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Abstract 
High performance position control in machine tools can only be achieved modelling the dynamic 
behavior of the mechatronic system composed by the motor, transmission and control during 
the design stage. In this work, a complex analytical model of a ball screw drive is presented and 
integrated in a mechatronic model of the actuator to predict the dynamic behaviour and analyze 
the impact of each component of the transmission. First, a simple 2 degrees of freedom model 
is presented, and is analysis sets the basis for the development of a more complex model of 
several degrees of freedom, whose resulting fundamental transfer functions are represented 
using natural and modal coordinates. The modeling in modal coordinates carries a reduction of 
the transfer function that reduces computational work. The two models are compared and 
experimentally validated in time and frequency domain by means of experimental tests carried 
out on a specifically developed ball screw drive test bench. 
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Nomenclature 
m, J Mass, inertia moment  

 c Viscous damping 
 k Stiffness  

ωi i-thmodal frequency 
φij i-thdof component of the j-th eigenvector 
x,θ Linear, angular position in natural coordinates 
δ Positionin modal coordinates 
ξi Damping coefficient of the i-th mode 
f, τ Force, torque in natural coordinates 
g Force in modal coordinates 
Kv Proportional gain of the position loop 
Kp Proportional gain of the velocity loop 
Ti Integral time of the velocity loop 
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1 Introduction 
In order to optimize the performance of machine tool drives, a huge effort has been made in 
recent decades to investigate the global mechatronic behaviour through modeling [1]. The more 
complex or detailed the model is, the more realistic will be the simulation, if the dynamic 
parameters are well known, and a better design will be done. The specifications that must be 
guaranteed in the design stage are generally accuracy, that is, precision following the 
programmed tool path, robustness against perturbations as the cutting forces and acceleration 
and jerk to perform intricate motions. In the end, those requirements are fulfilled if a certain 
bandwidth is achieved in the drive. The bandwidth will depend on the mechanical properties of 
the drive and transmission chain but also on the control performance, so it is necessary to have 
a good modelling tool of both systems to assess the design stage. 

However, not only a good selection of components must be made during the design. Some 
authors actuate on the mechanical system or control system modifying preloads or adding 
filtering techniques [2], [3], developing intelligent algorithms [4] or applied reinforcement 
learning methods [5]. Some author even add piezoelectric actuators to complement the action 
of the drives [6]. All this to improve the dynamic behavior of the actuation system, that is to 
improve the drive bandwidth while avoiding resonances. 

In order to get a model that describes accurately the dynamic behavior of the drive test bench 
and for finding the optimal formulation, several options have been posed in the literature of the 
Academy. Some works focus on lumped parameters modeling with Newton [1], [7] and Lagrange 
[8]–[10] form. Other techniques to model dynamical systems are by numerical models of finite 
elements [8], [11], [12] or multibody models. As the screw shaft body stiffness is variable along 
its axis, some authors have formulated Lagrange equations by integral functions [9], [13]. From 
the equations of motion, after passing them to the frequency domain, the dynamics of the drive 
can be modeled by transfer functions, or use the state space approximation as [8].  

A drive modeled by lumped parameters can be developed by inertial models such [5], [12], [13], 
and 2 dof models such as [14], [15]. So far, several authors have developed lumped parameter 
models in ball screw drives, generally using two dofs models. There are authors that have even 
developed a four dof model [4], [16] using a lumped parameter system, then analyze in more 
detail the different modes of vibration.  

In the literature, in the case of N dof models systems have been developed using a space-state 
approximation such as [8], [17]. Zulaika and Altamira [18], developed a model of lumped 
parameters of 2 dof of a ball screw drive in modal coordinates.  

In this paper it has been chosen the Newton formulation, using a lumped parameters model. In 
this paper a model of 2 dof and another of N dof in natural and modal coordinates are 
developed. The model in modal coordinates will present equations for transfer functions in a 
more explicit way, and isolating the drive with as many lumped parameters as possible will 
interpret the dynamic behavior of the system in a more realistic and precise way. A comparison 
between 2 dof and N dof models is made, and especially the advantages of the modal 
coordinates for the N dof models will be explained. 
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This paper is organized as follows. Section 2 develops the mechatronic model of the drive both 
using a 2 dof and a 7 dof dynamic model in natural and modal coordinates. In Section 3, the 
modelling is applied to a ball screw drive. In Section 4, an experimental validation with a test 
bench is presented comparing the model and the experimental data in time and frequency 
domain. The paper will end with some conclusions in Section 5. 

2 Mechatronic model of a ball screw drive 
In Fig.1 it is shown the ball screw test bench that has been modeled and tested. It has a Fagor 
FKM 42.30A servomotor with a rated torque of 6.3 Nm, a Korta KBS-3210ball screw with single 
nut and flange with an outer diameter of 32 mm and a pitch of 10 mm, and a Heidenhain Ls186 
MI640optical linear encoder with a resolution of 0.5 µm.A pneumatic cylinder can impose a force 
on the table, simulating a feed disturbance. The drive is controlled by a CNC Fagor 8035, with 
has an oscilloscope function that allows measuring internal signals, as the position at the motor 
encoder and linear encoder, the following error or the motor torque and intensity.  

 
 

Fig. 1Ballscrew drive testbench. 

To analyze the dynamic behavior of the drive, a mechatronic model has been developed in 
Matlab/Simulink, see Fig.2. Regarding the modelling of the drive control, it is based on cascaded 
loops for position, velocity and current control. The position control is based on a proportional 
controller (P) with the aid of a feed-forward (FFV), and the cycle time is of 4ms. The velocity 
control has a proportional-integral controller (PI) for the motor velocity control. Finally, the 
current loop is modeled with just the torque constant gain Kt, as it runs with a much quicker 
cycle time than the velocity and position control loops.  

 

Fig. 2Mechatronic model of the ballscrew drive in Simulink. 
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From a mechanical point of view, the dynamics of the drive are modeled after two fundamental 
transfer functions. The primary transfer function TF1 relates the torque motor with the angular 
position of the motor at the encoder. The secondary transfer function TF2 relates that angular 
position at the motor with the position of the table measured by the linear encoder. On the 
other hand, the torque disturbance due to friction has been experimentally identified and 
modeled.  

2.1 Fundamental transfer functions on a 2dof model 

The 2 dof model of the ball screw drive testing bench is based on a system of two masses 
connected by a spring and a damper as it is shown in Fig. 3. This is a well-known approach to the 
modelling of the dynamics of an electromechanical drive [19], [20]. Here, this model will be set 
out using natural and modal coordinates to provide a reference for the N dof model.  

 

Fig. 3Lumped parameters model of a2 dof mechanical system. 

2.1.1In natural coordinates 

The two degrees of freedom of Fig. 3 are the linear position equivalent to the position 
measurement of the motor encoder and the table position measured at the linear encoder. The 
first mass represents the motor inertia, and the input force f is equivalent to the motor torque. 
The second mass represents the inertia of the flexible coupling, screw, nut and table.  
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There are two modal frequencies where the first one is zero as it is a rigid body mode. The 
second frequency will be: 
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Converting Eq.1 to the Laplace domain, the primary and secondary transfer functions have the 
following shape: 
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2.1.2Using modal coordinates 

The eigenvalue problem of the dynamic matrix of the dynamic model, see Eq.4, provides the 
modal frequencies as well as the modal matrix [φ]. 
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Normalizing the modal matrix respect to the mass matrix: 
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In order to convert the motion equation of Eq. 1 to modal coordinates, the coordinates and 
forces transformation of Eq. 6is performed. 
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The equation of motion in modal coordinates assuming that proportional damping is: 
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The equations of motion are: 
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Therefore, the corresponding transfer functions in modal coordinates are: 
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Introducing Eq. 9 in Eq. 6, undoing the conversion to modal coordinates, the following relation 
between the degrees of freedom and the actuating force is obtained: 
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From Eq. 10, the fundamental transfer functions are shown in Eq. 11 as a function of the total 
mass of the system mt and the ratio rm of the second mass m2 to the motor one m1.  
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Comparing Eq. 11 and Eq.3, using the modal coordinates, the fundamental transfer functions 
can be obtained in a more explicit way, isolating also the contribution of each mode to the 
transfer function. 
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2.2Fundamental transfer functions on a N dof model 

Although the 2 dof model can be enough to predict the global dynamic behaviour of the drive 
[21], N dof lumped parameter models allow analyzing the influence of each component [22]. 
Here, the following assumptions have been made to develop a 7 dof model of the ball screw 
drive. The screw shaft is driven with a servomotor connected to a ball screw and nut system via 
a flexible coupling, see Fig.4. This flexible coupling is divided into two halves, the ring next to the 
motor and the ring attached to the spindle. The spindle is arranged between two supports with 
three angular tandem bearings in each one at the extremes of the shaft. The configuration of 
the two supports of the rotating spindle is a fixed one. These bearings provide radial guiding to 
the spindle and absorb the forces in the axial direction. To model that configuration, the spindle 
has been modeled with two springs in parallel that represent the stiffness of either side from 
the nut. 

 

Fig. 4. a) Decoupled model of lumped parameters of 7 dof of a ball screw drive. b) Coupled 
model. 

2.2.1In natural coordinates 

In the 7 dof model, six lumped inertias are connected by the corresponding torsional spring and 
dampers that represent the stiffness and the damping of the transmission chain. The motion is 
provided by the motor torque τM which has to work against the disturbance torque due to the 
friction τd. The resulting torque provides the motion on the drive table x7, whose angular 
equivalent is calculated as a function of the screw pitch p: 

7 7
2x
p
πθ =                                                                                                                                              (12) 

Hence, the 7 degrees of freedom are: the angular position at the motor encoderθ1, the angular 
position at the first ring of the flexible coupling θ2, the angular position at the second ring θ3, the 
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angular position of the screw section at the nut θ4 as well as its axial deformation x5, the angular 
equivalent of the linear position of the nut interface with the table θ6, calculated as in Eq. 12, 
and the mentioned angular equivalent of the table linear position at the encoder θ7.A conversion 
from linear positions to their equivalent angular ones is done to have a coherent model 
regarding the units of the degrees of freedom, thus avoiding possible numerical problems. 
Hence, x5 is also converted to θ5 following Eq. 12. 

Regarding the stiffness of the elements of the transmission chain, it is considered the torsional 
stiffness of the motor shaft kt1, the flexible coupling kt2, the torsional stiffness of the screw kt3 as 
well as its axial stiffnesska4together with the axial stiffness of the front and rear bearings, the 
torsional equivalent of the axial stiffness of the ball screw-nut interface kt5, due to the balls 
deformation, and the torsional equivalent to the nut and table axial stiffness from the nut 
interface to the position where the measurement of the linear encoder takes place kt6. Regarding 
the inertias, it is considered the motor inertiaJ1, the inertia of the two rings of the flexible 
coupling J2 and J3, the inertia J4 and mass m5of the screw, the mass of the nut m6 and table m7. 
Again, to have a model coherent in units, all the magnitudes have been converted to their 
equivalent torsional values at the motor shaft as follows. Also, together with all the springs, 
several dampers have been introduced to model the structural damping of all the elements. 

2 2
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π π
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Thus, the dynamic equations of the drive system can be described and ordered in matrix form, 
as seen in Eq. 14, where [M], [C] and [K] are the matrices of inertia, damping and stiffness, 
respectively, and are shown in the Appendix: 

[ ]{ } [ ]{ } [ ]{ } { }J q C q K q τ+ + =                             (14) 

The τ vector includes the forces and q the coordinates of the degrees of freedom, as in Eq. 15. 
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After the conversion to the Laplace domain, all the transfer functions that relate the motion of 
the degrees of freedom are obtained, see the Appendix. After several operations, the primary 
and secondary transfer functions to introduce in the mechatronic model of Fig. 2 are 
represented in Eq. 16. Since they are too long to be represented here explicitly, they appears as 
a function of the transfer functions that relate the other degrees of freedom. 
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2.2.2Using modal coordinates 

The decomposition of the two fundamental transfer functions of Eq. 16 using modal coordinates 
significantly reduces the computational work during simulation and allows an explicit 
representation. If the change to modal coordinates of Eq. 6 is applied to the equations of motion 
of the N dof model like Eq. 4, operating as in Section 2.1.2, the fundamental transfer functions 
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of a N dof model can be represented explicitly. For 7 dofs, the following primary and secondary 
transfer functions are obtained: 
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3 Application to a ball screw drive 
 
3.1Inertia and stiffness of the transmission chain elements 

To model the stiffness of all the components the theory of elasticity has been used, classified by 
the standard formulation in Appendix. The inertia and stiffness of each element is classified in 
Table 1, assuming that the nut is placed in the middle of the spindle shaft. The motor shaft,  
flexible coupling, ball screw-nut interface and nut rigidities are provided by the manufacturers. 
 

Table 1Summary of rigidities and inertias of the components 
 

 

In Fig. 5, it is shown the rigid body diagram that represents the working mode of the ball screw 
spindle and the lumped parameters modelling performed. It is the ball screw section between 
the front-end bearing and the nut, the one that works at torsion, hence, the ball screw torsional 
stiffness kt3. 
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1 3,23 10 /tk Nm rad= ⋅  4 2
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Fig. 5Working mode of the ball screw spindle and modelling. 

On the other hand, to obtain the equivalent axial stiffness of the spindle shaft, it has been 
considered that, as the two supports are fixed, both sides of the ball screw will work at 
traction/compression in parallel, hence, kaBS1 and kaBS2. Each side will also work in series with the 
front and back-end bearings axial stiffness, kaFB and kaBB, respectively, so the resultant axial 
stiffness ka4 is: 
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The calculation of the stiffness ka6 is shown inEq. 19. It considers in series the axial deformation 
of the nut kaN and the nut support kaNS and the bending of the four screws in parallel that fix the 
nut support to the table kbS.  
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3.2 Modes and frequencies  
 
3.2.1 Modes and frequencies in the N dof model 
 
The modal frequencies obtained from the eigenvalue problem of the dynamic matrix are in Hz:  
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Attending to the eigenvectors amplitudes, as shown in Eq. 21 and more intuitively in the Fig.6 
for the three first modes, it is noted that the first mode, as expected, corresponds to the rigid 
body mode, so all components move in phase but the spindle axial deformation which is near 
zero. The second mode has mainly an axial behaviour, because of the higher value of the last 
three lines of the 2ndcolumn. In contrast, the third mode is mainly torsional whereas the other 
modes are due to coupled torsional and axial vibration. 

 

Fig.6 Representation of the first three modes calculated with the 7 dof model. 

3.2.2 Modes and frequencies in the 2 dof model  
 
In the 2 dof model, the values of the first and second drive section masses will be calculated as 
in Eq. 22. 
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Regarding the stiffness, knowing that all rigidities are in series, except the axial and torsional 
rigidities of the spindle which are arranged in parallel, the equivalent stiffness of the test bench 
can also be obtained as: 
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Torsional rigidities of the Eq. 23 have been transformed to their translational equivalent undoing 
the conversion in Eq. 13. Once the masses and the equivalent stiffness of the system are defined, 
the natural frequencies have been determined applying Eq. 2, being 0 Hz, the rigid body mode, 
and 87 Hz.  
 
3.2.3Friction disturbance modelling and identification 

A simple friction model with viscous and Coulomb friction has been considered to model the 
disturbance torque due to the friction.  
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The viscous friction coefficient c and Coulomb friction torque

cFτ have been identified 
experimentally, by measuring torque values at constant feed [23], [24]. Performing a linear 
regression with the measured torque vs. motor speed, the estimations are c=0.0064 Nms/rad 
and

cFτ =1.1Nm.       

3.3 Results 

The 2 and 7dof models have been compared with experimental tests performed in the test 
bench shown in Fig. 1. In Table2, the parameters and internal variables allocated in the position 
control and velocity and current regulators are classified. Note that the NC control scheme is 
represented in Fig. 2.  

Table 2Control gains and parameters 

 Featured paremeters Value of the assigned parameter  
P=Proportional controller Kv 36.841/s 
PI =Proportional-integral controller Kp 20 mA/rpm 
 Ti 6.2 ms 
Motor torque constant Kt 1.4 Nm/A 

 

3.3.1Experimental validation in time domain 
 
In the NC of the ball screw test bench, the velocity profile of the path generator takes a square 
sine shape. In Fig. 7, position, velocity, acceleration, jerk and motor torque of a 100 mm stroke 
with a feed speed of 7 m/min of feed is shown. The continuous line represents the results from 
the 7 dof model, the discontinuous line shown the experimental measurements from the linear 
encoder and the motor, and the commanded position and velocity are also shown by fine solid 
lines.  
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Fig. 7. Comparison 7 dof model vs. experimental measurements: Vf=7 m/min and 100mm 
stroke. 

In Fig. 8, another test is shown. In this case, the motion tested has a stroke of 100 mm and a 
feed speed of 22 m/min. It can be seen how, for the programmed stroke, the drive spends very 
little time at constant feed due to the lack of acceleration. 

 

Fig. 8. Comparison 7 dof model vs. experimental measurements: Vf=22 m/min and 100mm 
stroke. 

As can be seen in the Figs. 7 and Fig. 8, the curves of the models and the experimental curves 
agree reasonably in shape and phase although some deviations are obtained as indicated in the 
acceleration, jerk and torque peak values. In position the curves of the models are remarkably 
coincident with the experimental curves. In velocity the amplitudes are remarkably coincident, 
although for example in Fig. 7 there is a difference in shape probably due to an imprecision in 
the estimation of damping and friction. 

The thicker solid lines represent the values at the output of the drive, i.e. on the table of the 
drive, reason why its delay in position and velocity respect to the commanded values is logical. 

The curves and phases of the experimental and model accelerations coincides very precisely 
with peaks amplitudes, especially in the case of the Fig. 8 (Vf=22 m/min). 

The deviations in the jerk peaks as expected are greater than in acceleration, but shapes and 
phases are very similar. Although there is a 29% deviation in the jerk peak the result of Fig. 7 of 
the 7 dof model is correct. The deviation of the maximum value of jerk from Fig. 8 is lower (Δj = 
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8%), although there is a time delay of the experimental curve, probably due to the problem of 
setting the common time t=0 for model and experiment. 

Finally, the 7 dof model is well coupled to the experimental signals, and although there are 
deviations in peaks, the magnitude of friction is well estimated as shown in Fig. 7 and Fig. 8. The 
average torque value due to Coulomb friction in the particular case of 7 m/min (Fig. 7) is 1.59 
Nm, and at 22 m/min 1.02 Nm (Fig. 8). 

The delays in time can be considered negligible, and the amplitudes of the kinematic and 
dynamic variables validate well the 7 dof model, therefore, this is very close to the experimental 
values. 

3.3.2Comparison 2 dof model vs. 7 dof model  

The2 and 7 dof models are here compared in frequency and time domain.  In the frequency 
domain, it has been compared the Bode diagrams of the primary and secondary transfer 
functions, and the position closed loop transfer function, table position vs. position 
command.Fig.9 represents the three Bode diagrams with the main frequencies and the 
bandwidth of the position closed curves from the 2 and 7 dof models. It is noted that the 
bandwidth of the position closed loop is the same in the two models, at 2.32 Hz. Furthermore, 
the variety of resonance peaks in the 7 dof model in comparison with the 2dof model is 
observed.  

 

 

Fig. 9 Frequency domain comparison 2 vs. 7 dof: a) Primary transfer function TF1, b) Secondary 
transfer function TF2, c) Position closed loop transfer function. 

A comparison is also performed in time domain in Fig. 10. For a stroke of 100 mm with a feed 
speed of 30 m/min, it is observed that in position and torque graphic forms coincide except for 
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some torque oscillations in the 7 dof model. This could be expected since the position closed 
loop transfer functions are very similar and the dynamic parameters used in both models are 
the same.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Time domain comparison 2 dof vs. 7 dof:Vf= 30m/minand100mmstroke. 

3.3.3Discussion 

Looking at Figs. 7 and 8, it can be said that the 7 dof model predicts the mechatronic behaviour 
of the ball screw drive accurately. On one hand, attending to the kinematic variables, position, 
velocity, acceleration and jerk, the model predicts with slight variations the amplitude and the 
delay of the response of the drive with respect to the programmed path. This implies that the 
position closed loop calculated and shown in Fig. 10 is in touch with reality, as it conditions the 
amplitude and delay of the response of the drive. 

On the other hand, the calculated torque motor in Figs. 7 and 8 is again close to the experimental 
one. The shape and amplitude of the signals is very similar, although in the experimental signal 
there appear some oscillations not identified in the model. Nevertheless, this results imply that 
the mechatronic model of Fig. 2 with the 7 dof dynamic model used to calculate the primary and 
secondary transfer functions represents the main phenomena involved in the drive during the 
motion.  

Also, it means that in general it has been done a satisfactory estimation of the dynamic 
parameters, inertias, masses, stiffness, friction and damping. It must be considered, for example, 
that the tests were done on purpose moving the drive from the zero position to 100 mm, to 
check the consistency of the estimation of the spindle torsional stiffness, which was calculated 
assuming that the nut is at 200 mm, in the middle of the range of the drive. This means that the 
torsional stiffness during the test has been 2 times or more the used for the model. This fact 
may be related to the differences in the response delay between the model and the experiments 
carried out, although, on the other hand, in Fig. 6 it has been demonstrated that the main 
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limiting mode of the transmission is due to the lack of axial stiffness of the spindle and the nut 
and table. 

Finally, regarding the comparison between the 2 dof model and the 7 dof model, definitely, in 
time domain and in frequency domain inside the bandwidth there is little difference between 
both models. Looking at Fig. 6, it is clear that the second mode, the first mode of vibration, is 
mainly due to the poor axial stiffness of the ball screw spindle and the interface nut-table. That 
information is of great use in order to redesign the transmission if the bandwidth reached does 
not meet the requirements, for example, in this case, an axially stiffer spindle and a more robust 
attachment of the nut to the table would be needed. 

The methodology used for this paper corresponds to drives that as a last element in the chain 
of transmission have a table, another case is that of the drives that in addition to the table move 
a structural element, such as a column. This structural element adds flexibility to the system, 
and its influences are developed in the paper by Ansoategui I et al "Influence of the machine 
tool compliance on the dynamic performance of the servodrives" (2016) [25]. 

This paper takes into account each element of the drive that can serve for any type of drive ball 
screw, since the elements are common. This paper has also taken into account the contact 
between screw-balls-nut. The common elements of the ball screw drive studied are: 1: 
servomotor, 2. half flexible coupling in the motor side, 3. half flexible coupling in the screw side, 
4. screw, 5. nut and 6. table. Each element has its own degree of freedom, but in the case of the 
axis of the screw have taken into account two displacements: the angular position of the screw 
in the place of the nut and the degree of freedom that corresponds to the axial deformation of 
the screw in the location of the nut, since the screw axis is fixed to the bearings of the test bench 
structure. In total, 7 dof is contemplated. 

In order to understand how a greater number of degrees of freedom influence this review, a 
comparison is made with an paper by Feng G-H et al (2012) [2], which also develops a model of 
N degrees of freedom. In the paper by Feng G-H et al (2012), the developed parameter set 
system is 4 dof. There are 4 axes that determine the angular position of the motor, angular 
position of the ball screw, linear position of the ball screw, and the linear position of the table. 
The 7 dof model of this paper also contemplates the movement of both halves of the coupling, 
and the displacement of the nut with respect to the screw axis (screw-ball-nut interference). 
The modal analysis of Fig. 6 helps to understand more precisely which element of the drive 
assembly causes greater vibration change. 

 

4 Conclusions 
In the present paper a method for the mechatronic modelling and analysis of a ball screw drive 
has been presented. The main novelty of the model is in the model of the whole mechatronic 
system, control and dynamics, the two main transfer functions, the primary relating torque and 
motor velocity and the secondary relating motor and table position, have been obtained using 
a detailed 7 dof lumped parameters dynamic model. In order to have an efficient computation 
of such transfer functions, a change to modal coordinates has been implemented so a general 
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analytical expression of the transfer functions for N dof models has been proposed. The 7 dof 
model has been compared with a classical 2 dof dynamic model, which is an approach frequently 
found in the bibliography. Also, several experimental tests have been done on a ball screw drive 
test bench. The experimental results prove that, after identifying the Coulomb and viscous 
friction parameters, the position, tracking error, velocity and derivatives and motor torque 
predicted by the mechatronic model are accurate, both when the 2 dof and the 7 dof models 
are used. So, it can be concluded that if the objective of the mechatronic model is to simulate 
the drive dynamic behaviour, a 2 dof model can be enough. However, in order to perform a 
redesign of the drive or transmission chain, the 7 dof model modal analysis allows identifying 
the weaker components of the transmission, so any error in the design phase can be virtually 
identified and corrected before any investment on a first prototype. 
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Appendix 
 

Mass, stiffness and damping matrices of the 7 dof model 

The [M], [K] and [C] matrices in Eq. (12), reduced to the motor shaft, take the following 
symmetrical form: 
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Transfer functions of the 7 dof model in natural coordinates  

 

In the following equations, the individual transfer functions between the axes of the 
components of then dof model in natural coordinatesare shown.  
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Equations for stiffness: 

Then, equations to determine the values of torsional, axial and bending rigidity are presented. 
These will be function of the shear modulus G, the torsional moment of inertia J, the bar length 
L, the Young's modulus E, the area of the cross-section A, and the axial moment of inertiaI. 
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