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Introduction

In this thesis, we consider the motion of an incompressible, viscous, Newtonian fluid in
a bounded domain in R3. The fluid flow is described by the well-known Navier-Stokes
equations:

∂u

∂t
− ν∆u+ (u · ∇)u+ ∇π = f in Ω× (0, T )

divu = 0 in Ω× (0, T ).
(1.1)

Here u(t,x) is the velocity of the fluid particle, passing through x ∈ Ω at a time t, π is
the pressure of the fluid, ν is the viscosity and f is the external force, acting on the fluid.
As we have assumed here an incompressible flow, the density of the fluid is constant.

The French mathematician-engineer C. Navier provided these equations in 1823 in a
paper [96] where he added in the Euler equation (where ν = 0) the affects of attraction
and repulsion between neighbouring molecules. For Navier, ν was simply a function of the
molecular spacing to which he attached no particular physical significance, His seminal
paper [96] was presented at the French Académie des Sciences and was well-received.

The equations for the motion of a viscous fluid were rederived by Cauchy in 1828 and
by Poisson in 1829. However, the person whose name is now attached with Navier’s for
the viscous equation is the British mathematician-physicist George G. Stokes. In 1845,
he published a derivation of the viscous equations in a manner that is followed in most of
the current texts. Unlike Navier, he made it clear that the parameter ν has an important
physical meaning: namely, ν measures the magnitude of the viscosity.

For the unsteady model, it is required to impose initial condition in order to define the
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Chapter 1. Introduction

evolution of the system. It is enough to have the initial condition on the velocity:

u(0) = u0 in Ω. (1.2)

Since the pressure can be considered as a Lagrange multiplier associated to the incom-
pressibility condition, there is no mathematical meaning to impose an initial value for
it.

As the governing equations in (1.1) are differential equations in a bounded set, to make
it well-posed we must precise some boundary condition as well. There are various types
of boundaries, but we restrict ourselves to the most common one: the impermeable wall.
Therefore the commonly accepted hypothesis reads:

u · n = 0 on Γ

which says that no fluid pass through the wall. n denotes the exterior unit normal to the
boundary Γ. The behavior of the tangential component of the velocity is a more delicate
issue. For many years, the no-slip boundary condition

u = 0 on Γ (1.3)

has been the most widely used, given its success in reproducing the standard velocity
profiles for incompressible viscous fluid. But even before that, in 1823, Navier proposed a
more general boundary condition that allows slip at the interface of the fluid and the solid
wall. The boundary condition, which is in the following form:

u · n = 0, 2[(Du)n]τ + αuτ = 0 on Γ× (0, T ) (1.4)

states that the tangential component of the velocity is proportional to the tangential stress
at the boundary. Here D = 1

2(∇u+∇uT ) is the symmetric gradient. The proportionality
constant α is called the friction coefficient; In literature, it is also customary to call 1

α
as

slip length. Note that α may depend on various parameters, for example, on the boundary
(in case of rough or porous wall), on the viscosity (as derived from the kinetic equation
[91] and studied in [97]).

In the case where non-linear effects can be neglected in the Navier-Stokes equation (1.1)
(i.e. when the Reynolds number is sufficiently small), the system reduces to the following
Stokes equations: 

∂u

∂t
− ν∆u+∇π = f , div u = 0 in Ω× (0, T ) ;

u · n = 0, 2[(Du)n]τ + αuτ = 0 on Γ× (0, T );
u(0) = u0 in Ω.

(1.5)
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Chapter 1. Introduction

This problem is linear with constant coefficients. Therefore, a large part of the mathemat-
ical study is contained in the steady Stokes problem:−ν∆u+∇π = f , div u = 0 in Ω

u · n = 0, 2 [(Du)n]τ + αuτ = 0 on Γ
(1.6)

in particular, concerning the existence and properties of the velocity and the pressure. In
the following, we set ν = 1.

We would like to first discuss some of the results, approaches and works done for the
Navier-Stokes equations (1.1) with the Dirichlet boundary condition (1.3).

The mathematical foundations were laid in 1930’s in the papers of J. Leray ([87], [88])
and continued by E. Hopf ([69]). The class of solutions

L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

0,σ(Ω))

is called Leray-Hopf class, in their honor. Here the subscript σ denotes the divergence free
condition. The Leray-Hopf class plays an important role in the theory of Navier-Stokes
equations, as the norm of this space represents the energy of u. However, the Leray-Hopf
class seems to be quiet large to have uniqueness of the weak solution. We mention the
recent survey article by H. Jia and V. Šverák ([76]) concerning non-uniqueness results.

Different conditions can be imposed in order to obtain the uniqueness of weak solution.
For example, a weak solution u which additionally satisfies the following regularity (Serrin’s
class)

u ∈ Ls(0, T ;Lq(Ω)) with 2
s

+ 3
q

= 1 and q > 3, s > 2

is unique. Thus constructing weak solutions within Serrin’s class seems desirable and that
leads to study the general Lp-theory of Navier-Stokes equations.

Another example of advantage of additional Lp-estimates for weak solution is shown
by L. Escauriaza et al ([43]). In the case Ω = R3, the authors proved that a solution in
Leray-Hopf class which also belongs to the space

L∞(0, T ;L3(R3))

is smooth in [0,∞)×R3. This space is often called as ’critical space’ for the Navier-Stokes
equations, because the norm in this space is invariant under the natural scaling behavior
of solutions of the Navier-Stokes equations. This is interesting in view of the famous
open problem by Clay mathematics institute [46]: whether solutions of the Navier-Stokes
equations, corresponding to a initial velocity field in the Schwartz space are smooth in
[0,∞)× R3 and lie in L∞(0,∞;L2(R3)) or not.
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Chapter 1. Introduction

One basic method to study the Lp-theory is the development of the semigroup theory.
If we denote the Stokes operator associated to the system (1.5) (with the boundary condi-
tion replaced by (1.3)) by A, the Stokes semigroup is then the solution operator

(
e−tA

)
t≥0

to (1.5) (boundary condition replaced by (1.3)). With this semigroup, the Navier-Stokes
equations can be transformed into an integral equation via the variation of constants for-
mula. A breakthrough to handle Navier-Stokes equations using this integral equation was
by T. Kato and H. Fujita [79]. Although this work was done in the L2-framework, it gave
rise to the famous paper of Kato ([78]) which provides some Lp-theory. In this later work,
Kato has shown the existence of a global strong solution of the Navier-Stokes equation
in the critical space L∞(0,∞;L3(R3)) if the initial data is small. To prove such a exis-
tence result, Kato defined an approximate scheme and obtained convergence using only
the following two properties of the Stokes semigroup:

(i) Lp − Lq estimate

‖e−tAf‖Lq(R3) ≤ Ct−
3
2 ( 1
p
− 1
q

)‖f‖Lp(R3),
3
2 ≤ p ≤ q <∞;

(ii) gradient estimate
‖∇e−tAf‖L3(R9) ≤ Ct−

1
2‖f‖L3(R3).

Around the same time, Y. Giga proposed another similar iteration scheme [58] which
produces strong solutions in the critical space. This scheme is based on the Lp−Lq-estimate
of the Stokes semigroup and a different gradient estimate:

(iii) estimates of Stokes semigroup on a divergence form

‖e−tAP div F ‖Lp(R3) ≤ Ct−
1
2‖F ‖Lp(R9), 1 < p <∞.

Here P is the Helmholtz projection from Lp(R3) onto the solenoidal vector field Lpσ(R3).
To put (iii) into the picture, Giga used the well-known identity for the solenoidal vector
field

(u · ∇)u = div (u⊗ u).

We emphasize that this is a simple structural information that Giga exploited in his proof
but was neglected by Kato.

Besides the techniques of Kato and Giga, there is another way to prove the existence of
solution of Navier-Stokes problem in Lp-settings. This requires maximal regularity of the
Stokes operator i.e. the inhomogeneous Stokes system (1.5) (boundary condition replaced
by (1.3)) is considered for some f ∈ Lq(0,∞;Lpσ(Ω)) and whether each of the term in the
left hand side ∂u

∂t
, ∆u and ∇π belong to Lq(0,∞;Lpσ(Ω)) is investigated. If that is the
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Chapter 1. Introduction

case, then abstract argument imply the following type of estimate

‖∂u
∂t
‖Lq(0,∞;Lpσ(R3)) + ‖∆u‖Lq(0,∞;Lpσ(R3)) + ‖∇π‖Lq(0,∞;Lpσ(R3)) ≤ C‖f‖Lq(0,∞;Lpσ(R3)).

Knowing that the Stokes operator is maximal regular, a fixed point method can be used
to solve the non-linear equation. If A has bounded inverse, u ∈ Lq(0,∞;Lpσ(R3)). Thus if
p, q are chosen suitably, one may construct solutions satisfying Serrin’s condition. The first
work concerning the maximal regularity of Stokes operator on bounded, smooth domain
and with p = q was done by Solonnikov ([111]). A new approach is developed in ([50]) by
Geissert et al.

A century of agreement between experimental results and theories derived assuming no-
slip boundary condition had the consequence that today many textbooks of fluid dynamics
fail to mention that the no-slip boundary condition remains an assumption. The validity of
the no-slip boundary condition at a fluid-solid interface was debated for some years during
the last century. One of the reason is the famous no-collision paradox. Consider the free
fall of a rigid sphere over a wall, assuming the no-slip condition at the fluid-solid interface.
Then the model predicts no collision is possible between the solid and the wall, no matter
what their relative density and the viscosity of the fluid. This no-collision paradox has
been known from 1960’s, after articles by Cox and Brenner ([24]) and Cooley and O’Neil
([36]) in the context of Stokes equations. Since then, the no-collision paradox has been
confirmed at the level of Navier-Stokes equations (see [67], [68]).

Of course such a result is unrealistic as it goes against Archimedes’ principle. Many
physicists have tried to find an explanation for the paradox. Several refinements were
proposed in the past (eg. [40], [86]). One possible explanation is, when the distance
between the solids gets very small (below the micrometer), the no-slip condition is no
longer accurate and must be replaced by the Navier-slip condition.

Another issue in the debate around boundary conditions, is the irregularity of the solid
surface. Its effect is a topic of intense discussion. On one hand, some people argue that it
increases the surface of friction and may therefore cause a decrease of the slip. On the other
hand, it may generate small scale phenomena favorable to slip. For instance, some rough
hydrophobic surfaces seem more slippery due to the trapping of air bubbles in the humps
of roughness. Moreover, irregularity creates a boundary layer in its vicinity, meaning high
velocity gradients. Thus, even though (1.3) is satisfied at the rough boundary, there may
be significant velocities right above. In other words, the no-slip condition may hold at
the small scale of the boundary layer but not at the large scale of the mean flow. This
phenomena, due to scale separation, is called apparent slip in the physics literature.

In parallel to experimental works, several theoretical studies have been carried, to
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Chapter 1. Introduction

clarify the role of roughness. Many of them relate to the homogenization theory (eg. [27]).
First, the irregularity is modelled by small scale variations of the boundary. Then, an
asymptotic analysis is performed, as the small scale go to zero. The idea is to replace
the constitutive boundary condition at the rough surface by a homogenized or effective
boundary condition at the smoothened surface. In this way, one can describe the averaged
effect of the roughness. Such homogenized conditions (often called wall laws) are also
of practical interest in numerical codes. They allow to filter out the small scales of the
boundary, which have a high computational cost.

A.-L. Dalibard, D. Gérard-Varet / J. Differential Equations 251 (2011) 3450–3487 3451

Fig. 1. The rough domain Ωε .

where ν is an inward normal vector to Σ , and D(u) is the symmetric part of the gradient. Slip lengths
λ up to a few micrometers have been measured. This is far more than the molecular scale, and would
therefore invalidate the (macroscopic) no-slip condition

u|Σ = 0. (Di)

Nevertheless, such experimental results are widely debated. For similar experimental settings, there
are huge discrepancies between the measured values of λ. We refer to the article [18] for an overview.

In this debate around boundary conditions, the irregularity of the solid surface is a major issue.
Again, its effect is a topic of intense discussion. On the one hand, some people argue that it increases
the surface of friction, and may cause a decrease of the slip. On the other hand, it may generate
small-scale phenomena favorable to slip. For instance, some rough hydrophobic surfaces seem more
slippery due to the trapping of air bubbles in the humps of the roughness. Moreover, irregularity
creates a boundary layer in its vicinity, meaning high velocity gradients. Thus, even though (Di) is
satisfied at the rough boundary, there may be significant velocities right above. In other words, the
no-slip condition may hold at the small scale of the boundary layer but not at the large scale of the
mean flow. This phenomenon, due to scale separation, is called apparent slip in the physics literature.

In parallel to experimental works, several theoretical studies have been carried, so as to clarify the
role of roughness. Many of them relate to homogenization theory. First, the irregularity is modeled
by small-scale variations of the boundary. Then, an asymptotic analysis is performed, as the small
scales go to zero. The idea is to replace the constitutive boundary condition at the rough surface by a
homogenized or effective boundary condition at the smoothened surface. In this way, one can describe
the averaged effect of the roughness. We stress that such homogenized conditions (often called wall
laws) are also of practical interest in numerical codes. They allow to filter out the small scales of the
boundary, which have a high computational cost.

Let us recall briefly the main mathematical results on wall laws. To give a unified description, we
take a single model. Namely, we consider a two-dimensional rough channel

Ωε := Ω ∪ Σ ∪ Rε

where Ω = R × (0,1) is the smooth part, Rε is the rough part, and Σ = R × {0} their interface. We
assume that the rough part has typical size ε, that is

Rε := εR, R := {
y, 0 > y2 > ω(y1)

}
for a Lipschitz function ω : R �→ (−1,0). We also introduce

Γ ε := εΓ, Γ := {
y, y2 = ω(y1)

}
.

See Fig. 1 for notations. We consider in this channel a steady flow uε . It is modeled by the stationary
Navier–Stokes system, with a prescribed flux φ across a vertical cross-section σε of Ωε . Moreover,

Figure 1.1: The rough domain Ωε

Let us briefly describe some interesting mathematical results (cf. [38]) on wall laws. To
describe a unified model, consider a two-dimensional rough channel (Figure 1.1)

Ωε := Ω ∪ Σ ∪Rε

where Ω = R × (0, 1) is the smooth part, Rε is the rough part and Σ = R × {0} their
interface. Assume that the rough part has size ε that is

Rε := εR with R := {x, ω(x1) < x2 < 0}

for a Lipschitz function ω : R→ (−1, 0). Also let

Γε := εΓ with Γ := {x, x2 = ω(x1)}.

Let uε be a steady flow in this channel, modeled by the stationary Navier-Stokes system,
with a prescribed flux φ across a vertical cross-section σε of Ωε. Moreover, either pure slip,
partial slip or no slip condition is prescribed at the rough boundary Γε. This means the
constant α in (1.4) can be either zero, positive or ∞. For simplicity, no-slip is assumed at
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Chapter 1. Introduction

the upper boundary. We get eventually

−∆uε + uε · ∇uε +∇πε = 0, div uε = 0, x ∈ Ωε,

uε|x2=1 = 0,
∫
σε

uε1 = φ,

uε · n = 0, αεuετ + [(Duε)n]τ = 0 on Γε.

(1.7)

This problem has a singularity in ε, due to the high frequency oscillation of the boundary.
Thus, the problem is to replace the singular problem in Ωε by a regular problem in Ω.
Their idea was to keep the same Navier-Stokes equations

−∆u+ u · ∇u+∇π = 0, div u = 0, x ∈ Ω,

u|x2=1 = 0,
∫
σ

u1 = φ

but with a boundary condition at the artificial boundary Σ which is regular in ε. The goal
is to find the most accurate condition.

A series of work has been done in order to answer this question (cf. [1], [2], [72], [73],
[9], [17], [64], [52]), starting from the standard Dirichlet condition at Γε (αε =∞ in (1.7)).
Vaguely, the following two facts have been noted (for rigorous statements, please consult
the afore-mentioned references):

(i) for any roughness profile ω, the Dirichlet condition (1.3) provides an O(ε) approxi-
mation of uε in L2

loc(Ω).
(ii) for generic roughness profile ω, the Navier condition does better, choosing 1

α
= λε

for some good constant λ in (1.4).

These results lead to the fact that the slip length λε is related to a boundary layer of
amplitude ε near the rough boundary, which is the mathematical expression of the apparent
slip mentioned earlier.

Apart from the special case αε =∞, some studies have also dealt with the more general
situation αε ∈ [0,∞) (we do not go into further detail, for reference, see [30], [26]). The
limit u0 of uε and the condition satisfied at Σ have been investigated. Interestingly, the
striking result obtained in this later case is that as soon as the boundary is genuinely
rough, u0 satisfies a no-slip condition at Σ. This result can be seen as a mathematical
justification of the no-slip condition. Indeed, any realistic boundary is rough. If someone
is only interested in scales greater than the scale ε of the roughness, then (1.3) is an
appropriate boundary condition, whatever the microscopic phenomena behind. Even then,
as in the case αε = ∞, one may be interested in more quantitative estimates: can the
boundary condition be improved, is there possibility of O(ε) slip? Such questions are
important in micro-fluids, a domain in which minimizing wall friction is crucial.

7



Chapter 1. Introduction

There are different notions of slip and it has been encountered in many different con-
texts. The possibility of gas slip was first introduced by Maxwell ([92]). The flows of
non-Newtonian fluids such as polymer solutions show significant apparent slip in a variety
of situations, some of which can lead to a slip-induced instabilities. In the context of New-
tonian fluids, molecular slip has been used as a way to remove singularities arising in the
motion of contact lines, as reviewed in [16].

Having said that, keeping in mind the growing relevance of the Navier-slip boundary
condition, the aim of this thesis is to study thoroughly the non-linear equations (1.1)-
(1.2) with the boundary condition (1.4). The friction coefficient α is assumed to be a
non-negative and non-smooth scalar function on the boundary (cf. (2.8)). The main two
aspects discussed in this thesis are, (i) the existence of weak solutions for the system (1.1)-
(1.2), (1.4) in Lp-spaces for all p ∈ (1,∞) on a bounded domain with minimal regularity
of the friction coefficient and the domain and (ii) the limit system as α tends to ∞.
Throughout the work, we assume Ω is C1,1, unless otherwise specified, since this is the
minimum required regularity on a bounded domain for existence of weak solution for all
p ∈ (1,∞).

1.1 Stokes and Navier-Stokes equations with Navier boundary
condition

We start with the steady problem with Navier boundary condition in Chapter 1. We first
analyze (1.6) in the Hilbert setting. The existence of a weak solution for any fixed friction
coefficient α and some given external force f is studied whose proof is straight forward using
Lax-Milgram lemma and several Korn and Korn-type inequalities. If f merely belongs to
the dual space [H1

σ,τ (Ω)]′ (the subscript τ signifies that the normal component of the vector
field at the boundary is zero), the boundary terms can not be well-defined, so we need to
consider the data in better space. Here the given external force is assumed in the form
f = f1 + div F where F is a 3 × 3 matrix and f1 ∈ L6/5(Ω), F ∈ L2(Ω). Note that this
space is larger than L2(Ω), but of course a subset of [H1

σ,τ (Ω)]′. Also α is considered in
L2(Γ).

One interesting case is when the domain Ω is axisymmetric. In that case, ‖Dv‖L2(Ω) is
not any more an equivalent norm in H1

τ (Ω) := {v ∈ H1(Ω) : v · n = 0 on Γ} due to the
presence of the following non-trivial kernel (corresponding to the case α = 0)

T p(Ω) := {v ∈W 1,p(Ω); Dv = 0 in Ω; v · n = 0 on Γ}. (1.8)

Hence the study becomes more involved. The above kernel reduces to zero if Ω is not
axisymmetric, but in the case of a domain, obtained by rotating around a constant axis

8



1.1. Stokes and Navier-Stokes equations with Navier boundary condition

vector say b, we have (cf. Remark 2.4.2),

T p(Ω) = span{b× x}, x ∈ Ω.

Observe that the kernel is independent of p and hence, can be denoted as T (Ω). We prove
a Korn-type inequality (2.25) involving boundary term in order to show the coercivity of
the associated bilinear form for (1.6):

a(u,v) =
∫
Ω

Du : Dv +
∫
Γ

αuτ · vτ for u,v ∈H1
σ,τ (Ω).

From the variational formulation, we also obtain several estimates which provide uni-
form bound on the solution (cf. Theorem 2.4.3). Later we will prove the same estimates
but in Lp norm, p 6= 2. Next the existence of strong solution is deduced (cf. Theorem
2.4.5), provided the data are more regular, namely if f ∈ L2(Ω) and α ∈ H 1

2 (Γ).

Further we move on to study Lp-theory. The existence of weak solution in W 1,p(Ω) for
p > 2 can be obtained easily by using the regularity result for the system with α = 0 (cf.
[11]). But that can not be followed for p < 2 since we do not have the existence of a solution
in that case. So we choose the more classical tool to show the existence result: inf-sup
condition. To our knowledge, there is no established inf-sup condition for the symmetric
gradient D operator. So we use the following relations

∆v = −curl curlv +∇div v

and
2 [(Dv)n]τ = curl v × n− 2Λv

where Λv := ∑2
k=1

(
vτ · ∂n∂sk

)
τk is a first order term. With these, the following form

a(u,ϕ) = 2
∫
Ω

Du : Dϕ+
∫
Γ

αuτ ·ϕτ

can be seen as a bilinear form in curl operator which enables us to use the well-known
inf-sup condition (cf. [13, Lemma 4.4]) for all p ∈ (1,∞):

inf
ϕ∈V p′ (Ω)

ϕ 6=0

sup
ξ∈V pσ,τ (Ω)

ξ 6=0

∫
Ω curl ξ · curl ϕ
‖ξ‖V pσ,τ (Ω)‖ϕ‖V p′ (Ω)

≥ C.

Thus we can get the existence of a unique weak solution of (1.6) in W 1,p(Ω) for all p ∈
(1,∞) along with the following interesting inf-sup condition:

inf
ϕ∈V p

′
σ,τ (Ω)
ϕ6=0

sup
u∈V pσ,τ (Ω)

u 6=0

2
∫

Ω Du : Dϕ+
∫

Γ αuτ ·ϕτ
‖u‖V pσ,τ (Ω) ‖ϕ‖V p′σ,τ (Ω)

≥ C. (1.9)

9



Chapter 1. Introduction

Note that the above positive constant C depends on Ω, p and α. Now the question we ask
is: whether it is possible to obtain C independent of α, at least under some assumption,
or not? Or in other words, the inf-sup condition (1.9) yields the standard estimate on the
solution (by Theorem 2.5.1):

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ C(Ω, p, α)‖f‖Lr(p)(Ω)

but can we improve the above bound with respect to the friction coefficient and obtain
such estimate, uniform in α? The motivation of arising this question is:

(i) if we let α go to ∞ in the Navier boundary condition (1.4), formally we obtain the
Dirichlet condition (1.3) and the estimate on the solution of Stokes equation with
Dirichlet boundary condition is independent of α. Therefore, we may expect the
same when α tends to ∞.

(ii) in the Hilbert case p = 2, we already have obtained bound on solutions of (1.6),
independent of α provided α is large (cf. Theorem 2.4.3).

We try to answer the above question. One of the main approach used in this thesis
widely, is to exploit α independent L2-estimate in each situation to deduce α independent
Lp-estimate. We are able to achieve this goal with the help of Lp-extrapolation theorem of
Shen (cf. Lemma 4.2.6) which contains some real variable argument. This extrapolation
theorem can be seen as a refined version of the well-known Calderón-Zygmund theory.
The celebrated Calderón-Zygmund theory says: if T is a convolution operator with an
associated kernel and that kernel satisfies further estimates and the operator is bounded
on L2, then T is bounded on Lp for all 1 < p < ∞. There are some examples of elliptic
partial differential equations where certain associated operators are Lp-bounded for some
p’s in an interval around two, but not for all p. In order to prove Lp-boundedness for such
operators, the classical theory of singular integrals fail as they are not sensitive for the
Lp-boundedness on a proper subinterval of (1,∞). They provide Lp-boundedness either
for all p or for no p. The main novelty of Shen’s extrapolation theorem is that it is p-
sensitive. That means it says that if an operator T is L2-bounded and satisfies certain
estimates depending on a number p > 2, then the operator is Lq-bounded for all 2 < q < p.
Although this is not the situation in our case as we work in C1,1 domain, but this is more
suitable and easy to apply.

Let us mention that we obtain the uniform bound on the solution for all α 6≡ 0 on Γ
when Ω is not axisymmetric; and only for α large when Ω is axisymmetric. This is not
surprising and supports the characterization of the kernel (1.8) i.e. the fact that in the
case α ≡ 0, the Stokes problem with slip boundary condition has a non trivial kernel only
when Ω is axisymmetric.

10



1.1. Stokes and Navier-Stokes equations with Navier boundary condition

Strikingly, the condition (3.40) (without the last term in the right hand side) can be
seen as a reverse Hölder inequality. Since the integration is made on different sets, it
is named in the literature as weak reverse Hölder inequality. This weak reverse Hölder
estimate, which is originally due to Giaquinta and Modica [54, Proposition 5.1] while the
idea was the same as the one by Gehring [49], has a self-improving property. Also the
explicit dependence of the constants has been precised in [54, Proposition 5.1] which will
be useful for us.

The weak reverse Hölder inequality in the interior of the domain for a weak solution u
of an elliptic system of the form

−Dk

(
aklij (x)Dlu

j
)

= 0

is much easier to prove and follows from Caccioppoli inequality along with the Sobolev-
Poincaré inequality. But in order to obtain the result up to the boundary is more involved
and obviously depends on the boundary condition. In our situation, it is exactly same to
get the interior estimate as done in [53, the beginning of Chapter V]; But there remains
an extra term for the pressure, when we consider the boundary estimate. So we follow the
argument as done for the Stokes system with Dirichlet boundary condition in [55] with nec-
essary modifications. First a suitable pressure estimate is deduced, then some Caccioppoli
inequality is derived which allows us to have the required weak reverse Hölder inequality.
Note that, the friction coefficient α being non-negative, we can drop the boundary term
containing α and the constant in the L2-estimate is as well α-independent. Thus, the de-
sired α-independent Lp-estimate on the solution of (1.6) is obtained for some p bigger than
two. The self-improving property of the weak Reverse Hölder inequality gives the result
for all p > 2. Then the proof is completed in several steps considering the dual problem.
Let us mention that it is here that we need to consider the data in the right hand side of
the divergence form (as mentioned before). Also one must be careful with the constants
involved in weak reverse Hölder inequality as it should be independent of the radius of
the underlying sets involved. This shows that the constant in the inf-sup condition (1.9)
actually does not depend on α whenever α is large.

Finally, these uniform bounds enable us to study the limit problem (Section 2.7): for
each α, if we denote the solution of (1.6) as uα, passing to the limit α→∞, uα converges
to the solution of the Stokes problem with no-slip boundary condition in the energy space
and the convergence rate is same as 1/α. We also show that when α → 0, uα converges
to the solution of Stokes equation with Navier boundary condition corresponding to α = 0
(Theorem 2.7.3).

In Section 2.8, the steady Navier-Stokes equation is discussed. Existence of weak solu-
tion in the Hilbert setting (cf. Theorem 2.8.4) can be shown using the classical Galerkin

11



Chapter 1. Introduction

method as for the no-slip boundary condition. And then further regularity (both in inte-
grability and differentiability) of solution is obtained assuming regular data (cf. Corollary
2.8.8) for all p > 3

2 . To prove the existence of weak solution for p ∈ (3
2 , 2), we use the

method developed by [104] which works fine in our case too. We also study the limit
problem for the non-linear system (cf. Theorem 2.8.9, Theorem 2.8.11).

1.2 Semigroup theory for the Stokes operator with Navier
boundary condition on Lp spaces

In this chapter, the evolution problem (1.1) - (1.2), (1.4) is discussed. The purpose of this
chapter is two-fold. On one hand, it serves as a collection of properties of the Stokes oper-
ator with Navier boundary condition that are well-known in the case of Dirichlet boundary
condition so that it can be used as a basis and directly referred whenever necessary to an-
swer other relevant questions. On the other hand, we study the dependence of the solution
of the linear (1.5) or the nonlinear system (1.1), (1.4) on the friction coefficient α and how
it behaves as α tends to ∞. The reason of this second part is already descried above.

The Stokes operator and the Stokes semigroup are one of the central objects in the study
of incompressible fluid flow, especially they are fundamental for the approaches by Fujita-
Kato and Kato and Giga (as explained in the beginning). So we start with introducing
the strong and weak Stokes operators Ap,α and Bp,α, for each fixed α, on Lpσ,τ (Ω) and
[Hp′

0 (div,Ω)]′ and show that they generate analytic semigroups on the respective spaces
for all p ∈ (1,∞). The proof of this is not very complicated and mostly use the existence
and estimate results studied in the previous chapter for the steady problem. Further we
study the imaginary and fractional powers of the Stokes operators. To show that the
operators Ap,α and Bp,α are of bounded imaginary power is not straight forward; Here we
did not use pseudo-differential operator theory or Fourier multiplier theory as done by Giga
[61], but chose a rather different approach: we show that the Stokes operator with (full) slip
boundary condition (in its weak form) can be written as a lower order perturbation of the
Navier-type boundary condition (cf. (3.53)) for which the result is known (cf. [6, Theorem
6.1]) and then with the help of Amann’s interpolation-extrapolation theory [8], we recover
the boundedness of imaginary power of Ap,α. This method has been used in [101], though
the ultimate goal was different for them. Next we prove that the Stokes operator has
maximal Lq-regularity and establish various types of Lp − Lq estimates which helps to
develop an Lp-theory for the Navier-Stokes equations. We have used the abstract theory
by Giga [58] for semilinear parabolic equations in Lp to achieve the similar existence and
regularity of a local strong solution and global weak solution.

12



1.3. Uniform W 1,p estimate for elliptic operator with Robin boundary condition in C1 domain

But the interesting part is to show the resolvent estimate

|λ|‖(λI + Ap,α)−1f‖Lpσ,τ (Ω) ≤ C‖f‖Lpσ,τ (Ω) ∀λ ∈ C∗ with Reλ ≥ 0

where the positive constant C does not depend on α for α sufficiently large. Note that with
the usual method, multiplying the equation by |u|p−2ū (for example, as followed in [5]),
one can easily obtain the above estimate but with the constant depending on α. Therefore
we had to try some different idea. In the Hilbert case, this follows (cf. Theorem 3.3.4) from
the variational formulation as expected. But proving it for p 6= 2 is much more delicate. We
have used Lp-extrapolation theory of Shen again, but this time with a different operator T .
The main difficulty was to satisfy the necessary condition (3.40). In the stationary case,
the weak reverse Hölder inequality was one type of gradient estimate which follows using
the standard tools at least in the interior of the domain. In the present case, wRHI (3.34)
is much more tricky to obtain. Unfortunately, the estimates derived on the steady problem
do not help in this situation. The technique we employed here has been used by Shen in
[107] to deduce Lp-resolvent estimate for Stokes operator with no-slip boundary condition
in Lipschitz domain though the purpose and the situation their was different. It is indeed
an interesting idea to deduce similar Lp-estimate from known L2-estimate.

We want to emphasize here that Caccioppoli inequality yields some kind of weak reverse
Hölder inequality has been proved by Mitrea and Wright in [94, Lemma 6.7].

Finally in Section 3.9, we discuss limit problem for both the linear and nonlinear system
as α→∞ and prove various convergence results. If uα is denoted as the solution of (1.1),
(1.4) for a fixed α and u∞ is a solution of Navier-Stokes equations with no-slip condition,
we show that uα converges to u∞ in appropriate spaces under assumption of different
initial data. We also obtain the rate of convergence.

1.3 Uniform W 1,p estimate for elliptic operator with Robin
boundary condition in C1 domain

This last chapter is concerned with estimates for a Laplace-Robin problem. Let us consider
the problem in more general form

div(A∇)u = divf + F in Ω,
∂u

∂n
+ αu = f · n+ g on Γ

(1.10)

which is a second order elliptic operator in divergence form in a bounded domain Ω ⊂ Rn of
class C1, with the Robin boundary condition. The coefficient matrix A is symmetric and in
VMO(R3) (note that A ∈ VMO(R3) or with small BMO coefficient is necessary condition
for the existence of solution of the above elliptic problem with non-constant coefficient).

13



Chapter 1. Introduction

In the above boundary condition, α = 0 corresponds to the Neumann condition and
α = ∞ gives the Dirichlet condition. We wish to find the uniform bound of the solution
with respect to the Robin coefficient α, precisely,

‖u‖W 1,p(Ω) ≤ C(Ω, p)
(
‖F‖Lp(Ω) + ‖f‖Lr(p)(Ω)

)
where the positive constant C(Ω, p) does not depend on α.

The original motivation comes from the problem in the first chapter. Observe that the
Stokes equation with slip boundary condition (1.6) reduces to the problem (1.10) in the
simplest case, replacing the Stokes operator by Laplacian and the Navier boundary condi-
tion by Neumann. Hence, we first started to analyze the above problem for α-independent
bound on solution and see what do we find. The goal was the same as, if we can find such
estimates, then passing limit on α, we may expect to recover the solution of Laplacian
with Dirichlet boundary condition. To work with the full Navier-Stokes system with the
complicated boundary condition was at the beginning quite cumbersome, thus we concen-
trated on the simpler scalar version. Surprisingly this is itself an interesting question and
still difficult to answer. As per our knowledge, there is no work in the literature done
concerning the precise dependence of the solution on the Robin coefficient.

Here we consider α a function belonging to some Lq-space (precised below in Chapter
3). Apart from proving existence, uniqueness of weak and strong solutions, we obtain the
bound on u, uniform in α for α sufficiently large, in the L2-setting. Then with the help
of Shen’s Lp-extrapolation theorem, the same bound is deduced for Lp-norm. Though
the proof lies in the same line, it uses some more abstract tool Lemma 2.6.8 (originally
developed by Shen [106] and then generalized by Geng [51]) with which the final estimate
is obtained directly. Note that the weak reverse Hölder inequality up to the boundary can
be obtained with the help of classical boundary Hölder estimate for elliptic operator with
constant coefficient as mentioned in [81, after Theorem 4.1], though it is not very clear
to us. We have separately studied the two cases: the interior estimate and the boundary
estimate to make the main idea clear in the simple set up. The complete proof is done in
several Lemmas and Theorems: first the case p > 2 and F = 0, g = 0 is considered, then
it is extended for all p ∈ (1,∞); and lastly, for f = 0 but assuming F 6= 0, g 6= 0.

One interesting consequence of this analysis is that we can derive straight forwardly
some Hs-estimate, s ∈ (0, 1

2), on u for only Lipschitz domain with a very simple proof
and also get the α-independent bound. Continuing the same method for the difference
quotient, we further deduce the uniform bound on strong solutions as well. Though we
have announced all the results in this chapter in R3, they are true also in R2.
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Stokes and Navier-Stokes equations with Navier

boundary condition

This work is done jointly with Paul Acevedo, Chérif Amrouche and Carlos Conca.

Abstract : We study the stationary Stokes and Navier-Stokes equations with non-
homogeneous Navier boundary condition in a bounded domain Ω ⊂ R3 of class C1,1. We
prove the existence, uniqueness of weak and strong solutions in W 1,p(Ω) and W 2,p(Ω) for
all 1 < p < ∞ considering minimal regularity on the friction coefficient α. Moreover, we
deduce estimates to analyze the behavior of the solution with respect to α, in particular
when α→∞.

2.1 Introduction

Let Ω be a bounded domain in R3 with boundary Γ, possibly not connected, of class C1,1

(additional smoothness of the boundary will be precised whenever needed). Consider the
stationary Stokes equations

−∆u+∇π = f , div u = χ in Ω (2.1)

and the stationary Navier-Stokes equations

−∆u+ (u · ∇)u+∇π = f , div u = χ in Ω (2.2)

where u and π are the velocity field and the pressure of the fluid respectively, f is the
external force acting on the fluid and χ stands for the compressibility condition.
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Chapter 2. Stokes and Navier-Stokes equations with Navier boundary condition

Concerning these equations, the first thought goes to the classical no-slip Dirichlet
boundary condition

u = 0 on Γ. (2.3)

This condition was formulated by G. Stokes in 1845. An alternative was suggested by C.L.
Navier [96] even before, in 1823. Along with the usual impermeability condition

u · n = 0 on Γ (2.4)

Navier proposed a slip-with-friction boundary condition and claimed that the component
of the fluid velocity tangent to the surface, instead of being zero, should be proportional
to the rate of strain at the surface i.e.

2 [(Du)n]τ + αuτ = 0 on Γ (2.5)

where n and τ are the unit outward normal and tangent vectors on Γ respectively and
Du = 1

2(∇u+∇uT ) is the rate of strain tensor. Here, α is the coefficient which measures
the tendency of the fluid to slip on the boundary, called friction coefficient.

Although the no-slip hypothesis seems to be in good agreement with experiments, it
leads to certain rather surprising conclusions, the most striking one being the absence of
collisions of rigid bodies immersed in a linearly viscous fluid (see [67]). In contrast with the
no-slip condition, Navier’s boundary conditions offer more freedom and are likely to provide
a physically acceptable solution at least to some of the paradoxical phenomenons, resulting
from the no-slip condition (see for instance, [89]). There have been several attempts in the
literature to provide a rigorous justification of the no-slip boundary condition, based on the
idea that the physical boundary is never smooth but contains small asperities that drive
the fluid to rest under the mere impermeability hypothesis! These kind of results have
been shown by Casado-Diaz et al. [30] in the case of periodically distributed asperities
and the references therein. Conversely, [72] identified the Navier’ slip boundary condition
as a suitable approximation of the behavior of a viscous fluid out of a boundary layer
created by the no-slip condition, imposed on a rough boundary. It is worth noting that
these results are by far not contradictory but reflect two conceptually different approaches
in mathematical modelling of viscous fluids. Some interesting remarks on the use of this
boundary condition can be found in Serrin [105]. Recently this boundary condition has
also been identified as appropriate for some large Eddy simulation models for turbulent
flows, see for instance Galdi and Layton [48]. Note that, in [37], F. Coron has derived
rigorously the slip boundary condition (2.5) from the boundary condition at the kinetic
level (Boltzmann equation) for compressible fluids. The Navier slip with friction conditions
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2.1. Introduction

are also used for simulations of flows near rough boundaries, such as in aerodynamics, in
weather forecast, in haemodynamics etc.

In this work, we study the existence, uniqueness and regularity of solutions of the system
(2.1) and (2.2) with the boundary condition (2.4)-(2.5). Skipping the extremely extensive
literature of the well-known no-slip boundary condition, we give a brief overview of some of
the available results on the Navier/Navier-type boundary conditions. Concerning the non-
stationary Navier-Stokes equation with Navier boundary condition, there are considerably
many works, among other reasons, for studying the limiting viscosity case. For example,
in 2D, the existence of solutions are studied assuming α in C2(Γ) (see Mikelić et al [33])
and for α in L∞(Γ) (see Kelliher [80]); whereas in 3D, Beirão Da Veiga [20] considered the
system with α a positive constant and Iftimie and Sueur [70] have analysed the case with
α in C2(Γ). Also we refer to the work of D. Bucur et al [26] in the periodic boundary case
(see the references therein also). We mention here the paper of Monniaux [95] where they
studied the similar boundary condition in Lipschitz domain but with α depending on both
time and space variables. On the contrary, for the stationary problem, comparatively less
works are known. The first paper concerning basic existence and regularity result is by
Solonnikov and Scadilov [112] where they treated the problem for α = 0. They considered
the stationary Stokes system with Dirichlet boundary condition on some part and Navier
boundary conditions (2.5) (with α = 0) on the other part of the boundary and showed
existence of weak solution in H1(Ω) which is regular (belongs to H2

loc(Ω)) upto some part
of the boundary (except in the neighbourhood of the intersection of the two part). Also, it
is worth mentioning the work of Beirão Da Veiga [19] where he proved existence results of
weak and strong solution of the Stokes problem in the L2-settings, but for more generalized
system and again with positive constant α. Also he did not precise in the estimate, the
dependence of the constant on α. Recently, Berselli [22] gave some result concerning very
weak solution in the special case of a flat domain in R3, in general Lp(Ω) settings and
considering α = 0 which is based on the regularity theory of Poisson equation. In the
paper of Amrouche and Rejaiba [11], they proved the existence and regularity of weak,
strong and very weak solutions in a bounded domain in R3 for all 1 < p < ∞ for non-
smooth data, but for α = 0. In the work of Medková [93], we can find various other forms
of Navier problems and the references therein. Furthermore, the numerical study has been
done in, e.g. Verfürth [115] (though again for α = 0) and John [77]. Also Novotný et al.
studied in [75] the steady compressible fluid flow subject to the slip boundary condition
with α ≥ 0 but without precising any dependence of the slip coefficient. They obtained
the existence of various solutions without any restriction of the size of the data.
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Chapter 2. Stokes and Navier-Stokes equations with Navier boundary condition

Note that, as shown in (2.11), the two boundary conditions

curl u× n = 0 (2.6)

and
2 [(Du)n]τ + αuτ = 0

are very much similar and in the case of flat boundary and α = 0, they are actually equal.
Hence, there are several studies concerning this Navier type boundary condition (2.6) as
well. We refer to [12] where Amrouche et al. studied the weak, strong and very weak
solutions and the references therein.

In both cases of stationary and evolution problem, all the available works have consid-
ered α as either a constant or a smooth function, as mentioned before. In this work, we
analyse the possible minimal regularity of α for the existence of weak and strong solutions
in Lp(Ω) for all 1 < p < ∞ [see (2.8)]. Also, it is worth mentioning that the restriction
that α is non-negative is usual, in order to ensure the conservation of energy. But math-
ematically, we can take into account the negative values of α as well. Some authors have
studied the evolution system with α negative where there was no mathematical difficulty
due to the access of Gronwall inequality. But in the stationary problem, it is not the case.

Another interesting question is the precise dependence of the solution of (S) or (NS) on
α and if we let the function α tends to ∞ or 0 in (2.5), how does the solution behave? As
per the authors’ knowledge, there is no previous work on that even if α is smooth function
or a constant. We prove the estimates in Theorem 2.4.3 and Theorem 2.6.11 which show
that the solution is uniformly bounded with respect to α. Moreover, in Section 2.7, we
show that as α converges to 0, the solution of the Stokes equation with Navier boundary
conditions converges strongly to the solution of the Stokes equation corresponding to α = 0
and if α goes to ∞, the solution converges strongly to the Stokes equation with Dirichlet
boundary condition. This type of convergence is, in a sense, an inverse of the derivation
of the Navier boundary conditions from no-slip boundary condition for rough boundaries
as we have explained previously also. In [35], Conca studied similar system in a bounded
domain in R2 with smooth viscosity. There he assumed the well-posedness of the problem
(2.1) (or, (2.2)) with (2.4)-(2.5) and proved some convergence results as ε goes to 0, based
on homogenization theory, where he considered the domain depends on ε as well. In some
sense, our work generalizes the work in [35]. We want to mention that the main purpose
of this work is to develop a complete Lp-theory for all 1 < p < ∞ to deal with the well-
posedness for the stationary Stokes and Navier-Stokes equations with full Navier boundary
condition, considering general non-regular α and study the limiting cases. Hence, our work
can be useful to study the evolution problem and the other related issues; for example, the
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2.2. Main results

coupled fluid-structure interaction problems are another interesting open problem. Also
the estimates obtained in Section 2.6.2, precisely in Theorem 2.6.14 can be of independent
interest. The corresponding well-posedness and limiting behavior for non-linear system is
studied in Section 2.8. The main results of our work are mentioned below.

2.2 Main results

Let us briefly discuss here the main results of our paper, referring to the next sections for
precise definitions and complete proofs. Since the case α ≡ 0 in (2.5) has already been
studied in [11], here onwards we consider that α 6≡ 0 on Γ. If we do not precise otherwise,
we will always assume

α ≥ 0 on Γ and α > 0 on some Γ0 ⊂ Γ with |Γ0| > 0.

Also we denote as

β(x) = b× x (2.7)

when Ω is axisymmetric with respect to a constant vector b ∈ R3.

Note that we can always reduce the non vanishing divergence problem−∆u+∇π = f + div F, div u = χ in Ω
u · n = g, [(2Du+ F)n]τ + αuτ = h on Γ

to the case where div u = 0 in Ω and u · n = 0 on Γ, by solving the following Neumann
problem

∆θ = χ in Ω, ∂θ
∂n

= g on Γ
and hence using the change of unknowns w = u − ∇θ and Π = π − χ. Therefore, it is
sufficient to study the following Stokes problem:−∆u+∇π = f + div F, div u = 0 in Ω

u · n = 0, [(2Du+ F)n]τ + αuτ = h on Γ.
(S)

The first main result is the existence and uniqueness of weak and strong solution of the
Stokes problem (S) which is given in Theorem 2.4.1 in the Hilbert case and in Corollary
2.5.6 and Theorem 2.5.9 for p 6= 2. Note that we proved more general existence result in
Theorem 2.5.3 than the solution of the problem (S).

For that, we need the following assumption on α:

α ∈ Lt(p)(Γ) with


t(p) = 2 if p = 2
t(p) > 2 if 3

2 ≤ p ≤ 3, p 6= 2
t(p) > 2

3 max{p, p′} otherwise

(2.8)
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Chapter 2. Stokes and Navier-Stokes equations with Navier boundary condition

and where t(p) = t(p′). Also we will always assume, unless stated otherwise, F is a 3 × 3
matrix and h · n = 0 on Γ and we will not repeat these hypothesis every time.

Theorem 2.2.1 (Existence of weak and strong solutions of Stokes problem). Let
p ∈ (1,∞).
(i) If

f ∈ Lr(p)(Ω), F ∈ Lp(Ω), h ∈W− 1
p
,p(Γ) and α ∈ Lt(p)(Γ)

where t(p) as above and r(p) is defined in (2.10), then the Stokes problem (S) has a unique
weak solution (u, π) ∈W 1,p(Ω)× Lp0(Ω).
(ii) Moreover, if F = 0 and

f ∈ Lp(Ω), h ∈W 1− 1
p
,p(Γ) and α ∈ W 1− 1

q
,q(Γ)

with q > 3
2 if p ≤ 3

2 and q = p otherwise, then the weak solution (u, π) belongs to W 2,p(Ω)×
W 1,p(Ω).

Also we obtain some uniform bounds for the weak solution of the problem (S) in
W 1,p(Ω) for all p ∈ (1,∞), which we believe are quite interesting.

Theorem 2.2.2 (Stokes estimates). Let p ∈ (1,∞) and (u, π) ∈ W 1,p(Ω) × Lp0(Ω) be
the weak solution of the Stokes problem (S). Then it satisfies the following estimates:
(i) if Ω is not axisymmetric, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω)
(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
.

(ii) if Ω is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤
Cp(Ω)

min{2, α∗}

(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
.

In Theorem 2.4.3 and Theorem 2.4.5, we discuss in detail the estimates of weak and
strong solutions in the Hilbert case and the proof of Theorem 2.2.2 for general p is done
in Theorem 2.6.11.

The next theorem gives existence of weak and strong solutions for the following Navier-
Stokes problem and some estimates.

−∆u+ u · ∇u+∇π = f + div F, div u = 0 in Ω,
u · n = 0, [(2Du+ F)n]τ + αuτ = h on Γ.

(NS)
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2.2. Main results

Theorem 2.2.3 (Existence of weak and strong solutions of Navier-Stokes prob-
lem and estimates). Let p ∈ (3

2 ,∞) and

f ∈ Lr(p)(Ω), F ∈ Lp(Ω), h ∈W− 1
p
,p(Γ) and α ∈ Lt(p)(Γ).

1. Then the problem (NS) has a weak solution (u, π) ∈W 1,p(Ω)× Lp0(Ω).
2. Also for any p ∈ (1,∞), if F = 0 and

f ∈ Lp(Ω), h ∈W 1− 1
p
,p(Γ) and α ∈ W 1− 1

q
,q(Γ)

with q > 3
2 if p ≤ 3

2 and q = p otherwise, then (u, π) ∈W 2,p(Ω)×W 1,p(Ω).
3. For p = 2, the weak solution (u, π) ∈H1(Ω)× L2

0(Ω) satisfies the following estimates:

a) if Ω is not axisymmetric, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
.

b) if Ω is axisymmetric and
(i) α ≥ α∗ > 0 on Γ, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤
C(Ω)

min{2, α∗}

(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
.

(ii) f ,F and h satisfy the condition:∫
Ω

f · β −
∫
Ω

F : ∇β + 〈h,β〉Γ = 0

then, the solution u satisfies
∫

Γ αu · β = 0 and

‖Du‖2
L2(Ω) +

∫
Γ

α|uτ |2 + ‖π‖2
L2(Ω) ≤ C(Ω)

(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)2
.

In particular, if α is a constant, then
∫

Γ u · β = 0 and

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
.

We refer to Theorem 2.8.4 and Corollary 2.8.8 for the proof of above result, which is
similar to that of Stokes problem. Note that in the above theorem, the existence of weak
solution in W 1,p(Ω) for 3

2 < p < 2 is not trivial.

The last interesting result to mention here, is the strong convergence of (NS) to the
Navier-Stokes equations with no-slip boundary condition when α grows large (see Theorem
2.8.11). The proof is essentially based on the estimates obtained above.
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Chapter 2. Stokes and Navier-Stokes equations with Navier boundary condition

Theorem 2.2.4 (Limiting case for Navier-Stokes problem). Let p ≥ 2, α be a
constant and (uα, πα) be a weak solution of (NS) where

f ∈ Lr(p)(Ω), F ∈ Lp(Ω) and h ∈W− 1
p
,p(Γ).

Then
(uα, πα)→ (u∞, π∞) in W 1,p(Ω)× Lp0(Ω) as α→∞

where (u∞, π∞) is a solution of the Navier-Stokes problem with Dirichlet boundary condi-
tion, 

−∆u∞ + u∞ · ∇u∞ +∇π∞ = f + div F in Ω,
div u∞ = 0 in Ω,
u∞ = 0 on Γ.

2.3 Notations and preliminary results

Before studying the problem (2.1) and (2.2) with (2.4)-(2.5), we review some basic notations
and functional framework. We will use the term axisymmetric to mean a non-empty set
which is generated by rotation around an axis. The vector fields and matrix fields (and the
corresponding spaces) defined over Ω or over R3 are denoted by bold font and blackboard
bold font respectively. Unless otherwise stated, we follow the convention that C is an
unspecified positive constant that may vary from expression to expression, even across an
inequality (but not across an equality). Also C depends on Ω generally and the dependence
of C on other parameters will be specified within parenthesis when necessary.

Note that the vector-valued Laplace operator of a vector-field v = (v1, v2, v3) is equiv-
alently defined as

∆v = 2 div Dv − grad div v.

We denote by D(Ω) the set of smooth functions (infinitely differentiable) with compact
support in Ω. Define

Dσ(Ω) := {v ∈ D(Ω); div v = 0 in Ω}

and

Lp0(Ω) :=

v ∈ Lp(Ω);
∫
Ω

v = 0

 .
If p ∈ [1,∞), p′ denotes the conjugate exponent of p i.e. 1

p
+ 1

p′
= 1. For p, r ∈ [1,∞), we

introduce the following space

Hr,p(div,Ω) := {v ∈ Lr(Ω); div v ∈ Lp(Ω)}
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2.3. Notations and preliminary results

equipped with the norm

‖v‖Hr,p(div,Ω) = ‖v‖Lr(Ω) + ‖div v‖Lp(Ω).

It can be shown that D(Ω) is dense in Hr,p(div,Ω) (cf. [103, Proposition 1.0.2]). The
closure of D(Ω) in Hr,p(div,Ω) is denoted by Hr,p

0 (div,Ω) and can be characterized as

Hr,p
0 (div,Ω) = {v ∈Hr,p(div,Ω); v · n = 0 on Γ} .

Also for p ∈ (1,∞), the dual space of Hr,p
0 (div,Ω), denoted by [Hr,p

0 (div,Ω)]′, can be
characterized as follows (cf. [103, Proposition 1.0.4]):

Proposition 2.3.1. A distribution f belongs to [Hr,p
0 (div,Ω)]′ iff there exists ψ ∈ Lr′(Ω)

and χ ∈ Lp′(Ω) such that f = ψ +∇χ. Moreover, we have the estimate :

‖f‖[Hr,p
0 (div,Ω)]′ ≤ inf

f=ψ+∇χ
max{‖ψ‖Lr′ (Ω), ‖χ‖Lp′ (Ω)}.

We also recall the following useful result (cf. [13, Theorem 3.5]):

Proposition 2.3.2. Let v ∈ Lp(Ω) with div v ∈ Lp(Ω), curl v ∈ Lp(Ω) and v · n ∈
W 1− 1

p
,p(Γ). Then v ∈W 1,p(Ω) and satisfies the estimate:

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖v · n‖

W
1− 1

p ,p(Γ)

)
.

We need to introduce the following spaces also :

V p
σ,τ (Ω) :=

{
v ∈W 1,p(Ω); div v = 0 in Ω and v · n = 0 on Γ

}
equipped with the norm of W 1,p(Ω) and

Ep(Ω) :=
{

(v, π) ∈W 1,p(Ω)× Lp(Ω); −∆v +∇π ∈ Lr(p)(Ω)
}

(2.9)

where r(p) = max
{

1, 3p
p+3

}
if p 6= 3

2

r(p) > 1 if p = 3
2

(2.10)

which is a Banach space with the norm

‖ (v, π) ‖Ep(Ω) := ‖v‖W 1,p(Ω) + ‖π‖Lp(Ω) + ‖ −∆v +∇π‖Lr(p)(Ω).

Let us now introduce some notations to describe the boundary. Consider any point P
on Γ and choose an open neighbourhood W of P in Γ, small enough to allow the existence
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Chapter 2. Stokes and Navier-Stokes equations with Navier boundary condition

of 2 families of C2 curves on W with these properties : a curve of each family passes through
every point of W and the unit tangent vectors to these curves form an orthogonal system
(which we assume to have the direct orientation) at every point of W . The lengths s1, s2

along each family of curves, respectively, are a possible system of coordinates in W . We
denote by τ1, τ2 the unit tangent vectors to each family of curves.

With this notations, we have v = ∑2
k=1 vkτk + (v · n)n where τk = (τk1, τk2, τk3) and

vk = v · τk. In the sequel, for simplicity of notation, we will use

Λv =
2∑

k=1

(
vτ ·

∂n

∂sk

)
τk .

We recall the following relations which give the equivalence of the two boundary condi-
tions (2.5) and (2.6) and which will be used extensively to prove some of our main results
(for proof, see [11, Appendix A]). Note that Ω being C1,1 is sufficient and there is a sign
change in the second relation, compared to [11] and it is the corrected formulation.

Lemma 2.3.3. For any v ∈W 2,p(Ω), we have the following equalities:

2 [(Dv)n]τ = ∇τ (v · n) +
(
∂v

∂n

)
τ

−Λv ,

curl v × n = −∇τ (v · n) +
(
∂v

∂n

)
τ

+ Λv .

Remark 2.3.4. In the particular case v · n = 0 on Γ, we obtain, for all v ∈W 2,p(Ω),

2 [(Dv)n]τ =
(
∂v

∂n

)
τ

−Λv and curl v × n =
(
∂v

∂n

)
τ

+ Λv

which implies that

2 [(Dv)n]τ = curl v × n− 2Λv. (2.11)

Next, we prove the following Green formula to define the trace of the strain tensor of
a vector field.

Lemma 2.3.5. Let Ω be Lipschitz. Then,
(i) D(Ω)×D(Ω) is dense in Ep(Ω) and
(ii) The linear mapping (v, π) 7→ [(Dv)n]τ , defined on D(Ω)×D(Ω) can be extended to a
linear, continuous map from Ep(Ω) to W− 1

p
,p(Γ). Moreover we have the following relation:

for all (v, π) ∈ Ep(Ω) and ϕ ∈ V p′
σ,τ (Ω),∫

Ω

(−∆v +∇π) ·ϕ = 2
∫
Ω

Dv : Dϕ− 2 〈[(Dv)n]τ ,ϕ〉W− 1
p ,p(Γ)×W

1
p ,p
′
(Γ)
. (2.12)
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2.3. Notations and preliminary results

Proof. (i) The proof of the density result is very much similar to [64, Lemma 1.5.3.9]. Let
P : W 1,p(Ω)→W 1,p(R3) be any continuation operator such that Pu

∣∣∣
Ω

= u. Then for all
` ∈ [Ep(Ω)]′, there exists (ϕ, λ,ψ) ∈W−1,p′(R3) × Lp′(Ω) × L(r(p))′(Ω) with supp ϕ ⊂ Ω
such that for any (v, π) ∈ Ep(Ω),

〈`, (v, π)〉 = 〈ϕ, Pv〉W−1,p′ (R3)×W 1,p(R3) +
∫
Ω

λπ +
∫
Ω

ψ · (−∆v +∇π).

Thanks to the Hahn-Banach theorem, it suffices to show that any ` which vanishes on
D(Ω)×D(Ω) is actually zero on Ep(Ω).

Let us suppose that ` = 0 in D(Ω) × D(Ω) and let λ̃ ∈ Lp′(R3) and ψ̃ ∈ L(r(p))′(R3)
be the extension by zero to R3. Then for all (V × Π) ∈ D(R3)×D(R3), let v = V

∣∣∣
Ω

and
π = Π

∣∣∣
Ω

so that (v, π) ∈ D(Ω)×D(Ω) and

〈ϕ,V 〉W−1,p′ (R3)×W 1,p(R3) +
∫
R3
λ̃Π +

∫
R3
ψ̃ · (−∆V +∇Π) dx = 0

since supp ϕ ⊂ Ω implies 〈ϕ,V 〉 = 〈ϕ, Pv〉. It then follows that〈
ϕ−∆ψ̃,V

〉
D′(R3)×D(R3)

= 0 and
〈
λ̃− div ψ̃,Π

〉
D′(R3)×D(R3)

= 0.

i.e. ϕ − ∆ψ̃ = 0 and λ̃ − div ψ̃ = 0 in the sense of distribution in R3. Hence, ∆ψ̃ ∈
W−1,p′(R3). As a consequence, ψ̃ ∈ W 1,p′(R3) and therefore ψ ∈ W 1,p′

0 (Ω). Then by
density of D(Ω) in W 1,p′

0 (Ω), there exists a sequence (ψk)k ⊂ D(Ω) such that ψk → ψ as
k → ∞ in W 1,p′(Ω). Also ∆ψ̃k → ∆ψ̃ in W−1.p′(R3). Now, for any (v, π) ∈ Ep(Ω), we
have,

〈`, (v, π)〉

= 〈ϕ, Pv〉W−1,p′ (R3)×W 1,p(R3) +
∫
Ω

λπ +
∫
Ω

ψ · (−∆v +∇π)

= 〈∆ψ̃, Pv〉W−1,p′ (R3)×W 1,p(R3) +
∫
Ω

π div ψ + 〈ψ, (−∆v +∇π)〉
W 1,p′

0 (Ω)×W−1,p(Ω)

= lim
k→∞

[〈∆ψ̃k, Pv〉W−1,p′ (R3)×W 1,p(R3) +
∫
Ω

π div ψk +

+ 〈ψk, (−∆v +∇π)〉
W 1,p′

0 (Ω)×W−1,p(Ω)]

= lim
k→∞

[〈∆ψk,v〉D(Ω)×D′(Ω) − 〈ψk,∇π〉D(Ω)×D′(Ω) + 〈ψk,−∆v +∇π〉D(Ω)×D′(Ω)]

= 0 .

Thus ` is identically zero.
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Chapter 2. Stokes and Navier-Stokes equations with Navier boundary condition

(ii) The Green formula for (v, π) ∈ D(Ω)×D(Ω) and ϕ ∈ V p′
σ,τ (Ω) follows immediately

by integration by parts and then we use the density result (cf. [11, Lemma 2.4]). �

Remark 2.3.6. 1. The following Green formula also can be obtained in the same way
as (2.12), which will be used later: for (v, π) ∈ W 1,p(Ω) × Lp(Ω), F ∈ Lp(Ω) such that
−div(2Dv + F) +∇π ∈ Lr(p)(Ω) and ϕ ∈ V p′

σ,τ (Ω),∫
Ω

(−div(2Dv + F) +∇π) ·ϕ = 2
∫
Ω

Dv : Dϕ+
∫
Ω

F : ∇ϕ− 〈[(2Dv + F)n]τ ,ϕ〉Γ . (2.13)

2. In fact, we can obtain Lemma 2.3.5 for any v ∈ Ep(Ω) where

Ep(Ω) :=
{
v ∈W 1,p(Ω); ∆v ∈ [Hr(p)′,p′

0 (div,Ω)]′
}
.

Thus we may extend (2.11) in W− 1
p
,p(Γ) as follows: let Ω be C1,1 and for any v ∈W 1,p(Ω)

with ∆v ∈ Lr(p)(Ω) and v · n = 0 on Γ,

2 [(Dv)n]τ = curl v × n− 2Λv in W− 1
p
,p(Γ). (2.14)

We will also need the following density result:

Lemma 2.3.7. The space {v ∈ D(Ω) : v · n = 0 on Γ} is dense in H1
τ (Ω) := {v ∈

H1(Ω) : v · n = 0 on Γ}.

Proof. Let us first consider the case Ω = R3
+. In that case the above statement becomes:

{v = (v1, v2, v3) ∈ (D(R3
+))2×D(R3

+)} is dense in {v = (v1, v2, v3) ∈ (H1(R3
+))2×H1

0 (R3
+)}

which is true due to the classical density results. Now using local coordinate, we can prove
the result for any general C1,1 domain Ω. �

Lemma 2.3.8. Let p ∈ (1,∞). For α ∈ Lt(p)(Γ) with t(p) defined in (2.8), u ∈W 1,p(Ω)
and ϕ ∈W 1,p′(Ω), the integral over the boundary

∫
Γ αuτ ·ϕτ is well-defined.

Proof. For convenience, from now on, we consider α ∈ Lt(p)(Γ) where we recall that

t(p) =


2 if p = 2
2 + ε if 3

2 ≤ p ≤ 3, p 6= 2
2
3 max{p, p′}+ ε otherwise
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2.3. Notations and preliminary results

for some arbitrary ε > 0 sufficiently small. Sinceϕ ∈W 1,p′(Ω), we haveϕτ ∈W 1− 1
p′ ,p
′
(Γ) ↪→

Lm(Γ) where

1
m

=


1− 3

2p if p > 3
2 ,

any positive real number < 1 if p = 3
2 ,

0 if p < 3
2 .

(2.15)

Similarly, for u ∈W 1,p(Ω), uτ ∈W 1− 1
p
,p(Γ) ↪→ Ls(Γ) with

1
s

=


3
2p −

1
2 if p < 3,

any positive real number < 1 if p = 3,
0 if p > 3.

(2.16)

We want to show that αuτ ∈ Lm
′(Γ).

(i) p = 2: Since α ∈ L2(Γ), αuτ ∈ Lq(Γ) with 1
q

= 1
2 + 1

4 = 3
4 by Hölder inequal-

ity. But 1
m′

= 1− 1
m

= 3
4 i.e. q = m′. So the integral is well-defined.

(ii) 3
2 ≤ p ≤ 3, p 6= 2: As α ∈ L2+ε(Γ), αuτ ∈ Lq(Γ) with 1

q
= 1

2+ε + 1
s
.

So, for 3
2 < p < 3, 1

q
= 3

2p −
1
2 + 1

2+ε . Then clearly, q > m′.
For p = 3, 1

q
= 1

2+ε + 1
s

where s is any number > 1. Then, we can choose s suitably such
that q > m′.
For p = 3

2 ,
1
q

= 1
2+ε + 1

2 and we can choose m > 1 suitably so that q > m′. Hence, in all
cases, the integral is well-defined.

(iii) p > 3: Since α ∈ L
2
3p+ε(Γ), αuτ ∈ Lq(Γ) with 1

q
= 1

2
3p+ε

. So clearly q > m′

and thus the integral is well-defined.

(iv) p < 3
2 : As α ∈ L 2

3p
′+ε(Γ), αuτ ∈ Lq(Γ) with 1

q
= 3

2p −
1
2 + 1

2
3p
′+ε . Again q > m′ and

the integral is well-defined. �

Definition 2.3.9. Given f ∈ Lr(p)(Ω),F ∈ Lp(Ω),h ∈ W− 1
p
,p(Γ) and α ∈ Lt(p)(Γ), a

couple u ∈ V p
σ,τ (Ω) is called a weak solution of the Stokes system (S) if it satisfies: for all

ϕ ∈ V p′
σ,τ (Ω),

2
∫
Ω

Du : Dϕ+
∫
Γ

αuτ ·ϕτ =
∫
Ω

f ·ϕ−
∫
Ω

F : ∇ϕ+ 〈h,ϕ〉Γ . (2.17)
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Chapter 2. Stokes and Navier-Stokes equations with Navier boundary condition

Proposition 2.3.10. Let p ∈ (1,∞) and

f ∈ Lr(p)(Ω),F ∈ Lp(Ω),h ∈W− 1
p
,p(Γ) and α ∈ Lt(p)(Γ)

with r(p) and t(p) defined by (2.10) and (2.8) respectively. Then the following two state-
ments are equivalent:
(i) u ∈ V p

σ,τ (Ω) is a weak solution of (S), in the sense of Definition 2.3.9 and
(ii)(u, π) ∈W 1,p(Ω)× Lp(Ω) satisfies:

−∆u+∇π = f + div F, div u = 0 in the sense of distribution
u · n = 0 in the sense of trace

2[(Du)n]τ + αuτ = 0 in W−1/p,p(Γ).
(2.18)

Proof. Let (u, π) ∈ V p
σ,τ (Ω)× Lp(Ω) is a weak solution of (S). We want to show it implies

(ii). Choosing ϕ ∈ Dσ(Ω) as a test function in (2.17), we have

〈−∆u,ϕ〉D′(Ω)×D(Ω) = 2
∫
Ω

Du : Dϕ =
∫
Ω

f ·ϕ−
∫
Ω

F : ∇ϕ.

So by De Rham’s theorem, there exists π ∈ Lp(Ω), defined uniquely up to an additive
constant such that

−∆u+∇π = f + div F in Ω. (2.19)

Also u ∈ V p
σ,τ (Ω) implies div u = 0 in Ω and u · n = 0 on Γ. Thus it remains to prove

the Navier boundary condition. Multiplying equation (2.19) by ϕ ∈ V p′
σ,τ (Ω) and using the

Green’s formula (2.13), we obtain from (2.17),

∀ ϕ ∈ V p′

σ,τ (Ω), 〈[(2Du+ F)n]τ ,ϕ〉Γ +
∫
Γ

αuτ ·ϕτ = 〈h,ϕ〉Γ . (2.20)

Now, let µ ∈W
1
p
,p′(Ω). There exists ϕ ∈W 1,p′(Ω) such that div ϕ = 0 in Ω and ϕ = µτ

on Γ. Then ϕ ∈ V p′
σ,τ (Ω) and using (2.20),

〈[(2Du+ F)n]τ + αuτ − h,µ〉Γ = 〈[(2Du+ F)n]τ + αuτ − h,µτ 〉Γ
= 〈[(2Du+ F)n]τ + αuτ − h,ϕ〉Γ = 0.

Hence,
[(2Du+ F)n]τ + αuτ = h in W−1/p,p(Γ).

Conversely, using the Green formula (2.13), we can easily deduce that any (u, π) ∈
W 1,p(Ω)×Lp(Ω) satisfying (2.18) is a weak solution of (S), in the sense of Definition 2.3.9.
�
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The following two propositions give some Korn-type inequalities which will be useful
in the context. ’'’ denotes the equivalence of two norms.

Proposition 2.3.11. Let Ω be Lipschitz. Then, for all u ∈ H1(Ω) with u · n = 0 on Γ,
we have the following equivalence of norms:

‖u‖H1(Ω) ' ‖Du‖L2(Ω) if Ω is not axisymmetric , (2.21)

and

‖u‖H1(Ω) ' ‖Du‖L2(Ω) + ‖uτ‖L2(Γ) if Ω is axisymmetric . (2.22)

Proof. Since (2.21) follows from [11, Lemma 3.3], we only prove (2.22). Also, it is enough
to show that there exists C > 0 such that

‖u‖H1(Ω) ≤ C
(
‖Du‖L2(Ω) + ‖uτ‖L2(Γ)

)
as the other inequality is obvious.

We prove by contradiction. Suppose for any m ∈ IN , there exists um ∈ H1(Ω) such
that um · n = 0 on Γ and

‖um‖H1(Ω) > m
(
‖Dum‖L2(Ω) + ‖(um)τ‖L2(Γ)

)
. (2.23)

Since ‖um‖H1(Ω) > 0, we can define vm := um
‖um‖H1(Ω)

so that ‖vm‖H1(Ω) = 1 for all m ∈ IN .
Then from (2.23), we have

‖Dvm‖L2(Ω) + ‖(vm)τ‖L2(Γ) <
1
m
.

Hence, as m→∞,

Dvm → 0 in L2(Ω) and (vm)τ → 0 in L2(Γ).

But as vm · n = 0 on Γ, we get vm → 0 in L2(Γ). On the other hand, since {vm}m is
bounded in H1(Ω), there exists a subsequence, which we still call {vm}m and v ∈H1(Ω)
such that vm ⇀ v weakly in H1(Ω). Thus

Dv = 0 in Ω and v = 0 on Γ

which yields v = 0 in Ω. But this is a contradiction since from Korn inequality, we have

1 = ‖vm‖H1(Ω) ≤ C
(
‖vm‖L2(Ω) + ‖Dvm‖L2(Ω)

)
→ 0.

Thus (2.22) follows. �
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Proposition 2.3.12. Let Ω be Lipschitz. For Ω axisymmetric, we have the following
inequalities: for all u ∈H1(Ω) with u · n = 0 on Γ,

‖u‖2
L2(Ω) ≤ C

‖Du‖2
L2(Ω) +

∫
Ω

u · β

2
 (2.24)

and

‖u‖2
L2(Ω) ≤ C

‖Du‖2
L2(Ω) +

∫
Γ

u · β

2
 . (2.25)

Proof. (i) First recall from (2.7) that β ∈ C∞(R3) and Dβ = 0 in R3. Then (2.24) follows
from the following result [11, Lemma 3.3]:

inf
w∈T (Ω)

‖u+w‖2
L2(Ω) ≤ C(Ω)

‖Du‖2
L2(Ω) +

∫
Γ

|u · n|2
 . (2.26)

Since, w = cβ for some c ∈ R, inf
w∈T (Ω)

‖u+w‖2
L2(Ω) = inf

c ∈ R
‖u+cβ‖2

L2(Ω) and this infimum
is attained at

c = 1
‖β‖2

L2(Ω)

∫
Ω

u · β

 .
Now, ∥∥∥∥∥∥u− 1

‖β‖2
L2(Ω)

∫
Ω

u · β

β
∥∥∥∥∥∥

2

L2(Ω)

= ‖u‖2
L2(Ω) −

2
‖β‖2

L2(Ω)

∫
Ω

u · β

2

+ 1
‖β‖2

L2(Ω)

∫
Ω

u · β

2

= ‖u‖2
L2(Ω) −

1
‖β‖2

L2(Ω)

∫
Ω

u · β

2

.

Hence, we obtain (2.24).

(ii) Now we prove the inequality (2.25), by contradiction. Let us denote

|||u||| := ‖u‖L2(Ω) + ‖Du‖L2(Ω).

Now assume that for all m ∈ IN , there exists um ∈ H1(Ω) with um · n = 0 on Γ and
|||um||| = 1 such that

1 > m

‖Dum‖2
L2(Ω) +

∫
Γ

um · β

2
 . (2.27)
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2.4. Stokes equations: L2-theory

So {um}m is a bounded sequence in H1(Ω); Hence there exists a subsequence, we still call
{um}m and u in H1(Ω) so that um ⇀ u in H1(Ω). This gives u ·n = 0 on Γ and um → u

in L2(Ω). But from (2.27), we have

Dum → 0 in L2(Ω) and
∫
Γ

um · β → 0.

Then Du = 0 in Ω which implies u = cβ for some c ∈ R. But also um ⇀ u in H 1
2 (Γ) and

H
1
2 (Γ) is compactly embedded in L2(Γ) implies um → u in L2(Γ). Therefore, we have

um · β → u · β in L2(Γ) which yields u · β = 0 on Γ. Hence, u = 0 in Ω. But then

1 = |||um||| = ‖um‖L2(Ω) + ‖Dum‖L2(Ω) → 0

which is a contradiction. �

2.4 Stokes equations: L2-theory

In this section, we study the well-posedness of solutions of the Stokes problem (S) in the
Hilbert space. First we prove the existence and uniqueness of the weak solution.

Theorem 2.4.1 (Existence in H1(Ω)). Let Ω be Lipschitz and

f ∈ L
6
5 (Ω),F ∈ L2(Ω),h ∈H− 1

2 (Γ) and α ∈ L2(Γ)

with α > 0 on Γ0 ⊆ Γ, |Γ0| > 0. Then the Stokes problem (S) has a unique weak solution
(u, π) ∈H1(Ω)× L2

0(Ω) which satisfies the estimate:

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(α)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
. (2.28)

Proof. Existence of a unique weak solution (u, π) ∈ H1(Ω) × L2
0(Ω) of (S) follows from

Lax-Milgram theorem. The bilinear form

∀ u,ϕ ∈ V 2
σ,τ (Ω), a(u,ϕ) = 2

∫
Ω

Du : Dϕ+
∫
Γ

αuτ ·ϕτ

is clearly continuous. And from Proposition 2.3.11,

a(u,u) = 2‖Du‖2
L2(Ω) +

∫
Γ

α|uτ |2 ≥ C(α)‖u‖2
H1(Ω) (2.29)

which shows that it is also coercive on V 2
σ,τ (Ω). Moreover, the linear form ` : V 2

σ,τ (Ω)→ R,
defined as

`(ϕ) =
∫
Ω

f ·ϕ−
∫
Ω

F : ∇ϕ+ 〈h,ϕ〉
H−

1
2 (Γ)×H

1
2 (Γ)
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Chapter 2. Stokes and Navier-Stokes equations with Navier boundary condition

is continuous on V 2
σ,τ (Ω). Hence, Lax-Milgram theorem gives the existence of a unique

u ∈ V 2
σ,τ (Ω) satisfying

a(u,ϕ) = `(ϕ) ∀ϕ ∈ V 2
σ,τ (Ω). (2.30)

This completes the proof since (2.30) is equivalent to the problem (S) (see Proposition
2.3.10). Existence of the pressure term follows from De Rham theorem.

The estimate (2.28) is obvious from (2.29) and (2.30). �

Remark 2.4.2. Note that with α > 0 on some Γ0 ⊆ Γ with |Γ0| > 0, we get the uniqueness
of the solution of the Stokes problem (S). But for the case α ≡ 0 on Γ, there is a non-trivial
kernel when Ω is axisymmetric (see [11, Theorem 3.4]).

Indeed, consider the kernel T α(Ω) of the Stokes operator: (u, π) ∈ H1(Ω) × L2
0(Ω)

satisfying (S) with f = 0 and h = 0. Then we have the energy estimate

2‖Du‖2
L2(Ω) +

∫
Γ

α|uτ |2 = 0

with α ≥ 0 on Γ. Hence Du = 0 in Ω implies u(x) = b × x + c for almost all x ∈ Ω (in
fact, for all x ∈ Ω since u ∈ H2(Ω) ↪→ C0(Ω)) where b, c ∈ R3 are arbitrary constant
vectors. But also u · n = 0 on Γ gives c = 0.
a) If α > 0 on Γ0, then b× x = 0,x ∈ Γ0 and thus b = 0 i.e. T α(Ω) = {0}.
b) If α ≡ 0 on Γ, we can verify easily that

i) u(x) = b×x if Ω is axisymmetric i.e. b is co-linear to the axis of Ω and dimT α(Ω) =
1.

ii) u = 0 if Ω is not axisymmetric i.e. T α(Ω) = {0}.

In the next theorem we improve the estimate (2.28) with respect to α in some particular
cases.

Theorem 2.4.3 (Estimates in H1(Ω)). With the same assumption on f ,F,h and α as
in Theorem 2.4.1, the weak solution (u, π) ∈ H1(Ω) × L2

0(Ω) of the Stokes problem (S)
satisfies the following estimates:
a) if Ω is not axisymmetric, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
. (2.31)

b) if Ω is axisymmetric and
(i) α ≥ α∗ > 0 on Γ, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤
C(Ω)

min{2, α∗}

(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
. (2.32)
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2.4. Stokes equations: L2-theory

(ii) f ,F and h satisfy the condition:∫
Ω

f · β −
∫
Ω

F : ∇β + 〈h,β〉Γ = 0 (2.33)

then, the solution u satisfies
∫

Γ αu · β = 0 and

‖Du‖2
L2(Ω) +

∫
Γ

α|uτ |2 + ‖π‖2
L2(Ω) ≤ C(Ω)

(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)2
. (2.34)

In particular, if α is a non-zero constant, then
∫

Γ u · β = 0 and

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
. (2.35)

Remark 2.4.4. Note that in the case of Ω axisymmetric, if α is a non-zero constant, we
can use the estimate (2.32) with α = α∗. In particular if α = 1

n
, n ∈ N∗, the corresponding

solution (un, πn) satisfy

‖un‖H1(Ω) + ‖πn‖L2(Ω) ≤ nC(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
.

But this estimate is not optimal, when we suppose (2.33). In fact because of
∫

Γ un · β = 0,
we have by (2.35) the better estimate

‖un‖H1(Ω) + ‖πn‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
where C(Ω) does not depend on n. That means if α → 0, (2.35) is better estimate than
(2.32).

Proof. The solution u satisfies:

2
∫
Ω

|Du|2 +
∫
Γ

α|uτ |2 ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
‖u‖H1(Ω). (2.36)

a) If Ω is not axisymmetric, estimate (2.21) shows that the norm ‖Du‖L2(Ω) is equivalent
to the norm ‖u‖H1(Ω) and hence from (2.36), it follows

‖u‖H1(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
. (2.37)

On the other hand,

‖π‖L2(Ω) ≤ ‖∇π‖H−1(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖∆u‖H−1(Ω)

)
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≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖u‖H1(Ω)

)
≤ C(Ω)

(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
. (2.38)

The estimate (2.31) then follows from (2.37) and (2.38).

b) If Ω is axisymmetric and
(i) α ≥ α∗ > 0, estimate (2.22) gives,

‖u‖2
H1(Ω) ≤ C(Ω)

(
2‖Du‖2

L2(Ω) + α∗‖uτ‖2
L2(Γ)

)
≤ C(Ω)

min{2, α∗}

2
∫
Ω

|Du|2 +
∫
Γ

α|uτ |2
 ; (2.39)

Hence estimate (2.32) follows from (2.36).

(ii) f ,F and h satisfy the condition (2.33), then from (2.30), we get

2
∫
Ω

|Du|2 +
∫
Γ

α|uτ |2 =
∫
Ω

f · u−
∫
Ω

F : ∇u+ 〈h,u〉Γ

=
∫
Ω

f · (u+ kβ)−
∫
Ω

F : ∇(u+ kβ) + 〈h,u+ kβ〉Γ ∀k ∈ R

≤ C(Ω)
(
‖f

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
inf
k∈R
‖u+ kβ‖H1(Ω).

Also from Korn inequality and the inequality (2.26), we know,

inf
k∈R
‖u+ kβ‖2

H1(Ω) ≤ C(Ω)
(

inf
k∈R
‖u+ kβ‖2

L2(Ω) + ‖Du‖2
L2(Ω)

)
≤ C(Ω) ‖Du‖2

L2(Ω).

which yields

2
∫
Ω

|Du|2 +
∫
Γ

α|uτ |2 ≤ C(Ω)
(
‖f

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
‖Du‖L2(Ω).

This in turn implies

‖Du‖L2(Ω) ≤ C(Ω)
(
‖f

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
and then ∫

Γ

α|uτ |2 ≤ C(Ω)
(
‖f

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)2
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and hence the inequality (2.34).

Moreover, if α is a non-zero constant, the variational formulation (2.30) gives,∫
Γ

u · β = 0.

So now (2.25) shows that the norm ‖Du‖L2(Ω) is equivalent to the full norm ‖u‖H1(Ω) and
(2.35) is a consequence of(2.36). �

Next we discuss the strong solution of the system (S) and the corresponding bounds,
not depending on α.

Theorem 2.4.5 (Existence and estimate in H2(Ω)). Assume that α is a constant.
Then if

f ∈ L2(Ω) and h ∈H 1
2 (Γ),

the weak solution (u, π) of the Stokes problem (S) with F = 0 belongs to H2(Ω)×H1(Ω).
Also it satisfies the following estimates:
(i) if Ω is not axisymmetric, then

‖u‖H2(Ω) + ‖π‖H1(Ω) ≤ C(Ω)
(
‖f‖L2(Ω) + ‖h‖

H
1
2 (Γ)

)
. (2.40)

(ii) if Ω is axisymmetric, then

‖u‖H2(Ω) + ‖π‖H1(Ω) ≤
C(Ω)

min{2, α}

(
‖f‖L2(Ω) + ‖h‖

H
1
2 (Γ)

)
. (2.41)

If moreover, f ,h satisfy the condition:∫
Ω

f · β + 〈h,β〉Γ = 0

then

‖u‖H2(Ω) + ‖π‖H1(Ω) ≤ C(Ω)
(
‖f‖L2(Ω) + ‖h‖

H
1
2 (Γ)

)
. (2.42)

Remark 2.4.6. 1. We show in Theorem 2.5.9 the existence of u ∈H2(Ω) for more general
α, not necessarily constant.

2. It is not sensible to consider non-zero F ∈ H1(Ω) for the strong solution as we are
considering any L2(Ω) data f in the RHS.

35



Chapter 2. Stokes and Navier-Stokes equations with Navier boundary condition

Proof. Method I: If α is a constant and f ∈ L2(Ω) and h ∈H 1
2 (Γ), then u ∈H1(Ω) and

therefore αuτ ∈ H
1
2 (Γ). So using the regularity result for strong solution [11, Theorem

4.1], we get that u ∈H2(Ω).

But concerning the estimate, with this method, using the results in [11], we can not
obtain the bound on u, independent of α. Thus we need to consider the fundamental but
long method, explained below.
Method II: Here we follow the method of difference quotient as in the book of L.C.Evans
[44]. Without loss of generality, we consider h = 0, for ease of notation. Also, let denote
the difference quotient by,

Dh
ku(x) = u(x+ hek)− u(x)

h
, k = 1, 2, 3, h ∈ R.

Interior regularity: The unique solution (u, π) in H1(Ω) × L2
0(Ω) of (S) belongs to

H2
loc(Ω)×H1

loc(Ω) with the corresponding local estimate (2.40)-(2.42), can be shown in the
same way using difference quotient as for the Dirichlet boundary condition, with the help
of Theorem 2.4.3, since it does not depend on which boundary condition is considered.
Thus we do not repeat it.

Boundary regularity: The solution (u, π) satisfies the variational formulation, for all
ϕ ∈H1

τ (Ω),

2
∫
Ω

Du : Dϕ+
∫
Γ

αuτ ·ϕτ −
∫
Ω

π divϕ =
∫
Ω

f ·ϕ. (2.43)

Case 1. Ω = B(0, 1) ∩ R3
+ : First we consider the case when Ω is a half ball. Set

V := B(0, 1
2) ∩ R3

+ and choose a cut-off function ζ ∈ D(R3) such that ζ ≡ 1 on B(0, 1
2), ζ ≡ 0 on R3 \B(0, 1),

0 ≤ ζ ≤ 1.

So ζ ≡ 1 on V and vanishes on the curved part of Γ.

i) Tangential regularity of velocity: Let h > 0 be small andϕ = −D−hk (ζ2Dh
ku), k =

1, 2. Clearly, ϕ ∈H1
τ (Ω). So substituting ϕ into the identity (2.43) we obtain,

2
∫
Ω

ζ2|Dh
kDu|2 + 2

∫
Ω

Dh
kDu : 2ζ∇ζDh

ku+
∫
Γ

αζ2|Dh
kuτ |2

−
∫
Ω

π div(−D−hk (ζ2Dh
ku)) =

∫
Ω

f · (−D−hk (ζ2Dh
ku)).

(2.44)
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Now we estimate the different terms. In this proof, from here onwards, the constant C
might depend on ζ which we do not mention. For the second term in the left hand side,
using Cauchy’s inequality with ε, we get

|
∫
Ω

Dh
kDu : 2ζ∇ζDh

ku| ≤ C
∫
Ω

2ζ|Dh
kDu||Dh

ku|

≤ C

ε ∫
Ω

ζ2|Dh
kDu|2 + 1

ε

∫
Ω

|Dh
ku|2

 . (2.45)

Similarly, for the fourth term in the left hand side, we write,

|
∫
Ω

π div(−D−hk (ζ2Dh
ku))| ≤ ε

∫
Ω

|div(−D−hk (ζ2Dh
ku))|2 + C

ε

∫
Ω

|π|2

But note that,

div(D−hk (ζ2Dh
ku)) = D−hk div(ζ2Dh

ku)
= D−hk (2ζ∇ζ ·Dh

ku) +D−hk (ζ2 div(Dh
ku)︸ ︷︷ ︸

=0

)

= D−hk (2ζ∇ζ) ·Dh
ku(x− hek) + 2ζ∇ζ ·D−hk Dh

ku

which means ∫
Ω

|div(−D−hk (ζ2Dh
ku))|2 ≤ C

∫
Ω

|Dh
ku|2 +

∫
Ω

ζ2|D−hk Dh
ku|2


≤ C

∫
Ω

|Dh
ku|2 +

∫
Ω

ζ2|∇Dh
ku|2

 .
Therefore,

|
∫
Ω

π div(D−hk (ζ2Dh
ku))| ≤ ε

∫
Ω

|Dh
ku|2 +

∫
Ω

ζ2|∇Dh
ku|2

+ C

ε

∫
Ω

|π|2. (2.46)

And for the right hand side, proceeding in the same way, we derive,

|
∫
Ω

f · (−D−hk (ζ2Dh
ku))| ≤ ε

∫
Ω

|D−hk (ζ2Dh
ku)|2 + C

ε

∫
Ω

|f |2.

But, since
∫
Ω

|D−hk (ζ2Dh
ku)|2 ≤ C

∫
Ω

|∇(ζ2Dh
ku)|2 ≤ C

∫
Ω

|Dh
ku|2 +

∫
Ω

ζ2|∇Dh
ku|2
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we get,

|
∫
Ω

f · (−D−hk (ζ2Dh
ku))| ≤ ε

∫
Ω

|Dh
ku|2 +

∫
Ω

ζ2|∇Dh
ku|2

+ C

ε

∫
Ω

|f |2. (2.47)

Hence, incorporating (2.45), (2.46) and (2.47) in (2.44) yields,

2
∫
Ω

ζ2|Dh
kDu|2 +

∫
Γ

α ζ2|Dh
kuτ |2

≤ ε

∫
Ω

ζ2|DDh
ku|2 +

∫
Ω

ζ2|∇Dh
ku|2

+ C1

ε

∫
Ω

|f |2 +
∫
Ω

|π|2


+ C2

∫
Ω

|Dh
ku|2

≤ ε
∫
Ω

ζ2|∇Dh
ku|2 + C1

ε

∫
Ω

|f |2 +
∫
Ω

|π|2
+ C2

∫
Ω

|Dh
ku|2.

(2.48)

Furthermore, we see that

‖ζDh
ku‖2

H1(Ω) ≤ C
(
‖ζDh

ku‖2
L2(Ω) + ‖D(ζDh

ku)‖2
L2(Ω)

)
≤ C

(
‖ζDh

ku‖2
L2(Ω) + ‖∇ζDh

ku‖2
L2(Ω) + ‖ζDDh

ku‖2
L2(Ω)

)
≤ C

(
‖Dh

ku‖2
L2(Ω) + ‖ζDDh

ku‖2
L2(Ω)

)
and
‖ζ∇Dh

ku‖2
L2(Ω) = ‖∇(ζDh

ku)−∇ζDh
ku‖2

L2(Ω) ≤ ‖∇(ζDh
ku)‖2

L2(Ω) + C ‖Dh
ku‖2

L2(Ω)

≤ C
(
‖ζDh

ku‖2
H1(Ω) + ‖Dh

ku‖2
L2(Ω)

)
.

Combining these inequalities with (2.48), we have,

‖ζDh
ku‖2

H1(Ω) ≤ ε‖ζDh
ku‖2

H1(Ω) + C1

ε

(
‖f‖2

L2(Ω) + ‖π‖2
L2(Ω)

)
+ C2‖Dh

ku‖2
L2(Ω). (2.49)

Choosing ε small, we obtain,

‖Dh
ku‖2

H1(V ) ≤ ‖ζDh
ku‖2

H1(Ω) ≤ C
(
‖f‖2

L2(Ω) + ‖π‖2
L2(Ω) + ‖Dh

ku‖2
L2(Ω)

)
for k = 1, 2 and sufficiently small |h| 6= 0; which yields that ∂2u/∂xi∂xj belongs to L2(V )
for all i, j = 1, 2, 3 except for i = j = 3 with the corresponding estimates, using the
estimates in Theorem 2.4.3 for (u, π) in H1(Ω)×L2(Ω).

ii) Tangential regularity of pressure: Now we deduce the tangential regularity of
the pressure in terms of the above derivatives of u. Indeed, for i = 1, 2, from the Stokes
equation, we get,

∂

∂xi
(∇π) = ∂

∂xi
(f + ∆u) = ∂f

∂xi
+ div(∇ ∂u

∂xi
).
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Since there is no term of the form ∂2u/∂x2
3, by preceding arguments, we obtain

∇ ∂π

∂xi
= ∂

∂xi
(∇π) ∈H−1(V ).

Furthermore, as we already know ∂π
∂xi
∈ H−1(V ), Nečas inequality implies ∂π

∂xi
∈ L2(V )

which also satisfies the usual estimate.

iii) Normal regularity: For the complete regularity of the solution, it remains to
study the derivatives of u and π in the direction e3. Differentiating the divergence equation
with respect to x3 gives,

∂2u3

∂x2
3

= −
2∑
i=1

∂2ui
∂xi∂x3

∈ L2(V ).

Also from the 3rd component of the Stokes equation, we can write,
∂π

∂x3
= f3 + ∆u3 ∈ L2(V )

which proves that π ∈ H1(V ). Finally, for i = 1, 2, writing the ith equation of the system
in the form

∂2ui
∂x2

3
= −

2∑
j=1

∂2ui
∂x2

j

− fi + ∂π

∂xi
∈ L2(V )

gives ui ∈ H2(V ). Hence apart from the regularity of u and π, we obtain the existence of
a constant C = C(Ω) > 0 independent of α such that

‖u‖H2(V ) + ‖π‖H1(V ) ≤ C‖f‖L2(Ω).

Case 2. General domain: Now we drop the assumption that Ω is a half ball and
consider the general case. In this part, we follow the strategy in [112] (same as in [19]).
Since Γ is C1,1, for any x0 ∈ Γ, we can assume, upon relabelling the coordinate axes,

Ω ∩B(x0, r) = {x ∈ B(x0, r) : x3 > H(x1, x2)}

for some r > 0 and H : R2 → R of class C1,1. Let us now introduce the change of variable,

y = (x1, x2, x3 −H(x1, x2)) := φ(x)

i.e.
x = (y1, y2, y3 +H(y1, y2)) := φ−1(y)

which flattens the boundary locally. Choose s > 0 small so that the half ball Ω′ :=
B(0, s) ∩ R3

+ lies in φ(Ω ∩ B(x0, r)). Also define V ′ := B(0, s/2) ∩ R3
+. We also introduce

the new unknown variable

u′(y) =
(
u1(x), u2(x), u3(x)− ∂H

∂x1
u1(x)− ∂H

∂x2
u2(x)

)
.
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It is easy to see
u′ ∈H1(Ω′)

and
u′ · n = 0 on ∂Ω′ ∩ ∂R3

+.

The last relation is true because of the fact that ∂H
∂yi

(0, 0) = 0, i = 1, 2. With this transfor-
mation, it follows, for i = 1, 2 and j = 1, 2,

∂ui
∂xj

= ∂u′i
∂yj
− ∂H

∂yj

∂u′i
∂y3

∂ui
∂x3

= ∂u′i
∂y3

∂u3

∂xj
= ∂u′3
∂yj
− ∂H

∂yj

∂u′3
∂y3

+
2∑

k=1

[
∂u′k
∂yj
− ∂H

∂yj

∂u′k
∂y3

]
∂u3

∂x3
= ∂u′3
∂y3

+
2∑

k=1

∂H

∂yk

∂u′k
∂y3

.

Next, we consider the variational formulation (2.43) under this change of variable. Here
onwards, the calculation follows exactly same as in [112] (or in [19]), hence we do not
repeat it here. Note that the boundary term remains unchanged i.e.∫

Γ

αuτ ·ϕτ =
∫
Γ′
αu′τ ·ϕ′τ .

Therefore following the exact same method as in [19, page 1099], we obtain

‖u‖H2(V ) ≤ C(Ω)‖f‖L2(Ω)

where V = φ−1(V ′).

Now as Γ is compact, we can cover Γ with finitely many sets {Vi} as above. Thus
summing the resulting estimates, along with the interior estimate, we get u ∈H2(Ω) with
the bounds, as mentioned in the Theorem. �

2.5 Stokes equations: Lp-theory

2.5.1 General solution in W 1,p(Ω)

In this subsection, we study the regularity of weak solution of the Stokes problem (S). We
begin with recalling some useful results. For the following theorem which was introduced
independently by Babǔska [14] and Brezzi [25], see [13, Theorem 4.2].
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Theorem 2.5.1. Let X and M be two reflexive Banach spaces and X ′ and M ′ be their
dual spaces. Let a be the continuous bilinear form defined on X ×M , A ∈ L(X;M ′) and
A′ ∈ L(M ;X ′) be the operators defined by

∀v ∈ X, ∀w ∈M, a(v, w) = 〈Av,w〉 = 〈v,A′w〉

and V = Ker A. Then the following statements are equivalent :

(i) There exists C = C(Ω) > 0 such that

inf
w∈M
w 6=0

sup
v∈X
v 6=0

a(v, w)
‖v‖X ‖w‖M

≥ C. (2.50)

(ii) The operator A : X/V 7→ M ′ is an isomorphism and 1
C

is the continuity constant of
A−1.

(iii) The operator A′ : M 7→ X ′ ⊥ V is an isomorphism and 1
C

is the continuity constant
of (A′)−1.

Next we introduce the kernel:

Kp
T (Ω) = {v ∈ Lp(Ω); div v = 0, curl v = 0 in Ω, v · n = 0 on Γ} .

Thanks to [13, Corollary 4.1], we know that this kernel is trivial iff Ω is simply connected.
Otherwise, it is of finite dimension and spanned by the functions g̃rad qTj , 1 ≤ j ≤ J ,
where qTj is the unique solution up to an additive constant of the problem:

−∆qTj = 0 in Ωo,

∂nq
T
j = 0 on Γ,

[qTj ]k = constant and [∂nqTj ]k = 0, 1 ≤ k ≤ J,〈
∂nq

T
j , 1

〉
Σk

= δjk, 1 ≤ k ≤ J.

Recall that Σj are the cuts in Ω such that the open set Ω0 = Ω\
J⋃
j=1

Σj is simply connected.

For more details, see [13].

Also, recall the following inf-sup condition (see [13, Lemma 4.4]):

Lemma 2.5.2. There exists a constant C > 0, depending only on Ω and p such that

inf
ϕ∈V p′ (Ω)

ϕ6=0

sup
ξ∈V pσ,τ (Ω)

ξ 6=0

∫
Ω curl ξ · curl ϕ
‖ξ‖V pσ,τ (Ω)‖ϕ‖V p′ (Ω)

≥ C (2.51)

where
V p′(Ω) :=

{
v ∈ V p′

σ,τ (Ω); 〈v · n, 1〉Σj = 0 ∀ 1 ≤ j ≤ J
}
.
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Let us now define the bilinear form: for u ∈ V p
σ,τ (Ω) and ϕ ∈ V p′

σ,τ (Ω),

a(u,ϕ) = 2
∫
Ω

Du : Dϕ+
∫
Γ

αuτ ·ϕτ . (2.52)

Theorem 2.5.3. Let p ∈ (1,∞), ` ∈ [V p′
σ,τ (Ω)]′ and α ∈ Lt(p)(Γ). Then the problem:

find u ∈ V p
σ,τ (Ω) such that for any ϕ ∈ V p′

σ,τ (Ω), a(u,ϕ) = 〈`,ϕ〉 (2.53)

has a unique solution.

Proof. Let us consider first p ≥ 2. Since [V p′
σ,τ (Ω)]′ ↪→ [V 2

σ,τ (Ω)]′, by Lax-Milgram theorem
there exists a unique u ∈ V 2

σ,τ (Ω) satisfying

∀ ϕ ∈ V 2
σ,τ (Ω), a(u,ϕ) = 〈`,ϕ〉[V 2

σ,τ (Ω)]′×V 2
σ,τ (Ω) . (2.54)

Now we want to show that u ∈W 1,p(Ω). Since the inf-sup condition (2.50) is known for
the bilinear form

b(u,ϕ) =
∫
Ω

curl u · curl ϕ

with suitable spaces X and M (see (2.51)), we will use another formulation of problem
(2.54). For that, first we consider a more general variational formulation as below. Note
that u ∈ V 2

σ,τ (Ω) satisfies

2
∫
Ω

Du : Dϕ+
∫
Ω

αuτ ·ϕτ −
∫
Ω

π div ϕ = 〈`,ϕ〉[V 2
σ,τ (Ω)]′×V 2

σ,τ (Ω) ∀ ϕ ∈H1
τ (Ω)

where π ∈ L2(Ω) is equivalent to: u ∈ V 2
σ,τ (Ω) satisfies∫

Ω

curl u · curl ϕ+
∫
Ω

αuτ ·ϕτ−
∫
Ω

π div ϕ−2
∫
Γ

Λu ·ϕ = 〈`,ϕ〉[V 2
σ,τ (Ω)]′×V 2

σ,τ (Ω) ∀ϕ ∈H
1
τ (Ω)

where π ∈ L2(Ω) because of the density of the space
{
v ∈ D(Ω),v · n = 0 on Γ

}
in H1

τ (Ω)
[see Lemma 2.3.7]. The above equivalence follows from (2.11) and integration by parts.

In particular, we obtain that∫
Ω

curl u · curl ϕ = 〈`,ϕ〉[V 2
σ,τ (Ω)]′×V 2

σ,τ (Ω) −
∫
Γ

αuτ ·ϕτ + 2
∫
Γ

Λu ·ϕ. (2.55)

holds for all ϕ ∈ V 2
σ,τ (Ω). Now we are in position to prove that u ∈W 1,p(Ω) and for that

we consider different cases.
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2.5.1. General solution in W 1,p(Ω)

(i) 2 < p ≤ 3 :

1st Step: Since uτ ∈ L4(Γ) and α ∈ L2+ε(Γ), we have αuτ ∈ Lq1(Γ) with 1
q1

= 1
4 + 1

2+ε .
But, Lq1(Γ) ↪→W

− 1
p1
,p1(Γ) with p1 = 3

2q1 > 2 i.e. 1
p1

= 2
3

(
1
4 + 1

2+ε

)
.

Therefore, as W
1
p1
,p′1(Γ) ↪→ Lq

′
1(Γ) with 4

3 < q′1 < 4 and Λu ∈ L4(Γ), the mapping

〈L,ϕ〉 = 〈`,ϕ〉
[V

s′1
σ,τ (Ω)]′×V

s′1
σ,τ (Ω)

−
∫
Γ

αuτ ·ϕτ + 2
∫
Γ

Λu ·ϕ for ϕ ∈ V s′1(Ω) (2.56)

defines an element in the dual space of V s′1(Ω) with s1 = min {p1, p}. Now from the inf-sup
condition (2.51) and using Theorem 2.5.1, there exists a unique v ∈ V s1

σ,τ (Ω) such that

∀ϕ ∈ V s′1(Ω) ,
∫
Ω

curl v · curl ϕ = 〈L,ϕ〉
[V s
′
1 (Ω)]′×V s

′
1 (Ω)

. (2.57)

We will show that curl v = curl u. For that first we extend (2.57) to any test function
ϕ ∈ V s′1

σ,τ (Ω). Since ∇̃qTj ∈ V 2
σ,τ (Ω) ↪→ V

s′1
σ,τ (Ω), using (2.55) we get

〈
L, ∇̃qTj

〉
=
〈
`, ∇̃qTj

〉
−
∫
Γ

αuτ · (∇̃qTj )
τ

+ 2
∫
Γ

Λu · ∇̃qTj

=
∫
Ω

curl u · curl ∇̃qTj = 0.

Hence, for any ϕ ∈ V s′1
σ,τ (Ω), we set ϕ̃ = ϕ− Σ

j
〈ϕ · n, 1〉Σj ∇̃q

T
j which implies

〈L,ϕ〉 = 〈L, ϕ̃〉+ Σ
j
〈ϕ · n, 1〉Σj

〈
L, ∇̃qTj

〉
= 〈L, ϕ̃〉

and also ϕ̃ ∈ V s′1(Ω). Therefore (2.57) yields,∫
Ω

curl v · curl ϕ =
∫
Ω

curl v · curl ϕ̃ = 〈L, ϕ̃〉 = 〈L,ϕ〉 .

So finally, we get that v ∈ V s1
σ,τ (Ω) satisfies

∀ϕ ∈ V s′1
σ,τ (Ω),

∫
Ω

curl v · curl ϕ = 〈L,ϕ〉 . (2.58)

Now as V 2
σ,τ (Ω) ↪→ V

s′1
σ,τ (Ω), we deduce from (2.55) that

∀ϕ ∈ V 2
σ,τ (Ω),

∫
Ω

curl v · curl ϕ =
∫
Ω

curl u · curl ϕ (2.59)
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which gives,

curl u = curl v in Ω. (2.60)

Therefore, as u ∈ L6(Ω) ↪→ Ls1(Ω), curl u ∈ Ls1(Ω), div u = 0 in Ω and u · n = 0 on
Γ; from Proposition 2.3.2, we deduce u ∈ W 1,s1(Ω). If s1 = p, the proof is complete.
Otherwise, s1 = p1 and we proceed to the next step.

2nd Step: Now u ∈W 1,p1(Ω) implies uτ ∈ Lm(Γ) where 1
m

= 3
2p1
− 1

2 (since p1 < 3). Then
αuτ ∈ Lq2(Γ) where 1

q2
= 1

m
+ 1

2+ε . But, Lq2(Γ) ↪→ W
− 1
p2
,p2(Γ) with p2 = 3

2q2 > p1 i.e.
1
p2

= 2
3

(
1
4 + 1

2+ε −
1
2 + 1

2+ε

)
= 2

3

(
2

2+ε −
1
2 + 1

4

)
. So W

1
p2
,p′2(Γ) ↪→ Lq

′
2(Γ) with m′ < q′2 and

Λu ∈ Lm(Γ) and hence the mapping L in (2.56) where now 〈`,ϕ〉 is the duality between
[V s′2

σ,τ (Ω)]′ and V s′2
σ,τ (Ω), defines an element in the dual of V s′2(Ω) with s2 = min {p2, p}.

Therefore, as in the previous step, there exists a unique v ∈ V s2
σ,τ (Ω) such that (2.58) holds

for any ϕ ∈ V s′2
σ,τ (Ω) and then (2.60). Thus we get, u ∈ Lp∗1(Ω) ↪→ Ls2(Ω), curl u ∈

Ls2(Ω), div u = 0 in Ω and u · n = 0 on Γ which gives u ∈ W 1,s2(Ω). If s2 = p, we are
done. Otherwise, s2 = p2 and we proceed next.

(k+1)th Step: Proceeding similarly, we get u ∈ V pk+1
σ,τ (Ω) with 1

pk+1
= 2

3

(
k+1
2+ε −

k
2 + 1

4

)
(where in each step, we assumed that pk < 3) which also satisfies

∀ ϕ ∈ V p′k+1
σ,τ (Ω),

∫
Ω

curl u · curl ϕ = 〈`,ϕ〉 −
∫
Γ

αuτ ·ϕτ + 2
∫
Γ

Λu ·ϕ.

Now choose k = [1
ε
− 1

2 ] + 1 such that pk+1 ≥ 3 ≥ p (where [a] stands for the greatest
integer less than or equal to a). Hence u ∈ W 1,p(Ω). i.e. for 2 < p ≤ 3, there exists
a unique u ∈ V p

σ,τ (Ω) such that for any ϕ ∈ V p′
σ,τ (Ω), we have (2.55) where the duality

bracket 〈`,ϕ〉[V 2
σ,τ (Ω)]′×V 2

σ,τ (Ω) is replaced by 〈`,ϕ〉[V p′σ,τ (Ω)]′×V p
′

σ,τ (Ω).

(ii) p > 3 : From the previous case, we have that u ∈W 1,3(Ω) which implies uτ ∈ Ls(Γ)
for all s ∈ (1,∞). Now α ∈ L 2

3p+ε(Γ) gives αuτ ∈ Lq(Γ) where 1
q

= 1
s

+ 1
2
3p+ε

. Choosing

s > 1 suitably, we can get q = 2
3p and hence Lq(Γ) ↪→W− 1

p
,p(Γ). SinceW

1
p
,p′(Γ) ↪→ Lq

′(Γ)
with s′ < q′ and Λu ∈ Ls(Γ), the mapping L in (2.56) defines an element in the dual of
V p′
σ,τ (Ω). So there exists a unique v ∈ V p

σ,τ (Ω) such that (2.58) holds for any ϕ ∈ V p′
σ,τ (Ω)

and thus (2.60). Therefore we obtain similarly u ∈ W 1,p(Ω). Hence, u ∈ V p
σ,τ (Ω) solves

the problem (2.53) for all 2 ≤ p <∞ .

Finally consider the operator A ∈ L(V p
σ,τ (Ω), (V p′

σ,τ (Ω))′), associated to the bilinear form
a in (2.52), defined as 〈Aξ, ϕ〉 = a(ξ, ϕ) . As proved above, for p ≥ 2, the operator A is an
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isomorphism from V p
σ,τ (Ω) to (V p′

σ,τ (Ω))′. Then the adjoint operator, which is equal to A is
an isomorphism from V p′

σ,τ (Ω) to (V p
σ,τ (Ω))′ for p′ ≤ 2. This means that the operator A is

an isomorphism for p ≤ 2 also, which ends the proof. �

As a consequence, the above theorem yields the next important inf-sup condition.

Proposition 2.5.4. For all p ∈ (1,∞) and α ∈ Lt(p)(Γ), there exists a constant γ =
γ(Ω, p, α) > 0 such that

inf
ϕ∈V p

′
σ,τ (Ω)
ϕ6=0

sup
u∈V pσ,τ (Ω)

u 6=0

2
∫

Ω Du : Dϕ+
∫

Γ αuτ ·ϕτ
‖u‖V pσ,τ (Ω) ‖ϕ‖V p′σ,τ (Ω)

≥ γ. (2.61)

Also for any ` ∈ [V p′
σ,τ (Ω)]′, the unique solution u ∈ V p

σ,τ (Ω) of the variational problem:

∀ ϕ ∈ V p′

σ,τ (Ω), 2
∫
Ω

Du : Dϕ+
∫
Γ

αuτ ·ϕτ = 〈`,ϕ〉

given by Theorem 2.5.3, satisfies the following estimate:

‖u‖W 1,p(Ω) ≤
1
γ
‖`‖[V p

′
σ,τ (Ω)]′ . (2.62)

Remark 2.5.5. The inf-sup condition (2.61) will be improved in Theorem 2.6.14 where
we obtain that the above continuity constant γ does not depend on α.

Proof. Using the equivalence (i) and (ii) in Theorem 2.5.1, we obtain the inf-sup condition
(2.61) from Theorem 2.5.3. The estimate (2.62) follows immediately from (2.61). �

Finally Theorem 2.5.3 enables us to obtain the existence of weak solution for the Stokes
problem for all 1 < p <∞.

Corollary 2.5.6 (Existence in W 1,p(Ω)). Let p ∈ (1,∞) and

f ∈ Lr(p)(Ω),F ∈ Lp(Ω),h ∈W− 1
p
,p(Γ) and α ∈ Lt(p)(Γ).

Then the Stokes problem (S) has a unique weak solution (u, π) ∈W 1,p(Ω)× Lp0(Ω) which
satisfies the estimate:

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ C(Ω, α, p)
(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
. (2.63)

Remark 2.5.7. The existence of u ∈W 1,p(Ω) and corresponding estimate as above can
be deduced directly using the regularity result in [11, Theorem 3.7] taking αuτ as the
source term in the right hand side, but only for p > 2. We need Theorem 2.5.3 to obtain
the existence of solution for p < 2.
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Proof. Let consider

〈`,ϕ〉 =
∫
Ω

f ·ϕ−
∫
Ω

F : ∇ϕ+ 〈h,ϕ〉Γ for all ϕ ∈ V p′

σ,τ (Ω).

Clearly ` ∈ [V p′
σ,τ (Ω)]′. Then Theorem 2.5.3 yields the existence of a unique u ∈ V p

σ,τ (Ω)
which satisfies the variational formulation (2.17).

The estimate (2.63) follows from (2.62) and

‖`‖[V p
′

σ,τ (Ω)]′ ≤ C(Ω)
(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
.

�

Remark 2.5.8. i) All the previous and following results where we have assumed f ∈
Lr(p)(Ω) hold true also for f ∈ [H(r(p))′,p′

0 (div,Ω)]′ which is clear from the characterization
of the space in Proposition 2.3.1.

ii) We also want to emphasize that in this work, our assumption on α is quite steep. We
need this regularity in order to ensure that αuτ ∈W− 1

q
,q(Γ) for some q so that eventually

we can use our tools. But we will see later (Subsection 2.7.4) that we may suppose α less
regular in some cases.

iii) Note that in the case α ≡ 0, we are considering here more general Stokes problem
than in [11]. But all the existence results (and the corresponding estimates) hold for that
as well.

2.5.2 Strong solution in W 2,p(Ω)

Concerning the existence of a strong solution, we prove the following regularity result.

Theorem 2.5.9 (Existence in W 2,p(Ω)). Let p ∈ (1,∞). Then, for

f ∈ Lp(Ω),h ∈W 1− 1
p
,p(Γ) and α ∈ W 1− 1

q
,q(Γ)

with q > 3
2 if p ≤ 3

2 and q = p otherwise, the weak solution (u, π) of the Stokes problem
(S) with F = 0, given by Corollary 2.5.6 belongs to W 2,p(Ω)×W 1,p(Ω) which also satisfies
the estimate:

‖u‖W 2,p(Ω) + ‖π‖W 1,p(Ω) ≤ C(Ω, α, p)
(
‖f‖Lp(Ω) + ‖h‖

W
1− 1

p ,p(Γ)

)
.

Proof. The proof is done essentially using the existence of weak solution and bootstrap
argument. Clearly, the data f ,h and α satisfy the hypothesis of Corollary 2.5.6. Hence
there exists a unique solution (u, π) ∈W 1,p(Ω)× Lp0(Ω) of (S).
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(i) 1 < p ≤ 3
2 : We also have the following embeddings:

Lp(Ω) ↪→ Lr(q)(Ω),W 1− 1
p
,p(Γ) ↪→ W− 1

q
,q(Γ) and W

1− 1
3
2 +ε

, 32 +ε
(Γ) ↪→ L2+ε(Γ) where q =

p∗ i.e. 1
q

= 1
p
− 1

3 with q ∈ (3
2 , 3] which show that (u, π) ∈ W 1,q(Ω) × Lq(Ω) again

using Corollary 2.5.6. Now u ∈ W 1,q(Ω) ↪→ Lq
∗(Ω) and ∇u ∈ Lq(Ω). Also as α ∈

W
1− 1

3
2 +ε

, 32 +ε
(Γ), we can consider α ∈ W 1, 32 +ε(Ω), using the lift operator. Hence from

Sobolev inequality α ∈ L( 3
2 +ε)∗(Ω) and ∇α ∈ L 3

2 +ε(Ω). All these implies, for all i, j =
1, 2, 3,

α
∂ui
∂xj
∈ Lq1(Ω) where 1

q1
= 1

3
2 + ε

− 1
3 + 1

q

and
∂α

∂xj
ui ∈ Lq2(Ω) where 1

q2
= 1

3
2 + ε

+ 1
q∗

.

But q1 = q2 > p and thus ∂
∂xj

(αui) = ∂α
∂xj
ui +α ∂ui

∂xj
∈ Lp(Ω). This implies αu ∈W 1,p(Ω) or

in other words αuτ ∈W 1− 1
p
,p(Γ). Therefore the (general) regularity result as [11, Theorem

4.1] gives (u, π) ∈W 2,p(Ω)×W 1,p(Ω). Note that it is possible to prove the strong existence
result [11, Theorem 4.1] only for C1,1 domain since the problem (S) takes the form of
an uniformly elliptic operator with complementing boundary conditions in the sense of
Agmon-Douglis-Nirenberg [4].

(ii) p > 3
2 : First we assume p < 3. We have u ∈W 2, 32 (Ω) ↪→ Ls(Ω) for all s ∈ (1,∞)

and ∇u ∈W 1, 32 (Ω) ↪→ L3(Ω). Also, since α ∈ W 1− 1
p
,p(Γ), we can consider α ∈ W 1,p(Ω).

Then α ∈ Lp∗(Ω) and ∇α ∈ Lp(Ω). Therefore for all i, j = 1, 2, 3,

∂α

∂xj
ui ∈ Lq2(Ω) where 1

q2
= 1
p

+ 1
s

and
α
∂ui
∂xj
∈ Lq3(Ω) where 1

q3
= 1
p∗

+ 1
3 = 1

p
.

Clearly, q2 < q3 and then ∂
∂xj

(αui) ∈ Lq2(Ω) where q2 ∈ (3
2 , p). That implies αu ∈W 1,q2(Ω)

and hence αuτ ∈ W 1− 1
q2
,q2(Γ). So again by the regularity result, we have u ∈ W 2,q2(Ω)

where q2 ∈ (3
2 , p).

Now u ∈W 2,q2(Ω) ↪→ L∞(Ω) and ∇u ∈W 1,q2(Ω) ↪→ Lq
∗
2 (Ω). So for all i, j = 1, 2, 3,

∂α

∂xj
ui ∈ Lp(Ω) and α

∂ui
∂xj
∈ Lq4(Ω) where 1

q4
= 1
p∗

+ 1
q∗2

= 1
p

+ 1
q2
− 2

3 .

As q4 > p, ∂
∂xj

(αui) ∈ Lp(Ω) which implies αu ∈ W 1,p(Ω) and thus αuτ ∈ W 1− 1
p
,p(Γ).

Therefore the regularity result as [11, Theorem 4.1] gives (u, π) ∈W 2,p(Ω)×W 1,p(Ω).

The case for p ≥ 3 follows exactly in the same way. �
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More generally, we have the following regularity result.

Theorem 2.5.10 (Existence in Wm,p(Ω)). Let m ≥ 3. Assume Ω is of class Cm−1,1 and
p ∈ (1,∞). Moreover, let

f ∈Wm−2,p(Ω), h ∈Wm−1− 1
p
,p(Γ) and α ∈ Wm−1− 1

p
,p(Γ).

Then the weak solution (u, π) of the problem (S) with F = 0, given by Corollary 2.5.6
belongs to Wm,p(Ω)×Wm−1,p(Ω).

Proof. For ease of understanding, here we proof only the case m = 3. For m ≥ 3, the proof
is exactly similar.

First assume p < 3. Also we assume that α ∈ W 2,p(Ω). As W 1,p(Ω) ↪→ Lp
∗(Ω), we

obtain u ∈ W 2,p∗(Ω) from strong regularity result in Theorem 2.5.9. Note that p∗ > 3
2 ,

so u ∈ L∞(Ω). Now ∇α ∈ W 1,p(Ω) gives ∂α
∂xj
ui ∈ W 1,p(Ω). Also as α ∈ W 1,p∗(Ω) and

∇u ∈ W 1,p∗(Ω), we get α ∂ui
∂xj
∈ W 1,p(Ω). Thus ∂

∂xj
(αui) = ∂α

∂xj
ui + α ∂ui

∂xj
∈ W 1,p(Ω)

shows αu ∈ W 2,p(Ω) which implies αuτ ∈ W 2− 1
p
,p(Γ). So from the regularity result as

[11, Theorem 4.1], we deduce (u, π) ∈W 3,p(Ω)×W 2,p(Ω). As we have pointed out in the
last theorem, it is possible to prove the existence result [11, Theorem 4.1] only for C1,1

domain.

For p ≥ 3, the result follows from bootstrap argument. �

2.6 Estimates

2.6.1 First estimates

We can deduce estimates giving precise dependence of the weak solution of (S) on the
friction coefficient α in some particular cases, which is better than (2.63). Note that the
following result is not optimal with respect to α and will be improved in Theorem 2.6.11.

Proposition 2.6.1. Let p > 2. With the same assumptions on f ,F,h and α as in Corol-
lary 2.5.6, the weak solution (u, π) ∈W 1,p(Ω)×Lp0(Ω) of problem (S) satisfies the following
bounds:
a) if Ω is not axisymmetric, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ C(Ω, p)
(
1 + ‖α‖2

Lt(p)(Γ)

) (
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
.

(2.64)

b) if Ω is axisymmetric and
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(i) α ≥ α∗ > 0 on Γ, then

‖u‖W 1,p(Ω)+‖π‖Lp(Ω) ≤
C(Ω, p)

min{2, α∗}
(
1 + ‖α‖2

Lt(p)(Γ)

) (
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
.

(ii) f ,F and h satisfy the condition:∫
Ω

f · β −
∫
Ω

F : ∇β + 〈h,β〉Γ = 0

then,

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ C(Ω, p)
(
1 + ‖α‖2

Lt(p)(Γ)

)(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
.

Proof. We only prove (2.64) since the other inequalities follow in the same way. Assume
that Ω is not axisymmetric.
(i) 2 < p < 3: As in Lemma 2.3.8, αuτ ∈ Lq(Γ) with 1

q
= 3

2p −
1
2 + 1

2+ε <
3
2p and

Lq(Γ) ↪→W− 1
p
,p(Γ). Therefore, αuτ ∈W− 1

p
,p(Γ). But from the relation,

Lq(Γ) ↪→
compact

W− 1
p
,p(Γ) ↪→

continuous
H−

1
2 (Γ)

we have for any δ > 0, there exists a constant C(δ) with C(δ)→∞ as δ → 0 such that

‖v‖
W
− 1
p ,p(Γ)

≤ δ ‖v‖Lq(Γ) + C(δ) ‖v‖
H−

1
2 (Γ)

∀ v ∈ Lq(Γ). (2.65)

Choosing v = αuτ in (2.65) and using Hölder inequality and trace theorem, we get

‖αuτ‖
W
− 1
p ,p(Γ)

≤ δ ‖αuτ‖Lq(Ω) + C(δ) ‖αuτ‖L4/3(Γ)

≤ δ ‖α‖L2+ε(Γ)‖u‖W 1,p(Ω) + C(δ) ‖α‖L2(Γ)‖u‖H1(Ω).

Now the generalized regularity result as [11, Corollary 3.8] yields

‖u‖W 1,p(Ω) + ‖π‖Lp0(Ω)

≤ C
(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

+ ‖αuτ‖
W
− 1
p ,p(Γ)

)
≤ C

(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
+ δ‖α‖L2+ε(Γ)‖u‖W 1,p(Ω)

+ C(δ)‖α‖L2(Γ)‖u‖H1(Ω).

Choosing δ > 0 such that 1− δC‖α‖L2+ε(Γ) = 1
2 , we obtain

‖u‖W 1,p(Ω) + ‖π‖Lp0(Ω)
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≤ C
(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
+ C ‖α‖L2(Γ)‖α‖L2+ε(Γ)‖u‖H1(Ω)

≤ C(1 + ‖α‖2
L(2+ε)(Γ))

(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
.

(ii) p ≥ 3: The analysis is exactly similar to the previous case. �

Remark 2.6.2. We can also extend the above estimates of Proposition 2.6.1 for p < 2 by
duality argument in the same way as in Proposition 2.6.10 and Proposition 2.6.12.

2.6.2 Second estimates

In this subsection we prove one of the main result of this chapter. We improve the estimates
in Proposition 2.6.1 with respect to α and for all p ∈ (1,∞).

First we discuss the estimate for p > 2 with f = 0 and h = 0, similar to (2.31) or
(2.32).

Theorem 2.6.3 (Estimates in W 1,p(Ω), p > 2 for RHS F). Let p > 2, F ∈ Lp(Ω)
and α ∈ Lt(p)(Γ). Then the weak solution u ∈ W 1,p(Ω) of (S) with f = 0 and h = 0
satisfies the following estimates:
(i) if Ω is not axisymmetric, then

‖u‖W 1,p(Ω) ≤ Cp(Ω) ‖F‖Lp(Ω) (2.66)

(ii) if Ω is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(Ω) ≤ Cp(Ω, α∗) ‖F‖Lp(Ω). (2.67)

The proof of the above theorem uses the weak Reverse Hölder inequality and is similar
to the result done for the Laplace-Robin problem in [10]. Since Ω is C1,1, there exists some
r0 > 0 such that for any x0 ∈ Γ, there exists a coordinate system (x′, x3) which is isometric
to the usual coordinate system and a C1,1 function ψ : R2 → R so that

B(x0, r0) ∩ Ω = {(x′, x3) ∈ B(x0, r0) : x3 > ψ(x′)}

and
B(x0, r0) ∩ Γ = {(x′, x3) ∈ B(x0, r0) : x3 = ψ(x′)} .

In some places, we may write B instead of B(x0, r) where there is no ambiguity and
aB := B(x0, ar) for a > 0. Also for any integrable function f on a domain ω, we use the
usual notation to denote the average of it by

−
∫
ω

f = 1
|ω|

∫
ω

f.
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We require some further results to complete the proof of Theorem 2.6.3. The following
lemma is proved in [55, Lemma 0.5].

Lemma 2.6.4. Let f, g, h be non-negative functions in L1(Q0) where Q0 is a cube in Rn,
QR(x0) is a cube centered at x0 with sides 2R and let β ∈ R+. There exists δ0 such that if
for some δ ≤ δ0, the following inequality

∫
QR(x0)

f ≤ C(δ)

R−β ∫
Q2R(x0)

g +
∫

Q2R(x0)

h

+ δ
∫

Q2R(x0)

f

holds for all x0 ∈ Q0 and R < 1
2d(x0, ∂Q0), then there exists a constant C > 0 such that

∫
QR(x0)

f ≤ C

R−β ∫
Q2R(x0)

g +
∫

Q2R(x0)

h


for all x0 ∈ Q0 and all R < 1

2d(x0, ∂Q0).

Next we deduce the Caccioppoli inequality for Stokes problem, up to the boundary.

Lemma 2.6.5 (Caccioppoli inequality). Let (u, π) ∈ V 2
σ,τ (Ω)×L2(Ω) be a weak solution

of the problem

2
∫
Ω

Du : Dϕ+
∫
Γ

αuτ ·ϕτ −
∫
Ω

π div ϕ = −
∫
Ω

F : ∇ϕ ∀ϕ ∈H1
τ (Ω). (2.68)

Then there exists a constant C > 0, independent of α such that for all x0 ∈ Ω and
0 < r < r0

2 , we have

∫
B∩Ω

|∇u|2 ≤ C

 1
r2

∫
2B∩Ω

|u|2 +
∫

2B∩Ω

|F|2
 . (2.69)

Proof. We will use the identity several times that for any ’smooth enough’ v and any
symmetric matrix M,

∫
ω Dv : M =

∫
ω∇v : M. In particular, for any ’smooth enough’ v,ϕ,∫

ω

Dv : Dϕ =
∫
ω

∇v : Dϕ.

i) Pressure estimate: Let π0 = −
∫

2B∩Ω π. From [55, 1. Corollary 1.6, Part II], we get

‖π − π0‖L2(2B∩Ω) ≤ C‖∇(π − π0)‖H−1
0 (2B∩Ω) = C‖v‖H1

0 (2B∩Ω)
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where v ∈H1
0 (2B ∩ Ω) is the weak solution of∫

2B∩Ω

∇v : ∇ϕ =
∫

2B∩Ω

(π − π0)div ϕ ∀ϕ ∈H1
0 (2B ∩ Ω).

Note that the above constant C depends only on Ω, not on r (cf. [55, comment before
Remark 1.7, Part II]). But from (2.68), we obtain (extending ϕ by 0 outside 2B ∩ Ω, we
may consider ϕ ∈H1

0 (Ω) and replacing π by π − π0 since π − π0 also satisfies (S))∫
2B∩Ω

∇v : ∇ϕ = 2
∫
Ω

Du : Dϕ+
∫
Γ

αuτ ·ϕτ +
∫
Ω

F : ∇ϕ ∀ϕ ∈H1
0 (2B ∩ Ω).

Now putting ϕ = v yields

‖π − π0‖L2(2B∩Ω) ≤ C(Ω)
(
‖∇u‖L2(2B∩Ω) + ‖F‖L2(2B∩Ω)

)
. (2.70)

ii) Caccioppoli inequality: Consider a cut-off unction η ∈ C∞c (2B) such that

0 ≤ η ≤ 1, η ≡ 1 on B and |∇η| ≤ C

r
in 2B. (2.71)

Now choosing ϕ = η2u in (2.68), we have,

2
∫

2B∩Ω

Du : D(η2u) +
∫

2B∩Γ

αη2|uτ |2 −
∫

2B∩Ω

(π − π0) div(η2u) = −
∫

2B∩Ω

F : ∇(η2u)

which gives, using the fact that div u = 0 in Ω,

2
∫

2B∩Ω

η2|Du|2 +
∫

2B∩Γ

αη2|uτ |2

=− 4
∫

2B∩Ω

Du : η∇ηu+ 2
∫

2B∩Ω

(π − π0)η∇ηu−
∫

2B∩Ω

F : η2∇u− 2
∫

2B∩Ω

F : η∇ηu

where ∇ηu is the matrix ∇η ⊗ u. Next using Young’s inequality on the RHS yields,

2
∫

2B∩Ω

η2|Du|2 +
∫

2B∩Γ

αη2|uτ |2

≤ ε
∫

2B∩Ω

η2|Du|2 + Cε

∫
2B∩Ω

|u|2|∇η|2 + ε
∫

2B∩Ω

η2|π − π0|2 + Cε

∫
2B∩Ω

|∇η|2|u|2

+ ε
∫

2B∩Ω

η2|∇u|2 + Cε

∫
2B∩Ω

η2|F|2 + ε
∫

2B∩Ω

η2|F|2 + Cε

∫
2B∩Ω

|∇η|2|u|2.

Upon choosing ε > 0 suitably and using the properties (2.71) and that α ≥ 0, we get then∫
B∩Ω

|Du|2 ≤ C

r2

∫
2B∩Ω

|u|2 + ε
∫

2B∩Ω

|π − π0|2 + ε
∫

2B∩Ω

|∇u|2 + C
∫

2B∩Ω

|F|2
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where the constant C > 0 is independent of α. Now plugging the pressure estimate (2.70)
gives, ∫

B∩Ω

|Du|2 ≤ C

r2

∫
2B∩Ω

|u|2 + ε
∫

2B∩Ω

|∇u|2 + C
∫

2B∩Ω

|F|2.

Next adding the term
∫
B∩Ω |u|2 in both sides, choosing r ≤ 1 (as Ω is bounded, we can do

so) hence 1
r
≥ 1 and using Korn inequality, we obtain

∫
B∩Ω

|∇u|2 ≤ ‖u‖2
H1(B∩Ω) ≤ C(Ω)

 1
r2

∫
2B∩Ω

|u|2 +
∫

2B∩Ω

|F|2
+ ε

∫
2B∩Ω

|∇u|2.

Therefore, using Lemma 2.6.4 with β = 2, we achieve the desired inequality (2.69). �

We state the following boundary Hölder estimate:

Proposition 2.6.6. Let p > 1 and γ ∈ (0, 1). Suppose that−∆v +∇z = 0, div v = 0 in B(x0, r) ∩ Ω
v · n = 0, αvτ + 2[(Dv)n]τ = 0 on B(x0, r) ∩ Γ

for some x0 ∈ Γ and 0 < r < r0, Then for any x, y ∈ B(x0, r/2) ∩ Ω,

|v(x)− v(y)| ≤ C

(
|x− y|
r

)γ  ∫
B(x0,r)∩Ω

|v|2


1/2

(2.72)

where C > 0 depends only on Ω, but independent of α.

Proof. It can be shown in the exact same way as done in [55, Theorem 2.8 (a), Part II],
since we have the corresponding Caccioppoli inequality (2.69) as in [55, Theorem 2.2, Part
II]. �

Lemma 2.6.7 (weak reverse Hölder inequality). Let p ≥ 2. Then for any B(x0, r)
with the property that 0 < r < r0

8 and either B(x0, 2r) ⊂ Ω or x0 ∈ Γ, the following weak
Reverse Hölder inequality holds:
(i) if B(x0, 2r) ⊂ Ω,

 ∫
B(x0,r)

|∇u|p


1/p

≤ C

 ∫
B(x0,2r)

|∇u|2


1/2

(2.73)
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whenever v ∈ H1(B(x, 2r)) satisfies Lv = 0 in B(x, 2r).
(ii) if x ∈ Γ,  ∫

B(x0,r)∩Ω

|∇u|p


1/p

≤ C

 ∫
B(x0,2r)∩Ω

|∇u|2 + |u|2


1/2

(2.74)

whenever u ∈H1(B(x0, 2r) ∩ Ω) satisfies−∆u+∇π = 0, div u = 0 in B(x0, 2r) ∩ Ω
u · n = 0, αuτ + 2[(Du)n]τ = 0 on B(x0, 2r) ∩ Γ (if x0 ∈ Γ).

The constant C > 0 at most depends on Ω and p.

Proof. case(i) : B(x0, 2r) ⊂ Ω.
The weak reverse Hölder inequality (2.73) holds for any p ≥ 2, by the following interior
estimates for Stokes operator [65, Theorem 2.7 (a)]:

sup
B(x0,r)

|∇u| ≤ C

 ∫
B(x0,2r)

|∇u|2


1/2

.

case(ii) : x0 ∈ Γ.
From the interior gradient estimate for Stokes problem, we can write (eg. see [65, Theorem
2.7, (3)])

|∇u(x)| ≤ C

δ(x)

 ∫
B(x,cδ(x))

|u|2


1/2

.

Now for fixed y ∈ B(x, 2cδ(x)), let v(x) = u(x)− u(y). Then −∆v +∇z = 0, div v = 0
in B(x, 2cδ(x)) and thus we may write from the above argument,

|∇v(x)| ≤ C

δ(x)

 ∫
B(x,cδ(x))

|v|2


1/2

which gives, along with the boundary Hölder estimate (2.72),

|∇u(x)| ≤ C

δ(x)

 ∫
B(x,cδ(x))

|u(z)− u(y)|2dz


1/2

= C

δ(x)1+ 3
2

 ∫
B(x,cδ(x))

|u(z)− u(y)|2dz


1/2
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≤ C

δ(x)1+ 3
2

 ∫
B(x,2cδ(x))

(
|z − y|
r

)2γ
 ∫
B(x0,2r)∩Ω

|u|2
 dz


1/2

≤ C

δ(x)1+ 3
2

 ∫
B(x0,2r)∩Ω

|u|2


1/2
1
rγ

 ∫
B(x,2cδ(x))

|z − y|2γdz


1/2

≤ Cγ

(δ(x))1+ 3
2

 ∫
B(x0,2r)∩Ω

|u|2


1/2
1
rγ

(δ(x))γ+ 3
2

= Cγ
(δ(x))γ−1

rγ
r−3/2

 ∫
B(x0,2r)∩Ω

|u|2


1/2

≤ Cγ
(δ(x))γ−1

rγ
r1−3/2

 ∫
B(x0,2r)∩Ω

|u|6


1/6

≤ Cγ

(
r

δ(x)

)1−γ
 ∫
B(x0,2r)∩Ω

|∇u|2 + |u|2


1/2

.

Since γ ∈ (0, 1) is arbitrary, we thus have,

|∇u(x)| ≤ Cγ

(
r

δ(x)

)γ  ∫
B(x0,2r)∩Ω

|∇u|2 + |u|2


1/2

.

Finally it yields choosing γ so that pγ < 1, ∫
B(x0,r)∩Ω

|∇u|p


1/p

≤ Cp

 ∫
B(x0,2r)∩Ω

|∇u|2 + |u|2


1/2

.

This completes the proof. �

With the following abstract lemma which is proved in [51, Theorem 2.2], we are now
in a position to prove Theorem 2.6.3.

Lemma 2.6.8. Let Ω be a bounded Lipschitz domain in R3 and p > 2. Let G ∈ L2(Ω)
and f ∈ Lq(Ω) for some 2 < q < p. Suppose that for each ball B with the property that
|B| ≤ β|Ω| and either 2B ⊂ Ω or B centers on Γ, there exist two integrable functions GB

and RB on 2B ∩ Ω such that |G| ≤ |GB|+ |RB| on 2B ∩ Ω and ∫
2B∩Ω

|RB|p
1/p

≤ C1


 ∫
γB∩Ω

|G|2


1/2

+ sup
B⊂B′

 ∫
B′∩Ω

|f |2
1/2

 (2.75)
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and  ∫
2B∩Ω

|GB|2
1/2

≤ C2 sup
B⊂B′

 ∫
B′∩Ω

|f |2
1/2

(2.76)

where C1, C2 > 0 and 0 < β < 1 < γ. Then we have,
 −∫

Ω

|G|q
1/q

≤ C


 −∫

Ω

|G|2
1/2

+
 −∫

Ω

|f |q
1/q

 (2.77)

where C > 0 depends only on C1, C2, n, p, q, β, γ and Ω.

Proof of Theorem 2.6.3. Given any ball B with either 2B ⊂ Ω or B centers on Γ, let
ϕ ∈ C∞c (8B) is a cut-off function such that 0 ≤ ϕ ≤ 1 and

ϕ =

 1 on 4B
0 outside 8B

and we decompose (u, π) = (v, π1) + (w, π2) where (v, π1), (w, π2) satisfy −∆v +∇π1 = div (ϕF), div v = 0 in Ω
v · n = 0, 2 [(Dv)n]τ + αvτ = −[(ϕF)n]τ on Γ

(2.78)

and  −∆w +∇π2 = div ((1− ϕ)F), div w = 0 in Ω
w · n = 0, 2 [(Dw)n]τ + αwτ = −[((1− ϕ)F)n]τ on Γ.

(2.79)

Multiplying (2.78) by v and integrating by parts, we get,∫
Ω

|∇v|2 +
∫
Γ

α|vτ |2 = −
∫
Ω

ϕF : ∇v

which gives

‖∇v‖L2(Ω) ≤ ‖ϕF‖L2(Ω). (2.80)

(i) First we consider the case 4B ⊂ Ω. We want to apply Lemma 2.6.8 with G =
|∇u|, GB = |∇v| and RB = |∇w|. It is easy to see that

|G| ≤ |GB|+ |RB|.
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Now we verify (2.75) and (2.76). For that, using (2.80) we get,

1
|2B|

∫
2B

|GB|2 = 1
|2B|

∫
2B

|∇v|2 ≤ 1
|2B ∩ Ω|

∫
Ω

|∇v|2 ≤ 1
|2B ∩ Ω|

∫
Ω

|ϕF|2

≤ C(Ω)
|8B ∩ Ω|

∫
8B∩Ω

|F|2

where in the last inequality, we used that |8B ∩ Ω| ≤ |Ω|. This gives the estimate (2.76).

Next, from (2.79), we observe that −∆w +∇π2 = 0, div w = 0 in 4B. Hence, by the
weak reverse Hölder inequality in Lemma 2.6.7 (using 2B instead of B), we have

 −∫
2B

|∇w|p
1/p

≤ Cp(Ω)
 −∫

4B

|∇w|2
1/2

which implies together with (2.80),
 −∫

2B

|RB|p
1/p

≤ Cp(Ω)
 −∫

4B

|∇w|2
1/2

≤ Cp(Ω)


 −∫

4B

|∇u|2
1/2

+
 −∫

4B

|∇v|2
1/2


≤ Cp(Ω)

 −∫
4B

|G|2
1/2

+
 ∫

8B∩Ω

|F|2
1/2

.

This gives (2.75). So from (2.77), it follows that
 −∫

Ω

|∇u|q
1/q

≤ Cp(Ω)


 −∫

Ω

|∇u|2
1/2

+
 −∫

Ω

|F|q
1/q


for any 2 < q < p where Cp(Ω) > 0 does not depend on α.

Because of the self-improving property of the weak Reverse Hölder condition (2.73),
the above estimate holds for any q ∈ (2, p̃) for some p̃ > p also and in particular, for q = p,
which along with the L2-estimate (2.31) implies (2.66).

(ii) Next consider B centers on Γ. We apply again Lemma 2.6.8 with G = |∇u|, GB =
|∇v| and RB = |∇w|, which yields |G| ≤ |GB| + |RB| and (2.76) as before. Also now w

satisfies the problem −∆w +∇π2 = 0, div w = 0 in 4B ∩ Ω
w · n = 0, αwτ + 2[(Dw)n]τ = 0 on 4B ∩ Γ.
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So by the weak reverse Hölder inequality in Lemma 2.6.7 and the estimate (2.80), we obtain
(2.75) as in the previous case. Thus (2.77) yields,

 −∫
Ω

|∇u|q
1/q

≤ Cp(Ω)


 −∫

Ω

|∇u|2
1/2

+
 −∫

Ω

|F|q
1/q


for any 2 < q < p. This completes the proof together with the L2-estimate (2.32). �

The next proposition will be used to study the complete Stokes problem (S). We will
improve the following result in Proposition 2.6.12 where we consider data less regular.

Proposition 2.6.9 (Estimates in W 1,p(Ω), p > 2 for RHS f). Let p > 2, f ∈ Lp(Ω)
and α ∈ Lt(p)(Γ). Then the unique weak solution (u, π) ∈ W 1,p(Ω) × Lp0(Ω) of (S) with
F = 0 and h = 0, satisfies the following estimates:
(i) if Ω is not axisymmetric, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω) ‖f‖Lp(Ω) (2.81)

(ii) if Ω is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω, α∗) ‖f‖Lp(Ω). (2.82)

Proof. The result follows using the same argument as in Theorem 2.6.3 and hence we do
not repeat it. Note that as π ∈ Lp0(Ω),

‖π‖Lp(Ω) ≤ C‖∇π‖W−1,p(Ω) ≤ C
(
‖u‖W 1,p(Ω) + ‖f‖W−1,p(Ω)

)
≤ C‖f‖Lp(Ω). (2.83)

�

Proposition 2.6.10 (Estimates in W 1,p(Ω) for RHS F). Let p ∈ (1,∞), F ∈ Lp(Ω)
and α ∈ Lt(p)(Γ). Then the weak solution (u, π) ∈W 1,p(Ω)×Lp0(Ω) of (S) with f = 0 and
h = 0 satisfies the following estimates:
(i) if Ω is not axisymmetric, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω) ‖F‖Lp(Ω) (2.84)

(ii) if Ω is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω, α∗) ‖F‖Lp(Ω). (2.85)
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Proof. For p > 2, the estimates (2.84) and (2.85) are proved in Theorem 2.6.3. Now
suppose that 1 < p < 2. We prove it in two steps. Also without loss of generality, we
consider Ω is not axisymmetric.

(i) We first show that

‖∇u‖Lp(Ω) ≤ Cp(Ω)‖F‖Lp(Ω). (2.86)

For that, we write

‖∇u‖Lp(Ω) = sup
06=G∈Lp′ (Ω)

|
∫

Ω∇u : G|
‖G‖Lp′ (Ω)

. (2.87)

Now, for any matrix G ∈ (D(Ω))3×3, let (v, π̃) ∈W 1,p′(Ω)× Lp
′

0 (Ω) be the solution of−∆v +∇π̃ = div G, div v = 0 in Ω
v · n = 0, [(2Dv + G)n]τ + αvτ = 0 on Γ.

Since p′ > 2, from Theorem 2.6.3, we have

‖v‖W 1,p′ (Ω) ≤ Cp(Ω)‖G‖Lp′ (Ω).

Also if u ∈W 1,p(Ω) is the solution of (S) with f = 0,h = 0, using the weak formulation
of the problems satisfied by u and v, we obtain

−
∫
Ω

F : ∇v = 2
∫
Ω

Du : Dv +
∫
Γ

αuτ · vτ = −
∫
Ω

G : ∇u

which gives,

|
∫
Ω

G : ∇u| ≤ ‖F‖Lp(Ω)‖∇v‖Lp′ (Ω) ≤ Cp(Ω)‖F‖Lp(Ω)‖G‖Lp′ (Ω)

and hence (2.86) follows from (2.87).

(ii) Next we prove that

‖u‖Lp(Ω) ≤ Cp(Ω)‖F‖Lp(Ω). (2.88)

For that, we write similarly

‖u‖Lp(Ω) = sup
06=ϕ∈Lp′ (Ω)

|
∫

Ω u ·ϕ|
‖ϕ‖Lp′ (Ω)

. (2.89)
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From Proposition 2.6.9, we get for any ϕ ∈ Lp′(Ω), the unique solution (w, π̃) ∈W 1,p′(Ω)×
Lp
′

0 (Ω) of the problem−∆w +∇π̃ = ϕ, div w = 0 in Ω
w · n = 0, 2 [(Dw)n]τ + αwτ = 0 on Γ

(2.90)

satisfies

‖w‖W 1,p′ (Ω) ≤ Cp(Ω) ‖ϕ‖Lp′ (Ω). (2.91)

Therefore using the weak formulation of the problems satisfied by u and w, we get,∫
Ω

u ·ϕ =
∫
Ω

u · (−∆w +∇π̃) = 2
∫
Ω

Du : Dw − 2
∫
Γ

u · (Dw)n

= 2
∫
Ω

Du : Dw +
∫
Γ

αuτ ·wτ = −
∫
Ω

F : ∇w

which implies (2.88) from the relation (2.89), along with (2.91).

The bound on pressure follows as in the previous proposition. This completes proof. �

Now we study the complete problem (S).

Theorem 2.6.11 (Complete estimates in W 1,p(Ω)). Let p ∈ (1,∞) and

f ∈ Lr(p)(Ω),F ∈ Lp(Ω),h ∈W− 1
p
,p(Γ), α ∈ Lt(p)(Γ).

Then the weak solution (u, π) ∈W 1,p(Ω)× Lp0(Ω) of (S) satisfies the following estimates:
(i) if Ω is not axisymmetric, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω)
(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
(2.92)

(ii) if Ω is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω, α∗)
(
‖f‖Lr(p)(Ω) + ‖F‖Lp(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
. (2.93)

To prove the above theorem, we also need the following proposition:

Proposition 2.6.12 (Estimates in W 1,p(Ω) with RHS f and h). Let p ∈ (1,∞) and

f ∈ Lr(p)(Ω),h ∈W− 1
p
,p(Γ), α ∈ Lt(p)(Γ).
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Then the weak solution (u, π) ∈W 1,p(Ω)×Lp0(Ω) of (S) with F = 0 satisfies the following
estimates:
(i) if Ω is not axisymmetric, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω)
(
‖f‖Lr(p)(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
(2.94)

(ii) if Ω is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω) ≤ Cp(Ω, α∗)
(
‖f‖Lr(p)(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
. (2.95)

Proof. Without loss of generality, we only consider the case Ω is not axisymmetric. The
proof is similar to that of Proposition 2.6.9 with obvious modification.
(i) To show

‖∇u‖Lp(Ω) ≤ Cp(Ω)
(
‖f‖Lr(p)(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
(2.96)

we write

‖∇u‖Lp(Ω) = sup
0 6=G∈Lp′ (Ω)

|
∫

Ω∇u : G|
‖G‖Lp′ (Ω)

. (2.97)

For any matrix G ∈ (D(Ω))3×3, let (v, π̃) ∈W 1,p′(Ω)× Lp
′

0 (Ω) be the solution of−∆v +∇π̃ = div G, div v = 0 in Ω
v · n = 0, [(2Dv + G)n]τ + αvτ = 0 on Γ.

which satisfies estimate (by Proposition 2.6.10)

‖v‖W 1,p′ (Ω) ≤ Cp(Ω)‖G‖Lp′ (Ω).

Also, if (u, π) ∈W 1,p(Ω)×Lp0(Ω) is a solution of (S) with F = 0, from the weak formulation
of the problems satisfied by u and v, we get

−
∫
Ω

G : ∇u = 2
∫
Ω

Du : Dv +
∫
Γ

αuτ · vτ =
∫
Ω

f · v + 〈h,v〉Γ .

This implies, together with the embedding W 1,p′(Ω) ↪→ L(r(p))′(Ω) for all p ∈ (1,∞)
(follows from the definition of r(p)),

|
∫
Ω

G : ∇u| ≤ ‖f‖Lr(p)(Ω)‖v‖L(r(p))′ (Ω) + ‖h‖
W
− 1
p ,p(Γ)

‖v‖
W

1
p ,p
′
(Γ)

≤ Cp(Ω)
(
‖f‖Lr(p)(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
‖v‖W 1,p′ (Ω).
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Therefore, (2.96) follows from (2.97).

(ii) Next we prove the following bound as done in (2.88):

‖u‖Lp(Ω) ≤ Cp(Ω)
(
‖f‖Lr(p)(Ω) + ‖h‖

W
− 1
p ,p(Γ)

)
(2.98)

except that we do not need to assume p < 2 here as in (2.88). Having

‖u‖Lp(Ω) = sup
06=ϕ∈Lp′ (Ω)

|
∫

Ω u ·ϕ|
‖ϕ‖Lp′ (Ω)

, (2.99)

there exists a unique (w, π̃) ∈W 1,p′(Ω)×Lp
′

0 (Ω) of the problem (2.90) for any ϕ ∈ Lp′(Ω)
satisfying the estimate (2.91) (For p < 2, the estimate (2.91) can be proved by the exact
same argument as in Proposition 2.6.10). Thus we can write,∫

Ω

u ·ϕ =
∫
Ω

u · (−∆w +∇π̃) = 2
∫
Ω

Du : Dw +
∫
Γ

αuτ ·wτ =
∫
Ω

f ·w + 〈h,w〉Γ

which yields (2.98) as before. For the pressure estimate, we proceed as in (2.83). �

Proof of Theorem 2.6.11. Let u1 ∈W 1,p(Ω) be the weak solution of−∆u1 +∇π1 = divF, div u1 = 0 in Ω
u1 · n = 0, [(2Du1 + F)n]τ + αu1τ = 0 on Γ.

given by Proposition 2.6.10 and u2 ∈W 1,p(Ω) be the weak solution of−∆u2 +∇π2 = f , div u2 = 0 in Ω
u2 · n = 0, 2 [(Du2)n]τ + αu2τ = h on Γ.

given by Proposition 2.6.12. Then (u, π) = (u1, π1) + (u2, π2) and is the solution of the
problem (S) which also satisfies the estimate (2.92) and (2.93). �

Remark 2.6.13. Note that it is also possible to deduce uniform estimate (2.92) in the
case when Ω is axisymmetric, α is a constant with no strict positive lower bound α∗ and
the condition (2.33) is satisfied. Indeed, we may use the L2 estimate (2.35) in (??) and
carry forward all consequent results.

In the next result, we improve the dependence of the continuity constant γ of the inf-sup
condition (2.61) on the parameters and show that it is actually independent of α.
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Theorem 2.6.14. Let p ∈ (1,∞) and α ∈ Lt(p)(Γ). We have the following inf-sup condi-
tion:

inf
u∈V pσ,τ (Ω)

u6=0

sup
ϕ∈V p

′
σ,τ (Ω)
ϕ6=0

|2
∫

Ω Du : Dϕ+
∫

Γ αuτ ·ϕτ |
‖u‖V pσ,τ (Ω) ‖ϕ‖V p′σ,τ (Ω)

≥ γ(Ω, p) (2.100)

when either (i) Ω is not axisymmetric or (ii) Ω is axisymmetric and α ≥ α∗ > 0.

Proof. It follows the same proof as in Proposition 2.6.12. Indeed, let u ∈ V p
σ,τ (Ω) and

u 6= 0. Then by Korn inequality, ‖u‖W 1,p(Ω) ' ‖u‖Lp(Ω) + ‖Du‖Lp(Ω).

1. We first write

‖Du‖Lp(Ω) = sup
06=G∈Lp′ (Ω)

|
∫

Ω Du : G|
‖G‖Lp′ (Ω)

= sup
06=G∈Lp

′
s (Ω)

|
∫

Ω Du : G|
‖G‖Lp′ (Ω)

(2.101)

where Lp′s (Ω) is the space of all symmetric matrices in Lp′(Ω). For the last equality, note
that, for any matrix G, it can be decomposed as G = 1

2(G + GT ) + 1
2(G − GT ) and

Du : (G − GT ) = 0. Therefore, denoting K = 1
2(G + GT ), we have K ∈ Lp′s (Ω) and

‖K‖Lp′ (Ω) ≤ 2‖G‖Lp′ (Ω) which shows that

sup
06=G∈Lp′ (Ω)

|
∫

Ω Du : G|
‖G‖Lp′ (Ω)

≤ sup
06=K∈Lp

′
s (Ω)

|
∫

Ω Du : K|
‖K‖Lp′ (Ω)

.

And the reverse inequality in the above relation is obvious.

Now for any G ∈ Lp′s (Ω), let (ϕ, π̃) ∈W 1,p′(Ω)× Lp
′

0 (Ω) be the unique solution of−∆ϕ+∇π̃ = div G, div ϕ = 0 in Ω
ϕ · n = 0, [(2Dϕ+ G)n]τ + αϕτ = 0 on Γ.

(2.102)

Since we have either (i) Ω is not axisymmetric or (ii) Ω is axisymmetric and α ≥ α∗ > 0,
the solution also satisfies estimate (by Proposition 2.6.10),

‖ϕ‖W 1,p′ (Ω) ≤ Cp(Ω)‖G‖Lp′ (Ω). (2.103)

Also taking u as a test function in the weak formulation of (2.102), we obtain

2
∫
Ω

Dϕ : Du+
∫
Γ

αϕτ · uτ = −
∫
Ω

G : ∇u = −
∫
Ω

G : Du (2.104)

where in the last equality, we used G is symmetric. Thus, from (2.101), combining (2.103)
and (2.104), we get

‖Du‖Lp(Ω) ≤ Cp(Ω) sup
ϕ∈V p

′
σ,τ (Ω)
ϕ6=0

|2
∫

Ω Du : Dϕ+
∫

Γ αuτ ·ϕτ |
‖ϕ‖W 1,p′ (Ω)

.
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2. Similarly as in (2.88), to show

‖u‖Lp(Ω) ≤ Cp(Ω) sup
ϕ∈V p

′
σ,τ (Ω)
ϕ6=0

|2
∫

Ω Du : Dϕ+
∫

Γ αuτ ·ϕτ |
‖ϕ‖W 1,p′ (Ω)

(2.105)

we write

‖u‖Lp(Ω) = sup
06=w∈Lp′ (Ω)

|
∫

Ω u ·w|
‖w‖Lp′ (Ω)

. (2.106)

So for any w ∈ Lp′(Ω), the unique solution (ϕ, π̃) ∈ W 1,p′(Ω) × Lp
′

0 (Ω) of the Stokes
problem −∆ϕ+∇π̃ = w, div ϕ = 0 in Ω

ϕ · n = 0, 2 [(Dϕ)n]τ + αϕτ = 0 on Γ
(2.107)

satisfies (by Proposition 2.6.9)

‖ϕ‖W 1,p′ (Ω) ≤ Cp(Ω) ‖w‖Lp′ (Ω). (2.108)

Therefore taking u as a test function in the weak formulation of (2.107), we get,

2
∫
Ω

Dϕ : Du+
∫
Γ

αϕτ · uτ =
∫
Ω

u ·w

which yields (2.105) from (2.106) together with (2.108).

Hence, the constant γ(Ω, p) is simply the inverse of Cp(Ω). �

Theorem 2.6.15. Let p > 2, α be a constant and f ∈ Lp(Ω). Then the solution (u, π) ∈
W 2,p(Ω)×W 1,p(Ω) of (S) with F = 0 and h = 0 satisfies the following estimates:
(i) if Ω is not axisymmetric, then

‖u‖W 2,p(Ω) + ‖π‖W 1,p(Ω) ≤ Cp(Ω) ‖f‖Lp(Ω) (2.109)

(ii) if Ω is axisymmetric and α ≥ α∗ > 0, then

‖u‖W 2,p(Ω) + ‖π‖W 1,p(Ω) ≤ Cp(Ω, α∗) ‖f‖Lp(Ω). (2.110)

Remark 2.6.16. If we consider the operator of the form div(A(x)∇)u instead of ∆u in
the first equation of the system (S) and continue all the corresponding estimates, we may
obtain the above W 2,p-estimate for all p ∈ (1,∞) as done in Theorem 4.3.1.

Proof. The proof follows combining the H2-estimate and the W 1,p-estimate proved in
Theorem 2.4.5 and Theorem 2.6.11 respectively. �
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2.7. Limiting cases

2.7 Limiting cases

Our objective in this section is to study the limiting behaviour of the solution of (S) when
the friction coefficient α goes to 0 and ∞.

2.7.1 α tends to 0

Theorem 2.7.1. Let p ∈ (1,∞), Ω be not axisymmetric and (uα, πα) be the weak solution
of (S) where

f ∈ Lr(p)(Ω),F ∈ Lp(Ω),h ∈W− 1
p
,p(Γ), α ∈ Lt(p)(Γ).

Then as α→ 0 in Lt(p)(Γ), we have the convergence,

(uα, πα)→ (u0, π0) in W 1,p(Ω)× Lp0(Ω)

where (u0, π0) is a solution of the following Stokes problem with Navier boundary condition
corresponding to α = 0,−∆u0 +∇π0 = f + div F, div u0 = 0 in Ω,

u0 · n = 0, [(2Du0 + F)n]τ = h on Γ.
(2.111)

Proof. Let α → 0 in Lt(p)(Γ). That means there does not exist any α∗ > 0 such that
α ≥ α∗ on Γ. Now from the estimates (2.31) and estimates (2.64), it is clear that (uα, πα)
is bounded in W 1,p(Ω)×Lp0(Ω) for all p ∈ (1,∞). Then there exists (u0, π0) ∈W 1,p(Ω)×
Lp0(Ω) such that

(uα, πα) ⇀ (u0, π0) weakly in W 1,p(Ω)× Lp(Ω).

It can be easily shown that (u0, π0) is the unique solution of the Stokes problem with
Navier boundary condition, corresponding to α = 0,−∆u0 +∇π0 = f + div F, div u0 = 0 in Ω,

u0 · n = 0, [(2Du0 + F)n]τ = h on Γ.
(2.112)

Indeed, since (uα, πα) is the solution of (S), it satisfies the weak formulation (2.17). Now
as in Lemma 2.3.8, uα ⇀ u0 in W 1,p(Ω) implies

uατ ⇀ u0τ in Ls(Γ)

where s satisfies (2.16) and because α→ 0 in Lt(p)(Γ),

αuατ ⇀ 0 in Lm
′(Γ)
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with m satisfies (2.15). Hence in the weak formulation (2.17), the boundary term in the
left hand side goes to 0. So finally, passing the limit, we deduce,

∀ ϕ ∈ V p′

σ,τ (Ω), 2
∫
Ω

Du0 : Dϕ =
∫
Ω

f ·ϕ−
∫
Ω

F : ∇ϕ+ 〈h,ϕ〉Γ .

Now by taking difference between the system (S) and the limiting system (2.112), we get,−∆(uα − u0) +∇(πα − π0) = 0, div (uα − u0) = 0 in Ω ,

(uα − u0) · n = 0, 2 [D(uα − u0)n]τ + α(uα − u0)τ = −αu0τ on Γ .

Once again using the estimates of Theorem 2.4.3 and Proposition 2.6.1 for the above system
and also using Hölder inequality and trace theorem, we obtain

‖uα − u0‖W 1,p(Ω) + ‖πα − π0‖Lp(Ω)

≤ C(Ω) ‖αu0τ‖
W
− 1
p ,p(Γ)

≤ C(Ω) ‖α‖Lt(p)(Γ)‖u0‖W 1,p(Ω) .

Therefore, uα − u0 and πα − π0 both tend to zero in the same rate as α. �

Remark 2.7.2. We can prove also the above theorem for Ω axisymmetric and α constant,
provided the compatibility condition (2.33), with the help of the estimates (2.35) and
Remark 2.6.13. Indeed, to expect the limiting system to be (2.111), we must assume the
compatibility condition since this is the necessary condition for the existence of a solution
of the system (2.111).

2.7.2 α tends to ∞

Next we study the behaviour of uα where α is a constant and grows to ∞.

Theorem 2.7.3. Let p ∈ (1,∞) and (uα, πα) be the weak solution of (S) where

f ∈ Lr(p)(Ω),F ∈ Lp(Ω),h ∈W− 1
p
,p(Γ) and α constant.

i) Then as α→∞, we have the convergence,

(uα, πα) ⇀ (u∞, π∞) in W 1,p(Ω)× Lp0(Ω)

where (u∞, π∞) is the unique solution of the Stokes problem with Dirichlet boundary con-
dition, 

−∆u∞ +∇π∞ = f + div F in Ω,
div u∞ = 0 in Ω,
u∞ = 0 on Γ.

(2.113)
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ii) Moreover, for p ≥ 2, we obtain the strong convergence

(uα, πα)→ (u∞, π∞) in W 1,p(Ω)× Lp0(Ω).

Proof. As α→∞, we can consider α ≥ 1.

i) From estimates (2.92) or (2.93), we see that (uα, πα) is bounded in W 1,p(Ω)×Lp0(Ω),
hence there exists (u∞, π∞) ∈W 1,p(Ω)× Lp0(Ω) such that

(uα, πα) ⇀ (u∞, π∞) weakly in W 1,p(Ω)× Lp(Ω).

But we can also write the system (S) as follows :
−∆uα +∇πα = f + div F in Ω
div uα = 0 in Ω
uα = 1

α
(h− [(2Duα + F)n]τ ) on Γ.

(2.114)

Passing limit in the above system as α → ∞, we obtain that (u∞, π∞) is the solution of
the Stokes problem with Dirichlet boundary condition (2.113).

Indeed, passing limit in the first two equations of (2.114) is easy. And for the boundary
condition, since (uα, πα) is bounded in Ep(Ω), by the Green formula (2.12), 2[(Duα)n]τ is
bounded in W− 1

p
,p(Γ). Hence taking limit as α→∞ in the boundary condition of (2.114),

we obtain the boundary condition of (2.113).

ii) Now taking the difference between the systems (S) and (2.113), we get−∆(uα − u∞) +∇(πα − π∞) = 0, div (uα − u∞) = 0 in Ω
(uα − u∞) · n = 0, 2 [D(uα − u∞)n]τ + α(uα − u∞)τ = h− 2[(Du∞)n]τ on Γ

Multiplying the above system by uα − u∞ and integrating by parts yields,

2
∫
Ω

|D(uα − u∞)|2 + α
∫
Γ

|(uα − u∞)τ |2 = 〈h− 2[(Du∞)n]τ ,uα − u∞〉
H−

1
2 (Γ)×H

1
2 (Γ)

.

As uα ⇀ u∞ in H 1
2 (Γ) weakly and h − 2[(Du∞)n]τ ∈ H−

1
2 (Γ), this shows the strong

convergence of uα to u∞ in H1(Ω). And the strong convergence for the pressure term
follows from the following estimate

‖πα − π∞‖L2(Ω) ≤ ‖∇(πα − π∞)‖H−1(Ω) ≤ C‖∆(uα − u∞)‖H−1(Ω).

Next, for p > 2, as D(uα − u∞) → 0 in L2(Ω), D(uα − u∞) → 0 for almost every
x ∈ Ω up to a subsequence. Also using the uniform estimate in Theorem 2.6.11 for the
above system satisfied by uα − u∞, we can write

‖uα − u∞‖W 1,p(Ω) ≤ Cp(Ω)‖h− 2[(Du∞)n]τ‖
W
− 1
p ,p(Γ)
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which shows that ‖D(uα − u∞)‖Lp(Ω) ≤ C. Therefore, dominated convergence theorem
yields ‖D(uα − u∞)‖Lp(Ω) → 0. This completes the proof. �

2.7.3 α less regular

Theorem 2.7.4. Let

f ∈ L
6
5 (Ω),F ∈ L2(Ω),h ∈H− 1

2 (Γ) and α ∈ L 4
3 (Γ).

Then the Stokes problem (S) has a weak solution (u, π) in H1(Ω)× L2(Ω).

Proof. Without loss of generality, we assume h = 0.

i) First let us consider Ω is not axisymmetric. Let αk ∈ D(Γ) such that αk → α in
L

4
3 (Γ). Now if (uk, πk) ∈H1(Ω)× L2

0(Ω) is the solution of the problem (S) corresponding
to αk, from the estimates (2.31) satisfied by (uk, πk), we can see, there exists (u, π) ∈
H1(Ω)× L2

0(Ω) such that

(uk, πk) ⇀ (u, π) in H1(Ω)× L2(Ω).

Also it is easy to show that

−∆u+∇π = f in Ω, div u = 0 in Ω, u · n = 0 on Γ.

Now from the Green formula (2.12), we obtain

2 [(Duk)n]τ ⇀ 2 [(Du)n]τ in H−
1
2 (Γ).

Moreover, as αk → α in L
4
3 (Γ) and ukτ ⇀ uτ in L4(Γ), it gives

αkukτ ⇀ αuτ in L1(Γ).

Therefore since uk satisfies the boundary condition

[(2Duk + F)n]τ + αk ukτ = 0 on Γ,

passing the limit, it yields

[(2Du+ F)n]τ + α uτ = 0 on Γ.

Hence, (u, π) becomes the solution of the Stokes problem (S).

ii) Note that, when Ω is axisymmetric and α ≥ α∗ > 0, we can find a sequence
αk ∈ D(Γ) such that αk ≥ α∗ and αk → α in L

4
3 (Γ). So we can make use of the estimate

(2.32) and obtain the same result. �

Remark 2.7.5. For α ∈ L
4
3 (Γ) and h = 0, the solution u ∈ H1(Ω) satisfies the extra

property: [(Du)n]τ ∈ L1(Γ).
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2.8 Navier-Stokes equations

Finally we consider the non-linear problem and study the existence of generalized and
strong solutions for the Navier-Stokes system (NS).

Definition 2.8.1. Given f ∈ Lr(p)(Ω),F ∈ Lp(Ω),h ∈ W− 1
p
,p(Γ) and α ∈ Lt(p)(Γ), a

couple u ∈ V p
σ,τ (Ω) is called a weak solution of the Navier-Stokes system (NS) if it satisfies:

for all ϕ ∈ V p′
σ,τ (Ω),

2
∫
Ω

Du : Dϕ+ b(u,u,ϕ) +
∫
Γ

αuτ ·ϕτ =
∫
Ω

f ·ϕ−
∫
Ω

F : ∇ϕ+ 〈h,ϕ〉Γ (2.115)

where b(u,v,w) =
∫

Ω (u · ∇)v ·w.

2.8.1 Existence and regularity

Theorem 2.8.2. Let p ∈ (1,∞) and

f ∈ Lr(p)(Ω),F ∈ Lp(Ω),h ∈W− 1
p
,p(Γ) and α ∈ Lt(p)(Γ)

where r(p) and t(p) are defined by (2.10) and (2.8) respectively. Then the following two
statements are equivalent:
(i) u ∈ V p

σ,τ (Ω) is a weak solution of (NS), in the sense of Definition 2.8.1 and,
(ii) (u, π) ∈W 1,p(Ω)× Lp(Ω) satisfies:

−∆u+ (u · ∇)u+∇π = f + div F, div u = 0 in the sense of distribution
u · n = 0 in the sense of trace

2[(Du)n]τ + αuτ = 0 in W−1/p,p(Γ).
(2.116)

The proof is standard and very similar to that of Proposition 2.3.10, hence we omit it.
To facilitate the work, we give some properties of the operator b but skip the proof (cf.
[11, Lemma 7.2]).

Lemma 2.8.3. The trilinear form b is defined and continuous on V 2
σ,τ (Ω) × V 2

σ,τ (Ω) ×
V 2
σ,τ (Ω). Also, we have

b(u,v,v) = 0 (2.117)

and
b(u,v,w) = −b(u,w,v) ∀ u,v,w ∈ V 2

σ,τ (Ω).

Moreover
b(u,u,β) = 0 and b(β,β,u) = 0.
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Now we can prove the existence of the generalized solution of the Navier-Stokes problem
(NS). First we study the Hilbert case.

Theorem 2.8.4. Let

f ∈ L
6
5 (Ω),F ∈ L2(Ω),h ∈H− 1

2 (Γ) and α ∈ L2(Γ).

Then the problem (NS) has a weak solution (u, π) ∈H1(Ω)×L2
0(Ω) satisfying the following

estimates:
a) if Ω is not axisymmetric, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
. (2.118)

b) if Ω is axisymmetric and

(i) α ≥ α∗ > 0 on Γ, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤
C(Ω)

min{2, α∗}

(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
. (2.119)

(ii) f ,h satisfy the condition:∫
Ω

f · β −
∫
Ω

F : ∇β + 〈h,β〉Γ = 0

then the solution u satisfies
∫

Γ αu · β = 0 and

‖Du‖2
L2(Ω) +

∫
Γ

α|uτ |2 + ‖π‖2
L2(Ω) ≤ C(Ω)

(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)2
. (2.120)

In particular, if α is a constant, then
∫

Γ u · β = 0 and

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
. (2.121)

Remark 2.8.5. Note that in the case of u · n 6= 0 on Γ when Ω has multiply connected
boundary, the existence of solution of Navier-Stokes equation with Dirichlet boundary
condition is not yet clear in full generality, e.g. see [84]. So we do not consider that case
here for the Navier boundary condition also.

Proof. 1. Existence: The existence of solution of (2.115) can be shown using standard
arguments i.e. by Galerkin method, we construct an approximate solution and then pass
to the limit. Nonetheless, we state it briefly for completeness.
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For each fixed integer m ≥ 1, define an approximate solution um of (2.115) by

um =
m∑
i=1

ξi,mvi, ξi,m ∈ R

2
∫
Ω

Dum : Dvk + b(um,um,vk) +
∫
Γ

αuτm · vτk =
∫
Ω

f · vk −
∫
Ω

F : ∇vk + 〈h,vk〉Γ ,

for k = 1, ...,m
(2.122)

and Vm := 〈v1, ...,vm〉 is the space spanned by the vectors v1, ...,vm and {vi}i is a Hilbert
basis of V 2

σ,τ (Ω). Note that Vm is equipped with the scalar product (, ) induced by V 2
σ,τ (Ω).

Let us also define the mapping Pm : Vm → Vm as for all w,v ∈ Vm,

(Pm(w),v) = 2
∫
Ω

Dw : Dv + b(w,w,v) +
∫
Γ

αwτ · vτ −
∫
Ω

f · v +
∫
Ω

F : ∇v − 〈h,v〉Γ .

The continuity of the mapping is obvious. Also, using (2.117), we get

(Pm(w),w) = 2‖Dw‖2
L2(Ω) +

∫
Γ

α|wτ |2 −
∫
Ω

f ·w +
∫
Ω

F : ∇w − 〈h,w〉Γ

≥ C(α)‖w‖H1(Ω)

{
‖w‖H1(Ω) − C(Ω)

(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)}
.

Hence, (Pm(w),w) > 0 for all ‖w‖Vm = k where k > C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
.

Therefore, the hypothesis of Brower’s theorem is satisfied and there exists a solution um
of (2.122).

Next as um is a solution of (2.122), we have

2‖Dum‖2
L2(Ω) +

∫
Γ

α|uτm|2 =
∫
Ω

f · um −
∫
Ω

F : ∇um + 〈h,um〉Γ

which yields the a priori estimate

‖um‖H1(Ω) ≤ C(α)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + h‖
H−

1
2 (Γ)

)
.

Since the sequence um remains bounded in V 2
σ,τ (Ω), there exists some u ∈ V 2

σ,τ (Ω) and a
subsequence which we still call um such that

um ⇀ u in V 2
σ,τ (Ω).

Now due to the compact embedding of H1(Ω) into L2(Ω), we can pass to the limit in
(2.122) and obtain, for any v ∈ V 2

σ,τ (Ω),

2
∫
Ω

Du : Dv + b(u,u,v) +
∫
Γ

αuτ · vτ =
∫
Ω

f · v −
∫
Ω

F : ∇v + 〈h,v〉Γ
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and thus u is a solution of (2.115).

2. Estimates: The estimates can be shown as for the Stokes problem in Theorem
2.4.3. �

Proposition 2.8.6. The weak solution of the problem (NS), given by Theorem 2.8.4 is
unique provided

‖f‖
L

6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

<
1

C(α,Ω) (2.123)

where the constant C(α,Ω) depends on the continuity constant of the linear form b and the
equivalence constant of H1(Ω) norm, precised in the proof.

Remark 2.8.7. Interestingly, in the case of α ≡ 0, there is no uniqueness of the solution
of the system (NS) even for small data. But in our case, when α 6= 0 on some Γ0 ⊆ Γ with
|Γ0| > 0, there is indeed uniqueness of the solution under the assumption of small data as
in the case of Dirichlet boundary condition. The reason of this behaviour is the presence
of a non-trivial kernel of the Stokes operator for α ≡ 0.

Proof. Taking ϕ = u in (2.115) and using (2.117), we obtain that any solution of (2.115)
satisfies the estimate

‖u‖H1(Ω) ≤ C(α,Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + h‖
H−

1
2 (Γ)

)
(2.124)

where we used the following norm equivalence:

‖u‖2
H1(Ω) ≤ C(α,Ω)

2‖Du‖2
L2(Ω) +

∫
Ω

α|uτ |2
 .

Note that if Ω is non-axisymmetric, C(α,Ω) only depends on Ω and if Ω is axisymmetric,
C(α,Ω) = C(Ω) min{2, α}. Now if u1 and u2 are two different solutions of (2.115), let
u = u1 − u2 and subtracting the equations (2.115) corresponding to u1 and u2, we get

∀ϕ ∈ V 2
σ,τ (Ω), 2

∫
Ω

Du : Dϕ+ b(u1,u,ϕ) + b(u,u2,ϕ) +
∫
Γ

αuτ ·ϕτ = 0. (2.125)

Taking ϕ = u in (2.125) and once again using (2.117) implies

2‖Du‖2
L2(Ω) +

∫
Γ

α|uτ |2 = −b(u,u2,u)

which yields, using the continuity of b and the estimate (2.124) for u2,

‖u‖2
H1(Ω) ≤ C(Ω)C(α,Ω)‖u‖2

H1(Ω)‖u2‖H1(Ω)

≤ C(Ω)(C(α,Ω))2‖u‖2
H1(Ω)

(
‖f‖

L
6
5 (Ω)

+ ‖F‖L2(Ω) + ‖h‖
H−

1
2 (Γ)

)
.
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Thus considering the condition (2.123), the above inequality implies ‖u‖H1(Ω) = 0 that is
u1 = u2. �

Next we prove the existence of solution of the system (NS) inW 1,p(Ω) using the Hilbert
case and the Stokes regularity result.

Corollary 2.8.8. Let p > 3
2 and f ,F,h and α satisfy the assumptions as in Theorem

2.8.2.
i) There exists a weak solution (u, π) ∈W 1,p(Ω)× Lp0(Ω) of (NS).
ii) Moreover, for any p ∈ (1,∞), if F = 0 and

f ∈ Lp(Ω),h ∈W 1− 1
p
,p(Γ) and α ∈ W 1− 1

q
,q(Γ)

with q > 3
2 if p ≤ 3

2 and q = p otherwise, then (u, π) ∈W 2,p(Ω)×W 1,p(Ω).

Proof. i) First let us consider p > 2. Then we have existence of a solution (u, π) ∈
H1(Ω) × L2

0(Ω) from Theorem 2.8.4 using the Hilbert case. Since u ∈ H1(Ω), the non-
linear term (u · ∇)u ∈ L 3

2 (Ω) ↪→ Lr(p)(Ω) if p ≤ 3. Hence, using the regularity result for
Stokes problem in Corollary 2.5.6, we obtain that (u, π) ∈ W 1,p(Ω) × Lp(Ω). For p > 3,
repeating the same argument with u ∈W 1,3(Ω), we deduce the required regularity.

And to obtain existence result for p ∈ (3
2 , 2), we follow the exact same construction as

in [104, Theorem 1.1]. Note that we replaced the space W−1,p(Ω) for the given data in
[104] by Lr(p)(Ω). For example, we used the following lemma instead of [104, Lemma 1.2]:

If there exists (v, π̃) ∈W 1,p(Ω)× Lp(Ω) such that

−∆v + v · ∇v +∇π̃ − f ∈ Lr(p)(Ω)
div v = 0 in Ω
v · n = 0 on Γ
2 [(Dv)n]τ + α vτ = 0 on Γ

for p ≤ q ≤ 2, then there exists (w, π̄) ∈W 1,p(Ω)× Lp(Ω) such that

−∆w +w · ∇w +∇π̄ − f ∈ Lr(s)(Ω)
div w = 0 in Ω
w · n = 0 on Γ
2 [(Dw)n]τ + α wτ = 0 on Γ

where 1
s

= 1
q

+ 1
p
− 2

3 (thus s > q).
The rest of the proof follows the same argument as in [104] without any further changes.
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ii) Next to prove the strong regularity result, consider the more regular data. For
p ∈ (1, 3

2 ], since the Sobolev exponent p∗ ∈ (3
2 , 3] and thus r(p∗) = p, we have f ∈

Lr(p
∗)(Ω),h ∈ W− 1

p∗ ,p
∗
(Γ) and hence using the above regularity result for weak solution

of (NS), we obtain (u, π) ∈W 1,p∗(Ω)×Lp∗(Ω). Now for p ∈ (1, 3
2), (u · ∇)u ∈ Ls(Ω) with

1
s

= 2
p
− 1

which implies s > p and thus using Theorem 2.5.9 again, we obtain (u, π) ∈ W 2,p(Ω) ×
W 1,p(Ω). For p = 3

2 , sinceW 1,3(Ω) ↪→ Lm(Ω) for any m ∈ (1,∞), we have (u·∇)u ∈ Ls(Ω)
with 1

s
= 1

3 + 1
m

, so choosing m > 3 gives s > 3
2 and thus (u, π) ∈W 2, 32 (Ω)×W 1, 32 (Ω).

Now for p > 3
2 , having u ∈ W 2, 32 (Ω) gives ∑i ui∂iu ∈ L3−ε(Ω) which yields u ∈

W 2,3−ε(Ω). Further repeating the argument, we get u ∈W 2,p(Ω). �

Finally we discuss the limiting behaviour of the Navier-Stokes system (NS) as α goes
to 0 or ∞.

2.8.2 Limiting cases

Theorem 2.8.9. Let p ≥ 2, Ω be not axisymmetric and (uα, πα) be a weak solution of
(NS) where

f ∈ Lr(p)(Ω),F ∈ Lp(Ω),h ∈W− 1
p
,p(Γ) and α ∈ Lt(p)(Γ).

Then as ‖α‖Lt(p)(Γ) → 0, we have the convergence,

(uα, πα)→ (u0, π0) in W 1,p(Ω)× Lp0(Ω)

where (u0, π0) is a solution of the following Navier-Stokes problem−∆u0 + u0 · ∇u0 +∇π0 = f + div F, div u0 = 0 in Ω,
u0 · n = 0, [(2Du0 + F)n]τ = h on Γ.

(2.126)

Proof. i) We assume for ease of calculation, F = 0 and h = 0. As α→ 0 in Lt(p)(Γ), there
does not exist any α∗ > 0 such that α ≥ α∗ on Γ0 ⊆ Γ. Therefore, (uα, πα) satisfies the
estimates (2.118). For 2 < p ≤ 3, using the Stokes estimate (2.64), we obtain

‖uα‖W 1,p(Ω) + ‖πα‖Lp(Ω) ≤ C(Ω)
(
‖f‖Lr(p)(Ω) + ‖uα · ∇uα‖Lr(p)(Ω)

)
≤ C(Ω)

(
‖f‖Lr(p)(Ω) + ‖uα‖2

H1(Ω)

)
≤ C(Ω)

(
1 + ‖f‖Lr(p)(Ω)

)
‖f‖Lr(p)(Ω)
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and for p > 3,

‖uα‖W 1,p(Ω) + ‖πα‖Lp(Ω) ≤ C(Ω)
(
‖f‖Lr(p)(Ω) + ‖uα · ∇uα‖Lr(p)(Ω)

)
≤ C(Ω)

(
‖f‖Lr(p)(Ω) + ‖uα‖2

W 1,3(Ω)

)
≤ C(Ω)

[
1 +

(
1 + ‖f‖Lr(p)(Ω)

)2
‖f‖Lr(p)(Ω)

]
‖f‖Lr(p)(Ω).

Then (uα, πα) is bounded in W 1,p(Ω)×Lp(Ω) with respect to α. So there exists (u0, π0) ∈
W 1,p(Ω)× Lp(Ω) such that

(uα, πα) ⇀ (u0, π0) weakly in W 1,p(Ω)× Lp(Ω).

Now, as in Theorem 2.7.1, passing the limit as α→ 0 in Lt(p)(Γ) in the variational formu-
lation satisfied by (uα, πα), we get that u0 satisfies the equation

2
∫
Ω

Du0 : Dϕ+ b(u0,u0,ϕ) =
∫
Ω

f ·ϕ ∀ ϕ ∈ V p′

σ,τ (Ω).

Indeed, uα ⇀ u0 weakly in W 1,p(Ω) implies uα → u0 in Ls(Ω) where

s ∈


(1, p∗) if p < 3
(1,∞) if p = 3
(1,∞] if p > 3.

(2.127)

Also, ∇uα ⇀ ∇u0 weakly in Lp(Ω). Therefore, uα · ∇uα ⇀ u0 · ∇u0 weakly in Lq(Ω)
where

1
q

= 1
p

+ 1
s

and note that, ϕ ∈W 1,p′(Ω) ↪→ Lq
′(Ω). Hence, b(uα,uα,ϕ) → b(u0,u0,ϕ) as α → 0 in

Lt(p)(Γ). Therefore, (u0, π0) is a solution of the problem (2.126).

ii) Next we show that the convergence that (uα, πα) ⇀ (u0, π0) weakly in W 1,p(Ω) ×
Lp(Ω) occurs in fact in strong sense. Taking the difference between the systems (NS) and
(2.126), we get,


−∆(uα − u0) +∇(πα − π0) = u0 · ∇u0 − uα · ∇uα in Ω
div (uα − u0) = 0 in Ω
(uα − u0) · n = 0, 2 [D(uα − u0)n]τ + αuατ = 0 on Γ
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Note that u0 · ∇u0−uα · ∇uα = div(uα⊗uα−u0⊗u0). Thus using the Stokes estimate
(2.64) for the above system gives

‖uα − u0‖W 1,p(Ω) + ‖πα − π0‖Lp(Ω)

≤ C
(
‖uα ⊗ uα − u0 ⊗ u0‖Lp(Ω) + ‖αu0τ‖

W
− 1
p ,p(Γ)

)
= C

(
‖(uα − u0)⊗ uα + u0 ⊗ (uα − u0)‖Lp(Ω) + ‖αu0τ‖

W
− 1
p ,p(Γ)

)
≤ C

[
‖uα − u0‖Ls(Ω)

(
‖uα‖W 1,p(Ω) + ‖u0‖W 1,p(Ω)

)
+ ‖α‖Lt(p)(Γ)‖u0‖W 1,p(Ω)

]
where s is defined as in (2.127). Now since uα is bounded in W 1,p(Ω) and by compactness,
uα → u0 in Ls(Ω), we obtain the strong convergence of uα to u0 in W 1,p(Ω) as α→ 0. �

Remark 2.8.10. As in the Stokes case, we can prove also the above theorem for Ω axisym-
metric and α constant, provided the compatibility condition (2.33), with the help of the
estimates (2.120) and Remark 2.6.13. Indeed, to expect the limiting system to be (2.126),
we must assume the above compatibility condition since this is the necessary condition for
the existence of a solution of the system (2.126).

Theorem 2.8.11. Let p ≥ 2 and (uα, πα) be the weak solution of (NS) with f ∈ Lr(p)(Ω),
F ∈ Lp(Ω), h ∈W− 1

p
,p(Γ) and α a constant. Then as α→∞, we have the convergence,

(uα, πα)→ (u∞, π∞) in W 1,p(Ω)× Lp0(Ω)

where (u∞, π∞) is a solution of the Navier-Stokes problem with Dirichlet boundary condi-
tion, 

−∆u∞ + u∞ · ∇u∞ +∇π∞ = f + div F in Ω
div u∞ = 0 in Ω
u∞ = 0 on Γ.

(2.128)

Proof. i) Without loss of generality, assume F = 0 and h = 0. As α→∞, we can consider
α ≥ 1 and then we have estimates (2.118) and (2.119). Also as done in Theorem 2.8.9,
using the Stokes estimate (2.92) and (2.93), we can write, for 2 < p ≤ 3,

‖uα‖W 1,p(Ω) + ‖πα‖Lp(Ω) ≤ Cp(Ω)
(
‖f‖Lr(p)(Ω) + ‖uα · ∇uα‖Lr(p)(Ω)

)
≤ Cp(Ω)

(
‖f‖Lr(p)(Ω) + ‖uα‖2

H1(Ω)

)
≤ Cp(Ω)

(
1 + ‖f‖Lr(p)(Ω)

)
‖f‖Lr(p)(Ω)

and then similar for p > 3 as well. This shows that (uα, πα) is bounded in W 1,p(Ω)×Lp(Ω)
for all p ≥ 2. Hence there exists (u∞, π∞) ∈W 1,p(Ω)× Lp(Ω) such that

(uα, πα) ⇀ (u∞, π∞) weakly in W 1,p(Ω)× Lp(Ω).
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Now rewriting the system (NS) as,
−∆uα + uα · ∇uα +∇πα = f in Ω
div uα = 0 in Ω
uα = − 2

α
[(Duα)n]τ on Γ

(2.129)

and as in Theorem 2.7.3, letting α → ∞ in the above system, we obtain that (u∞, π∞)
satisfies the Navier-Stokes problem (2.128).

ii) Therefore, (uα − u∞) satisfies the system
−∆ (uα − u∞) +∇ (πα − π∞) = u∞ · ∇u∞ − uα · ∇uα in Ω,
div (uα − u∞) = 0 in Ω,
(uα − u∞) · n = 0, 2 [D (uα − u∞)n]τ + α (uα − u∞)τ = −2[(Du∞)n]τ on Γ.

Multiplying by (uα − u∞) and integrating by parts, we get,

2
∫
Ω

|D(uα − u∞)|2 + α
∫
Γ

|(uα − u∞)τ |2

=b (uα − u∞,u∞,uα − u∞)− 〈2[(Du∞)n]τ , (uα − u∞)〉
H−

1
2 (Γ)×H

1
2 (Γ)

.

But as α→∞, by compactness uα → u∞ in L4(Ω) and thus

b (uα − u∞,u∞,uα − u∞) ≤ ‖uα − u∞‖2
L4(Ω)‖∇u∞‖L2(Ω) → 0.

Also since uα ⇀ u∞ weakly in H 1
2 (Γ) and [(Du∞)n]τ ∈H−

1
2 (Γ), it implies,

〈2[(Du∞)n]τ , (uα − u∞)〉
H−

1
2 (Γ)×H

1
2 (Γ)
→ 0.

Therefore along with the fact that uα → u∞ in L2(Ω), we obtain the strong convergence
uα → u∞ in H1(Ω). For the pressure term, we can write

‖πα − π∞‖L2(Ω) ≤ C‖∇(πα − π∞)‖H−1(Ω)

≤ C‖ −∆(uα − u∞) + (uα · ∇uα − u∞ · ∇u∞)‖H−1(Ω)

≤ C‖ −∆(uα − u∞)‖H−1(Ω) + ‖uα ⊗ uα − u∞ ⊗ u∞‖L2(Ω)

and thus πα → π∞ in L2(Ω).

Now similar to the Stokes case, for p > 2, D(uα − u∞) → 0 in L2(Ω) implies D(uα −
u∞)→ 0 for almost every x ∈ Ω up to a subsequence. Also using the uniform estimate of
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Theorem 2.6.11 for the above system satisfied by uα − u∞, we can write

‖uα − u∞‖W 1,p(Ω)

≤ Cp(Ω)
(
‖uα ⊗ uα − u∞ ⊗ u∞‖Lp(Ω) + ‖2[(Du∞)n]τ‖

W
− 1
p ,p(Γ)

)
≤ Cp(Ω)

[
‖uα − u∞‖Ls(Ω)

(
‖uα‖W 1,p(Ω) + ‖u∞‖W 1,p(Ω)

)
+ ‖u∞‖W 1,p(Ω)

]
with s defined as in (2.127) so that W 1,p(Ω) ↪→

compact
Ls(Ω). This shows that ‖D(uα −

u∞)‖Lp(Ω) ≤ C and therefore, dominated convergence theorem yields ‖D(uα−u∞)‖Lp(Ω) →
0. This completes the proof. �
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Semigroup theory for the Stokes operator with Navier

boundary condition on Lp spaces

This is a joint work with Chérif Amrouche and Miguel Escobedo.

Abstract : We consider the Navier-Stokes equation in a bounded domain with C1,1

boundary, completed with slip boundary condition. Apart from studying the general semi-
group theory related to the Stokes operator with Navier boundary condition where the
slip coefficient α is a non-smooth scalar function, our main goal is to obtain estimate on
the solutions, independent of α. We show that for α large, the weak and strong solutions
of both the linear and non-linear system are bounded uniformly with respect to α. This
justifies mathematically that the solution of the Navier-Stokes problem with slip condition
converges in the energy space to the solution of the Navier-Stokes with no-slip boundary
condition as α→∞.

3.1 Introduction

In this article we prove the existence of solutions to the following problem for the Navier
Stokes equation:
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∂u

∂t
−∆u+ (u · ∇)u+ ∇π = 0 in Ω× (0, T )

divu = 0 in Ω× (0, T )
u · n = 0 on Γ× (0, T )
2[(Du)n]τ + αuτ = 0 on Γ× (0, T )
u(0) = u0 in Ω

(3.1)

(3.2)
(3.3)
(3.4)
(3.5)

where Ω is a bounded domain of R3, not necessarily simply connected, whose boundary
Γ is of class C1,1. The initial velocity u0 and the (scalar) friction coefficient α are given
functions. The external unit normal vector on Γ is denoted by n, Du = 1

2

(
∇u+∇uT

)
denotes the strain tensor and the subscript τ denotes the tangential component i.e. vτ =
v−(v ·n)n for any vector field v. The functions u and π describe respectively the velocity
and the pressure of a viscous incompressible fluid.

The boundary condition (3.4) was introduced by H. Navier in [96], taking into account
the molecular interactions with the boundary, and is called Navier boundary condition. It
may be deduced from kinetic theory considerations, as first described in [92] and rigorously
proved under suitable conditions in [91]. It has been widely studied in recent years, because
of its significance in modeling and simulations of flows and fluid-solid interaction problems
(cf. [70], [52], [98] and references therein). In that context the function α is, up to some
constant, the inverse of the slip length. We then impose the condition α ≥ 0 in all the
remaining of this work.

The problem with Dirichlet boundary condition has deserved a lot of attention. In
particular, a good semigroup theory has been developed in a series of work by Giga (cf.
[56], [58], [59], [61]). Here we wish to establish a similar framework for α 6≡ 0. We will
study two different types of solutions for (3.6), (3.2)-(3.5): strong solutions which belong
to Lp(0, T,Lq(Ω)) type spaces and weak solutions (in a suitable sense) that may be written
for a.e. t > 0, as u(t) = v(t) +∇w(t) where v ∈ Lp(0, T ;Lq(Ω)) and w ∈ Lp(0, T ;Lq(Ω)).
We will also consider different hypothesis on regularity of the function α. In particular,
we collect some of the relevant results available for the Navier-Stokes problem with no-slip
condition based on semigroup properties and prove them for the system (3.1)-(3.5) for the
sake of completeness, so that this paper can be used as a basis for further work.

Let us briefly mention here some related works. The system (3.1)-(3.5) has been stud-
ied in [34] in 2D where α ≥ 0 is a function in C2(Γ), with the main objective to analyse
vanishing viscosity limit where the existence of weak and strong solutions have been es-
tablished. Also in [32], the authors have studied stochastic Navier-Stokes equation with
Navier boundary condition, similar to (3.1)-(3.5) where they considered same assumption
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that α ≥ 0 is in C2(Γ) and proved existence of weak solution. Beirao Da Veiga [18] has
considered the same problem in 3D in C2,1 domain with α ≥ 0 constant and first show that
the Stokes operator with Navier boundary condition A is a maximal monotone, self-adjoint
operator on L2

σ,τ (Ω) which generates an analytic semigroup of contraction and thus obtain
strong solution of Stokes problem; Also by identifying the domain of A1/2, he obtain the
global strong solution of Navier-Stokes equation under the assumption of small data as in
the no-slip boundary condition. The system (3.1)-(3.5) has also been studied by Tanaka
et al [71] in Sobolev-Slobodetskii spaces in point of view to analyze asymptotic behavior
of the unsteady solution to the steady solution where they have considered Γ belongs to
W

5
2 +l

2 and α ∈ (0, 1) belongs to W
1
2 +l, 14 + l

2
2 ((0,∞) × Γ) with l ∈ (1

2 , 1) and proved exis-
tence of local in time, strong solution and global in time, strong solution for small data.
Note that in this work, α depends on both time and space variable. We want to mention
further the works of [70, 90] where though the main goal is again to study viscosity limit,
in the first paper, Iftimie and Sueur show existence of global in time weak solution in
C([0,∞);L2

σ,τ (Ω)) ∩ L2
loc([0,∞);H1(Ω)) for L2

σ,τ (Ω) initial value; by classical approach:
first deriving some energy estimate and then using Galerkin method. There they consid-
ered α a scalar function of class C2, without a sign. And in the second paper, Masmoudi
and Rousset worked on anistropic conormal Sobolev spaces considering smooth domain
and |α| ≤ 1. In the paper [95], the authors aimed to prove the existence of global in
time, strong solution of a similar problem assuming small data, in C1,1 domain and α non-
negative, Hölder continuous in time. Also we mention the work [116] where Lagrangian
Navier-Stokes problem (as a regularization system of classical Navier-Stokes equations)
with vorticity slip boundary condition (which is close to the boundary condition (3.4)) has
been studied for non-negative smooth function α and existence of weak solution, global in
time is obtained.

Further, in [21], Benes has established a unique weak solution, local in time for the
Navier-Stokes system with mixed boundary condition: on some part of the boundary Navier
condition with α = 0 is considered and on other part, Neumann type boundary condition.
Some similar result for Navier-Stokes problem with Navier-type boundary condition (which
corresponds to α = 0) has been studied in, for example [85]. Also for α = 0 the semigroup
associated to equation (3.6) with (3.2)-(3.5) has been studied in [7]. We also mention the
interesting work [41] where the low Mach number limit is studied for the Navier-Stokes
system describing the motion of a compressible viscous fluid subjected to the slip boundary
condition, with the friction coefficient inversely proportional to a certain power of the Mach
number, in an unbounded (exterior) domain with compact boundary. We also mention the
works by Shimada [110], [108], [109] which discuss Stokes operator with Robin boundary
condition, in particular resolvent estimate, Lp − Lq regularity and asymptotic analysis.
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In this work, we wish to study the general semigroup theory for any p ∈ (1,∞) for the
Stokes operator with Navier boundary condition (NBC) with (possibly) minimal regularity
on α which gives us existence, uniqueness and regularity of both strong and weak solutions
of (3.6), (3.2)-(3.5). Though the method to deduce the resolvent estimate for general p 6= 2
is close to that in [7] but the main difficulty in our case is to obtain some estimate on the
pressure term in suitable space, due to the presence of the friction α which is not smooth.
As explained in [18], for the case p = 2, the operator behaves well and the semigroup
framework is easy to establish which is not the situation for non-Hilbert cases. To achieve
the uniform estimate on the solutions with respect to α which is one of the main goal of
this work, we use Lp-extrapolation theorem by Shen [107]. We want to mention the work
in [45] where the Stokes resolvent system has been considered in a general unbounded
domain with C3 boundary and Navier slip boundary condition (where α ≥ 0 a constant).
The authors studied the resolvent estimate in function spaces of the type Lq ∩ L2 when
q ≤ 2 and Lq + L2 when 1 < q < 2 (though without any further information concerning
the behavior with respect to the friction coefficient).

Next using the properties of the Stokes operator with NBC and analyzing the fractional
and imaginary powers, we obtain the Lp − Lq estimates and the maximal regularity for
non-homogeneous linear problem as in the classical Dirichlet boundary condition. But
again here the difficulty is to obtain bounds for the imaginary powers of the operator since
our operator does not reduce to an elliptic operator as in [6]. And for the no-slip boundary
condition, Giga [56] used the theory of Pseudo-differential operators for bounded domain,
while in the case of full space, Giga and Sohr [60] used Fourier multiplier method which is
not adaptable in our case. So here we use a perturbation argument adapting the theory of
interpolation-extrapolation, established in [8]. In [101], the authors use the same method
to establish that the Stokes operator with NBC for α > 0 constant, possesses a bounded
H∞-calculus on Lpσ,τ (Ω) which implies that the operator has bounded imaginary powers.
Also in our work, we consider optimal regularity of the domain unlike the other works.

It seems very natural to let α → ∞ in some sense in order to obtain the Dirichlet
boundary condition on Γ from the condition (3.4). One of the goals of the present article is
to study the behavior of the solutions of the unsteady Stokes and Navier-Stokes equation
with NBC with respect to α, in particular what happens when α goes to∞. This problem
is considered by Kelliher [80] in 2D where the author shows in Theorem 9.2 that, for
u0 ∈ H3(Ω), when ‖1/α‖L∞(Γ) → 0, the solution of problem (3.1)-(3.5) converges to the
solution of the Navier-Stokes problem with Dirichlet boundary condition in suitable spaces
(cf. Section 3.9 for details). In our work, we first deduce uniform resolvent estimates with
respect to some suitable norm of the function α which in turn provides α independent
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estimates for the solutions of non-stationary Stokes problem with NBC. This enables us to
consider the case where α is a constant function and α → ∞ in both the linear problem
(3.6), (3.2)-(3.5) and the nonlinear problem (3.1)-(3.5). We show that the solutions of the
problems with NBC converge strongly in the energy space to the solutions of corresponding
problem with Dirichlet boundary condition as α goes to ∞.

We state now our main results, for which the following notations are needed:

Lpσ,τ (Ω) = {v ∈ Lp(Ω); div v = 0 in Ω,v · n = 0 on Γ}

equipped with the norm of Lp(Ω) and

D(Ap,α) =
{
u ∈W 2,p(Ω) ∩Lpσ,τ (Ω); 2[(Du)n]τ + αuτ = 0 on Γ

}
.

The space D(Ap,α) is nothing but the domain of Ap,α, the Stokes operator on Lpσ,τ (Ω) with
the boundary conditions (3.3)-(3.4).

Theorem 3.1.1. Suppose that α ∈ W
1− 1

r1
,r1(Γ) for some r1 ≥ 3 and α ≥ 0. Then, for

every u0 ∈ Lr2σ,τ (Ω) with r2 ≥ 3, there exists a unique solution u of (3.1)–(3.5) defined on
a maximal time interval [0, T?) such that

u ∈ C([0, T?);Lrσ,τ (Ω)) ∩ Lq(0, T?;Lpσ,τ (Ω))

t1/qu ∈ C([0, T?);Lpσ,τ (Ω)) and t1/q‖u‖Lp(Ω) → 0 as t→ 0

with r = min(r1, r2), p > r, q > r and 2
q

= 3
r
− 3

p
. Moreover,

u ∈ C((0, T?),D(Ar,α)) ∩ C1((0, T?); Lrσ,τ (Ω)).

If r > 3 and T? <∞,
‖u(t)‖Lr(Ω) ≥ C(T? − t)(3−r)/2r

where C is independent of T? and t.

Also, there exists a constant ε > 0 such that if ‖u0‖L3(Ω) < ε, then T? =∞.

Under weaker conditions on Ω and α, a similar Theorem holds for initial data in
the space of distributions u0 = ψ + ∇χ where ψ ∈ Lr(Ω) and χ ∈ Lr(Ω) (denoted
by [Hr′

0 (div,Ω)]′, cf. Proposition 3.2.1), with r ≥ 3.

The proof of these results is based on a careful study of the semigroup associated to
the linear equation

∂u

∂t
−∆u + ∇π = f (3.6)
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with conditions (3.2)-(3.5). For that we first study the strong and weak Stokes opera-
tors Ap,α and Bp,α and deduce that both of them have bounded inverse on Lpσ,τ (Ω) and
[Hp′

0 (div,Ω)]′ respectively for all p ∈ (1,∞). Also −Ap,α and −Bp,α generate bounded
analytic semigroups on their respective spaces (cf. Theorem 3.3.13 and Theorem 3.4.3)
and their pure imaginary powers are uniformly bounded as well (cf. Theorem 3.5.1). We
obtain the following theorems, if f = 0:

Theorem 3.1.2. Let 1 < p < ∞ and α ≥ 0 be as in (3.18). Then for u0 ∈ Lpσ,τ (Ω), the
problem (3.6), (3.2)-(3.5) with f = 0 has a unique solution u(t) satisfying

u ∈ C([0,∞),Lpσ,τ (Ω)) ∩ C((0,∞),D(Ap,α)) ∩ C1((0,∞),Lpσ,τ (Ω))

and
u ∈ Ck((0,∞),D(Alp,α)) ∀ k ∈ N, ∀ l ∈ N\{0}.

Also, for all t > 0 and q ≥ p, u(t) ∈ Lq(Ω) and there exists δ > 0 independent of t and q

such that:
‖u(t)‖Lq(Ω) ≤ C(Ω, p) e−δtt−3/2(1/p−1/q)‖u0‖Lp(Ω).

Moreover, the following estimates also hold

‖Du(t)‖Lq(Ω) ≤ C(Ω, p) e−δtt−3/2(1/p−1/q)−1/2‖u0‖Lp(Ω),

∀ m,n ∈ N, ‖ ∂
m

∂tm
Anp,αu(t)‖Lq(Ω) ≤ C(Ω, p) e−δtt−(m+n)−3/2(1/p−1/q)‖u0‖Lp(Ω).

For f 6≡ 0, and if we denote Eq the following real interpolation space:

Eq ≡ (D(Ap,α),Lpσ,τ (Ω)) 1
q
,q

we have the result:

Theorem 3.1.3. Let 1 < p, q < ∞. Also assume that 0 < T ≤ ∞ and α ≥ 0 be as in
(3.18). Then for f ∈ Lq(0, T ;Lpσ,τ (Ω)) and u0 ∈ Eq, there exists a unique solution (u, π)
of (3.6) with (3.2)-(3.5) satisfying:

u ∈ Lq(0, T0;W 2,p(Ω)) for all T0 ≤ T if T <∞ and T0 <∞ if T =∞,

π ∈ Lq(0, T ;W 1,p(Ω)/R), ∂u

∂t
∈ Lq(0, T,Lpσ,τ (Ω)),

T∫
0

∥∥∥∥∥∂u∂t
∥∥∥∥∥
q

Lp(Ω)
dt+

T∫
0

‖u‖qW 2,p(Ω)dt+
T∫

0

‖π‖qW 1,p(Ω)dt ≤ C

 T∫
0

‖f‖qLp(Ω)dt+ ‖u0‖qEq

 (3.7)

where C > 0 is independent of f ,u0 and T .
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Similar results hold for less regular data (cf. Theorem 3.6.4 and Theorem 3.7.1). And
the last interesting result of our work is the following limit problem which improves the
result in [80, Theorem 9.2]:

Theorem 3.1.4. Let Ω be C2,1 and α be a constant. Also let (uα, πα) be a solution
of the problem (3.1)-(3.5) where u0 ∈ H1

0 (Ω) with div u0 = 0 in Ω and (u∞, π∞) ∈
L2(0, T ;H1

0 (Ω)) × L2(0, T ;L2(Ω)) a solution of the following Navier-Stokes problem with
Dirichlet boundary condition

∂u∞
∂t
−∆u∞ + (u∞ · ∇)u∞ +∇π∞ = 0, div u∞ = 0 in Ω× (0, T ),

u∞ = 0 on Γ× (0, T ),
u∞(0) = u0 in Ω

(3.8)

(whose existence has been proved in [113, Theorem 3.1, Chapter III]). Then for any T < T∗
(where T∗ is defined in Theorem 3.1.1),

(uα, πα)→ (u∞, π∞) in L2(0, T ;H1(Ω))∩L∞(0, T ;L2(Ω))×L2(0, T ;L2(Ω)) as α→∞

and
T∫

0

∫
Γ

|uα − u∞|2 ≤
C

α
. (3.9)

Similar result holds for the linear problem as well as for initial data in Lp-spaces (cf.
Section 3.9).

3.2 Preliminaries

First, we review some basic notations and functional framework, we will use in the study.
Throughout the work, if we do not specify otherwise, Ω is an open bounded set in R3 with
boundary Γ of class C1,1 possibly multiply connected. Also if we do not precise otherwise,
we will always assume

α ≥ 0 on Γ and α > 0 on some Γ0 ⊂ Γ with |Γ0| > 0.

We follow the convention that C is an unspecified positive constant that may vary from
expression to expression, even across an inequality (but not across an equality); Also C

depends on Ω and p generally and the dependence on other parameters will be specified in
the parenthesis when necessary.
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The vector-valued Laplace operator of a vector field v can be equivalently defined by

∆v = 2 div Dv − grad (div v).

We will denote by DDD(Ω) the set of smooth functions (infinitely differentiable) with compact
support in Ω. Define

DDDσ(Ω) := {v ∈ DDD(Ω) : div v = 0 in Ω}

and

Lp0(Ω) :=

v ∈ Lp(Ω) :
∫
Ω

v = 0

 .
For p ∈ [1,∞), p′ denotes the conjugate exponent of p i.e. 1

p
+ 1

p′
= 1. We also introduce

the following space:

Hp(div,Ω) := {v ∈ Lp(Ω) : div v ∈ Lp(Ω)}

equipped with the norm

‖v‖Hp(div,Ω) = ‖v‖Lp(Ω) + ‖div v‖Lp(Ω).

It can be shown that DDD(Ω) is dense in Hp(div,Ω) for all p ∈ [1,∞). The closure of DDD(Ω)
in Hp(div,Ω) is denoted by Hp

0 (div,Ω) and it can be characterized by

Hp
0 (div,Ω) = {v ∈Hp(div,Ω) : v · n = 0 on Γ} . (3.10)

For p ∈ (1,∞), we denote by [Hp
0 (div,Ω)]′, the dual space of Hp

0 (div,Ω), which can be
characterized as (for details, see [103, Proposition 1.0.4]):

Proposition 3.2.1. A distribution f belongs to [Hp
0 (div,Ω)]′ iff there exists ψ ∈ Lp′(Ω)

and χ ∈ Lp′(Ω) such that f = ψ +∇χ. Moreover, we have the estimate :

‖f‖[Hp
0 (div,Ω)]′ ≤ inf

f=ψ+∇χ
max{‖ψ‖Lp′ (Ω), ‖χ‖Lp′ (Ω)}.

Next we introduce the spaces:

Lpσ,τ (Ω) := {v ∈ Lp(Ω) : div v = 0 in Ω,v · n = 0 on Γ}

equipped with the norm of Lp(Ω);

W1,p
σ,τ (Ω) := {v ∈W 1,p(Ω) : div v = 0 in Ω,v · n = 0 on Γ}

equipped with the norm of W 1,p(Ω) and H1
σ,τ (Ω) := W1,2

σ,τ (Ω). Also let us define

Ep(Ω) :=
{

(u, π) ∈W1,p(Ω)× Lp(Ω);−∆u+∇π ∈ Lr(p)(Ω)
}
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where r(p) = max
{

1, 3p
p+3

}
if p 6= 3

2

r(p) > 1 if p = 3
2 .

Let us now introduce some notations to describe the boundary. Consider any point P
on Γ and choose an open neighborhood W of P in Γ, small enough to allow the existence
of 2 families of C2 curves on W with the following properties: a curve of each family passes
through every point of W and the unit tangent vectors to these curves form an orthogonal
system (which we assume to have the direct orientation) at every point of W . The lengths
s1, s2 along each family of curves, respectively, are a possible system of coordinates in W .
We denote by τ1, τ2 the unit tangent vectors to each family of curves.

With these notations, we have v = ∑2
k=1 vkτk + (v · n)n where τk = (τk1, τk2, τk3) and

vk = v · τk. For simplicity of notations, we will denote,

Λv =
2∑

k=1

(
vτ ·

∂n

∂sk

)
τk . (3.11)

Here we state a relation between the Navier boundary condition and another type of
boundary condition involving curl (often called as ’Navier type boundary condition’) which
will be used in later work. For proof, see [11, Appendix A].

Lemma 3.2.2. For any v ∈W 2,p(Ω), we have the following equalities:

2 [(Dv)n]τ = ∇τ (v · n) +
(
∂v

∂n

)
τ

−Λv

and
curl v × n = −∇τ (v · n) +

(
∂v

∂n

)
τ

+ Λv.

Remark 3.2.3. In the particular case v ·n = 0 on Γ, we have the following equalities for
all v ∈W 2,p(Ω),

2 [(Dv)n]τ =
(
∂v

∂n

)
τ

−Λv and curl v × n =
(
∂v

∂n

)
τ

+ Λv

which implies that

2 [(Dv)n]τ = curl v × n− 2Λv. (3.12)

Note that on a flat boundary, Λ = 0 and 2 [(Dv)n]τ is actually equal to curl v × n.
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Let us recall the Green’s formula that plays an important role in this work, which is
proved in Lemma 2.3.5.

Theorem 3.2.4. Let Ω ⊂ R3 be a C0,1 bounded domain. Then,

(i) DDD(Ω)×D(Ω) is dense in Ep(Ω).

(ii) The linear mapping (v, π) 7→ [(Dv)n]τ , defined on DDD(Ω) × D(Ω) can be extended
to a linear, continuous map from Ep(Ω) to W− 1

p
,p(Γ). Moreover, we have the following

relation: for all (v, π) ∈ Ep(Ω) and ϕ ∈W1,p′
σ,τ (Ω),∫

Ω

(−∆v +∇π) ·ϕ = 2
∫
Ω

Dv : Dϕ− 2 〈[(Dv)n]τ ,ϕ〉W− 1
p ,p(Γ)×W

1
p ,p
′
(Γ)
. (3.13)

Finally, we recall that the infinitesimal generator of an analytic semigroup can be
characterized by the following theorem [15, Theorem 3.2, Chapter I]:

Theorem 3.2.5. Let A be a densely defined linear operator in a Banach space E . Then
A generates an analytic semigroup on E if and only if there exists M > 0 such that

‖ (λI − A)−1 ‖L(E ) ≤
M

|λ|

for all λ ∈ C with Reλ > 0.

3.3 Stokes operator on Lpσ,τ(Ω): Strong solutions

It is known that the closure of DDDσ(Ω) in Lp(Ω) is the Banach space Lpσ,τ (Ω) [113, Theorem
1.4]. We introduce now the unbounded operator (Ap,α,D(Ap,α)) on Lpσ,τ (Ω) whose defini-
tion depends on the regularity of the function α.

1. If α ∈ Lt(p)(Γ) with

t(p) =



2
3p
′ + ρ if 1 < p < 3

2

2 + ρ if 3
2 ≤ p ≤ 3, p 6= 2

2 if p = 2
2
3p+ ρ if p > 3

(3.14)

with ρ > 0 arbitrarily small, we define the Stokes operator Ap,α on Lpσ,τ (Ω) as:D(Ap,α) =
{
u ∈W 1,p

σ,τ (Ω) : ∆u ∈ Lp(Ω), 2[(Du)n]τ + αuτ = 0 on Γ
}

Ap,α(u) = −P (∆u) for u ∈ D(Ap,α)

(3.15)

(3.16)
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where P : Lp(Ω)→ Lpσ,τ (Ω) is an projection on Lpσ,τ (Ω). More precisely, for all ψ ∈ Lp(Ω),
P (ψ) = ψ − ∇π where π ∈ W 1,p(Ω) is a weak solution of the following weak Neumann
problem

 div(∇π −ψ) = 0 in Ω
(∇π −ψ) · n = 0 on Γ.

(3.17)

Notice that, when u ∈ D(Ap,α) but u 6∈W 2,p(Ω), the boundary term [(Du)n]τ is still well
defined as shown in [11, Lemma 2.4].

2. If α is such that

α ∈

W
1− 1

3
2 +ρ

, 32 +ρ
(Γ) if 1 < p ≤ 3

2

W 1− 1
p
,p(Γ) if p > 3

2

(3.18)

with ρ > 0 arbitrarily small, then we define the Stokes operator Ap,α on Lpσ,τ (Ω) as

D(Ap,α) =
{
u ∈W 2,p(Ω) ∩Lpσ,τ (Ω), 2[(Du)n]τ + αuτ = 0 on Γ

}
Ap,α(u) = −P (∆u) for u ∈ D(Ap,α).

(3.19)

(3.20)

Remark 3.3.1. If α satisfies (3.18), then α ∈ Lt(p)(Γ) as well.

Remark 3.3.2. When α satisfies (3.18) and u ∈ D(Ap,α), Ap,αu = Au where A is the
following operator:

A ∈ L
(
W1,p

σ,τ (Ω),
(
W1,p′

σ,τ (Ω)
)′)

defined by 〈Au,v〉 = a(u,v)

where a(u,v) = 2
∫
Ω

Du : Dv̄ +
∫
Γ

αuτ · v̄τ .

More precisely, using Green’s formula (3.13) and the relation 2[(Du)n]τ = −αuτ on Γ, we
can deduce 〈Au,v〉 = 〈Ap,αu,v〉 for any v ∈W1,p′

σ,τ (Ω) and u ∈ D(Ap,α).

3.3.1 Analyticity

In order to show that (D(Ap,α), Ap,α) generates an analytic semi group on Lpσ,τ (Ω), some
estimate on the resolvent (λI + Ap)−1, λ ∈ C is needed.
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Chapter 3. Semigroup theory for the Stokes operator with Navier boundary condition on Lp spaces

Suppose that α ∈ Lt(p)(Γ) and f ∈ Lpσ,τ (Ω). Then by (3.15)-(3.16), u ∈ D(Ap,α) and
(λI + Ap,α)u = f is equivalent to u ∈W 1,p(Ω) satisfying



λu−∆u+∇π = f in Ω
div u = 0 in Ω
u · n = 0 on Γ
2[(Du)n]τ + αuτ = 0 on Γ

(3.21)
(3.22)
(3.23)
(3.24)

for some π ∈ Lp(Ω).

If on the other hand, α satisfies (3.18), u ∈ D(Ap,α) and (λI + Ap,α)u = f for f ∈
Lpσ,τ (Ω), is equivalent to (u, π) ∈W 2,p(Ω)×W 1,p(Ω) satisfying (3.21)-(3.24).

Proposition 3.3.3. Suppose that α ∈ Lt(p)(Γ), f ∈ [Hp′

0 (div,Ω)]′ with p ∈ (1,∞) and
λ ∈ C. Then, u ∈ W 1,p(Ω) solves (3.21)-(3.24) for some π ∈ Lp(Ω) is equivalent to
u ∈W1,p

σ,τ (Ω) satisfies:


aλ(u,ϕ) = 〈f , ϕ̄〉 ∀ ϕ ∈W1,p′
σ,τ (Ω)

where:

aλ(u,ϕ) = λ
∫
Ω

u · ϕ̄+ 2
∫
Ω

Du : Dϕ̄+ 〈αuτ , ϕ̄τ 〉Γ
(3.25)

and 〈, 〉Γ denotes the duality product between W− 1
p
,p(Γ) and W

1
p
,p′(Γ).

Proof. It follows from the trace theorem and Hölder inequality that for all u ∈ W1,p
σ,τΩ)

and ϕ ∈W1,p′
σ,τ (Ω), αuτ · ϕ̄τ ∈ L1(Γ) (cf. Lemma 2.3.8) and∫

Γ

αuτ · ϕ̄τ ≤ C‖α‖Lt(p)(Γ)‖u‖W1,p
σ,τ (Ω)‖ϕ‖W1,p′

σ,τ (Ω).

It easily then follows that aλ(·, ·) is a continuous sesqui-linear form on W1,p
σ,τ (Ω)×W1,p′

σ,τ (Ω).
When λ = 0, it is the sesqui-linear form a(·, ·) introduced in the previous chapter. The
proof of this proposition then follows exactly the same steps and uses the same arguments
as in Proposition 2.3.10. �

The following theorem gives the existence of a unique solution of the resolvent problem
and also the resolvent estimate.

Theorem 3.3.4. For any ε ∈ (0, π), let λ ∈ Σε := {λ ∈ C∗ : | arg λ| ≤ π − ε}, f ∈ L2(Ω)
and α ∈ L2(Γ). Then,
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3.3.1. Analyticity

1. the problem (3.21)-(3.24) has a unique solution (u, π) ∈H1(Ω)× L2
0(Ω).

2. there exists a constant Cε > 0, independent of f , α and λ, such that the solution u
satisfies the following estimates:

‖u‖L2(Ω) ≤
1

Cε|λ|
‖f‖L2(Ω) (3.26)

‖Du‖L2(Ω) ≤
1

Cε
√
|λ|
‖f‖L2(Ω) (3.27)

and

‖π‖L2(Ω) ≤ C(Ω)
1 + 1

Cε

1 + 1√
|λ|

 ‖f‖L2(Ω). (3.28)

3. moreover, if either (i) Ω is not axisymmetric or (ii) Ω is axisymmetric and α ≥ α∗ > 0,
then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(

1 + 1
Cε

)
‖f‖L2(Ω) (3.29)

and if α is a constant, then

‖u‖H2(Ω) + ‖π‖H1(Ω) ≤ C(Ω)
(

1 + 1
Cε

)
‖f‖L2(Ω) (3.30)

where C(Ω) does not depend on α.

Remark 3.3.5. Note that the estimates (3.26) and (3.27) give better decay for λ large
and enables us having a good semigroup theory, in general. On the other hand, estimate
(3.29) gives uniform bound on the solution, especially when λ is small.

Proof. 1. In view of Proposition 3.3.3, it is enough to prove the existence and uniqueness of
a solution to (3.25). Also λ = 0 case corresponds to the existence result for the stationary
Stokes problem Theorem 2.4.1. So we may consider λ 6= 0.

By Korn inequality, ‖u‖L2(Ω) + ‖Du‖L2(Ω) is an equivalent norm on H1(Ω). Then using
the following inequality (cf. [6, Lemma 4.1]):

∀ λ ∈ Σε,∀ a, b > 0, |λa+ b| ≥ Cε (|λ|a+ b) for some constant Cε > 0

and α ≥ 0, we get,

|aλ(u,u)| ≥ Cε

|λ|‖u‖2
L2(Ω) + 2‖Du‖2

L2(Ω) +
∫
Γ

α|uτ |2
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Chapter 3. Semigroup theory for the Stokes operator with Navier boundary condition on Lp spaces

≥ Cε min (|λ|, 2)
(
‖u‖2

L2(Ω) + ‖Du‖2
L2(Ω)

)
≥ Cε min (|λ|, 2)‖u‖2

H1(Ω).

Hence, for all λ ∈ Σε, aλ is coercive on H1
σ,τ (Ω) and therefore, by Lax-Milgram lemma, we

get a unique solution in H1
σ,τ (Ω) of the problem (3.25) which proves 1.

2. From the variational formulation, we have,

aλ(u,u) =
∫
Ω

f · ū

which gives
|aλ(u,u)| ≤ ‖f‖L2(Ω)‖u‖L2(Ω).

But we also have,
|aλ(u,u)| ≥ Cε

(
|λ|‖u‖2

L2(Ω) + 2‖Du‖2
L2(Ω)

)
.

Thus
‖u‖L2(Ω) ≤

1
Cε|λ|

‖f‖L2(Ω)

and then
‖Du‖2

L2(Ω) ≤
1

2 Cε
‖f‖L2(Ω)‖u‖L2(Ω) ≤

1
2 |λ| C2

ε

‖f‖2
L2(Ω)

prove the inequalities (3.26) and (3.27).

From the equation (3.21), we may write, using (3.26) and (3.27),

‖π‖L2(Ω) ≤ ‖∇π‖H−1(Ω) ≤ C(Ω)
(
‖f‖L2(Ω) + ‖∆u‖H−1(Ω) + |λ|‖u‖L2(Ω)

)
≤ C(Ω)

(
‖f‖L2(Ω) + ‖Du‖L2(Ω) + |λ|‖u‖L2(Ω)

)
≤ C(Ω)

1 + 1
Cε

1 + 1√
2|λ|

 ‖f‖L2(Ω)

which gives (3.28).

3. Moreover, writing (3.21) as −∆u+∇π = f−λu, we deduce from the Stokes estimate
Theorem 2.4.3 in the case either (i) Ω is not axisymmetric or (ii) Ω is axisymmetric and
α ≥ α∗ > 0, the existence of a constant C > 0 which depends only on Ω such that

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖L2(Ω) + |λ|‖u‖L2(Ω)

)
≤ C(Ω)

(
1 + 1

Cε

)
‖f‖L2(Ω).

This provides the better bound (3.29) on u and π when λ is small.

Similarly, for constant α, the H2 estimate of the Stokes problem Theorem 2.4.5 yields

‖u‖H2(Ω) + ‖π‖H1(Ω) ≤ C(Ω)
(

1 + 1
Cε

)
‖f‖L2(Ω).

�
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In the next theorem we prove the analyticity of the semigroup generated by the Stokes
operator with Navier boundary condition on L2

σ,τ (Ω).

Theorem 3.3.6. For any α ∈ L2(Γ), the operator −A2,α, defined in (3.15)-(3.16) with
p = 2, generates a bounded analytic semigroup on L2

σ,τ (Ω).

Proof. Obviously D(A2,α) is dense in L2
σ,τ (Ω). Therefore, according to Theorem 3.2.5, it is

enough to prove the resolvent estimate. Now, by definition and from the previous theorem,
we have,

‖(λI + A2,α)−1‖ = sup
f∈L2

σ,τ (Ω)
f 6=0

‖(λI + A2,α)−1f‖L2(Ω)

‖f‖L2(Ω)
= sup

f∈L2
σ,τ (Ω)

‖u‖L2(Ω)

‖f‖L2(Ω)
≤ 1
Cε|λ|

.

Hence, the result. �

Next we extend the results of Theorem 3.3.4 for all p ∈ (1,∞).

Theorem 3.3.7. Suppose that p ∈ (1,∞), α satisfies (3.18) and λ ∈ Σε where Σε is
defined as in Theorem 3.3.4. Then for every f ∈ Lp(Ω), the problem (3.21)-(3.24) has a
unique solution (u, π) ∈W 2,p(Ω)×W 1,p(Ω) ∩ Lp0(Ω).

Proof. case (i): p > 2. Since from the assumption, f ∈ L2(Ω) and α ∈ L2(Γ), there
exists a unique solution (u, π) ∈ H1(Ω) × L2

0(Ω) of (3.21)-(3.24) by Theorem 3.3.4. Now
writing the equation (3.21) as −∆u +∇π = f − λu and since u ∈ H1(Ω) ↪→ L6(Ω), we
have f − λu ∈ Lp(Ω) for all p ≤ 6. Thus, using the regularity result in Theorem 2.5.9, we
obtain u ∈W 2,p(Ω) for all p ≤ 6.

Now for p > 6, we have u ∈ W 2,6(Ω) ↪→ L∞(Ω). Hence f − λu ∈ Lp(Ω) and by the
same regularity result, we get u ∈W 2,p(Ω) for all p > 6.

case (ii): 1 < p < 2. We first claim that (λI + A) is an isomorphism from W 1,q
σ,τ (Ω)

to (W 1,q′
σ,τ (Ω))′ for all q ≥ 2. Then the adjoint operator, λI + A∗ is also an isomorphism

from W 1,q′
σ,τ (Ω) to (W 1,q

σ,τ (Ω))′ with q′ ≤ 2. Then, for any f ∈ Lp
σ,τ (Ω) ⊂ (W 1,p′

σ,τ (Ω))′, there
exists a unique u ∈ W 1,p

σ,τ (Ω) such that (λI + A∗)u = f . Our second claim is that, since
f ∈ Lpσ,τ (Ω) it follows that u ∈ D(Ap,α) and A∗u = Ap,αu. This finally implies that
(λI + Ap,α)u = f .

First claim: For q > 2 and ` ∈ (W 1,q′
σ,τ (Ω))′ ⊂ (H1

σ,τ (Ω))′, from Lax Milgam lemma
there is a unique u ∈ H1

σ,τ (Ω) such that aλ(u,ϕ) = 〈`,ϕ〉 for all ϕ ∈ H1
σ,τ (Ω). Then,

a(u,ϕ) = 〈` − λu,ϕ〉 with ` − λu ∈ (W 1,q′
σ,τ (Ω))′. On the other hand, by Theorem 2.5.3

there exists a unique w ∈W 1,q
σ,τ (Ω) ⊂W 1,2

σ,τ (Ω) such that

a(w,ϕ) = 〈`− λu,ϕ〉 ∀ϕ ∈W 1,q′
σ,τ (Ω).
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It then follows that
a(w − u,ϕ) = 0 ∀ϕ ∈H1

σ,τ (Ω)

and by the uniqueness result Theorem 2.5.3, u = w in H1
σ,τ (Ω) and thus u ∈W 1,q

σ,τ (Ω).

Second claim: If f ∈ Lpσ,τ (Ω) with 1 < p < 2 and (λI + A∗)u = f with u ∈W 1,p
σ,τ (Ω),

then A∗u = f − λu =: g ∈ Lpσ,τ (Ω) which means a(u,ϕ) = (g,ϕ) for all ϕ ∈ W 1,p′
σ,τ (Ω).

It then follows by the regularity result Theorem 2.5.9 that (u, π) ∈ W 2,p(Ω) ×W 1,p(Ω)
with π defined by (3.17) for ψ = ∆u and u satisfies the boundary condition. In particular
u ∈ D(Ap,α). Then, using Remark 3.3.2, Apu = A∗u. �

Remark 3.3.8. Notice that though the two boundary conditions

curl u× n = 0 on Γ (3.31)

and

2[(Du)n]τ + αuτ = 0 on Γ (3.32)

are very much similar, as described in (3.12), but in the case of the Stokes problem with
Navier type boundary condition (3.31) on Lpσ,τ (Ω) the pressure is constant and hence does
not appear in the operator (see [5, Proposition 3.1]). On the contrary, the pressure term
does appear in the Stokes operator with Navier boundary condition (3.32).

Next we deduce Lp-resolvent estimate for all p ∈ (1,∞).

Theorem 3.3.9. Let λ ∈ C∗ with Reλ ≥ 0 and p ∈ (1,∞). Then for α ∈ Lt(p)(Γ) and for
any f ∈ Lp(Ω), the unique solution u ∈W 1,p(Ω) of (3.21)-(3.24) satisfies the estimate:

‖u‖Lp(Ω) ≤
C

|λ|
‖f‖Lp(Ω)

where C depends at most on p and Ω.

To prove the above theorem, we need to establish the following weak Reverse Hölder
estimate (as in [107, Lemma 6.2]):

Lemma 3.3.10. Let x0 ∈ Ω and 0 < r < c diam(Ω). Let (u, π) ∈ H1(B(x0, 2r) ∩ Ω) ×
L2(B(x0, 2r) ∩ Ω) satisfies the Stokes systemλu−∆u+∇π = 0, div u = 0 in B(x0, 2r) ∩ Ω

u · n = 0, 2 [(Du)n]τ + αuτ = 0 on B(x0, 2r) ∩ Γ
(3.33)
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where λ ∈ C∗ with Reλ ≥ 0 and α ∈ Lt(p)(Γ). Then, for any p ≥ 2, 1
r3

∫
Ω∩B(x0,r)

|u|p


1/p

≤ C

 1
r3

∫
Ω∩B(x0,2r)

|u|2


1/2

(3.34)

where C > 0 depends only on p and Ω.

Note that if B(x0, 2r) ∩ Γ = ∅, then we do not consider any boundary condition.

Proof. By a geometric consideration (since Γ is compact), we only need to establish the
estimate in two cases : (i) x0 ∈ Ω and B(x0, 3r) ⊂ Ω; (ii) x0 ∈ Γ.

The first case (i) follows from interior estimate (cf. [107, estimate 5.22]). The second
case (ii) concerns a boundary estimate. Here onwards, we denote the ball B(x0, R) by BR

and −
∫
ω f = 1

|ω|
∫
ω f .

1. Let r ≤ s < t ≤ 2r and consider a cut-off unction η ∈ C∞c (Bt) such that

η ≡ 1 on Bs, 0 ≤ η ≤ 1 and |∇η| ≤ C

t− s
.

Multiplying (3.33) by η2u and integrating by parts, we get,

0 = λ
∫

B2r∩Ω

η2|u|2 + 2
∫

B2r∩Ω

Du : D(η2u) +
∫

B2r∩Γ

αη2|uτ |2 −
∫

B2r∩Ω

(π − π0) div(η2u)

where π0 = −
∫
Bt∩Ω π. This gives, using the fact that div u = 0 in Ω,

λ
∫

B2r∩Ω

η2|u|2+2
∫

B2r∩Ω

η2|Du|2+
∫

B2r∩Γ

αη2|uτ |2 = −4
∫

B2r∩Ω

Du : η∇ηū+2
∫

B2r∩Ω

(π − π0)η∇ηū

where ∇ηū is the matrix ∇η ⊗ ū. Equating real and imaginary parts and using Cauchy’s
inequality, this implies

Reλ
∫

B2r∩Ω

η2|u|2 + 2
∫

B2r∩Ω

η2|Du|2 +
∫

B2r∩Γ

αη2|uτ |2

= −4 Re
∫

B2r∩Ω

Du : η∇ηū+ 2 Re
∫

B2r∩Ω

(π − π0)η∇ηū

≤ ε
∫

Ω∩B2r

η2|Du|2 + Cε

∫
Ω∩B2r

|∇η|2|u|2 + ε
∫

Ω∩B2r

η2|π − π0|2 + Cε

∫
Ω∩B2r

|∇η|2|u|2 (3.35)

and

Im λ
∫

B2r∩Ω

η2|u|2
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= −4 Im
∫

B2r∩Ω

Du : η∇ηū+ 2 Im
∫

B2r∩Ω

(π − π0)η∇ηū

≤ ε
∫

Ω∩B2r

η2|Du|2 + Cε

∫
Ω∩B2r

|∇η|2|u|2 + ε
∫

Ω∩B2r

η2|π − π0|2 + Cε

∫
Ω∩B2r

|∇η|2|u|2. (3.36)

Now adding (3.35) and (3.36) gives, since α > 0,

(Reλ+ | Im λ|)
∫

B2r∩Ω

η2|u|2 + 2
∫

B2r∩Ω

η2|Du|2

≤ ε
∫

Ω∩B2r

η2|Du|2 + Cε

∫
Ω∩B2r

|∇η|2|u|2 + ε
∫

Ω∩B2r

η2|π − π0|2.

Incorporating the properties of η, we obtain

|λ|
∫

Bs∩Ω

|u|2 +
∫

Bs∩Ω

|Du|2 ≤ C(Ω)
(t− s)2

∫
Ω∩Bt

|u|2 + ε
∫

Ω∩Bt

|π − π0|2. (3.37)

2. Next to estimate the pressure term, as π − π0 ∈ L2(Bt ∩ Ω), there exists a unique
ψ ∈H1(Bt ∩ Ω) such that div ψ = π − π0 in Bt ∩ Ω

ψ = 0 on ∂(Bt ∩ Ω)

satisfying

‖ψ‖H1(Bt∩Ω) ≤ C(Ω) ‖π − π0‖L2(Bt∩Ω). (3.38)

Multiplying (3.33) by ψ yields (replacing π by (π − π0) and extending ψ by 0 outside
Ω ∩Bt),

λ
∫

Ω∩Bt

u ·ψ + 2
∫

Ω∩Bt

Du : Dψ =
∫

Ω∩Bt

(π − π0) div ψ =
∫

Ω∩Bt

|π − π0|2

which gives, using (3.38),

‖π − π0‖L2(Ω∩Bt) ≤ C(Ω)
(
|λ|‖u‖L2(Ω∩Bt) + ‖Du‖L2(Ω∩Bt)

)
.

Plugging this estimate in (3.37), we obtain

|λ|
∫

Bs∩Ω

|u|2 +
∫

Bs∩Ω

|Du|2 ≤ C(Ω)
(t− s)2

∫
Ω∩Bt

|u|2 + ε
∫

Ω∩Bt

|Du|2 + ε|λ|
∫

Ω∩Bt

|u|2.
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From here, we deduce the following Caccioppoli inequality for Stokes system
∫

Bs∩Ω

|Du|2 ≤ C(Ω)
(t− s)2

∫
Bt∩Ω

|u|2

which follows from the general result [55, Lemma 0.5] setting f = |λ||u|2 + |Du|2, g =
|u|2, h = 0 and α = 2.

3. Therefore [94, Lemma 6.7] enables us to have the following reverse Hölder inequality,
 ∫

Ω∩Br

|u|2


1/2

≤ C(q)

 ∫
Ω∩B2r

|u|q


1/q

for any q > 0. (3.39)

Finally we claim that the above inequality implies (3.34). To prove that, let us define an
operator

T : Lp′(Ω ∩B2r)→ L2(Ω ∩Br)
v 7→ v.

Now for the adjoint map

T ∗ : L2(Ω ∩Br)→ Lp(Ω ∩B2r)

by definition, we can write,

〈T ∗u,f〉Lp(Ω∩B2r)×Lp′ (Ω∩B2r) = 〈u, Tf〉L2(Ω∩Br)×L2(Ω∩Br)

≤ C(p)r3( 1
2−

1
p′ )‖f‖Lp′ (Ω∩B2r)‖u‖L2(Ω∩Br)

where the last inequality comes from (3.39). This shows

‖T ∗u‖Lp(Ω∩B2r) ≤ C(p)r3( 1
2−

1
p′ )‖u‖L2(Ω∩Br).

Since T ∗u = u on Lp(Ω ∩Br), we then obtain
 ∫

Ω∩Br

|u|p


1/p

≤ C(p)r3( 1
2−

1
p′ )

 ∫
Ω∩Br

|u|2


1/2

which concludes (3.34) upon using ‖u‖L2(Ω∩Br) ≤ ‖u‖L2(Ω∩B2r). �

The following lemma, due to Shen [107, Lemma 6.3], contains the real variable argument
needed to complete the proof of Theorem 3.3.9.
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Lemma 3.3.11. Let p > 2 and Ω be a bounded Lipschitz domain in Rd. Suppose that:
(1) T is a bounded sublinear operator in L2(Ω;Cm) and ‖T‖L2→L2 ≤ C0;
(2) There exist constants 0 < β < 1 and N > 1 such that for any bounded measurable f
with suppf ⊂ Ω \ 3B,

 ∫
Ω∩B

|Tf |p
1/p

≤ N


 ∫

Ω∩2B

|Tf |2
1/2

+ sup
B′⊃B

 −∫
B′

|f |2
1/2

 (3.40)

where B = B(x, r) is a ball with x ∈ Ω and 0 < r < β diam(Ω). Then T is bounded on
Lq(Ω;Cm) for any 2 < q < p. Moreover, ‖T‖Lq→Lq is bounded by a constant depending on
at most d,m, β,N,C0, p, q and the Lipschitz character of Ω.

The definition of the Lipschitz character (used above) of a bounded Lipschitz domain
Ω can be found in [100, Sec. 5]. For convenience, we recall it.

A bounded domain Ω ⊂ Rn, n ≥ 2 is called a bounded Lipschitz domain if there exists
r0,M > 0 such that for each point x ∈ ∂Ω, there exists a Lipschitz continuous function
ηx : Rn−1 → R with ηx(0) = 0 and ‖∇ηx‖L∞(Rn−1) ≤M and a rotation Rx : Rn → Rn such
that for all 0 < r < r0,

Rx(Ω− {x}) ∩D(r) = Dηx(r)
Rx(∂Ω− {x}) ∩D(r) = Iηx(r)

where

D(r) := {(x′, xn) : |x′| < r, |xn| < 10n(M + 1)r}
Dηx(r) := {(x′, xn) : |x′| < r, ηx(x′) < xn < 10n(M + 1)r}
Iηx(r) := {(x′, xn) : |x′| < r, ηx(x′) = xn}.

Now let x1, ..., xN ∈ ∂Ω be such that {Uxi,r0}Ni=1 covers ∂Ω where Ux,r := {x} + R−1
x D(r).

Then a constant C > 0 is said to depend on the Lipschitz character of Ω if it depends on
M and N .

Proof of Theorem 3.3.9. By rescaling, we may assume that diam(Ω) = 1. Then for
λ ∈ C∗ with Reλ ≥ 0 and f ∈ L2(Ω), there exists a unique (u, π) ∈ H1(Ω) × L2

0(Ω)
satisfying (3.21)-(3.24). Also

|λ|
∫
Ω

|u|2 + 2
∫
Ω

|Du|2 +
∫
Γ

α|uτ |2 ≤ C
∫
Ω

|f ||u|
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where C depends only on Ω. By Hölder inequality, this implies

|λ|‖u‖L2(Ω) ≤ C0‖f‖L2(Ω)

where C0 depends only on Ω. Let us now define the operator Tλ by Tλ(f) = |λ|u. Then
Tλ is a bounded linear operator on L2(Ω) and ‖Tλ‖L2→L2 ≤ C0 which is the assumption
(1) in Lemma 4.2.6. We will show ‖Tλ‖Lq→Lq ≤ C for 2 < q < p using Lemma 4.2.6.

To verify the assumption (2) in Lemma 4.2.6, let B = B(x0, r) where x0 ∈ Ω and
0 < r < c. Let f ∈ L2(Ω) with suppf ⊂ Ω \ 3B. Sinceλu−∆u+∇π = 0, div u = 0 in Ω ∩ 3B

u · n = 0, 2 [(Du)n]τ + αuτ = 0 on Γ ∩ 3B

we may then apply Lemma 3.3.10 to obtain, 1
r3

∫
Ω∩B

|u|p
1/p

≤ C

 1
r3

∫
Ω∩2B

|u|2
1/2

.

It follows that  ∫
Ω∩B

|Tλ(f)|p
1/p

≤ C

 ∫
Ω∩2B

|Tλ(f)|2
1/2

where C depends only on p and Ω. Therefore by Lemma 4.2.6, we conclude that the
operator Tλ is bounded on Lq(Ω) for any 2 < q < p and that ‖Tλ‖Lq→Lq ≤ Cq where Cq
depends on at most q and Ω. Thus in view of the definition of Tλ, we have shown that for
any q > 2,

‖u‖Lq(Ω) ≤
Cq
|λ|
‖f‖Lq(Ω).

By duality, the estimate also holds for q ∈ (1, 2). �

As a conclusion, we have the following theorem:

Theorem 3.3.12. Let p ∈ (1,∞) and α as in (3.18). Then for all λ ∈ C∗ with Reλ ≥ 0
and f ∈ Lp(Ω), there exists a constant C > 0 depending on at most p and Ω such that the
unique solution (u, π) ∈ D(Ap,α)×W 1,p(Ω) ∩ Lp0(Ω) of (3.21)-(3.24) satisfies:

‖u‖Lp(Ω) ≤
C

|λ|
‖f‖Lp(Ω). (3.41)

If moreover α is a constant and either (i) Ω is not axisymmetric or (ii) Ω is axisymmetric
and α ≥ α∗ > 0, then

‖Du‖Lp(Ω) ≤
C√
|λ|
‖f‖Lp(Ω) (3.42)
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and

‖u‖W 2,p(Ω) ≤ C ‖f‖Lp(Ω). (3.43)

Proof. Estimate (3.41) follows from Theorem 3.3.9.

Let us now prove the estimate (3.42). From Gagliardo-Nirenberg inequality [3, Chapter
IV, Theorem 4.14, Theorem 4.17] and regularity estimate for the stationary Stokes problem
Theorem 2.6.15, we have,

‖Du‖Lp(Ω) ≤ C ‖u‖W 1,p(Ω) ≤ C ‖u‖1/2
W 2,p(Ω)‖u‖

1/2
Lp(Ω)

≤ C ‖f − λu‖1/2
Lp(Ω)‖u‖

1/2
Lp(Ω)

≤ C
(
‖f‖Lp(Ω) + |λ|‖u‖Lp(Ω)

)1/2
‖u‖1/2

Lp(Ω)

and estimate (3.42) follows using (3.41).

To prove (3.43) we again use Theorem 2.6.15 and (3.41) to obtain

‖u‖W 2,p(Ω) ≤ C ‖f − λu‖Lp(Ω) ≤ C ‖f‖Lp(Ω).

�

Finally we obtain our first main result:

Theorem 3.3.13. Let α be as in (3.18). The operator −Ap,α generates a bounded analytic
semigroup on Lpσ,τ (Ω) for all 1 < p <∞.

Proof. In view of Theorem 3.3.12, to apply Theorem 3.2.5 it remains to check that D(Ap,α)
is dense in Lpσ,τ (Ω). But this is immediate since DDDσ(Ω) ↪→ D(Ap,α) ↪→ Lpσ,τ (Ω) and by
definition DDDσ(Ω) is dense in Lpσ,τ (Ω). �

3.4 Stokes operator on [Hp′

0 (div,Ω)]′σ,τ

We first recall that if f ∈ [Hp′

0 (div,Ω)]′ (defined in (3.10)) and is such that divf ∈ Lp(Ω)
for some p ∈ (1,∞), then its normal trace (f ·n)|Γ is well defined and belongs to W−1− 1

p
,p(Γ)

[6, Corollary 3.7].

Let B be the closure of DDDσ(Ω) in [Hp′

0 (div,Ω)]′. Then, it can be shown that

B = [Hp′

0 (div,Ω)]′σ,τ :=
{
f ∈ [Hp′

0 (div,Ω)]′ : div f = 0 in Ω,f · n = 0 on Γ
}
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which is a Banach space with the norm of [Hp′

0 (div,Ω)]′ [6, Proposition 3.9]. Let Q :
[Hp′

0 (div,Ω)]′ → B be the orthogonal projection on B. We define the Stokes operator
Bp,α on B, as D(Bp,α) =

{
u ∈W 1,p(Ω) ∩B : ∆u ∈ [Hp′

0 (div,Ω)]′, 2[(Du)n]τ + αuτ = 0 on Γ
}

;
Bp,α(u) = −Q(∆u) for u ∈ D(Bp,α)

with α ∈ Lt(p)(Γ) where t(p) is defined in (3.14).

3.4.1 Analyticity

As in the previous section, we will now discuss the analyticity of the semigroup generated
by the Stokes operator Bp,α on [Hp′

0 (div,Ω)]′σ,τ .

Theorem 3.4.1. Let p ∈ (1,∞) and α ∈ Lt(p)(Γ). Then, for all λ ∈ C∗ such that
Reλ ≥ 0, and all f ∈ [Hp′

0 (div,Ω)]′, the problem (3.21)-(3.24) has a unique solution
(u, π) ∈W 1,p(Ω)× Lp0(Ω) satisfying

‖u‖[Hp′
0 (div,Ω)]′ ≤

C

|λ|
‖f‖[Hp′

0 (div,Ω)]′ (3.44)

for some constant C independent of λ and α.

Proof. 1. Existence: The proof of the existence and uniqueness of the solution follows
similar arguments as in the proof of Theorem 3.3.4 and Theorem 3.3.7. For p = 2 the exis-
tence and uniqueness of solution comes from Lax-Milgram lemma and De Rham theorem
for the pressure.

When p > 2, since f ∈ [Hp′

0 (div,Ω)]′ ⊂ [H2
0 (div,Ω)]′ and α ∈ Lt(p)(Γ) ⊂ L2(Γ), we

have the existence of the unique solution (u, π) ∈H1(Ω)× L2
0(Ω). We can now apply the

regularity result for weak solution of the stationary Stokes system Corollary 2.5.6, since
f − λu ∈ [Hp′

0 (div,Ω)]′ to obtain u ∈W 1,p(Ω).

For p < 2, the proof follows in the same way as in Corollary 2.5.6.

2. Estimate: Now to prove the estimate (3.44), consider the problem, λv −∆v +∇θ = F , div v = 0 in Ω
v · n = 0, 2[(Dv)n]τ + α̃vτ = 0 on Γ

where F ∈ Hp′

0 (div,Ω) and α̃ as in (3.18). Thanks to Theorem 3.3.7 and the estimate
(3.41), there exists unique (v, θ) ∈W 2,p′(Ω)× (W 1,p′(Ω) ∩ Lp

′

0 (Ω)) with the estimate

‖v‖Lp′ (Ω) ≤
C

|λ|
‖F ‖Lp′ (Ω) .
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As a result, we get,
‖v‖

Hp′
0 (div,Ω) ≤

C

|λ|
‖F ‖

Hp′
0 (div,Ω).

Now, for the solution (u, π) ∈W 1,p(Ω)× Lp(Ω) of the problem (3.21)-(3.24), we get,

‖u‖[Hp′
0 (div,Ω)]′ = sup

F∈Hp′
0 (div,Ω)
F 6=0

| 〈u,F 〉 |
‖F ‖

Hp′
0 (div,Ω)

= sup
F∈Hp′

0 (div,Ω)
F 6=0

| 〈u, λv −∆v +∇θ〉 |
‖F ‖

Hp′
0 (div,Ω)

= sup
F∈Hp′

0 (div,Ω)
F 6=0

| 〈λu−∆u+∇π,v〉 |
‖F ‖

Hp′
0 (div,Ω)

= sup
F∈Hp′

0 (div,Ω)
F 6=0

| 〈f ,v〉 |
‖F ‖

Hp′
0 (div,Ω)

≤ C

|λ|
‖f‖[Hp′

0 (div,Ω)]′

which is the required estimate. �

Theorem 3.4.2. Let p ∈ (1,∞) and α ∈ Lt(p)(Γ) with t(p) defined in (3.14). Then, for
f ∈ [Hp′

0 (div,Ω)]′, the unique solution (u, π) of (3.21)-(3.24) in D(Bp,α)× Lp0(Ω) is such
that the pressure π satisfies the following estimate in the case when (i) either Ω is not
axisymmetric or (ii) Ω is axisymmetric and α ≥ α∗ > 0:

‖π‖Lp(Ω) ≤ C ‖f‖[Hp′
0 (div,Ω)]′

for some constant C independent of λ and α.

Proof. By the regularity result of the stationary Stokes problem Theorem 2.6.11, we can
write

‖u‖W1,p(Ω) + ‖π‖Lp(Ω) ≤ C‖f − λu‖[Hp′
0 (div,Ω)]′

and the result follows using estimate (3.44). �

The analyticity of the semigroup generated by the Stokes operatorBp,α on [Hp′

0 (div,Ω)]′σ,τ
is now easily deduced from Theorem 3.4.1.

Theorem 3.4.3. Let α ∈ Lt(p)(Γ) with t(p) defined in (3.14). The operator −Bp,α gener-
ates a bounded analytic semigroup on [Hp′

0 (div,Ω)]′σ,τ for all 1 < p <∞.

Proof. In view of Theorem 3.4.1, to apply Theorem 3.2.5 it remains to check that D(Bp,α) is
dense in [Hp′

0 (div,Ω)]′σ,τ . But this is immediate since DDDσ(Ω) ↪→ D(Bp,α) ↪→ [Hp′

0 (div,Ω)]′σ,τ
and by definition DDDσ(Ω) is dense in [Hp′

0 (div,Ω)]′σ,τ . �
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3.5 Imaginary and Fractional powers

3.5.1 Imaginary powers

Our main purpose in this section is to prove local bounds on pure imaginary powers Aisp,α
and Bis

p,α of the Stokes operators defined in Section 3.3 and Section 3.4 respectively. A
complete theory of fractional powers of an operator (bounded or unbounded) can be found
in Komatsu [83].

Since these operators are non-negative operators, it then follows from the results in
[83] and in [114] that their powers are well, densely defined and closed linear operators on
Lpσ,τ (Ω) and [Hp′

0 (div,Ω)]′ with domain D(Aisp,α) and D(Bis
p,α) respectively.

Notice that in [5], it was comparatively straight forward to obtain the bounds on pure
imaginary powers, since with Navier type boundary condition, the Stokes operator actually
reduces to Laplace operator and thus they could borrow the well-established theory for
elliptic operators, which is not our case. Therefore we use the theory of interpolation-
extrapolation to make use of the established theory for similar operators and implement a
perturbation argument.

Theorem 3.5.1. Let α be as in (3.18) and if p ∈ (1, 3] suppose also that α ∈ L∞(Γ).
Then there exists an angle 0 < θ < π/2 and a constant C > 0 such that for any s ∈ R,

‖Aisp,α‖ ≤ C e|s|θ. (3.45)

Similarly, for α ∈ L∞(Γ), there exists an angle 0 < θ′ < π/2 and a constant C ′ > 0, such
that for any s ∈ R,

‖Bis
p,α‖ ≤ C ′ e|s|θ

′
. (3.46)

Proof. Since the proof of (3.46) is exactly similar to that of (3.45), we only show (3.45).
The proof of (3.45) is based on the theory of interpolation-extrapolation scales from [8].
A similar approach has been followed in [101], considering the perturbation of a different
operator than ours and for α constant.

1. Let us define X0 := Lpσ,τ (Ω) and A0 := λI + ANT , for λ > 0 and where ANT is the
Stokes operator with Navier-type boundary condition

u · n = 0, curl u× n = 0 on Γ.

i.e.  D(ANT ) =
{
u ∈W 2,p(Ω) ∩Lpσ,τ (Ω), curl u× n = 0 on Γ

}
ANT (u) = −P (∆u) for u ∈ D(ANT ).
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D(λI + Ap) = D(Ap) for λ > 0.

As indicated in the Introduction to this Section, the powers Aa0 of the operator A0 are well,
densely defined and closed linear operators on Lpσ,τ (Ω) with domain D(Aa0).

Now by [8, Theorems V.1.5.1 and V.1.5.4], (X0, A0) generates an interpolation-extrapolation
scale (Xa, Aa), a ∈ R with respect to the complex interpolation functor since A0 is a closed
operator on X0 with bounded inverse (cf. [5, Theorem 4.8]). More precisely, for every
a ∈ R, Xa is a Banach space, Xa ↪→ Xa−1 and Aa is an unbounded linear operator on Xa

with domain Xa+1 and for a > 0:

(i) Xa = (D(Aa0), ‖Aa0 · ‖)
(ii) Aa is the restriction of A0 on Xa.

Moreover, for any b ∈ (a, a+ 1),

Xb = [Xa, Xa+1]θ where 1
b

= 1− θ
a

+ θ

a+ 1 .

Similarly, let X]
0 := (X0)′ = Lp

′
σ,τ (Ω), A]0 := (A0)′. Then (X]

0, A
]
0) generates another

interpolation-extrapolation scale (X]
a, A

]
a), the dual scale by [8, Theorem V.1.5.12] and

(Xa)′ = X]
−a and (Aa)′ = A]−a for a ∈ R

where A′ denotes the dual of A. In the particular case a = −1/2, we obtain by definition,
an operator A−1/2 : X−1/2 → X−1/2 with

D(A−1/2) = X1/2 = [X0, X1]1/2. (3.47)

We now claim that

[X0, X1]1/2 = W 1,p
σ,τ (Ω) (3.48)

and then,

X−1/2 =
[
W 1,p′

σ,τ (Ω)
]′

(3.49)

will follow.

To prove (3.48), one inclusion is obvious. Indeed,

[X0, X1]1/2 ⊂ [Lpσ,τ (Ω),W 2,p
σ,τ (Ω)]1/2 = W 1,p

σ,τ (Ω).

And for the other inclusion, by (3.47) it is enough to prove that W 1,p
σ,τ (Ω) ⊂ D(A1/2

0 ). To
this end, first consider the operator (A]0)1/2 on Lp′σ,τ (Ω). Since A0 has a bounded inverse,
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(A]0)1/2 is an isomorphism from D((A]0)1/2) to Lp′σ,τ (Ω) [114, Theorem 1.15.2, part(e)] and
thus, for any F ∈ Lp′σ,τ (Ω), there exists a unique v ∈ D((A]0)1/2) such that (A]0)1/2v = F.
So, for all u ∈ D(A0),

‖A1/2
0 u‖Lpσ,τ (Ω) = sup

F∈Lp
′
σ,τ (Ω)

F6=0

∣∣∣〈A1/2
0 u,F

〉∣∣∣
‖F‖

Lp
′
σ,τ (Ω)

= sup
v∈D(A1/2

0 )
v 6=0

∣∣∣〈A1/2
0 u, (A]0) 1

2v
〉∣∣∣

‖(A]0) 1
2v‖

Lp
′
σ,τ (Ω)

= sup
v∈D(A1/2

0 )
v 6=0

|〈A0u,v〉|
‖(A]0) 1

2v‖
Lp
′
σ,τ (Ω)

= sup
v∈D(A1/2

0 )
v 6=0

|
∫

Ω λu · v + curl u · curl v|
‖(A]0) 1

2v‖
Lp
′
σ,τ (Ω)

≤ C‖u‖W 1,p(Ω). (3.50)

Now as D(A0) is dense in W 1,p
σ,τ (Ω), we get the inequality (3.50) for all u ∈W 1,p

σ,τ (Ω) which
gives the required embedding.

Now from [6, Theorem 6.1], we know that there exist constants M > 0 and θ ∈ (0, π2 )
such that

∀s ∈ R, ‖Ais0 ‖L(X0) ≤Me|s|θ.

It then follows from [8, Theorem V.1.5.5 (ii)] that

∀s ∈ R, ‖
(
A−1/2

)is
‖L(X−1/2) ≤Me|s|θ.

We call the operator A−1/2 the weak Stokes operator subject to Navier-type boundary
condition. Since A−1/2 is the closure of A0 in X−1/2 and X1 ↪→ X1/2, it follows that
A−1/2u = A0u for u ∈ X1 and thus, for all v ∈W 1,p′

σ,τ (Ω),〈
v, A−1/2u

〉
(X−1/2)′×X−1/2

= 〈v, A0u〉 = λ
∫
Ω

u · v +
∫
Ω

curl u · curl v

where we only used integration by parts. Now using the density of X1 in X1/2, we obtain
the relation, for all (u,v) ∈W 1,p

σ,τ (Ω)×W 1,p′
σ,τ (Ω),〈

A−1/2u,v
〉

= λ
∫
Ω

u · v +
∫
Ω

curl u · curl v. (3.51)

2. Next let us define an unbounded operator AN,w on X−1/2, with domain X1/2, as, for
all (u,v) ∈W 1,p

σ,τ (Ω)×W 1,p′
σ,τ (Ω),

〈AN,wu,v〉 =
∫
Ω

curl u · curl v + 〈Λu,v〉Γ +
∫
Γ

αu · v (3.52)
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where Λ is defined in (3.11). We call the operator AN,w the weak Stokes operator subject
to Navier boundary conditions. Comparing (3.52) with (3.51) implies

〈(λI + AN,w)u,v〉 =
〈
A−1/2u,v

〉
+ 〈Λαu,v〉Γ (3.53)

where the linear operator Λα : X−1/2 → X−1/2, given by,

〈Λαu,v〉Γ = 〈Λu,v〉Γ +
∫
Γ

αu · v

is a lower order perturbation of A−1/2. Therefore, as α ∈ L∞(Γ), it follows from [101,
Proposition 3.3.9],

∀s ∈ R : ‖ [(λI + AN,w)]is ‖L(X−1/2) ≤Me|s|θA

for some constant θA ∈ (0, π/2). Since, from Corollary 2.5.6, AN,w has a bounded inverse
it follows from [101, Proposition 3.3.9] again, that

‖AisN,w‖L(X−1/2) ≤Me|s|θA .

3. Now we want to transfer this ’bounded imaginary power’ property to the strong
Stokes operator Ap with Navier boundary condition, defined in (3.19)-(3.20) on Lpσ,τ (Ω).
For that we will apply again Amann’s theory of interpolation-extrapolation scales. Let
Xw

0 :=
[
W 1,p′

σ,τ (Ω)
]′

, Aw0 := AN,w and Xw
1 := W 1,p

σ,τ (Ω). By [8, Theorems V.1.5.1 and
V.1.5.4], the pair (Xw

0 , A
w
0 ) generates an interpolation-extrapolation scale (Xw

a , A
w
a ), a ∈ R

with respect to the complex interpolation functor and by [8, Theorem V.1.5.5 (ii)], for any
a ∈ R,

∀s ∈ R, ‖(Awa )is‖L(Xw
a ) ≤Me|s|θA .

We will show in the remaining part of this proof that the operator Aw1/2 : Xw
3/2 ⊂ Xw

1/2 →
Xw

1/2 coincides with Ap where the strong Stokes operator Ap : D(Ap) ⊂ Lpσ,τ (Ω)→ Lpσ,τ (Ω)
is defined in (3.19)-(3.20). Observe that, by (3.47), (3.49),

Xw
0 = X−1/2 and Xw

1 = X1/2.

Therefore,
Xw

1/2 = [Xw
0 , X

w
1 ]1/2 =

[
X−1/2, X1/2

]
1/2

= X0 = Lpσ,τ (Ω)

and the operator Aw1/2 is the restriction of Aw0 on Xw
1/2. Hence, Aw1/2u = Aw0 u = AN,wu for

any u ∈ D(Aw1/2) = Xw
3/2 and then, for any ϕ ∈W 1,p′

σ,τ (Ω),〈
ϕ, Aw1/2u

〉(
Xw

1/2

)′
×Xw

1/2

= 〈ϕ, AN,wu〉(
Xw

1/2

)′
×Xw

1/2

(3.54)
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=
∫
Ω

curl u · curl ϕ+ 〈Λu,ϕ〉Γ +
∫
Γ

αu ·ϕ. (3.55)

On the other hand, for any (v,ϕ) ∈ D(Ap)×W 1,p′
σ,τ (Ω), it follows from integration by parts

that

〈ϕ, Apv〉(
Xw

1/2

)′
×Xw

1/2

=
∫
Ω

curl v · curl ϕ+ 〈Λv,ϕ〉Γ +
∫
Γ

αv ·ϕ. (3.56)

Now for any given u ∈ D(Aw1/2), Aw1/2u ∈ Lpσ,τ (Ω) and then there exists a unique v ∈ D(Ap)
such that

Apv = Aw1/2u

since Ap is onto. Thus it follows from (3.54) that for any ϕ ∈W 1,p′
σ,τ (Ω),

〈ϕ, Apv〉(
Xw

1/2

)′
×Xw

1/2

= 〈ϕ, AN,wu〉(
Xw

1/2

)′
×Xw

1/2

This in turn implies by (3.55) and (3.56) that

〈ϕ, AN,wu〉(
Xw

1/2

)′
×Xw

1/2

= 〈ϕ, AN,wv〉(
Xw

1/2

)′
×Xw

1/2

.

Hence, v = u by injectivity of AN,w. Similarly, if v ∈ D(Ap) is given, then there exists a
unique u ∈ D(Aw1/2) such that Aw1/2u = Apv since Apv ∈ Lpσ,τ (Ω) and Aw1/2 is onto. By the
same argument as above, we obtain u = v showing that D(Ap) = D(Aw1/2) and Ap = Aw1/2.
Thus finally we get that,

∀s ∈ R, ‖Aisp ‖L(Lpσ,τ (Ω)) ≤Me|s|θA .

�

3.5.2 Fractional powers

The above result allows us to study the domains ofAβp , β ∈ R. It can be shown thatD(Aβp,α)
is a Banach space with the graph norm which is equivalent to the norm ‖Aβp,α · ‖Lp(Ω), since
Ap,α has bounded inverse. Note that for any β ∈ R, the map u → ‖Aβp,αu‖Lp(Ω) defines a
norm on D(Aβp,α) due to the injectivity of Aβp,α.

Theorem 3.5.2. For all p ∈ (1,∞), D(A1/2
p,α) = W 1,p

σ,τ (Ω) with equivalent norms.

Proof. Since the pure imaginary power of Ap,α is bounded and satisfies estimate (3.45),
using the result [114, Theorem 1.15.3], we get that

D(A1/2
p,α) = [Lpσ,τ (Ω),D(Ap,α)] 1

2
.
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Then it is enough to show that

[Lpσ,τ (Ω),D(Ap,α)] 1
2

= W1,p
σ,τ (Ω)

with equivalent norms, which is already proved in (3.48). �

Remark 3.5.3. If Ω is not obtained by rotation around an axis i.e. if Ω is not axisymmet-
ric, the norms ‖u‖W 1,p(Ω) and ‖Du‖Lp(Ω) are equivalent for u ∈ W 1,p(Ω) with u · n = 0
on Γ, as shown in Proposition 2.3.11. As a result we have the following equivalence for all
u ∈ D(A1/2

p,α):
‖Du‖Lp(Ω) ' ‖A1/2

p,αu‖Lp(Ω).

Our next result is an embedding theorem of Sobolev type for domains of fractional
powers which will be applied to deduce the so-called Lp − Lq estimates for the solution of
the evolutionary Stokes equation.

Theorem 3.5.4. For all 1 < p <∞ and for all β ∈ R such that 0 < β < 3
2p , the following

embedding holds :
D(Aβp,α) ↪→ Lq(Ω) where 1

q
= 1
p
− 2β

3 .

Proof. First observe that for 0 ≤ θ ≤ 1, by the result [114, Theorem 1.15.3] and the
estimate (3.45), we can write

D(Aθp,α) = [Lpσ,τ (Ω),D(λI + Ap,α)]θ ↪→ [Lp(Ω),W 2,p(Ω)]θ ↪→W 2θ,p(Ω) ↪→ Lq̃(Ω) (3.57)

where
1
q̃

= 1
p
− 2θ

3 when p <
3
2θ .

Now since β < 3
2 , we write β = θ + k with 0 ≤ θ < 1 and k = 0 or 1. If k = 0, the

result follows from (3.57). If k = 1, consider m large so that D(Amp,α) ⊂ D(Aβq,α) where
1
q

= 1
p
− 2β

3 . If we set 1
q0

= 1
p
− 2θ

3 , then 1
q

= 1
q0
− 2

3 and q0 <
3
2 by assumptions on p and β.

Hence as the consequence of the embedding (3.57), we get

D(Aθp,α) ↪→ Lq0(Ω) and D(Aq0,α) ↪→ Lq(Ω).

Thus it follows that for all u ∈ D(Amp,α),

‖u‖Lq(Ω) ≤ C‖Akq0,αu‖Lq0 (Ω) ≤ C‖Aβp,αu‖Lp(Ω).

Finally by density of D(Amp,α) in D(Aβp,α) (since D(Aβq,α) ⊂ D(Aβp,α) by the definition of q),
we complete the proof. �
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3.6 The homogeneous Stokes problem

In this section, with the help of the semigroup theory, we solve the homogeneous time
dependent Stokes problem:

∂u

∂t
−∆u+∇π = 0, div u = 0 in Ω× (0, T ),

u · n = 0, 2[(Du)n]τ + αuτ = 0 on Γ× (0, T ),
u(0) = u0 in Ω

(3.58)

for which the analyticity of the semigroups, considered before give a unique solution sat-
isfying the usual regularity.

3.6.1 Strong solution

We start with the strong solution of the problem (3.58).

Theorem 3.6.1. Let p ∈ (1,∞) and α be as in (3.18). Then for u0 ∈ Lpσ,τ (Ω), the problem
(3.58) has a unique solution u(t) satisfying

u ∈ C([0,∞),Lpσ,τ (Ω)) ∩ C((0,∞),D(Ap,α)) ∩ C1((0,∞),Lpσ,τ (Ω)) (3.59)

and if Ω is C∞, then

u ∈ Ck((0,∞),D(Alp,α)) ∀ k ∈ N, ∀ l ∈ N\{0}. (3.60)

Also we have the estimates, for some constant C > 0 independent of α,

‖u(t)‖Lp(Ω) ≤ C‖u0‖Lp(Ω) (3.61)

and ∥∥∥∥∥∂u(t)
∂t

∥∥∥∥∥
Lp(Ω)

≤ C

t
‖u0‖Lp(Ω). (3.62)

Moreover, if α is a constant and either (i) Ω is not axisymmetric or (ii) Ω is axisymmetric
and α ≥ α∗ > 0, then

‖Du(t)‖Lp(Ω) ≤
C√
t
‖u0‖Lp(Ω) (3.63)

‖u(t)‖W 2,p(Ω) ≤
C

t
‖u0‖Lp(Ω) (3.64)

and

‖∇π‖Lp(Ω) ≤
C

t
‖u0‖Lp(Ω). (3.65)
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Proof. Since −Ap,α generates an analytic semigroup for every u0 ∈ Lpσ,τ (Ω), the initial
value problem (3.58) has a unique solution u(t) = T (t)u0, by [99, Corollary 1.5, Chapter
4, page 104]. Also, from [99, Theorem 7.7, Chapter 1, Page 30], we get that

‖T (t)‖ ≤ C for some constant C > 0, independent of α.

As a result, we obtain the estimate (3.61). Also, with the help of [99, point (d), Theorem
5.2, Chapter 2], we get the estimate (3.62). To prove the estimate (3.63), we need to
proceed as in the proof of (3.42), hence we skip it. The estimate (3.64) follows from (3.62)
and using the fact that ‖v‖W 2,p(Ω) ' ‖Ap,αv‖Lp(Ω) for v ∈ D(Ap,α).

Further, using the usual regularity properties of semi group and by [99, Lemma 4.2,
chapter 2], we can deduce the regularity (3.59) and (3.60). The estimate on the pressure
term (3.65) can be deduced from the equation using (3.62) and (3.64). �

The estimates (3.61), (3.62) and (3.63) allow us to deduce the following regularity
result.

Corollary 3.6.2. Let p ∈ (1,∞) and α be as in (3.18). Moreover, u0 ∈ Lpσ,τ (Ω), 0 < T <

∞ and (u, π) be the unique solution of problem (3.58) given by theorem 3.6.1. Then, for
all 1 ≤ q < 2, we have,

u ∈ Lq(0, T ;W 1,p(Ω)), π ∈ Lq(0, T ;Lp0(Ω)) and ∂u

∂t
∈ Lq(0, T ; [Hp′

0 (div,Ω)]′).

Proof. Since we have the Korn inequality

‖u(t)‖W 1,p(Ω) ≤ ‖u(t)‖Lp(Ω) + ‖Du(t)‖Lp(Ω)

and u(t) satisfies the estimates (3.61) and (3.63), we get,

‖u(t)‖qW 1,p(Ω) ≤ C(1 + t−q/2)‖u0‖Lp(Ω)

which implies u ∈ Lq(0, T ;W 1,p(Ω)) only for 1 ≤ q < 2 and for all 0 < T <∞.

Moreover, as the operator Bp,α : D(Bp,α)→ [Hp′

0 (div,Ω)]′ is an isomorphism, we have
the equivalence of norm, for any v ∈ D(Bp,α), ‖Bp,αv‖[Hp′

0 (div,Ω)]′ ' ‖v‖D(Bp,α) and here
Bp,αu = ∂u

∂t
. Thus ∂u

∂t
∈ Lq(0, T ; [Hp′

0 (div,Ω)]′).

Finally from the equation ∇π = ∆u− ∂u
∂t

, the regularity of π follows. �

Theorem 3.6.3. Let α satisfy (3.18). Then for all p ≤ q < ∞ and u0 ∈ Lpσ,τ (Ω), there
exists δ > 0 such that the unique solution u(t) of the problem (3.58) belongs to Lq(Ω) and
satisfies, for all t > 0 :

‖u(t)‖Lq(Ω) ≤ C(Ω, p) e−δtt−3/2(1/p−1/q)‖u0‖Lp(Ω). (3.66)
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Moreover, the following estimates also hold

‖Du(t)‖Lq(Ω) ≤ C(Ω, p) e−δtt−3/2(1/p−1/q)−1/2‖u0‖Lp(Ω), (3.67)

∀ m,n ∈ N, ‖ ∂
m

∂tm
Anp,αu(t)‖Lq(Ω) ≤ C(Ω, p) e−δtt−(m+n)−3/2(1/p−1/q)‖u0‖Lp(Ω). (3.68)

Note that all the above constants C(Ω, p) are independent of α.

Proof. First observe that in the case of p = q, the estimates (3.66), (3.67) and (3.68) follow
from the classical semi group theory and the result that ‖T (t)‖ ≤ Me−δt ([99, Theorem
6.13, Chapter 2]).

Suppose that p 6= q. Let s ∈ R such that 3
2(1

p
− 1

q
) < s < 3

2p and set 1
p0

= 1
p
− 2s

3 . It is
clear that p < q < p0. Since for all t > 0 and for all l ∈ R+, u(t) ∈ D(Alp,α), thanks to
Theorem 3.5.4, u(t) ∈ D(Asp,α) ↪→ Lp0(Ω). Now 1

q
= α

p0
+ 1−α

p
for α = 1/p−1/q

1/p−1/p0
∈ (0, 1).

Thus u(t) ∈ Lq(Ω) and

‖u(t)‖Lq(Ω) ≤ C‖u(t)‖αLp0 (Ω)‖u(t)‖1−α
Lp(Ω) ≤ C‖Asp,αT (t)u0‖αLp(Ω)‖T (t)u0‖1−α

Lp(Ω)

≤ C e−δtt−αs‖u0‖Lp(Ω)

where the last estimate follows from [99, Chapter 2, Theorem 6.13].

In order to prove (3.68) we first obtain from (3.59): ∂m

∂tm
Anp,αu(t) ∈ Lq(Ω) for any

m,n ∈ N and then

‖ ∂
m

∂tm
Anp,αu(t)‖Lq(Ω) = ‖A(m+n)

p,α T (t)u0‖Lq(Ω) ≤ Ce−δtt−(m+n)−3/2(1/p−1/q)‖u0‖Lp(Ω).

To prove estimate (3.67), we first deduce from (3.68) for m = 1 and n = 0:

‖Ap,αu(t)‖Lq(Ω) ≤ Ce−δtt−1− 3
2( 1

p
− 1
q ). (3.69)

Then, from Gagliardo Niremberg’s inequality, we obtain:

‖Du(t)‖Lq(Ω) ≤ C ‖u(t)‖W 1,q(Ω) ≤ C ‖u(t)‖1/2
W 2,q(Ω)‖u(t)‖1/2

Lq(Ω)

≤ C ‖u(t)‖1/2
D(Aq,α)‖u(t)‖1/2

Lq(Ω) ≤ C ‖Aq,αu(t)‖1/2
Lq(Ω)‖u(t)‖1/2

Lq(Ω)

Thus (3.67) follows from (3.66) and (3.69). �

Proof of Theorem 3.1.2. This essentially follows from Theorem 3.6.1 and Theorem 3.6.3.
�
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3.6.2 Weak solution

The following result says that if the initial data is in [Hp′

0 (div,Ω)]′, we have the weak
solution for the homogeneous problem (3.58). Here, as in Theorem 3.6.1, we use the
analyticity of the semi group generated by the operator Bp,α and the fact that ‖T (t)‖ ≤
Me−δt.

Theorem 3.6.4. Let 1 < p <∞ and α ∈ Lt(p)(Γ) where t(p) defined in (3.14). Then, for
all u0 ∈ [Hp′

0 (div,Ω)]′, the problem (3.58) has a unique solution u(t) with the regularity

u ∈ C([0,∞), [Hp′

0 (div,Ω)]′) ∩ C((0,∞),D(Bp,α)) ∩ C1((0,∞), [Hp′

0 (div,Ω)]′)

and
u ∈ Ck((0,∞),D(Bl

p,α)) ∀ k ∈ N, ∀ l ∈ N\{0}.

Also there exists constants C > 0, independent of α and δ > 0 such that for all t > 0,

‖u(t)‖[Hp′
0 (div,Ω)]′ ≤ Ce−δt‖u0‖[Hp′

0 (div,Ω)]′

and ∥∥∥∥∥∂u(t)
∂t

∥∥∥∥∥
[Hp′

0 (div,Ω)]′
≤ C

e−δt

t
‖u0‖[Hp′

0 (div,Ω)]′ .

Moreover, if (i) either Ω is not axisymmetric or (ii) Ω is axisymmetric and α ≥ α∗ > 0,
then

‖u‖W 1,p(Ω) ≤ C
e−δt

t
‖u0‖[Hp′

0 (div,Ω)]′

and
‖∇π‖[Hp′

0 (div,Ω)]′ ≤ C
e−δt

t
‖u0‖[Hp′

0 (div,Ω)]′ .

In the same way as we deduced in Corollary 3.6.2, we can have the following regularity
result from Theorem 3.6.4.

Corollary 3.6.5. Let p ∈ (1,∞) and α ∈ Lt(p)(Γ) where t(p) defined in (3.14). Moreover,
suppose u0 ∈ [Hp′

0 (div,Ω)]′, 0 < T <∞ and (u, π) be the unique solution of problem (3.58)
given by theorem 3.6.4. Then, for all 1 ≤ q < 2, we have

u ∈ Lq(0, T ;Lp(Ω)).

Proof. We know the interpolation inequality

‖u(t)‖Lp(Ω) ≤ ‖u(t)‖1/2
W 1,p(Ω)‖u(t)‖1/2

W−1,p(Ω).

Now using the estimates in Theorem 3.6.4 and the fact that [Hp′

0 (div,Ω)]′ ↪→W−1,p(Ω) in
the above inequality, we get the result. �
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3.7 The non-homogeneous Stokes problem

Here we discuss the non-homogeneous Stokes problem:

∂u

∂t
−∆u+∇π = f , div u = 0 in Ω× (0, T ),

u · n = 0, 2[(Du)n]τ + αuτ = 0 on Γ× (0, T ),
u(0) = u0 in Ω.

(3.70)

It is known that if −A generates a bounded analytic semigroup on a Banach space X, then
we can construct a strong solution of

u′ +Au = f for a.e. t ∈ (0, T ), u(0) = a (3.71)

if f is Hölder continuous in time with values in X. But the analyticity of e−tA is not
sufficient to deduce the existence of solutions of (3.71) for general f ∈ Lp(0, T ;X) unless
X is a Hilbert space. Therefore, we use the result on abstract Cauchy problem by Giga
and Sohr [61, Theorem 2.3] which used the notion of ζ-convexity. For completeness, we
recall the definition of ζ-convexity (see [23], also refer to [102]):

A Banach space X is said to be ζ-convex if there exists a symmetric biconvex function
ζ on X ×X such that ζ(0, 0) > 0 and

ζ(x, y) ≤ ‖x+ y‖ if ‖x‖ ≤ 1 ≤ ‖y‖.

The concept of ζ-convexity is stronger than that of reflexivity. For application purpose, it
is important to recall [61] that X is ζ-convex iff for some 1 < s <∞, the truncated Hilbert
transform

(Hεf)(t) = 1
π

∫
|τ |>ε

f(t− τ)
τ

dτ, f ∈ Ls(R, X)

converges as ε → 0 for almost all t ∈ R and there is a constant C = C(s, x) independent
of f such that

‖Hf‖Ls(R,X) ≤ C‖f‖Ls(R,X)

where (Hf)(t) = lim
ε→0

(Hεf)(t).

The result in [61, Theorem 2.3] is useful in two senses : (i) it can be used even when
A does not have a bounded inverse (though in our case, both Ap and Bp have bounded
inverse) and (ii) the constant in the estimate is independent of time T , hence gives global
in time results.

Here we introduce the notation for the space, for any 1 < p, q <∞,

D
1
q
,p

A =

v ∈ X : ‖v‖
D

1
q ,p

A

= ‖v‖X +
(∫ ∞

0
‖t1−

1
qAe−tAv‖pX

dt

t

)1/p

<∞
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which actually agrees with the real interpolation space (D(A), X)1−1/q,p when e−tA is an
analytic semigroup. First we deduce the strong solution of the Stokes system (3.70) and
obtain Lp − Lq estimates.

Proof of Theorem 3.1.3. Since Lpσ,τ (Ω) is ζ-convex [61, page 81] and Ap,α satisfies the
estimate (3.45), all the assumptions of [61, Theorem 2.3] are fulfilled with A = Ap,α and
X = Lpσ,τ (Ω). As a result, the regularity of u and ∂u

∂t
follow. The regularity of π comes

from the fact that

∇π = f − ∂u

∂t
+ ∆u. (3.72)

Also we get the estimate

∫ T

0

∥∥∥∥∥∂u∂t
∥∥∥∥∥
q

Lp(Ω)
dt+

∫ T

0
‖Ap,αu‖qLp(Ω)dt ≤ C

∫ T

0
‖f(t)‖qLp(Ω)dt+ ‖u0‖q

D
1− 1

q ,q

Ap,α


which yields (3.7) using the fact that Ap,αu = −∆u+∇π. �

In the same way, using A = Bp,α and X = [Hp′

0 (div,Ω)]′σ,τ in [61, Theorem 2.3], since
[Hp′

0 (div,Ω)]′σ,τ is ζ-convex [6, Proposition 2.16] and Bp,α satisfies the estimate on the pure
imaginary power (3.46), we get the weak solution of the problem (3.70) with corresponding
estimates as follows:

Theorem 3.7.1. Let 0 < T ≤ ∞, 1 < p, q <∞ and α ∈ Lt(p)(Γ) where t(p) be defined in
(3.14). Then for every f ∈ Lq(0, T ; [Hp′

0 (div,Ω)]′σ,τ ) and u0 ∈ D
1− 1

q
,q

Bp,α there exists a unique
solution (u, π) of (3.70) satisfying the properties :

u ∈ Lq(0, T0;W 1,p(Ω)) for all T0 ≤ T if T <∞ and T0 <∞ if T =∞,

π ∈ Lq(0, T ;Lp0(Ω)), ∂u

∂t
∈ Lq(0, T, [Hp′

0 (div,Ω)]′σ,τ ),

∫ T

0

∥∥∥∥∥∂u∂t
∥∥∥∥∥
q

[Hp′
0 (div,Ω)]′

dt+
∫ T

0
‖u‖qW 1,p(Ω)dt+

∫ T

0
‖π‖qLp(Ω)/Rdt

≤ C

∫ T

0
‖f‖q

[Hp′
0 (div,Ω)]′

dt+ ‖u0‖q
D

1− 1
q ,q

Bp,α

 .
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3.8 Nonlinear problem

In this section, we consider the initial value problem for the Navier-Stokes system with
Navier boundary condition :

∂u

∂t
−∆u+ (u · ∇)u+∇π = 0, div u = 0 in Ω× (0, T ),

u · n = 0, 2[(Du)n]τ + αuτ = 0 on Γ× (0, T ),
u(0) = u0 in Ω.

(3.73)

The semi group theory formulated in Section 3.3, 3.4 and 3.5 for the Stokes operator
provides us the necessary properties with which we can obtain some existence, uniqueness
and regularity result for the non-linear problem as well. Here we want to employ the results
of [58] for the abstract semi linear parabolic equation of the form

ut +Au = Fu, u(0) = a (3.74)

where Fu represents the nonlinear part and A is an elliptic operator. This abstract theory
gives the existence of a local solution u(t) for certain class of Fu. The solution can be ex-
tended globally also, provided norm of the initial data is sufficiently small. Moreover, this
solution belongs to Lq(0, T ;Lp) with suitably chosen p, q. Since, u ∈ Lq(0, T ;Lp) is equiva-
lent of saying ‖u(t)‖Lp(Ω) ∈ Lq(0, T ), this gives the asymptotic behaviour of ‖u(t)‖Lp(Ω) as
t → 0 and t → ∞. Also we mention the interesting article [29] for a discussion on differ-
ent types of solutions of incompressible Navier-Stokes equations with Dirichlet boundary
condition and different approaches to obtain those.

To apply [58, Theorem 1 and Theorem 2], we need to verify the hypothesis therein,
which we state below for convenience:

For a closed subspace Ep of Lp(Ω), let P : Lp(Ω) → Ep be a continuous projection
for p ∈ (1,∞) such that the restriction of P on Cc(Ω), the space of continuous functions
with compact support, is independent of p and Cc(Ω) ∩ Ep be dense in Ep. Let e−tA be a
strongly continuous operator on Ep for all p ∈ (1,∞). Also, there exists constants n,m ≥ 1
such that for a fixed T ∈ (0,∞), the estimate

‖e−tAf‖Lp(Ω) ≤M‖f‖Ls(Ω)/t
σ, f ∈ Es, t ∈ (0, T )(A)

holds with σ = (1
s
− 1

p
) n
m

for p ≥ s > 1 and constant M depending only on p, s, T .

Moreover, let Fu be written as
Fu = LGu
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Chapter 3. Semigroup theory for the Stokes operator with Navier boundary condition on Lp spaces

where L is a closed, linear operator, densely defined from Lp(Ω) to Eq for some q > 1 such
that for some γ, 0 ≤ γ < m, the estimate

‖e−tALf‖Lp(Ω) ≤ N1‖f‖Lp(Ω)/t
γ/m, f ∈ Ep, t ∈ (0, T )(N1)

holds with N1 depending only on T and p, for all p ∈ (1,∞) and G is a nonlinear mapping
from Ep to Lh(Ω) such that for some β > 0, the estimate

‖Gv −Gw‖Lh(Ω) ≤ N2‖v − w‖Lp(Ω)
(
‖v‖βLp(Ω) + ‖w‖βLp(Ω)

)
, G(0) = 0(N2)

holds with 1 ≤ h = p/(1 + β) and N2 depending only on p, for all p ∈ (1,∞).

With these assumptions, the next Theorem follows directly from [58, Theorem 1 and
Theorem 2].

Theorem 3.8.1. For u0 ∈ Lrσ,τ (Ω) and α ∈ W 1− 1
r
,r(Γ), r ≥ 3, α ≥ 0, there exists T0 > 0

and a unique solution u(t) of (3.73) on [0, T0) such that

u ∈ C([0, T0);Lrσ,τ (Ω)) ∩ Lq(0, T0;Lpσ,τ (Ω))(3.75)

t1/qu ∈ C([0, T0);Lpσ,τ (Ω)) and t1/q‖u‖Lp(Ω) → 0 as t→ 0

with 2
q

= 3
r
− 3

p
, p, q > r. Moreover, there exists a constant ε > 0 such that if ‖u0‖Lr(Ω) < ε,

then T0 can be taken as infinity for r = 3.

Let (0, T?) be the maximal interval such that u solves (3.73) in C((0, T?);Lrσ,τ (Ω)), r >
3. Then

‖u(t)‖Lr(Ω) ≥ C(T? − t)(3−r)/2r

where C is independent of T? and t.

Proof. As our Stokes operator has all the same properties and estimates satisfied by the
Stokes operator with Dirichlet boundary condition, we are exactly in the same set up
as in [58] and hence the proof goes similar to that. However, we briefly review it for
completeness.

Let Ep be Lpσ,τ (Ω) and P : Lp(Ω) → Lpσ,τ (Ω) be the Helmholtz projection, defined in
(3.17). It is trivial to see that P is independent of p ∈ (1,∞) on Cc(Ω) and Cc(Ω)∩Lpσ,τ (Ω)
is dense in Lpσ,τ (Ω). The Stokes operator Ap,α on Lpσ,τ (Ω) is defined in (3.19)-(3.20) with
dense domain and −Ap,α generates bounded analytic semigroup on Lpσ,τ (Ω) for all p ∈
(1,∞) also (cf. Theorem 3.3.13). Applying P on both sides of the Navier-Stokes system
(3.73) gives

ut + Ap,αu = −P (u · ∇)u, u(0) = u0
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which is obviously in the form (3.74) with Fu = −P (u · ∇)u.

We now need to verify the assumptions (A), (N1) and (N2). Since −Ap,α generates a
bounded analytic semigroup with bounded inverse, we have (cf. [99, Chapter 2, Theorem
6.13])

∀f ∈ Lsσ,τ (Ω), ‖Aσs,αe−tAs,αf‖Ls(Ω) ≤M‖f‖Ls(Ω)/t
σ.

As D(Aσs,α) is continuously embedded in W 2σ,s(Ω), this together with the Sobolev embed-
ding theorem yields (A) with m = 2, n = 3.

Next we want to write the nonlinear term Fu. Since div u = 0, we have (u · ∇)ui =∑3
j=1∇j(ujui). If we define g : R3 → R9 by

(g(x))ij = −xixj

and G : Lpσ,τ (Ω)→ (Lp(Ω))9 by
Gu(x) = g(u(x))

and L : (Lp(Ω))9 → Lqσ,τ (Ω) by

Lgij =
3∑
j=1

P∇jgij

which is a linear operator, it implies Fu = LGu. Also it is easy to see from Hölder
inequality that

|g(y)− g(z)| ≤ N2|y − z|(|y|+ |z|), g(0) = 0

which gives in turn (N2) with β = 1.

Finally

‖e−tAp,αLf‖Lp(Ω) = ‖A1/2
p,αe

−tApA−1/2
p,α Lf‖Lp(Ω) ≤

C

t1/2
‖A−1/2

p,α Lf‖Lp(Ω)

and since A−1/2
p,α L is bounded in Lp(Ω) (cf. [59, Lemma 2.1]), the assumption (N1) is

verified for γ = 1. This completes the proof. �

Next we show that the solution of (3.73) given in the above Theorem in the integral
form is actually regular enough and satisfies (3.73).

Theorem 3.8.2. Let u0 ∈ Lrσ,τ (Ω), r ≥ 3 and u(t) be the unique solution of (3.73) given
by Theorem 3.8.1. Then

u ∈ C((0, T∗],D(Ar,α)) ∩ C1((0, T∗];Lrσ,τ (Ω))
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Proof. As in the previous Theorem, the proof follows exactly the same way as in the
case of the Dirichlet boundary condition in [59]. Since the Stokes operator with Navier
boundary condition, defined in (3.19)-(3.20), have all the same properties as for the Stokes
operator with Dirichlet boundary condition, [59, Theorem 2.5] gives (with f = 0) that
u ∈ C((0, T∗],D(Ap,α)). And u ∈ C1((0, T∗];Lrσ,τ (Ω)) follows from [47, Lemma 2.14] (with
f = 0). �

Next we show that regular solutions satisfy energy inequality provided the initial con-
dition is in L2

σ,τ (Ω).

Proposition 3.8.3. Let u0 ∈ L2
σ,τ (Ω) and u be a regular solution of (3.73) on (0, T0)(T0 <

∞) satisfying (3.75). Then

u ∈ L∞(0, T0;L2
σ,τ (Ω)) ∩ L2(0, T0;H1(Ω))

and satisfies the energy equality

1
2

∫
Ω

|u(t)|2 + 2
t∫

0

∫
Ω

|Du|2 +
t∫

0

∫
Γ

α|uτ |2 = 1
2

∫
Ω

|u0|2.

Proof. The proof follows the same reasoning as in [58, Proposition 1, Section 5]. �

3.9 The limit as α→∞

Let us denote now uα the solutions of the unsteady Stokes or Navier-Stokes equation with
NBC for a given slip coefficient α ≥ 0 and a fixed initial data u0. A very formal argument
suggests that when α → ∞, we may expect that uα → u∞ in some sense, where u∞ is
the solution of the same equation, with the same initial data, but with Dirichlet boundary
condition. The existence of solutions u∞ for such a problem, for a suitable set of initial data
has been proved for example in [113, Theorem 1.1, Chapter III] for the Stokes equation
and [113, Theorem 3.1, Chapter III] for the Navier Stokes equation.

This question has already been considered in [80] for Ω a two dimensional domain and
1
α
∈ L∞(Γ). The author proves in Theorem 9.2 that when ‖ 1

α
‖L∞(Γ) → 0 and u0 ∈H3(Ω)∩

H1
0 (Ω)∩L2

σ,τ (Ω), the solution of problem (3.1)-(3.5) converges to the solution of the Navier-
Stokes problem with Dirichlet boundary condition in L∞(0, T ;L2(Ω)) ∩ L2(0, T ; Ḣ1(Ω)) ∩
L2(0, T ;L2(Γ)) ([80, Theorem 9.2]).

Our results on this problem are based on the uniform estimates of the solutions with
NBC with respect to the parameter α proved in the previous Sections. Then, we may only
consider the case where the function α is a non negative constant. But, on the other hand,
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our convergence result in the Hilbert case, with the same rate of convergence as in [80]
only needs the initial data to satisfy u0 ∈H1

0 (Ω)∩L2
σ,τ (Ω) and we also obtain convergence

results for the non Hilbert cases.

In the first two results of this Section, we prove that when α is a constant and the
initial data is such that u0 ∈ D(Ap,α) for all α sufficiently large, the solutions of the
Stokes equation with Navier boundary conditions (3.58) converge in the energy space to
the solutions of the Stokes equation with Dirichlet boundary condition obtained in [57].
Moreover, we also obtain estimates on the rates of convergence.

Theorem 3.9.1. Let u0 ∈ H1
0 (Ω) with div u0 = 0 in Ω, α > 0 be a constant and

Tα(t) : L2
σ,τ (Ω)→ L2

σ,τ (Ω) the semigroup generated by the Stokes operator A2,α, defined in
(3.15)-(3.16). Then for any T <∞,

Tα(t)u0 → T∞(t)u0 in L2(0, T ;H1(Ω)) as α→∞(3.76)

where T∞(t) is the semigroup generated by the Stokes operator with Dirichlet boundary
condition [57]. Also we have,

t∫
0

∫
Ω

|D(Tα(t)u0 − T∞(t)u0)|2 +
T∫

0

∫
Γ

|Tα(t)u0 − T∞(t)u0|2 ≤
C

α
.(3.77)

Proof. i) Let us denote uα := Tα(t)u0. Then uα is the solution of the Stokes problem
with Navier boundary condition (3.58), given by Theorem 3.6.1 where πα is the associated
pressure. So uα satisfies the following energy equality

1
2

∫
Ω

|uα(T )|2 + 2
T∫

0

∫
Ω

|Duα|2 + α

T∫
0

∫
Γ

|uατ |2 = 1
2

∫
Ω

|u0|2

which shows that as α→∞,

Duα is bounded in L2(0, T ;L2(Ω))

and
uατ is bounded in L2(0, T ;L2(Γ)).

Therefore, uα is bounded in L2(0, T ;H1(Ω)). Hence πα is also bounded in L2(0, T ;L2(Ω))
since ‖B2v‖[H2

0 (div,Ω)]′ ' ‖v‖H1(Ω) for all v ∈ D(B2). This deduces that ∂uα
∂t

is as well
bounded in L2(0, T ;H−1(Ω)). So there exists (u∞, π∞) ∈ L2(0, T ;H1(Ω))×L2(0, T ;L2(Ω))
with ∂u∞

∂t
∈ L2(0, T ;H−1(Ω)) such that up to a subsequence,

(uα, πα) ⇀ (u∞, π∞) weakly in L2(0, T ;H1(Ω))× L2(0, T ;L2(Ω)) as α→∞
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and
∂uα
∂t

⇀
∂u∞
∂t

weakly in L2(0, T ;H−1(Ω)).

Also, by Aubin-Lions Lemma, we have

uα → u∞ in L2(0, T ;L6−ε(Ω)) for any ε > 0.

Next we claim that (u∞, π∞) satisfies the following Dirichlet problem

∂u∞
∂t
−∆u∞ +∇π∞ = 0, div u∞ = 0 in Ω× (0, T )

u∞ = 0 on Γ× (0, T )
u∞(0) = u0 in Ω.

(3.78)

Indeed, for any v ∈ C1([0, T ];H1
0,σ(Ω)) where we denote H1

0,σ(Ω) = H1
0 (Ω) ∩L2

σ,τ (Ω), the
weak formulation satisfied by (uα, πα) is,

T∫
0

〈
∂uα
∂t

,v

〉
H−1(Ω)×H1

0 (Ω)
+ 2

T∫
0

∫
Ω

Duα : Dv = 0.(3.79)

Then passing limit as α→∞, we obtain

T∫
0

〈
∂u∞
∂t

,v

〉
H−1(Ω)×H1

0 (Ω)
+ 2

T∫
0

∫
Ω

Du∞ : Dv = 0.(3.80)

Also writing the boundary condition satisfies by uα in the following way,

uατ = − 2
α

[(Duα)n]τ

and since [(Duα)n]τ is bounded in C((0, T ),H1/2(Γ)) [due to (3.59)], passing limit as
α→∞ shows that u∞ = 0 on Γ× (0, T ).

In order to show that u∞(0) = u0, we can write from (3.79), for any v ∈ C1([0, T ];H1
0,σ(Ω))

with v(T ) = 0,

−
T∫

0

∫
Ω

uα ·
∂v

∂t
+ 2

T∫
0

∫
Ω

Duα : Dv =
∫
Ω

u0 · v(0)

and similarly from (3.80),

−
T∫

0

∫
Ω

u∞ ·
∂v

∂t
+ 2

T∫
0

∫
Ω

Du∞ : Dv =
∫
Ω

u∞(0) · v(0).
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As v(0) is arbitrary, we thus conclude that u∞(0) = u0. This proves the claim that
(u∞, π∞) solves the Dirichlet problem (3.78).

ii) It remains to prove the estimates and the strong convergence of (uα, πα) to (u∞, π∞).
Note that (vα, pα) := (uα − u∞, πα − π∞) satisfies the following problem

∂vα
∂t
−∆vα +∇pα = 0, div vα = 0 in Ω× (0, T )

vα · n = 0, 2[(Dvα)n]τ + αvατ = −2[(Du∞)n]τ on Γ× (0, T )
vα(0) = 0 in Ω.

(3.81)

Multiplying the above system by vα, we obtain the following energy estimate, for any
T <∞,

1
2

∫
Ω

|vα(t)|2 + 2
T∫

0

∫
Ω

|Dvα|2 +
T∫

0

∫
Γ

α|vατ |2 = 2
T∫

0

〈[(Du∞)n]τ ,vατ 〉Γ .(3.82)

If u0 ∈ H1
0 (Ω) ∩ L2

σ,τ (Ω), then u∞ ∈ L2(0, T ;H2(Ω)) (cf. [113, Proposition 1.2, Chapter
III]) and thus the term in the right hand side can be estimated as

T∫
0

∫
Γ

[(Du∞)n]τ · vατ ≤ ‖u∞‖L2(0,T ;H2(Ω))‖vα‖L2(0,T ;L2(Γ)).

As vα → 0 in L2(0, T ;L2(Γ)) (since vα ⇀ 0 in L2(0, T ;H 1
2 (Γ)) and H 1

2 (Γ) is compact
in L2(Γ)), the above estimate shows that the rate of convergence of ‖vα‖L2(0,T ;L2(Γ)) is
1
α
‖u∞‖L2(0,T ;H2(Ω)). Hence the strong convergence result (3.76) and the estimate (3.77)

follow. �

In order to prove the convergence result for any p ∈ (1,∞), we need to use some
compactness argument. But due to unavailability of the energy estimate for general p 6= 2,
some more regularity of the solution of (3.58), hence more regular initial data is required.

Theorem 3.9.2. Let p ∈ (1,∞), Tα(t), T∞(t) be defined as in Theorem 3.9.1 and u0 ∈
W 2,p

0 (Ω) ∩Lpσ,τ (Ω). Then for any T <∞, as α→∞,

Tα(t)u0 → T∞(t)u0 in C([0, T ]; D(A1/2
p,α))(3.83)

and

Tα(t)u0 → T∞(t)u0 in Ck(0, T ; D(Alp,α)) ∀k ∈ N, ∀l ∈ N \ {0}.(3.84)

Also if we assume u0 ∈ D(A2
p,α), then the following convergence rate can be obtained, for

any 1 < q <∞,

‖ ∂
∂t

(Tα(t)u0 − T∞(t)u0) ‖Lq(0,T ;Lp(Ω)) + ‖Tα(t)u0 − T∞(t)u0‖Lq(0,T ;W 2,p(Ω)) ≤
C

α
.(3.85)
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Proof. First we claim the following set theoretic equality

W 2,p
0 (Ω) ∩Lpσ,τ (Ω) = ∩

α≥1
D(Ap,α).

Indeed, it is obvious to see that

∩
α≥1

D(Ap,α) = {u ∈W 2,p(Ω) ∩W 1,p
0 (Ω) ∩Lpσ,τ (Ω) : [(Du)n]τ = 0 on Γ}.

Let us denote the set on the right hand side of the above relation by E. It is then enough
to show E ⊆W 2,p

0 (Ω) ∩ Lpσ,τ (Ω). To simplify, assuming Ω = R3
+, we get that if u = 0 on

Γ, then [(Du)n]τ = 0 iff (∂u1
∂x3

, ∂u2
∂x3

, 0) = 0. Taking into account the fact that div u = 0 in
Ω, this implies ∂u

∂n
= 0 on Γ. Hence the claim.

i) Since u0 ∈ D(Ap,α) for every α large enough,

uα ∈ C([0, T ];W 2,p
σ,τ (Ω)) ∩ C1([0, T ];Lpσ,τ (Ω)) is bounded as α→∞.

So by compactness, there exists u∞ ∈ C[0, T ;W 1,p
σ,τ (Ω)) such that up to a subsequence,

uα → u∞ in C([0, T ];W 1,p
σ,τ (Ω)).

Also by De Rham’s theorem, there exists π∞ ∈ C([0, T ];Lp(Ω)) such that πα → π∞ in
C([0, T ];Lp(Ω)). In fact, as uα ∈ Ck(0, T ; D(Alp)) is bounded uniformly for any k ∈ N and
l ∈ N\{0}, we get that u∞ ∈ Ck(0, T ; D(Alp)). We now claim that (u∞, π∞) satisfies the
Stokes equation with Dirichlet boundary condition. Indeed if we write the system (3.58)
as 

∂uα
∂t
−∆uα +∇πα = 0, div uα = 0 in Ω× (0, T )

uα · n = 0, uατ = − 2
α

[(Duα)n]τ on Γ× (0, T )

uα(0) = u0 in Ω

(3.86)

passing the limit α→∞, we obtain that u∞ satisfies the system (3.78) which is given by
T∞(t)u0, with associated pressure π∞. Note that we use uα is continuous up to t = 0 to
show that u∞ satisfies the initial data. Thus, by the hypothesis on u0, the convergence
result (3.83) and (3.84) follow.

ii) Next to deduce the rate of convergence, consider the difference between the systems
(3.86) and (3.78). The system satisfied by (vα, pα) := (uα − u∞, πα − π∞) is therefore

∂vα
∂t
−∆vα +∇pα = 0, div vα = 0 in Ω× (0, T )

vα · n = 0, vατ = − 2
α

[(Duα)n]τ on Γ× (0, T )

vα(0) = 0 in Ω.

(3.87)
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We then reduce the system (3.87) to a problem with homogeneous boundary data to apply
the known estimates for Stokes problem for example, [61, Theorem 2.8]. For any α > 0
and t ≥ 0, let (wα(t), zα(t)) satisfies the system

−∆wα(t) +∇zα(t) = 0, div wα(t) = 0, wα(t)|Γ = uα|Γ(t).

Since we have assumed u0 ∈ D(A2
p,α), we get the improved regularity [82, Theorem 4.4.7,

Chapter 4] uα ∈ C1([0,∞);W 2,p
σ,τ (Ω)) which gives ∂uα

∂t
|Γ(t) ∈ W 2− 1

p
,p(Ω) for all t ≥ 0 .

Thus the regularity result for Stationary Stokes system with Dirichlet boundary condition
[31] yields that ∂

∂t
wα(t) ∈W 2,p(Ω) for all t ≥ 0. We also obtain the estimate

‖wα‖C1([0,T ];W 2,p(Ω)) ≤ C‖uα‖
C1([0,T ];W 2− 1

p ,p(Γ))
≤ C

α
‖[(Duα)n]τ‖

C1([0,T ];W 2− 1
p ,p(Γ))

.(3.88)

Note that the above continuity constant C is independent of α. Then the substitution
Vα := vα −wα reduces the system (3.87) to,

∂Vα
∂t
−∆Vα +∇pα = −∂wα

∂t
, div Vα = 0 in Ω× (0, T )

Vα = 0 on Γ× (0, T )
Vα(0) = −wα(0) in Ω.

Hence the maximal regularity result [61, Theorem 2.8] leads us to,

Vα ∈ Lq(0, T ;W 2,p
0 (Ω)) with ∂Vα

∂t
∈ Lq(0, T ;Lpσ(Ω)) for any 1 < q <∞

and the estimate

T∫
0

∥∥∥∥∥∂Vα∂t
∥∥∥∥∥
q

Lp(Ω)
+

T∫
0

‖ −∆Vα +∇pα‖qLp(Ω) ≤ C

 T∫
0

‖∂wα

∂t
‖qLpσ(Ω) + ‖wα(0)‖W 2,p(Ω)


with C = C(Ω, p, q) > 0 independent of α. Therefore, together with (3.88), we obtain

T∫
0

∥∥∥∥∥∂vα∂t
∥∥∥∥∥
q

Lp(Ω)
+

T∫
0

‖ −∆vα +∇pα‖qLp(Ω) ≤
C

α

since ‖[(Duα)n]τ‖
C1([0,T ];W 2− 1

p ,p(Γ))
is bounded for all α large. This concludes the proof. �

We prove now our two results on the convergence as α → ∞ of the solutions to the
Navier Stokes equation and begin with the case where u0 belongs to an L2-type space.
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Proof of Theorem 3.1.4. We proceed as in the linear case.

i) From Proposition 3.8.3 we can see that as α→∞,

Duα is bounded in L2(0, T ;L2(Ω))

and
uατ is bounded in L2(0, T ;L2(Γ)).

Therefore, uα is bounded in L2(0, T ;H1(Ω)). And since ‖B2,αv‖[H2
0 (div,Ω)]′ ' ‖v‖H1(Ω) for

any v ∈ D(B2,α), πα is as well bounded in L2(0, T ;L2(Ω)). This implies ∂uα
∂t

is also bounded
in L2(0, T ;H−1(Ω)). Hence, there exists (u∞, π∞) ∈ L2(0, T ;H1(Ω)) × L2(0, T ;L2(Ω))
with ∂u∞

∂t
∈ L2(0, T ;H−1(Ω)) such that up to a subsequence,

(uα, πα) ⇀ (u∞, π∞) weakly in L2(0, T ;H1(Ω))× L2(0, T ;L2(Ω)) as α→∞

and
∂uα
∂t

⇀
∂u∞
∂t

weakly in L2(0, T ;H−1(Ω)).

Also, by Aubin-Lions compactness result,

uα → u∞ in L2(0, T ;L6−ε(Ω)) for any ε > 0.

Next we show that (u∞, π∞) satisfies the Dirichlet problem (3.8). Indeed, for any
v ∈ C1([0, T ];H1

0,σ(Ω)), the weak formulation of the problem (3.73) is, for 0 < t ≤ T ,

t∫
0

〈
∂uα
∂t

,v

〉
H−1(Ω)×H1

0 (Ω)
+ 2

t∫
0

∫
Ω

Duα : Dv +
t∫

0

∫
Ω

(uα · ∇)uα · v = 0.(3.89)

Then passing limit as α→∞, we obtain

t∫
0

〈
∂u∞
∂t

,v

〉
H−1(Ω)×H1

0 (Ω)
+ 2

t∫
0

∫
Ω

Du∞ : Dv +
t∫

0

∫
Ω

(u∞ · ∇)u∞ · v = 0.(3.90)

To pass to the limit in the non-linear term, we used the standard relation∫
Ω

(uα · ∇)uα · v = −
∫
Ω

(uα · ∇)v · uα.

Also writing the boundary condition satisfied by uα in the following way,

uατ = − 2
α

[(Duα)n]τ
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and since [(Duα)n]τ is bounded in L2(0, T ;H1/2(Γ)) [since u0 ∈ H1
σ,τ (Ω) implies uα is

bounded in L2(0, T ;H2(Ω)) (the deduction follows exact same proof in [113, Theorem 3.11,
Chapter 3], due to the fact that ‖u‖H2(Ω) ≤ C(Ω)‖A2,αu‖L2(Ω))], passing limit as α →∞
shows that u∞ = 0 on Γ× (0, T ).

In order to prove u∞(0) = u0, we write from (3.89), for any v ∈ C1([0, T ];H1
0,σ(Ω))

with v(T ) = 0,

−
T∫

0

∫
Ω

uα ·
∂v

∂t
+ 2

T∫
0

∫
Ω

Duα : Dv +
T∫

0

∫
Ω

(uα · ∇)uα · v =
∫
Ω

u0 · v(0)

and similarly from (3.90),

−
T∫

0

∫
Ω

u∞ ·
∂v

∂t
+ 2

T∫
0

∫
Ω

Du∞ : Dv +
T∫

0

∫
Ω

(u∞ · ∇)u∞ · v =
∫
Ω

u∞(0) · v(0).

As v(0) is arbitrary, we thus conclude u∞(0) = u0.

ii) To show the estimates and the strong convergence of (uα, πα) to (u∞, π∞), setting
vα = uα − u∞ and pα = πα − π∞, it solve the following problem

∂vα
∂t
−∆vα + (uα · ∇)uα − (u∞ · ∇)u∞ +∇pα = 0, div vα = 0 in Ω× (0, T )

vα · n = 0, 2[(Dvα)n]τ + αvατ = −2[(Du∞)n]τ on Γ× (0, T )
vα(0) = 0 in Ω.

Multiplying the above system by vα and integrating by parts over Ω× (0, T ), we deduce

1
2‖vα(t)‖2

L2(Ω) + 2
t∫

0

‖Dvα‖2
L2(Ω) + α

t∫
0

‖vατ‖2
L2(Γ)

= −2
t∫

0

〈[(Du∞)n]τ ,vατ 〉Γ −
t∫

0

〈(uα · ∇)uα − (u∞ · ∇)u∞,vα〉Ω.

(3.91)

We estimate suitably the right hand side of (3.91). As vα → 0 in L2(0, T ;L4(Ω)) and
u0 ∈H1

0,σ(Ω) implies u∞ ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0,σ(Ω)), thus

t∫
0

〈(uα · ∇)uα − (u∞ · ∇)u∞,vα〉Ω = −
t∫

0

∫
Ω

(vα·∇)u∞ · vα

≤
t∫

0

‖vα‖2
L4(Ω)‖∇u∞‖L2(Ω)

≤ ‖vα‖2
L2(0,T ;L4(Ω))‖u∞‖L∞(0,T ;H1(Ω)) → 0.
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Similarly, since vα → 0 in L2(0, T ;L2(Γ)) (as vα ⇀ 0 in L2(0, T ;H1(Ω)) and H 1
2 (Γ) is

compact in L2(Γ)) and [(Du∞)n]τ ∈ L2(0, T ;L2(Γ)),
t∫

0

〈[(Du∞)n]τ ,vατ 〉Γ ≤ C‖u∞‖L2(0,T ;H2(Ω))‖vα‖L2(0,T ;L2(Γ)) → 0.

Therefore, convergence in L∞(0, T ;L2(Ω)) and in L2(0, T ;H1(Ω)) follow immediately,
along with the estimate (3.9). The strong convergence for the pressure term follows from
the equation. �

When the initial data belongs to an Lr-type space with r ≥ 3, we have the following:

Theorem 3.9.3. Let (uα, πα) be the solution of the problem (3.73) with u0 ∈W 2,r
0 (Ω) ∩

Lrσ,τ (Ω) where r ≥ 3. Suppose also that (u∞, π∞) ∈ C([0, T ];W 2,r(Ω))∩C1([0, T ];Lr(Ω))×
C([0, T ];W 1,r(Ω)) is the solution of (3.8) with the same initial data u0 whose existence
and uniqueness has been proved in [58, Theorem 4]. Then as α→∞,

(uα, πα)→ (u∞, π∞) in C([0, T );W 1,s(Ω))× C([0, T );Ls(Ω))(3.92)

where s ∈ [1,∞) if r = 3 and s =∞ if r > 3.

Moreover, if u0 ∈ D(A2
p,α) for α sufficiently large, then we obtain the following rate of

convergence, for any m ∈ (1,∞),

‖ ∂
∂t

(uα − u∞)‖Lm(0,T ;Ls(Ω)) + ‖uα − u∞‖Lm(0,T ;W 2,s(Ω)) ≤
C

α
.(3.93)

Proof. i) As explained in the beginning of the proof of Theorem 3.9.2, u0 ∈ D(Ar,α) for
all α large enough and hence

uα is bounded in C([0, T ];W 2,r(Ω)) ∩ C1([0, T ];Lr(Ω)).

Thus by compactness, there exists u∞ ∈ C([0, T ];W 1,s(Ω)) with s as defined in the theorem
such that, up to a subsequence,

uα → u∞ in C([0, T ];W 1,s(Ω)).

This implies by De Rham theorem, πα → π∞ in C([0, T ];Ls(Ω)). Now to show that the
limit (u∞, π∞) actually satisfies the Navier-Stokes problem with homogeneous Dirichlet
boundary data, we write the system (3.73) in the following form

∂uα
∂t
−∆uα + (uα · ∇)uα +∇πα = 0, div uα = 0 in Ω× (0, T )

uα · n = 0, uατ = − 2
α

[(Duα)n]τ on Γ× (0, T )

uα(0) = u0 in Ω.

(3.94)
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Since (uα · ∇)uα − (u∞ · ∇)u∞ = (uα − u∞) · ∇uα + u∞ · ∇(uα − u∞), the regularity
implies

‖(uα · ∇)uα − (u∞ · ∇)u∞‖Ls(Ω)

≤ ‖uα − u∞‖L∞(Ω)‖∇uα‖Ls(Ω) + ‖u∞‖L∞(Ω)‖∇(uα − u∞)‖Ls(Ω)

≤ ‖uα − u∞‖W 1,s(Ω)
(
‖uα‖W 1,s(Ω) + ‖u∞‖W 1,s(Ω)

)
which shows that (uα · ∇)uα → (u∞ · ∇)u∞ in C([0, T ;Ls(Ω)) as α→∞. Hence, passing
limit in the other terms of the above system yields that indeed u∞ is a solution of the
problem (3.8). Note that we use the continuity of uα up to t = 0 to obtain u∞ satisfies
the initial data.

Next to deduce the rate of convergence, taking difference between the two systems
(3.94) and (3.8) and denoting by vα = uα − u∞ and pα = πα − π∞, we obtain

∂vα
∂t
−∆vα +∇pα = (u∞ · ∇)u∞ − (uα · ∇)uα, div vα = 0 in Ω× (0, T )

vα · n = 0, vατ = − 2
α

[(Duα)n]τ on Γ× (0, T )

vα(0) = 0 in Ω.

But notice that (u∞ · ∇)u∞ − (uα · ∇)uα → 0 in Lm(0, T ;Ls(Ω)) for any m ∈ [1,∞) and
[(Duα)n]τ is bounded in Lm(0, T ;W 1− 1

s
,s(Γ)). Therefore as we have done for the linear

problem, using the lift operator and then the maximal regularity for the Stokes system
with non-homogeneous initial data [61, Theorem 2.8] leads us to the following

T∫
0

∥∥∥∥∥∂vα∂t
∥∥∥∥∥
m

Ls(Ω)
+

T∫
0

‖ −∆vα +∇pα‖mLs(Ω)

≤ C

 T∫
0

‖(u∞ · ∇)u∞ − (uα · ∇)uα‖mLs(Ω) + 1
α
‖[(Duα)n]τ‖m

W 2− 1
s ,s(Γ)

 .
This finally shows that both the terms in the right hand side go to 0 as α → ∞. Hence
the result. �
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Uniform W 1,p estimate for elliptic operator with

Robin boundary condition in C1 domain

This is a joint work with Chérif Amrouche, Carlos Conca and Tuhin Ghosh.

Abstract : We consider the Robin boundary value problem div(A∇u) = divf +F in Ω,
C1 domain, with (A∇u− f) ·n+αu = g on Γ, where the matrix A belongs to VMO(R3),
and discover the uniform estimates on ‖u‖W 1,p(Ω), with 1 < p <∞, independent on α. At
the difference with the case p = 2, which is simpler, we call here the weak reverse Hölder
inequality. This estimates show that the solution of Robin problem converges strongly
to the solution of Dirichlet (resp. Neumann) problem in corresponding spaces when the
parameter α tends to ∞ (resp. 0).

4.1 Introduction and statement of main result

This paper is concerned with the second order elliptic problem of divergence form with
Robin boundary condition. In a bounded domain (open, connected set) Ω in Rn with
f ∈ Lp(Ω), F ∈ Lr(p)(Ω) and g ∈ W− 1

p
,p(Γ), consider the following problem

 Lu = divf + F in Ω,
(A∇u− f) · n+ αu = g on Γ

(4.1)

where

L = div(A∇)(4.2)
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Chapter 4. Uniform W 1,p estimate for elliptic operator with Robin boundary condition in C1 domain

with A(x) = (aij(x)) is an 3 × 3 matrix with real-valued, bounded, measurable entries
satisfying the following uniform ellipticity condition

µ|ξ|2 ≤ A(x)ξ · ξ ≤ 1
µ
|ξ|2 for all ξ, x ∈ Rn and some µ > 0.

Here n is the outward unit normal vector on the boundary.

We want to study the well-posedness of the problem (4.1), precisely, the existence,
uniqueness of weak solution of (4.1) in W 1,p(Ω) for any p ∈ (1,∞) and the bound on the
solution, uniform in α. Assuming α ≥ 0 a constant or a smooth function, the proof of
existence of a unique solution provided A ∈ VMO(R3) uses Neumann regularity results
for elliptic problems; the interested reader is referred to [42] for details. The case α ≤ 0
corresponds to the Steklov eigen value problem (for a recent survey on this topic, see [63]
and the references therein). That being said, our main interest is to obtain some precise
estimate on the solution, in particular estimates uniform in α.

Note that, formally, α = ∞ corresponds to the Dirichlet boundary condition whereas
α = 0 gives the Neumann boundary condition. In both Dirichlet and Neumann cases, we
have the classical W 1,p estimate of the solution. And so for the Robin problem as follows:

‖u‖W 1,p(Ω) ≤ C(α)
(
‖f‖Lp(Ω) + ‖F‖Lr(p)(Ω) + ‖g‖

W
− 1
p ,p(Γ)

)
,

where C(α) depends also on p and on Ω. Such well-posedness results on Robin boundary
value problem for arbitrary domains can be found, for example, in [39]. But the continuity
constant depends on α whereas the constant in Dirichlet (and Neumann) estimate has
no α. So it is natural to expect we may obtain α-independent bound of the solution of
problem (4.1). That is, if we let α tend to ∞, we show rigorously that we get back the
solution of the Dirichlet problem. The case when α goes to 0 is relatively easier to handle
(though not trivial) assuming the compatibility condition of the Neumann problem.

Among the vast literature on Robin boundary value problem and various related ques-
tions to study, we did not find any reference concerning the question of behavior of the
solution on the parameter α in the existing literature so far, even for Laplacian. Hence
the purpose of this article is to address that issue, in particular to estimate the continuity
constant C(α) uniformly with respect to α.

Here is our main result. Throughout this work, the following assumption on α will be
considered which we do not mention each time:

α ∈ Lt(p)(Γ) and α ≥ α∗ > 0 on Γ(4.3)
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4.1. Introduction and statement of main result

where t(p) defined by
t(p) = 2 if p = 2
t(p) = 2 + ε if 3

2 ≤ p ≤ 3, p 6= 2
t(p) = 2

3 max{p, p′}+ ε otherwise

where ε > 0 is arbitrary, satisfies t(p) = t(p′).

Also let F ∈ Lr(p)(Ω) where

r(p) =


3p
p+3 if p > 3

2

any arbitrary real number > 1 if p = 3
2

1 if p < 3
2 .

Theorem 4.1.1. Let Ω be a C1 bounded domain in R3, p ∈ (1,∞), f ∈ Lp(Ω), F ∈
Lr(p)(Ω) and g ∈ W− 1

p
,p(Γ) and α ∈ Lt(p)(Γ). Suppose that the coefficients of the operator

L, defined in (4.2), are symmetric and in VMO(R3). Then the weak solution u ∈ W 1,p(Ω)
of (4.1) satisfies the following estimate:

‖u‖W 1,p(Ω) ≤ Cp(Ω, α∗)
(
‖f‖Lp(Ω) + ‖F‖Lr(p)(Ω) + ‖g‖

W
− 1
p ,p(Γ)

)
(4.4)

where the constant Cp(Ω, α∗) > 0 is independent of α.

Notice that, with above estimate result, we immediately get that the solution of the
Robin problem (4.1) converges strongly to the solution of Dirichlet boundary problem in
the corresponding spaces as α goes to ∞. To prove the above theorem, we first obtain the
result for F = 0, g = 0 and p > 2 and then for p < 2 using duality argument; And finally
for F 6= 0, g 6= 0. Essentially we want to utilise the α-independent L2 gradient estimate
(which follows from the variational formulation) to yield Lp gradient estimate. The main
tool in the proof for p > 2 is a weak reverse Hölder inequality (wRHI) for gradient satisfied
by the solution of the homogeneous problem, shown in Theorem 4.2.11. Note that for
Lipschitz domain, the weak reverse Hölder inequality is only true for certain values of p,
even for Dirichlet boundary condition. It was first proved by Giaquinta [53, Proposition 1.1,
Chapter V] in the case of Dirichlet condition, on smooth domain and for Laplace operator
which follows from an argument by Gehring [49]. wRHI in the case of B(x, r) ⊂ Ω follows
from the classical interior estimate for harmonic functions. But in the case when x ∈ Γ,
some suitable boundary Hölder estimate is required. In the present paper, to treat the
operator in divergence form with VMO-coefficients, we use an approximation argument
from the constant coefficient operator case, found in [28]. In the case of Neumann problem
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and for general second order elliptic operator, the proof of wRHI has been done in [51,
section 4] in Lipschitz domain; Whereas the sketch of the proof for Neumann problem in
smooth domain has been given in [81, p. 914].

We obtain the similar result for Hs-bound (on Lipschitz domain) for s ∈ (0, 1
2) in

Theorem 4.2.17 and W 2,p-estimate (on C1,1 domain) in Theorem 4.3.1.

4.2 Related results and Proof of Theorem 4.1.1

To prove Theorem 4.1.1, we start with the definition of a weak solution and studying the
existence result. Note that, we consider here only the case n = 3 for the sake of clarity
but all the results are true for n = 2 as well and the exact same proofs follow with the
necessary modifications.

Definition 4.2.1. Given f ∈ Lp(Ω), F ∈ Lr(p)(Ω) and g ∈ W− 1
p
,p(Γ), we say u ∈ W 1,p(Ω)

is a weak solution of (4.1) if it satisfies:

∀ϕ ∈ W 1,p′(Ω),
∫
Ω

A(x)∇u · ∇ϕ+
∫
Γ

αu ϕ =
∫
Ω

f · ∇ϕ−
∫
Ω

Fϕ + 〈g, ϕ〉Γ(4.5)

where 〈·, ·〉Γ denotes the duality between W− 1
p
,p(Γ) and W

1
p
,p′(Γ).

Note that the boundary integral
∫
Γ αu ϕ is well defined.

Theorem 4.2.2 (Existence result in W 1,p(Ω), p ≥ 2). Let Ω be a C1 bounded domain
in R3 and p ≥ 2. Suppose that the coefficients of the operator L, defined in (4.2), are
symmetric and in VMO(R3). Then for any f ∈ Lp(Ω), F ∈ Lr(p)(Ω) and g ∈ W− 1

p
,p(Γ),

there exists a unique weak solution u ∈ W 1,p(Ω) of Problem (4.1).

Remark 4.2.3. Note that for p = 2, Ω Lipschitz is sufficient to show the existence of
solution u ∈ H1(Ω).

Proof. For p = 2, the bilinear form

∀ u, ϕ ∈ H1(Ω), a(u, ϕ) =
∫
Ω

A(x)∇u · ∇ϕ+
∫
Γ

αu ϕ

is clearly continuous. Also, due to the ellipticity hypothesis on A(x) and by Friedrich’s
inequality and the assumption α ≥ α∗ > 0 on Γ, we may have

a(u, u) =
∫
Ω

A(x)∇u · ∇u+
∫
Γ

α|u|2 ≥ C(α∗) ‖u‖2
H1(Ω)
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which shows that the bilinear form is coercive on H1(Ω). And the right hand side of (4.5)
defines an element in the dual of H1(Ω). Thus, by Lax-Milgram lemma, there exists a
unique u ∈ H1(Ω) satisfying (4.5). So we obtain the existence of a unique weak solution
of (4.1) in H1(Ω).

Now for p > 2, since Lp(Ω) ↪→ L2(Ω), Lr(p)(Ω) ↪→ L6/5(Ω),W− 1
p
,p(Γ) ↪→ H−

1
2 (Γ) and

Lt(p)(Γ) ↪→ L2(Γ), there exists a unique u ∈ H1(Ω) solving (4.1). It remains to show that
u ∈ W 1,p(Ω).

(i) 2 < p ≤ 3. Since u ∈ H1(Ω) ↪→ L4(Γ) and α ∈ L2+ε(Γ), we have αu ∈ Lq1(Γ) where
1
q1

= 1
4 + 1

2+ε . But using the Sobolev embedding Lq1(Γ) ↪→ W
− 1
p1
,p1(Γ) with p1 = 3

2q1 (since
q1 >

4
3)

i.e. 1
p1

= 2
3

(1
4 + 1

2 + ε

)
,

Neumann regularity result (cf. [42, Theorem 5]) implies u ∈ W 1,p1(Ω) since Ω is C1. If
p1 ≥ p, we are done. Otherwise, u ∈ W 1,p1(Ω). Hence, u ∈ Ls1(Γ) where

1
s1

= 1
p1
−

1− 1
p1

2 = 3
2p1
− 1

2

as p1 < p ≤ 3. Then αu ∈ Lq2(Γ) where 1
q2

= 1
s1

+ 1
2+ε . But, Lq2(Γ) ↪→ W

− 1
p2
,p2(Γ) with

p2 = 3
2q2 i.e.

1
p2

= 2
3

(1
4 + 1

2 + ε
− 1

2 + 1
2 + ε

)
= 2

3

( 2
2 + ε

− 1
2 + 1

4

)
.

If p2 ≥ p, then as before, we have u ∈ W 1,p(Ω). Otherwise, u ∈ W 1,p2(Ω). Proceeding
similarly, we get u ∈ W 1,pk+1(Ω) with

1
pk+1

= 2
3

(
k + 1
2 + ε

− k

2 + 1
4

)
.

(where in each step, we assumed that pk < 3). Now choosing k = b1
ε
− 1

2c + 1 such that
pk+1 ≥ 3 ≥ p (where bac stands for the greatest integer less than or equal to a), we obtain
u ∈ W 1,p(Ω).

(ii) p > 3. From the previous case, we obtain u ∈ W 1,3(Ω) which gives u ∈ Lq(Γ)
for all 1 < q <∞. But α ∈ L 2

3p+ε(Γ) implies αu ∈ L 2
3p(Γ) ↪→ W− 1

p
,p(Γ). Therefore, using

same reasoning as before, from the Neumann regularity result, we get u ∈ W 1,p(Ω) . �

Remark 4.2.4. Note that in the above proof, we do not use explicitly the VMO property
of A, but this is indeed necessary for the existance of solution of the Neumann problem.
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Next we discuss the estimate of the solution of problem (4.1) for p > 2 with F = 0 and
g = 0, independent of α.

Theorem 4.2.5 (W 1,p(Ω) estimate, p ≥ 2 with RHS f). Let Ω be a C1 bounded
domain in R3, p ≥ 2 and f ∈ Lp(Ω). Suppose that the coefficients of the operator L,
defined in (4.2), are symmetric and in VMO(R3). Then the weak solution u ∈ W 1,p(Ω) of
(4.1) with F = 0 and g = 0, satisfies the following estimate:

‖u‖W 1,p(Ω) ≤ Cp(Ω, α∗) ‖f‖Lp(Ω)(4.6)

where the constant Cp(Ω, α∗) > 0 is independent of α.

The proof of the above theorem is very much similar to that of Neumann problem [51],
once we have the wRHI. Since Ω is C1, there exists some r0 > 0 such that for any x0 ∈ Γ,
there exists a coordinate system (x′, x3) which is isometric to the usual coordinate system
and a C1 function ψ : R2 → R so that,

B(x0, r0) ∩ Ω = {(x′, x3) ∈ B(x0, r0) : x3 > ψ(x′)}

and
B(x0, r0) ∩ Γ = {(x′, x3) ∈ B(x0, r0) : x3 = ψ(x′)} .

In some places, we may write B instead of B(x, r) where there is no ambiguity and
aB := B(x, ar) for a > 0.

We first prove the following weak reverse Hölder inequality for some p = 2 + ε, ε > 0
whose proof is straight forward but this is not sufficient to deduce Theorem 4.2.5.

Lemma 4.2.6. Let Ω be a C1 bounded domain in R3 and L be the operator defined in (4.2)
with constant coefficients. For any B(x, r) with the property that 0 < r < r0

8 and either
B(x, 2r) ⊂ Ω or x ∈ Γ, the following weak Reverse Hölder inequalities hold: for some
ε > 0,
(i) if B(x, 2r) ⊂ Ω,  1

r3

∫
B(x,r)

|∇v|2+ε


1/2+ε

≤ C

 1
r3

∫
B(x,2r)

|∇v|2


1/2

whenever v ∈ H1(B(x, 2r)) satisfies Lv = 0 in B(x, 2r).
(ii) if x ∈ Γ, 1

r3

∫
B(x,r)∩Ω

(|v|2 + |∇v|2)
2+ε

2


1/2+ε

≤ C

 1
r3

∫
B(x,2r)∩Ω

|v|2 + |∇v|2


1/2
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whenever v ∈ H1(B(x, 2r) ∩ Ω) satisfyingLv = 0 in B(x, 2r) ∩ Ω
A∇v · n+ αv = 0 on B(x, 2r) ∩ Γ.

(4.7)

The constants C > 0 in the above estimates are independent of α.

Proof. The proof of the weak Reverse Hölder inequality for Robin problem follows the
similar argument as for the Dirichlet problem, established in [53].

case(i) : 2B ⊂ Ω.
Since v satisfies the equation div(A(x)∇)v = 0 in 2B, we can have the following Caccioppoli
inequality, ∫

B

|∇v|2 ≤ C

r2

∫
2B

|v − v̄|2, v̄ = 1
|2B|

∫
2B

v

for some constant C > 0 independent of α. Now using the following Sobolev-Poincaré
inequality, for any v ∈ W 1,p(Ω), p > 1,

‖v − v̄‖Lp∗ (Ω) ≤ C‖∇v‖Lp(Ω), v̄ = 1
|Ω|

∫
Ω

v

where p∗ is the Sobolev exponent, we obtain,

∫
B

|∇v|2 ≤ C

r2

 ∫
2B

|∇v|q̃
2/q̃

with q̃ = 6/5 (this value comes from the dimension n = 3). Upon normalizing both sides,
we can write,  1

r3

∫
B

|∇v|2
1/2

≤ C

 1
r3

∫
2B

|∇v|q̃
1/q̃

.

Here note that in R3, |B| = cr3. Then setting g = |∇v|q̃ and q = 5/3 = 2/q̃, we have,

1
r3

∫
B

gq ≤ C

 1
r3

∫
2B

g

q .
Hence, [53, Proposition 1.1] with f = 0 and θ = 0 implies, for some ε > 0, 1

r3

∫
B

|∇v|2+ε

1/2+ε

≤ C

 1
r3

∫
2B

|∇v|2
1/2

which completes the proof in the first case.
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case(ii) : x ∈ Γ.
The proof is very much similar to the above interior estimate. First we want to prove
a Caccioppoli type inequality for the problem (4.7) up to the boundary. For that, let
η ∈ C∞c (2B) be a cut-off function such that

0 ≤ η ≤ 1, η ≡ 1 on B and |∇η| ≤ C

r
.

Now multiplying (4.7) by η2v and integrating by parts, we get,∫
2B∩Ω

A∇v · ∇(η2v) +
∫

∂(2B∩Ω)

αη2v2 = 0

which yields,

µ
∫

2B∩Ω

η2|∇v|2 +
∫

2B∩Γ

αη2v2 ≤
∫

2B∩Ω

η2A(x)∇v · ∇v +
∫

2B∩Γ

αη2v2 = −2
∫

2B∩Ω

ηv A∇v · ∇η.

Using Cauchy’s inequality on the right hand side, we obtain,

∫
2B∩Ω

|∇v|2η2 +
∫

2B∩Γ

αη2v2 ≤ C

1
4

∫
2B∩Ω

η2|∇v|2 + 4
∫

2B∩Ω

v2|∇η|2
 .

The above constant C depends on A only. Simplifying the above estimate gives∫
2B∩Ω

|∇v|2η2 +
∫

2B∩Γ

αη2v2 ≤ C
∫

2B∩Ω

v2|∇η|2,

which yields the Caccioppoli-type inequality, up to the boundary,
∫

B∩Ω

|∇v|2 +
∫

B∩Γ

αv2 ≤
∫

2B∩Ω

|∇v|2η2 +
∫

2B∩Γ

αη2v2 ≤ C

r2

∫
2B∩Ω

v2.(4.8)

But we also have,

‖v‖2
H1(B∩Ω) ≤ C

 ∫
B∩Ω

|∇v|2 +
∫

B∩Γ

v2

 ≤ C(α∗)
 ∫
B∩Ω

|∇v|2 +
∫

B∩Γ

αv2

 .
Hence, using (4.8), we obtain,

∫
B∩Ω

(|v|2 + |∇v|2) ≤ C(α∗)
r2

∫
2B∩Ω

|v|2 ≤ C(α∗)
r2

 ∫
2B∩Ω

(|v|2 + |∇v|2)q̃/2
2/q̃
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with q̃ = 6/5 so that (q̃)∗ = 2. Thus,

1
r3

∫
B∩Ω

(|v|2 + |∇v|2) ≤ C(α∗)
r5

 ∫
2B∩Ω

(|v|2 + |∇v|2)q̃/2
2/q̃

= C(α∗)
 1
r3

∫
2B∩Ω

(|v|2 + |∇v|2)q̃/2
2/q̃

.

Now if we set,

g(y) =

(|v|2 + |∇v|2)q̃/2 if y ∈ 2B ∩ Ω
0 if y ∈ 2B \ Ω

and q = 2/q̃, we obtain,
1
r3

∫
B

gq ≤ C(α∗)
 1
r3

∫
2B

g

q .
Once again [53, Proposition 1.1] with f = 0 and θ = 0 implies, for some ε > 0,

 1
r3

∫
B

gq+ε

1/q+ε

≤ C

 1
r3

∫
2B

gq

1/q

i.e.  1
r3

∫
B∩Ω

(|v|2 + |∇v|2)(q+ε)q̃/2

1/q+ε

≤ C

 1
r3

∫
2B∩Ω

(|v|2 + |∇v|2)
q̃/2

or equivalently, for some s > 2,
 1
r3

∫
B∩Ω

(|v|2 + |∇v|2)s/2
1/s

≤ C

 1
r3

∫
2B∩Ω

(|v|2 + |∇v|2)
1/2

which finishes the proof. �

Next to prove wRHI for all p > 2, we require the following boundary Hölder estimate
for L under Robin boundary condition.

Theorem 4.2.7. Let Ω be a C1 bounded domain in R3, p > 1 and γ ∈ (0, 1). Suppose that
the operator L defined in (4.2) has constant and symmetric coefficients andLv = 0 in B(Q, r) ∩ Ω

A∇v · n+ αv = 0 on B(Q, r) ∩ Γ
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for some Q ∈ Γ and 0 < r < r0, Then for any x, y ∈ B(Q, r/2) ∩ Ω,

|v(x)− v(y)| ≤ C

(
|x− y|
r

)γ  ∫
B(Q,r)∩Ω

|v|p


1/p

(4.9)

where C > 0 depends only on Ω, p and the ellipticity constant µ, but independent of α.

Proof. Follows from classical regularity theory (for example, see [62, Theorem 8.27]). �

Now the weak reverse Hölder inequality for any p > 2 is proved in the case of constant
coefficients.

Lemma 4.2.8. Let Ω be a C1 bounded domain in R3 and p ≥ 2. Suppose that L, defined
in (4.2), has constant and symmetric coefficients. Then for any B(x, r) with the property
that 0 < r < r0

8 and either B(x, 2r) ⊂ Ω or x ∈ Γ, the following weak Reverse Hölder
inequalities hold:
(i) if B(x, 2r) ⊂ Ω,  ∫

B(x,r)

|∇v|p


1/p

≤ C

 ∫
B(x,2r)

|∇v|2


1/2

(4.10)

whenever v ∈ H1(B(x, 2r)) satisfies Lv = 0 in B(x, 2r).
(ii) if x ∈ Γ,  ∫

B(x,r)∩Ω

|∇v|p + |v|p


1/p

≤ C

 ∫
B(x,2r)∩Ω

|∇v|2 + |v|2


1/2

(4.11)

whenever v ∈ H1(B(x, 2r) ∩ Ω) satisfiesLv = 0 in B(x, 2r) ∩ Ω
A∇v · n+ αv = 0 on B(x, 2r) ∩ Γ( if x ∈ Γ).

The constant C > 0 at most depends on Ω, p and the ellipticity constant µ.

Proof. Since A is symmetric and positive definite, by a change of coordinate system, we
may assume that L = ∆ (although we may consider the full operator and all the results
hold true as well).

The proof we will follow has been used for elliptic equations with Neumann boundary
condition in [81], just after the statement of Theorem 4.1.
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case(i) : B(x0, 2r) ⊂ Ω.
The weak reverse Hölder inequality (4.10) holds for any p ≥ 2, by the following well-known
interior estimates for Harmonic functions, even when Ω is Lipschitz:

sup
B(x0,r)

|∇v| ≤ C

 ∫
B(x0,2r)

|∇v|2


1/2

.

case(ii) : x0 ∈ Γ.
From the interior gradient estimate for harmonic function, we can write (eg. see [66, Lemma
1.10])

|∇v(x)| ≤ 3
δ(x) sup

B(x,cδ(x))
|v|

for any x ∈ B(x0, r)∩Ω where δ(x) = d(x,Γ) and c > 0 is chosen such that B(x, 2cδ(x)) (
B(x0, 2r) ∩ Ω. From [66, Remark 1.19], we may then write

|∇v(x)| ≤ C

δ(x)

 ∫
B(x,cδ(x))

|v|2


1/2

.

Now for fixed y ∈ B(x, 2cδ(x)), let u(x) = v(x)− v(y). Then Lu = 0 in B(x, 2cδ(x)) and
thus we may write from the above argument,

|∇u(x)| ≤ C

δ(x)

 ∫
B(x,cδ(x))

|u|2


1/2

which gives, along with the boundary Hölder estimate (4.9),

|∇v(x)| ≤ C

δ(x)

 ∫
B(x,cδ(x))

|v(z)− v(y)|2dz


1/2

= C

δ(x)1+ 3
2

 ∫
B(x,cδ(x))

|v(z)− v(y)|2dz


1/2

≤ C

δ(x)1+ 3
2

 ∫
B(x,2cδ(x))

(
|z − y|
r

)2γ
 ∫

B(x0,2r)∩Ω

|v|2
 dz


1/2

≤ C

δ(x)1+ 3
2

 ∫
B(x0,2r)∩Ω

|v|2


1/2
1
rγ

 ∫
B(x,2cδ(x))

|z − y|2γdz


1/2
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≤ Cγ

(δ(x))1+ 3
2

 ∫
B(x0,2r)∩Ω

|v|2


1/2
1
rγ

(δ(x))γ+ 3
2

= Cγ
(δ(x))γ−1

rγ
r−3/2

 ∫
B(x0,2r)∩Ω

|v|2


1/2

≤ Cγ
(δ(x))γ−1

rγ
r1−3/2

 ∫
B(x0,2r)∩Ω

|v|6


1/6

≤ Cγ

(
r

δ(x)

)1−γ
 ∫
B(x0,2r)∩Ω

|∇v|2 + |v|2


1/2

.

We have used Sobolev estimate in the last inequality. Since γ ∈ (0, 1) is arbitrary, we thus
have,

|∇v(x)| ≤ Cγ

(
r

δ(x)

)γ  ∫
B(x0,2r)∩Ω

|∇v|2 + |v|2


1/2

.

Finally it yields choosing γ so that pγ < 1,
 ∫

B(x0,r)∩Ω

|∇v|p


1/p

≤ Cp

 ∫
B(x0,2r)∩Ω

|∇v|2 + |v|2


1/2

.

This completes the proof. �

A function f is said to be in the space BMO(Rn) (bounded mean oscillation) if f ∈
L1
loc(Rn) satisfies

sup
x∈Rn

1
rn

∫
B(x,r)

|f − f | <∞

where f = 1
|B(x,r)|

∫
B(x,r) f .

Moreover a function f in BMO(Rn) is said to be in VMO(Rn) if

lim
r→0

sup
x∈Rn

1
rn

∫
B(x,r)

|f − f | dx = 0.

To treat the elliptic operator with VMO coefficients, we prove the following approxi-
mation argument, found in [28].

Lemma 4.2.9. Let Ω be a C1 bounded domain in R3. Suppose that the coefficients of
operator L, defined in (4.2), are symmetric and in VMO(R3). Then there exists a function
h(r) and some constants C > 0, c > 0 with the following properties:
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i) lim
r→0

h(r) = 0;
ii) for any v ∈ H1 solution ofLv = 0 in B(x, 8r) ∩ Ω

A∇v · n+ αv = 0 on B(x, 8r) ∩ Γ
(4.12)

with x ∈ Ω and 0 < r < cr0, there exists a function w ∈ W 1,p(B(x, r) ∩ Ω) such that for
any p > 2,

 ∫
B(x,r)∩Ω

|∇v −∇w|2 + |v − w|2


1/2

≤ h(r)

 ∫
B(x,8r)∩Ω

|∇v|2 + |v|2


1/2

(4.13)

 ∫
B(x,r)∩Ω

|∇w|p + |w|p


1/p

≤ C

 ∫
B(x,8r)∩Ω

|∇v|2 + |v|2


1/2

,(4.14)

where the constant C > 0 depends at most on Ω, p, α∗, µ and A.

Proof. Let us fix x0 ∈ Ω and 0 < r < cr0 where 0 < c << 1 is such that Lemma 4.2.8 can
be applied suitably. Let v ∈ H1(B(x0, 8r) ∩ Ω) be a weak solution of (4.12). Considerdiv(B∇w) = 0 in B(x0, 4r) ∩ Ω

(B∇w) · n+ αw = (A∇v) · n+ αv on ∂(B(x0, 4r) ∩ Ω)
(4.15)

where B = (bij)1≤i,j≤3 are the constants given by

bij = 1
|B(x0, 8r)|

∫
B(x0,8r)

aij(x) dx.

So, w ∈ H1(B(x0, 4r) ∩ Ω) is a weak solution of (4.15) if for all ϕ ∈ H1(B(x0, 4r) ∩ Ω),∫
B(x0,4r)∩Ω

B∇w · ∇ϕ+
∫

∂(B(x0,4r)∩Ω)

αw ϕ =
∫

B(x0,4r)∩Ω

A∇v · ∇ϕ+
∫

∂(B(x0,4r)∩Ω)

αv ϕ.

The existence of w ∈ H1(B(x0, 4r) ∩ Ω) follows immediately from the regularity of v. It
then follows∫

B(x0,4r)∩Ω

B∇(v − w) · ∇ϕ+
∫

∂(B(x0,4r)∩Ω)

α(v − w)ϕ =
∫

B(x0,4r)∩Ω

(B − A)∇v · ∇ϕ.
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Next we show that w satisfies estimates (4.13) and (4.14).

To see (4.13), choosing ϕ = v − w, by ellipticity and Cauchy inequality, we obtain

µ
∫

B(x0,4r)∩Ω

|∇(v − w)|2 +
∫

∂(B(x0,4r)∩Ω)

α|v − w|2

≤
∫

B(x0,4r)∩Ω

|(B − A)∇v||∇(v − w)|

≤ Cε

∫
B(x0,4r)∩Ω

|(B − A)∇v|2 + ε
∫

B(x0,4r)∩Ω

|∇(v − w)|2.

But we also have the equivalence of norm,

‖v − w‖2
H1(B(x0,4r)∩Ω) ≤ C

 ∫
B(x0,4r)∩Ω

|∇(v − w)|2 +
∫

B(x0,4r)∩Γ

|v − w|2


≤ C(α∗)

 ∫
B(x0,4r)∩Ω

|∇(v − w)|2 +
∫

B(x0,4r)∩Γ

α|v − w|2


where the above constant C > 0 depends on Ω and α∗ but is independent of r and α. This
gives  ∫

B(x0,4r)∩Ω

|∇v −∇w|2 + |v − w|2


1/2

≤ C

 ∫
B(x0,4r)∩Ω

|(B − A)∇v|2


1/2

≤ C

 ∫
B(x0,4r)∩Ω

|∇v|2q


1/2q  ∫
B(x0,4r)∩Ω

|B − A|2q′


1/2q′

.

Defining

h(r) = C sup
x0∈Ω

 ∫
B(x0,4r)∩Ω

|B − A|2q′


1/2q′

the last inequality yields ∫
B(x0,4r)∩Ω

|∇v −∇w|2 + |v − w|2


1/2

≤ h(r)

 ∫
B(x0,4r)∩Ω

|∇v|2q


1/2q

≤ h(r)

 ∫
B(x0,8r)∩Ω

|∇v|2 + |v|2


1/2

.
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Note that in the last line, we used L2+ε weak reverse Hölder inequality (i.e. for some q > 1)
for v which follows from Lemma 4.2.6. It is known from John-Nirenberg inequality that
h(r)→ 0 as r → 0. Indeed, John-Nirenberg inequality says, for any BMO-function f ,∫

B

eM |f−f | ≤ Crn

for some constant C > 0 depending only on n. Since A ∈ VMO(R3), by definition we get
that h(r)→ 0.

Finally, to see (4.14), note that (B∇w) ·n+αw = 0 on B(x0, 4r)∩Γ. Thus, by Lemma
4.2.8, we obtain, for any p ≥ 2, ∫

B(x0,r)∩Ω

|∇w|p


1/p

≤ C

 ∫
B(x0,4r)∩Ω

|∇w|2 + |w|2


1/2

≤ C

 ∫
B(x0,4r)∩Ω

|∇v|2 + |v|2


1/2

+ C

 ∫
B(x0,4r)∩Ω

|∇(v − w)|2 + |v − w|2


1/2

≤ C

 ∫
B(x0,8r)∩Ω

|∇v|2 + |v|2


1/2

.

This shows that in fact w ∈ W 1.p(B(x0, r) ∩ Ω) which completes the proof. �

With Lemma 4.2.9 at our hand, we may use the following approximation theorem,
motivated from the paper of Caffarelli and Peral [28] and proved in [51], to finish the proof
of the weak reverse Hölder inequality for VMO coefficient.

Theorem 4.2.10. Let E ⊂ Rn be any open set and F : E → Rn locally square integrable.
Let p > 2. Suppose there exists some constants β > 1, C > 1 and ε > 0 such that for every
cube Q with 2Q = Q(x0, 2r) ⊂ E, there exists a measurable function RQ on 2Q satisfying −∫

Q

|RQ|p


1/p

≤ C

 −∫
βQ

|F |2


1/2

(4.16)

and  −∫
Q

|F −RQ|2


1/2

≤ ε

 −∫
βQ

|F |2


1/2

.(4.17)
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Let 2 < q < p. Then, there exists ε0 = ε0(C, n, p, q, β) such that if ε < ε0, we have −∫
Q

|F |q


1/q

≤ C1

 −∫
2Q

|F |2


1/2

(4.18)

where C1 > 0 depends only on C, n, p, q, β.

Theorem 4.2.11. Let Ω be a C1 bounded domain in R3 and p ≥ 2. Suppose that the
coefficients of operator L, defined in (4.2), are symmetric and in VMO(R3). Then for
any B(x, r) with the property that 0 < r < r0

8 and either B(x, 2r) ⊂ Ω or x ∈ Γ, the weak
Reverse Hölder inequalities (4.10) and (4.11) hold with constant C > 0 independent of α.

Proof. Let h(r) be same as in Lemma 4.2.9 and choose q such that 2 < q < p. Let ε0 be the
same as in Theorem 4.2.10 and then we choose r0 small enough such that sup

0<r<r0
h(r) < ε0.

Let v ∈ H1(B(x0, 8r) ∩ Ω) be a weak solution ofLv = 0 in B(x0, 8r) ∩ Ω
A∇v · n+ αv = 0 on B(x0, 8r) ∩ Γ

where 0 < r < r0
8 and either B(x0, 2r) ⊂ Ω or x0 ∈ Γ. To apply Theorem 4.2.10, take

E = B(x0, 8r) and B(x, r) is any ball with B(x, 2r) ⊂ E. Then the proof divides in the
following cases:

i) if B(x, r) ∩ Ω = ∅, we take F = 0 = RB,

ii) if B(x, r) ⊂ Ω, set F = ∇v and RB = ∇u,

iii) if B(x, r) ∩ Ω 6= ∅ and B(x, r) ∩ (Ω)c 6= ∅, we further consider the two situations:

– if x ∈ Ω, set

F = (∇v, v)χΩ and RB =

(∇w,w) on B(x, r) ∩ Ω,
0 on B(x, r) ∩ Ωc;

– if x /∈ Ω, by a geometric observation, it is easy to find a ball B̃ = B(y, 2r) such that
y ∈ Γ and B ⊂ B̃ ⊂ E, we then set

F = (∇v, v)χΩ and RB̃ =

(∇w,w) on B(y, 2r) ∩ Ω,
0 on B(y, 2r) ∩ Ωc.

The estimates (4.16) and (4.17) now follow from (4.14) and (4.13). Hence the proof finishes
from (4.18). �
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Now to complete the proof of Theorem 4.2.5, we will use Lemma 2.6.8.

Proof of Theorem 4.2.5. Given any ball B with either 2B ⊂ Ω or B centers on Γ, let
ϕ ∈ C∞c (8B) is a cut-off function such that 0 ≤ ϕ ≤ 1 and

ϕ =

 1 on 4B
0 outside 8B

and we decompose u = v + w where v, w satisfy div(A(x)∇v) = div(ϕf) in Ω
(A∇v − ϕf) · n+ αv = 0 on Γ

(4.19)

and  div(A(x)∇w) = div ((1− ϕ)f) in Ω
(A∇w − (1− ϕ)f) · n+ αw = 0 on Γ.

(4.20)

Multiplying (4.19) by v and integrating by parts, we get,∫
Ω

A(x)∇v · ∇v +
∫
Γ

α|v|2 =
∫
Ω

ϕf · ∇v

which gives

‖∇v‖L2(Ω) ≤
1
µ
‖ϕf‖L2(Ω).(4.21)

and since α ≥ α∗ > 0 on Γ,

‖v‖2
H1(Ω) ≤ C(Ω, α∗)

‖∇v‖2
L2(Ω) +

∫
Γ

α|v|2
 ≤ C(Ω, α∗) ‖ϕf‖L2(Ω)‖∇v‖L2(Ω).

This yields the complete L2-estimate

‖v‖H1(Ω) ≤ C(Ω, α∗) ‖ϕf‖L2(Ω).(4.22)

(i) First we consider the case 4B ⊂ Ω. We want to apply Lemma 2.6.8 with G =
|∇u|, GB = |∇v| and RB = |∇w|. It is easy to see that

|G| ≤ |GB|+ |RB|.
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Now we verify (2.75) and (2.76). For that, using (4.21) we get,
1
|2B|

∫
2B

|GB|2 = 1
|2B|

∫
2B

|∇v|2 ≤ 1
|2B ∩ Ω|

∫
Ω

|∇v|2 ≤ C(Ω, α∗)
|2B ∩ Ω|

∫
Ω

|ϕf |2

≤ C(Ω, α∗)
|8B ∩ Ω|

∫
8B∩Ω

|f |2

where in the last inequality, we used that |8B ∩ Ω| ≤ |Ω|. This gives the estimate (2.76).

Next, from (4.20), we observe that div(A(x)∇)w = 0 in 4B. Hence, by the wRHI in
Theorem 4.2.11 (using 2B instead of B), we have −∫

2B

|∇w|p
1/p

≤ C

 −∫
4B

|∇w|2
1/2

which implies together with (4.21), −∫
2B

|RB|p
1/p

≤ C

 −∫
4B

|∇w|2
1/2

≤ C


 −∫

4B

|∇u|2
1/2

+
 −∫

4B

|∇v|2
1/2


≤ C

 −∫
4B

|G|2
1/2

+ C(Ω, α∗)
 ∫

8B∩Ω

|f |2
1/2

.

This gives (2.75). So from Lemma 2.6.8, it follows that −∫
Ω

|∇u|q
1/q

≤ Cp(Ω)


 −∫

Ω

|∇u|2
1/2

+
 −∫

Ω

|f |q
1/q


for any 2 < q < p where Cp(Ω) > 0 does not depend on α.

Because of the self-improving property of the weak Reverse Hölder condition (4.10),
the above estimate holds for any q ∈ (2, p̃) for some p̃ > p also and in particular, for q = p,
which clearly implies (4.6).

(ii) Next consider B centers on Γ. We apply Lemma 2.6.8 now with G = |u| +
|∇u|, GB = |v| + |∇v| and RB = |w| + |∇w|. Obviously, |G| ≤ |GB| + |RB| and again
by (4.22),

1
|2B ∩ Ω|

∫
2B∩Ω

|GB|2 ≤
1

|2B ∩ Ω|

∫
2B∩Ω

(|v|2 + |∇v|2) ≤ 1
|2B ∩ Ω| ‖v‖

2
H1(Ω)

≤ C(Ω, α∗)
|2B ∩ Ω|

∫
Ω

|ϕf |2

≤ C(Ω, α∗)
|8B ∩ Ω|

∫
8B∩Ω

|f |2
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which yields (2.76). Also w satisfies the problem div(A(x)∇w) = 0 in 4B ∩ Ω
(A∇w) · n+ αw = 0 on 4B ∩ Γ.

So by the wRHI in Theorem 4.2.11 and the estimate (4.22), we can write,
 ∫

2B∩Ω

|RB|p
1/p

≤

 ∫
2B∩Ω

((|w|+ |∇w|)2)p/2
1/p

≤ C

 ∫
4B∩Ω

(|w|2 + |∇w|2)
1/2

≤ C


 ∫

4B∩Ω

(|u|2 + |∇u|2)
1/2

+
 ∫

4B∩Ω

(|v|2 + |∇v|2)
1/2


≤ C

 ∫
4B∩Ω

|G|2
1/2

+ C(Ω, α∗)
 ∫

8B∩Ω

|f |2
1/2

which yields (2.75). Thus we have,
 −∫

Ω

(|u|+ |∇u|)q
1/q

≤ Cp(Ω, α∗)


 −∫

Ω

|u|2 + |∇u|2
1/2

+
 −∫

Ω

|f |q
1/q


for any 2 < q < p where Cp(Ω, α∗) > 0 does not depend on α. This completes the proof
together with the previous case. �

The next proposition will be used to study the complete estimate of the Robin problem
(4.1). The result is not optimal and will be improved in Proposition 4.2.14.

Proposition 4.2.12 (W 1,p(Ω) estimate, p > 2 with RHS F ). Let Ω be a C1 bounded
domain in R3, p > 2, and F ∈ Lp(Ω). Suppose that the coefficients of the operator L,
defined in (4.2), are also symmetric and in VMO(R3). Then the unique weak solution
u ∈ W 1,p(Ω) of (4.1) with f = 0 and g = 0, satisfies the following estimate:

‖u‖W 1,p(Ω) ≤ Cp(Ω, α∗) ‖F‖Lp(Ω)

where the constant Cp(Ω, α∗) > 0 is independent of α.

Proof. The result follows using the same argument as in Theorem 4.2.5 and hence we do
not repeat it. �
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Proposition 4.2.13 (W 1,p(Ω) estimate with RHS f). Let Ω be a C1 bounded domain
in R3, p ∈ (1,∞) and f ∈ Lp(Ω). Suppose that the coefficients of the operator L, defined
in (4.2), are also symmetric and in VMO(R3). Then there exists a unique weak solution
u ∈ W 1,p(Ω) of (4.1) with F = 0 and g = 0, satisfying the following estimate:

‖u‖W 1,p(Ω) ≤ Cp(Ω, α∗) ‖f‖Lp(Ω)(4.23)

where the constant Cp(Ω, α∗) > 0 is independent of α.

Proof. The existence of a unique solution and the corresponding estimate for p > 2 is done
in Theorem 4.2.2 and Theorem 4.2.5 respectively. Now suppose that 1 < p < 2. We first
discuss the estimate and then the existence of a solution.

(i) Estimate I: Let g ∈ C∞0 (Ω) and v ∈ W 1,p′(Ω) be the weak solution of div(A(x)∇)v =
div g in Ω and (A∇)v · n+ αv = 0 on Γ. Since p′ > 2, from Theorem 4.2.5, we have

‖v‖W 1,p′ (Ω) ≤ Cp(Ω, α∗)‖g‖Lp′ (Ω).

Also if u ∈ W 1,p(Ω) is a solution of (4.1) with F = 0, g = 0, using the weak formulation of
the problems satisfied by u and v, we have∫

Ω

f · ∇v =
∫
Ω

g · ∇u

which gives,
|
∫
Ω

g · ∇u| ≤ ‖f‖Lp(Ω)‖∇v‖Lp′ (Ω) ≤ ‖f‖Lp(Ω)‖v‖W 1,p′ (Ω)

and hence,
‖∇u‖Lp(Ω) = sup

06=g∈Lp′ (Ω)

|
∫

Ω∇u · g|
‖g‖Lp′ (Ω)

≤ Cp(Ω, α∗)‖f‖Lp(Ω).

(ii) Estimate II: Next we prove that

‖u‖Lp(Ω) ≤ Cp(Ω, α∗)‖f‖Lp(Ω).(4.24)

For that, from Proposition 4.2.12, we get for any ϕ ∈ Lp
′(Ω), the unique weak solution

w ∈ W 1,p′(Ω) of the problem div(A(x)∇w) = ϕ in Ω
(A∇)w · n+ αw = 0 on Γ

satisfies
‖w‖W 1,p′ (Ω) ≤ Cp(Ω, α∗) ‖ϕ‖Lp′ (Ω).
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Therefore using the weak formulation of the problems satisfied by u and w, we obtain,∫
Ω

u ϕ =
∫
Ω

u div(A(x)∇)w = −
∫
Ω

A(x)∇u · ∇w +
∫
Γ

u
∂w

∂n
= −

∫
Ω

f · ∇w

which implies
‖u‖Lp(Ω) = sup

06=ϕ∈Lp′ (Ω)

|
∫

Ω u ϕ|
‖ϕ‖Lp′ (Ω)

≤ Cp(Ω, α∗) ‖f‖Lp(Ω).

This completes proof of the estimate (4.23).

(iii) Existence and uniqueness: The uniqueness of solution of (4.1) follows from (4.23).
For the existence, we will use a limit argument. Let {fk} ∈ C∞0 (Ω) such that

fk → f in Lp(Ω)

and uk ∈ W 1,p′(Ω) be the unique weak solution of div(A(x)∇uk) = div fk in Ω
(A∇)uk · n+ αuk = 0 on Γ

Note that uk ∈ W 1,p(Ω) since p′ > 2. Also from (i) we have,

‖uk‖W 1,p(Ω) ≤ Cp(Ω, α∗) ‖fk‖Lp(Ω)

and
‖uk − ul‖W 1,p(Ω) ≤ Cp(Ω, α∗) ‖fk − fl‖Lp(Ω).

Thus it follows uk − ul → 0 in W 1,p(Ω) as k, l → ∞ i.e. {uk} is a Cauchy sequence in
W 1,p(Ω). Then as W 1,p(Ω) is a Banach space, there exists u ∈ W 1,p(Ω) such that

uk → u in W 1,p(Ω)

satisfying
‖u‖W 1,p(Ω) ≤ Cp(Ω, α∗) ‖f‖Lp(Ω).

Clearly u also solves the system (4.1). �

Proposition 4.2.14 (W 1,p(Ω) estimate with RHS F ). Let Ω be a C1 bounded domain
in R3, p ∈ (1,∞), F ∈ Lr(p)(Ω) and g ∈ W− 1

p
,p(Γ). Suppose that the coefficients of the

operator L, defined in (4.2), are also symmetric and in VMO(R3). Then the weak solution
u ∈ W 1,p(Ω) of the problem  Lu = F in Ω

(A∇u) · n+ αu = g on Γ
(4.25)
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satisfies the following estimate:

‖u‖W 1,p(Ω) ≤ Cp(Ω, α∗)
(
‖F‖Lr(p)(Ω) + ‖g‖

W
− 1
p ,p(Γ)

)
where the constant Cp(Ω, α∗) > 0 is independent of α.

Proof. It suffices to prove the estimate since the existence and uniqueness of u follows from
the same argument as in Proposition 4.2.13.

(i) Estimate I: Let f ∈ C∞0 (Ω) and v ∈ W 1,p′(Ω) be the weak solution of div(A(x)∇v) =
div f in Ω and (A∇)v · n+ αv = 0 on Γ. By Proposition 4.2.13, we then have

‖v‖W 1,p′ (Ω) ≤ Cp(Ω, α∗)‖f‖Lp′ (Ω).

Also, if u ∈ W 1,p(Ω) is a solution of (4.25), from the weak formulation of the problems
satisfied by u and v, we get∫

Ω

f · ∇u =
∫
Ω

A(x)∇u · ∇v +
∫
Γ

αuv = −
∫
Ω

Fv + 〈g, v〉Γ .

This implies

|
∫
Ω

f · ∇u| ≤ ‖F‖Lr(p)(Ω)‖v‖L(r(p))′ (Ω) + ‖g‖
W
− 1
p ,p(Γ)

‖v‖
W

1
p ,p
′
(Γ)

≤ Cp(Ω)
(
‖F‖Lr(p)(Ω) + ‖g‖

W
− 1
p ,p(Γ)

)
‖v‖W 1,p′ (Ω)

since 1
(p′)∗ = 1

p′
− 1

3 = 1
(r(p))′ for p > 3

2 and W 1,p′(Ω) ↪→ L∞(Ω) when p < 3
2 . Thus,

‖∇u‖Lp(Ω) = sup
06=f∈Lp′ (Ω)

|
∫

Ω∇u · f |
‖f‖Lp′ (Ω)

≤ Cp(Ω, α∗)
(
‖F‖Lr(p)(Ω) + ‖g‖

W
− 1
p ,p(Γ)

)
.

(ii) Estimate II: Next we prove the following bound as done in (4.24):

‖u‖Lp(Ω) ≤ Cp(Ω, α∗)
(
‖F‖Lr(p)(Ω) + ‖g‖

W
− 1
p ,p(Γ)

)
(4.26)

except that we do not need to assume p < 2 here as in (4.24). For any ϕ ∈ Lp′(Ω), there
exists a unique weak w ∈ W 1,p′(Ω) solving the problem div(A(x)∇w) = ϕ in Ω

(A∇)w · n+ αw = 0 on Γ

and satisfying
‖w‖W 1,p′ (Ω) ≤ Cp(Ω, α∗)‖ϕ‖Lp′ (Ω).
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(For p < 2 the above estimate can be proved by the exact same argument as in Proposition
4.2.13). Finally we can write,∫

Ω

u ϕ =
∫
Ω

u∆w =
∫
Ω

∆u w −
∫
Γ

∂u

∂n
w +

∫
Γ

u
∂w

∂n
=
∫
Ω

Fw − 〈g, w〉Γ

which yields as before

‖u‖Lp(Ω) ≤ Cp(Ω, α∗)
(
‖F‖Lr(p)(Ω) + ‖g‖

W
− 1
p ,p(Γ)

)
and thus we obtain (4.26). �

Proof of Theorem 4.1.1. Let u1 ∈ W 1,p(Ω) be the weak solution of div(A(x)∇u1) = divf in Ω
(A∇u1 − f) · n+ αu1 = 0 on Γ

given by Proposition 4.2.13 and u2 ∈ W 1,p(Ω) be the weak solution of div(A(x)∇u2) = F in Ω
(A∇)u2 · n+ αu2 = g on Γ

given by Proposition 4.2.14. Then u = u1 + u2 is the solution of the problem 4.1 which
also satisfies the estimate (4.4). �

Next we prove uniform Hs bound for s ∈ (0, 1
2).

Proposition 4.2.15. Let Ω be a Lipschitz bounded domain in R3, g ∈ L2(Γ) and α is a
constant. Then the problem 

∆u = 0 in Ω
∂u

∂n
+ αu = g on Γ

(4.27)

has a weak solution u ∈ H 3
2 (Ω) which also satisfies the estimate

‖u‖
H

3
2 (Ω)
≤ C(Ω)‖g‖L2(Γ).(4.28)

Proof. A solution u ∈ H1(Ω) of the problem (4.27) satisfies the variational formulation:

∀ϕ ∈ H1(Ω),
∫
Ω

∇u · ∇ϕ+
∫
Γ

αuϕ =
∫
Γ

gϕ.
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Multiplying the above relation by α and substituting ϕ = u, we get

α
∫
Ω

|∇u|2 + ‖αu‖2
L2(Γ) = α

∫
Γ

gu ≤ ‖g‖L2(Γ)‖αu‖L2(Γ)

and thus
‖αu‖L2(Γ) ≤ ‖g‖L2(Γ).

Now from the regularity result for Neumann problem [74, Theorem 2], we obtain

‖u‖
H

3
2 (Ω)
≤ C(Ω)‖g − αu‖L2(Γ) ≤ C(Ω)‖g‖L2(Γ)

which gives the required estimate. �

Remark 4.2.16. We do not know any reference of Hs(Ω) regularity results (in particular,
s = 3/2) for the general second order elliptic operator of divergence form with Neumann
boundary condition, instead of Laplacian. That is the reason, we have stated the above
Proposition for Laplacian.

Theorem 4.2.17 (Hs(Ω) estimate). Let Ω be a Lipschitz bounded domain in R3, s ∈
(0, 1

2) and α is a constant. Then for g ∈ Hs− 1
2 (Γ), the problem (4.27) has a solution

u ∈ H1+s(Ω) which also satisfies the estimate

‖u‖H1+s(Ω) ≤ C(Ω)‖g‖
Hs− 1

2 (Γ)
.

Proof. We obtain the result by interpolation between H1(Ω) and H 3
2 (Ω) regularity results

in Theorem 4.2.2 and Proposition 4.2.15 respectively. �

4.3 Estimate for strong solution

Theorem 4.3.1 (W 2,p(Ω) estimate). Let Ω be a C1,1 bounded domain in R3, p ∈ (1,∞)
and α be a constant. Then for F ∈ Lp(Ω) and g ∈ W 1− 1

p
,p(Γ), the weak solution u of the

problem 
∆u = F in Ω,

∂u

∂n
+ αu = g on Γ

(4.29)

belongs to W 2,p(Ω) and satisfies the following estimate:

‖u‖W 2,p(Ω) ≤ Cp(Ω, α∗)
(
‖F‖Lp(Ω) + ‖g‖

W
1− 1

p ,p(Γ)

)
(4.30)

where the constant Cp(Ω, α∗) > 0 is independent of α.
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Remark 4.3.2. We can in fact show the existence of u ∈ W 2,p(Ω) for more general α,
not necessarily constant; in particular for α ∈ W 1− 1

q
,q(Γ) with q > 3

2 if p ≤ 3
2 and q = p

otherwise.

Proof. For the given data, there exists a unique solution u of (4.29) in W 1,p(Ω), by Theorem
4.1.1. Then it can be shown that in fact u belongs to W 2,p(Ω) by Neumann regularity
result using bootstrap argument. But concerning the estimate, we do not obtain a α

independent bound on u, using the estimate for Neumann problem. So we consider the
following argument.

As Γ is compact and of class C1,1, there exists an open cover Ui i.e. Γ ⊂ ∪ki=1Ui and
bijective maps Hi : Q→ Ui such that

Hi ∈ C1,1(Q), J i := H−1
i ∈ C1,1(Ui), Hi(Q+) = Ω ∩ Ui and Hi(Q0) = Γ ∩ Ui

where we denote
Q = {x = (x′, x3); |x′| < 1 and |x3| < 1}
Q+ = Q ∩ R3

+

Q0 = {x = (x′, 0); |x′| < 1}.

Then we consider the partition of unity θi corresponding to Ui with supp θi ⊂ Ui. So we
can write u = ∑k

i=0 θiu where θ0 ∈ C∞c (Ω). It is easy to see that vi = θiu ∈ W 2,p(Ω ∩ Ui)
and satisfies: 

∆vi = θiF + 2∇θi∇u+ u∆θi =: fi in Ω ∩ Ui
∂vi
∂n

+ αvi = g + ∂θi
∂n

u =: hi on ∂(Ω ∩ Ui).

Precisely, we have, for all ϕ ∈ W 1,p′(Ω ∩ Ui),∫
Ω∩Ui

∇vi · ∇ϕ+ α
∫

Γ∩Ui

viϕ = −
∫

Ω∩Ui

fiϕ+
∫

Γ∩Ui

hiϕ(4.31)

where fi ∈ Lp(Ω) and hi ∈ W 1− 1
p
,p(Γ). Now to transfer vi|Ω∩Ui to Q+, set wi(y) = vi(Hi(y))

for y ∈ Q+. Then,
∂vi
∂xj

=
∑
k

∂wi
∂yk

∂J ik
∂xj

.

Also let ψ ∈ H1(Q+) and set ϕ(x) = ψ(J i(x)) for x ∈ Ω ∩ Ui. Then ϕ ∈ H1(Ω ∩ Ui) and

∂ϕ

∂xj
=
∑
l

∂ψ

∂yl

∂J il
∂xj

.
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Thus, putting these in (4.31), we obtain under this change of variable, for all ψ ∈ H1(Q+),∫
Q+

akl(x)∂wi
∂yk

∂ψ

∂yl
+ α

∫
Q0

wiψ = −
∫
Q+

f̃iψ +
∫
Q0

h̃iψ(4.32)

with akl(x) = ∑
j
∂Jik
∂xj

∂Jil
∂xj
| det Jac Hi|, f̃i = fi ◦J i and h̃i = hi ◦J i. Here det Jac Hi denotes

the determinant of the Jacobian matrix of Hi. Note that akl ∈ C0,1(Q+), f̃i ∈ Lp(Q+) and
h̃i ∈ W 1/p′,p(Q0). Also (4.32) is a Robin problem of the form (4.1) for wi on Q+, since wi
vanishes in a neighbourhood of ∂Q+rQ0, the coefficient matrix satisfying the assumptions.

For notational convenience, in this last part, we omit the index i i.e. we simply write
w instead of wi. Now denoting ∂j = ∂

∂xj
, we see that zi := ∂iw, i = 1, 2 solves the following

problem 
div(A(x)∇zi) = div(f̃ei)− div(∂iA(x)∇)w in Q+

∂zi
∂n

+ αzi = f̃ei · n− (∂iA(x)∇)w · n+ ∂ih̃ on Q0
(4.33)

where ei is the unit vector with 1 in ith position. Thus, we can apply Theorem 4.1.1 for
the above system and may conclude

‖zi‖W 1,p(Q+) ≤ Cp(Q+)
(
‖f̃‖Lp(Q+) + ‖∂iA(x)∇w‖Lp(Q+) + ‖∂ih̃‖

W
− 1
p ,p(Q0)

)
which yields, for all i, j = 1, 2, 3 except i = j = 3,

‖∂2
ijw‖Lp(Q+) ≤ Cp(Q+)

(
‖f̃‖Lp(Q+) + ‖w‖W 1,p(Q+) + ‖h̃‖

W
1
p′
,p

(Q0)

)
.(4.34)

Now to show the estimate for ∂2
33w, we can write from the equation (4.32) (omitting the

index i),
∂2

33w = 1
a33

(
f̃ − aij ∂2

ijw − ∂iaij ∂jw
)

in Q+.

But since J is an one-one map, a33 6= 0 and thus together with (4.34), we obtain the same
estimate (4.34) for ∂2

33w. Therefore, we can conclude, for all i = 1, ..., k,

‖v‖W 2,p(Ω∩Ui) ≤ Cp(Ω)
(
‖F‖Lp(Ω) + ‖g‖

W
1− 1

p ,p(Γ)
+ ‖u‖W 1,p(Ω)

)
and consequently (4.30), using W 1,p-estimate result. �
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[73] W. Jäger and A. Mikelić. Couette flows over a rough boundary and drag reduction.
Comm. Math. Phys., 232(3):429–455, 2003.

[74] D.S. Jerison and C.E. Kenig. The Neumann problem on Lipschitz domains. Bull.
Amer. Math. Soc. (N.S.), 4(2):203–207, 1981.
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