inherently maximised scores. Particularly, I theoretically scru-
tinise data sampling [103] and cost-sensitive learning [127], which are the
approaches that currently dominate the research efforts [11]. I conclude that
most of the learning solutions proposed within those approaches are designed
to asymptotically converge to the EDR. Moreover, I mathematically prove that
the EDR is an optimal classifier for the unweighted Hölder mean with p = 1
(a-mean), and determine the advantages of the asymptotical usage of the EDR
to deal with practical class-imbalance problems. However, the optimality for
unweighted Hölder means with p 6= 1 does not hold. Afterwards, the impli-
cations of proposing approaches to solve unbalanced problems by maximising
other p 6= 1 are discussed.
Can bounds guaranteeing the competitiveness of a classifier be pro-
vided for certain adequate performance scores? Yes, I finalise this re-
search by fulfilling the necessity of the community for a standardised set of
evaluation practices for proper comparisons among classifiers facing unbal-
anced data [11]. To be precise, I perform this task by providing two different
practical bounds for the performance scores expressed as unweighted Hölder
means among the recalls with p ∈ R ∪ {+∞,−∞}; a bound for the lowest
value of the performance score ensuring a competitive solution for unbalanced
problems and a bound for the highest value of the score indicating an incom-
petent solution (a classifier which is not better than the random classifier in
at least one class value). Here, the conclusions are also consistent with the
first study, using Hölder means with p ≤ 1 is presumed to be adequate for de-
termining the competitiveness of a classifier. In fact, both bounds coincide in
p = −∞. In Figure 2.3, the regions created using both bounds can be viewed
for p ∈ [−50, 50] in both binary and ternary problems.

The principal limitations of this theoretical research are the assumptions
made; (i) the generative model is known, (ii) the concepts are well-defined, and
(iii) the performance scores are restricted to numerical scores sharing the form
of a Hölder mean. Thus, as future work, I strongly believe that the research
lines should start by lessening those assumptions. In my humble opinion, the
first step should be the use of several practical classifiers as representative
classifiers rather than the BDR in a scenario where the generative is unknown.
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(b) Ternary classifier.

Fig. 2.3: Limiting values for the unweighted Hölder means ensuring that a
given classifier is superior/inferior to the random guessing.

In short, with this set of theoretical contributions, I believe that, in the
uni-dimensional classification setting, the current distance towards the ideal
of defining more adequate learning systems capable of dealing with skewed
class distributions in the multi-class scenario has been shortened.

2.4 A Measure for the Class-Imbalance Extent of
Multi-class Problems

If it can be measured, it can be managed [128]. For that reason, several authors
[108, 109, 111, 129] measure the class-imbalance degree of their experimental
databases so that a better understanding of the unbalanced classification prob-
lems being addressed might be achieved. However, to the best of my knowl-
edge, they use either tedious or suboptimal3 measures when the binary class
constraint is relaxed in the uni-dimensional classification framework. There-
fore, the last of the presented contributions is devoted to properly
measuring the problematic class-imbalance extent in both binary
and multi-class uni-dimensional problems.

To characterise the class-imbalance extent of a classification problem, prac-
titioners purposely use the distribution of class values available in the training
set, p̂(c), as an estimation of the real class skewness of the generative model,
p(c). For the sake of clarity, since all the summaries can be used indepen-
dently of the knowledge of the generative model, in this section, I also use
η = (η1, η2, . . . , ηK), but denote indistinctly p(c) and p̂(c).

Here, the most straightforward measures are either writing down the em-
pirical class distribution [109] or to directly transcribing the occurrences of all
class values of the dataset [111]. Although they are very informative for show-
ing the degree of skewness at a glance, these measures become tedious when
K gets large. Thus, authors usually opt to calculate a summary of the empiri-

3 In terms of correlation with the performance detriment produced by the class-
imbalance situation.
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cal class distribution which is called imbalance-ratio (IR) [41]. It is calculated
dividing the maximum statistic, ηi, by the minimum,

IR(η) =
maxi ηi
minj ηj

. (2.8)

IR : η 7→ R is an injective function and, thus, an appropriate summary of
the class-imbalance extent for binary problems. However, when K outnum-
bers 2, the injection is lost – as shown in the toy problem presented in [130].
There, diverse problems with different class-imbalance extents, indicating dif-
ferent complexities, share the same imbalance ratio. This may imply that IR,
in the multi-class setting, is not correlated with the hindrance produced by
skewed class distributions. So, in order to bridge this gap, I propose imbalance-
degree (ID) as a new summary which is capable of properly shortening class
distribution of both binary and multi-class classification problems into a single
value. Formally, the ID of a class distribution, η, is given by

ID(η) =
d∆(η, e)

d∆(ιm, e)
+ (m− 1), (2.9)

where m is the number of minority classes, d∆ is the chosen distance/similarity
function to instantiate ID, e is a balanced multi-class distribution with K-
class values, and ιm is the distribution showing exactly m minority classes
with the highest distance to e. The proposed distance/dissimilarity summary
has the following interesting properties:

1. By means of a single real value in the range [0,K), it not only summarises
the class distribution of a given problem, but also inherently expresses the
number of majority and minority classes.

2. Depending on the requirements of the experimental setup and the degree
of sensitivity sought, this measure can be instantiated with any common
distance/dissimilarity function. In this research, I test, from the metrics in
the vector space [131]; Manhattan, Euclidean (EU) and Chebyshev (CH)
distances, and, from measures for probability distributions, the follow-
ing f -divergences [132]; Kullback-Leibler (KL) divergence [133], Hellinger
(HE) and total variation (TV) distances [134], and χ2-divergence (CS)
[135].

3. A unique mapping between the multi-class distributions and the numer-
ical value of imbalance-degree is ensured for problems showing different
numbers of majority and minority classes. Therefore, diverse problems
cannot share a common numerical value as happens with imbalance-ratio.

Although the previous properties highlight an advantage of ID over IR,
some experimentation is required in order to determine which summary is
more appropriate to evidence the hindrance that skewed multi-class distri-
butions cause in the learning processes. By means of the supervised learning



2.4 A Measure for the Class-Imbalance Extent of Multi-class Problems 51

5 4 3 2 167

7
.0

5
.6

5
.2

4
.0

3
.0

2
.2

1
.0

IR
IDCS
IDCH
IDKL

IDTV

IDEU
IDHE

(a) CDD for the arithmetic mean among the recalls, A.

5 4 3 2 167

6
.0

3
.8

3
.0

1
.8

1
.4

IR
IDCS

IDCH
IDEU

IDHE

IDKL
IDTV

(b) CDD for the geometric mean among the recalls, G.

5 4 3 2 167

6
.6

6
.0

3
.8

3
.0

1
.8

1
.4

5
.4

IR
IDCH
IDCS
IDEU

IDHE

IDKL
IDTV

(c) CDD for minimum recall obtained, min.

Fig. 2.4: Pearson correlation ranking between the performance of the super-
vised learning paradigms (see Section 1.2.2) on the studied datasets and the
summaries, α = 0.05. The dissimilarity functions used to instantiate ID∆ are
specified in the subscript ∆ = {EU,CH,KL,HE,TV,CS}.

paradigms introduced in Section 1.2, I estimate their performances4 in a key
database [136] composed of 15 unbalanced datasets. Then, by just calculat-
ing the correlation between each summary and the resulting performances
scores, the appropriateness of either ID or IR can be easily checked. The ex-
perimental results clearly indicate ID as a proper summary choice and IR
as a suboptimal measure for multi-class problems; IR shows the worst Pear-
son correlations and significant differences (see Figure 2.4, where the ranking
among the summaries is shown) are found between IR and ID. Finally, the
experimentation was concluded by arguing that instantiating ID using either
Hellinger or total variation distances produces significant robust summaries
of the class-imbalance extent.

This contribution may be extended in several ways, being the most di-
rect to perform a more exhaustive analysis over a larger number of dis-
tance/similarity functions, over a larger set of unbalanced problems or, even,
introducing other measures for the other hindering aspects [89] presented in
Section 1.4 which may harm the performance of the trained classifiers.

4 Using the recommended a-mean, g-mean and minimum recall performance scores
to assess unbalanced classification problems [30].
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General Conclusions, Future Work, and
Published Material

In this chapter, both general conclusions of this PhD work and potential future
paths to extend the contributions are presented. Furthermore, the publications
arising from this dissertation and included in Part II are also listed.

3.1 Conclusions

Real-world problems are complex and challenging. They can come in all sizes,
shapes and varieties. However, when researching challenging situations on
classification, the theoretical and methodological efforts of the literature tend
to be biased towards simple classification schemas such as uni-dimensional
binary problems. Instead of simplifying the statements of real-world problems
so that the literature may be directly applied, this PhD dissertation opts
to relax the common assumption of simple classification tasks. This enables
me to push the existing classification schema boundaries further and to be
able to directly apply the philosophy of taking on the real-world classification
problems as they come. Specifically, here, I focus on generalising, from a both
theoretical and methodological point of view, two current distinguished and
defying situations called the semi-supervised learning paradigm and the class-
imbalance problem.

Semi-supervised learning [10] is concerned with using unlabelled ex-
amples1 in the learning task so that the performance of supervised learning
methods that only use a limited labelled set to train the model can be im-
proved [39]. Nowadays, this technique is still a subject undergoing intense
study due to the fact that, in some applications, gathering labels for the
training dataset is relatively expensive or time-consuming compared to the
cost of obtaining unlabelled examples. Unfortunately, hardly any theoretical
or methodological solution of the literature assumes classification schemes be-
yond uni-dimensional binary problems. Thus, in this dissertation, I devote a

1 examples for which the features are known but not their corresponding categories



54 3 General Conclusions, Future Work, and Published Material

large research period to studying the semi-supervised learning paradigm but
applied to more complex classification scenarios such as multi-class and multi-
dimensional classification problems. The achieved contributions in that time
span are listed as follows:

1. An EM algorithm [119] based semi-supervised approach capable of dealing
with multiple class variables. This methodology enabled the extension of
the semi-supervised learning framework to the whole multi-dimensional
classification spectrum [57].

2. It is shown that, as happens in uni-dimensional classification [72], when
using the generative structure to train a multi-dimensional classifier in a
semi-supervised manner, the unlabelled data always helps. When there is
a mismatch between the generative and the assumed structures, perfor-
mance degradation of the trained classifier occurs.

3. A competent solution for a real-world multi-dimensional classification
problem in the context of Sentiment Analysis [112] by means of the pre-
vious methodological advances. Specifically, a classifier capable of char-
acterising the comments of the customers of several Spanish companies
through three different, but related, dimensions was engineered. The sen-
timent of the users towards the product, the subjectivity of their online
post, and their will to influence on other customers was extracted.

4. It is also proven that the probability of committing a classification error
using a training dataset with no labelled data and any affinely extended
real number of unlabelled data coincides with that of using the RAND
classifier.

5. An optimal theoretical procedure for semi-supervised learning in the
multi-class framework which allows the study of the fundamental lim-
its of the methodological proposals in this setting. It is a generalisation of
the pioneering optimal procedure for binary problems proposed in [31].

6. Theoretically, the minimum number of labelled examples required to train
a multi-class classifier in a semi-supervised framework was also investi-
gated.

7. It is proven, by means of the proposed optimal procedure, that the opti-
mal probability of error in the semi-supervised framework might decrease
to the Bayes error exponentially fast, but no faster, and that the class-
overlapping [95, 106] had a direct influence on this convergence.

The second scenario, the class-imbalance problem [29, 100] arises from
the class probability distribution, p(c), of the generative model and it is able
to compromise the performance of the majority part of standard learning al-
gorithms [11]. Traditional learning algorithms assume a 0-1 loss function and,
thus, they expect balanced class distribution or equal misclassification costs.
So, when they are presented with complex training datasets sampled from
skewed class distributions, these algorithms fail to properly learn the char-
acteristics of the generative model and resultantly provide dummy classifiers
always classifying incoming data as the most probable values [107]. Nowa-
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days, it is a hot topic in the literature [89] and it is the subject of many
papers, workshops, special sessions, and dissertations. Unsuitably, the class-
imbalance literature is highly biased towards binary classification problems.
Thus, in this dissertation, I theoretically and methodological contribute to
that literature but assuming the whole uni-dimensional classification spec-
trum (binary + multi-class). Precisely, the presented contributions regarding
the class-imbalance problem in this PhD work are the following:

1. A novel controlled theoretical framework where the other interdependent
factors (see Section 1.4) threatening the performance of the trained clas-
sifier can be marginalised. By doing so, the contribution of the class dis-
tribution to the detriment of the performance of the classifier can be
legitimately quantified in isolation.

2. Under the assumption of knowing the generative model, the BDR was
used to define, in the suggested controlled framework, a valuable mea-
sure for the influence of the class-distribution in the score to assess the
performance of a classifier.

3. Evidence to support that numerical scores are sufficient to adequately as-
sess problems suffering from class skewness was found during this research
project. Previous work [11] argued the opposite.

4. It is claimed that the performance scores which are unweighted Hölder
means [126] with p ≤ 1 (a-mean, g-mean, h-mean, etc.) among the recalls
are the most appropriate to evaluate the competitiveness of classifiers in
unbalanced problems.

5. I discovered that most of the learning solutions proposed in the literature
under the approaches of data sampling [109] and cost-sensitive learning
[110] were designed to asymptotically converge to the EDR.

6. The EDR is an optimal classifier for the unweighted Hölder mean with
p = 1 (a-mean) as proven in this research work.

7. The necessity in the literature for a standardised set of evaluation practices
for proper comparisons among classifiers facing unbalanced data [41] was
fulfilled. This was achieved by providing two practical bounds for common
performance scores ensuring both competent and incompetent classifiers.

8. A new summary of any binary and multi-class class distribution, which is
capable of properly measuring the class-imbalance extent and which highly
correlates with the detriment produced by class skewness, was proposed.

Finally, there is a contribution of this dissertation that, although it was
key in the designed multi-dimensional semi-supervised methodological pro-
posal, cannot be added to either of the previous lists. I also contributed to the
supervised learning scenario by completing the family of multi-dimensional
Bayesian network induction algorithms [57]. Specifically, I proposed a compu-
tational efficient supervised filter algorithm for MD J/K [58] networks which
makes use of statistical testing over mutual information measures. Further-
more, this algorithm can also learn MDTAN structures in a much shorter time
than using the original learning algorithm proposed in [57].
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3.2 Future Work

The potential future extensions of this PhD work are briefly discussed in the
following paragraphs.

In this dissertation, a particular real-world problem was solved by propos-
ing a methodology which generalises the semi-supervised learning frame-
work to the fresh multi-dimensional classification framework. Since it was an
early exploration of this classification schema, there is, undoubtedly, a lot of
work to be done here.

� Firstly, the collection of multi-dimensional classifiers is limited [23, 57, 58].
To the best of my knowledge, there are still no learning algorithms capable
of dealing with ordinal features without nominalising them. A variety of
these classifiers could significantly enrich the literature. Furthermore, I
would like to point out the necessity of proposing computational efficient
learning algorithms not only to ensure the scalability in the number of
features and class variables, but also to fight the computational burden
of semi-supervised learning techniques such as EM algorithm [119] based
solutions.

� Secondly, different and diverse performance scores for multi-dimensional
classification problems are required. When facing a new real-world uni-
dimensional problem, there is always a positive probability of encounter-
ing at least one of the threats described in Section 1.4. When dealing with
multi-dimensional problem, just based on the number of class variables,
the probability of facing a threat is greater. Therefore, just having only a
couple of subjective performance scores [23] to assess a multi-dimensional
classifier seems to be a crucial limitation in this field. Consequently, I
strongly believe that it is imperative to perform an exhaustive analysis on
which uni-dimensional performance scores are adequate for being gener-
alised to the multi-dimensional setting.

� Thirdly, in situations where labelled data are costly, the proposed method-
ology can be extended to deal with unlabelled records for which not all
labels are missing.

� Fourthly, as advanced in the introduction, the natural evolution of the
semi-supervised field (Section 1.2.3) can be used in the multi-dimensional
framework. In this path, the foundation stone was laid with the described
methodological proposal [23]. Consequently, learning algorithms leveraging
the unlabelled data by introducing some assumptions linking the features
and the class values might be proposed [73] in the literature.

In the literature review of the theoretical studies on semi-supervised learning,
I was only able to find one study [70] dealing with the multi-class setting.
However, it follows a different path than mine. Thus, instead of taking one
giant leap by assuming the whole classification schema, I limited my theoret-
ical scope to the uni-dimensional spectrum in order to settle this spectrum in
the literature. I still believe that taking such an assumption is burdensome,
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so my suggested future research lines focus on populating the literature with
valuable answers to theoretical semi-supervised questions in the multi-class
scenario. Specifically, the following three different issues are key:

� Is there any number beyond which any extra additions of unlabelled data
does not decrease the probability of error?

� In this dissertation, lk was calculated as the expected minimum number
of labelled data required in semi-supervised learning for uni-dimensional
domains assuming that the complexity and dimensionality of the feature
space do not affect its calculation. What happens if this assumption is
relaxed?

� The pubished proposals follow a correct model assumption to study the
optimal probability of error. When this assumption does not hold, how
does the optimal probability of error varies in the number of labelled data,
l? Does it still exponentially decrease in l?

� Finally, how do skewed class distributions affect the semi-supervised learn-
ing techniques? The optimal procedure for binary problems proposed in
[31] can easily be modified to be optimal for the a-mean by just remov-
ing the priors in Stage 2 and by using the EDR in Stage 3. Thus, can
the proposed theoretical work in the multi-class framework also be eas-
ily adapted to study the intricate class-imbalance problem in the semi-
supervised framework?

Similarly to the semi-supervised learning framework, there was a lack of
supporting works in the class-imbalance literature. This absence also pre-
vented me from directly assuming a multi-dimensional framework. Thus, con-
cerning the uni-dimensional framework, there are a few paths to directly ex-
tend the introduced work:

� Theoretically, the utilised novel framework to study the implication of the
class-imbalance to the performance of the trained classifier can be easily
complemented with several other classifiers rather than the BDR, other
literature methodologies to deal with class skewness can be analysed and
more performance scores can be tested.

� Methodologically, a more exhaustive analysis of the summaries for the
class distributions of multi-class problems can also be proposed. A large
number of distance/dissimilarity functions over a larger set of problems,
or, even introducing other measures for the rest of threats which harm the
performance of the classifiers can be used.

It is important to remark that, in this case, I believe that the generalisation of
both works to the multi-dimensional scenario is approachable and beneficial
to the literature.

� It can be easily seen that the theoretical framework proposed to study
the implication of the class distribution on the performance of the trained
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classifier is directly generalisable using the global notation of this intro-
ductory part to the PhD dissertation. However, as happened in multi-
class with the multi-minority and multi-majority cases, new and different
class-imbalance scenarios will appear; an underrepresented nominal vector
of class variables is a totally different class-imbalance case than having
underrepresented class values for a given class variable. Moreover, the de-
pendences between the class-variables will have an impact on this intricate
threat. Having solved these adversities, the actual problem in this exten-
sion lies in the above mentioned limited amount of diverse performance
scores in the multi-dimensional framework. Thus, here, I also highlight the
necessity of an exhaustive study on the performance scores.

� Secondly, measuring the class-imbalance extent of multi-dimensional real-
world problems also seems an upcoming step to take. Sadly, the introduced
measure does not generalise to multiple class variables due to the fact that,
first, it is necessary to establish which class distribution represents the bal-
ance scenario in multi-dimensional problems. Fortunately, the feasibility of
this future work has been ensured in the literature. Charte et al [137] pro-
pose a generalisation of the imbalance-ratio to measure the class-imbalance
extent of multi-class classification problems.

3.3 List of Publications

As a result of this research project, several articles have been published in
JCR indexed journals. In this section, the articles selected to be included in
Part II of this dissertation and their associated references are introduced.

Chapter 4: Approaching Sentiment Analysis by Using
Semi-supervised Learning of Multi-dimensional Classifiers

� This article, cited more than 70 times, includes the contributions described
in Section 2.1 of Part I. There, in order to solve a real-world problem re-
lated to the Sentiment Analysis domain, I not only propose the use of
multi-dimensional classification for Sentiment Analysis domains, but also
I contribute with a methodological extension of the multi-dimensional clas-
sification framework to the semi-supervised domain. Experimental results
in this real-world problem show the potential benefits of the proposed semi-
supervised multi-dimensional approach in Sentiment Analysis approaches.
This work is published in Neurocomputing (Q2, Impact Factor: 1.632) as:

J. Ortigosa-Hernández, J.D. Rodŕıguez, L. Alzate, M. Lucania, I.
Inza and J.A. Lozano. Approaching Sentiment Analysis by Using Semi-
supervised Learning of Multi-dimensional Classifiers. Neurocomputing, vol.
92, pp. 98-115, Sep. 2012.
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Note: this work was published as a main paper and a separate supple-
mentary file containing an extra set of experiments. Inside Chapter 4,
both documents are included. Moreover, preliminary versions can be found
published in a national conference [138] and as an internal report [139].

Chapter 5: Semi-supervised Multi-class Classification Problems
with Scarcity of Labelled Data: A Theoretical Study

� The contribution described in Section 2.2 of Part I is encompassed in a
manuscript published in a Q1 journal (Impact Factor: 6.018) named IEEE
Transactions on Neural Networks and Learning Systems. It theoretically
investigates, under a set of assumptions, the optimal procedure to solve
multi-class classification problems in the semi-supervised setting, its as-
sociated probability of error and the minimum number of labelled data
required to perform such a task. Moreover, the potential practical impact
of the introduced proposals and the open challenges in semi-supervised
learning are also discussed. This theoretical research can be found pub-
lished as:

J. Ortigosa-Hernández, I. Inza and J.A. Lozano. Semisupervised Multi-
class Classification Problems With Scarcity of Labeled Data: A Theoretical
Study. IEEE Transactions on Neural Networks and Learning Systems, vol.
27 num. 12, pp. 2602-2614, Dec. 2016.

Note: Chapter 5 includes both the main paper and supplementary file con-
taining mathematical proofs, artificial experiments and the source code.
Both files were integrated and published as a single document in an inter-
nal report [140].

Chapter 6: Towards Competitive Classifiers for Unbalanced
Multi-class Classification Problems: A Study on the Performance
Scores

� This work aims at shedding some light on the theoretical foundation of the
class-imbalance problem by addressing the three key questions exposed in
Section 2.3 of Part I: (i) which performance scores are adequate to deter-
mine the competitiveness of a classifier in unbalanced domains? (ii) Which
performance scores are maximised in the most common learning solutions
designed to deal with skewed class distributions? (iii) Can bounds guaran-
teeing the competitiveness of a classifier be provided for certain adequate
performance scores? This work is, at the present, under revision in Ma-
chine Learning, a prestigious JCR indexed journal in the second quartile
with an impact factor of 1.855.

J. Ortigosa-Hernández, I. Inza and J.A. Lozano. Towards Competitive
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Classifiers for Unbalanced Multi-class Classification Problems: A Study
on the Performance Scores. Submitted to Machine Learning (second re-
view process).

Note: A preliminary version of this research can also be consulted in the
public repository of electronic preprint arXiv [30], where it was published
with reference arXiv:1608.08984.

Chapter 7: Measuring the Class-imbalance Extent of Multi-class
Problems

� This manuscript is published in Pattern Recognition Letters, a Q2 journal
with an impact factor of 1.952. It criticises the broad use of the imbalance-
ratio to measure the imbalance extent of all kinds of unbalanced problems.
Although it is an informative measure for binary problems, I prove that it
is not adequate for the whole classification spectrum since it is incapable
of completely and honestly describing disparity among the frequencies of
more than two classes in the multi-class scenario. In order to overcome
this drawback, a novel, normalised and sensitive measure for the class-
imbalance extent, able to deal with both binary and multi-class classifi-
cation problems, was proposed. This work presents the contribution de-
scribed in Section 2.4 of Part I and it can be found in:

J. Ortigosa-Hernández, I. Inza and J.A. Lozano. Measuring the Class-
imbalance Extent of Multi-class Problems. Pattern Recognition Letters,
vol. 98, pp. 32-38, Oct. 2017.

Note: BIRD, the Institutional Repository Data of the Basque Centre for
Applied Mathematics, holds a technical report [141] version of this re-
search.
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a b s t r a c t

Sentiment Analysis is defined as the computational study of opinions, sentiments and emotions

expressed in text. Within this broad field, most of the work has been focused on either Sentiment

Polarity classification, where a text is classified as having positive or negative sentiment, or Subjectivity

classification, in which a text is classified as being subjective or objective. However, in this paper, we

consider instead a real-world problem in which the attitude of the author is characterised by three

different (but related) target variables: Subjectivity, Sentiment Polarity, Will to Influence, unlike the

two previously stated problems, where there is only a single variable to be predicted. For that reason,

the (uni-dimensional) common approaches used in this area yield to suboptimal solutions to this

problem. Somewhat similar happens with multi-label learning techniques which cannot directly tackle

this problem. In order to bridge this gap, we propose, for the first time, the use of the novel multi-

dimensional classification paradigm in the Sentiment Analysis domain. This methodology is able to join

the different target variables in the same classification task so as to take advantage of the potential

statistical relations between them. In addition, and in order to take advantage of the huge amount of

unlabelled information available nowadays in this context, we propose the extension of the multi-

dimensional classification framework to the semi-supervised domain. Experimental results for this

problem show that our semi-supervised multi-dimensional approach outperforms the most common

Sentiment Analysis approaches, concluding that our approach is beneficial to improve the recognition

rates for this problem, and in extension, could be considered to solve future Sentiment Analysis

problems.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Sentiment Analysis (SA), which is also known as Opinion
Mining, is a broad area defined as the computational study of
opinions, sentiments and emotions expressed in text [33]. It
mainly originated to meet the need for organisations to auto-
matically find the opinions or sentiments of the general public
about their products and services, as expressed on the Internet. A
fundamental methodology in many current SA applications and
problems is the well-known pattern recognition field called
classification [6].

Most of the work within this field has focused on the Sentiment

Polarity classification, i.e. determining if an opinionated text has

positive or negative sentiment [38]. However, motivated by
different real-world problems and applications, researchers have
considered a wide range of closely related problems over a variety
of different types of corpora [37]. As an example of these
problems, we can find the following: Subjectivity classification,
which consists of determining if a text is subjective or objective
[41], Authorship identification, which deals with the problem of
identifying the author of a given text [2] or Affect Analysis, which
recognises emotions in a text [1].

In an analogous fashion, a real-world application within this field
has recently been tackled in Socialware&,1 one of the most relevant
companies in mobilised opinion analysis in Europe. The main goal of
this application is to determine the attitude of the customers that
write a post about a particular topic in a specific forum. The
characterisation of these costumers is performed in this problem
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by measuring three different dimensions: the sentiment, the sub-
jectivity and the potential influence of each post in the forum.

By just relying on the previous work done in the SA domain,
we can approach this problem by dividing it into three different
subproblems (one per each dimension to be classified) and tackle
them separately, i.e. study them in isolation by learning different
classifiers to predict the value of each target variable as if they
were independent.

However, some of the individual approaches explored in the
literature for each subproblem could be adapted to the others.
Moreover, a large number of papers [35,56] proposed approaches
for the problems of Sentiment Polarity classification and Subjec-
tivity classification, and sometimes by even using the same
corpus. This could indicate a certain degree of correlation between
these subproblems, and consequently between their target vari-
ables, as noticed in [37]. Nevertheless, this relation has never been
directly demonstrated due to the fact that, to the best of our
knowledge, no technique capable of dealing with several target
variables has ever been used to embrace SA problems. In spite of
that, it is relatively easy to notice the relation that exists between
the sentiment and subjectivity (a neutral review probably indi-
cates objectivity). So, why not learn a single classifier to classify
the three dimensions simultaneously so as to make use of the
statistical similarities between them? Finding a more predictive
classifier by means of this thought would demonstrate that there
is an actual relationship between these target variables. Also, in
extension to the SA domain, why not join some previously cited
problems in the same classification task in order to find more
accurate multi-dimensional classifiers that take advantage of their
closeness?

In order to embody this perception, we propose the use of the
recently proposed multi-dimensional Bayesian network classifica-
tion framework [53] to deal with multiple class classification
problems in the context of SA by solving a real-world application.
This methodology performs a simultaneous classification by exploit-
ing the relationships between the class variables to be predicted.
Note that, under this framework, several target variables could be
taken into account to enrich the SA problem and create market
intelligence.

Most papers have already addressed the SA task by building
classifiers that exclusively rely on labelled examples [33]. How-
ever, in practice, obtaining enough labelled examples for a
classifier may be costly and time consuming, an annotator has
to read loads of text to create a reliable corpus. And this problem
is accentuated when using multiple target variables. So, why not
make use of the huge amount of unlabelled data available on the
Internet to improve our solutions? Thus, the scarcity of labelled
data also motivates us to deal with unlabelled examples in a
semi-supervised framework when working with the exposed
multi-dimensional view.

Motivated by the aforementioned comments, the following
contributions are presented in this paper:

1. A novel and competitive methodology to solve the exposed
real-world SA application.

2. An innovative perspective to manage the SA domain by dealing
with several related problems in the same classification task.

3. The use of multi-dimensional class Bayesian network classi-
fiers as supervised methodology to solve these multi-dimen-
sional problems. This demonstrates that there is an actual
correlation between sentiment and subjectivity as previously
observed in several SA researches [35,37,56].

4. A supervised filter learning algorithm for multi-dimensional
J/K dependences Bayesian network classifiers.

5. The extension of multi-dimensional classification to the semi-
supervised framework by proposing a set of semi-supervised

learning algorithms. This demonstrates that more predictive
models can be found by making use of the unlabelled examples.

The rest of the paper is organised as follows. Section 2
describes the real multi-dimensional problem extracted from
the SA domain which is solved in this paper, reviews the work
related to SA and its problems, and motivates the use of multi-
dimensional approaches in this context. The multi-dimensional
supervised classification paradigm is defined in Section 3. Section
4 describes the multi-dimensional class Bayesian network classi-
fiers. A group of algorithms to learn different types of multi-
dimensional Bayesian classifiers in a supervised framework is
introduced in Section 5. Section 6 not only introduces the idea of
semi-supervised learning into the multi-dimensional classifica-
tion, but also extends the supervised algorithms presented in
Section 5 to the semi-supervised framework. Section 7 shows the
experimental results of applying the proposed multi-dimensional
classification algorithms using different feature sets to the real
problem stated in Section 3. Finally, Section 8 sums up the paper
with some conclusions and future work recommendations.

2. Problem statement and state-of-the-art review

2.1. The Sentiment Analysis domain

The concept of SA, motivated by different real-world applications
and business-intelligence requirements, has recently been inter-
preted more broadly to include many different types of analysis of
text, such as the treatment of opinion, sentiment or subjectivity [37].

Within this broad field, the most known problem is referred to as
Sentiment Polarity classification, in which the problem of classifying
documents by their overall sentiment is considered, i.e. determining
whether a review is positive or negative [38]. Several papers
have expanded this original goal by, for instance, adding a neutral
sentiment [56] or considering a multi-point scale [48] (e.g. one to
five stars for a review) or using sentences or phrases instead of
reviews as input of the sentiment classifier [56].

Work in Sentiment Polarity classification often assumes the
incoming documents to be opinionated [37]. For many applica-
tions, though, we may need to decide whether a given document
contains subjective information or not. This is referred to as
Subjectivity classification and has gained considerable attention
in the research community [41,42,54]. Due to its ability to
distinguish subjective texts from the factual ones, it is also of
great importance in SA. There are works in which a subjectivity
classifier is used to filter the objective documents from a dataset
before applying a sentiment classifier [56,35]. There are even
works in which the need to predict both the Sentiment
Polarity and the Subjectivity has been noticed [21]. As stated in
[37], ‘‘the problem of distinguishing subjective versus objective
instances has often proved to be more difficult than subsequent
polarity classification, so improvements in subjectivity classifica-
tion promise to positively impact sentiment classification’’. From
this quotation we can infer that Sentiment Polarity classification
depends on Subjectivity classification and that there is a need to
improve the methodologies used in Subjectivity classification.

Other closely related problems can be found in the SA domain:
the set of problems called Viewpoints and Perspectives [37] which
includes problems such as classifying political texts as liberal or
conservative or placing texts along an ideological scale. Authorship

identification deals with the problem of identifying the author of a
given text [2]. Affection Analysis consists of extracting different types
of emotions or affects from texts [1]. Sarcasm Recognition deals with
the SA hard-nut problem of recognising sarcastic sentences [52].
More problems and applications are discussed in [37].
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2.2. The ASOMO problem: a multi-dimensional perspective of SA

In this paper, we deal with a recent real-world problem
studied in Socialware&. This problem is extracted from its ASOMO

service of mobilised opinion analysis and it has an underlying
multi-dimensional nature that can be viewed as an augmentation
of the classical problems of Sentiment Polarity classification and
Subjectivity classification.

The main goal of this application is to determine the attitude
of a customer when he writes a post about a particular topic in a
specific forum through three different dimensions: Sentiment
Polarity and Subjectivity (as widely used in the SA domain), and
a third one called Will to Influence, which is frequently used in
the framework of ASOMO. The latter is defined as the dimension
that rates the desire of the opinion holder to cause a certain
reaction in the potential readers of the text. While some people
leave a post on a forum to tell of their experience, others seek to
provoke a certain kind of reaction in the readers. In our applica-
tion, this class variable has four possible values: none (declarative
text), question (soft Will to Influence), complaint/recommenda-
tion (medium Will to Influence) and appellation (strong Will to
Influence). We use two example cases in order to introduce the
ASOMO problem:

� A customer who has bought an iPhone does not know how to
set up 3G on the phone, so he writes on a forum: ‘‘How can I
configure 3G on my iPhone?’’.
� Another customer is upset with the iPhone battery lifetime

and writes in the same forum: ‘‘If you want long battery life,
then don’t buy an iPhone’’.

The attitude of both customers is very different. The first one
has a doubt and writes to obtain a solution to his problem
{neutral sentiment, objective and soft Will to Influence} while
the second writes so as not to recommend the iPhone {negative
sentiment, subjective and strong Will to Influence}. Fig. 1 shows
one possible view of this problem and how we can translate the
attitude of the author in three different class variables that are
strongly correlated.

As previously mentioned, Will to Influence has four possible
values: declarative text, soft, medium and strong will to influence.
Sentiment Polarity, in this dataset, has five different labels as
occurs in the 1–5 star ratings. In addition to the three classic
values (positive, neutral and negative), it has the values ‘‘very
negative’’ and ‘‘very positive’’. Note that in using this approach,
the label ‘‘neutral’’ in Sentiment Polarity is ambiguous, as hap-
pens in the SA literature [37]. So, it can be used as a label for the
objective text (no opinion) or as a label for the sentiment that lies
between positive and negative. As usual, Subjectivity has two

values: objective and subjective. Fig. 2 shows not only the label
distribution in the dataset for each different class variable (the
three bar diagrams on the left), but also the joint label distribu-
tion of these three class variables over the labelled subset of the
ASOMO dataset (the table on the right). Note that there are
configurations of the joint label distribution that are equal to
zero, this is because there are configurations of the class variables
which are not possible, e.g. {strong Will to Influence, negative
sentiment and objective}.

2.2.1. The ASOMO SA dataset

In order to deal with the previous problem, the ASOMO dataset
was collected by Socialware&. This corpus was extracted from a
single online discussion forum in which different customers of a
specific company had left their comments, doubts and views about
a single product. The forum consists of 2542 posts written in
Spanish, with an average of 94774 words per post. One hundred
and fifty of these documents have been manually labelled by an
expert in Socialware& according to the exposed three different
dimensions and 2392 are left as unlabelled instances.

As a result of the extensive work carried out by Socialware& on
manually dealing with the ASOMO problem in the recent past,
high levels of experience and understanding of determining the
major factors that characterise the attitude of the customers have
been gained. These factors are the following: (1) the implication
of the author with the other customers in the forum, (2) the
position of authority of the customer, and (3) the subjective
language used in the text.

These broad factors have been helpful in detecting a list of 14
morphological features which characterise each analysed docu-
ment. In order to engineer this list of features, each document is
preprocessed using an open source morphological analyser [3,8].
Firstly, spelling in the entire corpus is checked. Then, the analyser
provides information related to the part-of-the-speech (PoS)
tagging [38]. Once the preprocessing task is performed, determin-
ing the values of the features is carried out by just looking for
specific patterns in the corpus. In the following paragraphs, a
detailed introduction of each factor is given, as well as a descrip-
tion of the features used in each factor.

The implication of the author: This factor covers the features
that are related with the interaction between the author and the
other customers in the forum. It consists of six different features
that are described in Table 1. For each feature, we show its
description and an example (with its translation into English) of
the type of pattern that matches with the feature.

The position of authority of the opinion holder is mainly
characterised by the purpose of the written post and it is related
to the potential influence on the readers of the forum. The author

Fig. 1. The vision of Socialware& of the problem of determining the attitude of the writers in a forum.
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could express advice, disapproval with a specific product, predic-
tions, etc. Table 2 shows the six features that are part of this
major factor.

Subjective language deals with the opinion of the author.
In order to determine this factor, we consider only the adjective
detected with the PoS recogniser, as commonly carried out in the

state-of-the-art literature [27]. Then, the adjectives are
classified in polarity terms by means of a hand-annotated
sentiment-lexicon. As a result of this task, we obtain two
features: Positive Adjectives and Negative Adjectives, which are
the number of positive and negative adjectives, respectively, in
the text.

Table 1
Subset of features related to the implication of the author with other customers.

Feature Description Example Translation

First persons Number of verbs in the fist person Contraté y I hired y

Second persons Number of verbs in the second person Tienes y You have y

Third persons Number of verbs in the third person Sabe y He knows y

Relational forms Number of phatic expressions, i.e. expressions

whose only function is to perform a social task

(1) Hola (1) Hello

(2) Gracias de antemano (2) Thanks in advance

Agreement expressions Number of expressions that show

agreement or disagreement

(1) Estoy de acuerdo contigo (1) I agree with you

(2) No tienes razón (2) You’re wrong

Request Number of sentences that express

a certain degree of request

(1) Me gustarı́a saber y (1) I’d like to know y

(2) Alguien podrı́a y (2) I would appreciate it if someone could y

Fig. 2. Distribution of the labels of the three class variables over the labelled subset. The marginal distributions of Will to Influence, Sentiment Polarity and Subjectivity are

represented as bar diagrams (left) and the joint distribution is represented in a table (right).

J. Ortigosa-Hernández et al. / Neurocomputing 92 (2012) 98–115 101



The 14 features (the ASOMO features) are normalised to be in
the range [0,1] by dividing them by the maximal observed value.

2.3. The need for multi-dimensional classification techniques

In order to solve the typical problems of the SA domain (those
exposed in Section 2.1), there are two main types of techniques
that can be distinguished: Symbolic and Machine Learning [20].
The symbolic approach uses manually crafted rules and lexicons,
whereas the machine learning approach uses supervised or semi-
supervised learning to construct a model from a training corpus.
Due to the fact that the main proposal of this paper is to solve a
real SA problem by means of a novel machine learning technique,
this paper focuses on the latter. The machine learning approaches
have gained interest because of (1) their capability to model many
features and, in doing so, capturing context, (2) their easier
adaptability to changing input, and (3) the possibility to measure
the degree of uncertainty by which a classification is made [20].
Supervised methods that train from examples which have been
manually classified by humans are the most popular.

Most of the work that has been carried out in tuning up these
machine learning techniques (as also happens in text processing
tasks) has been dedicated to addressing the problem of converting a
piece of text into a feature vector (i.e. model features able to capture
the context of the text) in order to improve the recognition rates.
The most common approaches use the single lower cased words
(unigrams) as features, which in several cases reports pretty good
results as in [38]. However, other common approaches can be found,
such as n-grams [35] or PoS information [38]. A deeper study of such
work is beyond the scope of this paper. The reader who is interested
in feature engineering can consult [22], where there is an extensive
body of work that addresses feature selection for machine learning
approaches in general.

On the other hand, little research has been done on the
induction of the classifiers. Most of the existing works learn
either a naive Bayes [38,56] or a support vector machine (SVM)
[2,38], i.e. uni-dimensional classifiers able to predict a single
target variable. For that reason, the classification models used in
the SA literature seem inappropriate to model the three-dimen-
sional problem exposed in this paper. However, there are several
possibilities to adapt these uni-dimensional classifiers to multi-
dimensional classification problems, and the ASOMO problem is
no exception. Unfortunately, none of these approaches captures
exactly the underlying characteristics of the problem [44]:

� One approach is to develop multiple classifiers, one for each
class variable. However, this approach does not capture the
real characteristics of the problem, because it does not model
the correlations between the different class variables and so, it
does not take advantage of the information that they may

provide. It treats the class variables as if they were indepen-
dent. In the case of the previously exposed problem, it would
be splitting it into three different uni-dimensional problems,
one per each class variable.
� Another approach consists of constructing a single artificial

class variable that models all possible combinations of classes.
This class variable models the Cartesian product of all the class
variables. The problem of this approach arises because this
compound class variable can easily end up with an excessively
high cardinality. This leads to computational problems
because of the high number of parameters the model has to
estimate. Furthermore, the model does not reflect the real
structure of the classification problem either. By means of this
approach, the ASOMO problem would be redefined as a uni-
dimensional problem with a 40-label class variable.

The previous approaches are clearly insufficient for the resolu-
tion of problems where class variables have high cardinalities or
large degrees of correlation among them. The first approach does
not reflect the multi-dimensional nature of the problem because
it does not take into account any correlation among the class
variables. The second approach, however, does not consider the
possible conditional independences between the classes and
assumes models that are too complex. As can be seen in the
experiments section, these deficiencies in capturing the real
relationship between the class variables may cause a low perfor-
mance, so new techniques are required to bridge the gap between
the solutions offered by the learning algorithms used in the SA
literature and the multi-dimensional underlying nature of the
ASOMO problem.

Multi-label learning [51], which deals with problems with
several labels per each instance, could also be viewed as a
potential solution to this problem. However, as we show in the
following section, the ASOMO problem cannot be directly tackled
by the multi-label techniques. This problem is characterised for
having several class variables, instead of several labels.

Within this framework, in order to yield more adequate
models for problems with several target variables, multi-dimen-
sional classification appears. It is able to use the correlations and
conditional independencies between class variables in order to
help in the classification task in both supervised and semi-
supervised learning frameworks.

3. Multi-dimensional classification

In this section we present, in detail, the nature of the multi-
dimensional supervised classification paradigm and how to define
and evaluate a multi-dimensional classifier.

Table 2
Subset of features related to the position of authority of the customer.

Feature Description Example Translation

Imperatives Number of imperative verbs in the second person No compres Do not buy

Exhorts and Advice Number of exhort verbs, e.g. recommend, advise, prevent, etc. Te recomiendo y I recommend that you y

Sufficiency Expressions Number of expressions used to corroborate other sentences of the text (1) Por supuesto (1) Of course

(2) Naturalmente, y (2) Naturally, y

Prediction Verbs Number of verbs in the future (1) Voy a probar (1) I’m going to try

(2) Llamaré. (2) I’ll call

Authority Number of expressions that denote high degree of authority,

usually written in the subjunctive mode

Si fuera tú, y If I were you, y

Questions Number of question in the post, both direct and indirect (1) ¿ Qué tal es? (1) How is it?

(2) Dime qué te parece (2) Tell me what you think of it
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3.1. Multi-dimensional supervised classification problems

A typical (uni-dimensional) supervised classification problem
consists of building a classifier from a labelled training dataset
(see Table 3) in order to predict the value of a class variable C

given a set of features X¼ ðX1,: :,XnÞ of an unseen unlabelled
instance x¼ ðx1,: :,xnÞ.

If we suppose that ðX,CÞ is a random vector with a joint
feature-class probability distribution pðx,cÞ then, a classifier c is
a function that maps a vector of features X into a single class
variable C

c : f0, . . . ,r1�1g � � � � � f0, . . . ,rn�1g/f0, . . . ,t�1g

x/c

where ri and t are the number of possible values of each feature
Xi,ði¼ 1, . . . ,nÞ and the class variable respectively.

A generalisation of this problem to the simultaneous predic-
tion of several class variables has recently been proposed in the
research community [5,17,40,43,44,53]. This generalisation is
known as multi-dimensional supervised classification. Its purpose
is to simultaneously predict the value of each class variable in
the class variable vector c¼ ðc1,: :,cmÞ given the feature vector
x¼ ðx1,: :,xnÞ of an unseen unlabelled instance. The training
dataset, in this multi-dimensional framework, is expressed as
shown in Table 4.

Thus, the classifier c becomes a function that maps a vector of
features X into a vector of class variables C

c : f0, . . . ,r1�1g � � � � � f0, . . . ,rn�1g/f0, . . . ,t1�1g � � � � � f0, . . . ,tm�1g

x/c

where ri and tj are the cardinalities of each feature Xi (for
i¼ 1, . . . ,n) and each class variable Cj (for j¼ 1, . . . ,m) respectively.
Note that we consider all variables, both predictive features and
class variables, as discrete random variables.

A classifier is learnt from a training set (see Table 4) with a
classifier induction algorithm Að�Þ. Given the induction algorithm
Að�Þ, which is assumed to be a deterministic function of the
training set, the multi-dimensional classifier obtained from a
training set D is denoted as c¼ AðDÞ.

3.2. Related areas

In this paper we deal with multi-dimensional classification
problems, and they must not be confused with other classification
tasks which have similar designations, e.g. multi-class [50]:

problems with a single class variable that can take more than
two values, multi-task [9]: an inductive transfer approach, where
a main task is predicted with the help of the prediction of some
extra tasks, or multi-label classification [51]: where an instance can
be classified with several different labels.

Note, however, that a multi-label problem can be easily
modelled as a multi-dimensional classification problem where
each label or category is a binary class variable whose value is one
when the instance is included in that category or zero otherwise.
The opposite, which is redefining multi-dimensional problems as
multi-label problems, seems very unnatural and has an important
drawback: current multi-label methods cannot always handle the
multi-dimensional nature of this kind of problems (illustrated in
Example 1). This limitation gave rise to the development of multi-
dimensional techniques, which nowadays, is differentiated to
multi-label learning in the machine learning research community,
see for instance [5,44]. These concerns can be demonstrated by
setting up the following simple example:

Example 1. Suppose we consider a multi-dimensional problem
where we want to determine the sex, the colour of the eyes and
hair colour given several characteristics of a person (as repre-
sented in Table 5). The problem has five discrete predictive
variables and three class variables: Sex, Eyes and Hair. Sex have
two possible values: male and female, Eyes has three: blue, dark
and green, and Hair has four possible labels: black, blonde, brown
and ginger. Note that this kind of problem is similar to our
application due to the fact that both have several class variables
with more than two values.

If we wanted to tackle this problem by means of a multi-label
algorithm, we would have to force it to fit in the multi-label
framework. The most straightforward way to transfer it is to treat
each value of each class variable as one independent label, i.e.
treat each value Male, Female, Blue, Dark, etc. as a different label.
In order to accomplish that the following conversion has to be
done:

1. First, define each instance as a list of three labels (view the last
column of Table 5), one per each class variable.

2. Second, deal with the main drawback that this approach has:
there are several configuration of labels that are forbidden
and/or senseless in the original multi-dimensional problem.
For that reason, several restrictions to the multi-label techni-
que have to be added in order to reflect the true nature of the
problem. These constraints are the following:
(a) Fix the number of labels per each instance, e.g. forbid the

instances classified as {Male} or {Male, Blue, Black, Ginger}.
Each instance must have just three labels.

(b) Ensure that each instance has just one label per each class
variable of the original multi-dimensional problem. We
cannot classify an instance as {Male, Female}.

To the best of our knowledge, adapting multi-label techniques
by adding several restrictions to deal with this type of problems,
as stated in the previous paragraphs, has not been proposed by

Table 3
A possible representation of a (uni-dimensional) labelled training dataset.

X1 X2 y Xn C

xð1Þ1 xð1Þ2
y xð1Þn cð1Þ

xð2Þ1 xð2Þ2
y xð2Þn cð2Þ

^ ^ ^ ^ ^

xðNÞ1 xðNÞ2
y xðNÞn cðNÞ

Table 4
Representation of a multi-dimensional labelled training dataset.

X1 X2 y Xn C1 C2 y Cm

xð1Þ1 xð1Þ2
y xð1Þn cð1Þ1 cð1Þ2

y cð1Þm

xð2Þ1 xð2Þ2
y xð2Þn cð2Þ1 cð2Þ2

y cð2Þm

^ ^ ^ ^ ^ ^ ^ ^

xðNÞ1 xðNÞ2
y xðNÞn cðNÞ1 cðNÞ2

y cðNÞm

Table 5
An example of a multi-dimensional problem and the most straightforward way to

transfer it to the multi-label domain.

inst. X1 X2 X3 X4 X5 Sex Eyes Hair List of labels

(1) C C C A A Male Blue Black {Male, Blue, Black}

(2) B A B A D Male Dark Brown {Male, Dark, Brown}

(3) A A D A B Female Dark Blonde {Female, Dark, Blonde}

(4) C B C D A Male Green Blonde {Male, Green, Blonde}

(5) B B D A C Female Blue Ginger {Female, Blue, Ginger}
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the research community. Therefore, it is not possible to fit most of
the multi-dimensional problems (those that have at least one
class variable with more than two values) into the current multi-
label framework.

In analogous fashion, the exposed ASOMO problem cannot be
solved by means of a multi-label technique. It has two class
variables, Will to Influence and Sentiment polarity, with four and
five values, respectively. For that reason, multi-label techniques
cannot be applied to the application presented in this paper.

In addition to multi-label classification, other classification
tasks in pattern recognition can also naturally be modelled as a
multi-dimensional classification problem [5]. For instance, struc-

tured prediction [4,16], where there are several class variables
with a conditional structure among them, or hierarchical classifi-

cation [19], where there is a hierarchical structure (two or more
levels) among the class variables. Therefore, the multi-dimen-
sional techniques can be applied to these subproblems as the set
of multi-dimensional problems contains these well known sub-
problems, as shown in Fig. 3.

3.3. Multi-dimensional classification rule

In probabilistic classification, the induction multi-dimensional
algorithm learns a probability distribution pðx,cÞ or pðc9xÞ from
the training data and classifies a new unlabelled instance based
on it. For that purpose, a classification rule must be defined.

In uni-dimensional supervised classification, the most com-
mon classification rule returns the most likely class value given
the features

ĉ ¼ arg max
c
fpðc9x1, . . . ,xnÞg

The multi-dimensional nature of the problem allows us to
develop several classification rules that would make no sense in
single-class classification because they take into account multiple
class variables. Nevertheless, the previous one-dimensional classifi-
cation rule can be easily generalised to the prediction of more than
one class variable. In this case, the multi-dimensional classifier
returns the most probable combination of class variables given the
features. This rule is known as joint classification rule [44]

ðĉ1, . . . ,ĉmÞ ¼ arg max
c1 ,...,cm

fpðc1, . . . ,cm9x1, . . . ,xnÞg

Although several other classification rules are proposed in
[44], it is shown that the joint classification rule obtains better
results.

3.4. Multi-dimensional classification evaluation

Once a classifier is constructed, its associated error needs to be
measured. The prediction error of a single-class classifier c is the
probability of the incorrect classification of an unlabelled instance
x and is denoted as EðcÞ

EðcÞ ¼ pðcðXÞaCÞ ¼ EX½dðc,cðxÞÞ�

where dðx,yÞ is a loss function whose results are 1 if xay and 0 if
x¼y.

However, in multi-dimensional classification, the correctness
of a classifier can be measured in two different ways:

� Joint evaluation: This consists of evaluating the estimated
values of all class variables simultaneously, that is, it only
counts a success if all the classes are correctly predicted, and
otherwise it counts an error

EðcÞ ¼ pðcðXÞaCÞ ¼ EX½dðc,cðxÞÞ�

This rule is the generalisation of the previous single-class
evaluation measure to multi-dimensional classification.
� Single evaluation: After a multi-dimensional learning process,

this consists of separately checking if each class is correctly
classified. For example, if we classify an instance x as
ðĉ1 ¼ 0,ĉ2 ¼ 1Þ and the real value is ðc1 ¼ 0,c2 ¼ 0Þ, we count
ĉ1 as a success and ĉ2 as an error. This approach provides
one performance measure for each class Cj (for j¼ 1, . . . ,m).
The output of this evaluation is a vector e of size m with the
performance function of the multi-dimensional classifier for
each of the class variables

EjðcÞ ¼ pðcjðXÞaCjÞ ¼ EX½dðcj,cjðxÞÞ�

where cjðxÞ is the estimation of the multi-dimensional classi-
fier for the j-th class variable.

Ideally, we would like to exactly calculate the error of a
classifier, but in most real world problems the feature-label
probability distribution pðx,cÞ is unknown. So, the prediction
error of a classifier c is also unknown; it cannot be computed
exactly, and thus, must be estimated from data.

Several approaches to estimate the prediction error can be
used. In this work, we use one of the most popular error
estimation techniques: k-fold cross-validation (k-cv) [49] in its
repeated version. In k-cv the dataset is divided into k folds, a
classifier is learnt using k�1 folds and an error value is calculated
by testing the learnt classifier in the remaining fold. Finally, the
k-cv estimation of the error is the average value of the errors
made in each fold. The repeated r times k-cv consists of estimat-
ing the error as the average of r k-cv estimations with different
random partitions into folds. This method considerably reduces
the variance of the error estimation [45].

In multi-dimensional classification we could be interested in
either learning the most accurate classifier for all class variables
simultaneously (measured with a joint evaluation) or in finding
the most accurate classifier for each single class variable (mea-
sured with single evaluations). In this paper, we are mainly
interested in using the joint evaluation for evaluation. However,
in our application to SA we also measure the performance of the
algorithms with a single evaluation per each class variable in
order to compare both types of evaluation and perform a deeper
analysis of the results.

Fig. 3. Well known multi-dimensional classification subproblems, such as multi-

label and multi-task learning, and structure prediction, contained in the set of

multi-dimensional problems.
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4. Multi-dimensional Bayesian network classifiers

In this section, multi-dimensional class Bayesian network
classifiers [5,53], which are able to deal with multiple class
variables to be predicted, are presented as a recent generalisation
of the classical Bayesian network classifiers [32].

4.1. Bayesian network classifiers

Bayesian networks are powerful tools for knowledge repre-
sentation and inference under uncertainty conditions [39]. These
formalisms have been extensively used as classifiers [31] and
have become a classical and well-known classification paradigm.

A Bayesian network is a pair B¼ ðS,HÞ where S is a directed
acyclic graph (DAG) whose vertices correspond to random vari-
ables and whose arcs represent conditional (in)dependence rela-
tions among variables, and where H is a set of parameters.

A Bayesian classifier is usually represented as a Bayesian
network with a particular structure. The class variable is on the
top of the graph and it is the parent of all predictive variables.

In spite of the popularity of Bayesian network classifiers, few
works have taken into account their generalisation to multiple class
variables [5,17,43,44,53]. In multi-dimensional classification, we con-
sider Bayesian networks over a finite set V¼ fC1, . . . ,Cm,X1, . . . ,Xng

where each class variable Cj and each feature Xi takes a finite set of
values. H is formed by parameters pijk and yijk, where pijk ¼ p

ðCi ¼ ck9PaðCiÞ ¼ PaðciÞjÞ for each value ck that can take each class
variable Ci and for each value assignment PaðciÞj to the set of the
parents of Ci. Similarly, yijk ¼ pðXi ¼ xk9PaðXiÞ ¼ PaðxiÞjÞ for each value
xk that can take each feature Xi and for each value assignment PaðxiÞj

to the set of the parents of Xi.
Thus, the network B defines a joint probability distribution

pðc1, . . . ,cm,x1, . . . ,xnÞ which is given by

pðc1, . . . ,cm,x1, . . . ,xnÞ ¼
Ym
i ¼ 1

pijk

Yn

i ¼ 1

yijk

4.2. Structure of multi-dimensional class Bayesian network

classifiers

A multi-dimensional class Bayesian network classifier is a
generalisation of the classical one-class variable Bayesian classi-
fiers for domains with multiple class variables [53]. It models the
relationships between the variables by means of directed acyclic
graphs (DAG) over the class variables and over the feature

variables separately, and then connects the two sets of variables
by means of a bi-partite directed graph. So, the DAG structure
S¼ ðV,AÞ has the set V of random variables partitioned into the
sets VC ¼ fC1, . . . ,Cmg, m41, of class variables and the set
VF ¼ fX1, . . . ,Xng ðnZ1Þ of features. Moreover, the set of arcs A
can be partitioned into three sets: ACF , AC and AF with the
following properties:

� ACF DVC � VF is composed of the arcs between the class
variables and the feature variables, so we can define the
feature selection subgraph of S as SCF ¼ ðV,ACF Þ. This subgraph
represents the selection of features that seems relevant for
classification given the class variables.
� AC DVC � VC is composed of the arcs between the class

variables, so we can define the class subgraph of S induced
by VC as SC ¼ ðVC ,ACÞ.
� AF DVF � VF is composed of the arcs between the feature

variables, so we can define the feature subgraph of S induced
by VF as SF ¼ ðVF ,AF Þ.

Fig. 4 shows a multi-dimensional class Bayesian network
classifier with 3 class variables and 5 features, and its partition
into the three subgraphs.

Depending on the structure of the three subgraphs, the
following sub-families2 of multi-dimensional class network clas-
sifiers are proposed in the state-of-the-art literature:

� Multi-dimensional naive Bayes classifier (MDnB): The class
subgraph and the feature subgraph are empty and the feature
selection subgraph is complete.
� Multi-dimensional tree-augmented Bayesian network classifier

(MDTAN): Both the class subgraph and the feature subgraph
are directed trees. It could be viewed as the multi-dimensional
version of the (uni-dimensional) tree-augmented Bayesian
network classifier (TAN) proposed in [24].
� Multi-dimensional J/K dependences Bayesian classifier (MD J/K):

This structure is the multi-dimensional generalisation of the
well-known K-DB [47] classifier. It allows each class variable Ci

to have a maximum of J dependences with other class vari-
ables Cj, and each predictive variable Xi to have, apart from the
class variables, a maximum of K dependences with other
predictive variables.

Fig. 4. A multi-dimensional Bayesian classifier and its division. (a) Complete graph, (b) feature selection subgraph, (c) class subgraph and (d) feature subgraph.

2 In [53,17,43], instead of multi-dimensional, the term fully is used in order to

name the classifiers.
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In the following section, several algorithms are provided in
order to learn from a given dataset the previous sub-families of
multi-dimensional Bayesian network classifiers.

5. Learning multi-dimensional Bayesian network classifiers

As in the classic Bayesian network learning task, learning a
multi-dimensional class Bayesian network classifier from a train-
ing dataset consists of estimating its structure and its parameters.
These two subtasks are called structure learning and parameter
learning respectively. Due to the fact that each previously
introduced sub-family has different restrictions in its structure,
a different learning algorithm is needed for each one.

In this section, we provide algorithms for learning MDnB [53],
MDTAN [53] and MD J/K classifiers from a given dataset. The
MDnB and MD J/K learning algorithms use a filter approach, i.e.
the learning task precedes the classification evaluation. However,
as it is proposed in its original work [53], the MDTAN learning
algorithm is formulated as a wrapper approach [25], i.e. it tries to
find more accurate classifiers by taking advantage of the classi-
fication evaluation.

As Fig. 5 shows, in the MDnB classifier, each class variable is
parent of all the features, and each feature has only all the class
variables as parents. Conventionally, the class subgraph and the
feature subgraph are empty and the feature selection subgraph is
complete. This classifier assumes conditional independence
between each pair of features given the entire set of class
variables. Due to the fact that it has no structure learning (the
structure is fixed for a determined number of class variables and
features), learning a MDnB classifier consists of just estimating
the parameters Y of the actual model by using a training dataset
D. This is achieved by calculating the maximum likelihood
estimator (MLE) [15].

Instead, learning a MDTAN classifier consists of learning both
structure and parameters. A wrapper structure learning algorithm
is proposed in [53]. Its aim is to produce the MDTAN structure
(see Fig. 6) that maximises the accuracy from a given dataset. This
algorithm has a main part called Feature subset selection algorithm,

which follows a wrapper approach [25] by performing a local
search over the ACF structure. In order to obtain a MDTAN struc-
ture in each iteration, it generates a set of different ACF structures
from a current ACF and learns its class subgraph and feature
subgraph by using the following sub-algorithms:

1. AC structure learning algorithm is the algorithm that learns the
structure between the class variables by building a maximum
weighted spanning [29] tree using mutual information.

2. AF structure learning algorithm learns the AF subgraph by using
conditional mutual information, by means of the Chow and Liu
algorithm [11].

After that, the accuracies of all the learnt models are com-
puted. The iterative process continues by setting the ACF of the
best classifier, in terms of estimated accuracy, as current ACF. This
algorithm belongs to the hill-climbing family of optimisation
algorithms, i.e. when no improvement is achieved by generating
a new set of structures, the algorithm stops.

5.1. Multi-dimensional J/K dependences Bayesian classifier

The MD J/K (see Fig. 7), which is introduced in [44], is the
generalisation of the K dependence structure [47] to the multi-
dimensional framework. It is able to move through the spectrum
of allowable dependence in the multi-dimensional framework,
from the MDnB to the full multi-dimensional Bayesian classifier.
Note that from the setting J¼ K ¼ 0, we can learn a MDnB, setting
J¼ K ¼ 1 a MDTAN structure is learned and so on. The full multi-
dimensional Bayesian classifier, which is the classifier that has the
three complete subgraphs, can be learnt by setting J¼ ðm�1Þ and
K ¼ ðn�1Þ, where m and n are the number of class variables and
predictive features respectively.

Although the MD J/K structure has been proposed in the state-
of-the-art literature, to the best of our knowledge, a specific MD J/

K learning algorithm for the multi-dimensional framework has
not been defined by the research community. To bridge this gap,
in this paper, we propose a filter algorithm in a supervised
learning framework capable of learning this type of structure
(see Algorithm 1).

In this algorithm, we do not directly use the mutual informa-
tion as measured in the previous MDTAN learning algorithm [53].
This is due to the fact that the mutual information is not
normalised when the cardinalities of the variables are different,
so we use an independence test to determine if a dependence
between two variables is strong enough to be part of the model: It

Fig. 5. An example of a multi-dimensional naive Bayes structure.

Fig. 6. An example of a multi-dimensional tree-augmented network structure.
Fig. 7. An example of a multi-dimensional 2/3-dependence Bayesian network

structure.
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is known [30] that 2NÎðXi,XjÞ asymptotically follows a w2

distribution with ðri�1Þðrj�1Þ degrees of freedom, where N is
the number of cases, if Xi and Xj are independent, i.e. LimN-12
NÎðXi,XjÞ*w2

ðri�1Þðrj�1Þ.

Algorithm 1. A MD J/K structure learning algorithm using a filter
approach.

1. Learn the AC structure
1. Calculate the p-value using the independence test for each

pair of class variables, and rank them.
2. Remove the p-value higher than the threshold
ð1�saÞ ¼ 0:10.

3. Use the ranking to add arcs between the class variables
fulfilling the conditions of no cycles between the class
variables and no more than J-parents per class.

2. Learn the ACF structure
1. Calculate the p-value using the independence test for each

pair Ci and Xj and rank them.
2. Remove the p-value higher than the threshold
ð1�saÞ ¼ 0:10.

3. Use the ranking to add arcs from the class variables to the
features.

3. Learn the AF structure
1. Calculate the p-value using the conditional independence

test for each pair Xi and Xj given PacðXjÞ and rank them.

2. Remove the p-value higher than the threshold
ð1�saÞ ¼ 0:10.

3. Use the ranking to add arcs between the class variables
fulfilling the conditions of no cycles between the features
and no more than K-parents per feature.

Based on this result, a statistical hypothesis test can be carried

out in a multi-dimensional Bayesian network classifier to check

the robust dependences in AC. The null hypothesis H0 is that the

random variables Ci and Cj are independent. If the quantity

2NÎðCi,CjÞ surpasses a threshold sa for a given test size

a¼
Z 1

sa

w2
ðti�1Þðtj�1Þ ds

where ti is the cardinality of Ci and tj the cardinality of Cj, the null

hypothesis is rejected and a dependence between Ci and Cj is

considered. Therefore the arc between these class variables is

included in the model. The dependences in ACF are calculated

using the same procedure, the null hypothesis H0 is that ‘‘The

random variables Ci and Xj are independent’’. So, if 2NÎðCi,XjÞ

surpasses the threshold sa, then the null hypothesis is rejected

and an arc is included in the model. This test was also used on

single-class Bayesian network classifiers to check the depen-

dences among the class variables and the features [7].

Using this approach, the structures AC and ACF are learnt in steps

1 and 2 of Algorithm 1, respectively.

In order to calculate the structure AF, we need to use the
conditional mutual information between a feature Xi and a feature
Xj given its class parents PacðXjÞ to determine if the relation between
both predictive features should be included in the model. For that
purpose, we use the generalisation of the previous result to the case
of conditional mutual information as defined in [30]

LimN-12NÎðXi,Xj9PacðXjÞÞ*w2
ðri�1Þðrj�1Þð9PacðXjÞ9Þ

where ri is the cardinality of Xi, rj the cardinality of Xj and 9PacðXjÞ9
the cardinality of the class parents of Xj.

Analogously to the hypothesis test previously described, based
on these results we can perform the following conditional
independence test: the null hypothesis assumes that the random
variables Xi and Xj are conditionally independent given PacðXjÞ.
So, if the quantity 2NÎðCi,Cj9PacðXjÞÞ surpasses a threshold sa for a
given test size

a¼
Z 1

sa

w2
ðti�1Þðtj�1Þð9PacðXjÞ9Þ

ds

the null hypothesis is rejected and the random variables Xi and Xj

are considered dependent given PacðXjÞ. Therefore, the arc is
included in the model. The structure ACF is learnt using this
hypothesis test in step 3 of Algorithm 1.

6. Semi-supervised multi-dimensional classification

In this section, we proceed with the extension of the previous
multi-dimensional learning algorithms to the semi-supervised
learning framework. When large amounts of labelled data are
available, one can apply familiar and powerful machine learning
techniques such as the previous multi-dimensional Bayesian net-
work algorithms in order to learn accurate classifiers. However,
when there is a scarcity of such labelled data and a huge amount of
unlabelled data, as happens in the SA domain, one can wonder if it is
possible to learn competitive classifiers from unlabelled data.

In this context, where the training dataset consists of labelled
and unlabelled data, the semi-supervised learning approach
[10,57,58] appears as a promising alternative. It is motivated from
the fact that in many real world problems, obtaining unlabelled data
is relatively easy, e.g. collecting posts from different blogs, while
labelling is expensive and/or labor intensive, due to the fact that the
tasks of labelling the training dataset is usually carried out by
human beings. Thus, it is highly desirable to have learning algo-
rithms that are able to incorporate a large number of unlabelled data
with a small number of labelled data when learning classifiers.

In the semi-supervised learning framework, the training data-
set D, as shown in Table 5, is divided into two parts: the subset of
instances DL for which labels are provided, and the subset DU,
where the labels are not known. Therefore, we have a dataset of N

instances, where there are L labelled examples and ðN�LÞ unla-
belled examples. Normally, ðN�LÞbL, i.e. the unlabelled subset
tends to have a very large amount of instances whilst the labelled
subset tends to have a small size.

Therefore, the aim of a semi-supervised learning algorithm is
to build more accurate classifiers using both labelled and unla-
belled data, rather than using exclusively labelled examples as
happens in supervised learning.

6.1. Learning multi-dimensional Bayesian network classifiers in the

semi-supervised framework

In this section, we propose the extension of multi-dimensional
Bayesian network classifiers to the semi-supervised learning
framework by using the EM algorithm [18]. Although this method
was proposed in [18] and was deeply analysed in [34], it had been
used much earlier, e.g. [26], and it is still widely used in many
recent semi-supervised learning algorithms, e.g. [13,14,36].

The aim of the EM algorithm as typically used in semi-
supervised learning is to find the parameters of the model that
maximise the likelihood of the data, using both labelled and
unlabelled instances. The iterative process, which ensures that
the likelihood is maximised in each step, works as follows: in the
Kth iteration the algorithm alternates between completing the
unlabelled instances by using the parameters HðKÞ (E-step) and
updating the parameters of the model HðKþ1Þ using MLE with the
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whole dataset (M-step), i.e. the labelled data and the unlabelled
instances that have been previously classified in the E-Step. Note
that the structure remains fixed in the whole iterative process.

Although good results have been achieved with the EM
algorithm in uni-dimensional classification [13,36], we are con-
cerned about the restriction of only maximising the parameters of
a fixed structure in our extension of the EM algorithm to the
multi-dimensional domain, where there are several class vari-
ables to be predicted. As stated in [12], if the correct structure of
the real distribution of the data is obtained, unlabelled data
improve the classifier, otherwise, unlabelled data can actually
degrade performance. For this reason, it seems more appropriate
to perform a structural search in order to find the real model.
Thus, we perform several changes to the EM algorithm in order to
avoid fixing the structure of the model during the iterative
process. The proposal is shown in Algorithm 2.

Algorithm 2. Our version of the EM Algorithm.

Input A training dataset with both labelled and unlabelled

data (Table 6) and an initial model cðK ¼ 0Þ with a fixed

structure and with an initial set of parameters HðK ¼ 0Þ.

1: while the model cðKÞ does not converge do

2: E-STEP Use the current model cðKÞ to estimate the
probability of each configuration of class variables for each
unlabelled instance.

3: M-STEP Learn a new model cðKþ1Þ with structure and
parameters, given the estimated probabilities in the
E-STEP.

4: end while
Output classifier c, that takes an unlabelled instance and
predicts the class variables.

In this version of the EM algorithm, we want to find the model,
both structure and parameters, that maximises the likelihood of
the whole dataset. So, in this version, the iterative process is
performed as follows: in the Kth iteration, the algorithm alter-
nates between completing the unlabelled instance by the pre-
viously learnt model cðKÞ (E-step) and learning a new model
cðKþ1Þ by using a learning algorithm with the whole dataset, both
labelled and completed instances (M-step). In the semi-super-
vised learning research community, the input initial parameter
cðK ¼ 0Þ of the EM Algorithm is usually learnt from the labelled
subset DL. Hence, we will continue to use this modus operandi in
this version of the algorithm. Note that our version of the EM
algorithm is closer to the Bayesian structural EM algorithm
proposed in [23] rather than the original formulation of the
algorithm [18]. However, in the case of the MDnB classifier, it is
just a parametric search since it has a fixed structure.

Using Algorithm 2, all the supervised learning approaches
proposed in the previous section can be straightforwardly used
in this semi-supervised scenario. The learning algorithm is used in
the M-step, where it learns a model using labelled and unlabelled
data that have been previously labelled in the E-step. So, applying
our adaptation of the EM Algorithm, we have extended the multi-
dimensional Bayesian network classifiers to the semi-supervised
learning framework.

7. Experimentation

7.1. Artificial experimentation

Before solving the ASOMO problem, we have tested our
proposed semi-supervised algorithms over a set of designed
artificial datasets as commonly carried out in the machine
learning research community. This has been done due to the fact
that, unfortunately, we cannot apply our proposals in the baseline
datasets of the SA domain. The multi-dimensional classification
paradigm has recently been proposed in the research community
[5,17,40,43,44,53], and, to the best of our knowledge, there are no
benchmark multi-dimensional datasets in this domain to test our
proposals as they consider just one target variable at a time
(usually sentiment polarity). So, in order to bridge this gap, we
provide a detailed report of these artificial experiments on several
synthetic datasets in the following website.3

The major conclusions extracted from this experimentation
can be summarised as follows:

1. As happens in the uni-dimensional framework [12], when
using the real structure to semi-supervisely learnt multi-
dimensional classifiers, the unlabelled data always help.

2. There is a tendency to achieve better classifiers in terms of
joint accuracy in the semi-supervised framework when the
used multi-dimensional algorithm can reach the generative
structure.

3. In the uni-dimensional approaches, performance degradation
occurs in the semi-supervised framework. This is probably due
to the fact that the uni-dimensional approaches are not able to
match the actual multi-dimensional structure of the problems.

4. Although there are small differences between the uni-dimen-
sional and the multi-dimensional approaches in the supervised
framework (only the MD J/K reports statistical differences), in
the semi-supervised framework these differences grow larger
(except for the case of the MDTAN learning algorithm, the
qrest of the multi-dimensional approaches report statistical
differences).

5. In the semi-supervised framework, clearly the multi-dimen-
sional classifiers outperform the uni-dimensional techniques,
with the exception of the MDTAN classifier.

6. The MDnB learning algorithm [53] is very specific, it obtains
very good results when dealing with problems with an under-
lying MDnB structure, but when the generative models are
more complex, its rigid structure makes the algorithm lead to
very suboptimal solutions.

7. The MDTAN algorithm [53] also shows very poor performances
in the semi-supervised framework.

8. The MD J/K learning algorithms have great flexibility to
capture different types of complex structures, which results
in an improvement in terms of joint accuracy in the semi-
supervised framework.

Table 6
A formal representation of a multi-dimensional semi-supervised training dataset.

X1 X2 y Xn C1 C2 y Cm

DL xð1Þ1 xð1Þ2
y xð1Þn cð1Þ1 cð1Þ2

y cð1Þm

xð2Þ1 xð2Þ2
y xð2Þn cð2Þ1 cð2Þ2

y cð2Þm

^ ^ ^ ^ ^ ^ ^ ^

xðLÞ1 xðLÞ2
y xðLÞn cðLÞ1 cðLÞ2

y cðLÞm

DU xðLþ1Þ
1 xðLþ1Þ

2
y xðLþ1Þ

n
? ? y ?

xðLþ2Þ
1 xðLþ2Þ

2
y xðLþ2Þ

n
? ? y ?

^ ^ ^ ^ ^ ^ ^ ^

xðNÞ1 xðNÞ2
y xðNÞn

? ? y ? 3 http://www.sc.ehu.es/ccwbayes/members/jonathan/home/News_and_

Notables/Entries/2010/11/30_Artificial_Experiments_2010.html
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In brief, these artificial experiments show that not only the
multi-dimensional approaches statistically outperform the uni-
dimensional approaches in the supervised framework when deal-
ing with multi-dimensional problems, but also more accurate
classifiers can be found using the semi-supervised learning
framework.

7.2. Solving the ASOMO SA problem

Two different series of experiments with the ASOMO corpus
were performed: the first series (Section 7.2.1) shows the com-
parison between the ASOMO features and three different state-of-
the-art feature sets broadly used in the SA domain. The second
series (Section 7.2.2) is devoted to demonstrate that the addition
of unlabelled instances could achieve better results in this very
application. There, a multi-dimensional classification solution for
the ASOMO problem is proposed and analysed. By means of these
experiments in a real SA problem, we would like to shed some
light on the truthfulness of the following hypotheses:

1. The choice of the feature set is a key matter when dealing with
the exposed problem, and in extension, with the SA problems.

2. The uni-dimensional models obtained with the common
approaches of the SA domain yield suboptimal solutions to
the ASOMO problem.

3. The explicit use of the relationships between the class vari-
ables in this real-world problem can be beneficial to improve
their recognition rates, i.e. multi-dimensional techniques are
able to outperform the most common uni-dimensional
techniques.

4. When there is a scarcity of labelled data, multi-dimensional
techniques can work with unlabelled data in order to improve
the classification rates in this context.

7.2.1. Comparison between different feature sets in both

uni-dimensional and multi-dimensional learning scenarios

By means of this experiment, we evaluate the new feature set
proposed in Section 2 (the ASOMO features) with the most
commonly used in the related literature. If we only use them to
test the multi-dimensional Bayesian network classifiers in this
real dataset, it is difficult to assess their efficacy without using
other viable baseline methods. For this reason, we also use three
different commonly used feature sets in order to perform a
benchmark comparison: unigrams, unigramsþbigrams and PoS.
In order to avoid computation burden, we limited consideration
to (1) the 357 unigrams that appear at least five times in our
150-post corpus, (2) the 563 unigrams and bigrams occurring at

least five times, and (3) the PoS to 766 features. No stemming or
stoplists were used. These benchmark feature sets have been
constructed using the TagHelper tool [46]. Finally, since the
ASOMO features are continuous, they were discretised into three
values using equal frequency discretisation in order to apply the
algorithms proposed in this paper.

To assess the efficacy and efficiency of the exposed multi-
dimensional Bayesian network classifiers in this problem, we
conducted a comparison in the supervised framework between
the presented multi-dimensional classifiers and the two different
uni-dimensional attempts to adapt single-class classifiers to
multi-dimensional problems: (1) develop multiple uni-dimen-
sional classifiers and (2) construct a Cartesian product class
variable. In order to perform such comparison, we use naive
Bayes classifiers in the uni-dimensional attempts (one per each
class variable in the first uni-dimensional approach, and another
one for the compound class of the second) and a MDnB classifier
in the multi-dimensional solution. The parameters of both types
of models are calculated by MLE corrected with Laplace smooth-
ing and the forbidden configurations of the vector of class
variables have been taken into account in the learning process.
Note that this comparison is performed in the supervised
framework, so the 2392 unlabelled posts were not used in this
experiment.

The classification accuracies, which have been estimated via
20 runs of 5-fold non-stratified cross validation (20�5cv) [45],
are shown in Table 7. The results of using the four different
feature sets (unigrams, unigrams þ bigrams, PoS, and the ASOMO
features) in conjunction with the three different learning
approaches (multiple uni-dimensional, Cartesian class variable,
and multi-dimensional classifiers) in a supervised framework are
shown. The first eight rows of Table 7 correspond to the two uni-
dimensional approaches while the last four correspond to the
multi-dimensional approach. In addition to the estimation of
the joint accuracy, the accuracies per each class variable are
also shown.

For each column, the best estimated accuracy rate is highlighted
in bold for each single class variable and the joint accuracy. More-
over, statistical hypothesis tests (Student’s t-test with a¼ 0:05) have
been performed in order to determine if there are significant
statistical differences between the tested accuracies. For each
column, the symbol ‘y’ is used to mark the accuracies that are
statistically outperformed by the highlighted best estimated accu-
racy (in bold). The symbol ‘z’ corresponds to the accuracies that,
despite not being significantly worse, show a p-value on the
significant borderline ð0:05op�valuer0:1Þ. Besides, the CPU time
spent on learning a classification model with the 150 posts (for each
approach and feature set) is shown in the results.

Table 7
Estimated accuracy values on the ASOMO dataset using three different types of feature sets in both uni and multi-dimensional scenarios (20�5cv).

Approach Classifier Feature set #feat. Will to influence Acc Sentiment P. Acc Subjectivity Acc Joint Acc Time (ms)

Uni-dimen. Multiple classif. Unigrams 357 y51:8372:79 33.0071.82 y78:9072:16 y11:7071:68 1011

Uni.þbigrams 563 y47:1772:47 32.9071.96 y79:4772:75 y9:8071:47 1470

PoS 766 y47:5772:52 y30:8072:75 y66:3372:96 y9:4371:65 1755

ASOMO feat. 14 55:0771:32 y26:0772:09 y82:1771:35 y10:3772:30 110

Cartesian class Unigrams 357 N/A N/A N/A y9:9072:35 32

Uni.þbigrams 563 N/A N/A N/A y8:8772:05 74

PoS 766 N/A N/A N/A y10:3372:11 106

ASOMO feat. 14 N/A N/A N/A z13:7072:60 17

Multi-dimen. MDnB Unigrams 357 y41:6373:74 y31:0072:29 y75:3072:20 y10:2371:92 47

Uni.þbigrams 563 y38:0373:33 33:4072:37 y74:2772:71 y9:6372:05 107

PoS 766 y39:5073:32 y30:5372:22 y76:4072:47 y9:8671:93 122

ASOMO feat. 14 y53:2371:62 y30:8772:52 83:5370:69 14:9771:94 17
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Based on the results of Table 7, different conclusions can be
extracted:

1. With respect to the feature set comparison, the ASOMO feature
set significantly outperforms the n-grams, not only in terms of
joint accuracy, but also in terms of accuracy of two (out of the
three) dimensions, i.e. in Will to Influence and in Subjectivity.
Also, as stated in [38], n-grams information is the most
effective feature set in the task of Sentiment Polarity classifi-
cation. However, the unigramsþbigrams feature set outper-
forms unigrams instead of the opposite as reported in [38].
Finally, the PoS approach obtains very low performance.

2. According to the comparison between the uni-dimensional and
multi-dimensional approaches, the best joint accuracy is given
by the MDnB model when using the ASOMO features. It signifi-
cantly outperforms both the multi-dimensional approaches with
the state-of-the-art feature sets, and the uni-dimensional
approaches. Looking at the class variables in isolation, the uni-
dimensional approaches only outperform the multi-dimensional
approach in the case of the Will to Influence target dimension.

3. An analysis of the CPU computational times show that, as
expected, learning one classifier per each class variable is the
most time-consuming. Next, multi-dimensional Bayesian net-
work classifiers are found. The least-time consuming approach
is the uni-dimensional learning process that uses a compound
class. Moreover, the number of features is also an important
issue with respect to the computational time. The ASOMO
feature set, which has only 14 attributes, is, by far, the least
time-consuming of the four different types of feature set.

However, in this problem, errors are not simply present or
absent, their magnitude can be computed, e.g. it is not the same to
misclassify a negative post as having a very negative sentiment or
misclassify it with a very positive sentiment. For that reason, in
addition to the accuracy term, we also estimate the numeric error
of each classifier. Note that the values of the three class variables
can be trivially translated into ordinal values without changing
their meaning. Therefore, using this approach, the previous exam-
ple could be exposed as: it is not the same misclassify a post, which
has its sentiment equal to 2, with a 1 or misclassify it with a 5.

In order to estimate the numeric error, we use the mean
absolute error (MAE) term [55], which is a measure broadly used
in evaluating numeric prediction. It is defined as the measure that
averages the magnitude of the individual errors without taking
their sign into account. It is given by the following formula:

MAEEjðcÞ ¼

PN
i ¼ 1 9cjðx

ðiÞÞ�cðiÞj 9

N

where cjðx
ðiÞÞ is the value of the class variable Cj resulting from the

classification of the instance xðiÞ using the classifier cj and cðiÞj is the
actual class value in that instance. N is the number of instances in
the test set. Note that the resulting error varies between 0 and
ð9Cj9�1Þ, where 9Cj9 is the cardinality of the class variable Cj.

In a similar way to the accuracy, we also compute a joint
measure for simultaneously characterising this error in all the
class variables. Due to this, we estimate the joint MAE (JMAE) for
each learning algorithm. It is the sum of the normalised value of
the MAE term in each class variable

JMAEEðcÞ ¼
Xm

j ¼ 1

1

9Cj9�1
MAEEjðcÞ

Note that the JMAE term varies between 0 and m, being m the
number of class variables.

The MAE values of the exposed experimentation setup, which
have also been estimated via 20 runs of 5-fold non-stratified cross
validation [45], are shown in Table 8. It has the same shape as in
Table 7, i.e. each row represents each learning algorithm with a
specific feature set, and each column represents each class
variable and the JMAE value. The best estimated error per
classifier is also highlighted in bold and Student’s t-tests
ða¼ 0:05Þ have been performed in order to study the significance
of estimated differences. Table 8 reports conclusions similar to
the ones extracted with the accuracy term:

1. The feature set comparison reports the same conclusions to
those obtained with the accuracy: the ASOMO feature set
significantly outperforms the n-grams and PoS, not only in
terms of joint accuracy, but also in terms of two (out of the
three) dimensions.

2. The best joint accuracy is given by the multi-dimensional
approach which uses the ASOMO feature set and it signifi-
cantly outperforms both the multi-dimensional approaches
with the state-of-the-art feature sets, and the uni-dimensional
approaches. With respect to the class variables in isolation, the
only case in which the uni-dimensional approaches outper-
form the multi-dimensional approach is in the Sentiment
Polarity target dimension.

In brief and regarding the feature set, for this specific problem,
we strongly recommend the use of the ASOMO features, not only
because of their performance, but also for their lower learning
times. The results also show that the multi-dimensional classifi-
cation approach to SA is a novel attractive point of view that
needs to be taken into account due to the fact that it could lead to
better results in terms of accuracy as well as in MAE. In addition,
learning a multi-dimensional classifier is faster than learning

Table 8
Estimated mean absolute error rates on the ASOMO dataset using three different types of feature sets in both uni and multi-dimensional scenarios (20�5cv).

Approach Classifier Feature set #feat. Will to influence MAE Sentiment P. MAE Subjectivity MAE JMAE

Uni-dimen. Multiple classif. Unigrams 357 y0:63270:040 y1:04870:042 y0:21170:017 y0:68470:025

Uni.þbigrams 563 y0:70070:043 0:95670:043 y0:19670:014 y0:66970:023

PoS 766 y0:87870:063 y1:14770:052 y0:33970:043 y0:91870:054

ASOMO feat. 14 0.56370.014 y1:03670:036 y0:17370:011 y0:62070:014

Cartesian class Unigrams 357 N/A N/A N/A y0:65070:026

Uni.þbigrams 563 N/A N/A N/A y0:68070:030

PoS 766 N/A N/A N/A y0:75770:040

ASOMO feat. 14 N/A N/A N/A y0:64070:060

Multi-dimen. MDnB Unigrams 357 y0:78870:049 y1:10470:039 y0:24770:026 y0:78970:031

Uni.þbigrams 563 y0:85270:052 y1:10770:042 y0:26370:040 y0:82470:049

PoS 766 y0:72870:044 y1:03770:040 y0:24070:020 y0:74270:029

ASOMO feat. 14 0.55970.029 y1:01970:027 0.16770.009 0.60870.016
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different classifiers for each dimension. Although the reported
times are not a problem in the current supervised learning
settings, in the semi-supervised framework, where the computa-
tion time increases dramatically with the number of instances,
the learning process could be intractable.

7.2.2. Experiments with the ASOMO corpus in the supervised and

semi-supervised learning frameworks

With the knowledge that the ASOMO features can lead us to
better classification rates in this problem, we evaluated their
performance in both supervised and semi-supervised frame-
works. With this experiment we want to determine if the use of
unlabelled examples when learning a classifier can lead to better
solutions to the ASOMO problem. In order to do so, the following
experiment was performed: the ASOMO dataset has been used to
learn three different (uni-dimensional) Bayesian network classi-
fiers and three different sub-families of multi-dimensional classi-
fiers in both frameworks.

For uni-dimensional classification, naive Bayes classifier (nB),
tree-augmented Bayesian network classifier (TAN) [24] and a
2-dependence Bayesian classifier (2 DB) [47] have been chosen.
The uni-dimensional approach selected for these experiments is
that which consists of splitting the problem into three different
uni-dimensional problems (this is because it is more common in
the state-of-the-art solutions to solve different problems rather
than create an artificial class variable by means of the Cartesian
product). From the multi-dimensional aspect, MDnB, MDTAN,
MD1/1 and MD2/K (with K¼2,3,4) structures have been selected.
MD1/1 is included as an algorithm able to learn MDTAN struc-
tures due to the poor performance shown by the MDTAN learning
algorithm [53] in the artificial experiments. Although both multi-
dimensional learning approaches learn MDTAN structures, each
learning algorithm follows a different path to come to that end.

While the MD 1/1 uses a filter approach, the MDTAN learning
algorithm follows a wrapper scheme.

The supervised learning procedure only uses the labelled
dataset (consisting of 150 documents), whilst the semi-super-
vised approach uses the 2532 posts (2392 unlabelled). Our multi-
dimensional extension of the EM algorithm is used in the latter
approach and it terminates after finding a local likelihood maxima
or after 250 unsuccessful trials.

Finally, the performance of each model has been estimated via 20
runs of 5-fold non-stratified cross validation. Due to fact that, in semi-
supervised learning, the labels of the unlabelled subset of instances
are unknown, only the labelled subset is divided into five folds to
estimate the performance of the proposed approaches. So, in each
iteration of the cross validation, a classifier is learnt with four labelled
folds and the whole unlabelled subset, and then it is tested in the
remaining labelled fold. This modified cross validation is illustrated in
Fig. 8 for the case of three folds. As done in the previous experiments,
we use the accuracy and the MAE terms as evaluation measures.

Table 9 shows the results of applying the different uni-
dimensional and multi-dimensional algorithms over the ASOMO
dataset in terms of accuracy and Table 10 in terms of MAE. Both
tables can be described as follows: for each classifier (row), the
joint performance and the single evaluation measure (for each
class variable) are shown. In order to simultaneously compare
uni-dimensional with respect to multi-dimensional approaches,
and supervised with respect to semi-supervised learning, the
results are highlighted as follows:

1. In order to compare the supervised and the semi-supervised
frameworks, for each type of classifier and accuracy measure
(class variable and joint performance), we have highlighted the
best single value and joint performance in bold (analysed per
row). Note that, in the case of the accuracy term (Table 9),
the highlighted values are the greatest values, while in the

Fig. 8. Applying 3-fold cross validation to a dataset with labelled and unlabelled instances.
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case of the MAE (Table 10) they are the lowest. Pairwise
statistical hypothesis tests (Student’s t-test with a¼ 0:05) have
been performed in order to determine if there are significant
statistical differences between the values of the tested tech-
niques. We use the symbol ‘y’ to mark the values that are
statistically outperformed by the highlighted best estimated
measure (in bold).

2. To compare the performance between the uni-dimensional
and the multi-dimensional approaches, the best accuracy per
class variable, as well as the joint performance, has been
highlighted in italics. For each column, statistical hypothesis
tests (Student’s t-test with a¼ 0:05) have been performed in
order to determine if there are significant statistical differ-
ences. The symbol ‘z’ is used to mark the values that are
statistically worse than the best estimated value (in italics).

Several conclusions can be extracted from the supervised and
semi-supervised comparison in Tables 9 and 10 (analysed per
row):

1. The uni-dimensional models tend to perform worse when they
are learnt using the semi-supervised learning framework. This
could be due to the fact that incorrect models tend to lead to
performance degradation in the semi-supervised framework
due to the fact that they are not able to match the underlying
generative structure [12]. This phenomenon occurs in both
evaluation measures.

2. As occurs in the artificial experiments, the MDTAN approach
[53] tends to behave more similarly to the uni-dimensional
approaches rather than to the multi-dimensional approaches.

3. With respect to the accuracy measure, in the multi-dimen-
sional scenario, the Will to Influence class variable tends to

degrade its performance in the semi-supervised scenario,
whilst Sentiment Polarity and Subjectivity tend to achieve
better single accuracies. In the uni-dimensional approach, the
opposite happens.

4. The MAE results show that, unlike what happens in the uni-
dimensional framework where the semi-supervised degrada-
tion is significant, in the multi-dimensional scenario similar
results are reported for supervised and semi-supervised learn-
ing. However, there are cases in which the semi-supervised
learning algorithms obtain better results and in one case there
is a significant statistical gain.

5. The MDnB method in its semi-supervised framework is the
best solution for the ASOMO problem. In terms of accuracy, it
obtains statistically significant better results in joint accuracy
and in the Sentiment Polarity target variable, as well as better
results in the other two variables. With respect to the MAE,
MDnB obtains statistically significant better results in joint
accuracy and in the Subjectivity dimension, as well as better
results in the other dimensions.

Regarding the comparison of the uni-dimensional and multi-
dimensional approaches (for each column), the following com-
ments can be extracted:

1. With the exception of Will to Influence, the single class
variables tend to achieve better accuracies in the multi-
dimensional approaches.

2. The MAE terms show similar results to those found with the
accuracy evaluation measure. However, in this case, the
exception is provided by the estimated MAE obtained in the
Sentiment Polarity dimension in the semi-supervised version
of the uni-dimensional TAN algorithm.

Table 9
Accuracies on the ASOMO dataset with the ASOMO features in the supervised and the semi-supervised learning frameworks (20�5cv).

Classif. Labelled data (supervised learning) Labelledþunlabelled data (semi-supervised learning)

W. influence Acc Sentiment P. Acc Subjectivity Acc Joint Acc W. influence Acc Sentiment P. Acc Subjectivity Acc Joint Acc

nB yz55:0771:32 z26:0772:09 z82:1771:35 z10:3772:30 56:7072:85 yz21:9773:11 yz58:0773:78 yz7:4372:27

TAN z52:9373:23 yz26:3072:16 z80:1071:46 z9:4771:29 yz48:7773:44 z29:0073:69 yz75:1073:42 z9:8771:79
2DB 57:1371:85 z27:4372:82 z82:3071:57 z13:1771:59 yz54:1373:37 yz24:8072:95 yz61:3074:83 yz8:6072:08

MDnB z53:2371:62 y30.8772.52 83.5370.69 y14:9771:94 z54:0072:08 32:2771:41 83:6370:55 16:8371:14
MDTAN z52:6073:48 yz27:1372:43 z82:5771:72 z12:8072:38 yz31:1074:37 z29:4372:48 z82:6071:37 yz8:9771:70

MD 1/1 56:6772:93 29:9773:75 78:1772:59 15:6372:00 yz53:2772:78 z29:1772:54 z77:9072:20 z15:3371:37

MD 2/2 56:6073:63 z28:9372:36 z77:4772:24 15.1771.99 yz53:3072:08 z28:7772:37 z76:9372:97 z15:5070:94
MD 2/3 56:7072:87 29.8773.20 z77:0371:41 15.9072.67 yz52:7771:53 z30:7772:25 z77:9072:20 16.6371.32
MD 2/4 56.9772.11 z28:5373:13 z76:8772:39 15.5772.41 yz52:4772:05 29.3073.02 z75:2773:24 z15:4371:28

Table 10
Mean absolute error rates on the ASOMO dataset with the ASOMO features in the supervised and the semi-supervised learning frameworks (20�5cv).

Classif. Labelled data (supervised learning) Labelledþunlabelled data (semi-supervised learning)

W. influence MAE Senti. P. MAE Subject. MAE JMAE W. influence MAE Senti. P. MAE Subject. MAE JMAE

nB z0:56370:014 1:03670:036 0:17370:011 z0:62070:014 yz0:61370:040 yz1:20970:069 yz0:42170:036 yz0:98670:041

TAN z0:61470:041 yz1:04470:043 z0:20470:015 z0:67070:029 yz0:66470:055 0:99170:041 yz0:22570:038 yz0:71870:039

2DB z0:55370:028 1:03570:053 0:17170:009 0:61470:018 yz0:63670:041 yz1:11470:082 yz0:38770:048 yz0:88570:056

MDnB z0:55970:029 1.01970.027 y0.16770.009 y0.60870.016 0:54970:019 1:00270:028 0:61270:005 0:59670:007
MDTAN z0:56770:045 z1:10170:052 z0:18070:015 z0:64470:026 yz0:87870:075 z1:10270:028 z0:17270:011 yz0:75070:027

MD 1/1 0:52970:034 z1:05670:032 z0:21970:022 z0:65970:029 y0:55670:031 z1:06170:054 z0:21670:018 z0:66670:015

MD 2/2 0:52570:033 z1:05770:054 z0:22270:021 z0:66070:034 y0:56070:040 z1:07570:050 z0:22770:023 yz0:68270:022

MD 2/3 0:53170:032 z1:06170:032 z0:23770:034 z0:67970:037 y0.54970.016 z1:04870:049 z0:22370:033 z0:67870:033
MD 2/4 0:52970:041 z1:06970:058 z0:22770:020 z0:67070:031 yz0:57970:038 z1:04770:038 z0:22570:023 z0:68070:021
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3. The multi-dimensional classification approach statistically
outperforms the uni-dimensional framework in terms of joint
accuracy.

4. MDnB is also the best technique in terms of global perfor-
mance, i.e. in accuracy and in MAE metrics.

One explanation for the surprising success of the MDnB could
be the use of the knowledge of the experts in engineering the
features, as stated in [28]: when applying rational criteria in
determining the predictive features of a problem, the resulting
features are usually probabilistically independent given the class
variables. This characteristic favours the learning scheme pro-
vided by the MDnB algorithm. Moreover, this is crucial in the
success obtained in the semi-supervised framework due to the
fact that it matches the actual underlying domain structure [12].

The MDnB assumes conditional independence between the
three class variables. In spite of this assumption, we cannot talk
about independence between the class variables as happens when
the problem is approached by several uni-dimensional classifiers.
Each class variable in this model uses the information of the
remaining class variables when it carries out the classification
task. It also simultaneously uses all the class variables to learn the
parameters of the structure. The success of this algorithm can
shed some light on the relation between the three variables used
in this problem: the multi-dimensional framework achieves
better results than the uni-dimensional counterparts. Therefore,
it seems that there is a certain relation between them. Further-
more, it can be seen that simultaneously using the information
of these class variables in the same classification task by means
of a multi-dimensional technique conceives better predictive
classifiers.

In conclusion, we show that the proposed semi-supervised
multi-dimensional formulation designs a novel perspective for
this kind of SA problems, opening new ways to deal with this
domain. In addition, it can also be seen that the explicit use of the
different class variables in the same classification task has
successfully solved the ASOMO problem, where the MDnB in a
semi-supervised framework is the best solution.

In conclusion, we show that the proposed semi-supervised
multi-dimensional formulation designs a novel perspective for
this kind of SA problems, opening new ways to deal with this
domain. In addition, it can also be seen that the explicit use of the
different class variables in the same classification task has
successfully solved the ASOMO problem, where the MDnB in a
semi-supervised framework is the best solution.

8. Conclusions and future work

In this paper, we solve a real-world multi-dimensional SA
problem. This real problem consists of characterising the attitude
of a customer when he writes a post about a particular topic in a
specific forum through three differently related dimensions: Will
to Influence, Polarity and Subjectivity.

Due to the fact that it has three different target variables, the
SA (uni-dimensional) state-of-the-art classification techniques
seem inappropriate. They do not match the underlying multi-
dimensional nature of this problem. The problem also cannot be
directly tackled by multi-label techniques. For that reason, we
propose the use of multi-dimensional Bayesian network classi-
fiers as a novel methodological tool which joins the different
target variables in the same classification task in order to exploit
the potential relationships between them. Within this methodol-
ogy, in this paper, we have proposed a new filter algorithm to
learn multi-dimensional J/K dependences Bayesian network struc-
tures in order to explore a wider range of structures while dealing
with this application.

Moreover, in order to avoid the arduous and time-consuming
task of labelling examples in this field, we extend, by means of the
EM algorithm, these multi-dimensional techniques to semi-
supervised learning framework so as to make use of the huge
amount of unlabelled data available on the Internet.

Experimental results of applying the proposed battery of
multi-dimensional learning algorithms to a corpus consisting of
2542 posts (150 manually labelled and 2392 unlabelled) show
that: (1) the uni-dimensional approaches cannot capture the
multi-dimensional underlying nature of this problem, (2) engi-
neering a suitable feature set is a key factor for obtaining better
solutions, (3) more accurate classifiers can be found using the
multi-dimensional approaches which perform a simultaneous
classification task, (4) the use of large amounts of unlabelled data
in a semi-supervised framework can be beneficial to improve the
recognition rates, and (5) the MDnB classifier in a semi-super-
vised framework is the best solution for this problem because it
matches the actual underlying domain structure [28,12].

The proposed multi-dimensional methodology can be improved
or extended in several ways. For instance, in the ASOMO multi-
dimensional problem, the values of all class variables are missing in
each sample of the unlabelled subset. However, by means of the EM
algorithm, the learning algorithms can be easily generalised to the
situation where not all the class variables are missing in all the
samples of the unlabelled data subset.

Besides, we are concerned about the scalability of the multi-
dimensional Bayesian network classifiers in the semi-supervised
framework. The computational burden is not a problem when dealing
with these datasets, but it could happen when the number of
variables increases. This could open a line in researching feature
subset selection techniques for multi-dimensional classification.

Regarding the application of multi-dimensional classification
to the SA domain, this work can be extended in a number of
different ways:

� The proposed multi-dimensional Bayesian network classifiers
can be directly applied to Affect Analysis. This area is con-
cerned with the analysis of text containing emotions and it is
associated with SA [1]. However, Affect Analysis tries to
extract a large number of potential emotions, e.g. happiness,
sadness, anger, hate, violence, excitement, fear, etc, instead of
just looking at the polarity of the text. Additionally, in the case
of Affect Analysis, the emotions are not mutually exclusive
and certain emotions may be correlated. So, this can easily be
viewed as a multi-label classification problem, a type of
problem in which multi-dimensional Bayesian network classi-
fiers have reported good results in the recent past [5].
� Within SA, the same corpus can be used to deal with different

target dimensions. This could open different research lines in
adding more target variables in the same classification task so
as to take advantage of these existing relationships, engineering
a suitable feature set for working with several dimensions, etc.
For instance, in the works where the need to predict both the
Sentiment Polarity and the Subjectivity has been noticed [21].
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[16] H. Daumé, D. Marcu, Learning as search optimization: approximate large
margin methods for structured prediction, in: Proceedings of the 22nd
International Conference on Machine Learning, 2005, pp. 169–176.

[17] P.R. de Waal, L.C. van der Gaag, Inference and learning multi-dimensional
Bayesian network classifiers, Lect. Notes Artif. Intell. 4724 (2007) 501–511.

[18] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm, J. R. Stat. Soc. Series B (Methodological) 39 (1) (1977) 1–38.

[19] S. Dumais, Hierarchical classification of web content, in: Proceedings of the
23rd Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2000, pp. 256–263.

[20] E. Boiy, M.F. Moens, A machine learning approach to sentiment analysis in
multilingual web text, Inf. Retrieval 12 (5) (2009) 526–558.

[21] A. Esuli, F. Sebastiani, Sentiwordnet: a publicly available lexical resource for
opinion mining, in: Proceedings of the Fifth Conference on Language
Resources and Evaluation (LREC06), 2006, pp. 417–422.

[22] G. Forman, An extensive empirical study of feature selection metrics for text
classification, J. Mach. Learn. 3 (2003) 1289–1305.

[23] N. Friedman, The Bayesian structural EM algorithm, in: Proceedings of the
14th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
Publishers, 1998, pp. 129–138.

[24] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Mach.
Learn. 29 (2–3) (1997) 131–163.

[25] J.H. George, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection
problem, in: Machine Learning, Proceedings of the Eleventh International
Conference, 1994, pp. 121–129.

[26] H. Hartley, Maximum likelihood estimation from incomplete data, Biometrics
14 (1958) 174–194.

[27] V. Hatzivassiloglou, J.M. Wiebe, Effects of adjective orientation and grad-
ability on sentence subjectivity, in: Proceedings of the 18th Conference on
Computational linguistics, 2000, pp. 299–305.

[28] R. Kohavi, Wrappers for Performance Enhancement and Oblivious Decision
Graphs. PhD Thesis, Stanford University, 1995.

[29] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling
salesman problem, Proc. Am. Math. Soc. 7 (1) (1956) 48–50.

[30] S. Kullback, Information Theory and Statistics, Wiley, 1959.
[31] P. Langley, W. Iba, K. Thompson, An analysis of Bayesian classifiers, in: Proceed-

ings of the 10th National Conference on Artificial Intelligence, 1992, pp. 223–228.
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1 Appendix A. Artificial Experiments

In this report, we execute the proposed battery of semi-supervised multi-dimensional learn-
ing algorithms over a set of designed artificial datasets as commonly carried out in the ma-
chine learning research community. These experiments are performed in order to demon-
strate that the proposed algorithms are able to take advantage of the underlying nature of
the multi-dimensional problems even in the presence of a small set of labelled data and a
huge set of unlabelled data. By means of these experiments, we would like to shed some
light on the following questions:

1. Are there significant differences between the uni-dimensional and the multi-dimensional
supervised learning algorithms when there is a scarcity of labelled examples? Are
there significant differences between the uni-dimensional and the multi-dimensional
semi-supervised learning algorithms?

2. If the correct structure of the generative model is obtained, do unlabelled data im-
prove the classifier?
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3. If the learning algorithm can lead to the correct structure of the generative model,
do unlabelled data improve the classifier?

4. Can adding unlabelled data contribute to an increase in the classification performance
(in terms of joint accuracy) when there is a small amount of labelled data in a multi-
dimensional framework?

5. Do multi-dimensional classifiers performs better than uni-dimensional classifiers in a
multi-dimensional semi-supervised framework?

1.1 Simulation of datasets

In order to carry out the experimentation process required to evaluate our proposals, we
use a set of artificial multi-dimensional datasets. These datasets are sampled from multi-
dimensional feature-class variable probability distributions p(x, c) represented as multi-
dimensional Bayesian network classifiers. These classifiers have been created in four steps:
First, the structure of the multi-dimensional Bayesian network classifier was created. Sec-
ond, the parameters of the classifiers were obtained by sampling a Dirichlet distribution.
Third, a dataset from each classifier was sampled. Finally, the semi-supervised nature of
the sampled dataset, i.e. both subsets of labelled and unlabelled data, was generated by
choosing instances at random for both types of data subsets. The entire process of creating
the artificial datasets has been performed by means of the free software ICLAB library [1].

The following sub-families of multi-dimensional Bayesian network structures have been
chosen for this experimentation: MDnB, MDTAN, MD 2/2 and MD 2/3. A number of 5
different structures per each sub-family with a different number of features (from 5 to 20)
and a different number of class variables (from 2 to 4) have randomly been created. The
cardinality of the features ranges from 2 to 4 and the cardinality of the class variables from
2 to 3. By means of these sub-families and structures we are trying to cover a broad range of
structures of different complexity in order to check the statement “performance degradation
may occur whenever the modelling assumptions adopted for a particular classifier do not
match the characteristics of the distribution generating the data [5]”. In order to generate
the parameters of the classifiers which are defined by the previous structures, a different
Dirichlet distribution with all its parameters equal to one is sampled per each classifier.
The associated optimal Bayes accuracies (the opposite to Bayes errors) of the resulting
classifiers can be seen in Table 1, measured as percentages.

Once the multi-dimensional Bayesian network classifiers have been constructed, a dataset
from each of them is sampled. Specifically, we sample 20 artificial datasets (5 for each dif-
ferent sub-family) of 15, 100 instances. Then, we divide each dataset into two different
parts: a training set of 10, 100 instances used to learn the classifiers, and a test set of 5, 000
samples used to estimate the prediction error of the classifiers. In order to simulate the
semi-supervised nature of the training dataset, 100 instances were chosen at random to
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form the subset DL, in which labelled instances are i.i.d. as in p(x, c). The labels of the
class variables of the remaining 10, 000 instances are removed.

All the datasets, as well as the structures and the parameters of the designed classifiers,
can be found in the following website1.

1.2 Experimental Setup

Once the semi-supervised multi-dimensional datasets are created, we use them to perform
the following set of experiments. In the evaluation phase, we proposed nine different algo-
rithms to learn the classifiers from the sampled datasets. The first four algorithms are the
approaches explicitly designed for multi-dimensional classification proposed in the paper:
MDnB, MDTAN, MD 1/1. MD 2/2 and MD 2/3. Due to the fact that MDTAN learning
algorithm [13] follows a wrapper approach, the MD 1/1 is included in these experiments
as a filter approach in order to establish a comparison between both techniques. The
others are the well-known uni-dimensional approaches: naive Bayes classifier (nB), tree-
augmented network classifier (TAN) [8] and two K dependence Bayesian classifiers [12]
(one setting K = 2, 2-DB, and the other setting K = 3, 3-DB). As stated in the article,
the uni-dimensional approach cannot be straightforwardly applied to deal with the multi-
dimensional problems, so, we divided the multi-dimensional problem into several one-class
variable tasks and tackled them as independent.

In order to compare the supervised and the semi-supervised frameworks, all the algo-
rithms are learnt in both scenarios. In the case of supervised learning the algorithms are
straightforwardly applied to the 100 instances of the labelled subset. When learning in the
semi-supervised framework, on the contrary, the algorithms are used, as proposed in this
work, in conjunction with our extension of the EM algorithm (Algorithm 2 of the article)
and applied to the whole training dataset (100 labelled + 10, 000 unlabelled). The EM
algorithm terminates after finding a local likelihood maxima or after 250 unsuccessful tri-
als. The parameters of the model are calculated by maximum likelihood estimation (MLE)
[4], corrected with Laplace smoothing. The estimation method for performance evaluation
metrics is hold-out [10]. In hold-out, a subset of instances is chosen randomly from the
initial dataset to form a training set used to learn a classifier, and the remaining instances
are retained as the testing data, used to estimate the error of the classifier. This method
has been chosen in order to evaluate all the algorithms in the same testing set, avoiding
the variance of the error estimation given by the cross-validation methods [11]. Finally,
the performance evaluation is performed by the joint evaluation criteria.

1.3 Results

Table 1 shows the results of the nine algorithms over the 20 datasets when they are applied
in the supervised scenario. Table 2 shows, instead, their results in the semi-supervised

1
http://www.sc.ehu.es/ccwbayes/members/jonathan/home/ISG/News_and_Notables/Entries/2010/11/30_IMACS_2011.html
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framework. Each value in both tables corresponds to the joint accuracy obtained for each
algorithm when the learnt classifier is evaluated in the testing set of 5, 000 samples. The
accuracies in bold (per row) correspond to the technique with the best accuracy in just
the labelled dataset (Table 1), and the best in the whole dataset (Table 2). Moreover, the
best joint accuracy per dataset (per row in Tables 1 and 2) is highlighted in bold italics.

In order to answer the questions proposed in the introduction of this report, we have
performed an exhaustive analysis of the results of Tables 1 and 2. The following sections
summarise the studies made to shed some light on the questions. In each section, the
conclusions that answer these questions have been underlined.
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1.3.1 Uni-dimensional and multi-dimensional learning algorithms comparison

Firstly, we want to determine if there are significant differences between the uni-dimensional
and the multi-dimensional learning algorithms in both learning frameworks, i.e. in the
supervised and semi-supervised learning frameworks. In order to do so, for each table, we
compare the 20 results obtained by each uni-dimensional algorithm with those obtained
by its multi-dimensional generalisation, i.e. nB with MDnB, TAN with MDTAN and so
on. This comparison is made per columns (in Tables 1 and 2) by means of the Wilcoxon
signed-rank test with α = 0.05, a non-parametric statistical hypothesis test. The null
hypothesis is that ”Both classifiers have the same distribution, i.e. there is no statistical
difference in the behaviour of both learning algorithms”. The use of this non-parametric
test is justified: the Kolmogorov-Smirnov test (α = 0.05) rejects the Gaussian assumption
of the results.

The results of the Wilcoxon test can be found in Table 3. The first 5 rows correspond
to the supervised framework (Table 1) and the last 5 to the semi-supervised (Table 2).
The rows in Table 3 are as follows; the learning algorithms involved in the comparison, the
means (per column) of both algorithms, the p-value of the null hypothesis and the result
of the Wilcoxon test (if the null hypothesis is accepted or rejected) are shown. Moreover,
the greatest mean per row is highlighted in bold.

Framework Comparison Uni-D Mean Multi-D Mean p-value H0

Supervised

nB vs MDnB 51.72 53.65 0.34 Accepted
TAN vs MDTAN 53.35 51.69 0.15 Accepted
TAN vs MD1/1 53.35 54.35 0.10 Accepted
2DB vs MD2/2 49.86 53.53 > 0.01 Rejected
3DB vs MD2/3 47.82 53.07 > 0.01 Rejected

Semi-supervised

nB vs MDnB 29.44 52.02 > 0.01 Rejected
TAN vs MDTAN 38.27 38.99 0.37 Accepted
TAN vs MD1/1 38.27 56.29 > 0.01 Rejected
2DB vs MD2/2 29.53 56.74 > 0.01 Rejected
3DB vs MD2/3 31.54 56.48 > 0.01 Rejected

Table 3: Results of the Wilcoxon signed-rank test (α = 0.05) of comparing the results in the

20 datasets of each uni-dimensional algorithm with its generalisation to the multi-dimensional

framework.

From Table 3, the following comments can be extracted: In most of the cases, the
multi-dimensional approach obtains the best results in terms of mean joint accuracy. Al-
though there are small differences between the uni-dimensional and the multi-dimensional
approaches in the supervised framework (only the MD 2/3 and MD 2/3 report statistical
differences), in the semi-supervised framework these differences grow larger (except for the
case of the MDTAN learning algorithm, the rest of the multi-dimensional approaches report
statistical differences). In this framework, the multi-dimensional approaches lead to better
results, while performance degradation occurs in the uni-dimensional ones, where the mean
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accuracies drop dramatically. A reason to explain this could be that the uni-dimensional
approaches cannot match the underlying multi-dimensional nature of the generative struc-
tures. Moreover, the good results obtained by the MD J/K highlight the flexibility of this
kind of learning algorithms to capture different types of structures.

1.3.2 Learning the generative structure

We are concerned about the fact that there are situations in which the addition of unlabelled
data causes degradation of the performance of the classifier [3], in contrast to the improve-
ment of performance when adding unlabelled data, as happens with the uni-dimensional
approaches in the previous section.

Many researchers, in order to prevent these situations, have proposed in the literature
certain assumptions [2][14] that must be held when learning in a semi-supervised frame-
work. One of the most important assumptions is the hypothesis presented in [3] which
states that “If the correct structure of the generative model is obtained, unlabelled data
improve the classifier, otherwise, unlabelled data can actually degrade performance”. So
therefore, we need to test if this hypothesis is verified in the proposed multi-dimensional
domains. Hence, we fix, for each dataset, the structure that generates the data and learn
the parameters of the model in the supervised (MLE) and semi-supervised (using the EM
algorithm as defined in [6]) frameworks.

The results of this learning process in the 20 databases are shown in Table 4. The
“LABELLED” column shows the accuracies obtained in all the datasets by using just
supervised learning whilst the “ALL DATA” column shows the accuracies of the semi-
supervised learning process. The column “(1 − eB)” shows the optimal Bayes accuracy.

Based on these results, we can conclude that, as happens in the uni-dimensional frame-
work [3], when using the real structure in the multi-dimensional framework, the unlabelled
data always helps.

8



Family Dataset (1 − eB) LABELLED ALL DATA Helps?

MDnB

NB01 93 .93 88.48 92.16 Yes
NB02 93 .25 89.90 91.06 Yes
NB03 91 .65 88.29 89.09 Yes
NB04 74 .36 65.57 67.33 Yes
NB05 66 .45 59.44 60.43 Yes

MDTAN

TA01 66 .86 66.69 66.79 Yes
TA02 47 .61 43.56 43.80 Yes
TA03 56 .80 50.53 50.89 Yes
TA04 64 .21 58.57 60.77 Yes
TA05 58 .75 49.99 50.71 Yes

MD2/2

2201 66 .26 62.04 63.86 Yes
2202 65 .44 60.10 60.77 Yes
2203 61 .72 50.22 51.24 Yes
2204 84 .85 83.46 83.65 Yes
2205 50 .28 47.82 47.82 Equal

MD2/3

2301 57 .56 53.32 54.30 Yes
2302 69 .11 67.26 67.62 Yes
2303 50 .31 43.45 45.22 No
2304 78 .45 75.36 75.78 Yes
2305 61 .34 57.34 57.40 Yes

Table 4: Accuracies obtained by supplying the EM Algorithm (as it is usually used in semi-

supervised learning) with the structure that generates the data.

1.3.3 Reaching the generative structure

In almost all problems that we face in the machine learning field, there is no clue for the
generative structure of the dataset. For that reason, we want to check if we can reach the
generative structure and, therefore, obtain better results in terms of accuracy using the
specific semi-supervised learning algorithms in each multi-dimensional Bayesian network
family.

In order to do so, we check the 5 results obtained by each multi-dimensional algorithm
in the family where it can lead to the generative structured, i.e. the MDnB learning
algorithm in the MDnB structure family, etc. To answer the main question of this section,
we compare the 5 results obtained in the supervised framework (Table 1) with the results
obtained in the semi-supervised framework (Table 2). This comparison is made with a
Wilcoxon signed-rank test with α = 0.05 (the Kolmogorov-Smirnov test (α = 0.05) reject
the Gaussian assumption).

Table 5 sums up the results of the statistical test. The rows are as follows; the family
of multi-dimensional Bayesian network in which the learning algorithm is applied, the
learning algorithm used, the means (over just 5 results) of the learning algorithm in both
supervised (Table 1) and semi-supervised frameworks (Table 2), the p-value of the null
hypothesis and the result of the Wilcoxon test are shown. Moreover, the greatest mean
per row is highlighted in bold.
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Famiiy Algorithm Supervised Mean Semi-supervised Mean p-value H0

MDnB MDnB 78.34 80.07 0.02 Rejected

MDTAN
MDTAN 43.13 40.13 0.11 Accepted
MD 1/1 47.47 49.16 0.02 Rejected

MD 2/2 MD 2/2 54.02 55.64 0.11 Accepted

MD 2/3 MD 2/3 52.40 52.93 0.34 Accepted

Table 5: Results of the Wilcoxon signed-rank test (α = 0.05) of comparing the results of both

supervised and semi-supervised frameworks using the multi-dimensional algorithms that can lead

to the generative structure in the five datasets of each family.

From these results, the following comments can be made:

• With the exception of the MDTAN learning algorithm, in the semi-supervised frame-
work the learning algorithms lead to better results.

• Although it is difficult to obtain significant differences with only 5 results per each
framework, in two cases (MDnB and MD 1/1) the differences are significant. So, we
can claim that there is a tendency to better results in the semi-supervised framework
when the used algorithm can lead to the generative structure.

• From the results obtained in this section and Section 4.1, it seems that the MDTAN
algorithm proposed in [13] leads to very sub-optimal solutions.

1.3.4 Supervised and semi-supervised learning frameworks comparison

Once tested the algorithms that can reach the generative structure, a wider comparison
has to be made. In this section, we compare the behaviour of each learning algorithm
(both uni-dimensional and multi-dimensional ones) in both supervised and semi-supervised
scenarios.

To achieve this task, we compare by means of a Wilcoxon signed-rank test (α = 0.05)
the results obtained in all the datasets in both supervised (Table 1) and semi-supervised
learning (Table 2) frameworks, i.e. comparing the accuracies per columns, e.g. the nB
column in Table 1 with the nB column in Table 2, etc.
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Scenario Algorithm Supervised Mean Semi-supervised Mean p-value H0

Uni-dimensional

nB 51.72 29.43 > 0.01 Rejected
TAN 53.35 38.27 > 0.01 Rejected
2DB 49.86 29.54 > 0.01 Rejected
3DB 47.83 31.54 > 0.01 Rejected

Multi-dimensional

MDnB 53.65 52.02 > 0.01 Rejected
MDTAN 51.69 39.00 > 0.01 Rejected
MD1/1 54.35 56.29 0.01 Rejected
MD2/2 53.53 56.74 > 0.01 Rejected
MD2/3 53.07 56.48 > 0.01 Rejected

Table 6: Results of the Wilcoxon signed-rank test (α = 0.05) of comparing the 20 results of each

learning algorithm in both supervised and semi-supervised frameworks

Table 6 shows the results of the statistical test. The rows are as follows; the learning
algorithm, the means of the learning algorithm in both supervised (Table 1) and semi-
supervised frameworks (Table 2), the p-value of the null hypothesis and the result of the
Wilcoxon test are shown. Moreover, the greatest mean per row is highlighted in bold.

From the results, the following conclusions can be extracted:

• All the learning algorithms behave differently in both learning frameworks.

• In the uni-dimensional approaches, performance degradation occurs in the semi-
supervised framework. This is probably because “If the correct structure of the
generative model is obtained, unlabelled data improve the classifier, otherwise, unla-
belled data can actually degrade performance” [3].

• With respect to the MD J/K learning algorithms, an improvement in terms of accu-
racy in the semi-supervised framework is observed. As stated before, this highlights
the flexibility of this kind of learning algorithms to capture different types of complex
structures.

• The MDnB learning algorithm reports significant performance degradation in the
semi-supervised, while in the previous section, it reports significant improvement
when learning MDnB structures. It denotes that the MDnB learning algorithm is very
specific, it obtains very good results while dealing with problems with an underlying
MDnB structure, but when the generative models are a bit complex, its rigid structure
makes the algorithm lead to very sub-optimal solutions.

• In this comparison, the MDTAN algorithm also shows very poor performances in the
semi-supervised framework. In addition, from the numerical results (means), it seems
to be closer to the uni-dimensional approaches rather than to the multi-dimensional
ones.
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1.3.5 Behaviour of the learning algorithms in the semi-supervised framework

After showing the potential of semi-supervised learning, we are going to check whether
statistical differences exist among the semi-supervised classifiers: not only between the
multi-dimensional approaches, but also among the uni-dimensional ones. Specifically, we
use Friedman test [7] with a Shaffer’s static post-hoc test with α = 0.1 as recommended
in [9]. The test results are represented by means of critical difference diagrams [7], which
show the mean ranks of each algorithm across all the domains in a numbered line. If there
is no statistically significant difference between two algorithms, they are connected in the
diagram by a straight line.
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Figure 1: Accuracy ranking using both labelled and unlabelled data for the different algorithms
on the 20 artificial datasets, α = 0.05.

From the critical difference diagram (see Figure 1), we confirm the sensations extracted
from the previous sections and deduce that, in the semi-supervised framework, clearly the
multi-dimensional classifiers outperform the uni-dimensional techniques, with the exception
of the MDTAN classifier.

1.4 General conclusions

From the experimental results shown in this report, the following major conclusions, that
answer the experimental questions, can be extracted:

1. As happens in the uni-dimensional framework [3], when using the real structure
to semi-supervisely learnt multi-dimensional classifiers, the unlabelled data always
helps.

2. There is a tendency to achieve better classifiers in terms of joint accuracy in the
semi-supervised framework when the used multi-dimensional algorithm can reach
the generative structure.
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3. In the uni-dimensional approaches, performance degradation occurs in the semi-
supervised framework. This is probably due to the fact that the uni-dimensional
approaches are not able to match the actual multi-dimensional structure of the prob-
lems.

4. Although there are small differences between the uni-dimensional and the multi-
dimensional approaches in the supervised framework (only the MD 2/2 and MD 2/3
report statistical differences), in the semi-supervised framework, these differences
grow larger (except for the case of the MDTAN learning algorithm, the rest of the
multi-dimensional approaches report statistical differences).

5. In the semi-supervised framework, clearly the multi-dimensional classifiers outper-
form the uni-dimensional techniques, with the exception of the MDTAN classifier.

6. The MDnB learning algorithm [13] is very specific, it obtains very good results when
dealing with problems with an underlying MDnB structure, but when the generative
models are more complex, its rigid structure makes the algorithm lead to very sub-
optimal solutions.

7. The MDTAN algorithm [13] also shows very poor performances in the semi-supervised
framework.

8. The MD J/K learning algorithms have great flexibility to capture different types of
complex structures that results in an improvement in terms of joint accuracy in the
semi-supervised framework.
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Semi-supervised Multi-class Classification
Problems with Scarcity of Labelled Data: A
Theoretical Study

How is an error possible in mathematics?

- Henri Poincare, The Foundations of Science: Science and Hypothesis, the
Value of Science, Science and Method
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Semi-supervised multi-class classification problems
with scarcity of labelled data: A theoretical study
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Abstract—In recent years, the performance of semi-supervised
learning has been theoretically investigated. However, most of
this theoretical development has focussed on binary classification
problems. In this paper, we take it a step further by extending the
work of Castelli and Cover [1] [2] to the multi-class paradigm.
Particularly, we consider the key problem in semi-supervised
learning of classifying an unseen instance x into one of K
different classes, using a training dataset sampled from a mixture
density distribution and composed of l labelled records and u
unlabelled examples. Even under the assumption of identifiability
of the mixture and having infinite unlabelled examples, labelled
records are needed to determine the K decision regions. There-
fore, in this paper, we first investigate the minimum number
of labelled examples needed to accomplish that task. Then, we
propose an optimal multi-class learning algorithm which is a
generalisation of the optimal procedure proposed in the literature
for binary problems. Finally, we make use of this generalisation
to study the probability of error when the binary class constraint
is relaxed.

Index Terms—Semi-supervised learning, probability of error,
labelled and unlabelled samples, multi-class classification.

I. INTRODUCTION

THROUGHOUT recent years, the problem of learning
from both labelled and unlabelled observations has been

of practical relevance. In many applications, an enormous
amount of unlabelled examples is available with little cost,
whilst obtaining enough labelled examples to learn a classifier
may be costly and time consuming. In such cases, semi-
supervised learning (SSL) [3] appears to be a tool that is able
to obtain accurate classifiers in such circumstances.

Within the state-of-the-art literature, SSL has been em-
pirically and theoretically studied. Regarding the practical
applications, it has been used to tackle (i) binary problems [4],
(ii) problems with multiple class values [5], or even (iii) multi-
dimensional problems [6], where several multi-class variables
have to be predicted simultaneously. The probability of error
of SSL has also been theoretically investigated. However, the
scope of the studied problems does not cover the entire range
of the practical applications. The majority of the theoretical
works proposed in this area have mainly focussed on standard
binary problems [1] [2] [7] [8]. To the best of our knowledge,
only in [9], is multi-class framework explicitly tackled; yet, it
has been studied with a slightly different perspective as how
it is in this paper. Moreover, most of the works assume the
datasets have a large enough number of labelled observations
[8] [9], which is an unnatural situation in this scenario.

The authors are with the Intelligent Systems Group in the Department of
Computer Science and Artificial Intelligence, Computer Science Faculty, The
University of the Basque Country, Donostia-San Sebastián, 20018, Spain
E-mail: jonathan.ortigosa@ehu.es

For those reasons, we think that it is interesting and de-
manding to generalise several of the theoretical findings of
the state-of-the-art literature in SSL binary problems to the
scenarios where there are more than two classes, concentrating
on the cases where the number of labelled observations is
minimal. However, as we show throughout the whole paper,
the previous state-of-the-art studies do not straightforwardly
work for multi-class problems, so there are several theoretical
gaps that must be covered.

Therefore, in order to allow a potential enlargement of the
scope of the theoretically studied SSL problems, in this paper,
we first perform an exhaustive review of the previous theoret-
ical findings. It is focussed on the frameworks utilised in each
study, the feasibility of their conclusions to the multi-class
frameworks and the remaining open questions found in them.
So, guided by this, we contribute with a natural extension to
the multi-class paradigm of the SSL binary framework already
proposed by Castelli and Cover [1] [2]. This extension is
performed by addressing the following issues:

• First, the proposal of an optimal theoretical SSL algo-
rithm able to work in the multi-class framework: PCSSL
(Permutation of Components in Semi-Supervised Learn-
ing). It is a natural extension of the optimal procedure
proposed in [1] and [2] for binary problems.

• Even under the assumption of having ∞ unlabelled
records and identifiability of the decision regions, labelled
samples are still needed to determine the labels of the K
decision regions. However, what is the minimum number
of labelled records needed to uniquely determine the
decision regions? In the case of binary problems, just one
labelled datum is needed [1]. In the multi-class scenario,
however, the calculation of this value becomes more
complex. For that reason, in this paper, we define and
calculate lK as the expected minimum number of labelled
records to uniquely determine those K decision regions.

• A formula to calculate the probability of error, Pe(l,∞)
(given l labelled instances and an infinite number of
unlabelled records), for SSL problems where the binary
constraint is relaxed and the pairwise intersections among
the decision regions are empty. When the regions are
non-mutually disjoint, upper and lower bounds are given
for Pe(l,∞), generalising the statements of [1] [2] to
the multi-class scenario. In both scenarios, Pe(l,∞)
decreases to the Bayes error exponentially fast in l.

The rest of the paper is structured as follows: In Section
II, the notation, the properties and the proposed multi-class
framework are introduced. Then, the state-of-the-art literature
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is reviewed in Section III. Section IV reviews the framework
proposed in [1] and [2] for binary problems, highlighting
the issues that must be solved before extending it. Our
algorithm PCSSL is proposed in Section V. In that section, the
Voting learning procedure [9], the recently proposed multi-
class approximated method, is also introduced. In Section VI,
the problem of determining the minimum number of labelled
records needed to determine the decision regions in the multi-
class framework is tackled. Whilst Section VII is devoted to
the calculation of the probability of error in the SSL multi-
class scenario, in Section VIII, we carry out an empirical
experimentation on the contributions of this paper. Then, the
issue of extending the contributions of this paper to practical
SSL is approached in Section IX. Finally, Section X provides
a summary of the paper.

Furthermore, due to the limited space, some appendices are
placed in a separated document available to download from our
website1. There, Appendix A contains mathematical proofs for
the less crucial theorems. Appendix B presents supplementary
experimental results. Finally, Appendix C shows the source
code used to ensure the replicability of the exposed studies.

II. GENERAL NOTATION AND FRAMEWORK

Firstly, we introduce the multi-class framework which will
be used throughout the rest of the paper and which has been
borrowed and extended from that proposed by Castelli and
Cover in the key works [1] and [2] for binary problems.

A. Framework

As we want to study the optimal probability of error Pe(l, u)
of classifying the instance (x(0), c(0)) in the SSL multi-class
scenario having l labelled instances and u unlabelled records,
the following framework is proposed: Let D = L ∪ U
be a training dataset of a common SSL problem with K
classes which can be divided into two different subsets: L,
the set of l labelled examples {(x(1), c(1)), . . . , (x(l), c(l))} =
{(x(n), c(n))}ln=1, and U , the set of u unlabelled examples
{x(1),x(2), . . . ,x(u)} = {x(m)}um=1. Due to the fact that the
applications of SSL deal with very few labelled examples
and a huge amount of unlabelled data (l/u ∼ 0) [3], the
theoretical studies usually make the reasonable assumption of
having l > 0 labelled and ∞ unlabelled records. Moreover,
with this assumption and by proposing an optimal learning
algorithm, we can establish a fundamental limit in the perfor-
mance of any existing SSL multi-class algorithm. Therefore,
unless otherwise specified, we assume that u = ∞. Then, let
the class labels {c(n)}ln=1 be l i.i.d. random values where
the prior probability of observing a sample of class ci is
ηi = P (C = ci) > 0, i = 1, . . . ,K and

∑
i ηi = 1. We

also assume that each observation x ∈ L is i.i.d. according
to a mixture component f(x|C = ci;θi) ∈ F , where F is a
function set containing the mixture components of a mixture
density. There, θi stands for the set of the parameters of the
mixture component i, being θ = (θ1,θ2, . . . ,θK) the vector
of the parameters of the whole mixture. For simplicity of

1www.sc.ehu.es/ccwbayes/members/jonathan/home/error.html

notation, henceforth, we denote f(x|C = ci;θi) by fi(x).
Then, we define the mixture joint density, which generates
the labelled samples, as

f(x, c) =
K∑

i=1

ηifi(x)1(c = ci), (1)

where the function 1(c = ci) is 1 if c = ci, and 0 otherwise,
i.e. each mixture component models just one class value.

The infinite unlabelled samples appear to be i.i.d. random
variables distributed according to the mixture density given by

f(x) =
K∑

i=1

ηifi(x) (2)

and which corresponds to the marginal of f(x, c) on x.
Let (x(0), c(0)) be a instance to be classified and distributed

according to the joint density (1). As we want to infer c(0) from
the observation x(0), when ∀i, fi(x) and ηi are known, the
optimal classifier is given by the Bayes decision rule (BDR)

ĉ(0) = argmax
i
ηifi(x

(0)) (3)

with a corresponding probability of error

eB = 1−
K∑

i=1

ηi

∫

Ri

fi(x)dx, (4)

which is called the Bayes error and is the highest lower bound
of the probability of error of any classification rule. There,

Ri = {x : ηifi(x)−max
i′ 6=i

ηi′fi′(x) > 0} (5)

is the region where ηifi(x) is maximum and so the instances
are assigned to the class ci. However, this classifier cannot be
used in practise as, in general, fi(x) and ηi are unknown.

B. Identifiability

Having an infinite amount of unlabelled examples (u = ∞)
available is equivalent to knowing f(x), i.e. the mixture den-
sity can almost surely be recovered from the unlabelled data
[1]. So, in order to be able to take advantage of the information
provided by the unlabelled data, in this framework, we assume
that the mixture f(x) is identifiable, i.e. the components of the
mixture f1(x), . . . , fK(x) ∈ F and the class priors η1, . . . , ηK
can be uniquely decomposed from the density function. This
assumption is well-grounded since it holds for most of the
well-known distributions. In the continuous case and having
a finite K, f(x) is identifiable iff F is said to be linearly
independent [10]. i.e. for real constants αi, i = 1, 2, . . . ,K,

K∑

i=1

αifi(x) = 0 =⇒ ∀i, αi = 0.

Particularly, it has also been shown that the mixtures of
univariate Gaussian, Gamma, exponential, Cauchy and Poisson
functions are identifiable iff there are no empty components
(∀i, ∃x s. t. fi(x) 6= 0), and there are not two components
with the same parameters (∀i 6= j, ∃x s. t. fi(x) 6= fj(x)). In
general, discrete distributions are not identifiable, except for
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the case of binomial and multinomial distributions. They are
identifiable if K <∞ [11] [12] [13].

C. Probability of error in the absence of labelled examples

Next, if the generative model is identifiable, we can re-
cover all the single-component distributions and all the class
priors of the generative model from just the unlabelled data.
However, it is only identifiable up to a permutation π of
its single-components. That is, in a scenario of absence of
labelled data, each recovered component can be labelled with
a conventional name j which does not necessarily coincide
with the real label i of the component. This permutation can
be defined as π = (π(1), . . . , π(K)) ∈ SK , where each
element π(j) = i denotes that the j-th decomposed component
distribution, i.e. fπ(j)(x), is associated to the i-th class value,
and SK represents the set of all possible component-label
correspondences. Then, the mixture distribution (eq. (2)) can
be expressed as follows:

f(x) =

K∑

i=1

ηifi(x) =

K∑

j=1

ηπc(j)fπc(j)(x),

where πc is the unknown correct correspondence between real
labels i and decomposed components j, which cannot be deter-
mined without labelled records. Generalising the conclusions
of [3] for binary problems, it can be seen that, by means of the
infinite unlabelled records, the set containing all the possible
models which can generate the data is reduced to just only
a set containing K! possibilities (where the real generative
model is included). Unfortunately, without labelled data, this
reduction is pointless, as shown in the following theorem:

Theorem 1. (Probability of error with no labelled data)2 The
probability of error of classifying a new sample (x(0), c(0)) of
a K-class problem with any classifier learnt with no labelled
examples and any u ≥ 0 number of unlabelled samples
coincides with the probability of error of the random classifier,
which it is equal to

Pe(0, u) = e0 =
(K − 1)

K
, ∀u ≥ 0. (6)

Then, in SSL, the use of several labelled examples is crucial.
Only for l > 0, the unlabelled records influence the reduction
of the probability of error.

III. LITERATURE REVIEW

The probability of error of SSL has been investigated in the
literature. Throughout recent years, several key results have
been presented on this topic. Although these papers theoret-
ically approach SSL by means of different frameworks and
under different assumptions, their findings are equivalent in
most of the cases. In the following paragraphs, we taxonomise
these theoretical proposals into three different subsets assumed
in the SLL community (a summary can be found in Table I):

2This holds true independently of the value of the class priors η1, . . . , ηK .

1) Papers which deal with correct models3, i.e. the semi-
supervisely learned models match the generative models,

2) works in which incorrect models are assumed, i.e. the
models do not match the generative distribution, and

3) papers dealing with imperfect models, i.e. those mod-
els which, despite not matching the generative models
perfectly, have a presumedly small error.

Although incorrect models and imperfect models have been
clearly defined in the literature, they are almost equivalent.
Neither of them match the generative distribution of the
data which causes performance degradation of the learned
classifiers. The subtle difference relies on the perspective of the
authors towards them. While the authors who deal with incor-
rect models only perceive the degradation of the performance,
the authors dealing with imperfect models study the impact
of the difference between the generative and learnt models on
the resulting error, or they even try to improve the safeness
of SSL techniques. In the following paragraphs, we review
several contributions to these three different approaches.

A. Correct models

1) Ratsaby and Venkatesh [7]: The authors try to shed
some light on the question “How many unlabelled examples
is each labelled example worth?” under the Probably Approx-
imately Correct (PAC) learning framework. Their goal is to
determine how the error rate depends on the sample sizes l and
u, and on the dimensionality n. In order to achieve this goal,
several assumptions are made: (1) Learning the correct model.
(2) Two-class multivariate Gaussian mixture problem with
equal unit variance matrices (θi = {µi, I}). (3) Equiprobable
class priors, i.e. ηi = 1/2. (4) x is n-dimensional.

With the aim of reaching a rough measure on the value
of one labelled example in terms of unlabelled samples, the
authors calculate how many unlabelled records must be added
to a supervised algorithm to remove just one labelled record
while keeping a similar error. The result is the following:

uSSL

(lSUP − lSSL)
=

znn

ε3δ log n
,

where uSSL is the number of unlabelled examples in a semi-
supervised problem, lSUP is the number of labelled instances
in a purely labelled problem, lSSL is the number of labelled
examples in the semi-supervised problem, z is a constant, ε is
the upper bound of the error with at least (1− δ) confidence,
and n is the dimensionality. They conclude that unlabelled
data are extremely helpful due to the fact that they reduce
the demands on the number of labelled examples. Then, each
labelled datum is more valuable and the probability of error
decreases exponentially fast in lSSL, not polynomially fast in
lSUP , as happens in supervised learning.

2) Castelli and Cover [1] [2]: The same conclusion as
in the previous work is reached but from the perspective
of the decision theory framework and by weakening several
assumptions. The detailed explanation of their findings can be
found in Section IV.

3Note that, by the assumptions of an infinite number of unlabelled examples
and identifiability, our paper relies on this category.
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Model Ref. Framework Addressed Question Assumed Model MC Conclusion

C
O

R
R

E
C

T
[7] PAC learning How many unlabelled

examples is each la-
belled example worth?

Multi-variate Gaussian mixture
model with unit covariance ma-
trices and equiprobable classes.

No If the parametric model
assumptions are satisfied,
labelled examples are
exponentially more valuable
than unlabelled examples in
reducing the error.

[1], [2] Decision the-
ory

How the optimal proba-
bility of error varies in l
and u?

Identifiable mixture densities. No

[14] Parameter es-
timation

What is the contribution
of unlabelled data in the
parameter estimation?

Generic parametric models
p(x, c|θ) = p(x|θ)p(c|x, θ).

Yes Unlabelled data always helps
due to the fact that the Fisher
information is increased.

[4] Bayesian
networks

Does unlabelled data
always help?

Naive Bayes, and
Tree-augmented naive Bayes.

No Unlabelled data only helps
when the learned matches
the generative model.

IN
C

O
R

R
E

C
T

[15] Parameter es-
timation

What is the relationship
between the model mis-
specification and perfor-
mance degradation?

Identifiable mixture densities
(Gaussian mixtures for the ex-
amples).

No As the number of unlabelled
record increases, the proba-
bility of degradation is pos-
itive with incorrect model.

IM
PE

R
FE

C
T

[8] Density esti-
mation

What is the value of
labelled and unlabelled
data when the assumed
densities do not follow
the parametric model?

Two equiprobable
n-dimensional spherical
Gaussian mixtures. Let e be
the difference between them.

No The error is reduced expo-
nentially with the number of
labelled records until e. After
that, the error is only reduced
polynomially fast.

[9] Density esti-
mation

What is the convergence
rate of the error?

Identifiable mixture densities. Yes Similar results to [1] and [2]
for the multi-class scenario.

TABLE I: Summary of the theoretical SSL state-of-the-art literature (MC = multi-class).

3) Zhang and Oles [14]: The authors address the problem
of the value of unlabelled data, i.e. how unlabelled records help
in reducing the probability of error, by analysing their efficacy
in the estimation of the parameters of the model. They argue
that unlabelled examples have a positive impact on the efficacy
of the estimations of the real model parameters θ, in the cases
of combining both (1) parametric generative models defined
as p(x, c|θ) = p(x|θ)p(c|x,θ), and (2) SSL techniques where
a classifier is trained with labelled and unlabelled data in
an iterative manner. Then, the authors claim that under the
correct model assumption, adding unlabelled data always helps
because Fisher information is increased:

I(l+u)(θ) = Il(θ) + Iu(θ),

where I(l+u)(θ) is the Fisher information of θ using both
labelled and unlabelled subsets, Il(θ) using the labelled subset,
and Iu(θ) using the unlabelled data.

4) Cohen et al. [4]: The authors address the question of
whether unlabelled data always helps. By means of Bayesian
network classifiers (naive Bayes and tree augmented naive
Bayes models), they focus on the convergence of the semi-
supervised maximum likelihood estimator of the model, θ∗,.
They argue that the limiting value of the MLE, as the num-
ber of labelled and unlabelled records increases, is a linear
combination of the supervised and unsupervised expected log-
likelihood functions:

θ∗ = argmax
θ

[
βE
[
log p(c,x|θ)

]
+ (1− β)E

[
log p(x|θ)

]]
,

where β is the probability of sampling labelled data, i.e. the
ratio of the amount of labelled and unlabelled observations.
They conclude that unlabelled examples always improve the
performance when the correct model assumption is met, and
may degrade it when the opposite happens.

B. Incorrect models

1) Yang and Priebe [15]: Under the assumption of learning
the correct model, SSL techniques seem to work appropriately.
However, when this requirement is not met, performance
degradation may occur in the classifiers as unlabelled examples
are introduced. Therefore, in order to study the degradation,
the authors define θ∗

l as the limiting value of the supervised
MLE (as the number of labelled data increases) of the real
model parameters θ, and θ∗

u as the limit of the unsupervised
MLE (as the number of unlabelled records increases) of
θ, assuming that the generative model is a finite Gaussian
mixture model (θi = {µi, σ}) and the estimators exist under
mild regularity conditions. First, the authors corroborate the
achievements of [1] when the correct model assumption is
met by proving that both limits tend to the same parameter
value. However, when the learnt model is misspecified, the
supervised and the semi-supervised MLE parameters may
converge to different values, i.e. θ∗

l 6= θ∗
u. They also state

that for any fixed finite l or l → ∞, as l/u → 0, the limit
of the maxima of the semi-supervised likelihood parameters
is the unsupervised MLE limit θ∗

u, and degradation may
appear: If Pe(f(x, c|θ∗

l )) < Pe(f(x, c|θ∗
u)), then for a given

misspecified model, ∃l, s.t.

lim
u→∞

Pe(l, u) = P{Pe(f(x, c|θ∗
l )) < Pe(f(x, c|θ∗

u))} > 0.

That is, for incorrect models, SSL yields degradation with
positive probability as u→ ∞.

C. Imperfect models

1) Sinha and Belkin [8]: The authors focus on the situation
when the correct model assumption is only satisfied to a
certain degree of precision, either because the assumed model
is correct but the dataset is imperfect or because the assumed



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

model does not follow the generative model. For the purpose
of this paper, we aim for the latter case. There, ε is defined
as a perturbation size, i.e. a rough measure that indicates to
what extent the true model differs from the assumed model.

It is proved that, under the assumption of having two
equiprobable spherical Gaussian mixture components as gen-
erative models, as labelled examples are added to a training
set with infinite unlabelled records, the probability of error
is reduced exponentially in the number of labelled examples
(as argued in previous works) but only until eB + ε. After
that, the perturbation ε is only reduced polynomially fast in l.
Moreover, they also state that, for a positive perturbation size,
there is a number of unlabelled examples that beyond which
any extra additions do not decrease the probability of error.

2) Chen and Li [9]: Although the authors extend the
findings of [8] by assuming an imperfect model, it is better
to remark their efforts to theoretically deal with the multi-
class framework. Under the correct model assumption, they
show that labelled examples reduce the probability of error
exponentially fast, as happens in binary problems. They also
proposed an approximated algorithm (called Voting) that can
utilise the unlabelled data efficiently, i.e. achieving a fast
convergence rate. Although, to the best of our knowledge, it
is the only theoretical algorithm proposed for the multi-class
framework, it does not achieve the optimal probability of error
as we demonstrate throughout the paper.

IV. SEMI-SUPERVISED LEARNING IN BINARY PROBLEMS

In this section, we review the key works [1] and [2] high-
lighting why new strategies must be adopted in the multi-class
scenario since they cannot be straightforwardly generalised.

A. Obtaining the binary classifier

Under the assumptions of (i) learning the correct model,
(ii) having the unlabelled samples distributed according to the
identifiable mixture density f(x) = η1f1(x) + η2f2(x), and
(iii) having f1(·), f2(·), η1, and η2 (= 1 − η1) unknown, the
authors define a procedure (see Algorithm 1) to obtain the
optimal binary classifier in SSL.

Algorithm 1 Optimal theoretical procedure for SSL binary
problems [1] [2]

1: LEARNING TASK:
• Stage 1 Use unlabelled set U to obtain f(x) and,

by identifiability, a permutation of its components
(fπ(1)(· ), fπ(2)(· ), ηπ(1), and ηπ(2)).

• Stage 2 By means of the likelihood ratio test and the
labelled set L, determine the correspondence between
the real classes and the current mixture components:
π̂(1) = 1 and π̂(2) = 2, or π̂(2) = 1 and π̂(1) = 2.

2: CLASSIFICATION TASK:
• Stage 3 Assign the sample x(0) to the class induced

by the BDR using the learned model.

The procedure can be divided into two major parts: (a) the
learning task, where a model is learnt using the training dataset

D, and (b) the classification task, where the unseen instances
are classified according to the previously learnt model. The
learning task is split into two stages. First, the components of
the mixture are identified by means of the unlabelled subset
U (Stage 1), and then, the labelled subset L is used in the
likelihood ratio test to assign a class to each component (Stage
2). Finally, the classification task is composed of just one
stage, namely Stage 3, in which the BDR is used to determine
the class of the unseen instance given the assignment of the
two previously made mixture components.

According to [1], this procedure is optimal, i.e. it achieves
the highest lower bound of the probability of error of any semi-
supervised classifier, since all the three stages are optimal. By
means of identifiability and the correct model assumption, the
recovered components are a permutation of the components of
the unknown real model. The likelihood ratio test is optimal
for two simple hypotheses and the BDR (eq. (3)) is the
optimal classification rule. Unfortunately, this optimal proce-
dure cannot be directly transferred to the multi-class scenario.
Although, both Stage 1 and Stage 3 can be straightforwardly
used to deal with K ≥ 2 classes, the optimality of Stage 2 can
only be guaranteed for K = 2. In the multi-class framework,
new procedures must be proposed for Stage 2 as we need to
deal with more than two simple hypotheses. In Section V, we
tackle this problem.

B. Minimum number of labelled examples

Labelled records are needed to correctly determine the cor-
respondence between the classes and the decomposed mixture
components (Stage 2 of Algorithm 1). But, how many labelled
examples are needed to carry out such a task?

It is shown in [1] that, for the case of K = 2, just one
labelled example is enough. Once the two components have
been identified (as fπ(1)(· ) and fπ(2)(· )) in Stage 1, with
just one labelled datum (x, ci), the correspondence π can
be, correctly or incorrectly, uniquely determined. By means
of the likelihood ratio test (Stage 2), the component that is
maximum (fπ(j)(· )) in the region Rj where the instance lies
is labelled with the label of the instance (π(j) = i). Then,
the other component is labelled by a process of elimination.
But is just one labelled example enough to assign a label to
each component in the multi-class paradigm? The answer is
no. With more than two classes and a labelled datum, we can
only identify just one component, the one where the datum
seems to belong to. For the rest of the components, there is
not enough information in the subset L. So, how much labelled
data is needed to uniquely determine the correspondence π of
a K class problem? We deal with this issue in Section VI.

C. Probability of error

Under the proposed binary framework, the probability of er-
ror, Pe(l, u), is calculated in [1]. First of all, the authors prove
for the case of binary problems that (Pe(0, u) = 1/2,∀u ≥ 0
(Theorem 1)). Then, they stated that with infinite labelled ex-
amples the Bayes error is reached (Pe(∞, u) = eB ,∀u ≥ 0),
and that the probability of error of having just one labelled
example and no unlabelled data is Pe(1, 0) ≤ 2η1η2 ≤ 1/2.
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After all these specific scenarios, the authors make use of
Algorithm 1 to study the value of Pe(l,∞). First, they analyse
the case of Pe(1,∞), where only one labelled datum plus
infinite unlabelled records are available. Under the correct
model assumption and by identifiability, Stage 1 cannot lead to
a classification error. Therefore, in this case, a classification
error only occurs when either Stage 2 or Stage 3 yields an
incorrect answer, i.e. either (i) the classes of the mixture
components are reversed or either (ii) the BDR misclassifies
the instance. When both Stage 2 and Stage 3 result in wrong
answers (the classes of the mixtures are reversed and the BDR
misclassifies the instance), both mistakes cancel each other out
in the 2-class scenario. Let the event A , {error in Stage 2},
then P (A) = eB and the probability of error is calculated as:

Pe(1,∞) = P (ĉ(0) 6= c(0)) =
= P (ĉ(0) 6= c(0)|A)P (A) + P (ĉ(0) 6= c(0)|Ā)P (Ā) =

= (1− eB)eB + eB(1− eB) = 2eB(1− eB).

In general, for the case of l labelled examples, the authors
follow a similar reasoning to the calculation of Pe(1,∞), i.e.
determining when an error is committed in just one of the two
previously exposed stages (Stage 2 and Stage 3). However,
in this general case, P (A) does not coincide with eB , and
therefore it must be calculated. Under these premises, they
reach the conclusion that the probability of error is:

Pe(l,∞)− eB = exp
{
− lZ + o(l)

}
,

where Z = − log
{
2
√
η1η2

∫ √
f1(x)f2(x)dx

}
is the Bhat-

tacharyya distance between the densities f1(x) and f2(x)
multiplied by a term equal to log (2

√
η1η2). In [2], they extend

their work to the case of u <∞, reaching to

Pe(l, u)− eB = O
( 1
u

)
+ exp

{
− lZ + o(l)

}
.

The authors conclude that, in the case of binary problems,
it turns out that unlabelled samples are only polynomially
valuable, whilst labelled samples are exponentially valuable
in reducing the error. So then, what is the probability of error,
Pe(l,∞), when the binary class constraint is relaxed? Does
this conclusion still hold in those cases? In Section VII, our
main objective is to address these.

V. SEMI-SUPERVISED MULTI-CLASS LEARNING
STRATEGIES

Guided by the aforementioned concerns, we now tackle the
first of them; proposing a strategy for Stage 2 which is able
to determine a correspondence π by using a labelled set L
with K ≥ 2 classes, i.e. to assign each mixture component
to a specific class. In the following subsections, we first
introduce Voting [9] as the only method for Stage 2 where the
binary constraint is relaxed which has already been proposed
in the literature. However, since it does not make optimal
usage of the data, we propose PCSSL, an optimal multi-class
learning strategy for Stage 2, which is a natural extension and
generalisation of the one proposed by [1]. So, in the studied
scenario, the whole multi-class procedure remains as can be
seen in Algorithm 2.

Algorithm 2 Theoretical procedure for SSL multi-class prob-
lems

1: LEARNING TASK:
• Stage 1 Use unlabelled set U to obtain f(x) and,

by identifiability, a permutation of its components
(fπ(j)(· ), and ηπ(j), j = 1, ...,K).

• Stage 2 Use the labelled set L to determine the
correspondence between the classes and the mixture
components, i.e. the permutation of the components π̂,
by means of the semi-supervised multi-class learning
procedure: (i) Voting [9], or (ii) our proposal PCSSL

2: CLASSIFICATION TASK:
• Stage 3 Assign the sample x(0) to the class induced

by the BDR using the learned model.

A. Voting

In [9], the authors propose Voting as a simple method to
determine the permutation π by extending the majority vote
method for binary problems [16] to the multi-class framework.

There, it is assumed that the regions Rj (see equation 5)
are known by identifiability, and that the observations of L,
i.e. {x(1),x(2), . . . ,x(l)}, can be split into K different subsets
named Li, for i = {1, ...,K}, such that, each Li stands for
the set containing all the observations in L of the class value
ci. Under these premises, the learning method is as follows:
First, it counts the labels in each region and then, assigns
the permutation which maximises the total number of counts.
Formally, it can be defined as follows:

π̂v = argmax
π

V (π;L) = argmax
π

K∑

i=1

|Li ∩Rπ−1(i)|. (7)

where |Li ∩ Rπ−1(i)| is the number of examples of class ci
found in the region Rπ−1(i). Although Voting is asymptotically
optimal (as l → ∞), it does not make optimal usage of the
dataset when l is relatively small, the natural domain for SSL.

B. PCSSL

Due to the aforementioned drawbacks of the Voting pro-
cedure, we propose a new theoretical SSL strategy which
makes optimal usage of the labelled data. It is named PCSSL
(Permutation of Components in Semi-Supervised Learning),
and it uses the principle of maximum likelihood to determine
the label permutation π of the previously decomposed com-
ponents. It not only coincides with the method for Stage 2 of
Cover and Castelli for K = 2 ( [1] and [2]), but also it is a
natural extension of that method to the multi-class framework.
Formally, the learning strategy is as follows:

π̂p = argmax
π

L(π;L) = argmax
π

K∏

i=1

∏

x∈Li

ηifπ−1(i)(x). (8)

Briefly, PCSSL works as follows: it returns the correspondence
π between the classes and the identified components with the
highest likelihood function L(π;L). The following theorem
proves the optimality of our proposal:
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Theorem 2. (Optimality of PCSSL) PCSSL is an optimum
learning procedure for Stage 2 of Algorithm 2.

Proof: Let π∗ = argmaxπ P (π|L) be the BDR for
classifying a labelled subset into one of the K! different
possible permutations. Since it is the optimal classifier, PCSSL
can be proved to be optimum if both classifiers are equivalent,
i.e. π∗ = π̂p,∀L. To prove this statement, we reduce the BDR
to PCSSL by rewriting the optimal rule as

π∗ = argmax
π

Pr{π,L} = argmax
π

f(L|π)P (π),

where the notation Pr{·} is used to omit measure-theoretical
details for the sake of clarity. Regarding f(L|π), as max
measures of disjoint events are independent and fixing π, we
reach the conclusion that it is equal to the likelihood:

f(L|π) =

K∏

i=1

ηif(Li|π) =
K∏

i=1

∏

x∈Li

ηif(x|π−1(i))

=

K∏

i=1

∏

x∈Li

ηifπ−1(i)(x) = L(π;L)

Concerning the model priors P (π), it is reasonable to assume
them to be uniformly distributed (as in the key work of
Cover and Castelli [1]), which holds when the components
are indexed in a random uniform manner. Therefore,

π∗ = argmax
π

f(L|π)P (π) = argmax
π

L(π;L) = π̂p

C. Computational complexities of both procedures

While the solution of eq. (7) (Voting) and eq. (8) (PCSSL) for
a given L can be straightforwardly obtained by an exhaustive
search over the K! factorial permutations, this process can be
simplified, in terms of computational complexity, by rewrit-
ing both equations as linear assignment problems and, then,
using the Hungarian [22] to find the solution. Therefore, we
consider [nVij = |Li ∩ Rj |] as the cost matrix for a Voting
strategy where each element nVij represents the number of
labelled examples with class value i appearing in Rj and
NP = [nPij =

∑
x∈Li

log fπ−1(i)(x)] as the square matrix
representing the cost matrix of PCSSL, where each element
nPij is the log-likelihood of labelled examples with class value
i regarding the component fπ−1(i). Then, by applying the
Hungarian algorithm over these cost matrices, the optimal
assignment4 π of labels, given a cost matrix, is achieved in
polynomial time (O(K3)). This transformation also solves the
original ambiguity of Voting; in [9], further details are not
provided about how Voting deals with the ties.

VI. MINIMUM NUMBER OF LABELLED EXAMPLES

SSL is usually applied in domains where labelled data are
very expensive and/or difficult to obtain, but crucial (eq. (6)).
For that reason, we think it is necessary to tackle the second

4Do not confuse the optimal solution for a linear assignment problem with
the optimal probability of error. Under this setting, PCSSL remains as an
optimal algorithm and Voting as a sub-optimal algorithm.

issue of Section IV: the minimal number of labelled data
needed in Stage 2 of Algorithm 2 to unambiguously determine
a permutation. Under the proposed framework, this issue can
be translated into the calculation of the minimum number
of labelled data needed to uniquely determine one possible
permutation π without leaving any possibility to chance. Note
that, when there is ambiguity, eB cannot be reached.

As stated, in binary problems, just one labelled example is
enough. It can also be easily seen that, in general, (K − 1)
labelled instances with different label values are needed to do
so and the remaining component is determined by a process
of elimination. However, we cannot ensure having (K − 1)
different labels in a particular labelled set L due to the
randomness of the data [17]. Hence, for multi-class problems,
expectations must be taken. We need to calculate lK , i.e.
the expected minimum number of instances needed to have
a labelled set with (K−1) different class values among them.

A. The expected minimum number of labelled examples
First, we determine lK under the assumption of having all

class priors equiprobable. This calculation is given by:

Theorem 3. (Minimum number of labelled examples) Let the
family of mixtures F be linearly independent. Let K ≤ ∞ be
the number of classes and the number of mixture components.
Let the class priors be equiprobable, i.e. ∀i, ηi = η = 1/K.
Then, the expected minimum number of labelled instances
needed to uniquely determine the class labels of the K
components of a mixture is :

lK =





1 if K = 2
K−1∑

j=2

(−1)j
(
K
j

)
(j − 1)× if K > 2

×
(K − j

K

)(K−2)(
K − 1 +

(K − j)

j

)
(9)

Figure 1a shows the growth of lK for K = {2, . . . , 80}
when the priors are equiprobable, i.e. ηi = 1/K,∀i. It can
be seen that it grows linearly in the number of classes K.
This growth is due to the fact that this assumption among
the priors is a hard constraint for the minimum labelled
examples required. However, we want to remark the main
benefit of calculating lK for equiprobable priors; it is the lower
expected bound of labelled examples needed for any possible
configuration of K different class priors. For that reason, in
practise, the study of lK gains great importance for high values
of K, such as in the recently proposed highly multi-class
scenario [18], where K > 1, 000. In [18], the authors deal with
the problem of image classification in a supervised manner.
However, since huge amounts of unlabelled images can be
easily gathered, it is a matter of time to make use of unlabelled
data in highly multi-class problems, as in [4] [19]. For such
problems, lK can be of vital importance for being a lower
bound of the required labelled data. As an illustration, Table
II presents, for each dataset used in [18], its correspondent lK .

B. Relations between the class priors and lK
Now, we relax the assumption of equiprobability. In the first

place, we start calculating lK for ternary problems:
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(a) Evolution of lK assuming equiprobability (Theorem 3).

(b) The growth of l2, . . . , l10 (lower populations represents lower
values of K) as V ar(η) increases (Monte Carlo method).

Figure 1: Minimal number of labelled data, lK .

Problem K lk
16K ImageNet 15, 589 143, 911
22K ImageNet 21, 841 208, 992
21K WebData 21, 171 201, 921
97K WebData 96, 812 1.07× 106

TABLE II: lK for highly multi-class problems [18].

Theorem 4. (Minimum labelled examples for ternary prob-
lems) Let f(x) be identifiable and let K = 3 be the number of
classes with priors ηi > 0,

∑3
i=1 ηi = 1. Then, the expected

minimum number of labelled instances needed to uniquely
determine the class labels of the components of the mixture is

l3 = 2 +
3∑

i=1

η2i
1− ηi

. (10)

When we want to determine lK for K ≥ 4 with non-
equiprobable class priors, it becomes intractable. Therefore,
in order to avoid such a combinatorial explosion and to obtain
an idea of the evolution of lK with respect to the priors,
we perform an empirical study to determine the growth of
lK when the class priors are non-equiprobable for the cases
K = {2, . . . , 10}; We generate a population of size 50, 000
independent samplings by a Dirichlet distribution with all its
K hyper parameters set to 1. Since the Dirichlet distribution is
the conjugate of the multinomial distribution [20], each sample
of the population represents a vector of class prior probabilities
η = (η1, . . . , ηK) uniformly distributed along the domain of
η. Then, for each sample η, we calculate lK by means of
a Monte Carlo method by averaging the minimum number of
instances needed to have (K−1) different classes over 10, 000

independent samplings. In order to be able to show the results
in a two-dimensional figure, we also calculate the variance
of each sample η, i.e. V ar(η) = 1

K

∑K
i=1(ηi − η̄)2, where

η̄ = 1
K

∑K
i=1 ηi. Note that the variance is highly correlated

to the degree of imbalance among the priors. Then, Figure
1b shows the result of this simulation; how lK grows as the
variance is increased. There, it can be seen that the lowest
value of lK for every K always fits with the equiprobability
(V ar(η) = 0), and from that point all the lK values expo-
nentially grow as the variance is increased. Only for K = 2,
it remains constant. Here, it can be clearly noticed that the
multi-class framework is much harder, at least in the number
of labelled examples needed, than the binary scenario.

VII. PROBABILITY OF ERROR IN THE MULTI-CLASS
FRAMEWORK

In this section, we deal with the last highlighted concern of
Section IV; determining the probability of error Pe(l,∞) in
the multi-class scenario under the correct model assumption.

In binary problems, the probability of error is calculated
by exploiting the inherent characteristic of Algorithm 1: a
classification error happens when either Stage 2 or 3 of
Algorithm 1 yields an incorrect answer; but when both stages
result in wrong answers, the mistakes cancel each other out
[1], [2]. Unfortunately, this characteristic does not apply for the
multi-class scenario. Here, the casuistry gets more complex; a
classification error also occurs when either Stage 2 or Stage 3
of Algorithm 2 yields an incorrect answer. However, when
both stages result in wrong answers, the mistakes do not
necessarily cancel each other out. What’s more, most of the
mistakes in both stages lead to a final misclassification. Driven
by these thoughts, we calculate the probability of error when
a determined labelled subset L is given to derive the obtained
results to the case when just the number of labelled records l is
given. The following lemma formulates the probability of error
for any learning procedure for Stage 2, including Voting and
PCSSL, when the BDR is applied over a returned permutation:

Lemma 1. Let L be a labelled subset distributed according
to a generative model f(x, c). Let the marginal of f(x, c) on
x be an identifiable mixture density f(x) =

∑K
i=1 ηifi(x)

which represents the distribution of the infinite unlabelled
records. Let π be the correspondence returned by the learning
procedure Π(·), (Stage 2 of Algorithm 2), and let Rπ−1(i) be
defined as in eq. (5). Then, the probability of committing an
error in classifying an unseen instance with the BDR after
assuming the correspondence π is

P (e|π) = 1−
K∑

i=1

ηi

∫

Rπ−1(i)

fi(x)dx. (11)

Although the previous lemma formulates the probability of
error of Stage 3 in Algorithm 2 independently of the learning
procedure used for Stage 2, we are interesting in calculating
the probability of error of the whole procedure for a given
number of labelled data l:

Theorem 5. (Probability of error) The probability of error
of classifying an unseen instance in the multi-class scenario,
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given l labelled records and infinite unlabelled records, is5:

Pe(l,∞) =
∑

π∈SK

P (Πl = π)P (e|π), (12)

where P (Πl = π) denotes the probability of choosing, using
the learning procedure Π(·), the permutation π given l labelled
data (Stage 2 of Algorithm 2) and P (e|π) the probability of
misclassification with the BDR after assuming the correspon-
dence π (Stage 3 of Algorithm 2). Finally, SK represents the
set of all possible permutations of size K representing all the
correspondences between labels and components.

Proof: First, we define L = {L | |L| = l} as the set
containing all the possible labelled subsets with cardinality l
and formulate Pe(l,∞) as

Pe(l,∞) =

∫

L

P (e|L)P (L)dL.

Unfortunately, the number of labelled sets with cardinality l
is infinite (except for the case of l = 0). Therefore, we need
to rewrite this equation by partitioning L into several disjoint
sets Lπ , i.e. L =

⋃
π∈SK

Lπ ∧∀a, b,Lπa
∩Lπb

= ∅. Each Lπ

stands for {L | |L| = l∧Π(L) = π}. Then, by the distribution
property, the probability can be rewritten as

Pe(l,∞) =
∑

π∈SK

∫

Lπ

P (e|L)P (L)dL,

In this case, the probability P (e|L),∀L ∈ Lπ will be equal to
the P (e|π) (eq. (11)) since the returned permutation is π. Due
to the fact that P (e|π) is constant, it can be extracted from
the integrand as a common factor. Finally, as P (Πl = π)
is, by definition

∫
Lπ
P (L)dL, we rewrite the formula as that

presented in the theorem.
However, we are interested in calculating, under certain

assumptions, the convergence rate of the probability of error in
the multi-class framework. When possible, we also calculate
a formula depending on l and K. For that reason, in the
following sections we calculate it for two scenarios; (i) when
there are no pairwise intersections among the components and
(ii) when the components intersect among themselves.

A. Mutually disjoint components

When the pairwise intersection among the components is
empty, there is no chance of committing an error using the
BDR in the supervised scenario, i.e. eB = 0. However, in
the SSL framework, a classification error may occur when the
correspondence π is determined (Stage 2).

In order to calculate the error, we take advantage of the
main property of this scenario; with just one labelled datum
of the class ci in the labelled subset, we can unequivocally
determine πc(j). Therefore, the calculation of the error turns
into the calculation of the probability that a certain number
z ≤ min(K, l) of labels appear in l labelled records. Under the
assumption of having all priors equiprobable, the probability
of error is calculated based on this reasoning as follows:

5Note that eq. (12) fits with the one proposed for binary problems in [1]
(pp. 107, eq. (7)): P (Πl = πc)P (e|πc) + P (Πl = π̄c)P (e|π̄c).

Figure 2: Pe(l,∞) for K = {2, . . . , 10} (lower lines are lower
values of K) for mutually disjoint components (eB = 0).

Theorem 6. (Probability of error with zero Bayes error) Let
the mixture density f(x) be an identifiable mixture. Let K be
the number of classes and the number of mixture components.
Let the class priors be equiprobable, i.e. ∀i, ηi = η = 1

K .
Then, the probability of error Pe(l,∞), given l > 0 labelled
records and infinite unlabelled records when the components
are mutually disjoint is given by:

Pe(l,∞) =

min(K−2,l)∑

z=1

PK,zS2(l, z)

PRK,l

(
1− z + 1

K

)
, (13)

where PK,z and PRK,l are the number of z-permutations
without repetition and l-permutations with repetition of K,
respectively. S2(l, z) is the Stirling number of 2nd kind [21].

Corollary 1. When the components are mutually disjoint,
Pe(l,∞) converges to 0 exponentially fast in the sense of that

o

((
K − 1

K

)l
)
. (14)

Figure 2 illustrates the variation of the error under the
assumptions of models with equiprobable priors and eB = 0
for K from 2 to 10. There, it can be seen that the probability
of error converges exponentially fast to zero in l. Also, note
that, in this scenario, both Voting and PCSSL are equivalent.
Both of them obtain the optimal probability of error (eq. (13)).

B. Mutually non-disjoint components

When the eB > 0, we provide an upper bound (Theorem
7) of Pe(l,∞) in order to determine the convergence rate in
l of the optimal probability of error (Corollary 2). Here, we
assume having all priors equiprobable, ∀i, ηi = η = 1/K.

Theorem 7. (Upper bound of the error) When the components
are not mutually disjoint and all the priors are equiprobable,
the optimal probability of error of a model composed by K
different identifiable mixture components is upper bounded by

Pe(l,∞)− eB ≤ 2 exp
{−lλ2

2K

}
, (15)

where λ ∈ (0, 1] depends on the degree of intersection among
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the components of the mixture distribution and is defined by

λ =
1

K
min
j

{∫

Rj

fi(x)dx−max
z 6=i

∫

Rj

fz(x)dx
}
. (16)

Corollary 2. The probability of error, Pe(l,∞), decreases to
eB , at least, exponentially fast in the number of labelled data.

The previous calculi prove that the optimal probability of
error converges exponentially fast in l multiplied by a constant
λ ∈ (0, 1]. The latter only depends on the intrinsic character-
istics of the components of the mixture; whilst models with
mutually disjoint components show a value of λ = 1, models
with a high level of overlapping show values of λ ∼ 0.
Note that, for values of λ close to 0, the decrease of the
probability of error will be slower since, in problems with a
high intersection of components, the process of discriminating
the classes is intricate. In those cases, more labelled data
will be required. However, is this upper bound good enough?
Can the probability of error decrease faster? To answer these
questions, we provide a lower bound of the optimal probability
of error assuming the particular scenario of having a model
composed by Gaussian mixture components with the same
variance, i.e. θ = {µ1, . . . , µK , σ} and each θi = {µi, σ}.

Theorem 8. (Lower bound of the error) Assuming that the
model is a Gaussian identifiable mixture of K components
with the same variance (σ) and equiprobable priors. Let δM
be the largest distance between the means of two components
and Q(·) a polynomial of degree 3. Then, the probability of
error for non-disjoint components is lower bounded by

Pe(l,∞)− eB ≥ K!(1− eB)− (K − 1)!
(
1 + exp{Q( δM2σ

√
l)}
)(K!−1)

. (17)

It can be easily noticed that, in the case of assuming
a Gaussian mixture, both bounds are quite close, leaving
not much room for improvement in the upper bound; they
converge exponentially fast in l to eB . Note also that, in this
scenario, δM ∈ (0,∞) plays the role of the constant λ in
the general solution; values of δM close to zero represent
problems with a high intersection of components and a slower
decrease of the probability of error. This can give us an idea
that the optimal probability of error without any assumptions
on the model will also converge exponentially fast, not faster.
In the general case, it cannot decrease faster than this specific
scenario.

VIII. EXPERIMENTAL STUDIES

In the previous sections, we have proposed an optimal
learning procedure, PCSSL, for the multi-class problem in the
SSL scenario. By Theorem 2, when the correct model assump-
tion is met, any learning procedure, including the previously
proposed Voting strategy [9], will achieve an upper or equal
probability of error than PCSSL. However, under the same
assumption, does PCSSL significantly outperform Voting, or do
both algorithms share a similar probability of error? Moreover,
another interesting question arises in this framework; how does
PCSSL behave when the correct model assumption is not met?

To answer these questions a generative model with the
following characteristics is assumed: since it must be simply

enough to be able to fully interpret the results and complex
enough to be able to represent real world problems, we as-
sume a generative model composed by K univariate Gaussian
identifiable mixture components with unit variances and whose
means are separated by a fixed factor δ ∈ R, i.e. θi = {µi, σi},
where µi = δ(i − 1) and σi = 1. This factor determines the
degree of overlapping among the classes. Also, we assume
equiprobable class priors6. Regarding the learning procedures,
we make use of both PCSSL and Voting, as they are, to the
best of our knowledge, the only two theoretical procedures
proposed in the literature for this problem. The behaviour
of both learning procedures is simulated by a Monte Carlo
method; the probability of error of each procedure and each
value of l is estimated by averaging the resulting probability
of error over 10, 000 independent trials (labelled datasets)7.

Then, the first experiment is carried out to address the
first question, i.e. determining whether a significant difference
between PCSSL and Voting exists. To do so, we have studied
the behaviour of both procedures assuming the previous gen-
erative model for values8 of K = {3, 4, 5, 6}. However, due
to the limiting space, in this paper, we only show the results
for the ternary problems. Higher values of K can be found
in Appendix B. Specifically, the probability of error of both
PCSSL (PP

e (l,∞) = Pe(l,∞)) and Voting (PV
e (l,∞)) learn-

ing algorithms has been calculated for l = {0, . . . , lmax} for
three different levels of intersection among the components,
δ = {0.25, 1, 5}. These three different δ values can be assumed
to correspond to complex, medium and easy problems.

Figure 3 shows the behaviour of the probability of error
for PCSSL and Voting as l increases in the studied ternary
problem. Specifically, the different levels of intersection δ =
{0.25, 1, 5} are represented by Figure 3a, Figure 3b, and
Figure 3c, respectively. All the figures share the same shape.
The x-axis represents the number of labelled data l and
the y-axis represents the excess of risk of both procedures
[2], i.e. PV

e (l,∞) − eB or PP
e (l,∞) − eB . Note that, the

x-axis is differently scaled for each problem due to the
fact that complex problems require more labelled data (eq.
(15)). Moreover, since eB varies for different values of δ, the
y-axis is also not equally scaled for the three scenarios. The
corresponding Bayes error values for each δ = {0.25, 1, 5} are
eB = {0.6004, 0.4114, 0.0083}, respectively. Then, the upper
decreasing curve (grey colour) is the excess of risk of Voting
and the lower decreasing curve (black colour) corresponds
to PCSSL. The vertical line is lK . As can be seen, the
experiment coincides with the theoretical advances proposed
in the paper: (i) the probability of error of both learning
algorithms decreases exponentially fast in l (Theorem 7) and
PCSSL always dominates Voting. It always achieves a lower (or
equal) probability of error (Theorem 2). (ii) When eB ∼ 0,
i.e. higher values of δ, both algorithms behave similarly in

6Note that if we consider unequal standard deviation, multivariate features,
other geometry or non-normal probability densities, it may not be possible to
perform all the calculations, e.g. the Bayes error.

7For the sake of honesty, the same datasets are sampled for each procedure
and each set of parameters. Moreover, the cases where the correspondence
cannot unambiguously be determined are equally resolved for both procedures.

8Both learning algorithms are equivalent for binary problems.
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(a) Complex problem (δ = 0.25). (b) Medium problem (δ = 1). (c) Easy problem (δ = 5)

Figure 3: Probability of error of Voting [9] (upper) and PCSSL (lower curve) for K = 3 (lK = 2.5).

(a) Complex problem (δ = 0.25). (b) Medium problem (δ = 1). (c) Easy problem (δ = 5)

Figure 4: Absolute differences between Voting and PCSSL, i.e. PV
e (l,∞)− PP

e (l,∞), for K = 3.

terms of probability of error (Theorem 6). (iii) In the opposite
case, i.e. when δ is small, the room for improvement is quite
narrow (e.g. e0−eB ∼ 0.06, for δ = 0.25) and the complexity
of the problem is really high. There, the probability of error
of any algorithm will show a slower decrease in l (Theorem 7
and 8) and more labelled data will be required to achieve the
best classifier. (iv) Finally, the results show that eB is never
achieved with less than lK labelled examples (Theorem 3).

In order to properly quantify the magnitude of the absolute
difference between the two theoretical SSL procedures, we
also introduce Figure 4. There, the differences between the
probabilities of error of both Voting and PCSSL are shown for
each l. Figures 4a, 4b, and 4c represent the previously defined
complex, medium and easy problems, respectively. The y-axis
in each figure is scaled between 0 and the highest difference
found in the simulation. In general, the differences between
the procedure show a similar shape throughout the problems.
First, the difference between the probability of error of both
theoretical procedures is 0 for both l = 0 (Theorem 1) and
l = 1. After that, it grows until a determined value of l.
Finally, beyond that point, the difference starts to decrease
to 0, the point where Voting reaches eB . Additionally, the
results also reveal that, although the absolute differences vary
for determined values of δ, the relative differences (w.r.t. the
available room for improvement, i.e. e0 − eB) are greater for
lower values of δ. Then, we can conclude that PCSSL achieves
a much better relative performance than Voting for low values
of δ.

Appendix B shows that the results for that higher values of
K (lmax = 50) are similar to K = 3. The main difference is
that, for higher multi-class problems, the behaviour of K = 3
is horizontally stretched when l > 1 due to the fact that both
procedures need a higher value of l to reach eB .

Figure 5: Evolution of the probability of error of PCSSL when
the correct model assumption is not met.

The second experiment is devoted to studying the behaviour
of PCSSL when the correct model assumption is not fulfilled,
that is, when there is not enough unlabelled data to make a
good estimation of the mixture density. To do so, we simulate
that an incorrect model is obtained by a simple mechanism:
the learnt model is also a K univariate Gaussian identifiable
mixture components with unit variances and whose means are
separated by a fixed factor δ. The class priors of this problem
are also equiprobable. However, it is shifted a υ factor to
the left. In this setting, υ varies in an arithmetic progression
with a fixed difference of 0.25 from 0 to 5. Figure 5 sums
up the behaviour of PCSSL for K = 3 and δ = 2.5 (similar
behaviours are found for different configurations). There, the
black curve represents the correct model (υ = 0), the grey
curves correspond to different values of υ > 0 (lower lines
represent lower values of υ), and the horizontal dashed line is
eB . As can be seen, when this assumption does not hold, eB
can no be reached. When there is a slight difference among the
models, reasonable performance can still be achieved, and the
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labelled data exponentially reduces the probability of error up
to a difference ε between the asymptotic value of PCSSL and
eB [8]. This asymptotic value coincides with the unsupervised
MLE, discussed in [15]. However, when υ grows, the reduction
displays a more linear behaviour and the difference ε becomes
higher. At the extreme, here υ = 5, the probability of error,
practically remains constant in l. This means that, in extreme
cases of model misspecification, Pe(l, u),∀l, u ∼ (K−1)/K,
i.e. the use of the labelled data does not reduce the probability
of error [4] [15].

IX. REMARKS ON THE PROBLEM-SOLVING IN
SEMI-SUPERVISED LEARNING AND OPEN CHALLENGES

Although our main aim is to theoretically study the prob-
ability of error in the multi-class scenario, we want not only
to discuss the potential impact of the theories presented in
the designing of new practical learning algorithms, but also
some challenges appearing in both theoretical and practical
SSL scenarios. Thus, imagine we want to face a real-world
problem using the theoretical advances presented in this paper.
There, we basically face three different key questions:
1) How much unlabelled data should we gather? Through-
out the paper, we highlight the importance of the labelled
records; if the correct assumption is met, they always help
in making the labelled examples to reduce the probability of
error faster than in supervised learning [4]. When u = ∞, the
generative model can almost surely be recovered, therefore,
the correct model assumption is met. However, in practical
SSL, u is always finite. Moreover, there are also generative
models which are not identifiable or, even, they do not follow
mixture densities. For these practical cases, more general
assumptions are used in order to support that the correct model
can be learned. The assumptions are the following: smoothness
assumption, cluster assumption and manifold assumption9 [3].
However, these assumptions are hard to check in practise. They
can only be tested by a trial-and-error procedure. If these
assumptions are not met, the use of unlabelled data cannot
guarantee any significant advantages over learning a purely
supervised learning problem [23], so SSL techniques are not
a good choice to solve the problem. In the opposite case,
unlabelled data may help the performance of the classifier.
There, we recommend the use of as much unlabelled data
available so that a solid estimation of the generative model can
be obtained by the learning algorithm and the correct model
assumption can be met. Provided we have a good estimation
of the model we can overtake, or even mitigate, the problems
shown in the second experiment (incorrect model ass.). We
emphasise that the problem of meeting the correct model
assumption is still a challenging crucial issue. Another possible
challenge for future work regarding the unlabelled data could
be solved by [8], but assuming the correct model: Is there any
number beyond which any extra additions of unlabelled data
do not decrease the probability of error? In other words, which

9Smoothness assumption: Points which are close to each other are likely
to share a label. Cluster assumption: The data tend to form discrete clusters,
and points in the same cluster are more likely to share a label. Manifold
assumption: The data lie approximately on a manifold of much lower
dimension than the input space.

real number, in practise, corresponds to the infinite number of
unlabelled records, broadly used in theoretical works.
2) How much labelled data is required? In order to avoid
making assumptions about the generative model, when the
labelled data are neither expensive nor difficult to obtain,
we strongly believe that supervised learning techniques are
more appropriate. In the opposite case, if the correct model
assumption is met, we have proved that, in general, eB is never
achieved for labelled sets with a cardinality lower than lK as
expressed in Theorem 3. This holds true independently of the
degree of imbalance and the degree of intersection among the
components. Therefore, a higher number of labelled records
must be collected. However, when the degree of imbalance
grows, more labelled are required for the same purpose (lK
for non-equiprobable priors). Analogously, for problems with
a high intersection, the decrease of the probability of error
is slower and, although lK expects that eB can be reached,
a much higher number of labelled data is probably required
to reach it. So, we can conclude that this question is still a
challenging issue. For this reason, we think that it is interesting
to, in the future, propose sample complexities for l, not only on
the unbalanced degree of the priors, but also on the complexity
and dimensionality of the feature space. Sample complexities
seem to be crucial in SSL, where labelled data are scarce.
3) Which SSL learning procedure can be used? In cases
where the family of the generative model is known and the
number of unlabelled examples is enough to obtain a good
estimation, Algorithm 2 can be directly applied to the problem.
There, both PCSSL and Voting [9] can be used as learning
procedures. However, PCSSL seems to be a more appropriate
choice, not only due to its theoretical properties, but also for
matching the time complexity of Voting. On the contrary, when
the family of the generative model is unknown, we cannot use
the generative densities. In those cases, we can use the theoret-
ical advances of this paper to design a practical algorithm for
Stage 2. For problems with linear decision boundaries, such
as the Gaussian classification of the experiments, a simple
procedure for determining the components can be proposed
based on the nearest-centroid classifier [24]. However, instead
of classifying the data, the labelled samples can be used to
determine the label of the centroids. Formally, by sphering
each centroid and classifying it according to the class values of
the labelled data in that sphered space. In a manner analogous
to the theoretical methodology proposed in this paper, in
this very case, we can also follow a Voting methodology by
counting the majority class of labelled data in the sphered
space or the PCSSL, determining the minimum distance in the
possible permutations. This can be another interesting potential
future work; proposing practical learning procedures for both
linear and non-linear decision boundaries. Finally, and within
this framework, it could be also interesting to investigate a
competitive, or even optimal, procedure to correctly specify
the classifier, using labelled data, when the correct model
assumption is not met, similarly to [8] and [9].

X. CONCLUSION

In this paper, we perform a study on the SSL multi-class
framework, since most of the works deal with just binary
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problems [1] [2]. For that reason, we take it a step further by
extending the work of Castelli and Cover [1] [2] to the multi-
class paradigm. Particularly, we consider the key problem in
SSL of classifying an unseen instance x(0) into one of K
different classes, using a training dataset composed of l la-
belled records and u = ∞ unlabelled examples. However, the
previous studies do not straightforwardly work for multi-class
problems, so, in this paper, we make three main contributions:
(i) PCSSL, an optimal theoretical multi-class learning algorithm
for SSL problems, is proposed. (ii) We investigate the expected
minimum number, lK , of labelled data needed to determine the
K decision regions. (iii) We study the optimal probability of
error when the binary constraint is relaxed, concluding that
labelled data exponentially reduces the probability of error. A
discussion on the impact of our proposals in solving real-world
problems finalises the paper.
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1 Appendix A. Mathematical proofs

This appendix provides the mathematical proofs of the theoretical results in our paper
“Semi-supervised multi-class classification problems with scarcity of labelled
data: A theoretical study”

1.1 Theorem 1

Theorem 1. (Probability of error with no labelled data)1 The probability of error of
classifying a new sample (x(0), c(0)) of a K-class problem with any classifier learnt with no
labelled examples and any u ≥ 0 number of unlabelled samples coincides with the probability
of error random classifier. In both cases, it remains constant to

Pe(0, u) = e0 =
(K − 1)

K
, ∀u ≥ 0. (1)

Proof.
- When f(x) is unknown: When there are not enough unlabelled records (u <∞) to

determine the mixture density (and its components), the class c(0) of the unseen distance
must be determined by the uniformly random classifier. In such a case, let the event A be
defined as the probability of correctly choosing the right class for c(0) over a choice of K
different classes; P (A) = 1/K. Then, the probability of committing an error is

Pe(0, u) = 1− P (A) =
(K − 1)

K
,∀u <∞.

- When f(x) is known: With ∞ unlabelled examples, the mixture is identifiable up
to a permutation π of the components. Let the observation x(0) be drawn from the j-th
decomposed component, fπ(j)(·), i the unknown true label such that πc(j) = i, and let us
define the following two events:

B1 , {ηπc(j)fπc(j)(x
(0))−max

j′ 6=j
ηπc(j′)fπc(j′)(x

(0)) > 0}

B2 , {ηπc(j)fπc(j)(x
(0))−max

j′ 6=j
ηπc(j′)fπc(j′)(x

(0)) < 0}

B1 is the event which represents achieving a correct answer in the application of the
Bayes decision rule over x(0) and B2 represents the opposite- By the definition, P (B1) =
(1− eB) and P (B2) = eB. Then, the probability of error is

Pe(0,∞) = P (ĉ(0) 6= c(0)) = 1− P (ĉ(0) = c(0)) =

= 1− P (ĉ(0) = c(0)|B1)P (B1)− P (ĉ(0) = c(0)|B2)P (B2) =
= 1− P (πa)(1− eB)− P (πa)eB.

1This holds true independently of the value of the class priors η1, . . . , ηK .
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where πa and πb are two permutations such that πa(j) = i and πb(j
′) = i.As no labelled

data are provided to determine the correspondence π, it has to be randomly chosen. Then,
the probability of choosing those permutations is P (πa) = P (πb) = (K − 1)!/K! = 1/K.
After substituting these probabilities in the previous formula and after some algebra, we
obtain the same expression:

Pe(0,∞) =
(K − 1)

K
.

1.2 Theorem 2

Theorem 2. (Optimality of PCSSL) PCSSL is an optimum learning procedure for Stage
2 of Algorithm 2.

Proof. The proof of this theorem can be found in the manuscript.

1.3 Theorem 3

Theorem 3. (Minimum number of labelled examples) Let the family of mixtures F
be linearly independent. Let K ≤ ∞ be the number of classes and the number of mixture
components. Let the class priors be equiprobable, i.e. ∀i, ηi = η = 1/K. Then, the expected
minimum number of labelled instances needed to uniquely determine the class labels of the
K components of a mixture is :

lK =





1 if K = 2
K−1∑

j=2

(−1)j
(
K
j

)
(j − 1)× if K > 2

×
(K − j

K

)(K−2)(
K − 1 +

(K − j)

j

)
(2)

Proof. The proof for K = 2 can be found in [1]. For higher values of K, let LK be a
random variable representing the minimum number of instances needed to obtain examples
of (K − 1) different classes. Assuming equiprobability, P (LK = l), for l ≥ (K − 1), is a
fraction whose numerator is the number of favourable cases and whose denominator is the
number of all possible cases:

P (LK = l) =
PKS2(l − 1,K − 2)

PRK,l
,

where PK is the number of permutations of K elements, S2(·, ·) is the Stirling number of
second kind, and PRK,l is the number of l-permutations of K elements with repetition
(formulae in [2]). Then, we calculate the expectation of the random variable LK in l
as lK = E[LK ] =

∑∞
l=K−1 lP (LK = l). After some algebra, we reach equation (2), for

K > 2.
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1.4 Theorem 4

Theorem 4. (Minimum labelled examples for ternary problems) Let f(x) be iden-
tifiable and let K = 3 be the number of classes with priors ηi > 0,

∑3
i=1 ηi = 1. Then,

the expected minimum number of labelled instances needed to uniquely determine the class
labels of the components of the mixture is

l3 = 2 +
3∑

i=1

η2i
1− ηi

. (3)

Proof. Let L3 be a random variable representing the minimum number of instances needed
to obtain two different labels. Assuming each class ci has a prior ηi and

∑3
i=1 ηi = 1,

P (L3 = l) has the following form:

P (L3 = l) = η
(l−1)
1 (1− η1) + η

(l−1)
2 (1− η2) + η

(l−1)
3 (1− η3).

Which stands for the probability of having (l− 1) labelled examples of one class, and just
one example of one of the two other classes. Then, we calculate the expectation of L3 in l.
After some algebra, we reach the equation (3).

1.5 Lemma 1

Lemma 1. Let L be a labelled subset distributed according to a generative model f(x, c). Let
the marginal of f(x, c) on x be an identifiable mixture density f(x) =

∑K
i=1 ηifi(x) which

represents the distribution of the infinite unlabelled records. Let π be the correspondence
returned by the learning procedure Π(·), (Stage 2 of Algorithm 2), and let Rπ−1(i) be defined
as

Rπ−1(i) = {x : ηπ−1(i)fπ−1(i)(x)−max
i′ 6=i

ηπ−1(i′)fπ−1(i′)(x) > 0}.

Then, the probability of committing an error in classifying an unseen instance with the
BDR after assuming the correspondence π is

P (e|π) = 1−
K∑

i=1

ηi

∫

Rπ−1(i)

fi(x)dx. (4)

Proof. According to Algorithm 2, a correct prediction occurs depending on whether the
optimal classification rule, which assumes a learnt correspondence π, over the unseen in-
stance x, hits the real class value (ci). If the region where fi(x) is maximum is Rj (it holds
that i = πc(j)), there are only two cases in which the real class is correctly predicted:

Case 1: if x ∈ Rj ∧ π(j) = i
Case 2: if x ∈ Rj′ 6=j ∧ π(j′) = i
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As can be seen, in both cases, the region to where x belongs can be named as π−1(i),
which is equal to j in Case 1, and to j′ in Case 2. Therefore, the probability of correctly
classifying x is just the probability of x being in the region labelled as i, i.e. Rπ−1(i) and
this formula can be easily generalised to all the possible values of i in the range {1, . . . ,K}
as:

P (ē|π) =
K∑

i=1

ηi

∫

Rπ−1(i)

fi(x)dx,

After that we can reach formula (4) taking into account that the probability of error is the
opposite to the probability of a correct classification, P (ē|π) = 1− P (e|π).

1.6 Theorem 5

Theorem 5. (Probability of error) The probability of error of classifying an unseen
instance in the multi-class scenario, given l labelled records and infinite unlabelled records,
is:

Pe(l,∞) =
∑

π∈SK

P (Πl = π)P (e|π), (5)

where P (Πl = π) denotes the probability of choosing, using the learning procedure Π(·), the
permutation π given l labelled data (Stage 2 of Algorithm 2) and P (e|π) the probability of
misclassification with the BDR after assuming the correspondence π (Stage 3 of Algorithm
2)2. Finally, SK represents the set of all possible permutations of size K representing all
the correspondences between labels and components.

Proof. The mathematical proof of this theorem is in the manuscript.

1.7 Theorem 6

Theorem 6. (Probability of error with zero Bayes error) Let the mixture density
f(x) be an identifiable mixture. Let K be the number of classes and the number of mixture
components. Let the class priors be equiprobable, i.e. ∀i, ηi = η = 1

K . Then, the probability
of error Pe(l,∞), given l > 0 labelled records and infinite unlabelled records when the
components are mutually disjoint is given by:

Pe(l,∞) =

min(K−2,l)∑

z=1

PK,zS2(l, z)

PRK,l

(
1− z + 1

K

)
, (6)

where PK,z and PRK,l are the number of z-permutations without repetition and l-permutations
with repetition of K, respectively. S2(l, z) is the Stirling number of 2nd kind[2].

2Note that eq. (5) fits with the one proposed for binary problems in [1] (pp. 107, eq. (7)): P (Πl =
πc)P (e|πc) + P (Πl = π̄c)P (e|π̄c).
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Proof. To determine the probability of error, we just need to calculate the probability of
finding z ≤ min(K, l) different labels in l. When z ≥ (K − 1) (see definition of lK) we
reach the real model, so, the probability of error is eB, which is zero. Therefore, we can
define the probability as follows:

Pe(l,∞) =

min(K−2,l)∑

z=1

P (Ψl = z)P (e|z), (7)

where Ψl is a random variable representing the number of different labels, z in l and P (e|z)
is the probability of committing a classification error knowing the real correspondence of
z labels with their components.

Regarding P (Ψl = z), as all the priors are equiprobable; it is a fraction whose numerator
is the number of selecting just z classes of K multiplied by the way of ordering them, and
whose denominator is the number of all possible cases:

P (Ψl = z) =
PK,zS2(l, z)

PRK,l
.

Then, P (e|z) can be decomposed into the sum of the probability of misclassifying when we
find a particular label among the labelled subset and the probability of misclassifying it
when we do not have that label to identify a mixture: P (e|z) = Pr{i ∈ z}×Pr{e|i}+Pr{i 6∈
z}×Pr{e|i}, where {i ∈ z} corresponds to the event that the unseen instance has the same
label as one of the labels that appears in the labelled subset, {i 6∈ z} is the opposite, and
Pr{e|i} is the probability of misclassifying an instance of class i. By solving the previous
formula, we obtain that P (e|z) is equal to

z

K
× 0 +

K − z

K
× (K − z)!− (K − z − 1)!

(K − z)!
= 1− z + 1

K
. (8)

Finally, by substituting the calculations of P (Ψl = z) and P (e|z) in equation (7), we reach
formula (6).

1.8 Corollary 1

Corollary 1. When the components are mutually disjoint, Pe(l,∞) converges to 0 expo-
nentially fast in the sense of that

o

((K − 1

K

)l)
. (9)

Proof. It is trivial to calculate the convergence order from the previous theorem.

6



1.9 Theorem 7

Theorem 7. (Upper bound of the error) When the components are not mutually
disjoint and all the priors are equiprobable, the optimal probability of error of a model
composed by K different identifiable mixture components is upper bounded by

Pe(l,∞)− eB ≤ 2 exp
{−lλ2

2K

}
, (10)

where λ ∈ (0, 1] depends on the degree of intersection among the components of the mixture
distribution and is defined by

λ =
1

K
min
j

{∫

Rj

fi(x)dx−max
z 6=i

∫

Rj

fz(x)dx
}
. (11)

Proof. Let the Voting learning procedure [3] be defined as the function Σ : L→ SK , where
L ∈ L is the labelled set and π̂v ∈ SK is the permutation of components returned by
Voting. In [3], the excess of risk of the Voting procedure, (ε(Σ)), is defined as

EL

[ K∑

j=1

∫

Rj

(
ηπc(j)fπc(j)(x)− ηπ̂v(j)fπ̂v(j)(x)

)
dx
]
, (12)

where EL[·] is the expectation with respect to the labelled sample and, πc(j) and π̂v(j)
correspond to the true class and the Voting bet of the j-th component, respectively. In
that paper, they prove that ε(Σ) ≤ 2 exp{−lλ2/2K}.

Then, we just need to prove that Pe(l,∞) − eB ≤ ε(Σl). By means of the linearity
property of both the integral and the expectation over equation (12), we reach

EL

[ K∑

j=1

∫

Rj

ηπc(j)fπc(j)(x)dx
]
− EL

[ K∑

j=1

∫

Rj

ηπ̂v(j)fπ̂v(j)(x)dx
]
.

There, the first term is equal to (1− eB) since πc(j) = i (equation (4)). Then, the second
is equal to

∫
L
(1− P (e|L))P (L)dL (where Voting is implicitly contained), which, following

the same reasoning as in the proof of theorem 5, it is equal to

P V
e (l,∞) =

∑

π∈SK

P (Σl = π)P (e|π).

Note that, here, P V
e (l,∞) is used instead of Pe(l,∞) to denote that the Voting classifier is

used, not the optimal one. Then, by Theorem 2 (P V
e (l,∞) ≥ Pe(l,∞), ∀l), we can reach

the conclusion of equation (10); Pe(l,∞) is upper bounded by ε(Σ), which, in turn, is upper
bounded by 2 exp{−lλ2/2K}.

7



1.10 Corollary 2

Corollary 2. The probability of error, Pe(l,∞), decreases to eB, at least, exponentially
fast in the number of labelled data.

Proof. It is trivial to calculate the convergence order from Theorem 7 of the manuscript.

1.11 Theorem 8

Lemma 2. Assuming all the priors to be equiprobable and that the model is a Gaussian
identifiable mixture of K components with the same variance (σ), let δM be the largest
distance between the means of two components and let Φ(·) be the CDF of a standard
Gaussian distribution. Then, it holds that

min
π
P (Πl = π) ≥

(
1− Φ

(δM
2σ

√
l
))(K!−1)

. (13)

Proof. First, P (Πl = π) can be rewritten as:

∑

(l1,...,lK)∈Gl
K

P ((l1, . . . , lK))× P (Π((l1, . . . , lK)) = π), (14)

which is the decomposition of the probability in terms of the number of labelled examples of
each class ci in l, i.e. li,∀ 1 ≤ i ≤ K. There, P ((l1, . . . , lK)) is the probability of having the
distribution of labelled samples (l1, . . . , lK) in l, P (Π((l1, . . . , lk)) = π) is the probability
of obtaining the permutation π with a determined distribution of labelled samples. Gl

K is
the set containing all possible distributions of labels defined as the set containing all the
integer partitions of l in exactly K addenda, but including zeros and taking into account
the order of addenda. Formally, it is defined as

Gl
K , {(γ1, γ2, . . . , γK)|

K∑

z=1

γz = l ∧ γz ∈ {0, 1, . . . , l},∀z}.

Then, we define P (Π((l1, . . . , lk)) = π) in terms of the components of the mixture as

P




K∏

i=1

li∏

a=1

ηfπ−1(i)(xa)

argmax
τ 6=π

{
K∏

i=1

li∏

a=1

ηfτ−1(i)(xa)}
≥ 1



,

where fj(x) is the density function of the component j. For simplicity of notation, from
now on, we rename the numerator as f lπ and the denominator as argmaxτ 6=π{f lτ}.
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Then, by defining the permutation πD as the furthest permutation to πc, i.e. πD =
argmaxπ

∑K
i=1 |µπ−1(i) − µπ−1

c (i)|, it holds that

min
π
P
(

f lπ
argmax

τ 6=π
{f lτ}

≥ 1
)
= P

( f lπD

arg max
τ 6=πD

{f lτ}
≥ 1
)
. (15)

As there is no independency between the permutations, we cannot express the second term
of the formula (15) as a product of πD being greater than or equal to any other permutation
τ . For that reason, we use the chain rule to decompose the formula in such a way that the
first term of the chain has, ∀l > 0, the lowest probability:

P
( f lπD

argmaxτ 6=πD
{f lτ}

≥ 1
)
= P

(
f lπD

≥ f lπc

)
×

K!∏

j=2

P
(
f lπD

≥ f lπj
|f lπD

≥ f lπc
,

j−1⋂

m=2

f lπD
≥ f lπm

)
.

(16)
Since we assume a mixture of Gaussian components (θ = {µ1, . . . , µK , σ}), doing some
calculations over the first term of the chain in formula (16) we reach the conclusion that
it is equal to

P
(
f lπD

≥ f lπc

)
= 1− Φ


 1

2σ

√√√√
K∑

i=1

li(µπ−1
D (i) − µπ−1

c (i))
2




and bounded to

≥ 1− Φ


 1

2σ

√√√√
K∑

i=1

liδ2M

)
= 1− Φ

(δM
2σ

√
l


 .

(17)

where δM = max{(µπ−1
D (i) − µπ−1

c (i))
2} is the largest distance between two means. As

equation (17) is, by definition of πD, the lowest term in the product of equation (16), we
can lower bound it by substituting the product by equation (17) to the (K!− 1) (number
of terms in the chain rule) power. Then, substituting this value in equation (14), we reach
formula (13): minπ P (Πl = π) is greater than or equal to

(
1− Φ

(δM
2σ

√
l
))(K!−1)

1︷ ︸︸ ︷∑

Gl
K

P ((l1, . . . , lk) . (18)

Theorem 8. (Lower bound of the error) Assuming that the model is a Gaussian
identifiable mixture of K components with the same variance (σ) and equiprobable priors.
Let δM be the largest distance between the means of two components and Q(·) a polynomial
of degree 3. Then, the probability of error for non-disjoint components is lower bounded by

Pe(l,∞)− eB ≥ K!(1− eB)− (K − 1)!
(
1 + exp{Q( δM2σ

√
l)}
)(K!−1)

. (19)
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Proof. First, we decompose formula (10) of the main manuscript as follows:

Pe(l,∞) = P (Πl = πc)P (e|πc)+
+

∑

π∈SK\πc

P (Πl = π)P (e|π). (20)

It can be easily seen that, when l increases, whilst P (Πl = πc) grows to 1, the remaining
P (Πl = π), ∀π 6= πc decrease to 0.

Since P (e|πc) is, by definition, equal to eB and P (Πl = πc) = 1−∑π∈SK\πc
P (Πl = π),

by just substituting equation (13) of the previous lemma in (20) and subtracting eB in
both terms, we can lower bound the error (Pe(l,∞)− eB) by

(
1− Φ

(δM
2σ

√
l
))(K!−1)

(1− eB)
∑

π∈SK\πc

P (e|π). (21)

There, we start by calculating
∑

π∈SK\πc
P (e|π). Note that:

∑

π∈SK\πc

P (e|π) =
∑

π∈SK

P (e|π)− eB (22)

∑

π∈SK

P (e|π) = K!−
∑

π∈SK

P (e|π) (23)

By substituting formula (9) of Lemma 1 (in the manuscript) in equation (23), we obtain

∑

π∈SK

P (e|π) = K!−
∑

π∈SK

K∑

i=1

1

K

∫

Rπ−1(i)

fi(x)dx (24)

By distributive property of addition and the fact that (K − 1)! permutations of SK share
the same element in the same position, formula (24) can be rewritten as

∑

π∈SK

P (e|π) = K!− (K − 1)!

1︷ ︸︸ ︷
1

K

K∑

i=1

K∑

j=1

∫

Rj

fi(x)dx,

where j = π−1(i). Then, we can substitute the result in formula (22) obtaining

∑

π∈SK\πc

P (e|π) = K!− (K − 1)!− eB. (25)

Secondly, as there is no closed form expression for the normal cumulative density function,
we approximate Φ(x) by an inverse exponential as proposed by Page in [4]:

Φ(x) ∼ ΦPage(x) = 1− (1 + exp{Q(x)})−1, (26)
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where Q(x) = 1.5976x + 0.070565992x3 and the absolute error ε = |Φ(x) − ΦPage(x)| ≤
1.4 × 10−4, ∀x ≥ 0. Then, by substituting the formulas (26) and (25) in (21) and after
some algebra, we reach formula (19).
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2 Appendix B. Supplementary data for the empirical study

The results in this supplementary data for K = {4, 5, 6} show a similar style to that
presented in the manuscript for K = 3. The generative model and the strategies used are
the same as in Section VIII (manuscript). However, in these problems, we set lmax = 50.
Whilst Figure 1, Figure 3 and Figure 5 shows the excess of risk of both Voting and PCSSL

for the values of K = {4, 5, 6}, respectively, Figure 2, Figure 4 and Figure 6 present the
absolute differences between the probability of error of both learning procedures for the
respective values of K = {4, 5, 6}. In each figure, the subfigure (a) stands for complex
problems (δ = 0.25), subfigure (b) for problems showing medium complexity (δ = 1)
and subfigure (c) shows the performance for easy problems showing a small degree of
intersection among the components (δ = 5).

(a) Complex (δ = 0.25). (b) Medium (δ = 1). (c) Easy (δ = 5)

Figure 1: Probability of error of Voting [3] (upper) and PCSSL (lower curve) for K = 4
(lK = 4.33).

(a) Complex (δ = 0.25). (b) Medium (δ = 1). (c) Easy (δ = 5)

Figure 2: Absolute differences between Voting [3] and PCSSL, i.e. P
V
e (l,∞) − PP

e (l,∞),
for K = 4.
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(a) Complex (δ = 0.25). (b) Medium (δ = 1). (c) Easy (δ = 5)

Figure 3: Probability of error of Voting [3] (upper) and PCSSL (lower curve) for K = 5
(lK = 6.42).

(a) Complex (δ = 0.25). (b) Medium (δ = 1). (c) Easy (δ = 5)

Figure 4: Absolute differences between Voting [3] and PCSSL, i.e. P
V
e (l,∞) − PP

e (l,∞),
for K = 5.

(a) Complex (δ = 0.25). (b) Medium (δ = 1). (c) Easy (δ = 5)

Figure 5: Probability of error of Voting [3] (upper) and PCSSL (lower curve) for K = 6
(lK = 8.7).

13



(a) Complex (δ = 0.25). (b) Medium (δ = 1). (c) Easy (δ = 5)

Figure 6: Absolute differences between Voting [3] and PCSSL, i.e. P
V
e (l,∞) − PP

e (l,∞),
for K = 6.
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3 Appendix C. Source code

The Mathematica package [5] available to download from our website contains the formulae
presented in the manuscript. Besides, it also contains some experiments used to study the
behaviour of the probability of error of both Voting [3] and PCSSL learning algorithms.

3.1 lk-related functions

1) The function LKEQ[K] calculates the lK value for a problem with K equiprobable clases.
——LKEQ[K] ———————————————————————————————–

Input parameters:
K Number of classes.

Output:
A real number, lk.

—————————————————————————————————————–
2) The function LKEQPlot[maxK] prints a figure of the lK values for problems of {1..maxK}
equiprobable classes. The Figure 2a of the manuscript has been created with this function.
——LKEQPlot[maxK] ————————————————————————————

Input parameters:
maxK Number of classes.

Output:
Plot in the standard output.

—————————————————————————————————————–
3) LKPriors[priors, nRep] use a Monte Carlo method with nRep repetitions to approxi-
mate lk for a problem with Length[priors] non-equiprobable priors given by the variable
priors.
——LKPriors[priors, nRep] ———————————————————————–

Input parameters:
priors List containing K class priors.
nRep Number of repetitions.

Output:
A real number, lk.

—————————————————————————————————————–
4) LKSampling[K, samplesize, nRep] applies LKPriors[priors, nRep] with nRep rep-
etitions over a population of class priors of size samplesize which are generated from a
Dirichlet distribution with all the alpha hyper-parameters equal to 1.
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——LKSampling[K, samplesize, nRep] ———————————————————

Input parameters:
K Number of classes.

samplesize Population size.
nRep Number of repetitions for LKPriors[...].

Output:
A list of lk, one per each sample of the population.

—————————————————————————————————————–
5) The eq. (8) of Theorem 4 corresponds to L3[n1,n2,n3]. It calculates l3 for a ternary
problem with priors n1, n2 and n3.
——L3[n1,n2,n3] ————————————————————————————–

Input parameters:
n1 Class prior of the class c1
n2 Class prior of the class c2
n3 Class prior of the class c3

Output:
A real number, l3.

—————————————————————————————————————–
6) L3Plot[] plots L3[n1,n2,n3] assuming that n1= η1 and n2, n3= (1− η1)/(K − 1).
——L3Plot[] ———————————————————————————————

Input parameters:
−−

Output:
Plot in the standard output.

—————————————————————————————————————–

3.2 Functions related to the probability of error

7) The function ZeroEB[K,maxL] calculates the probability of error for l = 0..maxL for a
K-class problem when there is no intersection among the components.
——ZeroEB[K,maxL] ————————————————————————————

Input parameters:
K Number of classes.

maxL Maximum number of labelled examples.
Output:

Summary of results in the standard output.

—————————————————————————————————————–
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8) MCPCSSL[K,distance,sigma,maxL,nRep] uses a Monte Carlo method with nRep rep-
etitions to approximate Pe(l,∞) for l = {0..maxL} assuming a mixture of K Gaussian.
distance represents the distance between the adjacent means and sigma is the variance.
——MCPCSSL[K,distance,sigma,maxL,nRep] —————————————————

Input parameters:
K Number of classes.

distance Distance between the means of adjacent components.
sigma Variance of the Gaussian components.
maxL Maximum number of labelled examples.
nRep Number of repetitions for the Monte Carlo method.

Output:
Summary of results in the standard output.

—————————————————————————————————————–
9) The function MCPCSSLBiased[K,distance,sigma,maxL,bias, nRep] uses a Monte Carlo
method with nRep repetitions to approximate Pe(l,∞) for l = {0..maxL} assuming a a gen-
erative model composed of a mixture of K Gaussian. distance represents the distance
between the adjacent means and sigma is the variance. In this simulation the learnt model
is also a mixture of Gaussian components, but they are shifted a factor bias to the right,
i.e. µ̂i−µi = bias. This function corresponds to the second experiment of the manuscript.
——MCPCSSLBiased[K,distance,sigma,maxL,bias, nRep] ——————————–

Input parameters:
K Number of classes.

distance Distance between the means of adjacent components.
sigma Variance of the Gaussian components.
maxL Maximum number of labelled examples.
bias Bias between the learnt and the generative models.
nRep Number of repetitions for the Monte Carlo method.

Output:
Summary of results in the standard output.

—————————————————————————————————————–
10) MCVOTING[K,distance,sigma,maxL,bias, nRep] uses a Monte Carlo method with
nRep repetitions to approximate the probability of error of Voting for l = {0..maxL} as-
suming a mixture of K Gaussian. distance represents the distance between the adjacent
means and sigma is the variance.
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——MCVOTING[K,distance,sigma,maxL,bias, nRep]——————————————

Input parameters:
K Number of classes.

distance Distance between the means of adjacent components.
sigma Variance of the Gaussian components.
maxL Maximum number of labelled examples.
nRep Number of repetitions for the Monte Carlo method.

Output:
Summary of results in the standard output.

—————————————————————————————————————–
11) MCComparison[K,distance,sigma,maxL,bias, nRep] uses a Monte Carlo method
with nRep repetitions to approximate the probability of error of both PCSSL and Voting
for l = {0..maxL} assuming a mixture of K Gaussian. distance represents the distance
between the adjacent means and sigma is the variance.
——MCComparison[K,distance,sigma,maxL,bias, nRep]———————————–

Input parameters:
K Number of classes.

distance Distance between the means of adjacent components.
sigma Variance of the Gaussian components.
maxL Maximum number of labelled examples.
nRep Number of repetitions for the Monte Carlo method.

Output:
Summary of results in the standard output.

—————————————————————————————————————–

3.3 Examples of the executions of the package

Figure 7 and Figure 8 shows two executions of the package to calculate lK and l3.
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Figure 7: An example of the use of the lk-related functions.
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Figure 8: An example of the calculation of l3.

Figure 9 shows an example of how, in cases of mutually non-intersecting components,
the probability of error is calculated.
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Figure 9: An execution of ZeroEB[K,maxL].

Whilst Figure 10 shows how the probability of error of PCSSL is calculated with the
Mathematica package, Figure 8 provides an example of the calculation of the probability
of error of PCSSL when the correct model assumption is not met.
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Figure 10: Calculating the optimal probability of error using PCSSL.
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Figure 11: An execution of PCSSL when the correct model assumption is not met.

Then, Figure 12 shows how the probability of error of PCSSL is calculated.
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Figure 12: An example of the execution of the Voting strategy.

Finally, 13 shows an example of how the comparison between both procedures can be
made with the function MCComparison.
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Figure 13: Comparing both learning algorithms using the function MCComparison[...].
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1 Introduction

In many classification problems, there are significant differences among the prob-
abilities of the classes, i.e. the probability of a particular example belonging to
a certain class. In the literature, this situation is known as the class-imbalance
problem (Kubat et al., 1997; Provost et al., 1998; Axelsson, 2000; He and Garcia,
2009; Weiss, 2013; Branco et al., 2016) and it is considered to be a major obstacle
to building competitive classifiers. By competitive classifiers we refer to classifiers
showing not only a low overall classification error, but also a balance between the
prediction powers for both the most and the least probable classes.

Moreover, the investigated class-imbalance problem has somewhat torn apart
the conventional approaches to solve classification problems. In traditional super-
vised learning approaches (Wu et al., 2007), classification accuracy is by far the
most popular numerical performance score due to its theoretical foundations, its
simplicity and its property of being intuitive (Provost et al., 1998). On one hand,
it has been used to guide learning processes due to the fact that most learning
algorithms are designed to asymptotically converge to the behaviour of the Bayes
decision rule (Young and Calvert, 1974), a classifier which is optimal for this score.
On the other hand, this performance score has also been broadly used in the lit-
erature to evaluate the performance of real-world classifiers (Provost et al., 1998).
However, in recent years, the research community has noticed that it is not an
adequate score for problems with extremely skewed class distributions; the least
probable classes have very little impact on the classification accuracy when com-
pared to the most probable classes (Gu et al., 2009). When dealing with highly
unbalanced problems, this implies that (i) traditional learning approaches max-
imising the classification accuracy may produce dummy classifiers which always
predict the most probable classes (Drummond and Holte, 2005), and that (ii) this
performance score is no longer convenient for assessing real-world classifiers since
a high value does not guarantee a fair prediction power for the underrepresented
classes.

In view of this puzzling situation and mainly in binary classification, there
has been significant methodological effort invested not only in determining which
performance scores are the most appropriate to the class-imbalance scenario (Gu
et al., 2009), but also in proposing new learning systems to obtain competitive
classifiers for highly unbalanced classification problems (Fernández et al., 2011;
Wang and Yao, 2012; López et al., 2013). However, little theoretical effort (Weiss,
2004; Drummond and Holte, 2005) has been made in pursuing a complete un-
derstanding of these topics in binary problems, and much less in the multi-class
scenario. Most of the successful proposals are the result of experience, systematic
studies (Japkowicz and Stephen, 2002) or just pure intuition on how special promi-
nence can be given to the least probable classes (Wang and Yao, 2012), rather than
being built on a solid theoretical foundation (He and Garcia, 2009). Table 2, in
Appendix C, summarises the closest studies which can be found in the literature
about the class-imbalance problems and their main differences to this manuscript.
To the best of our knowledge, the following questions are still unanswered in the
literature:

1. Which performance scores are adequate to determine the competitiveness of a
classifier in multi-class unbalanced domains?
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2. Which performance scores (loss functions) are maximised (minimised) in the
most well-known learning solutions designed to deal with skewed classes?

3. Can bounds guaranteeing the competitiveness of a classifier be provided for
certain adequate performance scores?

Thus, in order to shed some theoretical light on the previous three questions, in
this paper, we perform the following three studies:

A first study on determining the adequate performance scores for
class-imbalance scenarios in the multi-class setting. Although this issue
has been long studied in the binary setting (Menon et al., 2013), to the best of our
knowledge, there is still no convention on which performance scores should be used
to assess the performance of the classifiers in multi-class unbalanced scenarios.
Thus, firstly, our main objective is to analyse how different performance scores
behave under a changing multi-class distribution when the Bayes decision rule is
used as a classifier. The usage of this rule is due to the fact that, as it has been long
studied in the literature e.g. (Drummond and Holte, 2005), there is a complete
understanding of the deficiencies of this classifier in this complex scenario. Hence,
this knowledge can be exploited in order to obtain a licit characterisation of the
adequateness of the performance scores; by having a look at the fluctuation of the
values of the performance scores when the class distribution varies, we can devise
which scores are the most appropriate to evaluate the classifiers for unbalanced
domains. However, having differences among the probabilities of the classes is not
the only factor hindering the proposed solutions (López et al., 2013); other factors
such as class-overlapping or the presence of noise data also modify the values
of the performance scores hampering the study of the contribution of the class
distribution to the performance of a learnt classifier. Thus, based on these grounds,
we define a novel controlled framework where these other hindering factors can
be properly cancelled so that the contribution of the class distribution to the
performance scores can be legitimately quantified in isolation. Conclusions show
that the performance scores which are unweighted Hölder means (Bullen, 2003)
with p ≤ 1 among the recalls (Section 2) are the most appropriate to evaluate the
competitiveness of classifiers in unbalanced multi-class problems. In this regard,
misclassifying the least probable classes is highly penalised.

A second study on discovering the performance scores maximised in
the most predominant solutions of the class-imbalance literature. Since
it is known that the typical supervised learning techniques are unable to deal
with the class-imbalance problem (Drummond and Holte, 2005) and given the
large number of publications reporting positive results (Batista et al., 2004; Liu
and Zhou, 2006), we analyse the most common approaches to the class-imbalance
problem, which are easily extensible to the multi-class setting, by assuming that
different performance scores than classification accuracy are maximised in those
solutions. Our main conclusion after analysing data sampling and cost sensitive
learning techniques is that they output classifiers which are maximised for the
unweighted Hölder mean among the recalls with p = 1 (a-mean) and that they
have an asymptotic behaviour close to the Bayes decision rule for an equiprobable
class distribution (an optimal rule for that performance score). Moreover, we also
show that, in scenarios showing skewed class distributions, this rule outperforms
the well-known Bayes decision rule in terms of the values of the adequate scores
detected in the first study. Yet, the usage of any other unweighted Hölder mean
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with p < 1 to define new learning procedures for dealing with unbalance problems
is also appropriate.

A third study on proposing bounds for the performance scores to
determine the competitiveness of multi-class classifiers in unbalanced
domains. For this purpose, we delimit the definition of competitiveness of a given
solution to a classifier having higher recalls than the random classifier in each and
every class. Thus, we can provide two different practical bounds for the values of
the performance scores expressed as unweighted Hölder means among the recalls
with p ∈ R ∪ {+∞,−∞}; a bound for the lowest value of the performance score
ensuring a competitive solution, and a bound for the highest value of the score
indicating an incompetent solution, i.e. the random classifier obtains a better recall
in at least one class value. Here, our conclusions are also consistent with the first
study; since the distance between both bounds decreases along with p (rapidly for
p ≤ 1), using Hölder means with p ≤ 1 is presumed to be adequate for determining
the competitiveness of a classifier. In fact, both bounds coincide in p = −∞. These
bounds may ease the interpretations made by the machine learning practitioners
when comparing different multi-class classifiers in unbalanced domains.

The rest of the paper is organised as follows: First, Section 2 introduces the
general definitions and notation. Then, Section 3, Section 4, and Section 5 expose
the above mentioned first, second, and third studies, respectively. Section 6 dis-
cusses the limitations of our research and discusses the potential lines of future
work. Finally, Section 7 sums up the paper.

2 General Definitions and Notation

2.1 Hölder Means

As we make use of the Hölder means (Bullen, 2003), a.k.a. generalised means or
power means, throughout the whole paper, we start by defining them as follows:

Definition 1 Let a = (a1, . . . , an) be a series of n positive real numbers with
non-negative weights ζ = (ζ1, . . . , ζn) s.t.

∑
i ζi = 1, then, a Hölder mean is a

mean of the form

Mp(a, ζ) =

(
n∑

i=1

ζia
p
i

) 1
p

. (1)

Here, p ∈ R ∪ {+∞,−∞} is an affinely extended real number. This family of
functions has several interesting properties:

1. Hölder mean inequality: Mp(a, ζ) ≥ Mq(a, ζ) if p > q. The equality only
holds for the case of ai = aj , ∀i, j.

2. Inclusion of the Pythagorean means1: The arithmetic mean corresponds
to the case p = 1, the harmonic mean to p = −1, and the geometric mean is
the limit of mean with an exponent p approaching to 0, i.e. limp→0Mp(a, ζ).

3. Extremes: limp→+∞Mp(a, ζ) = max{ζ1a1, . . . , ζnan} and
limp→−∞Mp(a, ζ) = min{ζ1a1, . . . , ζnan}.

1 The classical definition of these means can be found in Table 1.
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2.2 Unbalanced K-class Classification Problem

Let γK be a K-class classification problem with a generative model given by the
generalised joint probability density function

ρ(x, c|θ) = p(c)ρ(x|c, θ). (2)

Under the assumption of belonging to a given family of probability distribu-
tions, let ρ(x|c, θ) be the conditional distribution of the feature space and let
θ = (θ1, θ2, . . . , θK) stand for the set of the model parameters which unambigu-
ously determine the conditional probability distributions. Here, each θi represents
the set of parameters for the distribution of each class ci. Also, let p(c) be the
distribution of the class probabilities. For simplicity of notation, henceforth, we
denote p(c) by η = (η1, η2, . . . , ηK), where each ηi = p(ci) is the probability of
the categorical class ci. Additionally, for convenience, hereafter, the special case of
equiprobability, i.e. ∀i, ηi = 1/K, is denoted by e. Therefore, according to (He and
Garcia, 2009), a K-class classification problem is balanced if it exhibits a uniform
class distribution. Otherwise, it is considered to be unbalanced. Formally,

γK is balanced ⇐⇒ η = e.

When the model is unbalanced, in the multi-class scenario (K > 2), we can dif-
ferentiate two major types of class-imbalance (Wang and Yao, 2012; Ortigosa-
Hernández et al., 2017): (i) multi-majority unbalanced problems, i.e. when most of
the classes have a higher probability than equiprobability, and (ii) multi-minority
unbalanced problems, i.e. when most of the class probabilities are below the
equiprobability. Formally, let {M,m} be a partition of the set {1, . . . ,K} such that,
∀i ∈ M, ηi ≥ 1/K (overrepresented) and ∀j ∈ m, ηj < 1/K (underrepresented),
then

γK is multi-majority ⇐⇒ |M| ≥ K/2, and γK is multi-minority ⇐⇒ |m| > K/2.

By means of this definition, it can be presumed that having a balanced scenario
is a hard condition to ensure in real-world problems. Here, η usually differs from
equiprobability. For that reason, it is imperative to theoretically study not only the
impact of the class distribution on the competitiveness of the proposed solutions
and which performance scores are able to measure that impact, but also define
more adequate learning systems which can effectively learn from highly skewed
class distributions, i.e. ∃i s.t. (ηi ∼ 1 ∨ ηi ∼ 0).

2.3 Traditional Supervised Learning Approaches

Solving a K-class classification problem, regardless of its imbalance extent, is
equivalent to learning a function Ψ , known as a classifier, that maps a vector
of observations x, drawn from the generative function of eq. (2), into a categorical
class ci. In the supervised learning approach, the learning process is carried out by
means of an optimisation algorithm, which provided with some labelled training
data, drawn also from eq. (2), attempts to infer a function Ψ that minimises a
certain loss function (Bartlett et al., 1996). Here, most of the traditional learn-
ing algorithms use the 0-1 loss or a surrogate loss which, by providing an upper
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bound for it, is also expected to minimise the 0-1 loss (Kanamori et al., 2013).
This loss is also referred to as the misclassification error which can, in fact, be
directly calculated by (1 − classification accuracy). This implies that those algo-
rithms inherently maximise the classification accuracy and, therefore, they should
asymptotically obtain classifiers close to the Bayes decision rule, a classifier which
always obtains the highest classification accuracy for every K-class classification
problem. In consequence, in this paper, we assume a framework where the gener-
ative function is known so that the Bayes decision rule (Young and Calvert, 1974)
can be directly used as a representative of the classifiers resulting from the tradi-
tional approaches. By means of this approach, we can make use of the knowledge of
prior works on the deficiencies of the traditional approaches in solving unbalanced
problems (Axelsson, 2000; Weiss and Provost, 2003; Prati et al., 2004; Drummond
and Holte, 2005; Prati et al., 2015) to complement our studies on class-imbalance.

Definition 2 Assuming ρ(x|c, θ) and η to be known, the Bayes decision rule
(BDR) is given by

ĉB = arg max
i
ηiρ(x|ci, θi). (3)

Here, ĉB is the categorical class assigned by the BDR to the observation x. This
rule has a corresponding probability of error

eB = 1−
K∑

i=1

ηi

∫

Ωi

ρ(x|ci, θi)dx (4)

which is called the Bayes error and is the highest lower bound of the probability
of error of any classifier. Here,

Ωi = {x : ηiρ(x|ci, θi)−max
i′ 6=i

ηi′ρ(x|ci′ , θi′) > 0} (5)

is the region where ηiρ(x|ci, θi) is maximum and, so, the instances are assigned to
the class ci by the BDR, for all i.

2.4 Performance Scores

Classifiers often produce misclassifications, and optimal classifiers are not excep-
tions. Thus, once a classifier is constructed, its associated discerning skill needs
to be measured. When the generative function is assumed to be known, a com-
mon tool used for visualising the performance of a classifier is the true confusion
matrix of a given classifier Ψ (Koço and Capponi, 2013). It is a square matrix of
size K containing the mathematical expectations of classifying, with a classifier Ψ ,
as class ci (rows) an example of class cj (columns). By convection, the rows cor-
respond to the predicted classes, while the columns to the actual classes (Elkan,
2001) Therefore, formally, the true confusion matrix2 of the BDR is defined as
AB = [ai,j ]1≤i,j≤K , where each ai,j is calculated by:

ai,j = Ex|c=cj [ĉB = ci] = ηj

∫

Ωi

ρ(x|cj , θj)dx. (6)

2 In most the real world applications, where ρ(x, c) is unknown, an estimation of the true
confusion matrix is utilised instead. It is usually referred to as the empirical confusion matrix,
or simply as the confusion matrix.
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Here, E[·] stands for the mathematical expectation and Ωi is defined as in eq.
(5). It can be easily noticed that, assuming that the family of distributions for the
feature space is fixed, the calculation of the true confusion matrix depends on only
three parameters; the used classifier (Ψ = B, the BDR is assumed here), the class
distribution (η) and the parameters of the generative function (θ).

As stated in (Koço and Capponi, 2013), the confusion matrix is one of the most
informative performance summaries that a multi-class learning system can rely on.
Among other information, it contains how much the classifier is accurate on each
class, and the way it tends to get confused among classes. However, it is often te-
dious not only determining the overall behaviour of a classifier from the confusion
matrix, but also comparing several classifiers. Therefore, quantity measures which
summarise the confusion matrix are often preferred in the literature (Japkowicz
and Shah, 2011) and, therefore, used in this paper. These measures are known as
performance scores (Santafe et al., 2015). Since the best behaviour may vary from
one kind of problem to another, there are many different and diverse performance
scores in the community. This diversity may, at times, obscure important informa-
tion on the hypotheses or algorithms under consideration (Gu et al., 2009). Thus,
it is fundamental to check in advance the adequateness of a performance score for
assessing a determined classification problem so that the validity of the obtained
results can be ensured. In this paper, we check this issue for the case of the multi-
class class-imbalance domain: by studying the implication of the class distribution
on the “already known” behaviour of the BDR as it is perceived by several numer-
ical scores, it can be directly determined which performance scores are inadequate
for excluding important information about the behaviour of the classifier. It is
worth noticing that, since few papers have dealt with the class-imbalance problem
in the multi-class framework without partitioning the problems into several inde-
pendent binary problems, to the best of our knowledge, there is still no convention
in which performance score should be used (Wang and Yao, 2012). This paper
tries to shed some light on this issue by performing several theoretical studies on
numerical performance scores.

Formally, we define a numerical performance score as SΨ (η, θ). Since it is single
number summarising the confusion matrix, it also depends on the same parameters
η, θ and Ψ = B. Then, the numerical performance scores can be mainly divided
into two different groups: local scores, which only focus on the behaviour of one
target class, and global scores, which summarise the performance of the classifier
taking into account its behaviour in all classes. The list of performance scores
considered and their formal definitions can be found in Table 1.

We use two well-known scores as local performance scores: precision Pi and
recall Ri. Whilst Pi assesses exactness, i.e. to what extent the predictions of a
certain class ci are correct, Ri assesses completeness, i.e. to what extent all exam-
ples of a certain class ci are classified as so. Unfortunately, for their local property,
they lose the global picture of the performance of the classifier; they are more
useful when combined with other scores or applied to all classes (Gu et al., 2009).
Therefore, most of the global scores are just functions which, by taking local perfor-
mance scores applied to some/all classes, summarise the behaviour of the classifier
according to a determined subjective criterion. In these studies, we have selected
the global scores principally used or mentioned in the class-imbalance literature,
which can be expressed as Hölder means (Bullen, 2003) among the recalls. The
classification accuracy, Acc, is a weighted Hölder mean with parameters p = 1 and
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Name Notation Formula

L
o
c
a
l
sc

o
r
e
s

Precision Pi ai,i




K∑

j=1

aj,i



−1

Recall Ri ai,i




K∑

j=1

ai,j



−1

G
lo
b
a
l
sc

o
r
e
s

Classification accuracy Acc
K∑

i=1

ηiRi

Arithmetic mean among
the recalls (a-mean)

A
K∑

i=1

1

K
Ri

Geometric mean among
the recalls (g-mean)

G K

√√√√
K∏

i=1

Ri

Harmonic mean among the
recalls (h-mean)

H K

(
K∑

i=1

1

Ri

)−1

Maximum value among the
recalls

max max
i
Ri

Minimum value among the
recalls

min min
i
Ri

Table 1: Numerical performance scores (by convention 0/0 = 1).

ζi = ηi. As previously mentioned, the performance in underrepresented classes has
very little impact on the measure when compared to the overrepresented classes
(Gu et al., 2009; Di Martino et al., 2013). Due to this, most of the scores for unbal-
anced learning average over the recalls without weighting these values on the class
probabilities. Therefore, all classes, over and underrepresented, share a common
consideration in the score. The most-used scores in the class-imbalance literature
are the Pythagorean means – arithmetic (A), geometric (G), and harmonic (H) –
over the recalls of the K-classes (Menon et al., 2013), which can be directly ex-
pressed as unweighted Hölder means with p = 1, p = 0 and p = −1, respectively.
In the literature, they are referred to as a-mean, g-mean, and h-mean, respectively.
Moreover, we also consider the extreme values of these unweighted Hölder means
(p = ∞ and p = −∞). They correspond to the maximum recall, max, and the
minimum recall, min (among the classes), respectively. We believe that, since the
are also used for multi-class problems in (Wang and Yao, 2012), they can also give
valuable information in this complex scenario.

In (Menon et al., 2013), it is stated that the BDR is not an optimal decision
rule for A, i.e. a higher value for the score may be obtained with other classifiers.
Unfortunately, in the literature, no further information is provided on either which
the optimal classifier for A is or on whether the BDR is optimal for the other two
broadly used unweighted Hölder means (G and H) or for the extreme means. In
the following sections, we also shed light on these questions.
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3 First Study: Adequate Numerical Performance Scores for
Multi-class Unbalanced Problems

In this section, our goal is to find out which performance scores are adequate to
determine the competitiveness of a classifier in the multi-class unbalanced domain.
Particularly, we seek to determine which performance scores succeed in expressing
the long-studied performance detriment (Japkowicz and Stephen, 2002; Weiss,
2013) resulting from learning, in a classical manner, well-defined categories in
moderate unbalanced scenarios.

3.1 A Novel Framework to Marginalise the Effect of the Class Distribution on
the Performance Scores
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(a) Balanced problem with no
class-overlapping.
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(b) Unbalanced problem with no
class-overlapping.
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(c) Balanced problem with class-
overlapping.
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(d) Unbalanced problem with
class-overlapping.

Fig. 1: Relation between class-overlapping and class-imbalance.

Unfortunately, some authors (Denil and Trappenberg, 2010; López et al., 2013)
have stated that the class distribution is not the only factor hindering the predic-
tive power of the classifiers. These other factors, which appear in both balanced
and unbalanced scenarios, are listed in (López et al., 2013) as the degree of over-
lapping among the classes (Prati et al., 2004), the training size (Kalayeh and
Landgrebe, 1983), the noise in the data (Angluin and Laird, 1988), the presence of
small disjuncts and the dispersity of some classes (Holte et al., 1989), among oth-
ers (Ho and Basu, 2002). Moreover, these authors also argue that (i) the hindering
factors have strong interdependences among them, and that (ii) these interdepen-
dences can modify the contribution of the class distribution to the behaviour of
the classifier hampering its study. Thus, it seems that it is not trivial to isolate
the implication of the class distribution on the performance of the classifier so
that, therefore, the adequateness of the numerical performance scores to capture
this implication can be determined. Special care must be taken to marginalise
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out all the rest of the hindering factors. Fortunately, all of these causes, with the
exception of class-overlapping, are only dependent on the nature of the training
dataset. Since the BDR only depends on the generative function, this classifier al-
lows us to learn well-defined concepts and, therefore, to omit practically all these
factors which may modify the real impact that the imbalance extent has on the
performance of the classifier. However, the effect of the class-overlapping is harder
to eliminate; it depends on the local probability distributions of the feature space
(Denil and Trappenberg, 2010), i.e. class-overlapping, like class-imbalance, is an
intrinsic characteristic of the generative model. Hence, the overlapping-imbalance
dependence must be exhaustively studied in order to find a legitimate manner to
remove the class-overlapping from this puzzling situation.

3.1.1 Class-overlapping and Class-imbalance Relationship

First, we set up an example, which is similar to the experiment performed in
(Prati et al., 2004), in order to clarify the aforementioned dependency and how
both the class-overlapping and class-imbalance factors may hinder the behaviour
of the inferred classifier. Figure 1 shows four binary problems sharing two different
degrees of class-imbalance and two different degrees of class-overlapping. For each
problem, the data has been created by sampling two bivariate Gaussian distribu-
tions, one distribution for each class, i.e. θi = {µi,Σi}, i = {1, 2}. To simulate
no class-overlapping, we choose two Gaussians whose means are far from each
other (Figures 1a and 1b), and to simulate the opposite, we shorten the distance
between these means (Figures 1c and 1d). Regarding the class-imbalance setting,
it is simulated by sampling 1, 000 instances of each class for balanced problems
(Figures 1a and 1c), and by sampling 1, 000 instances for the majority class and
only 10 samples for the minority, for the case of unbalanced problems (Figures
1b and 1d). By just having an overall look at Figure 1, it can be easily noticed
how the combination of both factors (class-imbalance and class-overlapping) has
a straight effect on the issue of discriminating among the classes and, therefore,
on the performance of the inferred classifier. When there is no class-overlapping,
as shown in the first row of the figures, the class distribution does not hinder the
predictive power of the resulting classifier. In both scenarios, a simple and perfect
discriminant linear classifier can be easily drawn. This classifier is represented by a
straight continuous line in the figure. However, in the second row, the situation is
completely different. When both classes are balanced (Figure 1c), a classifier with
a tolerable recall for both classes can be learned. Unfortunately, in the unbalanced
case (Figure 1d), the lack of enough examples for the minority class hinders the
process of discriminating that class; any intuitively chosen classifier will be incom-
petent, i.e. it will have a low recall for the minority class. This example concurs
with the literature (Prati et al., 2004), where it is stated that (i) only when the
class-overlapping is non-zero, the influence of the class distribution on the com-
petitiveness of the inferred classifier is noticeable, and that (ii) the influence of
class-overlapping into the learning process is even stronger than class-imbalance.

3.1.2 Isolating Class-imbalance from Class-overlapping

Whilst class-overlapping is an old stalwart in the literature for being broadly stud-
ied (Basu and Ho, 2006), to the best of our knowledge, no prior work in the liter-
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ature has isolated the impact that the class distribution has on the performance
of the classifiers or has explored which performance scores are able to appropri-
ately capture this potential fluctuation of performance. In order to bridge these
gaps, we propose a function which, by properly cancelling the effect of the class-
overlapping, returns the impact of the class distribution on a chosen numerical
performance score for assessing the inferred classifier (here the BDR):

Definition 3 Let Θ represent the space of parameters for a fixed family of dis-
tributions over the feature space for classification problems with K classes. Let
SB(η, θ) be the value of a performance score S assessing the behaviour of the BDR
on a K-class classification problem, γK , with a class distribution equal to η and
parameters θ ∈ Θ. Also, let SB(e, θ) be the value of S evaluating the BDR inferred
from the balanced version of γK . Therefore, the influence function, ISK(η), of the
K-class distribution η on the performance score3 S using the BDR as a classifier
is defined as follows:

I
S
K(η) =

∫

Θ

[SB(e, θ)− SB(η, θ)]dθ. (7)

It can be easily seen that the previous equation fulfills our couple of objectives.
First, the implication of the class-overlapping on the behaviour of the inferred
classifier is taken out of the equation by means of the integration; every possible
set of parameter values for the probability distributions of the generative model
showing a non-zero degree of overlapping among the classes is marginalised out.
As a result, the average influence of the class distribution on the behaviour of the
inferred classifier, as conceived by the performance score S, can then be quantified
and studied: assuming a fixed parametric family for the local distribution, positive
values of ISK(η) denote that the performance score S obtains, on average, higher
values for the BDR when it is used on a balanced scenario rather than when it is
inferred from a class distribution η. Negative values mean the opposite; the BDR
achieves, in general, worse values for S in the balanced scenario.

3.2 Identifying the Adequate Performance Scores

By just plotting ISK(η),∀η using different performance scores, we can perceive,
at a glance, how these scores differ in measuring the goodness of the traditional
classifiers. However, we are incapable of determining which of them are adequate
to validate classifiers in unbalanced domains. Thus, in order to accomplish the
latter task, we must take advantage of the prior studies (Axelsson, 2000; Drum-
mond and Holte, 2005; Gu et al., 2009) on the expected behaviour of the popular
BDR when it faces skewed class distributions. By doing so, we can determine the
shape that an adequate performance score should have for the influence function
in the class-imbalance spectrum. Then, this shape can be straightforwardly used
as a representative case to discern which performance scores are appropriate for
the class-imbalance scenario. For this purpose, we focus on the long discussed

3 In this paper, we assume a positive correlation between the value of the performance score
and the behaviour of the classifier, i.e. higher values of S represent higher performances. In
the event of a negative correlation, the sign of ISK(η) must be reversed.
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hindering behaviours of the BDR: A good prediction power of the BDR is only
guaranteed for the majority classes (Axelsson, 2000; Gu et al., 2009). Addition-
ally, in highly unbalanced situations, the BDR often performs little better than
a dummy classifier always predicting the most common classes (Drummond and
Holte, 2005). This happens because the BDR suffers from one of the cornerstones of
Bayesian statistics: the base-rate fallacy (Matthews, 1996, 1997; Axelsson, 2000).
This formal fallacy states that if presented with generic information about the
probability of an event (base rate) and specific information about the case in
question, the mind tends to ignore the former and focus on the latter. Within the
class-imbalance problem, the conditional probabilities of the minority classes are
the base rate, which are often ignored by the BDR when having an overwhelming
class probability for the other classes, and, thus, traditional classifiers behave like
a dummy. Examples of these phenomenon when applying the Bayes theorem can
be found in the cited papers.

By means of this discussion, it can be seen that (i) the highest performance of
the BDR for all classes occurs when they share the same class probability, i.e. the
balanced scenario. That setting has zero probability of suffering from the base-rate
fallacy since the BDR is not provided with class probabilities which may obscure
the conditional distribution of the feature space of any class. (ii) In any other
setting the BDR has a positive probability of suffering the fallacy, which grows
towards the skewed class distributions. In those extremes, the performance of the
BDR should be highly penalized due to the fact that it falls into the base-rate
fallacy. After this argument, we may define the shape of the influence function of
an adequate performance score S with independence of the generative model as
follows:

Properties of an adequate performance score. A performance score S is
successful in being adequate to determine the competitiveness of a classifier Ψ in
the class-imbalance scenario if, assuming a scenario where a classifier is inferred
by directly minimising a 0-1 loss (maximising the classification accuracy),

(a) its influence function is positive for almost any η 6= e, and
(b) it shows a negative correlation to the minority class probability, i.e. ISK(η)

grows as the Euclidean distance between η and e gets larger.

3.2.1 Experimental Model for the Study

When the generative model is known, in theory, eq. (7) is obtainable. However,
solving an integral of such characteristics independently of the parametric family
is intricate. Therefore, we assume a parametric family with the following charac-
teristics: (i) simple enough to be able to fully interpret the results and complete
enough to be able to represent real world problems, (ii) a set of parameters which
allows us to unambiguously represent each particular model as a single point. For
these reasons, as a generative model we make use of a univariate Gaussian identi-
fiable mixture of components with unit variances whose means are separated by a
fixed overlapping factor δ. Under this assumption, since each θi = {µi, σi} is such
that µi = (i − 1)δ and σi = 1, the parameters can be simplified to just θ = {δ}
and eq. (7) be rewritten as:
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I
S
K(η) =

∞∫

0

[SB(e, δ)− SB(η, δ)]dδ. (8)

In Figure 2 and 3 (local and global scores for binary problems, respectively) and
Figure 4 (global scores in the multi-class framework) we numerically approximate4,
using Mathematica (Wolfram Research Inc., 2014), the influence function of eq.
(20), for each performance score of Table 1 and through the whole class-imbalance
spectrum. For binary problems, we numerically approximate the following equa-
tion:

I
S
2 (η) =

10∫

0.01

[SB(
1

2
, δ)− SB(η, δ)]dδ. (9)

Here, since, in binary problems, there are only two class probabilities which are
complementary to each other, we can simplify η to η (η1 = η and η2 = 1 − η).
Also, note that the integral is calculated in the domain [0.01, 10], instead of [0,∞).
We choose an upper limit distance of 10 because, for unit variances, it is almost
equivalent to not overlapping. Regarding the lower limit, we choose 0.01 in order
to avoid the singularity δ = 05.

Regarding the multi-class framework, we perform the same case study. How-
ever, as this setting is more complex, several changes are made. First, for the sake
of clarity in the presentation of the results, we simplify the multi-class framework
to the following: (K − 1) classes are equiprobable among them, with probability
η = 1

K − ε
K−1 , whilst the remainder has a probability η1 = 1

K + ε. Then, by means

of just one parameter ε ∈ [− 1
K ,

K−1
K ] which determines the imbalance extent, we

can easily study the hindrance produced by the class distribution in the multi-class
framework and present the results in a bi-dimensional plot. Note that the value
ε = 0 corresponds to the balanced setting. Therefore, we numerically approximate
the following equation:

I
S
K(ε) =

10∫

0.01

[SB(0, δ)− SB(ε, δ)]dδ. (10)

Here, all the parameters6 are the same as in binary problems except for the defined
ε. Due to the limiting space and since similar results are obtained for any arbitrary
K, in this manuscript, only the case of K = 3 is presented. The source code
to calculate ISK(ε) for any number K of classes can be downloaded from http:

//github.com/jonathanSS/ClassImbalanceStudies.

4 NIntegrate with all options set to default.
5 Assuming an upper limit of 10 instead of infinity, the degree of overlapping (eB) is 2.9×

10−7 rather than 0. Analogously, assuming a lower limit of 0.01 means that, instead of having
an overlapping of 0.5, we have 0.498.

6 Assuming an upper limit of 10, the degree of overlapping for K = {3, 4, 5} is {3.8, 4.3, 4.6}×
10−7 instead of 0. The overlapping is {0.64, 0.72, 0.77} instead of (K−1)/K for the lower limit.
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3.3 Results and Discussion

3.3.1 Binary Problems

Figure 2 shows the value of the function IS2 (η) over the domain 0 ≤ η ≤ 1 for the
local performance scores of Table 1 when using the BDR. Specifically, the precision,
P1 is shown in Figure 2a and the recall, R1, in Figure 2b, both for class c1. Note
that, for local scores, the diagrams for c2 are omitted. This is due to the fact that
they are a reflection, with respect to the imaginary vertical axis η = 0.5 of those
of c1. Next, the values of the influence function for the global performance scores
for binary problems are presented in Figure 3. There, the accuracy, Acc (Figure
3a), the maximum recall, max (Figure 3b), the arithmetic mean, A (Figure 3c),
the geometric mean, G (Figure 3d), the harmonic mean, H (Figure 3e), and the
minimum recall, min (Figure 3f) are displayed. All plots share the same style;
the x-axis represents the value of η and the y-axis, IS2 (η). The area between the
function and the x-axis is highlighted for visual purposes.
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�
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(b) Recall (R1)

Fig. 2: The influence function in binary problems, IS2 (η), for both precision and
recall throughout the range 0 ≤ η ≤ 1 (c1).

Several insights about the diverse behaviour of the performance scores
can be extracted from just a glimpse at Figures 2 and Figure 3. First, regarding
the local performance scores studied, they are completely different to each other;
whilst the influence function for P1 shows a negative behaviour for all η 6= 0.5,

IR
1

2 (η) is positive when c1 is the minority class and takes negative values in the
opposite case. Concerning the most common global performance scores of Figure
3, two different major behaviours can be easily detected: on one hand, we have
Acc; its influence function shows a negative behaviour for the whole spectrum of
unbalanced settings. On the other hand, we have the performance scores commonly
used in unbalanced domains, A, G, and H. These scores show a positive influence
function for all the values of η and they share a common shape; their lowest value
is in the equiprobability, and, from there, they strictly increase to the extremes
(η ∼ 0 or η ∼ 1), where they, finally, achieve an exponential growth rate. The
two extreme Hölder means introduced in this paper can also be categorised into
these two groups. While max shares a similar behaviour to the Acc, min behaves
closely to the scores utilised for unbalanced data. Lastly, it is also worth noticing
the similarity between the shape of the influence functions for P1 and Acc in this
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Fig. 3: The influence function in binary problems, IS2 (η), for each global perfor-
mance score throughout the range 0 ≤ η ≤ 1.

binary setting. Despite the fact that one is a local score and the other is a global
score, they share a close response to a changing class probability distribution.

Thereafter, we deal with the issue of determining the adequateness of the
studied performance scores by comparing the influence function of these scores
to the representative case, defined in Proposition 1, of the influence function that
an adequate performance score should have:

– Although local performance scores are not sufficient to summarise the overall
performance for losing the global picture, they give partial valuable advice: several
global performance scores are just Hölder means (Bullen, 2003) or other averaging
functions over the local performances, e.g. Acc, G, etc (Santafe et al., 2015). In
order to study the adequateness of these scores, we focus on the most problematic
section of the plots: the values of η < 0.5. There, the class c1 is the minority
class, and due to the fact that the use of the BDR is assumed, the misclassification
rate of c1 grows considerably, on average, as η decreases. As for P1, although it is
extensively used in the literature, it is not adequate enough for this scenario since
it does not penalise the decrease in the prediction power of the BDR for c1 when

this class becomes minority: IP
1

2 (η) takes negative values for η < 0.5 (Proposition
1). This is due to the fact that, for low values of η, the BDR achieves, for P1,
higher values than in the balanced scenario. There, it only classifies examples as
c1 if they are “undoubtedly” drawn from that minority class, i.e. examples that
are far away from the density of c2. In such schemes, the ratio of the correctly
classified examples over the predicted ones is considerably high, and it increases
as the distribution grows in skewness. In the extreme, we have the convention
0/0 = 1. Due to the popularity of precision in the class-imbalance literature,
further research on this topic is indispensable to determine whether it is suitable
to use precision on minority classes when a different generative model is assumed.
On the contrary, R1 shows a more appropriate description of the effect of the class

distribution on the resulting classifier; IR
1

2 (η) is positive for η < 0.5. Therefore,
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regarding using precision or recall as parameters for a global measure function,
two conclusions can be extracted:

(i) Unweighted Hölder means among the precisions are inadequate due to the fact
that, as c2 is a reflection of c1, the values of IS2 (η) for an average function
will always be under the x-axis. Other factors are more influential in the score
rather than a good prediction of the minority class.

(ii) Averaging recalls is a better choice since, for certain Hölder means, a positive
value of the influence function for almost all η will be shown. This is due to
the fact that the positive part of IS2 (η) for the recalls of c1 and c2 is always
greater than the negative part.

– In relation to the global performance scores, our study supports the conclusion of
the state-of-the-art literature stating that Acc is not an adequate score for unbal-
anced problems (Gu et al., 2009). Here, Proposition 1 is not required to determine
the insensitivity of the classification accuracy to the class-imbalance extent. Since

its influence function shares shape with the inadequate function IP
1

2 (η), Acc can
be directly appointed as an inadequate performance score. By extension, max is
not an appropriate score as well. The reason for the inadequateness of the latter is
that it only takes into account the maximum recall, which usually coincides with
the recall of the majority class as the BDR favours this kind of classes. Contrast-
ingly, the performance scores of the other behavioural group (A, G, H and min)
are adequate for the class-imbalance problem since their influence functions meet
the two conditions of Proposition 1. In this case, A is the score showing the lowest
sensitivity – its influence function has the smoothest shape –, which is followed
by G, then H and, finally, min. There it can be seen that, in these scores, the
behaviour of the BDR is penalised when the class distribution is not balanced,
i.e. the misclassification of the minority class also produces high drops in these
performance scores. In the extremes, we discover that the situation of the BDR
acting as a dummy classifier in situations of extremely skewed class distribution
is strongly penalised. There, the influence functions exponentially grow as η gets
closer to either 0 or 1. In general terms, unweighted Hölder means over the re-
calls with p > 1 will be inadequate for the class-imbalance extent since greater
recalls have more presence in the score than lower recalls. On the contrary, means
with p < 1 would be adequate to determine the competitiveness of a classifier as
lower recalls have more influence on the resulting score. This can be easily drawn
from the Hölder mean inequality (Definition 1) for the assumed model. The gen-
eral validity of this conclusion for any generative model, on the contrary, can be
straightforwardly inferred from the third study of this paper (Section 5), where
bounds for these performance scores ensuring competitive classifiers are proposed.

3.3.2 Multi-class Problems

Figure 4 presents results for accuracy, Acc (Figure 4a), maximum recall, max
(Figure 4b), arithmetic mean, A (Figure 4c), geometric mean, G (Figure 4d),
harmonic mean, H (Figure 4e), and minimum recall, min (Figure 4f). The local
performance scores are omitted in the multi-class scenario since the loss of the
global picture becomes aggravated when more than two classes are used. All these
figures are similar to the binary functions but the x-axis shows, in the current case,
the parameter ε over the range −1/3 ≤ ε ≤ 2/3. There, the values ε < 0 represent
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Fig. 4: The influence function in ternary problems, IS3 (ε), for each global perfor-
mance score throughout the range −1

3 ≤ ε ≤ 2
3 .

the multi-majority version of the problem and ε > 0 the multi-minority version. In
view of the results, the previous conclusions generalise well to multi-class problems:

Regarding the diversity of the global performance scores, the same two
major groups can be perceived; Acc and max on one hand, and the Pythagorean
means and min on the other. In the latter group, it can be seen that, due to the
Hölder mean inequality, the scores can also be arranged by their sensitivity to the
class-imbalance extent as IAK(ε) ≤ IGK(ε) ≤ IHK(ε) ≤ IminK (ε). Next, concerning the
adequateness of the performance scores, it can be concluded that:

(i) As their influence functions violate the conditions of Proposition 1 (ISK(ε) ≤
0,∀ε), Acc and max are inadequate scores for assessing unbalanced problems.

(ii) The unweighted Pythagorean means over the recalls and min are adequate to
assess the competitiveness of classifiers in this complex domain; their influence
functions truly capture the hindering behaviours of the BDR (Proposition 1).

It is also worth mentioning that the generalisation of the study for the whole
set of Hölder means also applies well for multi-class problems. Moreover, it can
be seen that achieving a high value of an adequate performance score for multi-
minority problems is far more difficult than for multi-majority; ISK(ε) is always
higher for positive values of ε. Finally, we want to point out the particularity that
appears in Figure 4d (G), in Figure 4e (H) and in Figure 4f (min); ISK(ε) is below
0 for the negative values of ε near the balance situation, i.e. for ε→ 0−. In Section
4, we properly address this interesting particularity.

4 Second Study: On the Inherent Scores of the Proposals for
Multi-class Unbalanced Domains

The fact that any learning task can be viewed as an optimisation problem leads
us to the second unanswered question exposed in the introduction; Since there
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are many different and diverse performance scores available, which performance
scores are maximised in the most predominant learning solutions designed to deal
with skewed classes? Are they the adequate performance scores detected in the first
study? To the best of our knowledge, little effort has been made in the litera-
ture towards answering these questions. Yet, the interpretation of previous works
with regards to this issue seems to be in contradiction. On one hand, there are
works claiming that there is no algorithmic solution to the class-imbalance problem
since the BDR establishes a fundamental limit in the performance of any classifier
(Drummond and Holte, 2005). The argument is that the BDR is asymptotically
sought in this domain, i.e. all the solutions proposed in the class-imbalance domain
can be categorised as traditional supervised learning approaches since they max-
imise Acc (by minimising the 0-1 loss). So, therefore, no competitive classifier can
be proposed for these problems. On the other hand, there are a large number of
methodological contributions designed to overcome the intrinsic difficulties of this
intricate domain. Moreover, most of these solutions report positive results (He and
Garcia, 2009). This suggests that they produce classifiers which are maximised for
a more appropriate score to the class imbalance scenario than Acc.

Therefore, in order to enlighten this apparent contradiction of statements and
provide answers, we, now, theoretically scrutinise the most predominant solutions
of the state-of-the-art literature. Thus, we can devise what the decision rules be-
hind the proposals of the literature are, their competitiveness and their inherently
maximised performance scores.

4.1 Major Solutions for the Class-imbalance Problem

Concerning the unbalanced learning literature, most of its methodological contri-
butions can be mainly categorised into four main kinds of approaches: (1) data
sampling (Batista et al., 2004), (2) cost-sensitive learning (Liu and Zhou, 2006), (3)
algorithmic modification (Galar et al., 2012), and (4) the use of ensembles (Galar
et al., 2012). In this paper, we study data sampling and cost-sensitive learning
due to the following facts: (i) they dominate the current research efforts (He and
Garcia, 2009). (ii) Both approaches are more transparent to the Bayesian decision
theory since they never behave as blackboxes (Rodŕıguez et al., 2014). (iii) Addi-
tionally, there is a lack of a unified framework for the heterogeneous approaches
of algorithmic modification and ensembles which impedes their categorisation and
study (Galar et al., 2012). (iv) Most of the current efforts in solving unbalanced
problems are focused on just binary classification problems. Thus, the effective-
ness of the non-dominant (other than data-sampling and cost-sensitive learning)
approaches for the multi-class framework is, in most of the proposals, still unknown
(Wang and Yao, 2012).

4.1.1 Data Sampling

By means of data sampling (or rescaling) techniques, the training dataset is mod-
ified in order to provide a more balanced class distribution (Sáez et al., 2016) so
that, when classical supervised algorithms (Wu et al., 2007) are used in the learn-
ing process, the resulting classifiers are not biased towards the majority classes
(Chawla et al., 2002; Batista et al., 2004). In other words, this approach allows
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the traditional learning systems to learn from a “safe scenario” where the probabil-
ities of the classes hinder the learnt classifiers in an insignificant or null manner.
The two simplest methods used are random over-sampling (ROS) and random
under-sampling (RUS). While ROS balances the class distribution by the random
replication of the examples of the minority classes of the training dataset, the bal-
ance distribution is achieved in RUS by the random removal of examples of the
overrepresented classes. From a theoretical point of view, both methods are equiv-
alent. They balance the class distribution up to having a uniform class distribution
or, at least, a hardly noticeable unbalanced distribution. Formally, data sampling
methods, instead of using the generative model as defined in eq. (2), modify the
training dataset in such a way that they try to learn a classifier from the following
model:

ρ′(x, c|θ) = p′(c)ρ(x|c, θ). (11)

where p′(c) is a multinomial distribution near the equiprobability, i.e. close to
e. Then, by directly applying the BDR, our surrogate of the traditional learning
approach, over the modified generative model, we reach the following decision rule:

ĉB = arg max
i
η′iρ(x|ci, θi), where η′i ∼

1

K
. (12)

Thus, it can be concluded that the joint use of a data sampling technique and the
BDR is practically equivalent (equal for η′ = e) to use the equiprobable Bayes
decision rule. The latter rule does not take into account the class distribution and
it is defined as:

Definition 4 Assuming ρ(x|c, θ) and η to be known, the equiprobable Bayes de-
cision rule (EDR) is given by

ĉE = arg max
i
ρ(x|ci, θi). (13)

Figure 5 summarises our theoretical reasoning behind the data sampling ap-
proach. However, when dealing with real-world problems, where the generative
function is usually unknown, each method introduces its own set of problem-
atic consequences that might hinder the learning task (He and Garcia, 2009);
while ROS may produce over-fitting towards the minority classes, RUS may dis-
card data which are potentially important to the classification process. In order
to overcome these problems, some heuristic methods have been proposed in the
literature; Tomek links (Tomek, 1976), condensed nearest neighbour rule (CNN)
(Hart, 1968), one-side selection (OSS) (Kubat et al., 1997), synthetic minority over-
sampling techniques (SMOTE) (Chawla et al., 2002), and combinations among
them (Batista et al., 2004). The main motivation behind some of these proposals
is not only to balance the training data, but also to remove noisy examples lying on
the wrong side of the decision region (Batista et al., 2004). Due to its nature and
despite the fact that prior works (He and Garcia, 2009; Galar et al., 2012) have
shown that data sampling is usually a positive practical solution, this methodol-
ogy has mainly been criticised due to altering the original class distribution (He
and Garcia, 2009), or even, the distribution of the feature space as happens with
SMOTE.



20 Jonathan Ortigosa-Hernández et al.

ROS
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supervised

learning (BDR)

equiprobable decision rule

Ψ

⇢(x, c|✓) = p(c)⇢(x|c,✓)

⇢0(x, c|✓) = p0(c)⇢(x|c,✓)

Original dataset

Modified dataset

⌘

arg max
i

p0(ci)⇢(x|ci,✓i),

where p0(ci) ⇠
1

K

arg max
i

⇢(x|ci,✓i)

Classifier

(EQUIV)

Fig. 5: Data sampling techniques.

4.1.2 Cost-sensitive Learning

Cost-sensitive learning (Elkan, 2001; Zhou and Lui, 2010; Krishnapuram et al.,
2011) is a paradigm which studies and solves classification problems where some
types of misclassifications may be more crucial than others, e.g. rejecting a valid
credit card transaction may cause an inconvenience while approving a large fraud-
ulent transaction may have very negative consequences. Usually, the costs asso-
ciated to misclassifications are given in the form of a matrix called cost matrix.
It is a numerical representation of the cost of classifying examples from one class
to another. Formally, the cost matrix, B = [bi,j ]1≤i,j≤K , is a square matrix of
size K where each element bi,j is, by convention, the cost of classifying as class ci
(rows) an example of class cj (columns) (Elkan, 2001). In this scenario, the main
objective of a cost-sensitive learning method is to learn a classifier minimising the
overall cost on the training dataset so that it may, afterwards, classify new in-
stances into the classes showing the lowest expected costs. Two main approaches
can be found in the literature to deal with cost-sensitive problems (López et al.,
2013): (i) direct methods, where cost-sensitive learning algorithms using the cost
matrix are built, and (ii) meta learning, where preprocessing or postprocessing
mechanisms for the training data or for the output, respectively, are used so that
any traditional learning algorithm can be made cost-sensitive. Note that data sam-
pling may be included in the latter (Elkan, 2001; Zhou and Lui, 2010) since, by
just changing the class probabilities, the misclassification costs are modified.

In situations of disproportionate class probabilities, cost-sensitive techniques
are deemed as good solutions; the proposed solutions usually assume that the
cost of misclassifying an example from a minority class is higher than that of
misclassifying an example from a majority class. Thereby, the ratio of correct
classifications for the minority classes may be improved (Liu and Zhou, 2006;
Thai-Nghe et al., 2010). Moreover, several authors (Elkan, 2001; He and Garcia,
2009) claim that cost-sensitive learning is superior to data sampling methods.
However, although this framework can significantly improve the performance, it
takes for granted the availability of a cost matrix and its associated cost items.
Unfortunately, establishing a cost representation of a given unbalanced domain
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can be particularly challenging. For that reason, several proposals in the literature
appoint cost matrices for class-imbalance problems. The most utilised approach is
the one proposed in Japkowicz and Stephen (2002), which suggests the use of non-
uniform error costs defined by means of the class-imbalance ratio presented in the
dataset, i.e. bi,j = ηi/ηj . In other words, modify the relative costs associated to
misclassifying any pair of classes so that the imbalance ratio is compensated. Liu
and Zhou (2006) proposed an equivalent method allowing the introduction of other
costs so that the problem of simultaneously handling unequal misclassification
costs and class-imbalance can be handled.

Once the cost matrix is defined and assuming the generative model to be
known, an example can be directly classified by means of the BDR for unequal
misclassification costs7 (CS-BDR) (Berger, 1985). This rule minimises the expected
misclassification costs as expressed in the cost matrix instead of a 0-1 loss as the
traditional solutions seek.

Next, by applying the imbalance ratio compensation approach (Japkowicz and
Stephen, 2002; Liu and Zhou, 2006), the CS-BDR, which is optimal for the Hölder
mean with p = 1 and ζi = Wiηi, can be defined as

ĉB = arg max
i
Wiηiρ(x|ci, θi), where Wi =

K∑

j=1

1

bi,j
. (14)

In order to discover the actual decision behind the cost-sensitive methods, we now
just substitute the values of the Wi in eq. (14), also reaching the EDR:

ĉB = arg max
i
ηi

K∑

j=1

1

bi,j
ρ(x|ci, θi) = arg max

i
ρ(x|ci, θi). (15)

4.2 An Analysis of the Equiprobable Decision Rule

In the previous paragraphs, it is shown that the asymptotic decision rule sought
in the studied approaches is the EDR (Definition 4). Additionally, we are confident
enough to think that, also for the remaining class-imbalance approaches, as long
as their intention is to overcome the hindering behaviours expressed in Section
3.2 by reducing the bias of the traditional learners towards the majority classes,
they will seek a decision rule which will be, if not the same, similar to the EDR.
This claim is plausible based on both (i) the extended usage of the area under the
ROC curve (AUC, Fawcett (2006)) in unbalanced binary problems to assess the
learnt classifiers, and (ii) the fact that the best class distribution to be used in
the training dataset in order to maximise the AUC tends to be near the balanced
scenario (Weiss and Provost, 2003). For that reason, in this section, we take a step
further and study the main properties of this rule.

7 This rule differs from the BDR used in the manuscript in the fact that our version of the
BDR (Definition 2) assumes equal misclassification costs.
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4.2.1 Competitiveness in the Class-Imbalance Scenario

First, we deal with the problem of determining whether the EDR is a competitive
classifier to the class-imbalance domain. Opportunely, both the proposed influence
function, eq. (7), and the fact that the EDR can be viewed as a particular case of
the BDR can be used to shed some light on this issue. Regarding the latter, we
focus on the following relationship between both decision rules:

Proposition 1 Let AΨ (η, θ) be the true confusion matrix resulting from applying
the algorithm Ψ to a classification problem γK with generative function equal to
eq. (2) and with parameters η and θ. Hence, when the generative model is known,
for both the BDR (Ψ = B) and the EDR (Ψ = E), it holds true that

∀η,AB(e, θ) = AE(η, θ). (16)

This proposition8 highlights the fact that, since the EDR is a particular case
of the BDR (when the BDR is applied to the balanced version of γK), it results in
a constant confusion matrix through the whole spectrum of the class distribution
and its value is equal to the one resulting from the BDR in that particular case.
Additionally, this relationship between both decision rules has an effect on the
studied numerical performance scores:

Corollary 1 Let SΨ (η, θ) be a numerical performance score summarising the true
confusion matrix AΨ . Then,

SB(e, θ) = SE(e, θ) (17)

is true in all circumstances.

Corollary 2 When a numerical performance score SΨ summarises the true con-
fusion matrix AΨ with independence9 of the class distribution η, the relation of
Proposition 2 can also be held to be true for SΨ . That is,

∀η,SB(e, θ) = SE(η, θ). (18)

Note that, in our framework, the numerical performance scores whose summary
is independent to η are the local scores (recall and precision), the unweighted
Hölder means among those local scores and the weighted Hölder means among
those local scores whose weights are not calculated on the class distribution.

Corollary 3 The value of classification accuracy, a score which is summarised
using the distribution of the classes, for the BDR on the balanced version of a
problem is equal to the value of the arithmetic mean among the recalls obtained by
the EDR in γK showing any value of class imbalance. Formally,

∀η,AccB(e, θ) = AE(η, θ). (19)

8 Proofs for this proposition and its corollaries are not included in the manuscript due to their
triviality; they can be easily inferred by using simple algebra from the proposed framework.

9 No class probability is used in the calculation of the value of the score.
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Now, by substituting eq. (18) in eq. (7); the influence function for the adequate
performance scores can be rewritten as:

I
S
K(η) =

∫

Θ

[SE(η, θ)− SB(η, θ)]dθ. (20)

By means of this transformation, this new version of the influence function can
be used to study whether the BDR or the EDR has, on average, a superior be-
haviour with regards to a determined adequate performance score (A, G, H, and
min). If the influence function is positive for the whole range of η, then the EDR
behaves, on average, better for that performance score than the BDR. The oppo-
site case, a whole negative influence function, will show that the BDR is superior
to the EDR. From just a re-examination of Figure 4 (4c-4f), where the influence
function is studied in ternary problems and displayed for the performance scores,
the following conclusion can be extracted: since ISK(η) for the adequate scores is
positive for “almost” the whole range of η, the EDR is, in general and on average,
more competitive than the BDR under the assumed framework. Therefore, the EDR
tears apart the fundamental limit in the performance of every algorithm solution
established by the BDR and claimed in (Drummond and Holte, 2005). Figure 4
serves as a counter example to generally prove the previous claim.

Finally, we want to remark that, although in theory there is no difference
between dealing with binary or multi-class domains, in real world problems, most
of the solutions seeking the EDR for unbalanced problems have been shown to be
less effective or even to cause a negative effect in dealing with multiple classes
(Wang and Yao, 2012; Sáez et al., 2016).

4.2.2 Optimality of the EDR

In order to determine the performance score optimised in the EDR, we also take
advantage of the definition of the influence function and the relationships between
both decision rules:

Theorem 1 The equiprobable Bayes decision rule is optimal for A, the unweighted
Hölder mean among the recalls with p = 1.

Proof Let the classification accuracy and the unweighted arithmetic mean among
the recalls obtained by a classifier Ψ in a classification problem γK with a gen-
erative function determined by eq. (2) and with parameters η and θ be defined
as

AccΨ (η, θ) =

K∑

i=1

ηiRiΨ , and AΨ (η, θ) =

K∑

i=1

1

K
RiΨ , respectively.

Also let the BDR and the EDR be denoted as Ψ = B and Ψ = E, respectively.
Then, since the BDR obtains the optimal classification accuracy in every problem,
it holds that:

∀(Ψ,η, θ),AccB(η, θ) = max{AccΨ (η, θ)}.
If the BDR is applied to the balanced version of the classification problem γK , i.e
∀i, ηi = K−1, we obtain

∀(Ψ,η, θ),AccB(e, θ) = max{
K∑

i=1

1

K
RiΨ}.
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Next, by the definition of A, the max function can be rewritten as

∀(Ψ,η, θ),AccB(e, θ) = max{
K∑

i=1

1

K
RiΨ} = max{AΨ (η, θ)}.

Finally, by Corollary 3, we reach the conclusion that the EDR optimises the un-
weighted arithmetic mean among the recalls:

∀(Ψ,η, θ),AE(η, θ) = max{AΨ (η, θ)}.
This theorem shows that the EDR achieves the lowest upper bound for A, an

adequate performance to the class imbalance extent, of any classifier. Therefore,
most of the practical contributions to the class-imbalance scenario inherently also
maximise this performance score. Unfortunately, this decision rule is not optimal
for the other adequate performance scores (G, H and min). This non-optimality
can be straightforwardly proven using the influence function as expressed in eq.
(20); both positive and negative values for ISK(η) will prove that neither the BDR
nor the EDR always behave, on average, better than the other. Then, by just
having a look at the previously indicated singularities of Figure 4d (G), Figure 4e
(H) and Figure 4f (min), it can be seen that neither the EDR nor the BDR are
optimal for these performance scores. For greater values of K than in Figure 4,
the non-optimality holds, yet, the absolute values of these singularities are smaller.
By having a glance at Figure 3, we cannot say whether the EDR is optimal for
these performance scores in binary domains. However, by relaxing the geometry
assumption10 of equal unit variances in our model, we reach the same conclusion
as in multi-class; in general, for the unweighted Hölder means among the recalls
with p 6= 1, the EDR is not an optimal decision rule.

4.3 Discussion on Maximising Other Scores beyond A

Several ideas regarding whether the remaining unweighted Hölder means among
the recalls can be used to direct the definition of the forthcoming learning solutions
for the class-imbalance domain can be extracted from the analyses performed in
the previous sections:

(i) Provided that learning algorithms grouped by the EDR report positive results
in the literature, and that the Hölder means with p < 1 have a higher sensitivity
to the imbalance extent than A, visibly, classifiers more adequate to deal with
the class-imbalance related problems can be proposed11. In this range of p,
(optimal) classifiers maximising G, H and min, among other means, could
be proposed. The optimal classifier for the latter will be the most restrictive
that can be defined in this framework due to the fact that it ensures than the
minimum recall of all classes must be the highest. Probably, a desired property
(inferred from (Fernández et al., 2011)) within this complex domain.

10 In Figure 3, the behaviour of the EDR is, in fact, optimal for any unweighted Hölder mean
with p ≤ 1. This is because the geometry created in the model has equal variances and the
same distance between adjacent means and the Hölder mean equality; the overlapping area for
each feature space is equal for both classes. Unfortunately, even in this geometric scenario, for
p > 1, the EDR is not optimal.
11 Since they have greater values for ISK(η), a classifier maximising these scores will behave,

on average, better than a classifier maximising A.
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(ii) On the contrary, the use of Hölder means with p > 1 in the definition of learning
systems is not an adequate solution. These scores favour the greater recalls,
one class will always have more chances to be selected in the classification.
Moreover, this class rarely coincides with the minority class. In the extreme,
we have the unweighted Hölder mean with p = ∞, whose optimal classifier
is the one which classifies every instance to just one class. Therefore, this set
of performance scores must be avoided to define loss functions in unbalanced
domains, or at least, they must be used with special care.

In conclusion, any practical classifier Ψ resulting from the maximisation of a
Hölder mean with p ≤ 1 over a training sample is a better option than a classifier
learnt in the traditional supervised framework due to the fact that it will favour
the recalls of the minority classes. These classifiers will have less probability of, in
cases of skewed class distributions, behaving like a dummy classifier. Therefore,
optimising adequate scores12 to the class-imbalance extent may produce propitious
classifiers reactive to the class-imbalance related problems.

5 Third Study: Bounds for the Competitiveness of a Classifier in the
Class-Imbalance Scenario

Virtually, every paper proposing a class-imbalance solution has the exact same
experimental setup (Prati et al., 2015): “A proposed method is compared against
one or two previously proposed methods over a dozen or so datasets. Although this
experimental setup is reasonable to support an argument that the new method is
as good as or better than the state of the art, it still leaves many unanswered
questions”. Among them, we can find the question of whether the proposed solu-
tion is able to produce competitive classifiers: if the precedent solutions are not
competitive (in terms of our definition), the proposal might be uncompetitive as
well. For that reason, in this study, we focus on the last question of the introduc-
tion: Can bounds guaranteeing the competitiveness of a classifier be provided for
the value of certain adequate performance scores? In particular, since they have
gained notorious importance throughout the paper, we focus on the values of the
unweighted Hölder means among the recalls. We refer to this value as SpΨ , where
p stands for the exponent of the mean used to assess a given classifier Ψ .

Next, in order to answer the question, we rewrite the definition of “compet-
itiveness of a classifier” as a competitive classifier is a classifier whose expected
behaviour is superior to the expected behaviour of an already known baseline classi-
fier. Thus, by just instantiating the expressions “expected behaviour” and “baseline
classifier”, and after some algebra, practical bounds for SpΨ can be given in order
to ensure the adequateness of Ψ for any given unbalanced problem. Regarding the
former concept, the expected behaviour cannot be determined by the direct use of
the inherently maximised performance score as it would not be legitimate; Ψ might
be favoured in the comparison. For that reason, we rely on common sense and on
previous experience in the class-imbalance domain to define the term. Within this
domain, it is interesting to obtain classifiers achieving great recalls for the minority

12 The interested reader can find, in the appendix, an example of how the decision regions
for the different decision rules optimising the studied global performance scores are located in
a ternary problem generated from a Gaussian mixture model.
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classes while maintaining adequate recalls for the majority ones (Gu et al., 2009),
a fairly complicated task. Therefore, the competitiveness of the target classifier
can be translated into obtaining greater or equal recalls for both the minority and
majority classes than a baseline classifier for which prior knowledge is available.
Finally, concerning the second term, we make use of the most-utilised base clas-
sifier for establishing the lower expected behaviour than a competitive classifier
must obtain; the classifier representing the random guessing. Formally:

Definition 5 The classifier representing the random guessing ofK different classes
is known as the uniformly random classifier (RAND) and it is given by

ĉR = Unif{1,K}. (21)

where Unif{1,K} is the discrete uniformly random function which assigns a cate-
gorical class ci to an example x with probability 1/K. All the performance scores
contemplated in Table 1 assign the same value to the goodness of this classifier:

Pi = Ri = 1
K ,∀i, and Acc = A = G = H = max = min =

1

K
.

In general, for the Hölder means among the recalls13 (independently of the values
of weights, ζ, and the exponent p), it holds that

Mp(R, ζ) =
1

K
, where R = (R1, . . . ,RK).

Now, by means of the previous instantiations, we can determine the competi-
tiveness of Ψ by just checking which values for an unweighted Hölder mean ensure
that a recall of at least 1/K is obtained for all classes. Opportunely, this calcula-
tion can be easily performed in this kind of functions. Then, let Spsup be defined
as the lowest value for SpΨ ensuring that the classifier Ψ is certainly superior to
RAND. This extreme situation takes place when just one recall is equal to 1/K
and the remaining are all equal to 1, i.e. ∃!j(Rj = 1/K ∧ ∀i 6= j,Ri = 1). In
this scenario, the slightest negative variation in the score could result in an in-
competent classifier, i.e. a classifier Ψ reporting a score of SpΨ = Spsup − ε, where
ε → 0+, could indicate that ∃i,Ri < 1/K. On the contrary, a score of Spsup + ε
will always indicate that Ψ is a competitive classifier with ∀i,Ri > 1/K. Thus, by
just substituting these recalls in the definition of a Hölder means – eq. (1) –, we
obtain

Spsup =
(
Kp +K(p−1) + 1

) 1
p
. (22)

Regarding the opposite scenario, the incompetence is determined by calculating
which values of the Hölder means ensure that at least one recall is below the
random guessing value, 1/K. Here, let Spinf be the strictly upper value for the score
SpΨ indicating that Ψ is not competitive, i.e. it is inevitably inferior to RAND. For
this case, we choose the scenario of obtaining a classifier behaving in the same
manner as the RAND. Therefore, any negative variation in the score of Ψ will
indicate the incompetence of it. Analogously, any positive variation might indicate

13 This can be trivially proved by following a similar reasoning to Theorem 1 of (Ortigosa-
Hernández et al., 2016) but using the Hölder mean equality instead.
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Fig. 6: Limiting values for the unweighted Hölder means ensuring that a given
classifier is superior/inferior to the random guessing.

that the classifier is competent. In the latter assertion we cannot remove the modal
verb ’might’ due to the fact that a higher score, but less than Spsup, is not sufficient
for safeguarding better recalls than the RAND for all classes. Hence, the value for
this upper value is:

Spinf =
1

K
[= RAND] (23)

As a summary of the previous paragraphs, we plot Figure 6. Here, the values
for both eq. (22), Spsup, and eq. (23), Spinf, (y-axis) in the domain p ∈ [−50, 50]
(x-axis) are presented. Figure 6a represents these values for binary problems and
Figure 6b for ternary cases. In the figures, three different areas can be seen. They
correspond to the cases for SpΨ argued in this section:

if SpΨ ∈ [Spsup, 1] : SUPERIOR.
Ψ is a competitive classifier for the problem

if SpΨ ∈ [0, Spinf) : INFERIOR.
Ψ is incompetent to solve the problem

if SpΨ ∈ [Spinf, S
p
sup) : INDETERMINATE.

The competitiveness of Ψ cannot be checked with just SpΨ
In conclusion, it can be seen that the thesis highlighted throughout the whole

paper is supported once more; the adequateness of the unweighted Hölder mean
among the recalls with p ≤ 1 to assess the goodness of a classifier in multi-class
class-imbalance domains. Not only do they focus on the behaviour of all recalls,
independently of their class probability values, but also the resulting score value is
acutely informative in terms of competitiveness of the classifier. Here again, min
is the most restrictive and the most informative score: a value above 1/K indicates
that the classifier is competitive. A value below denotes the opposite.

6 Limitations of the Studies and Suggestions for Future Research

One limitation with the research described in this article is that, because all the
conclusions are extracted from the assumed manageable model used to draw the in-
fluence functions, our conclusions may hold only for the assumed model. However,
the generality of the results holds true for almost all the contributions of the paper
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as we indicate throughout the sections. Only for the case of our claim saying that,
within our assumed model, averaging precisions is inadequate to validate unbal-
anced domains, the general validity cannot be assured. This, along with the high
number of papers using precision to assess classifiers in the class-imbalance liter-
ature, sustains a potential theoretical research line in order to determine whether
the usage of precision is adequate when facing skewed class distributions. Other
potential research lines regarding our assumed model for the class-imbalance prob-
lem could be the following: Firstly, several other classifiers rather than the BDR
can be used as a representative classifier in the study. Secondly, analytical solutions
can be found for either the influence function for each score or for the decision
rules optimising Hölder means with p < 1. Thirdly, here, we exclusively deal with
the supervised learning framework, however, other types of learning scenarios such
as semi-supervised learning (Ortigosa-Hernández et al., 2016) can be studied.

Another limitation of our paper is that, in the second study, where the state-
of-the-art methodological contributions to this intricate problem are reviewed, the
scope is limited. There, we only investigate the data sampling and the cost-sensitive
learning approaches. As pointed out in Section 4, since our aim is to study the
multi-class setting, where the effectiveness of the non-dominant (other than data
sampling and cost-sensitive learning) is still unknown, we narrow our scope to
just the approaches which can be used in the multi-class setting and which never
behave as blackboxes when studied using the Bayesian decision theory (Wang
and Yao, 2012; Rodŕıguez et al., 2014). However, there are reasons to believe
that our conclusions will hold for other binary approaches as long as they seek a
maximisation of the AUC (Weiss and Provost, 2003). We believe that an important
potential future line of research, before expanding our scope in this study, is to
determine which approaches proposed for binary unbalanced problems are effective
in the multi-class setting.

Finally, the fact that the number of performance scores studied is limited may
also be seen as a restriction of this study; we deal only with the most utilised
numerical performance scores. Since there is a huge number of performance scores
(Gu et al., 2009), future research lines can make use of our framework to investigate
their adequateness to unbalanced domains; similar studies can be proposed using
other interesting kinds of scores14; graphical performance scores (Santafe et al.,
2015), adjusted (to the class-imbalance domain) performance scores (López et al.,
2013), or, even, the whole confusion matrix (Koço and Capponi, 2013).

7 Summary

Most of the existing learning algorithms are designed to asymptotically converge
to the BDR by minimising the 0-1 loss or, what is equivalent, maximising the clas-
sification accuracy. Unfortunately, when dealing with unbalanced problems, the
classification accuracy is not an adequate performance score due to the fact that
the underrepresented classes have very little impact on the measure when they are
compared to the overrepresented classes. Therefore, it is imperative to define more
adequate learning systems which can effectively deal with skewed class distribu-
tions in the multi-class setting. Thus, in order to shorten the distance towards the

14 Interested readers can find, in the appendix, a preliminary study on another two broadly
used scores for binary unbalanced problems; the F1-score and the AUC for discrete classifiers.
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previous ideal, in this paper, an exhaustive analysis of a set of numerical perfor-
mance scores is carried out, not only to be able to determine their adequateness
to assess the goodness of a classifier in this complex scenario, but also to be capa-
ble of studying whether they are suited to be used to produce more competitive
learning systems for unbalanced problems. Specifically, we focus on performing an
exhaustive analysis of the most-common numerical performance scores used in the
class-imbalance domain which can also be represented as Hölder means (Bullen,
2003) among the recalls of all the classes. This set groups well-known performance
scores such as accuracy, a-mean, g-mean etc. Since many interdependent factors
may hinder the discerning skill of the classifier and, therefore, vary the value of the
score, we develop a novel classification framework which allows us to marginalise
out the class-imbalance component from the rest of the factors. As a result, the
influence of the class-imbalance extent on the performance score using the long
studied BDR as a classifier can be measured in isolation. With this study, we
provide answers to the following questions:

Which performance scores are adequate to determine the competitive-
ness of a classifier in multi-class unbalanced domains? The performance
scores which are unweighted Hölder means with p ≤ 1 (a-mean, g-mean, h-mean,
etc.) among the recalls are the most appropriate to evaluate the competitiveness
of classifiers in multi-class unbalanced problems. In these cases, misclassifying the
least probable classes is highly penalised.

Which performance scores are maximised in the most well-known learn-
ing solutions designed to deal with skewed classes? Data sampling and cost-
sensitive learning techniques are designed to maximise the a-mean (which is the
unweighted Hölder mean with p = 1) due to the fact that they asymptotically con-
verge to the BDR for equiprobable classes. Other solutions to the class-imbalance
problem also seem to similarly behave owing to the fact that they are designed to
maximise the AUC.

Can bounds guaranteeing the competitiveness of a classifier be pro-
vided for certain adequate performance scores? Yes, we finalise the paper
by providing two different practical bounds for the performance scores expressed
as unweighted Hölder means among the recalls with p ∈ R ∪ {+∞,−∞}; a bound
for the lowest value of the performance score ensuring a competitive solution for
unbalanced problems and a bound for the highest value of the score indicating an
incompetent solution.
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A Influence Functions for Other Predominant Performance Scores
Used in Binary Unbalanced Problems

Although the main aim of this manuscript is to propose a set of adequate performance scores for
the scarcely studied unbalanced multi-class setting where, to the best of our knowledge, there
is no convention on how to assess the learnt classifiers, the current practice in the literature for
binary unbalanced problems, e.g. (Axelsson, 2000; Tang et al., 2009; Denil and Trappenberg,
2010; Di Martino et al., 2013; López et al., 2013; Prati et al., 2015), also uses the AUC (Bradley,
1997; Provost et al., 1998) and the F-score (Rijsbergen, 1979) to assess the performance of the
proposed solutions.

In this context, this appendix is devoted to performing a preliminary study on those
broadly used performance scores by means of the framework presented in this manuscript.
The objetives of this study are the following: (i) Discovering the existing relationships between
our proposals and the state-of-the-art performance scores for binary problems, and, in the case
where they are not as recommendable as the proposals of the paper, (ii) providing a justification
on why these scores for binary problems are not as recommendable as our proposals for the
multi-class scenario.

A.1 Area Under the ROC Curve (AUC)

In the binary setting, the Receiver Operating Curve (ROC) curve is a graphical score which
allows the visualisation of the trade-off between the proportion of positives that are correctly
identified and the number of negative events wrongly categorised as positive, evidencing that
any classifier cannot increase the number of true positives without also increasing the false
positives (Provost et al., 1998; López et al., 2013). The area under the ROC curve (AUC)
provides a single measure of a classifier’s performance (Bradley, 1997), see Figure 7. Since
there are classifiers for which only one point of the curve is available (Fawcett, 2006), the area
under the ROC curve (AUC) is frequently approximated in the class-imbalance literature,
e.g. (Galar et al., 2012; López et al., 2013), by means of the following summary statistic, the
arithmetic mean of the true positive rate and the complement of the false positive rate:

AUC =
1 + T Prate −FPrate

2
. (24)

There, T Prate measures the proportion of positives that are correctly identified and co-
incides with the definition of the recall. FPrate, on the contrary, is the ratio between the
number of negative events wrongly categorised as positive and the total number of actual
negative events, which coincides with the complementary of the recall of the other class. This
formula calculates the area between one selected operating point (T Prate,FPrate) and the
triangular ROC curve constructed with only (0, 0) and (1, 1) as perceived in Figure 7. Formally
and assuming that the positive class corresponds to first class, we have that
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Fig. 7: Example of a ROC plot. Two curves for two classifiers are plotted: the dashed line
represents the random classifier (RAND), whilst the solid line is a classifier Ψ behaving better
than the random classifiers.
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T Prate =
a1,1

a1,1 + a2,1
= R1, and FPrate =

a1,2

a1,2 + a2,2
= 1− a2,2

a1,2 + a2,2
= 1−R2. (25)

Then, by substituting eq. (25) in eq. (24) and after simple algebra we reach the conclusion
that using the AUC to assess classifiers producing just one point of the curve is, for binary
classification problems, equivalent to using the arithmetic mean between the recalls, A, as
claimed in (Santafe et al., 2015):

AUC =
1

2
(R1 +R2) = A (26)

These calculations manifest that all the conclusions made for A in binary problems holds
for the AUC when only one point of the ROC curve is available, including the fact that the
EDR is also an optimal decision rule.

Unfortunately, the AUC, unlike the proposed Hölder means among the recalls, is a measure
of the discriminability of a pair of classes (Fawcett, 2006): “In a binary problem, the AUC is
a single scalar value, but a multi-class problem introduces the issue of combining multiple
pairwise discriminability values. There are several approaches to perform this combination,
e.g. (Provost and Domingos, 2000) or (Hand and Till, 2001)”. In that paper, both advantages
and disadvantages of the usage of each approach are given. For that reason, we believe that
averaging recalls is more recomendable thanAUC in the multi-class setting due to the following:
(i) Hölder means among the recalls possess a natural and trivial expansion to multiple classes,
(ii) their computation is straightforward, and (iii) there exist bounds ensuring competitive
classifiers for these scores. Yet, we believe that this brief preliminary study of the AUC justifies
the opening of a potential theoretical research line to answer questions such as the following:

1. Is there a similarity to A when more than one curve point is available for a classifier? Is
the EDR also an optimal decision rule for that case? Would the EDR remain so having any
number K of class variables?

2. While A has a natural and trivial expansion to the multiple categorical classes, AUC intro-
duces the issue of deciding which approach should be used to combine multiple pairwise
discriminability values. Would A be a more adequate performance score than AUC for
assessing multi-class unbalanced problems?

3. This similarity supports the empirical conclusions extracted by (Weiss and Provost, 2003)
claiming that balanced class distributions in training datasets maximise the AUC. Could
their claim be theoretically proved by means of our framework?

A.2 The F-score

The F-score was introduced in information retrieval applications domains but, since then it
is also widely used in machine learning in general (Rijsbergen, 1979). The definition of this
score depends on a parameter β provided by the practitioner in order to weight the terms of
precision P and recall R:

F iβ =
(β2 + 1)RiPi
β2Ri + Pi (27)

When β = 1, the obtained F -score is known as F1-score and corresponds to the harmonic
mean (unweighted Hölder mean with p = −1) of precision and recall. This value is usually the
one used in the class-imbalance literature (Tang et al., 2009; Denil and Trappenberg, 2010;
Di Martino et al., 2013). Since the F1-score is a local performance score depending on just
the precision and recall of a single class, its usage in the multi-class setting and, thus, in the
proposed framework is straightforward: let the F i1-score be defined as

Fi1 =
2RiPi
Ri + Pi , (28)

so that we can determine whether averaging F i1-scores produces adequate global performance
scores for the multi-class unbalanced scenario.
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Fig. 8: The influence function in binary and ternary problems, ISK(ε), for both the arithmetic

mean among the recalls and among the F1-scores throughout the range − 1
K
≤ ε ≤ K−1
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Fig. 9: The influence function in binary and ternary problems, ISK(ε), for both the geometric
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Fig. 10: The influence function in binary and ternary problems, ISK(ε), for both the harmonic

mean among the recalls and among the F1-scores throughout the range − 1
K
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In order to do that, we plot the influence functions ISK(ε) for the averages among the

recalls used in the manuscript, the influence functions for the averages among the Fi1-scores,
and, afterwards, compare them (by computing the difference). Figures 8-11 share the same
structure; the first column is the influence function of a Hölder mean among the recalls, the
second column is the influence function of the same Hölder mean, but among the F1-scores,
and third column corresponds to the subtraction of the influence function, using the average
of recalls as minuend. Then, the first row corresponds the binary setting and the second row
deals with a ternary problem. The Hölder means presented are the following: Figure 8 is the
arithmetic mean, Figure 9 is the geometric mean, Figure 10 is the harmonic mean, and 11 is
minimum value.
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Examining the results, we conclude that using averages among the F1-scores to assess the
performance of multi-class unbalanced problems is also an adequate practise. In all the figures,
both sets of performance scores behave similarly. Yet, from the subtraction, it can be inferred
that averages among the F1-scores seems to be slightly less expressive than averages among
the recalls.

B Case Study: How are the Decision Regions for the Classifiers
Optimising the Studied Scores Placed in a Ternary Problem?

With the purpose of exposing the asymptotical behaviour of the classifiers maximising the
numerical performance scores studied in the manuscript, here, we set up a controlled example
showing how the optimal classifiers for those scores split the feature space into different decision
regions. As we assume the generative model to be known, here, each optimal classifier will be
referred to as the decision rule optimising a certain numerical performance score.

Deliberately, we define the example in terms of the framework of the manuscript: Let
the example γ3 be a ternary classification problem with a generative model composed of
a univariate Gaussian mixture model represented by the following joint probability density
function

f(x, c|θ) =
K∑

i=1

ηif(x|ci, θi)1(c = ci). (29)

Note that the previous equation uses f instead of ρ (as in the manuscript) for the distribution
of the feature space. This is due to the fact that, here, we assume the features to be continuous.
Let 1(c = ci) stand for the indicator function, i.e. it is equal to 1 if c = ci and 0 otherwise.
Then, let us instantiate each mixture component in this example as a univariate Gaussian
distribution with parameters

f(x|c1, θ1) ∼ N(3, 0.5) f(x|c2, θ2) ∼ N(5, 0.5) f(x|c3, θ3) ∼ N(6, 0.5)

and let the class distribution be set as η = (0.6, 0.3, 0.1). Figure 12 shows the generative
model of the proposed example. Whilst Figure 12a plots the density distribution for each class
multiplied by its class probability (ηif(x|ci, θi)), Figure 12b presents only the mixture density
distribution of the classes (f(x|ci, θi)). The main objective of presenting two views of the same
model is two-fold; (i) the influence of the class distribution on the intricacy of the generative
model can be perceived at a glance, and (ii) each view is a key factor in showing the behaviour
of the two main decision rules studied in the manuscript; the BDR (which optimises Acc) and
the EDR (which is optimal for A).

Moreover, the figures also display the limits of the decision rules optimising all the nu-
merical performance scores studied in the paper. Here, the decision regions are represented
by vertical lines dividing the real number line; the first line to the left divides Ω1 and Ω2,
and the second line separates Ω2 and Ω3, i.e. Ω1 = (−∞, left line], Ω2 = (left line, right line],
and Ω3 = (right line,∞). In order to calculate these regions, we directly applied the BDR and
the EDR to find their optimal decision regions for Acc and A, respectively, and an exhaustive
search to find the optimal classifiers and their decision regions for the performance scores which
have an unknown (to us) decision rule; G, H, max, and min. Since these unknown decision rules
have not been named in the manuscript, henceforth, we will refer to the unnamed decision rule
optimising a score S as S-DR, e.g. G-DR will stand for the decision rule optimising G. In the
figures, the limiting values are coloured as follows: the red lines represent the limits for the
EDR, the orange is for the BDR, yellow is used for G-DR, green for H-DR, and the blue and
purple colours are for the extreme rules; min-DR and max-DR, respectively.

By comparing both figures, it can be easily seen that the BDR uses both the class dis-
tribution and the feature distribution to split the real number line into regions, and that the
EDR relies just on the feature distribution to accomplish the same task. While the BDR cuts
the feature space in the intersection points of Figure 12a, the EDR relies on the intersections
of Figure 12b. Next, note that the insensitive max-DR has only one limiting value (we set this
value at +∞, i.e. Ω1 = (−∞,∞) and Ω2 = Ω3 = ∅). This is because the optimality can be
easily achieved with the dummy classifier which classifies all instances as just one class. There-
fore, an optimal classifier for that rule will be the one that assigns the whole real number line
to a determined decision region and that leaves the rest of the decision region empty. Then,
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(a) The generative model of the example as it is defined, i.e. the density distribution for each
class is multiplied by its class probability.
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(b) The density distribution of each categorical class.

Fig. 12: The decision region limits for the decision rules optimising the studied scores: EDR
(red), BDR (orange), G-DR (yellow), H-DR (green), min-DR (blue) and max-DR (purple).

regarding the min-DR, it can be seen that it seeks that the area of each class in its decision
region is equal to any area of any other class in its decision region so that the minimum recall
will be the maximum, i.e.

∀1 ≤ i, j ≤ 3,

∫

Ωi

f(x|ci, θi)dx =

∫

Ωj

f(x|cj , θj)dx.

Finally, the decision regions optimising the other adequate numerical performance scores, i.e.
G-DR and H-DR always seem to have limiting values bounded by the EDR and the min-DR.
It may be an interesting potential research line to determine how the limiting values of the
decision region vary on the class-overlapping for the unweighted Hölder means (p ≤ 1). In the
figures, it can be seen that while Ω3 has a similar size for these scores, Ω1 and Ω2 fluctuate
considerably with p.

In conclusion, with this example we reinforce one of the theses of the manuscript. Although,
graphically, both the BDR and the EDR seem to be more compelling for splitting the x-axis
in the intersection points, the use of classifiers maximising unweighted Hölder means with
p < 1 may be of interest as we have proved that they are more informative on the class-
imbalance problems. More competitive classifiers may be proposed by adding these numerical
performance scores to the definition of the forthcoming learning algorithms for unbalanced
problems. These adequate classifiers tend to split the x-axis so that the decision region of each
class shares the same area in terms of just the density function. Therefore, they will be more
reactive to the potential problems derived from the skewness of the class distribution.
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Measuring the Class-imbalance Extent of
Multi-class Problems

Measurement is the first step that leads to control and eventually
to improvement. If you can’t measure something, you can’t understand
it. If you can’t understand it, you can’t control it. If you can’t control
it, you can’t improve it.

- H. James Harrington, CIO, Vol. 12, No. 23
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a b s t r a c t 

Since many important real-world classification problems involve learning from unbalanced data, the chal- 

lenging class-imbalance problem has lately received considerable attention in the community. Most of the 

methodological contributions proposed in the literature carry out a set of experiments over a battery of 

specific datasets. In these cases, in order to be able to draw meaningful conclusions from the experi- 

ments, authors often measure the class-imbalance extent of each tested dataset using imbalance-ratio, 

i.e. dividing the frequencies of the majority class by the minority class. 

In this paper, we argue that, although imbalance-ratio is an informative measure for binary problems, it 

is not adequate for the multi-class scenario due to the fact that, in that scenario, it groups problems with 

disparate class-imbalance extents under the same numerical value. Thus, in order to overcome this draw- 

back, in this paper, we propose imbalance-degree as a novel and normalised measure which is capable 

of properly measuring the class-imbalance extent of a multi-class problem. Experimental results show 

that imbalance-degree is more adequate than imbalance-ratio since it is more sensitive in reflecting the 

hindrance produced by skewed multi-class distributions to the learning processes. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Most of the well-known traditional machine learning tech- 

niques are designed to solve classification problems showing rea- 

sonably balanced class distributions [24] . However, this assump- 

tion does not always hold in reality. Occasionally, real-world prob- 

lems have skewed class distributions and, due to this, they present 

training datasets where several classes are represented by an ex- 

tremely large number of examples, while some others are repre- 

sented by only a few. This particular situation is known as the 

class-imbalance problem, a.k.a. learning from unbalanced data [17] , 

and it is considered in the literature as a major obstacle to build- 

ing precise classifiers: the solutions obtained for problems show- 

ing class-imbalance through the traditional learning techniques are 

usually biased towards the most probable classes showing a poor 

prediction power for the least probable classes [10] . Thus, in an 

attempt to overcome this obstacle, hundreds of methodological so- 

lutions have been proposed recently in order to balance the pre- 

diction powers for both the most and the least probable classes. 

According to [28] , the proposed solutions can be mainly cate- 

gorised into the following three major groups: (i) the development 

∗ Corresponding author. 

E-mail address: jonathan.ortigosa@ehu.es (J. Ortigosa-Hernández). 

of inbuilt mechanisms [11] , which change the classification strate- 

gies to impose a bias toward the minority classes, (ii) the usage 

of data sampling methods [3] , which modify the class distribution 

to change the balance between the classes, and (iii) the adoption 

of cost-sensitive learning techniques [22] which assume higher mis- 

classification costs for examples of the minority classes. 

Usually, every paper proposed within those categories shares 

the same experimental setup: the proposed method is compared 

against one or several competing methods over a dozen or so 

datasets. However, although this experimental setup is reasonable 

enough to support an argument that the new method is “as good 

as” or “better than” the state-of-the-art, it still leaves many unan- 

swered questions [27] . Besides, it is costly in computing time [30] . 

Thus, in order to be able to perform more meaningful analyses, 

some authors complement this experimental schema with a study 

of the inherent properties of the checked datasets by extracting 

from them a set of informative measures [30,31] . By means of this 

data characterisation, more solid empirical conclusions may be ef- 

ficiently extracted: on the one hand, a better understanding of the 

problem faced may be achieved since it is a structured manner of 

investigating and explaining which intrinsic features of the data 

are affecting the classifiers [2] . On the other hand, the measured 

data can be related to the classifier performance so that the appli- 

http://dx.doi.org/10.1016/j.patrec.2017.08.002 

0167-8655/© 2017 Elsevier B.V. All rights reserved. 
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Fig. 1. Extreme cases of an unbalanced ternary toy example showing an imbalance- 

ratio of 20. 

cability and performance of a classifier based upon the data can be 

predicted, avoiding a great amount of computing time [30] . 

In the literature, authors often measure the class-imbalance ex- 

tent. In those works, imbalance-ratio is the most frequently used 

summary of the class-imbalance extent due to its simplicity [11] . 

It reflects the (expected) number of instances of the most proba- 

ble class for each instance of the least probable class. However, in 

this paper, we state that whilst it is a very informative summary 

of the class-imbalance extent for binary problems, it is not capa- 

ble of completely and honestly describing the disparity among the 

frequencies of more than two classes. In the multi-class scenario, 

there exists other classes rather than the most and least probable 

classes and they are not taken into account for the calculation of 

this summary. This may lead to the undesired situation of char- 

acterising multi-class problems with disparate class-imbalance ex- 

tents using the same imbalance-ratio. 

In order to clarify this drawback, let’s consider the toy exam- 

ple presented in Fig. 1 ; Imagine that a 3-class problem with an 

imbalance-ratio of 20 (100: 5) is provided. This means that there 

are 20 examples of the most probable class ( c 1 ) for each exam- 

ple of the least probable class ( c 3 ). However, by means of just 

imbalance-ratio, little knowledge can be extracted regarding the 

remaining class c 2 , i.e. the number of examples of c 2 can vary from 

5 to 100, and all these 95 different possible scenarios share an 

imbalance-ratio equal to 20. 

As can be easily noticed, the scenario with 100 examples for 

the second class – Fig. 1 a –, is far less problematic than having 

only 5 examples of the second class – Fig. 1 b –. While there is only 

one minority class in the former scenario, we find two minority 

classes in the latter. So, it can be straightforwardly concluded that 

imbalance-ratio is not a proper summary of the class-imbalance 

extent in the multi-class scenario as it groups diverse problems 

with different class-imbalance extents under the same numerical 

value. 

Thus, in order to bridge this gap, in this paper, we propose a 

new summary which is capable of properly shortening the class 

distributions of both binary and multi-class classification prob- 

lems into a single value. This measure, which we name imbalance- 

degree , represents the existing difference between a purely bal- 

anced distribution and the studied unbalanced problem, and it has 

the following three interesting properties: 

1. By means of a single real value in the range [0, K ), where K 

is the number of classes, it not only summarises the class dis- 

tribution of a given problem but also inherently expresses the 

number of majority and minority classes. 

2. Depending on the requirements of the experimental setup and 

the degree of sensitivity sought, this measure can be instanti- 

ated with any common distance between vectors or divergence 

between probability distributions. 

3. A unique mapping between the class distributions and the 

numerical value of imbalance-degree is ensured for problems 

showing different numbers of majority and minority classes. 

Therefore, diverse problems cannot share a common numerical 

value as happens with imbalance-ratio. 

Experimental results show that imbalance-degree is a more ap- 

propriate summary than imbalance-ratio. In the multi-class frame- 

work, the former is not only able of differentiating class distri- 

butions than the latter groups with the same value but it also 

achieves a greater correlation with the hindrance that skewed class 

distributions cause in the learning processes. 

The rest of the paper is organised as follows: Section 2 in- 

troduces the framework, notation, and a review of the most- 

commonly used measures and summaries of the class distribution. 

In Section 3 , we introduce imbalance-degree as a more informative 

measure for the multi-class scenario. After that, Section 4 presents 

an empirical study of the adequateness of the proposed measure. 

Finally, Section 5 sums up the paper. 

2. Problem formulation and state-of-the-art measures for the 

class-imbalance extent 

Let γ K be a K -class classification problem with a generative 

model given by the generalised joint probability density function 

ρ(x , c) = p(c) ρ(x | c) , (1) 

where p ( c ) is a multinomial distribution representing the class 

probabilities and ρ( x | c ) is the conditional distribution of the fea- 

ture space. For convenience, henceforth, we rewrite the former as 

η = (η1 , η2 , . . . , ηK ) , where each ηi = p(c i ) stands for the probabil- 

ity of each categorical class c i . Also, we denote the special case 

of equiprobability as e = (e 1 , e 2 , . . . , e K ) , where ∀ i, ηi = 1 /K = e i . 

Then, depending on the outline of its class distribution η, every 

classification problem γ K can be catalogued into one of the fol- 

lowing groups: (i) γ K may be a balanced problem, (ii) an unbal- 

anced problem showing multi-majority, or (iii) a multi-minority 

unbalanced problem. The formal definitions for these groups, as 

expressed in [17] and [31] , are the following: 

Definition 1. A K -class classification problem, γ K , is balanced if it 

exhibits a uniform distribution between its classes. Otherwise, it is 

considered to be unbalanced. Formally, 

γK is balanced ⇐⇒ η = e . (2) 

Definition 2. A multi-class classification problem ( K > 2), γ K , 

shows a multi-majority class-imbalance if most of the classes have 

a higher or equal probability than equiprobability, i.e. 

γK is multi-majority ⇐⇒ 

K ∑ 

i =1 

1 
(
ηi ≥

1 

K 

)
≥ K 

2 

. (3) 

Definition 3. An unbalanced classification problem, γ K with K > 2, 

shows a multi-minority class-imbalance when most of the class 

probabilities are below the equiprobability. Formally, 

γK is multi-minority ⇐⇒ 

K ∑ 

i =1 

1 
(
ηi < 

1 

K 

)
> 

K 

2 

. (4) 

Here, 1 (E ) is the indicator function, 1 if the event E is true, 

0 otherwise. Note that Fig. 1 a and Fig. 1 b correspond to multi- 

majority and multi-minority problems respectively, and that only 

when facing multi-class problems do Definition 2 and 3 make 

sense. 

Unfortunately, in most of the real-world cases, the generative 

model, along with the real class distribution, is unknown. Thus, 

authors must estimate η from a training dataset D in order to not 

only classify γ K into one of the groups proposed in the definitions, 

but also to be capable of using a close approximation of the real 
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class distribution to properly validate the conclusions exposed in 

their experimental schemas. 

Then, let D = { (x (1) , c (1) ) , . . . , (x (l) , c (l) ) } = { (x (n ) , c (n ) ) } l 
n =1 

be 

defined as a supervised training dataset of size l drawn from the 

generative function 

1 . There, let the class labels { c (n ) } l 
n =1 

be i.i.d. 

random values drawn from η and let each observation { x (n ) } l 
n =1 

∈ 

D be also an i.i.d. random value but drawn from ρ( x | c i ). In order 

to estimate the class distribution η, we define the empirical distri- 

bution ζ = (ζ1 , ζ2 , . . . , ζK ) . ζ is a multinomial distribution with K 

categories, which exhibits the information available in the dataset 

about the class distribution of the problem γ K . There, each statis- 

tic ζ i estimates each class probability ηi by just determining the 

frequency of the class c i in the dataset. Formally, the statistic is 

defined as follows: 

ζi = 

1 

l 

l ∑ 

n =1 

1 (c (n ) = c i ) . (5) 

Unless otherwise stated, henceforth, we only use the estimator ζ of 

the class distribution since having an unknown generative model is 

the most common scenario. Anyhow, in the event of knowing the 

generative model, all the methodologies presented can be directly 

used with η by just substituting the empirical class distribution by 

the real class distribution in the formulae. 

A few measures for the class-imbalance extent of the class dis- 

tribution using the empirical class distribution ζ have been already 

utilised in the experimental setups of the state-of-the-art litera- 

ture: the most simple manner to measure the class-imbalance ex- 

tent of a given problem is just to write down the empirical class 

distribution [3] , ζ, or to directly transcribe the occurrences of all 

the classes [13,31] in the dataset, i.e. l = (l 1 , l 2 , . . . , l K ) s.t. ∀ i, l i = 

lζi . 

These descriptions seem to be a good choice due to the fact 

that they contain all the information available in the dataset with 

regards to the class-imbalance extent of the generative class distri- 

bution η. However, analysing them can be quite tedious in prob- 

lems with a large number of class values, especially in highly 

multi-class problems ( K ≥ 1, 0 0 0, [15] ). In those cases, it is very 

common to find unbalanced distributions among the classes. Ad- 

ditionally, these solutions are also more difficult to read and/or 

compare than single value summaries. Therefore, functions d ( · ) 

which assign different single real numbers to disparate values of 

ζ, i.e. d : ζ �→ R and which are somehow correlated with the hin- 

drance that skewed class distributions cause on learning algo- 

rithms mainly dominate the class-imbalance literature [11,27] . Re- 

garding the summaries, imbalance-ratio (IR) between the major- 

ity and minority classes is, to the best of our knowledge, the only 

summary for ζ used for multi-class problems. It is calculated by 

dividing the maximum statistic ζ i by the minimum. Formally, 

IR ( ζ) = 

max i ζi 

min j ζ j 

. (6) 

It is trivial to prove that IR : ζ �→ R is an injective function for 

binary problems. This property makes this summary appropriate 

for such scenarios due to the fact that all possible unbalanced sce- 

narios yield to different IR values and that any ζ can be easily re- 

covered from the IR ( ζ). However, when the number of classes out- 

numbers 2, the injection is lost (as previously shown in the toy ex- 

ample of Fig. 1 , where multi-majority and multi-minority problems 

share the same numerical value). This is an inappropriate charac- 

teristic for a summary of the class-imbalance extent since previous 

papers have shown that multi-minority problems are harder than 

1 Note that we assume that D is i.i.d. from eq. (1) . Therefore, in this work, we 

only focus on the case that the nature of the class-imbalance is in the probability 

distribution, not on the case of having a biased training dataset. 

multi-majority [31] . This may imply that IR is not correlated with 

the hindrance produced by skewed multi-class distributions. 

Therefore, it can be concluded that neither of the presented 

measures (summarised in Table 1 ) for the class-imbalance extent 

are appropriate for multi-class unbalanced problems. 

3. Imbalance-degree 

In this section, our aim is to propose a new and more suitable 

summary for any empirical class distribution ζ with K ≥ 2 which, at 

least, fulfils the following properties: (i) it must be an easily read- 

able finite single valued summary of a multinomial distribution 

and (ii) it needs to be correlated with the hindrance that highly 

unbalanced datasets cause in the learning processes. 

Thus, since the class distribution does harm the learning pro- 

cesses as it extremely diverges from the balanced one [27] , it is 

immediate to use a distance/similarity function, d �( ζ, e ), between 

both the empirical and balanced distributions, ζ and e , to sum- 

marise the degree of skewness of a classification problem γ K . Here, 

� stands for any chosen distance between vectors or divergence 

between probability distributions which can be found in the liter- 

ature. 

However, just relying on the direct usage of a dis- 

tance/similarity function has, for our purpose, two undesirable 

properties which may clash with our aim of having an informative 

easily readable or comparable summary function: 

1. Similar to IR, different values for different number of 

majority/minority classes cannot be assured . For in- 

stance, imagine we use the Kullback-Leibler diver- 

gence [19] as a summary of two diverse class dis- 

tributions ζ(1) = (0 . 027009 , 0 . 4 864 95 , 0 . 4 864 95) and 

ζ2 = (0 . 712853 , 0 . 143573 , 0 . 143573) . There, both calculi reach 

the same value: d KL ( ζ
(1) 

, e ) = d KL ( ζ
(2) 

, e ) = 0 . 273 . 

2. Although a measure is always a finite positive value, it is not 

necessarily upper bounded . For example, Kullback-Leibler diver- 

gence may be unbounded, and Manhattan and Euclidean dis- 

tances [9] , in this context, are upper bounded by the values 2 

and 1, respectively. 

In order to overcome these drawbacks, we purposely divide the 

space of class distributions so that we can operate on the dis- 

tance/similarity function and obtain an adequate summary: let Z 

K 

be defined as the set containing all the possible empirical distribu- 

tions ζ of a K -class problem and let Z 

K 
m 

⊂ Z 

K , m ∈ { 0 , 1 , . . . , K − 1 } 
be a subset containing all the empirical class distributions contain- 

ing exactly m minority classes. Formally, 

Z 

K 
m 

� 

{ 

ζ ∈ Z 

K : m = 

K ∑ 

i =1 

1 
(
ζi < 

1 

K 

)} 

. (7) 

Straightaway, this severance of Z 

K into K different subsets Z 

K 
m 

allows us to tackle both problems: 

1. On the one hand, different values for different numbers of mi- 

nority/majority classes can be directly provided in the summary 

function by just forcing different ranges of values to different 

subsets. Here, the range (m − 1 , m ] is assigned to each subset 

Z 

K 
m 

in the summary (0 for Z 

K 
0 

). 

2. On the other hand, a common upper bound for each subset, and 

consequently to the summary, can also be assured by applying 

a 0 − 1 normalisation to the distance of the empirical class dis- 

tribution (a range of size 1 has been assigned to each subset). 

This is achieved through the division of d �( ζ, e ) by d �( ιm 

, e ), 

being ιm 

the distribution in Z 

K 
m 

most distant to e . 

Then, through the application of these amendments on the dis- 

tance/similarity function, we define our main proposal as: 
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Table 1 

Summary of measures for the class-imbalance extent of the class distribution η used in the literature and our proposal. 

Measure Formula Strength Weakness References 

Empirical distribution ζ = (ζ1 , ζ2 , . . . , ζK ) It is the most informative measure. Difficult to read and/or compare in 

highly multi-class problems. 

[3] 

Frequency of the classes l = (l 1 , l 2 , . . . , l K ) s.t. ∀ i, l i = lζi Very informative (equivalent to the 

empirical class distribution). 

Difficult to read and/or compare in 

highly multi-class problems. 

[31] 

Imbalance-ratio IR ( ζ) = max 
i 

ζi / min 
j 

ζ j It is a single value and easily readable 

summary . 

Inappropriate summary for multi-class 

problems since the injection is lost. 

[27] 

Imbalance-degree ID ( ζ) = d �( ζ, e ) /d �( ιm , e ) + (m − 1) It is a single easily readable summary 

appropriate for binary and 

multi-class problems. 

A total injection can only be achieved 

by the proper choice of the 

metric/divergence �. 

This paper 

Definition 4. The imbalance-degree (ID) of a multi-class dataset 

showing an empirical class distribution ζ is given by 

ID ( ζ) = 

d �( ζ, e ) 

d �( ιm 

, e ) 
+ (m − 1) , (8) 

where m is the number of minority classes, d � is the chosen dis- 

tance/similarity function to instantiate ID, and ιm 

is the distribu- 

tion showing exactly m minority classes with the highest distance 

to e ( arg max ζ∈Z 

K 
m 

d �( ζ, e ) ). 

In eq. (8) , the term m − 1 is intentionally added to the normal- 

isation term to ensure different values for different values of m , 

i.e. ID ( ζ) ∈ (m − 1 , m ] when ζ ∈ Z 

K 
m 

. Moreover, in the purely bal- 

anced scenario ζ = e , our proposal ID (e ) = 0 due to the fact that, 

conventionally, d �(e , e ) /d �(e , e ) = 1 . 

4. Empirical study 

In order to determine the appropriateness of ID (over IR) as a 

summary of the class-imbalance extent in the multi-class frame- 

work, we define two different sets of experiments to empirically 

corroborate the following hypotheses: 

• H 1 : While IR has a deficient resolution to summarise the class- 

imbalance extent in the multi-class scenario, ID offers a wide va- 

riety of high resolution summaries. 
• H 2 : When used on real-world multi-class classification problems, 

ID is more sensitive to the class-imbalance extent than IR . I.e. ID 

is more accurate than IR in informing about a poor performance 

of traditional learning systems. 

Since ID can be instantiated with any chosen distance/similarity 

function, we first introduce the measures used in the experiments: 

from the metrics in the vector space [9] , Manhattan 

2 , Euclidean 

and Chebyshev distances are chosen. Together, the f -divergences 

[7] , the most utilised measures for probability distributions, are 

also included. Within the latter group, we introduce Kullback- 

Leibler divergence [20] , Hellinger [18] (closely related to, although 

different from, the Bhattacharyya distance [4] ) and total variation 

distances, and χ2 -divergence [26] . These measures are mathemat- 

ically defined in Table 2 . 

Additionally, in order to use eq. (8) , the furthest distribution 

ιm 

= (ι1 , ι2 , . . . , ιK ) to e must be calculated for every instantiation 

and every subset Z 

K 
m 

. Opportunely, this class distribution coincides 

for all the considered measures and for all values of m . It satisfies 

that 

K ∑ 

i =1 

1 ( ιi = 0 ) = m ∧ 

K ∑ 

i =1 

1 
(
ιi = 

1 

K 

)
= K − m − 1 , (9) 

i.e. the furthest distribution is composed of (i) m minority classes 

with zero probability, (ii) K − m − 1 (all but one) majority classes 

2 Manhattan distance has been left out of the experimentation due to the fact 

that, for our purposes, it is equivalent to total variation distance for any K ≥ 2. 

Table 2 

Mathematical formulae for the distance/similarity functions 

used to instantiate ID in the empirical studies. 

Distance/Similarity function � d �( ζ, e ) 

Metrics in the vector space 

Euclidean distance EU 

√ 

K ∑ 

i =1 

(ζi − e i ) 2 

Chebyshev distance CH max 
i 

| ζi − e i | 
f -divergences 

Kullback-Leibler divergence KL 

K ∑ 

i =1 

ζi log 
ζi 

e i 

Hellinger distance HE 
1 √ 

2 

√ 

K ∑ 

i =1 

( 
√ 

ζi −
√ 

e i ) 2 

Total variation distance TV 
1 

2 

K ∑ 

i =1 

| ζi − e i | 

Chi-square divergence CS 

K ∑ 

i =1 

(ζi − e i ) 
2 

e i 

Fig. 2. Calculating ID using the Hellinger distance [18] for the dataset autos ( K = 

6 , IR = 16 , ID HE = 2 . 44 ). 

with probability 1/ K , and (iii) a majority class with the remaining 

probability 1 − (K − m − 1) /K. This distribution always shows the 

lowest entropy [29] in the subset Z 

K 
m 

, whilst the balanced setting 

e corresponds to the distribution with the highest entropy in Z . 

Note that, by symmetry, there may be up to K ! different furthest 

distributions ιm 

. Fortunately, ID ( ζ) is not affected by an arbitrary 

choice of ι since the entropy, H ( ιm 

), and distance values, d �( ιm 

, e ), 

remain equal for all furthest distributions. 

In order illustrate calculation of ID using the distance/similarity 

functions considered, Fig. 2 shows, in a bar chart, an example to 

instantiate ID using the Hellinger distance, d HE ( ζ, e ), on the UCI 

dataset called autos [21] . The numbers above the black bars rep- 

resent the value of each normaliser d �( ιm 

, e ) for all possible sce- 

narios of m of minority classes in a 6-class problem. Since autos 
has 3 (out of 6) minority classes and d HE ( ζ, e ) = 0 . 25 , the problem 

has a (normalised) ID of 2.44 ( 0 . 25 / 0 . 58 = 0 . 44 plus 3 − 1 ). 
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Fig. 3. The variation of ID � in all the 95 possible scenarios ( l 2 = { 5 , . . . , 100 } ) of the 

toy problem of Fig. 1 . For these scenarios, IR = 20 . 

4.1. Study 1: resolution and diverseness of imbalance-degree 

The resolution of a measure is the smallest change which can 

be quantified. As previously put forward, IR cannot be considered 

as a measure which has a satisfactory resolution for multi-class 

problems; it only changes based on either the most or the least 

probable classes. In the toy example, for instance, it groups 95 dif- 

ferent class distributions using the value IR = 20 . 

Thus, in order to corroborate the first hypothesis, those 95 

scenarios are used to not only show that ID is capable of as- 

signing diverse and reasonable values to them, but also to study 

the behaviours of the different instantiations of ID. Consequently, 

Fig. 3 plots the values of ID for the indicated 95 different fre- 

quency scenarios, i.e. l = (100 , l 2 , 5) , where l 2 = { 5 , . . . , 100 } , from 

the toy problem. The abscissa shows the number l 2 of instances 

of the second class and the ordinate shows the value of ID. 

From Table 2 , Euclidean distance (ID EU ), Kullback-Leibler divergence 

(ID KL ), Hellinger distance (ID HE ), total variation distance (ID TV ) and 

chi-square divergence (ID CS ) are plotted. Note that Chevbysev dis- 

tance is not included 

3 . 

Results show that ID is capable of differentiating each and ev- 

ery different scenario that IR groups with the value 20. Moreover, 

it can be seen that ID instantiations behave differently as result 

of the diversity of their distance/similarity functions: whilst all the 

instantiations share a similar monotonically decreasing shape up 

to the limiting point where the number the m changes from 2 

to 1 ( l 2 = 53 ), above that limit, two different groups of instan- 

tiations can be perceived. On the one hand, ID EU , ID KL and ID CS 

show a convex shape since they descent down to a minimum and 

then slightly increase. On the other hand, ID HE and ID TV show a 

quasi-linear behaviour which starts increasing soon after reach- 

ing the limiting point. Thus, it can be straightforwardly concluded 

that there might be instantiations of ID which are more adequate 

to summarise the class-imbalance extent than others. Seemingly, 

the latter group of instantiations (ID HE and ID TV ) are more appro- 

priate as they reflect the increased intricacy of the classification 

problem above the limiting point. When l 2 > 53, the probability 

of the minority class c 3 distance itself from the equiprobability 

causing an increase in the intricacy of the classification problem. 

In Section 4.2 , we also deal with this issue by empirically deter- 

mining which ID instantiations are more adequate summaries in 

real-world multi-class datasets. Finally, we believe that, in practise, 

the above mentioned diversity may also be potentially exploited to 

3 It holds that instantiations of ID using Chevbysev and total variation distances 

are equivalent for the case K = 3 . 

adapt ID to different requirements and constraints resulting from 

real-world unbalanced problems. 

4.2. Study 2: sensitivity and validity of imbalance-degree 

A measure is sensitive to recognise a given set of events if it 

is capable of valuing them differently. Specifically, we can consider 

a summary of the class-imbalance extent to be sensitive to recog- 

nise the hindrance that highly unbalanced data produce in the tra- 

ditional learning systems if it is correlated with the performance 

of those learning systems. Thus, to determine which instantiation 

of ID is more sensitive to the exposed hindrance than IR, in this 

section, the following experiment is carried out: 

A database containing the 15 unbalanced multi-class datasets 

recommended in the key work of [1] is assembled and the value 

of each summary presented in this paper (see Table 2 ) is calculated 

for each dataset. Their values, along with some main characteris- 

tics of the datasets, are presented in Table 3 . There, each row cor- 

responds to a dataset and each column stands for a characteristic 

(name, features and number of classes) or a summary (empirical 

class distribution, number of occurrences, IR and IDs). Afterwards, 

each dataset is used to feed a representative learning algorithm 

from the traditional major learning paradigms [27] . Specifically, for 

each problem, a different classifier is learnt using 5 different popu- 

lar supervised algorithms 4 : C4.5 (Decision trees), RIPPER (Decision 

rules), Neural Networks (Connectionism), Naïve Bayes (Probabilis- 

tic), and SVM (Statistical learning). In order to assess the perfor- 

mance of each learnt classifier, three different performance scores 

which are highly recommended for multi-class unbalanced prob- 

lems are used [24] : the arithmetic mean among the recall of the 

classes ( A ), the geometric mean among the recalls ( G), and the 

minimum recall obtained (min ). In order to obtain the values of 

these performance scores for each dataset, we estimate them us- 

ing 10 × 10 fold cross-validation 

5 . 

Then, the correlation between the estimated values for the per- 

formance scores and the summaries, IR and ID, are determined 

using the Pearson product-moment correlation coefficient [25] so 

that H 2 may be checked. Since a licit calculation of the corre- 

lation requires an ideal scenario with a fixed number of minor- 

ity/majority classes, we emulate this requirement by subtracting 

(m − 1) from the ID value before the calculation so that all consid- 

ered classification problems are normalised in the same range [0, 

1]. The results are presented in Table 4 ; rows represent the sum- 

maries and columns represent the estimated values for each score 

in each learning paradigm. Since the utilised scores assign higher 

values to better performance, an adequate summary is expected 

to have a negative correlation; the lowest the correlation, the bet- 

ter the sensitivity. We conclude from the results that summaries 

are, in general, negatively correlated with the performance of the 

classifiers, and that instantiations of ID are more sensitive than IR 

as the former obtain a lower negative correlation. The best results 

(highlighted in Table 4 ) are obtained by ID TV and ID HE . 

Finally, to determine if there are summaries significantly more 

sensitive to the hindrance produced by skewed class distributions, 

a statistical hypothesis testing procedure is performed: Friedman 

test [8] with Shaffer’s static post-hoc with α = 0 . 05 [12] . The test 

results are represented by means of critical difference diagrams 

(CDD) [8] , which show, in a numbered line, the arithmetic mean 

of the ranks of the correlation between each summary and the es- 

timation of each score in the database. If there is no statistically 

significant difference between two summaries, they are connected 

in the diagram by a straight grey line. Figs. 4 a, 4 b, and 4 show the 

4 In this experimentation, all learning and error estimation tasks have been per- 

formed using the software Weka 3 [16] . 
5 These results can be downloaded, along with the source code. 



J. Ortigosa-Hernández et al. / Pattern Recognition Letters 98 (2017) 32–38 37 

Table 3 

Characteristics of the studied unbalanced datasets [1] and the value of the summaries introduced in this paper for each dataset. 

Dataset | x | K Empirical class distribution Occurrences IR ID EU ID CH ID KL ID HE ID TV ID CS 

Autos 25 6 0.02/0.13/0.30/0.29/0.18/0.08 3/20/48/46/29/13 16.0 2.44 2.30 2.24 2.44 2.55 2.19 

Balance 4 3 0.46/0.08/0.46 288/49/288 5.9 0.66 0.76 0.40 0.53 0.76 0.44 

Contraceptive 9 3 0.43/0.23/0.35 629/333/511 1.9 0.30 0.32 0.07 0.20 0.32 0.09 

Dermatology 34 6 0.31/0.17/0.20/0.13/0.14/0.05 112/61/72/49/52/20 5.6 2.32 2.28 2.11 2.29 2.34 2.10 

Ecoli 7 8 0.43/0.23/0.15/0.10/ 143/77/52/35/ 71.5 4.56 4.48 4.42 4.61 4.70 4.31 

0.06/0.01/0.01/0.01 20/5/2/2 

Glass 9 7 0.33/0.36/0.08/0.00/0.06/0.04/0.14 70/76/17/0/13/9/29 8.4 ( ∞ ) 4.44 4.30 4.28 4.53 4.56 4.20 

Hayes-Roth 4 3 0.39/0.39/0.23 51/51/30 1.7 0.28 0.32 0.06 0.19 0.32 0.08 

Lymphography 18 4 0.01/0.55/0.41/0.03 2/81/61/4 40.5 1.77 1.59 1.65 1.73 1.92 1.59 

New-thyroid 5 3 0.70/0.16/0.14 150/35/30 5.0 1.55 1.55 1.25 1.40 1.55 1.30 

Pageblocks 10 5 0.90/0.06/0.01/0.02/0.01 492/33/8/12/3 164.0 3.87 3.87 3.73 3.75 3.87 3.76 

Penbased 16 10 0.10/0.10/0.10/0.10/0.10/ 115/114/114/106/114/ 1.1 4.02 4.01 4.00 4.02 4.04 4.00 

0.10/0.10/0.10/0.10/0.10 106/105/115/105/106 

Shuttle 9 7 0.78/0.0 0/0.0 0/0.16/0.06/0.0 0/0.0 0 1706/2/6/338/123/0/0 853.0 ( ∞ ) 4.90 4.90 4.83 4.88 4.92 4.82 

Thyroid 21 3 0.02/0.05/0.93 17/37/666 39.2 1.89 1.89 1.72 1.73 1.89 1.79 

Wine 13 3 0.33/0.40/0.27 59/71/48 1.5 1.11 1.10 1.01 1.09 1.10 1.01 

Yeast 8 10 0.16/0.29/0.31/0.03/0.03/ 24 4/429/463/4 4/51/ 92.6 5.54 5.35 5.42 5.60 5.79 5.29 

0.11/0.02/0.02/0.01/0.00 163/35/30/20/5 

Table 4 

Pearson correlation coefficient ( × 100) among the performance of the major learning paradigms on the datasets of Table 3 and the studied summaries. 

Fig. 4. Pearson correlation ranking between the performance of the supervised 

learning paradigms on the studied datasets and the summaries, α = 0 . 05 . 

CDD for the Pearson correlation between the summaries and A , G
and min , respectively. Results confirm the second hypothesis, in all 

rankings, IR shows the worst behaviour and significant differences 

are found between IR and other instantiations of ID for the perfor- 

mance scores. Moreover, they also show that instantiating ID using 

either Hellinger or total variation (Manhattan) distances produces 

significant robust summaries of the class-imbalance extent. 

5. Summary 

Authors often measure the class-imbalance extent in their ex- 

perimental schemas when there is a reasonable suspicion of hav- 

ing unbalanced problems in the checked database. Up to now, the 

most utilised summary of the class-imbalance extent of a dataset 

was the imbalance-ratio, i.e. the (expected) number of instances 

of the most probable class for each instance of the least probable 

class. Although it is a powerful measure for binary problems, in 

this paper, we prove that it is a suboptimal summary for the multi- 

class scenario. For that reason, we propose a new more adequate 

and robust summary of the class-imbalance extent to deal with 

multiple classes, named imbalance-degree . It has three interesting 

properties: (i) it is a single easy-readable real value in the range 

[0, K ), where K is the number of classes. (ii) Depending on the re- 

quirements of the sensitivity sought in the tackled problem, it can 

be instantiated by any chosen metric or divergence. (iii) It is an 

injective function for different class distributions showing differ- 

ent numbers of majority/minority classes. Empirical results show 

that imbalance-degree has a higher resolution and is more sensi- 

tive to express the hindrance that skewed class distributions cause 

in the traditional supervised algorithms than imbalance-ratio. Ad- 

ditionally, it can also be concluded that either Hellinger, total vari- 

ation or Manhattan distances are recommended distance/similarity 

functions to instantiate our proposal, imbalance-degree. 

This work can be extended in several ways. For example, only 

8 different distance/similarity functions over 15 datasets are used 

in this paper. A more exhaustive analysis can be carried out us- 

ing a larger number of distance/similarity functions [5,14] over a 

larger set of unbalanced problems in order to statistically deter- 

mine which functions behave differently and are recommended for 

highly different class-imbalanced scenarios. 
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Another straightforward future path to this research can be a 

study on the variation of the correlation between ID and the per- 

formance of the classifiers when class-imbalance techniques, such 

as SMOTE [6] , are used. This could be a step forward in determin- 

ing which intrinsic features of the data are affecting the classifiers 

[2] , and whether the performance of a classifier can be predicted 

based upon the available data [30] . However, note that, although 

the negative correlation between ID and the performance is ex- 

pected to decrease as long as the class-imbalance techniques alle- 

viate the hindering effect of the class distribution, there might ex- 

ist other hindering aspects [23] which may harm the performance 

of the classifiers. 
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J. D. Rodŕıguez, “Supervised pre-processing approaches in multiple class
variables classification for fish recruitment forecasting,” Environmental
Modelling and Software, vol. 40, pp. 245–254, Feb. 2013.
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Tudományos Akadémia Matematikai Kutató Intézet Közlemény’, vol. 8,
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