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Abstract: Due to their excellent strength-to-weight ratio and corrosion and wear resistance, γ-TiAl
alloys are selected for aerospace and automotive applications. Since these materials are difficult to cut
and machine by conventional methods, this study performed drilling tests using Electro Discharge
Machining (EDM) to compare the machinability between two different types of γ-TiAl: extruded
MoCusi and ingot MoCuSi. Different electrode materials and machining parameters were tested and
wear, surface hardness, roughness and integrity were analyzed. The results indicate that extruded
MoCuSi is preferable over MoCuSi ingots.
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1. Introduction

Electrical discharge machining (EDM) is a widely used nontraditional machining process in
industrial applications requiring high-profile accuracy and fine dimensional tolerances, especially
when difficult-to-cut materials are involved. In particular, EDM drilling [1] is a commonly used process
for orifice and hole machining in the aerospace, medical [2], molds and automotive sectors.

In an EDM process, the material is machined by electrical discharges. An electric arc is produced
between the workpiece and the electrode until the desired shape is obtained. The workpiece and the
electrode are submerged in a dielectric environment [3], both are also electrical conductors [4]. EDM is
especially efficient for machining materials with high-hardness and complex geometries [5].

However, surface defects associated with EDM, such as voids, dense white layers, serious
micro cracks and heat affected areas [6], require surface analysis [7] in order to guarantee machined
component quality [8]. Moreover, electrode wear prediction and process parameter selection for
process productivity, quality and accuracy requirements remain challenging with EDM.

In this sense, some authors study real-time monitoring techniques [9,10] in order to control
electrode wear and to obtain an efficient EDM drilling process for nickel superalloys [11,12], titanium
alloys [13–16], and stainless steel [17,18] workpieces.

Therefore, as it is often difficult to ensure the surface quality and the correct machining process, in
this study, the results from EDM drilling tests in γ-TiAl are presented as a guide to ensure good surface
quality and machining process performance. Within this context, different electrode materials and
machining parameters were tested in order to determine optimal machining conditions. On this matter,
electrode wear, surface hardness, roughness and integrity were analyzed and discussed. TiAl alloys are
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widely used in areas such as aerospace, jet engines, airframe components and automotives due to their
excellent corrosion resistance, lightweight and mechanical properties. Titanium and aluminum [19,20]
are the most important components together with molybdenum (1–2%), copper and silicon (0.2%).
They have very good thermal and mechanical properties such as: (1) low density (4 g/cm3); (2) high
temperature resistance; (3) excellent corrosion resistance and (4) good electric and thermal conductivity.

The literature regarding these materials is relatively scarce. Jabbaripour et al. [21] compared the
powder mixed electrical discharge machining (PMEDM) and EDM process of γ-TiAl by changing the
current, pulse on time, powder size and powder concentration. Shabgard et al. [22] used the EDM
process for the machining of γ-TiAl and discussed the influence of the input parameters (discharge
current and duration) on the removal rate, tool wear, or compositions and phases of machined surfaces.
Holsten et al. [23] investigated the anomalous behavior of γ-TiAl, which is better machined under the
conventional anodic polarity. This leads to TiC formation on the work surface.

In this work, EDM technology and process parameters are compared within two γ-TiAl types.
Hole making operations using electrical discharges are made on extruded and ingot versions of this
material for different machining regimes.

The MoCuSi TiAl alloy, depicted in Figure 1, is available in two versions: extruded or ingot.
They are made from the same materials but differ in the way they are obtained. The former is obtained
by casting, while the latter is obtained by extrusion performed in a stainless-steel sleeve. Due to this
difference, the latter is covered in stainless steel.
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Figure 1. MoCuSi (a) ingot and (b) extruded. (courtesy of GfE® Metalle und Materialien GmbH).

Recently, TiAl alloys are a vast group with important differences between products. Table 1 shows
the main differences between MoCuSi types and common Ti6Al4V. In the past, TiAl alloys were much
easier to machine that the current TiAl alloys. As such, newer alloys have much lower density as
well as higher maximum operating temperature. As both these properties are essential for current
applications, this is a step forward for the industry.

Table 1. Properties of different TiAl alloys (courtesy of GfE® Metalle und Materialien GmbH).

Properties MoCuSi Extruded MoCuSi Ingot Ti–6Al–4V (Annealed)

Density (g/cm3) 3.74 3.88 4.49
Specific modulus (GPa/kg/m3) 43 37 24

Tensile strength (MPa) 607 689 1087
Specific strength (MPa/(g/cm3)) 162 178 242

Yield strength (MPa) 589 570 942
Ductility (% elongation) 1.7 2.4 7.8

Fracture toughness (MPa·m1/2) 23 20 52
Thermal conductivity (W/m/K) 24 19 8.6

Maximum operating temperature (◦C) 900 865 615

Vacuum arc remelting (VAR), depicted in Figure 2a, is used in the manufacturing of ingots of
γ-TiAl. The basic design of the VAR furnace has been continuously improved continuously, particularly
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in regard to computer control and regulation, with the objective of achieving a fully-automated
remelting process. This has resulted in improved reproducibility of the metallurgical properties of
γ-TiAl ingots.

The process involves melting the material within a vacuum-controlled atmosphere (0.13–13 Pa) in
order to develop material homogeneity. VAR is the continuous remelting of a consumable electrode
by means of an arc under vacuum. Direct current (DC) power is applied to strike an arc between the
consumable electrode (cathode −) and the baseplate of a copper mold contained in a water jacket
(anode +). The intense heat generated by the electric arc melts the tip of the electrode and a new ingot
is progressively formed in the water-cooled mold.

MoCuSi ingots are obtained by VAR while extruded MoCuSi is obtained by extruding MoCuSi
ingots. This difference in processing results in substantial differences in properties, shown in Figure 2b.
The extruded material [24–26] has more desirable properties than the ingots. Yield strength, creep
strain and endurance limit are much lower in the ingots than in the extruded material. The difference
in the fracture toughness is less pronounced.
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extruded and ingot TiAl.

TiAl alloys are used for reliable components where surface integrity must be maintained. However,
the machinability of titanium and its alloys is poor due to their low thermal conductivities, high
chemical reactivity, and low elastic moduli, making it difficult to obtain good machining quality.
To overcome these challenges, EDM could be an effective manufacturing process, especially for the
manufacturing of complex geometries. In this process, a high temperature gradient can jeopardize
process accuracy and the operating life of the part.

2. Experimental Procedure

γ-TiAl can be applied to a number of applications in the aerospace and automotive industries.
This study was designed to determine the machinability and the best machining conditions for EDM
of the extruded and ingot types of these titanium aluminides. The experimental procedure included
the following steps: (1) experimental machining tests with different regimes, roughing and finishing,
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using different strategies and parameters; (2) measurements of process quality: electrode wear, hole
diameter, surface finish and hardness.

2.1. Machining Tests

For the EDM tests, a conventional EDM machine (ONA© Compact 2) was used, depicted in
Table 2.

Table 2. ONA© Compact 2 characteristics.
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Allowable weight on table 350 kg

Generator intensity 30 A

Voltage levels 9
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The next step was the design of the roughing and finishing operations for the ingot/extruded
MoCuSi workpieces. Eight holes of 0.3 mm depth, four for roughing conditions and four for finishing
operations, were made in both materials, shown in Figure 3. The number of attempts for roughing
(four) and finishing (four) operations were chosen in order to adequately represent a number of cutting
parameters within the machine’s capabilities. Additionally, a 0.3 mm depth of cut was chosen to keep
machining times reasonable as increasing this value leads to very long machining times.
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Figure 3. Scheme of electrical discharge machining (EDM) operations for both materials ordered by
hole number.

In the EDM process, the electrode is one of the most important factors, accounting for around
60% of total process cost. Desirable electrode material properties are high fusion temperature, good
conductivity, low expansion coefficient and low density. Regarding electrode material, in this case,
graphite electrodes were used. The properties of these electrodes are shown in Table 3. Copper-tungsten
electrodes were also tested, but these were discarded due to problems with erosion. Copper-tungsten
electrodes required 1 h and 20 min for a 0.15 mm deep hole and it was impossible to obtain a deeper
hole. Extra attempts were performed with higher machining values but this problem persisted.
The main reason for such a failure is that copper-tungsten electrodes are not appropriate for titanium
machining due to excessive electrode wear. Graphite’s good thermal and electric properties and its
machinability make it ideal for γ-TiAl machining. The most important property of graphite is related
to state transformation: it does not pass from solid to liquid but passes directly from solid to gas,
a process called sublimation.
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Table 3. Properties of selected graphite electrodes (courtesy of matweb©).

Properties Graphite

Density (kg/m3) 1800
Particle size 1–5 µm

Bending resistance (kg/m2) 5.3 × 106

Compression resistance (kg/m2) 10.50 × 106

Hardness (HB) 70
Electrical resistivity (µΩ) 16

Test conditions (intensity, voltage, stages, impulse time (ti) and pause time (to)) were established
for both types of operations. Initially, the workpiece and electrode were placed in the right position,
and the cleaning system was run. First, the roughing test was carried out and afterwards, the finishing
test was performed. For the roughing test, the hole diameter was measured with a coordinate
measuring machine (CMM) (Mitutoyo, Kawasaki, Kanagawa, Japan). Additionally, the electrode wear
was studied by analyzing the height and weight losses. The lost height was measured by the wear
electro discharge machine, it was measured before and after holes drilling. First of all, roughing tests
were performed (more than 100 mm3/min), testing different intensities, impulse and pause times.
Roughing test conditions were selected depending on the gap, machining speed, and electrode wear.

The workpiece hardness changes during the EDM process due to the heat suffered by the electrode
and the workpiece. Depending on the pulse time and the time between pulses, the workpiece suffers
cooling and heating cycles. If the workpiece holds a temperature higher than the annealing temperature,
hardening occurs. Therefore, after the EDM process, the hardness was measured in order to verify
the influence of the machining parameters on surface hardness. This measurement was carried out at
three different points in order to obtain reliable average results. For that purpose, a Mitutoyo© HR-300
(Mitutoyo, Kawasaki, Kanagawa, Japan) was used. The results of these experiments are shown in
Table 3.

After machining the surface finish was measured with a Mitutoyo SJ-301 (Mitutoyo, Kawasaki,
Kanagawa, Japan) with a measuring range of 12.5 mm. The results of these tests are shown in Table 4.

2.1.1. Roughing Tests

For roughing tests, shown in Tables 4 and 5, the power value was set to 100 V. The established
polarity was negative for the electrode and positive for the piece. EDM parameters were programmed
according to roughing conditions. However, pause times were increased due to the fluid lack of
time for deionization. The pulse and pause times per period are represented by ti and to respectively.
The sum of ti and to times gives the time period, which is the period between two consecutive sparks.
The workpiece material being removed is represented by Vw. Black rectangles indicate critical regimes
that could not be successfully tested during the experiments.

Table 4. Roughing parameters for the MoCuSi ingot.

Test Intensity (A) Stages Number ti (µs) to (µs) Lateral Gap (µm) Removed Material Vol. Vw
(mm3/min)

1◦ 1 2 4 - x 3 200 20 80 101
2◦ 1 2 4 8 x 2 200 20 120 170
3◦ 1 2 4 8 x 3 200 30 140 270
4◦ 1 2 4 8 x 4 200 30 150 330

In all the tests, the pause time, to, was increased for a more stable erosion. For the MoCuSi ingot
workpiece, shown in Table 4, for the first and the second attempts, the pause time was increased from
6 µs to 20 µs, in the third attempt it was increased from 12 µs to 30 µs and in the fourth attempt it was
increased from 6 µs to 30 µs. For the extruded MoCuSi, shown in Table 5, in the first, the third and the
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fourth attempts the pause time was increased from 12 µs to 30 µs and in the second attempt it was
increased from 12 µs to 20 µs.

Table 5. Roughing parameters for the extruded MoCuSi.

Test Intensity (A) Stages Number ti (µs) to (µs) Lateral Gap (µm) Removed Material Vol. Vw
(mm3/min)

1◦ 1 2 4 - x 3 200 30 80 101
2◦ 1 2 4 8 x 2 270 20 120 170
3◦ 1 2 4 8 x 3 200 30 140 270
4◦ 1 2 4 8 x 4 200 30 150 330

2.1.2. Finishing Tests

For finishing tests, the voltage used was 100 V, with positive polarity for the graphite electrode
and negative polarity for the workpiece. For cases one and two for MoCuSi ingot component, shown in
Table 6, were carried out with direct polarity, while for cases three and four, the polarity was inverted
in order to decrease machining times.

Table 6. Finishing parameters for MoCuSi ingot.

Test Intensity (A) Stages Number ti (µs) to (µs) Ra
(µm) Type of Finish Removed Material Vol. Vw

(mm3/min)

1◦ 1 2 - - x 1 16 6 1.6 N7 1.2
2◦ 1 2 - - x 2 50 6 3.2 N8 10
3◦ 1 2 - - x 4 200 12 6.3 N9 42
4◦ 1 - - - x 2 150 6 12.6 N10 84

For extruded MoCuSi finishing tests, shown in Table 7, in the first, second and fourth attempts,
the pause time (to) was increased from 6 µs to 12 µs for a more stable erosion. Moreover, two cleaning
tubes were added for the fourth attempt for a better cleaning.

Table 7. Finishing parameters for the extruded MoCuSi.

Test Intensity (A) Stages Number ti (µs) to (µs) Ra (µm) Type of Finish Removed Material Vol. Vw
(mm3/min)

1◦ 1 2 - - x 1 16 12 1.6 N7 1.2
2◦ 1 2 - - x 2 50 12 3.2 N8 10
3◦ 1 2 - - x 4 200 12 6.3 N9 42
4◦ 1 - - - x 2 150 12 12.6 N10 84

3. Results and Discussion

For ingot and extruded MoCuSi, the electrode wear, surface hardness, roughness and integrity
were analyzed.

3.1. Electrode Wear

For MoCuSi ingots, shown in Table 8, the lateral gap of the first and fourth attempts was the
smallest one. Moreover, the machining in the fourth attempt was 20 min faster. The diameter of the
hole was measured three times using the CMM machine and the three measurements were averaged.
The values were approximated to the nearest one in 0.01 mm even though the machine resolution was
0.001 mm. Table 7 shows that the values obtained in the first and fourth attempts were the closest to
the nominal diameter of 18.5 mm. After further surface analysis, shown below, it was concluded that
the holes in the first and fourth attempts had the best surface finish so the parameters of the fourth
attempt were the most efficient of tested conditions.
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Table 8. Roughing results for the ingot MoCuSi.

Roughing MoCuSi Ingot

Hole Test Time Weight (g) Height Wear
(mm)

Hole Diameter
(mm)

Hole Diameter
Average (mm)

Electrode
Diameter (mm)

Lateral Gap
(mm)

Roughing 1
1

1 h 29 min 9.86 0.93
18.68

18.63

18.50

0.132 18.67
3 18.68

Roughing 2
1

1 h 3 min 9.38 0.76
18.68

18.65 0.152 18.67
3 18.67

Roughing 3
1

40 min 9.86 0.85
18.69

18.69 0.192 18.68
3 18.69

Roughing 4
1

1 h 8 min 8.64 0.91
18.67

18.63 0.132 18.66
3 18.65

Weight of the electrode at the beginning (g) 8.19

Weight of the electrode at the end (g) 6.08

For the extruded MoCuSi, shown in Table 9, the lateral gap in test #4 was the smallest one.
The more intensity applied, the better the hole surface finish and precision obtained. In the following
section, it was concluded that the electrode wear results obtained with the extruded MoCuSi workpiece
are better as less time was required for hole machining for the same machining parameters.

Table 9. Roughing results for the extruded MoCuSi.

Roughing MoCuSi Extruded

Hole Attempt Time Weight (g) Height Wear
(mm)

Hole Diameter
(mm)

Hole Diameter
Average (mm)

Electrode
Diameter (mm)

Lateral Gap
(mm)

Roughing 1
1

31 min 7.64 0.95
18.68

18.68

18.50

0.182 18.67
3 18.68

Roughing 2
1

1 h 7.08 0.90
18.68

18.67 0.172 18.67
3 18.67

Roughing 3
1

45 min 6.56 1.05
1869

18.69 0.192 18.68
3 18.69

Roughing 4
1

36 min 6.08 1.00
18.67

18.66 0.162 18.66
3 18.66

Weight of the electrode at the beginning (g) 8.19

Weight of the electrode at the end (g) 6.08

3.2. Hardness Results

The hardness measurements were made using a hardness testing machine HR-320MS (Mitutoyo,
Kawasaki, Kanagawa, Japan). Three different hardness points were measurements in each hole surface.
One was in the center of the hole and the other two were in the hole’s vertical diameter 3 mm apart.
Table 10 shows the obtained hardness values for ingot and extruded MoCuSi.

Table 10. Hardness with MoCuSi ingot/extruded roughing.

MoCuSi Ingot MoCuSi Extruded

Measurement area
Tests Tests

1 2 3 Average 1 2 3 Average

Without erosion 31.7 28.3 31.1 30.4 32 34.6 34.5 33.7
Finishing 1 30.4 29.8 32.6 30.9 34.7 32.3 34.9 34.0
Finishing 2 30.2 30.6 27.9 29.6 35.8 34.6 35.4 35.3
Finishing 3 27.9 30.8 31.7 30.1 36.4 35.4 35 35.6
Finishing 4 37.5 39.5 37.7 38.2 35.7 38.9 43.7 39.4
Roughing 1 26.2 24.4 29.8 26.8 45.3 41.5 26.5 37.8
Roughing 2 32.9 48.2 42.4 41.2 38.5 42.1 51.8 44.1
Roughing 3 54.6 46.7 49.2 50.2 39.7 52 59.8 50.5
Roughing 4 32 25.9 34.7 30.9 46.8 36 33.4 38.7
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Figures 4 and 5 show that extruded MoCuSi presents always higher hardness values than the
MoCuSi ingot in all the performed tests. For both materials, the hardness is relatively constant for low
to moderate intensities. However, at high intensity values, the hardness is increased specially for the
ingot type (x 1.3, from 30 to approx. 40 HB). The tendency is more accentuated for roughing operations
where a hardness maximum is found for both materials at moderate intensities.
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3.3. Roughness Results

Tables 11 and 12 show the roughness results for ingot and extruded MoCuSi respectively. As these
tables show, the surface finish obtained was worse than in theoretical steel. In this case, in the
first and second tests worse results in comparison to the finish of theoretical steel were obtained.
On the contrary, in the third and fourth tests, similar results to the finish of theoretical steel were found.

Figure 6 shows the surface roughness evolution when increasing the removed material Vw.
It demonstrates that extruded MoCuSi type always presents a better surface finish than ingot MoCuSi.

The following figures show the best and worst surface finish results for the finishing test for the
ingot and extruded MoCuSi. The drilled surface and geometry edges were analyzed. Figure 7 shows
MoCuSi ingot’s best and worst surface finish. In this case, the best results correspond to the lowest
machining volume. For higher machining volumes, the machined surfaced was damaged. Moreover,
the best surface finish was obtained for the lowest intensity and impulse-time values.
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Table 11. Results for surface finish with the ingot MoCuSi.

Graphite Electrode and MoCuSi Ingot Piece

Test Ra (µm) Rz (µm) Rt (µm) Finish Type Theoretical Steel Finish

1◦ 2.654 16.682 23.676 N8 N7
2◦ 4.583 24.999 34.282 N9 N8
3◦ 6.443 36.948 45.181 N10 N9
4◦ 13.165 79.028 116.375 N11 N10

Length 4.8 mm

Table 12. Results for surface finish with the extruded MoCuSi.

Graphite and MoCuSi Extruded Piece

Test Ra (µm) Rz (µm) Rt (µm) Finish Type Theoretical Steel Finish

1◦ 2.786 18.554 20.605 N8 N7
2◦ 6.989 40.692 49.935 N10 N8
3◦ 5.030 32.020 45.207 N9 N9
4◦ 10.533 55.518 71.361 N10 N10

Length 4.8 mm
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Figure 7. Details of the best (left) and worst (right) edge and surface finish with the MoCuSi ingot.

Figure 8 shows the best and worst edge and surface finish for extruded MoCuSi. Similar to
the ingot MoCuSi, the best surface finish results were obtained with the lowest machining volumes
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tested. Tested high machining volumes led to damaged surfaces. Moreover, the best surface finish was
obtained for low intensity and pulse-time values.

Regarding surface integrity, it can be concluded that ingot and extruded MoCuSi present similar
behavior for the same machining conditions, but extruded MoCuSi presents a better surface finish.
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Figure 8. Details of the best (left) and worst (right) edge and surface finish with the MoCuSi ingot.

Due to the erosion and the corrosion (chemical and thermal attack), the electrodes suffer wear.
Figure 9 shows the difference between electrode surface at the beginning of the machining process and
once the machining process was finished. As shown in the figure, the graphite surface suffers wear
during the machining process.
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Figure 9. The difference between the graphite electrode before and after being used.

Figure 10 shows the wear suffered by the electrode profile. The angle of the electrode was 90◦ at
the beginning and is subsequently reduced due to the suffered damage.
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4. Conclusions

γ-TiAl alloys possess better mechanical properties than classical TiAl alloys and so, there is a
chance to substitute the latter with the former. However, the lower machinability of γ-TiAl alloys is
an obstacle that needs to be addressed. In this study, the machinability of two types of γ-TiAl alloys,
ingot MoCuSi and extruded MoCuSi, was compared.

After material analysis, it can be concluded that, in general, MoCuSi alloys present a
similar behavior.

Considering the surface finish, both MoCuSi alloys present a similar behavior. The best results are
obtained with the extruded MoCuSi workpiece but, in general, the difference between both is subtle.

Moreover, in roughing tests, the best results were also obtained with extruded MoCuSi: the lowest
times and the best surface finish results. In the roughing test, tested parameters on the first and the
fourth attempts present the best surface finish results. For the fourth attempt, the machining time
was shorter than the first one. In relation to this, intensity and stage number influence was observed:
higher intensity values determine shorter machining times.

In relation to hardness analysis, the extruded MoCuSi workpiece presents harder values than
the MoCuSi ingot. In general, after roughing tests, higher hardness values were measured than after
finishing tests. Thus, the extruded type is more preferable than the MoCusi ingot due to its superior
mechanical properties.

On the other hand, regarding electrode materials, although both graphite and copper-tungsten
electrodes were tested, copper-tungsten electrodes were found to be inappropriate for titanium
component machining due to unstable erosion and excessive electrode wear. For that reason, graphite
electrodes were used for this study.
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