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“The question of whether a computer can think is no more interesting than
the question of whether a submarine can swim.”

Edsger W. Dijkstra
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Abstract

Doctor of Philosophy

New Perspectives and Methods for Stream Learning in the
Presence of Concept Drift

by Jesús López Lobo

Online Learning and Concept Drift are two of the hottest topics in
the recent literature related to Machine Learning due to their rele-
vance for the so-called Big Data paradigm, where nowadays we can
find an increasing number of applications based on continuously
produced training data, named as data streams. This thesis provides
a complete overview of several related fields, and tackles some open
challenges that have been identified in the very recent state of the art.
Concretely, it presents an innovative way to generate artificial diver-
sity in ensembles, a set of necessary adaptations and improvements
for evolving spiking neural networks in order to be used in online
learning scenarios, and finally, a drift detector based on this former
brain-inspired algorithm. All these approaches constitute an inno-
vative work aimed at presenting new perspectives and methods in
the field.
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Chapter 1

Introduction

This first chapter introduces the problems addressed in this thesis
and gives an overview of subsequent chapters. Section 1.1 presents
the problem of online learning and concept drift. In Section 1.2, we
describe the motivation behind this Thesis. Section 1.3 summarizes
a selection of the significant contributions derived from the research
findings, and finally Sections 1.4 and 1.5 describe the publications
resulting from this thesis and the content in each subsequent chapter
respectively.

1.1 Online Learning and Concept Drift

Applications that generate huge amounts of data [1] in the form of
fast streams from non-stationary environments, that is, those where
the underlying phenomena change over time, are becoming increas-
ingly prevalent. In this kind of environments the probability density
function of the data-generating process may change over time, pro-
ducing a drift. This causes that predictive models trained over these
stream data become obsolete and do not adapt suitably to the new
distribution. Specially in online learning scenarios, there is a pressing
need for new algorithms that adapt to this change as fast as possible,
while maintaining good performance scores. Examples of these ap-
plications include making inferences or predictions based on finan-
cial data, energy demand and climate data analysis, web usage or
sensor network monitoring, and malware/spam detection, among
others [2].

Learning in non-stationary environments requires adaptive or
evolving approaches that can monitor and track the underlying chan-
ges, and adapt a model to accommodate those changes accordingly.
Adaptation strategies can be applied proactively (active approaches
or informed methods) detecting first the concept drift, and the model
gets updated only when a drift is detected, or reactively (passive
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approaches or blind methods) by updating the model continuously
every time new data samples are received. Ensembles of learners
are an extended solution to deal with the learning in non-stationary
environments. The success of these ensembles lies in taking into
consideration their complementarity and diversity [3] of its learners.
Empirical evidence has shown that a good strategy should be based
on maintaining highly diverse ensembles and use them shortly af-
ter the drift occurs in order to achieve good performance scores. To
achieve a successful adaptation, additional mechanisms are also nec-
essary for the ensemble when adapting to the new concept as soon
as possible.

Besides, learning in an online mode imposes a set of restrictions
[4] that every adaptive technique must meet (i.e. limited processing
per arriving sample, limited amount of memory, etc.). Regarding the
limited amount of memory, one of the most relevant requirements
that we have to consider when we design an online learning system,
data reduction techniques become a very useful tool to reduce our
memory needs. They aim to obtain a representative training set with
a lower size compared to the original one, yet with similar or even
higher classification accuracy [5].

Finally, recent researches [6], [7] lead us to consider the temporal
dependence that frequently real data streams exhibit. They suggest
that a naive classifier considering the temporal dependence can out-
perform a lot of classifiers in the literature. They propose to pick
ideas from time series analysis in order to adapt them to drift detec-
tion in presence of temporal dependence.

In this effort, we provide in this thesis a comprehensive state-
of-the-art approaches as well as we identify the most relevant open
challenges in the literature, while focusing on addressing three of
them by providing innovative perspectives and methods.

1.2 Motivation

This thesis provides an overview of the current state of the online
learning and concept drift fields. Besides, it identifies the current cha-
llenges of them, and addresses those of high relevance for the field
because prominent authors highlighted in their very recent publica-
tions. By addressing these challenges we provide new perspectives
and methods that take a step further beyond the state of the art.
These addressed challenges will be explained in detail in Chapter
2.7. Now, we introduce briefly our motivations behind this thesis.
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1.2.1 Diversity Generation Methods for Drift Adaptation

Diversity management and generation methods are an essential tool
to achieve the required level of diversity in ensembles when applied
to online learning scenarios [8], where only one sample at each time
is available to train the classifiers. Here, handling with methods
based on input manipulation (e.g. Online Bagging or Online Boost-
ing), output manipulation (e.g. Class-Switching), base learner pa-
rameters manipulation, or heterogeneous base learners (e.g. Stack-
ing) is primordial to encourage different levels of diversity in en-
sembles. With the added difficulty of having just one sample at each
time, it should be also considered that there is theoretical and empir-
ical evidence that the maximum diversity in ensembles is not usually
achievable with the original data on which models are trained. Due
to all these reasons, understanding how to manage (and produce)
the diversity remains as an open topic in the field. In addition to
the diversity generation in ensembles, we should also achieve at the
same time a good classification performance. Therefore, we must
find an equilibrium between both objectives, which entails a chal-
lenging paradigm.

1.2.2 Data Reduction Techniques for Drift Adaptation

The inherent storage limitation imposed to online learning approach-
es enforces researchers to derive novel methods to deal with a very
reduced amount of samples. One of the requests from the research
community [9] is the implementation of more algorithms based on
data reduction techniques for drift adaptation. These techniques
provide a representative training set with a lower size when com-
pared to the original one, and with similar or even higher general-
ization capabilities, which may reduce the computational complex-
ity of the learning algorithm. This benefit, coupled with the fact
that evolving spiking neural networks (eSNNs) are one of the most
promising techniques because their flexibility to easily incorporate
new data into a classification model when new data are presented,
makes them an attractive choice for massive data stream scenarios
under severe computational restrictions.

1.2.3 Capturing Temporal Dependence for Drift Detection

Recently, several prominent studies [6], [7] have encouraged the re-
search community to consider the temporal dependence, which fre-
quently appears in real data streams, when building new algorithms
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for drift detection. The inherent ability of the eSNNs to capture the
temporal dependence of data, makes them a perfect candidate to act
as a drift detector technique. Besides, all existing drift detectors uti-
lize a base learner to analyze its performance score and detect drifts;
this observation motivates to think about exploiting the structural
changes of eSNNs to develop an embedded drift detector.

1.3 Thesis Contributions

In response to the research hypotheses postulated above, and ad-
dressing those selected challenges which have shown a wider im-
pact on the stream learning field (see Sec. 2.7.2), this thesis elabo-
rates on a number of significant contributions to the field of online
learning and concept drift, which will be discussed in more detail in
Chapter 6.1.

• In Challenge 1, we have addressed the field of drift adaptation,
by creating a new technique (DRED) that strengthens any tra-
ditional diversity generation scheme (such as bagging, boost-
ing, and class-switching), allowing them to achieve a better
classification performance under a wide range of drift condi-
tions. This Chapter contributes to the state of the art by:

– using for the first time the Bhattacharyya distance to mea-
sure the diversity of an ensemble in data streams for con-
cept drift scenarios.

– developing the first technique that can be hybridized with
any other diversity-inducing method to optimize the level
of diversity and the classification performance in ensem-
bles building for online learning scenarios in the presence
of concept drift.

– providing an innovative perspective on diversity gener-
ation, based on optimally labeling synthetic distances as
measured by a quantitative metric of ensemble diversity.

• In Challenge 2, we have also addressed the field of drift adap-
tation, but this time by:

– developing the first eSNN implementation that considers
in a realistic and practical way the constraints imposed by
the online learning scenarios, and
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– carrying out an analysis of the impact of applying data re-
duction techniques to eSNNs in order to limit the neurons
repository size.

• Finally, in Challenge 3, we have addressed the field of drift de-
tection by developing a novel drift detection algorithm based
on capturing the temporal dependence of the data stream, tak-
ing advantage of the inherent evolving characteristic of the
eSNNs to adapt to changes.

1.4 Publications during this Thesis

1.4.1 Related to this Thesis

The findings related to the above motivations and selected chal-
lenges have been published or submitted to relevant research jour-
nals and presented to international conferences.

Journal Publications

• Lobo, J. L., Del Ser, J., Bifet, A., Kasabov, N. “Spiking Neural
Networks and Online Learning: An Overview and Perspec-
tives”. In: IEEE Signal Processing Magazine (2018). (Submitted)

JCR: 7.451 (2017), Q1 (9/260), Engineering, Electrical and Elec-
tronic.

• Lobo, J. L., Laña, I., Del Ser, J., Bilbao, M. N., Kasabov, N.
“Evolving Spiking Neural Networks for online learning over
drifting data streams”. In: Neural Networks 108 (2018), pp. 1–
19. (Accepted)

JCR: 7.197 (2017), Q1 (7/132), Computer Science and Artificial
Intelligence.

• Lobo, J. L., Del Ser, J., Bilbao, M. N., Perfecto, C., Salcedo-Sanz,
S. “DRED: An evolutionary diversity generation method for
concept drift adaptation in online learning environments”. In:
Applied Soft Computing 68 (2018), pp. 693–709. (Accepted)

JCR: 3.907 (2017), Q1 (17/132), Computer Science and Artifi-
cial Intelligence.



6 Chapter 1. Introduction

Conference Publications

• Lobo, J. L., Del Ser, J., Laña, I., Bilbao, M. N., Kasabov, N. “Drift
Detection over Non-stationary Data Streams using Evolving
Spiking Neural Networks”. In: International Symposium on In-
telligent and Distributed Computing. Springer. 2018. (Accepted)

• Lobo, J. L., Del Ser, J., Villar-Rodriguez, E., Bilbao, M. N., Salce-
do-Sanz, S. “On the Creation of Diverse Ensembles for Non-
stationary Environments Using Bio-inspired Heuristics”. In:
International Conference on Harmony Search Algorithm. Springer.
2017, pp. 67–77. (Published)

• Lobo, J. L., Del Ser, J., Bilbao, M. N., Laña, I., Salcedo-Sanz,
S. “A Probabilistic Sample Matchmaking Strategy for Imbal-
anced Data Streams with Concept Drift”. In: International Sym-
posium on Intelligent and Distributed Computing. Springer. 2016,
pp. 237–246. (Published)

1.4.2 Other Publications

The findings related to the projects carried out at Tecnalia Research
and Innovation (where I work as Data Scientist) during my thesis
period, or developed at the KEDRI department of the Auckland Uni-
versity of Technology (AUT), have been also published or submitted
to relevant research journals and presented to international confer-
ences.

Journal Publications

• Ibai Laña, Lobo, J. L., Capecci, E., Del Ser, J., Kasabov, N. “A-
daptive Long-Term Traffic Forecasting with Evolving Spiking
Neural Networks”. In: Transportation Research Part C: Emerging
Technologies (2018). (Submitted)

JCR: 3.968 (2017), Q1 (6/35), Transportation Science and Tech-
nology.

• Capecci, E., Lobo, J. L., Ibai Laña, Espinosa-Ramos, J. I., Kasa-
bov, N. “Modelling Gene Interaction Networks from Time-Seri-
es Gene Expression Data using Evolving Spiking Neural Net-
works”. In: Evolving Systems (2018). (Accepted)
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• Lobo, J. L., Santos, O. C., Boticario, J. G. “Identifying recom-
mendation opportunities for computer-supported collabora-
tive environments”. In: Expert Systems 33.5 (2016), pp. 463–
479. (Accepted)

JCR: 1.180 (2016), Q3 (91/133), Computer Science and Artifi-
cial Intelligence.

Conference Publications

• Aróstegi, M., Torre-Bastida, A. I., Lobo, J. L., Bilbao, M. N.,
Del Ser, J. “Concept Tracking and Adaptation for Drifting Data
Streams under Extreme Verification Latency”. In: International
Symposium on Intelligent and Distributed Computing. Springer.
2018. (Accepted)

• Ibai Laña, Capecci, E., Del Ser, J., Lobo, J. L., Kasabov, N. “Road
Traffic Forecasting Using NeuCube and Dynamic Evolving Spi-
king Neural Networks”. In: International Symposium on Intelli-
gent and Distributed Computing. Springer. 2018. (Accepted)

• Landa-Torres, I., Lobo, J. L., Murua, I., Manjarres, D., Del Ser, J.
“Multi-objective heuristics applied to robot task planning for
inspection plants”. In: IEEE Congress on Evolutionary Computa-
tion (CEC). IEEE. 2017, pp. 1621–1628. (Published)

• Lobo, J. L., Del Ser, J., De Simone, F., Presta, R., Colina, S.,
Moravek, Z. “Cognitive workload classification using eye-trac-
king and EEG data”. In: International Conference on Human-
Computer Interaction in Aerospace. ACM. 2016, pp. 16. (Pub-
lished)

• Del Ser, J., Lobo, J. L., Villar-Rodriguez, E., Bilbao, M. N., Per-
fecto, C. “Community detection in graphs based on surprise
maximization using firefly heuristics”. In: IEEE Congress on
Evolutionary Computation (CEC). IEEE. 2016, pp. 2233–2239.
(Published)

1.5 Structure of the Thesis

This initial chapter has briefly introduced some preliminaries for
subsequent chapters: online learning and concept drift. We have
also described the motivation behind this thesis and summarized
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the main contributions of this thesis. Finally, we have listed the pub-
lications resulting from this research work. Now, we detail the struc-
ture of this thesis work, which is visually organized in Figure 1.1.

Chapter 1: Introduction

Chapter 2: Background

Challenges

Chapter 3: 

Challenge 1

Chapter 4: 

Challenge 2

Chapter 5:

Challenge 3

Chapter 6: Conclusions and Future Work

if required advisable

FIGURE 1.1: Structure of this thesis.

In Chapter 2, we review the literature related to this thesis and
give an overview of subsequent chapters. Concretely, Section 2.1
introduces a complete taxonomy of methods for concept drift adap-
tation, presenting the most relevant concepts of the field. Section 2.2
goes into detail on the stream learning topics that are subsequently
presented. In Section 2.3, we enter the problem of concept drift, and
Section 2.4 is aimed at explaining the importance of base learners.
Section 2.5 shows how ensembles are a key aspect on stream learn-
ing, whereas Section 2.6 reveals the different evaluation methods for
stream learning scenarios. Section 2.7 brings to light the existing
challenges in the state of the art, and highlights those which have
been selected to be addressed by this thesis. Finally Section 2.8 sum-
marizes the whole introductory chapter.

In Chapter 3, Section 3.1 introduces the work carried out in this
challenge. Section 3.2 provides an overall insight on the different
tools and techniques embedded in DRED, whereas Section 3.3 delves
into the details of the proposed approach. Section 3.4 presents the
experiments, while Section 3.5 discusses the performed numerical
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experiments. And, finally, Section 3.6 provides a summary of the
whole first challenge.

In Chapter 4, Section 4.1 introduces the work carried out in this
challenge. Section 4.2 provides a general introduction to the evolv-
ing spiking neural networks and their relevance in online learning
scenarios. Section 4.3 delves into the data reduction methods used in
the proposed approach. Section 4.4 provides a detailed description
of the proposed approach, while Section 4.5 presents the experimen-
tal setup designed to assess its performance. Section 4.6 presents
and discusses the obtained results from such experiments and fi-
nally, Section 4.7 gives an overall sketch of the whole second chal-
lenge.

In Chapter 5, Section 5.1 introduces the work carried out in this
challenge. Section 5.2 details the proposed approach. Section 5.3
presents the experimental setup designed to assess eSNN-DD per-
formance. Section 5.4 presents and discusses the experimental re-
sults, and finally Section 5.5 sketches the third challenge.

Finally, Chapter 6 ends the thesis by summarizing its conclusions
and by suggesting several future research lines.
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Chapter 2

Background Material

2.1 Introduction

The concept of Big Data has been gaining progressive momentum
during the last decade [1], due to the fact that we can collect data
from almost any source and analyze it to find answers that enable
cost and time reductions, new product developments, optimized of-
ferings, or smart decision making, among others profits. From a data
analytics perspective, Big Data has come to be defined by the four
V’s: Volume, Velocity, Veracity, and Variety. In what refers to Veloc-
ity, stream data are produced at rates faster than those that can be
handled by traditional algorithms and systems. As exposed in the
introductory chapter of this thesis, an increasing number of appli-
cations are based on training data continuously available, known as
data streams, and applied to real scenarios [2], such as mobile phones,
sensor networks, industrial process controls and intelligent user in-
terfaces, among others. Recently, this field has grasped the interest
of the research community in new approaches capable of dealing
with these fast evolving information flows, which unleash a set of
challenges when designing algorithms to be performed in real time.

The fields of stream learning and concept drift are vast. As a result,
we can often find different confusing taxonomies trying to cover the
fields entirely, which is not an easy task due to the fact that these
fields are growing and changing constantly, and that can be tack-
led from different perspectives. This thesis tries to shed light on
this issue by merging known embraced taxonomies such as [10] and
[11], in order to produce a new one with some original ingredients
(e.g. ensemble training methods, base learners, evaluation methods,
and labelling). On the one hand, in [10] the taxonomy is distributed
into modules that present adaptive learning systems as consisting of
modular components, which can be permuted and combined with
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each other. On the other hand, [11] defines several dimensions rel-
evant to the applications facing concept drift. Figure 2.1 shows a
global view of adaptive learning methods that comprises most of the
current subfields and research lines of this field. This thesis will deal
with some of these modules (e.g. Learning, Drift detection, Evalua-
tion methods, and Memory). In what follows some related concepts
will be described in detail in order to ease the understanding of the
scope of the addressed challenges. Next sections of this chapter will
show a detailed taxonomy for each of these challenges.

ApplicationsMemoryEvaluation
Methods

Adaptive Learning 
Modules

Drift
Detection

LabellingBase
Learner Learning

FIGURE 2.1: Taxonomy of methods for concept drift
adaptation.

Before starting with the details of the taxonomy (Figure 2.1), we
would like to briefly outline a very recent trend that frames the on-
line learning in non-stationary environments field within the term
Lifelong Machine Learning (LML), or Continuous Learning, or Contin-
ual Learning. This new emerging paradigm [12], [13] focuses on de-
veloping versatile systems that accumulate and refine their knowl-
edge over time, considering also other research fields such as transfer
learning, reinforcement learning, online learning, multi-task learning, and
knowledge representation and maintenance. Transfer learning is based on
the idea of how to take models from one area and apply them to
another. Reinforcement learning is a research field related to unsuper-
vised machine learning where an AI model learns how to optimally
interact with an environment (e.g. a game) entirely through trial and
error. The multi-task learning field tries to build a model than can be
applied to different problems, by learning from different sources of
information. Finally, knowledge representation and maintenance aims at
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designing different ways of representation for the knowledge flows
of systems and applications. Thus, as we see the online learning and
concept drift field can be also seen from this new perspective, where
it is considered a subfield of a major taxonomy and shares research
lines (e.g. forgetting mechanisms, incremental learning, sequential
learning, knowledge retention, etc.) with other subfields.

Once mentioned the LML taxonomy, we start now describing
the modules of Figure 2.1. Learning from data streams (see Section
2.2) covers all the problems of traditional batch learning, e.g. miss-
ing values, noisy data, outliers, and also comprises its own restric-
tions. The distribution modeling data captured by sensor networks,
mobile phones, intelligent user interfaces, industrial machinery and
others alike (Figure 2.2) is usually assumed to be stationary along
time. However, in many real cases such an assumption does not
hold, as the data source itself is subject to dynamic externalities that
affect the stationarity of its produced data stream(s), e.g. seasonality,
periodicity or sensor errors, among many others. As a result, possi-
ble patterns behind the produced data may change over time, either
in the feature domain [14] (new features are captured, part of the ex-
isting predictors disappear, or their value range evolves), or in the
class domain (new classes emerge from the data streams, or some
of the existing ones fade along time). As we will define formally in
Section 2.3.1, this paradigm is what the literature has coined as con-
cept drift, where the term concept refers to a stationary distribution
relating a group of features to a set of classes.

When the goal is to infer the aforementioned class patterns from
data through online learning, incremental models trained over drift-
ing streams become obsolete when transitioning from one concept to
another. Consequently, they do not adapt appropriately to the new
emerged data distribution, unless they are modified to handle ef-
ficiently this unwanted effect. In order to minimize the impact of
concept drift on the performance of predictive models, recent stud-
ies [6], [15], [16] have been focused on the development of efficient
techniques for continuous drift adaptation (Section 2.3.2) or, alterna-
tively, in the incorporation of drift detection techniques (Section 2.3.3)
and concept forgetting mechanisms [17] (see Section 2.5.3). Indeed,
online learning in the presence of concept drift has been a very hot
topic during the last few years [2], [10], [15], and still remains un-
der active debate in the community [6] due to the fact that there are
many relevant open challenges that remain unsolved [7], [14], [18],
[19] (Section 2.7).

Most online learning techniques dealing with concept drift are
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Assistance &
Information

Applications
AI

Robotics

Monitoring &
Control

Decision
making

Computer security, 
telecommunications,
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Transportation, 
positioning, industrial
monitoring

Personal assistance,
customer profiling,
information

Finance, biomedical
applications

Mobile systems and
robotics, intelligent
systems, virtual
reality

FIGURE 2.2: Applications module of the taxonomy
for concept drift adaptation.

based on ensemble building (Section 2.5), which has been widely used
to improve the accuracy (Section 2.6) of single classifiers in online
and incremental learning [18]. Interestingly for the scope of this the-
sis, diversity (Section 2.5.2) among the constituent learners in ensem-
ble models has been shown to be crucial when dealing with concept
drifts [3]. This former study provides empirical evidence that the
diversity plays an important role before and after a concept drift oc-
curs: before the drift, ensembles with less diversity obtain better test
errors, while shortly after the drift more diverse ensembles use to
score lower test error rates. Their difference in terms of test error
performance when compared to lower diverse ensembles is usually
more significant when the severity of the concept change is higher.
Therefore, it is a good strategy to maintain highly diverse ensem-
bles and utilize them shortly after the drift (independently from the
type of drift) to obtain good performance scores [3]. But this is not
sufficient to achieve adaptation, as additional mechanisms are also
necessary for the ensemble to adapt to the new concept as soon as
possible. Thereby, a well-designed approach which maintains more
than one ensemble with different diversity levels should be able to
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converge in the absence of drifts and get lower test error soon after
a drift [8].

Bearing in mind the necessity for adapting to the new concept
but also remembering the old one, it is important to highlight the
importance of the stability-plasticity dilemma [20]. As such, this prin-
ciple refers to the ability of a model to retain acquired knowledge
or to learn new concepts, but not being able to do both equally well
at the same time. While stability entails accumulating knowledge of
the old concept, plasticity requires forgetting some or all of the old
acquired knowledge in order to learn the new upcoming concept as
fast as possible. Due to this need for adapting the learning model
to the drift, it is crucial to select a proper forgetting mechanism [21]
(Section 2.5.3).

Most algorithms should take the above stability-plasticity dilemma
as a reference when deciding which models (in case of ensembles)
should be kept so as to predict the class for the next stream data.
This dilemma results in a trade-off between the amount of diver-
sity in the ensemble and the necessity of maintaining a good accu-
racy. Furthermore, the literature usually states that lower accuracy
should correspond to higher diversity. However, [22] showed that
the relationship between accuracy and diversity is not straightfor-
ward, i.e. a lower classification accuracy of ensemble members does
not correspond to a higher diversity level. The study in [3] consid-
ered this issue and carried out a detailed research on this dilemma,
concluding that shortly after the drift, more diverse ensembles are
always among the best test errors, and the difference in the test er-
ror in comparison to lower diverse ensembles is usually more sig-
nificant when severity is higher. Due to the noted importance of this
trade-off along time, there is a latent need for novel mechanisms
to optimally balance the diversity in ensemble learning. Likewise,
as mentioned in Section 2.2, the inherent storage limitation to on-
line learning approaches enforces the research community to derive
novel methods to deal with a very reduced amount of samples, and
making use of synthetic samples generation (Section 2.5.2).

Next subsections provide further details on the topics of this the-
sis in order to achieve a better comprehension of the challenges ad-
dressed in subsequent chapters.
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2.2 Learning from Data Streams

As in the traditional machine learning field, in learning from data
streams there is also the choice of a learning modality, such as su-
pervised, unsupervised, or semi-supervised [23], [24] (Figure 2.3).
Secondly, the rate at which data arrive should be also taken into
account (Figures 2.4 and 2.5). The most common specific case of
learning from streams is classification, where a set of samples is dis-
tributed into classes according to their relations. Given a set of sam-
ples (training data set), each sample is characterized by (x, y), where
x is the attribute set (predictor, independent variable, input) and y
is the class label (response, dependent variable, output). Then, the
classification task consists of mapping each unlabeled sample x into
one of the predefined class labels y. In classification data sets are
therefore assumed to contain all information necessary to learn the
relevant concepts belonging to the underlying generating function.
Models derived from this case, however, have proven to be unreal-
istic for many real-world scenarios, e.g., intrusion detection, spam
detection, fraud detection, loan recommendation, climate data anal-
ysis or long term epidemiological studies. Instead of all training
data being available from the begining, data are often received over
time in streams of samples or batches.

UnsupervisedLabelling

Supervised

Semi-
supervised

Extreme
verification
latency

FIGURE 2.3: Labelling module of the taxonomy for
concept drift adaptation.

Thereby, data may arrive in batches or chunks of data (batch learn-
ing) or in an online manner, i.e., one single sample at a time (on-
line learning). In the case of online learning, only a single sample
is provided to the learning algorithm at every time instant, which
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incrementally updates with each new sample. However, in batch
learning an entirely accessible group of samples (batch) is provided,
and the learning algorithm is allowed to scan the batch before build-
ing/updating the model (see Figure 2.4).

Memory
Data

Management

Single
Sample

Batch

Fixed
Size

Dynamic
Size

Forgetting
Mechanisms

Abrupt

Gradual

Windowing

Sampling
selection

Fixed size

Dynamic
size

FIGURE 2.4: Memory module of the taxonomy for
concept drift adaptation.

A data stream environment has different constraints [4] from the
traditional batch learning setting:

• Each sample must be processed only once on arrival. Models
must be able to process samples sequentially accordingly to
their arrival. Although there is no specification of the number
of buffered samples for a restricted amount of time, the learn-
ing algorithm must not put the memory space and processing
time restrictions at risk.

• The processing time of each sample must be small and con-
stant not to exceed the ratio in which new samples arrive. If the
processing time exceeds this restriction, newly samples should
be discarded or stored until the process become paralyzed.

• The algorithm should use only a preallocated amount of main
memory, which is assumed to be finite. Its usage must be op-
timized, namely, models must be designed according to the
hardware capacity.
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• A valid model must be available at every scan of the streams
of data.

• The algorithm must produce a model that is equivalent to the
one that would be produced by a batch processing algorithm.

The evaluation procedure of the learning algorithm is determined
by the set of samples used for training and testing, and the question
raised here is how to build a picture of accuracy over time. One
of the most used schemes is test-then-train (see Section 2.6.1), where
each individual sample is used to test the model before it is used for
training, and then the accuracy can be incrementally updated. This
scheme has the advantage that can be applied when memory is re-
stricted and there is no holdout set for testing, get the most out of
the available data set.

Learning
Adaptation
Methods

Passives

Local or partial

replace/updating

Global or complete
replacement

Actives

Model
Management

Ensemble

Data
Availability

BatchOnline

Incremental

Diversity induction

training methods

Input

Manipulation

Ouput

Manipulation

Base learner

Manipulation

Heterogeneity

Single
Model

Management

Recurrence

Active model

pool management
Model

selection

Model
weighting

FIGURE 2.5: Learning module of the taxonomy for
concept drift adaptation.
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2.3 Concept Drift

2.3.1 Definition

As it has been argued, in dynamically changing environments where
non-stationarity is present, the underlying distribution of streaming
data may change over time. This change can be usually found in the
feature domain [14] (new features are captured, part of the existing
predictors disappear, or their value range evolves), or in the class
domain (new classes emerge from the data streams, or some of the
existing ones fade along time).

More formally, concept drift between time step ts0 and ts1 can be
defined as:

∃X : pts0(x, y) 6= pts1(x, y), (2.1)

where pts0(x, y) and pts1(x, y) are the joint probability distributions
at time step ts0 and ts1, respectively, between the input variables x
that conform a data sample and the target variable y. A change in
the relation between x and y can be represented as:

• the prior probabilities of classes p(y) may change;

• the class conditional probabilities p(x | y) may change; and

• as a result, the posterior probabilities of classes p(y|x) may
change affecting the prediction.

For predictive tasks only the changes that affect the prediction
decision need adaptation, and as Figure 2.6 depicts we can distin-
guish two types of drifts considering the reason of change:

• Real drift, when the posterior probabilities of classes p(y|x)
vary over time independently from variations in p(x), and may
have an impact on unconditional probability density functions;
and

• Virtual drift, when the distribution of the incoming data p(X)
changes without affecting the posterior probabilities of classes
p(y|), but affects only the conditional probability density func-
tions.

Concept drift can be also categorized in terms of speed and seve-
rity [25], [26]. On the one hand, in the case of speed, an abrupt drift
may occur when a change happens suddenly between two classi-
fication contexts, whereas a gradual drift represents the case when
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(a) Original concept (b) Virtual concept:
p(x|y) changes

(c) Real concept: p(y|x)
changes

FIGURE 2.6: Types of concept drift depending on
the impact on learned classification boundaries.

dealing with a smooth transition between two concepts. When there
are several intermediate concepts in between the old and the new
concept, the change is incremental. Likewise, if previously known
concepts reoccur after some time, it is considered as a recurrent drift.
Finally, a challenge may emerge when an outlier (blip) can be mixed
with concept drift; in this case no adaptation is needed because it is
a temporary event that does not affect the future data and thus the
subsequent learning of the algorithm. Figure 2.7 shows these types
of drifts.

On the other hand, severity can be regarded as the amount of
changes that a new concept causes; therefore, a measure of severity
can be computed as the percentage of the input space whose target
class has changed after the drift [8].

Finally, it is worth mentioning that many efforts have been de-
voted to the characterization of concept drift [6], [16]. However, it
is still an open issue in the state of the art due to the complexity of
characterizing manifold types of data changes over time [18].
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FIGURE 2.7: Types of drift according to severity and
speed of changes, and noisy blips. Here the stars
and circles represent the prevailing concept at every

time instant.

2.3.2 Adaptation to the Drift

The adaptation to the drift (Figure 2.5) can be carried out proactively
by first detecting concept drift, so that only the model gets updated
when a drift is detected (active approaches or informed methods), or
updating the model continuously every time new data samples are
received (passive approaches or blind methods).

In monitoring and control applications, it is primordial to detect
anomalous activities and out-of-control behaviors, and this problem
is formulated as a detection task where the drift needs to be de-
tected. Here, active/informed mehtods are recommended. They are
reactive; when a drift is detected they can either relearn the model
from scratch or update it using a recent selection of data (data win-
dow).

Regarding the passive/blind mehtods, they implicitly adapt the
learner to the current concept at regular intervals without any drift
detection mechanism. They discard old concepts at a constant speed
independently of whether changes have happened or not. Passive
and blind methods are recommended for handling gradual continu-
ous drifts where the dissimilarity between consecutive data sources
is not quite relevant to trigger a change. Three main mechanisms
can be noted in the literature:

• Windowing: a sliding window over the last data samples is
used as the exclusive training set for the learning algorithm
[27]–[30].
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• Weighting: all available samples are considered, but suitably
weighted according to their age or relevance in terms of classi-
fication accuracy [31], [32].

• Reservoir sampling: a subset of samples is selected for train-
ing, and randomly drawn examples from within the reservoir
are discarded upon receiving new data [33]–[35].

Several model approaches have been presented in the literature
to deal with concept drift adaptation [26], [36]. Some of them base
their strategy on adapting the internal structure of their classifiers
[8], [37], while others resort to an ensemble of models [38] (see Sec-
tion 2.5) to which techniques to induce diversity (see Section 2.5.2)
are applied [39]. When focusing on drift detection approaches, they
can be used as a module inside other classifiers to adapt either the
internal structure of the classifiers or the number of classifiers within
the ensemble. All of them usually use a specific classifier called base
learner, and analyze its performance score (in general, accuracy or er-
ror rate) to indicate whether a drift has occurred. This base learner
is trained on the current sample by means of an incremental pro-
cess repeated for each incoming sample from the stream. However,
the process of learning under concept drift events not only consists
of updating the models but also forgetting the old data, as we will
explain in Section 2.5.3.

2.3.3 Drift Detection

Drift detection mechanisms quantitatively characterize concept drift
events by identifying change points or small-sized periods of time
(windows) during which these changes may occur. Concept drift de-
tectors are methods that can detect data distributions changes based
on information about a base learner performance or the incoming
data. Such changes usually trigger the need for updating, replacing
or retraining the model (or the ensemble).

Drift detectors may return not only signals about drift ocurrence,
but also warning signals, which are usually conceived as the mo-
ment when a change is suspected and a new training set represent-
ing the new concept should start being collected. The idea of drift
detection is presented in Figure 2.9. Drift detection is not a trivial
task because, on the one hand, sufficiently fast drift detection should
be ensured to quickly replace the outdated model and to reduce the
restoration time (transient to the stable period). On the other hand, it
is not convenient to have too many false alarms (there is no real drift
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in the stream), because the successive application of drift handling
techniques could be counterproductive. Here a challenge emerges
because of this mentioned trade-off between different detection met-
rics (see Section 2.6.2): a drift detector can be tuned to decrease the
detection delay, but this may lead to a higher number of false alarms.
In light of that, [40] have recently used an assessment methodology
that resembles the Receiver Operating Characteristics (ROC) curve,
but used to evaluate drift detection methods rather than classifiers,
plotting the number of false alarms versus the drift detection delay
for all drift detectors, using several different parameter configura-
tions.

t
detection delay

real drift warning
detection

drift
detection

FIGURE 2.8: Drift detection example.

Drift detectors usually work reactively, that is, they act after the
occurrence of the drift and model error since they depend on the
actual class labels of the input patterns. Drift detection mechanism
are generally composed of two modules: the loss estimation and
the change detection. The loss estimation module tracks the perfor-
mance of the learning algorithm and eventually sends information
to the change detection module to update the model if necessary
(Figure 2.9).

Regarding the loss estimation module, this can be based on a
model dependent strategy (when the module is based on, for example,
the leave-one-out error estimation of an algorithm over a window
of samples, e.g. SVM [41]), or on a model independent strategy. In
the latter case, there are two common approaches: 1) sliding win-
dows, where two sliding windows are compared: a short window
containing the most recent information, and a large window, used as
reference, containing a larger set of recent data including the data in
the short window; and 2) fading factors, where the oldest informa-
tion becomes the least important, operating like a smooth forgetting
mechanism. In the sliding windows approach, the short window is
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FIGURE 2.9: Drift detection module of the taxon-
omy for concept drift adaptation.

more reactive while the large window is more conservative, while in
the fading factors approach, a smaller fading factor will detect drifts
earlier than larger ones.

In [10] detection mechanisms for online learning are categorized
in three different categories. To begin with, sequential analysis meth-
ods are based on the Sequential Probability Ratio Test [42], with
the Cumulative Sum (CUSUM) and Page-Hinkley Test (PHT) [43]
as their most representative examples. On the other hand, statistical
process control is a technique that monitors and controls the evolution
of the learning process, advancing on similar ideas to the seminal
Exponentially Weighted Moving Average (EWMA) approach [44].
Probably Drift Detection Method (DDM) is the most well known
representative approach, which assumes that classifier error has to
decrease as more training examples are received [29]. Early Drift
Detection Method (EDDM) is a modification of DDM to improve
the detection of gradual drifts, where the same idea of warning and
drift levels is realized with a new proposal of comparing distances
of error rates. Finally, monitoring the distribution of data on two dif-
ferent windows has lately emerged as one of the most popular drift
detection approaches: such a comparison is carried out by using sta-
tistical tests to assess the null hypothesis that the distributions in
both are equivalent in terms of a certain statistic (e.g. equal medi-
ans). If the null hypothesis is rejected, a drift is assumed to be oc-
curring at the start of the detection window. The ADaptive sliding
WINdow (ADWIN) [27] is one of the most relevant examples of this
last category. In contrast to three different categories mentioned be-
fore, different approaches have recently emerged. In [45] rather than



2.3. Concept Drift 25

measuring the actual case distribution, they introduce a new compe-
tence model that detects differences through changes in competence.
And more recently, the work presented in [36] is based on comput-
ing multiple model explanations over time and the observation of
the magnitudes of their changes.

Once presented the traditional detection mechanisms based on
a supervised point of view, it is worth mentioning those techniques
which are based on unsupervised approaches. Methods based on
unsupervised indicators are useful for detecting changes when the
prediction feedback is delayed, which can be of good interest for
many real world applications where data are unlabeled. Moreover,
they can be of good interest for handling virtual concept drift, as it
does not affect the decision boundaries. These methods can be based
on:

• Similarity in time: how does data distribution evolve from a
time stamp to another?

• Similarity in space: how does data distribution evolve accord-
ing to the feature space?

• Model Complexity Measure is based on monitoring the struc-
ture and/or the parameters of the model

• Others like [46] estimates classifier performance (accuracy) us-
ing only the input features of samples from the data stream,
basing its method on the degree of overlap between the out-
put certainty distributions of a classifier

Unsupervised approaches are often performed with statistical
tests that check whether a current window of data comes from the
same distribution as the reference data. Evidently, not all statisti-
cal tests are suited for drift detection; the most recommended are
non-parametric such as Conjunctive Normal Form (CNF) Density
Estimation test [47], the multivariate version of the Wald-Wolfowitz
test [48], and two-sample Kolmogorov-Smirnov test, Wilcoxon rank
sum test, two-sample t-test [49]. Others approaches are based on
semi-supervised indicators, which are useful for detecting concept
drift in data streams with scarcely labeled samples.

This being said, the literature has been certainly rich in what
refers to comparative studies of wide range of detectors in data sets
with different drift characteristics and by using diverse performance
metrics. The benchmark in [26] compares some of the most utilized
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detectors in the literature, such as DDM [29], EDDM [50], PHT [43],
ADWIN [27], Paired Learners (PL) [51], EWMA for Concept Drift
Detection (ECDD) [44], Degree Of Drift (DOF) [52] and Statistical
Test of Equal Proportions (STEPD) [53]. In [54] a new approach
called Reactive Drift Detection Method (RDDM) is proposed and
compared to DDM, EDDM and STEPD in several synthetic and real
streaming scenarios.

Recently, and unlike the reactive drift detection methods men-
tioned before, the work in [55] has presented a new approach that
works proactively, DetectA, in which after grouping the data, the
means and covariance matrices of the previous and current blocks
are compared by using statistical tests. If this difference exceeds a
certain threshold, drift is signalled.

2.4 Base Learners

The decision of the base learner according to the classification prob-
lem is relevant in order to obtain an accurate ensemble. The ma-
jority of ensemble construction methods are designed to work with
almost any base learner [56], [57], but regarding the ensemble de-
sign for data stream learning, the diversity induction strategy (Sec-
tion 2.5.2) must be considered. For example (Figure 2.10), if the se-
lected strategy is bagging (input manipulation), by which diversity
between classifiers is based on training them on different samples,
then unstable base learners (those which provide significantly dif-
ferent models despite being trained with similar samples, e.g., Deci-
sion Trees) are preferred over stable base learners (those which must
be trained on a large set of different samples to differ from one an-
other, e.g., Naive Bayes). Hoeffding Trees [58] are one of the most
common base learner since they are not only unstable but also in-
cremental, which makes them ideal for dealing with concept drifts.
Other common options are perceptrons and multilayer perceptrons.

Base learners UnstableStable

FIGURE 2.10: Base learners module of the taxon-
omy for concept drift adaptation.

It is worth mentioning that although unstable base learners are
preferable to achieve the required level of diversity in the ensemble
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for stream learning, it is also still possible to do it by using stable
base learners as long as the diversity induction strategy allows for
it. Therefore, the final strategy is a combination between the stability
of the base learners and the diversity induction force of the strategy,
considering the underlying diversity allowed by data.

2.5 Ensembles in Stream Learning

2.5.1 Why and How

The aim of an ensemble method is to combine the predictions of sev-
eral base learners built with a given learning algorithm in order to
improve generalizability and robustness over a single base learner.
Ensembles are also an extended and accepted solution to decompose
a complex and difficult learning problem into easier sub-problems.
The success of ensembles lies in considering the complementarity
and diversity (Section 2.5.2) of its base learners. The no free lunch
theorem states [59], it is not possible to find a single classifier appro-
priate for all tasks because each algorithm has its own domain of
competence. Besides, the selection of classifiers for the ensemble is
one of the most relevant key factors in order to achieve a good per-
formance [60]. They should be characterized by high diversity and
accuracy [61]. It is generally agreed that both the accuracy and diver-
sity of classifiers are key ingredients for improving the performance
of ensembles.

There are different ways of combining the outputs of each base
learner in the ensemble to produce a unique output in classification
problems. Voting and averaging are two of the easiest ensemble
methods. In majority voting (depicted in Figure 2.11), every model
makes a prediction for each test samples and the final output pre-
diction is the one that receives more than half of the votes. If none of
the predictions get more than half of the votes, we may say that the
ensemble method could not make a stable prediction for this sam-
ple. Unlike majority voting, where each model votes equally in the
predicted outcome, we can increase the importance of one or more
models. In weighted voting (Figure 2.12) the prediction of the best
models counts in multiple times.

In the case of data streams, classifier ensembles are considered as
a very attractive approach due to their natural way of adaptation to
changes in data distribution, e.g. by adding new classifiers trained
on recent data and discarding those which represent old concepts
(see Section 2.5.3). The interest in building ensembles for stream
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FIGURE 2.11: Majority voting strategy for ensemble
building in a binary classification problem.
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learning is widely known [62]–[65], but continues gathering atten-
tion from the research community in the last few years [18], [66].

Regarding the ensemble size choice, many algorithms use a fixed
size of ensemble. In other methods, a pruning mechanism is intro-
duced to selectively reduce the number of ensemble members. But
none of those methods solved the problem on how to decide if the
ensemble component should be added until [67]. In this work, the
authors contribute with two theorems which allow to determine if
by adding an additional member to the ensemble we will obtain
an increase of accuracy of the whole ensemble for the entire data
stream.

2.5.2 Diversity

Diversity among the constituent learners of ensemble models has
been shown to be crucial when dealing with concept drifts. In evolv-
ing scenarios, diversity may handle concept drifts by having an en-
semble of varying base learners: one may be able to be prepared for
the incoming drift, so that at least one of the base learners will have
a decision boundary that can be quickly adapted to the new concept.

The findings reported in [3] provide empirical evidence that the
diversity plays an important role before and after a drift occurs: be-
fore the drift, ensembles with less diversity obtain better test errors,
while shortly after the drift more diverse ensembles use to score
lower test error rates. Their difference in terms of test error perfor-
mance when compared to lower diverse ensembles is usually more
significant when the severity of the concept change is higher. There-
fore, it is a good strategy to maintain highly diverse ensembles and
utilize them shortly after the drift (independently from the type of
drift) to obtain good performance scores. But this is not sufficient
to achieve adaptation, as additional mechanisms are also necessary
for the ensemble to adapt to the new concept as soon as possible.
Thereby, a well-designed approach which maintains more than one
ensemble with different diversity levels should be able to converge
in the absence of drifts and get lower test error soon after a drift.
This is the rationale for Diversity for Dealing with Drifts (DDD), the
approach contributed in [8] that leverages this empirically validated
observation. However, as already claimed in [22], diversity does not
translate directly into accuracy.
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Methods

Although high diversity may not directly indicate high accuracy
[22], measuring diversity can be useful to analyze the effectiveness
of diversity-inducing methods [68]. In [7] the authors proposed sev-
eral strategies to induce diversity (Figure 2.5):

• Input manipulation, namely, training classifiers with different
samples (different chunks of data or with different subsets of
features). The Online Bagging and Online Boosting methods
proposed in [69] are two of the most used input manipula-
tion strategies to promote diversity in online learning ensem-
bles. In the Online Bagging method the level of diversity in
the ensemble varies by presenting a training example a spe-
cific number of times to every member, whereas in the On-
line Boosting method, based on the batch boosting algorithm
AdaBoost [70], the weight of the misclassified examples is in-
creased when presented to the next base learner; otherwise it
is decreased. In terms of dependency (the training of one clas-
sifier may depend on the output of other classifiers), Online
Bagging is often preferred over Online Boosting [71]. The draw-
back of Online Boosting is that may lead to overfitting. More-
over, in a stream learning environment it is not clear how to
train classifiers in a sequential way. Then, training classifiers
independently with Online Bagging is deemed easier to imple-
ment with better results [72], and allows training classifiers in
parallel to cope with Big Data streams [73].

• Output manipulation, where the classification problem can be
decomposed into smaller, potentially easier, problems. After-
wards, each problem can be mapped to a single classifier, and
these classifiers can be diverse, since they interpret the hypoth-
esis space differently. Class-switching, as a possible output ma-
nipulation strategy, hinges on using original training samples
with randomized class labels, where the class label of each ex-
ample is switched according to a probabilistic threshold,

• Base learner manipulation, where the modification of the char-
acteristics (parameters) of each classifier leads to build more
diverse ensembles. Even with the same training data, the pre-
dictions of the base learners may vary with different parame-
ter sets, which is also subject to the sensitivity of the learning
algorithm to such a variability.
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• Heterogeneous base learners (stacking), where the ensemble is for-
med by different classifiers based on different machine learn-
ing techniques (not only varying in terms of their parametriza-
tion).

In online learning, the presence of concept drift makes diver-
sity requirements change, thus diversity-inducing methods should
change accordingly. Many online ensemble approaches based on an
input manipulation strategy use some fixed values (e.g. value of λ in
a Poisson(λ) distribution to produce a specific number of times for
the training of every member of the ensemble) to encourage diver-
sity during the stream mining process [8], [69]. The performance of
those approaches, which follow a base learner manipulation strat-
egy, suffer from preset parameters configuration. Even the combi-
nation strategy (voting) of the base learners predictions might be
outdated. In these cases, these parameter sets may no longer be suf-
ficiently good after a drift occurs (especially in case of parameter-
sensitive techniques, like Support Vector Machines or Neural Net-
works). Therefore, self-configuring (or self-tuning or self-adapting)
streaming ensemble systems may lead to increase classification per-
formance.

Other approaches evinced that it is possible to combine two or
more strategies (e.g. HEFT-Stream in [74]). In [75], a base learner
manipulation strategy was carried out by using multiple neural net-
works with different topologies or with the same topology but start-
ing with different weights at the first layer. In [71], the authors
proposed the Adaptive Size Hoeffding Trees (ASHT) Bagging algo-
rithm, based on the intuition that smaller decision trees are capa-
ble of a rapid adaptation to drifts, whereas bigger decision trees are
more useful during stable periods. Therefore, a strategy that mixes
both yield different ensemble members, and may also contribute to
drift recovery.

2.5.3 Forgetting Mechanisms

As it has mentioned, while stability entails accumulating knowledge
regarding the supposedly stationary underlying concept, plasticity
requires forgetting some or all of the old acquired knowledge in or-
der to learn the new upcoming concept. Due to the assumed diver-
sity of the base learners in the ensemble, it is expected that at any
time some of them are ready to take over and adapt to the changes
of the environment. This diversity depends on the information kept
by each base learner and on the control of which learner is selected
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to be part of the ensemble. In addition, the way the votes of the
base learners are combined participates also in the overall solution
to the stability-plasticity dilemma. Each of these three factors (the
memory of each expert, the control of the population of experts in
the ensemble, and the weight attached to each base learner in the fi-
nal decision) plays a role in the way past data is taken into account,
yielding what can be referred to as the forgetting strategy [21].

At each time, a set of samples defines a window of the informa-
tion considered for learning. Based on this window, the forgetting
mechanims can be divided into two approaches: abrupt and grad-
ual (see Figure 2.4). On the one hand, in abrupt forgetting a given
sample is either inside or outside the training window. The slid-
ing windows models can be sequence-based (when the size of the
window is characterized by the number of samples) or timestamp-
based (when the size of the window is characterized by its duration
time). As an alternative to the windowing strategies, we can find
several methods based on sampling, where its goal is to summarize
the underlying characteristics of a data stream over long periods of
time such that every included sample is drawn uniformly from the
stream. On the other hand, in gradual forgetting no samples are
completely discarded from the memory, but they are associated with
weights that reflect their age (sample weighting).

In the last years several approaches have focused on forgetting
strategies, such as [65], [76] or [77]. More recently, the work [66]
has focused on excluding uncertain classifiers from the class label
prediction.

Diversity Measures

Arguably, [68] is one of the baseline works referring to diversity
measures. Here, the authors studied ten statistics which can mea-
sure diversity among binary classifier outputs: four averaged pair-
wise measures (the Q statistic [78], the correlation [79], the disagree-
ment [80], [81] and the double fault [82]) and six non-pairwise mea-
sures (the entropy of the votes [83], the difficulty index [84], the
Kohavi-Wolpert variance [85], the interrater agreement [86], [87],
the generalized diversity [88], and the coincident failure diversity
[88]). They concluded that all measures have approximately equally
strong relationships with the improvement of the majority vote. Also,
the measures were strongly correlated between themselves. In re-
gards to the diversity measure selection, they stated that a choice of
measure to recommend can be based on the ease of interpretation.
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Here, the research community usually find the Q statistic (aka Yules’
Q) as one of the best metrics for easy interpretation and simplicity
([8], [22], [39]). Considering two classifiers Ci and Cj, the Yule’s Q
statistic metric can be calculated as:

Qi,j
.
=

N11N00 − N01N10

N11N00 + N01N10 , (2.2)

where Nab is the number of training samples for which the classifica-
tion given by Ci is a and the classification given by Cj is b. Regarding
a and b, 1 represents a correct classification and 0 is a misclassifica-
tion. Q varies between -1 and 1. Classifiers that tend to recognize
the same objects correctly will have positive values of Q, and those
which commit errors on different objects will render a negative Q
value. For an ensemble E of M classifiers, the Q̄ statistic averaged
over all pairs of classifiers is given by:

Qaveraged
.
=

2
M(M− 1)

M−1

∑
i=1

M

∑
j=i+1

Qi,j, (2.3)

where, as mentioned above, higher/lower Q̄ values are associated
with lower/higher diversity, establishing an inversely proportional
relation.

Recently, in [39] the authors discussed the possibility of calcu-
lating ensemble diversity measures in three basic stream process-
ing scenarios: in blocks, incrementally, and prequentially. They also
studies the capability of these measures to detect the concept drift.

2.6 Stream Learning Evaluation Methods

In order to quantify the performance of a stream learning method,
either to assess whether one model is better than others, or to exam-
ine whether a drift detection method performs properly for a given
setup, it is necessary to define a selection criterion and performance
metrics [10], [77] (Figure 2.13).
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FIGURE 2.13: Evaluation module of the taxonomy
for concept drift adaptation.

2.6.1 Drift Adaptation

Predictive ability

In the context of static and batch learning, cross validation is the
most used strategy for estimating prediction measures. But for on-
line learning that shows computationally strict requirements and the
presence of concept drifts, it is not applicable. Specially in the case
of non-stationary data streams in which one sample at a time is pre-
sented to the ensemble, prequential evaluation method or the test-then-
train evolution have become the standard choice. The approach is
simple: each sample is used first to test the model, and then to train
the model, as Figure 2.14 shows.
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FIGURE 2.14: Test-then-train evaluation scheme.

Unlike the holdout evaluation scheme, the interleaved-test-then-train
has the advantage that no holdout set is needed for testing, making
maximum use of the available data.

The test-then-train strategy may produce biased results due to the
fixed order of data in a sequence, and as it runs only one test in a
fixed order of data. The study [89] was focused on reducing this risk
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by running several tests with randomized copies of a data stream so
that different distributions from the original data are approximately
preserved in permutations.

Other authors [90] preferred to adapt the popular metric AUC
for evaluating classifiers in stream learning, because the original ver-
sion of AUC is used for static data sets and it requires the entire data
set to be calculated. Therefore, they proposed a prequential version
of AUC metric to be suitable for streams with skewed distributions.

Consumptions

Regarding the memory consumption, in [91] the authors introduced
the use of RAM-Hours as an evaluation measure of the resources
used by streaming learning methods, which is based on rental cost
options of cloud computing services. Every GB of RAM deployed
for one hour equals one RAM-Hour.

In what refers to time costs, the design of the learning algorithm
should consider the amount of time that requires to update its struc-
ture and adapt to new data (update time). In an ideal situation, the
update time should be lower than the arrival time of a new exam-
ple.It should be also considered the amount of time that a learning
algorithm needs to make a decision regarding new samples from the
stream (decision time) [18].

Classifiers Evaluation

Statistical significance tests are very popular in machine learning
when comparing two classifiers in order to validate the differences
in the achieved error rates [92]. In the stream learning field there are
few approaches to using these mathematical tools [93]. However,
one may be critical to such approaches, because they try to transform
a dynamic problem into a static one, or only consider local character-
istics. So far, there has been no unified statistical significance testing
framework proposed for data streams [18]. Despite this critique, we
can find several significance tests in the state of the art. The McNe-
mar test [94] is a non-parametric test used in the stream mining to
compare two classifiers. When comparing more than two classifiers,
the Nemenyi test [95] is appropriate for comparing all classifiers to
all classifiers over multiple data sets, being based on the average
ranks of the algorithms across all data sets. And it is also recom-
mended after a rejection of the null hypothesis by Friedman [95].
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Benchmarking

In order to perform a benchmarking to compare several stream learn-
ing algorithms, it is necessary to use large data sets and software
implementations of the algorithms. Synthetic data sets are used for
testing the algorithms under several controlled conditions and look-
ing for their general applicability. When available, real data sets are
interesting to know about the real usability and application of the
algorithms under real conditions.

It deserves mentioning that the open-source software MOA (Mas-
sive Online Analysis) [96] is very well known and used to run data
streaming experiments in the literature, which includes implemen-
tations of many drift adaptation and detection algorithms.

2.6.2 Drift Detection

When it comes to the evaluation of drift detection techniques, the
metrics vary considerably. Nevertheless, most studies have embra-
ced the recommendations provided in [26]. Therefore, comparisons
are carried out in terms of false positives (FP), true positives (TP),
false negatives (FN), and distance to the drift (DT) (Figure 2.8). FP
indicate the number of drifts identified at time instants when no drift
was present in the data set whatsoever; thus, lower values mean that
the method does not detect false drift events. Likewise, a high TP
value indicates that the method has identified true drifts during a
specific period of time. FN indicates the number of missed drift de-
tections, which can easily reach 100% because methods are based on
one sample training (test-then-train). For this reason TP are usually
computed over samples arriving during the drifting time. Finally,
DT indicates the average distance to the drift.

2.7 Open Challenges in the Field

2.7.1 Identification of Challenges

In the last two years, online learning and concept drift have been
very hot topics in machine learning literature, and they still remain
attracting the attention of many researchers in the field. As many
of the recent studies confirm, several open challenges should be ad-
dressed in the next years due to the importance of the field in many
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real stream data applications. Next, we summarize the most rele-
vant challenges based on very recent studies of prominent authors
in the field.

Online Class Imbalance

Online class imbalance learning is an emergent research topic that
often combines the challenges of both class imbalance and concept
drift. Despite being a very challenging topic, very little work ad-
dresses this combined problem. Authors of the first systematic study
of handling concept drift in class-imbalanced data streams [19], no-
ted that there are still many challenges and learning issues in this
field that are worth of ongoing research, such as: 1) more effec-
tive concept drift detection methods for imbalanced data streams;
2) studying the mutual effect of class imbalance and concept drift;
and 3) more real-world applications with different types of class im-
balances and concept drifts.

This work [18] also claims that the work with class-imbalanced
and evolving streams is still in early stages. Most researchers con-
sider the simplest problem of the imbalanced class ratio, without
changes of imbalance ratio over time. Finally, new evaluation mea-
sures and more rigorous evaluation procedures are needed for eval-
uating algorithms in such complex imbalanced streams.

Drift Characterization and Monitoring

The characterization of the different types of concept drift that can
emerge during a stream learning process has not previously been
subjected to a rigorous definition and analysis. Concretely, while
some qualitative drift categorizations have been proposed, just a
few have been formally defined, and the quantitative descriptions
required for precise and objective understanding of learner perfor-
mance are still to be found and put to consensus. In [16] the au-
thors presented one of the first framework for quantitative analysis
of drift, but more effort on this issue is required in order to lay the
foundations of future drift adaptation and detection algorithm de-
velopments. The auhors of [18] also claim to have more studies on
the nature of some drift types.

It is also interesting the suggestion of [6]: the combination of su-
pervised and unsupervised indicators for monitoring concept drift,
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which can be a promising trend in the short future. Combining su-
pervised and unsupervised indicators could be beneficial for two
reasons:

• Handling different types of drift at the same time: while super-
vised indicators would be used for handling real drifts, unsu-
pervised indicators would be used for handling virtual drift-
ing events; and

• Early detection, because some kind of virtual drift may evolve
and become real, hence by using unsupervised indicators we
could expect the change, and then by using the supervised
ones we could confirm its ocurrence.

The authors of the recent review [7] also encourage further re-
search on concept evolution.

Drift Detection

In what refers to drift detection, several challenges are proposed by
recent research works:

• Sequential approaches do not require much memory because
each sample is processed only once and then discarded. They
are suitable for detecting drifts where data streams are infinite.
In this case, it is not practical to store all samples, which is the
case of most real-world applications. Moreover, they can effec-
tively detect abrupt drifts, but are less effective for handling
gradual drifts, which are harder to detect because changes are
so small that they are only noticed during a long time period.
The limited use of memory of sequential approaches does not
allow for early detection mechanisms. According to investiga-
tion of [97], sequential approaches can be more affective if they
consider the temporal dependence that frequently real data
streams exhibit. They also demonstrate that a simple classi-
fier considering the temporal dependence can outperform cur-
rent state-of-the-art classifiers. They suggest to pick ideas from
time series analysis in order to adapt them to drift detection in
presence of temporal dependence. For that reason, in [6] sug-
gest to analyze samples through a time window in order to
take into account the temporal dependence between samples.
The recent review [7] also encourage researchers to consider
temporal dependencies.
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• As claimed in [6], windowing approaches consider that the
drift is uniform, therefore affecting the entire sample space.
Hence, they can effectively handle global concept drift where
the difference between the old and the new concept is easy to
notice, as the drift is affecting the overall sample space. How-
ever, they fail to detect local concept drifts where changes oc-
cur in only some regions of the sample space. Generally, win-
dowing approaches are unable to deal with the scarcity of sam-
ples that represent the drift, because they consider them as
noise. Hence, the time until detecting local concept drifts can
be arbitrarily long. As a future trend, windowing approaches
should integrate a mechanism of sample selection in order to
effectively manage the scarcity of samples that represent the
local drift.

• In [6] they also noted the lack of approaches tackling detecting
drift in categorical time-evolving data.

• In [54], the authors propose to investigate further one of the
well-known problems with the EDDM detector: its performan-
ce usually degrades when concepts are very large, because
it tends to become less sensitive to concept drifts, taking too
many samples to detect eventual changes.

• The use of diversity measures to detect drifts was suggested in
[39]: the complementary nature of various diversity and per-
formance measures suggests that it might be worth combining
multiple detectors, which would monitor and track more than
one metric.

Drift Adaptation

In [6] the authors underline several future trends and criticisms to
the current state of the art:

• Passive approaches (those which update the model continu-
ously every time new data samples arrive) adapt the learner
without requiring drift detection. As a result, they can be good
for handling gradual continuous drifts where the dissimilarity
between consecutive data samples is not relevant enough to
detect a drift. However, the authors underline the main limi-
tation of them: their slow reaction to these drifts, because the
updating process is the same whatever the drift is abrupt or
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gradual. Moreover, regular model updates can be too costly
as the amount of arriving data may be overwhelming. These
approaches can work well only if the speed and severity of the
change are known beforehand or if we have rigorous instruc-
tions provided by an expert about the nature of the drift, but
this is rarely the case.

• Regarding active approaches (those which only update the mo-
del when a drift is detected), it is necessary to monitor not only
the performance of the learning algorithm, but also the num-
ber of FP and FN (misdetections). In monitoring and control
applications, this may lead to indicate that there are some sen-
sors which do not work properly and that must be replaced.
In such case, an unnecessary maintenance is made and may
cause waste of time and resources.

• They propose to carry out a deep study of the heterogeneity
of the ensembles; different learner types have different intrin-
sic strengths and biases, which makes them suitable for han-
dling different types of drift. They consider that an heteroge-
neous ensemble could offer a promising capability to deal with
data that contain multiple drifts with pronounced differences
in speed and/or severity.

• Concerning the dynamic weighting process based on the abil-
ity to handle drifts for ensembles, they claim that base learners
should not be only weighted according to their prediction per-
formance, but also to their sensitivity to drifts.

Ensemble Building

As it has been shown in Section 2.5.2, diversity among the constitu-
ent learners in ensemble models is primordial when dealing with
concept drifts for achieving good performance. Hence, several re-
cent studies have been focused on this issue. In [6] they focused on
diversity measures, adducing that they were developed for quanti-
fying the diversity of the ensemble in stationary environments, and
thus they only consider as main criterion the difference in perfor-
mance of base learners or the prediction disagree. Along this direc-
tion, developing an appropriate diversity measure for ensemble in
non-stationary environments could be of interest for the community.
Also in [18] the authors suggested to investigate more dedicated di-
versity measures for data stream classifier ensembles. Finally, it is
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worth highlighting that there is theoretical and empirical evidence
that the maximum diversity in ensembles is not usually achievable
with the original data on which models are trained [22]. This would
motivate the development of new diversity generation methods for
stream learning scenarios in the presence of concept drift.

Most online and batch-based approaches use models with pa-
rameters being either individually tuned or using some preset val-
ues (fixed for the complete analysis process). Nevertheless, as high-
lighted in Section 2.5.2, parameters configuration may no longer be
the sufficiently good after changes appear in the data stream. There-
fore, in [18] the authors proposed the development of a new method-
ology for self-tuning streaming ensemble systems may lead to im-
proved predictive power. Additionally, tuning parameters for single
classifiers should take into account that they are components within
the ensemble. Thus, more global update methods that can lead to
obtain more complementary models seems to be worth exploring.

Finally, in [66] the authors plan to further investigate methods
for determining which classifiers should abstain from the voting
process as well as to further improve their ability to handle var-
ious concept drifts. They also place the focus on adapting their
methods to mining recurrent concept drifts, by making members ab-
stain from the voting process on new concepts, and retrieving them
when one previously seen emerges again. Besides, the authors of
[18] proposed for ensemble pruning more advanced pruning tech-
niques, which could also exploit a multiple criteria analysis, inclu-
ding not only current predictive ability, but also computational ef-
ficiency of base models, memory usage or other resources, current
diversity of the ensemble and available information on class labels.
At the same time, these pruning techniques should imply a mini-
mal computational overhead. Such compound, yet lightweight ap-
proaches, should lead to maintaining better ensemble setup and im-
prove adaptation abilities to various types of changes.

Feature Drift

The authors of [14] present a study focused on feature drift adap-
tation where they analyze the possible changes in the relevance of
features through time, a field that has not received much attention
to date. They identified several open challenges to tackle in the fu-
ture:

• Inductive trees (e.g. Very Fast Decision Trees known as VFDT
[98]) and decision rule learning techniques do not encompass
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strategies for adapting its model to drifts in data, therefore
they must be accompanied by drift detectors that periodically
reset the entire rule set according to error rates of the classifier.

• Approaches like continuously-changing data streams based on
VFDT (also known as CVFDT), heterogeneous ensemble for
feature drifts in data streams [99] (HEFT-Stream), and Land-
mark-based Feature Drift Detector [14] (LFDD) assume that
the most discriminative subset of features can be chosen by
filters on disjoint batches of samples. The drawback lies in
determining the size of these batches, which directly affects
the learning process. Small windows lead to a quicker change
recognition in the selected subset of features. However, this
approach may also lead to the detection of false positives if the
stream is noisy. By contrast, larger windows enable a higher
amount of data from which to learn, yet fail to quickly detect
changes in the most discriminative subset.

Finally, the authors of the recent review in [7] also encourage
researchers of stream learning to further research on feature drifst.

Preprocessing

A thoughtful study on stream data preprocessing [9] reviewed some
preprocessing techniques on the literature that would deserve a fur-
ther development in the future:

• Data Reduction Techniques (DRTs) aim to obtain a representa-
tive training set with a lower size when compared to the orig-
inal one, and with similar or even higher generalization ca-
pabilities when fed to a predictive model. They highlight the
importance of more proposals for online learning from data
streams due to the relevance of these techniques in the state of
the art.

• Due to the ability of discretizers to reduce the continuous fea-
ture space, they found it interesting to perform a deep research
on the use of supervised discretizers. Most current methods
are unsupervised techniques based on quantiles, using an a-
daptation strategy with smooth shifts in the definition of inter-
vals and the previous definition of intervals. Adding class in-
formation to the discretization process would allow accommo-
dating local drifts, where the properties of only some classes
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change. Additionally, they envision the potential of ensemble
learning, which will allow using various discretization inter-
vals for training a diverse set of classifiers.

• No pure wrapper-based solutions have been yet proposed for
online problems. Efficient implementations of these methods
may be challenging due to their increased computational cost,
but this may be compensated by the inherent discriminative
ability of online learners and their adaptiveness to drifts. One
potential solution would be to combine filter and wrapper ap-
proaches in order to reduce the number of times the more costly
method is used, and to allow for continuous classification even
during the wrapper computation. Another potential solution
lies in using high-performance solutions based on GPU or dis-
tributed computing to reduce the computational load associ-
ated to this approach.

• There is a need for further research on feature and sample se-
lection methods that can directly address the problem of con-
cept drift. One way of approaching this would be to com-
bine sample selection approaches with drift detection mod-
ule that could directly influence the usability of prototypes.
Whenever a strong drift is being detected, one may discard the
previous prototypes and use only the incoming objects. Af-
ter stream stabilizes, the sample selection can be repeated to
adapt to the current concept. Another potential solution is to
have weighted prototypes, where weights would reflect how
long time ago they were created and how useful they are to
mining the current state of the stream. This would permit to
smoothly forget outdated prototypes, while keeping in mem-
ory the still useful ones. Local drifts that occur only within a
subset of classes should also be considered. In such a case only
selected prototypes should be modified in the areas of drift
presence. This would require class-based prototype pruning
methods and a method to overlook the influence of these drift-
ing prototypes on stationary classes.

• There exist no solutions that directly take into account the pos-
sibility of recurrent concept drifts. Therefore, it seems promis-
ing to develop preprocessing methods that could accommo-
date the fact that previously used sets of features/samples/dis-
crete bins might become useful once again in the future.
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Benchmarking

One relevant open issue is rethinking frameworks and data sets for
testing stream algorithms [18]. On the one hand, the number of real-
world publicly available data sets for testing, stream classifiers is
still too small for the research needs of the community. It limits
comparative studies of different streaming algorithms. Moreover,
some popular data used in the literature is questioned for their rep-
resentativeness of real drifts. This is a more difficult situation when
compared to the state of available static data sets such as the UCI
Machine Learning Repository1.

On the other hand, popular online analysis frameworks for mas-
sive data like MOA [96], SAMOA [73], StreamDM2, and more re-
cently Scikit-Multiflow [100], allow researches to test their stream
learning algorithms. In the case of MOA and Scikit-Multiflow, they
are especially useful because allow researchers to simulate drifts
(varying their severity and speed) in traditional stationary data sets,
facilitating the reuse of these common data sets for non-stationary
purposes.

Extreme Verification Latency

The recent review on ensemble learning [18] points out the neces-
sity of developing new approaches to deal with delayed informa-
tion. Many of the discussed approaches employ a kind of transfer
learning, where predictions from models learned from labeled ex-
amples are transferred to next unlabeled portions of the data. In
general, they are more useful for limited gradual drifts, while more
complex scenarios are still open problems. Developing new ap-
proaches to deal with delayed information (including ensembles)
that would work in the presence of different types of drift is a non-
trivial research task. It would be particularly useful for many real
life automated systems, where the interaction with human experts
is limited and impractical. Finally, delayed information may not re-
fer to target values only, but may concern also incomplete attribute
descriptions. The problem of incomplete data is more intensively
studied in static, off-line data mining, where different imputation
techniques have been developed. In the streaming context, research
is scarce in regards to such techniques or other approaches which

1https://archive.ics.uci.edu/ml
2http://huawei-noah.github.io/streamDM/
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could learn classifiers with omitting such incomplete descriptions
and then could update the knowledge captured by the classifier.

2.7.2 Challenges Addressed in this Thesis

The following challenges have been selected among others due to
their wider impact on the stream learning field. As it will be further
explained below, key topics such as diversity, ensemble building,
data reduction, single stream learners, and drift detectors have been
considered in detail in this thesis:

Challenge 1: Diversity Creation in Ensembles

As it has been highlighted in Section 2.7.1 (Ensemble Building), on
the one hand the diversity in ensemble building is primordial when
dealing with concept drift for achieving good performance, but on
the other hand the design of the ensemble should consider the so-
called stability-plasticity dilemma. We have also seen how the state of
the art recently demands more diversity measures for data stream
classifier ensembles (see Section 2.7.1, Ensemble Building). Finally,
there is theoretical and empirical evidence that the maximum diver-
sity in ensembles is not usually achievable with the original data on
which models are trained. This would motivate the development of
new diversity generation methods for stream learning scenarios in
the presence of concept drift (see Section 2.7.1, Ensemble Building).

Chapter 3 tackles these challenges by providing an innovative
approach to artificially generate an optimal diversity level when pre-
diction ensembles are built once shortly after a drift occurs, consid-
ering simultaneously the two conflicting objectives of the stability-
plasticity dilemma (diversity and classification performance). This ap-
proach, coined as Diversity geneRator based on Evolutionary tech-
nique powered by Density estimation (DRED), uses a Kernel Den-
sity Estimation (KDE) method to generate synthetic data, which are
subsequently labeled by means a multi-objective optimization me-
thod that allows training each model of the ensemble with a differ-
ent subset of synthetic samples. Bhattacharyya distance [101] will
be used for first time in the literature to measure the diversity. Com-
putational experiments will reveal that the proposed approach can
be hybridized with other traditional diversity-induction methods,
yielding optimized levels of diversity that render an enhanced re-
covery from drifts.
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Challenge 2: Data Reduction Techniques and New Stream Learn-
ing Algorithms

Section 2.7.1 (Preprocessing) has underscored the importance of de-
veloping more proposals based on DRTs for online learning from
data streams due to the relevance of these techniques in the state of
the art. They provide a representative training set with a lower size
when compared to the original one, and with similar or even higher
generalization capability, which may reduce the time and computa-
tional costs. On the other hand, despite the single classifiers gener-
ally tend to be more less accurate than ensemble approaches, they
can generally provide a lower computational cost [15], which makes
them an attractive solution for massive data stream a scenarios un-
der severe computational restrictions. Besides, the flexibility to eas-
ily incorporate new data into a classification model when new data
are presented (simply by adding new members to the ensemble) has
been traditionally assigned by default to ensemble approaches. As
it will be further detailed in Chapter 4, this ability must not be solely
attributed to ensemble approaches. Finally, the state of the art is al-
ways in need for new approaches to deal with online learning and
concept drift under new points of view, thereby and providing new
innovative solutions for concrete problems.

Recently, neural networks have also been gaining a renewed pop-
ularity for online learning in changing environments [102], [103].
Therefore, Chapter 4 tackles these challenges by providing a single
model approach based on eSNNs that, combined with DTRs and
hybridized with a drift detector, is competitive in terms of its bal-
ance between predictive performance and complexity in compari-
son with traditional ensemble approaches. In addition, eSNNs have
revealed themselves as one of the most successful approaches to
model the behavior and learning potential of the brain, and exploit
them to undertake practical learning tasks. We will show in this
challenge how eSNN, unlike most off-the-shelf classification mod-
els, does not need to be retrained if it is used in a changing environ-
ment and does not fail to scale properly. Taking the existing eSNN
model as a basis, a set of adaptations is done to the original tech-
nique in order to deploy it in online learning scenarios by fulfilling
with the restrictions described in Section 2.2.
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Challenge 3: Drift Detection based on eSNN

In Section 2.7.1 (Drift Detection) several authors have encouraged
other researchers to consider the temporal dependence between sam-
ples that frequently real data streams exhibit. As we will explain in
Section 4.2, in essence SNNs leverage spike information represen-
tation so as to construct spike-time learning rules that capture tem-
poral associations between a large number of temporal variables in
streaming data.

Besides, all the existing drift detectors usually use a specific clas-
sifier (base learner), and analyze its performance score (in general,
accuracy or error rate) to indicate whether a drift has occurred. As
opposed to the majority of these drift detection mechanisms, Chap-
ter 5 elaborates on a new approach eSNN-DD, which does not require
any additional base learner to analyze its performance metrics to-
wards indicating when a drift has occurred, which simplifies the ar-
chitecture of drift detectors.

This new drift detection method exploits the structural changes
(neurons merges) of an eSNN predictive model to identify the drift
point, hence it can be regarded as an embedded drift detection ap-
proach that stems as a byproduct of the particular learning algo-
rithm of this class of neural networks. Finally, as this drift detec-
tor is based on an eSNN, it is able to capture temporal associations
between temporal variables of data streams.

2.8 Summary

Recent advances in computational intelligent systems have focused
on tackling problems related to the evolving environments. An in-
creasing number of real world applications data are presented as
streams that may evolve over time (concept drift). Handling concept
drift is becoming an attractive topic of research that concerns multi-
disciplinary domains such that machine learning, data mining, ubiq-
uitous knowledge discovery, statistic decision theory, etc. Therefore,
a rich body of the literature has been devoted to the study of meth-
ods and techniques for handling drifting data. The main objective of
this chapter has been to present an easy understanding of the con-
cept drift issues and related works, in order to help readers from
different disciplines to understand the challenges addressed by this
thesis.
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Chapter 3

Challenge 1: Diversity
Creation in Ensembles

3.1 Introduction

This chapter formulates the diversity balance as an optimization
problem, making use of an evolutionary approach for the construc-
tion of ensembles with different levels of diversity. Specifically, a
new strategy is proposed to strengthen the diversity generation pro-
cedure of traditional techniques such as online bagging, class-switch-
ing, and boosting, proving their performance under a wide number
of drift conditions. In particular, the approach called Diversity gen-
eRator based on Evolutionary technique powered by Density esti-
mation (DRED) resorts to a very short buffer of samples (reservoir)
as a prototype supplier that, when training a KDE method, gen-
erates synthetic samples to be evolved through a low-complexity
multi-objective optimization algorithm driven by the Pareto balance
between ensemble diversity and classification performance. Specifi-
cally the multi-objective solver decides whether every synthetic sam-
ple 1) is not used for training; 2) is used for training with its original
label; or 3) is used for training with a switched label. The approach is
in line with the theoretical and empirical evidence published in [22],
by which it was found that the maximum diversity in ensembles is
not usually achievable with the original data on which models are
trained.

All this motivates the generative method proposed in this chap-
ter, whose novel contributions over the state of the art can be sum-
marized as follows:

1. The use of KDE methods for online synthetic data generation
driven by its bandwidth parameter, which permits increasing
or decreasing the degree to which newly generated synthetic
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data spreads over the feature space. This aspect of DRED is in
line with recent approaches based on KDE for online environ-
ments [104], [105], with emphasis on [106] which modifies the
original form of KDE to be applied to data streams by main-
taining a window of recent data samples to evaluate the KDE
algorithm.

2. An innovative perspective on diversity generation, based on
optimally labeling synthetic distances as measured by a quan-
titative metric of ensemble diversity. The literature is rich in
what refers to strategies to manipulate the input data prior
to ensemble learning, such as randomly eliminating features
[107] or modifying the class labels [108]. This last strategy was
considered in [109], used in [110] for the so-called DECORATE
method, and more recently in [111] and [112]. However, it has
not widely used in online classification problems, nor to gen-
erate diversity in ensembles for online learning under concept
drift.

3. The novel use of a multi-objective solver to achieve a balanced
level of diversity and classification performance score. Due to
the above noted importance of achieving a good balance be-
tween adaptability (diversity) and classification performance
along time [113], there is a necessity for novel solutions to op-
timally balance the diversity in ensemble learning. The portfo-
lio of multi-objective optimization techniques is rich in the par-
ticular case of evolutionary schemes, with renowned schemes
such as NSGA-II [114], Pareto Archived Evolution Strategy
(PAES) [115], Strength Pareto Evolutionary Algorithm-II (SPE-
A2) [116], Genetic algorithms [117], [118], and other biology
inspired techniques [119]. In this challenge we leverage re-
cent findings on computationally efficient implementations of
multi-objective schemes [120] towards constructing ensemble
classifiers differently trading diversity for stability (performan-
ce).

4. The novel use of the Bhattacharyya distance [101] to measure
the diversity of an ensemble in data streams for concept drift
scenarios. As the recent survey [18] highlights, there is a need
for dedicated diversity measures for data stream classifier en-
sembles, besides, only a few authors directly consider promot-
ing the diversity while constructing an ensemble. In regards
to this challenge, the chapter focuses on both directions.
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3.2 Core Methods

Studies on the diversity of ensemble classifiers abound in the litera-
ture [22], [68], [121]. Among them, the diversity analysis for online
learning in the presence of concept drift provided in [3] is particu-
larly insightful, as it concludes that different levels of diversity are
required before and after a drift in order to improve generalization
on the old or new concepts. Furthermore, the study highlights that
diversity can help to reduce the initial increase in error caused by
a drift, but does not provide a faster recovery from drifts in long
term. The next sections justify and describe in advance the meth-
ods embedded in the proposed DRED scheme, which are required to
achieve a fast adaptation after drift occurs. Throughout further tech-
nical explanations the following mathematical notation will be used:
single-dimensional variables will be denoted in uppercase (X), with
vector variables in bold (X). Realizations of such variables will be in
lower case (x, x). The main symbols used throughout this chapter
are summarized in the List of Symbols.

3.2.1 Kernel Density Estimation

In order to achieve a prompt adaptation to drift without decreas-
ing in classification performance, DRED should find an ensemble
characterized by a suitable level of diversity using a preallocated
amount of main memory. Under this constraint, DRED stores a re-
duced reservoir of past samples [106] with the goal of using them as
prototypes to generate synthetic samples that serve as training data
set for the ensemble. As will be further explained Section 3.2.2, the
metrics that represent the objectives to optimize (diversity and clas-
sification performance) need to be evaluated on a group of samples
that cannot be stored within an online learning process. It is at this
point when a KDE method helps creating synthetic samples resem-
bling the distribution of samples stored in the reservoir depending
on the level of diversity required to face the drift.

In order to generate this synthetic data set, the KDE needs to be
adjusted to the input distribution to a greater (when samples distri-
bution need to be more similar to the input distribution, searching
for less diversity) or lower extent (when samples distribution need
to be less similar to the input distribution, searching for more di-
versity). This adjustment can be driven by the bandwidth param-
eter h ∈ R+ of the selected kernel function in the KDE estimator.
The bandwidth acts as a smoothing parameter, controlling the level
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of diversity: large bandwidth values lead to high diversity levels
(smooth density distribution), whereas a small bandwidth leads to
a very low diversity (sharp density distribution). For instance, a
square uniform kernel can be expressed as Ψ(x; h) ∝ 1 if x < h (0
otherwise), so that the probability estimate at a point x based on a
set of samples {xi}N

n=1 is

f̂X(x) =
1
N

N

∑
n=1

Ψ((x− xn); h), (3.1)

namely, as the value of the scaled sum of N kernel functions lo-
cated at the samples of the set over which the kernel density is com-
puted. The bandwidth h allows controlling the trade-off between
bias and variance in the density estimate. Figure 3.1 illustrates this
trade-off with different values of h and a top-hat kernel, resulting in
achieving less and more diverse samples respectively.
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FIGURE 3.1: Density estimate provided by a top-hat
KDE with h ∈ {0.5, 1.5, 2.5}.
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3.2.2 Multi-objective Optimization: Diversity and Perfor-
mance Metrics

As mentioned in the introductory section, the stability-plasticity dilem-
ma can be formulated as a multi-objective optimization problem ba-
sed on the Pareto between diversity and classification performance,
issue already suggested for batch learning in [122]. In DRED the goal
is to find a balanced ensemble with the greatest classification perfor-
mance possible, and at the same time with as much diversity as pos-
sible, in order to adapt quickly when the drift occurs. Therefore, a
Multi-objective Optimization Technique (MOT) should account for
both objectives.

In order to evaluate the first objective of the problem (diversity
in a given ensemble), several measures have been proposed [22],
[68], [123], most of which require a supervised set of samples for
its computation. This section will focus on ensembles composed by
Gaussian Naive Bayes (GNB) classifiers, which hinge on the inde-
pendence assumption between every pair of the input features to
yield an extremely fast online learning process [124], [125]. For this
particular type of classifiers, a measure of diversity can be based on
the Bhattacharyya distance [101], which provides a numerical esti-
mation of the similarity between two probability distributions. For
two multivariate normal distributions N (µA, ΣA) and N (µB, ΣB),
the Bhattacharyya distance DA,B ∈ [0, ∞) is given by:

DA,B ,
1
8
(µA− µB)

TΣ−1(µA− µB)+
1
2

ln
(

det Σ√
det ΣA det ΣB

)
, (3.2)

where {µA, µB} and {ΣA, ΣB} are the means and covariances of the
distributions, and Σ , 0.5 (ΣA + ΣB). The previous definition can be
used for measuring the diversity between two given GNB classifiers
GNBk and GNBk′ : let us denote the mean and variance for feature
m ∈ {1, . . . , M}, class l ∈ {1, . . . , L} and classifier GNBk as µm,l

k and
σm,l

k , such that µl
k , (µ1,l

k , . . . , µM,l
k )> and:

Σl
k ,


σ1,l

k 0 . . . 0
0 σ2,l

k . . . 0
...

...
. . .

...
0 0 . . . σM,l

k

 , (3.3)
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where the naive Bayes assumption is satisfied by the diagonal co-
variance matrix. A pairwise measure of distance between the mul-
tivariate distributions estimated by both classifiers for label l can be
computed as:

Dl
k,k′ =

1
8
(µl

k − µl
k′)

T
(

Σl
)−1

(µl
k − µl

k′) +
1
2

ln

 det Σl√
det Σl

k det Σl
k′

 ,

(3.4)
with Σl , 0.5(Σl

k + Σl
k′). From the above expression a bounded co-

efficient of diversity in the range [0,1] can be computed as Cl
k,k′ ,

1− exp−Dl
k,k′ , taking value 1 if the estimated marginals for label l

by both classifiers do not overlap with each other. The overall diver-
sity level of the ensemble results from averaging the coefficients first
over labels, then over all model pairs within the ensemble, namely:

C({GNBk}K
k=1) ,

2
LK(K− 1)

K

∑
k=1

K

∑
k′=k+1

L

∑
l=1

Cl
k,k′ , (3.5)

where K denotes the number of weak classifiers within the ensem-
bles and, again, C({GNBk}K

k=1) → 1 if the ensemble is highly di-
verse.

As for the another objective to be optimized by the MOT, with-
out loss of generality1 we will use the Area Under the Curve (AUC)
score, widely acknowledged in the literature to measure the predic-
tive performance of binary classifiers [10], [17], [126]. Most studies
of online learning measure the performance of a classifier by classi-
fication accuracy, which is inappropriate for applications where the
data are unevenly distributed among different classes. The work
on this challenge will embrace this recommendation for comparing
performance figures among different ensembles.

DRED operates shortly after a concept drift has been detected in
the information stream. As it has been mentioned before, DRED op-
erates together with the traditional diversity generation techniques
(online bagging, class-switching, and boosting) making them more
powerful when producing diverse models, showing that our strat-
egy is able to improve their performance under a wide number of
drift conditions. When a change in the data distribution has been

1When dealing with multiple class labels other scores can be selected, such as
the f1-score.
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detected at time tD, DRED is executed once in order to find a port-
folio of ensemble classifiers that differently yet optimally balances
between performance and diversity. As will be later explained in de-
tail, this is accomplished by generating an additional set of training
samples {x�n }N�

n=1 based on repeatedly sampling KDE models trained
over a W-sized time window of past stream samples, i.e.:

X�n ∼
1

W

W

∑
w=1

Ψ((x− xtD−w); h), (3.6)

where {xtD−W , xtD−W+1, . . . , xtD−1} denotes the aforementioned small-
sized reservoir over which the KDE estimator is trained. In order to
account for differently labeled samples in this reservoir, a separate
KDE model per class is constructed. Thereby supervised samples to
compute an estimation of the performance metric can be also pro-
duced.

Once such N� samples are constructed, the MOT aims at opti-
mizing the labels associated to each of such samples when fed to
every GNB model compounding the ensemble. If ln

k denotes the la-
bel associated to synthetic sample x�n when input to model GNBk
(with k ∈ {1, . . . , K}), the optimization problem tackled by the MOT
focuses on finding the set of labels:

L� , {l1
1 , . . . , lN�

1 , l1
2 , . . . , lN�

2 , . . . , lN�
K } (3.7)

under the Pareto trade-off between diversity and performance. Math-
ematically:

L� = arg
L
[max C({GNBk({x�n , ln

k }N�
n=1)}K

k=1),

max AUC({GNBk({x�n , ln
k }N�

n=1)}K
k=1)], (3.8)

subject to ln
k ∈ {0, 1, . . . , L}, with L denoting the number of classes

and ln
k = 0 standing for the case where x�n is not fed to classifier

k ∈ {1, . . . , K}. In the above formulae GNBk({x, l}) stands for the
k-th GNB learner being incrementally trained with samples {x} and
their labels {l}.

The above formulation seeks to infer a set of Pareto-optimal en-
sembles as the one exemplified in Figure 3.2. In essence the goal
is to maximize the diversity level for a given performance score or,
equivalently, to construct a maximally performing ensemble subject
to a certain amount of diversity between its compounding learners.
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FIGURE 3.2: Example of the estimated Pareto front
between performance (AUC({GNBk}K

k=1)) and di-
versity (C({GNBk}K

k=1) provided by the MOT for an
ensemble with K = 3 GNB classifiers and L = 2 la-
bels. The selection of the ensemble to continue pre-
dicting the data stream is driven by the estimated
characteristics of the drift: more severe/fast drifts
should promote diversity (as evinced by a less co-
herence in the decision regions for the classifiers),
whereas light/slow drifts should maintain the en-

semble in its more stable configuration.

The rationale behind this Pareto formulation is to let the overall on-
line classifier decide, upon the estimation of the drift severity and
speed, whether it should opt for diversity (fast adaptation to drift)
or performance (a better predictive score in stable concepts). As can
be observed in the plot, sacrificing one objective for the other is a
matter of the type of drift, in direct consensus with the empirical
findings contributed in [3].

The use of an optimization technique might be deemed incom-
patible with an online learning setting, where fast decisions are re-
quired. In this regard it should be pointed out that this optimiza-
tion process is performed only once, shortly after the drift occurs.
Furthermore, the parameters driving the optimization procedure –
namely, population size, number of iterations – are set to values that
yield minimal computational costs. Although the insertion of an
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evolutionary solver comes along with a penalty in terms of compu-
tation resources, we will later show that the improved performance
recovery provided by the evolved ensemble after the drift outgains
this drawback, making the application of DRED suitable for those
cases where information flows arrive at moderate rates and/or com-
putational resources are not severely limited. Furthermore, com-
putation times of hardware implementations of the NSGA-II multi-
objective solver have been reported to be as low as 6 milliseconds
for a population size of 100 individuals and 250 generations [127], a
far more complex configuration than the ones later used for DRED.

3.3 Proposed Approach: DRED

Let us recall that DRED is a new strategy to strengthen and make
more powerful the diversity generation procedure of the traditional
diversity generation techniques, with the result that the DRED hy-
brids (DRED-OB, DRED-CS, and DRED-BOOST) are the combinations of
DRED with online bagging, class-switching, and boosting respec-
tively.

In all of these combinations, as shown in Figure 3.3, DRED hy-
brids operate as the traditional techniques, in two modes: before
and after drift detection. While drift is not detected, models within
the ensemble are trained and tested as imposed by the selected tra-
ditional technique. Once a drift is detected, DRED is triggered once
to introduce diversity in the ensemble based on KDE and a MOT
to efficiently undertake the multi-objective optimization problem in
Expression (3.8). To this end DRED stores samples arriving within
a very short window of time using a buffer or reservoir (lines 1-7 in
Algorithm 1). Once W samples have been collected, they are used to
train a KDE model per label (line 8), which will be subsequently ex-
ploited to generate synthetic samples for all classes towards two ob-
jectives: 1) to compose the set of synthetic samples whose labels will
be subsequently evolved by the MOT (line 9); and 2) to yield a super-
vised data set for evaluating the predictive score of evolved ensem-
bles (line 10). The former objective requires sampling the learned
density N� times only once for the entire DRED procedure, whereas
the latter objective queries N� samples per generation of the MOT
solver in order to prevent ensembles from overfitting.

Once a model KDEl(h) has been built for each label l ∈ {1, . . . , L},
labels associated to the synthetic data set {x�n }N�

n=1 drawn from such
models to provide diversity to the ensemble are optimized by means
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FIGURE 3.3: Schematic diagram of the proposed
DRED scheme in a test-then-train online learning
scenario: right after a drift has been detected, the
method captures the distribution underlying a short
data window by means of a KDE model, after which
a set of N� synthetic samples are generated. Labels
associated to such samples are evolved via a MOT
to balance the Pareto between plasticity (diversity)
and stability (performance). The characteristics of
the drift finally drive the selection of the optimized
ensemble to be applied from the drift detection time

onwards.

of the selected MOT. The criteria of the problem tackled by the MOT
is based on the quantitative measure of diversity as per Expression
(3.5) and an estimated performance score of the ensemble trained
with {x�n }N�

n=1 and the set of labels corresponding to every individ-
ual. Following the aforementioned formulation, solutions evolved
by the MOT are numerically encoded as a vector of N� × K inte-
gers from the set {0, 1, . . . , L}. With each new candidate solution
all models of the ensemble are trained incrementally with {x�n }N�

n=1,
but with labels dictated by its integer encoding. As such, value 0
at position K(k− 1) + n within a given candidate means that the n-
th synthetic sample x�n cannot be used for training the k-th learner
within the ensemble, whereas any other value at this position within
the individual sets the label to be used along with x�n and input to
GNBk for its incremental learning. As a result, each model of the
ensemble is trained with the same synthetic samples, yet with dif-
ferent labels. Once the ensemble is trained for a given individual
within the MOT search process, the KDE models are again sampled
N� times to produce new synthetic samples which, along with the
labels corresponding to the KDE model from which they are gen-
erated, serve as a supervised data set to estimate the performance
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score of the trained ensemble. This indicator and the diversity mea-
sure as per Expression (3.5) are then used by the MOT to infer the
Pareto front between such conflicting objectives.

Algorithm 1: Proposed DRED(h) scheme

Input : Ensemble {GNBk}K
k=1; MOT algorithm; reservoir size

W; number of synthetic samples for training N�;
number of synthetic samples for performance
estimation N�; kernel density estimation method
KDE; and bandwidth coefficient for diversity h

Output: Updated ensemble {GNB?
k}K

k=1
1 w = 0
2 while w < W do
3 Perform the selected traditional scheme: Algorithm 2

(BAGGING), Algorithm 3 (SWITCHING) or Algorithm 4
(BOOSTING)

4 Store sample {xtr(t), ltr(t)} in the reservoir. Let w = w + 1
5 end
6 Infer the distribution of every label l ∈ {1, . . . , L} by

constructing a KDE model KDEl(h) base on the samples
stored in the reservoir

7 Draw N� synthetic samples {x�n }N�
n=1 from {KDEl(h)}L

l=1
considering the distribution of classes in the stream

8 Run once the MOT using Expression (3.5) to compute the
diversity of ensembles and repeatedly sampling
{KDEl(h)}L

l=1 to produce synthetic examples {x�n }N�
n=1 to

estimate their performance over the new concept
9 Select the set of optimized labels L� from the Pareto front

produced by the MOT based on the estimated severity and
duration of the drift. If no such information can be inferred
by the drift detector, opt for the label set that, when fed to
{GNB?

k}K
k=1, produces the highest diversity within the front

10 for k = 1 to K do
11 Incrementally train the input ensemble with synthetic

samples and optimized labels:
GNB?

k = GNBk({x�n , l�n }N�
n=1)

12 end

At this point a solution must be selected from the portfolio of
Pareto optimal individuals found by the MOT: intuitively a sharp
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change in the concept would require a very diverse ensemble, as
opposed to slow or subtle drifts where the priority is diversify the
ensemble while maintaining the learned knowledge as much as pos-
sible. All in all, a proper choice of the Pareto-optimal ensemble is
strongly linked to the availability of a priori knowledge about the
kind of drift, closely alike assumptions taken for finely tuning other
online learning schemes in the literature. When lacking such in-
formation, the solution maximizing the diversity of the ensemble
can be selected as a default choice; nevertheless, DRED produces a
whole range of balanced ensembles should e.g. a concept drift de-
tector be able to infer reliably the severity and speed of the concept
change. Regardless the criterion used to select a solution within the
Pareto front, DRED finally trains the ensemble with the synthetic
samples {x�n }N�

n=1 and the selected set of labels for every compound-
ing learner (lines 12-14), yielding the sought optimized ensemble.

Before proceeding further with the experimental part of this stu-
dy, it is important to highlight that unlike other schemes from the
literature, DRED is triggered only once shortly after a concept drift
has been detected. This ensures that once the process is triggered,
the models of the ensemble have been diversified to adapt to the
drift and, at the same time, learn the new concept maintaining the
classification scores in acceptable margins. If triggered at each time
step after the drift, the diversity levels provided by DRED might
become counterproductive as the classification performance would
decrease when the new concept has stabilized (specially when deal-
ing with severe and/or fast drifts), and the complexity could com-
promise usual processing requirements of data stream mining.

3.4 Computer Experiments

Several computational experiments have been run with a threefold
aim: 1) to test and verify the predictive gains attained by the tradi-
tional diversity generation schemes powered by DRED, 2) to evince
that the Bhattacharyya distance serve as diversity measure to build
ensembles, being the basis of an optimization processs focused on
keeping the balance between stability and plasticity, and 3) to con-
firm that a synthetic generation of samples within an optimal and
intelligent labeling process improves the overall performance of the
ensemble.
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3.4.1 Data Sets

When dealing with real data sets it is not possible to know a priori
the beginning of the drift, its severity, duration or even determine
reliably if the observed change is an evidence of a drift start or an
isolated outlier. For this reason, a first analysis of the behavior of the
proposed approach discussed in this section will resort to artificial
data sets, in which all experiments assume perfect drift detection.
After that, a real data set will be used to know the behavior of the
proposed approach under real conditions.

Results for 4 different class-balanced problems [3] (labeled as
CIRCLE, LINE, SINEH and SINEV) will be considered, each containing
one single concept drift simulated by varying among two emulated
levels of severity (low and high) and two speeds (low and high).
This variability results in 4 different types of drift for each data set.
It is worth pointing out that, on the one hand, severity represents
the amount of changes caused by a new concept, measured by the
percentage of the input space which has its target class changed after
the drift is complete; on the other hand, speed is the inverse of the
time taken for a new concept to completely replace the old one, be-
ing measured by the inverse of the number of time steps taken for a
new concept to completely replace the old one. In all data sets each
example corresponds to one time step in a test-then-train learning
scheme, totaling 2000 time steps (t ∈ {1, . . . , 2000}), two continuous
input features {X1, X2} (normalized to the range [0, 1] in all cases)
and a binary target class l ∈ {1, 2}. Drift occurs at t = 1000. The
number of samples belonging to class 1 and 2 is always the same,
having the effect of changing the unconditional probability distribu-
tion function when the drift occurs. We refer to [3] for further details
on these data sets.

Additionally, we will employ a different data set [128] with more
drifts of different severities, and much more samples in order to
evaluate the behavior of DRED hybrids. The SEA artificial data set
consists of three attributes, where only the first two attributes are rel-
evant and no class noise is introduced. All three attributes have val-
ues between 0 and 10. The class label is determined by X1 + X2 ≤ θ,
where X1 and X2 represent the first two attributes and θ is a thresh-
old value. If the condition is satisfied, then the example will be la-
beled as class 0; otherwise, it will be labelled as class 1. θ is adjusted
for new concepts. The data set has 60, 000 time steps, suffering three
different drifts at 15, 000, 30, 000, and 45, 000 time step, and show-
ing four different concepts (threshold values 8, 9, 7, and 9.5 for each
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concept) producing drifts of different severities.
Finally, the Australian New South Wales Electricity Market [29]

(labeled as ELEC2) is the real-world data set used in the experiments
with DRED, for which no a priori knowledge about the occurrence
and duration of the drift can be assumed. It has been used in sev-
eral relevant studies of drift detection such as [26], [29], [50], and
including studies of online approaches such as [3], [8], [27]. This
data set was collected from the Australian New South Wales Elec-
tricity Market, where prices are not fixed and become affected by
the demand and supply dynamics. It contains 45, 312 samples dated
from 7 May 1996 to 5 December 1998. Each example of the data set
refers to a period of 30 minutes, and has 5 fields (day of week, time
stamp, NSW electricity demand, Vic electricity demand, and sched-
uled electricity transfer between states) and the class label. The class
label identifies the change of the price related to a moving average of
the last 24 hours. The class level only reflect deviations of the price
on a one day average and removes the impact of longer term price
trends. This research has considered the first month of the data set
to tune the parameters of the drift detector and DRED, whereas the
following 6 months have been used for prediction and performance
assessment.

3.4.2 Traditional Diversity Generation Techniques

The experiments aim at analyzing the behavior of DRED when hy-
bridized with traditional diversity-based online learning ensemble
models against their naive implementation. Three different schemes
will be considered:

1. The online bagging method proposed in [3], and already in-
troduced in Section 2.5.2, by which varying level of diversity
is imposed to an ensemble by presenting a training example
(whenever it is available) Zk times for every member of the
ensemble, where Zk is drawn from a Poisson(λ) distribution.
The design idea is to enforce a higher/lower diversity level in
the ensemble when λ is set to a lower/higher value: when λ is
high, each of the compounding learners is more likely to be fed
with at least one copy of the input example. In this case, dif-
ferences between the trained learners are reduced with respect
to lower values of λ, by which classifiers within the ensem-
ble are trained with less copies of the input sample, ultimately
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imposing more notable differences among their learned pat-
terns. Algorithm 2 summarizes this method, hereafter labeled
as BAGGING(λ).

Algorithm 2: Online Bagging BAGGING(λ)

Input : Ensemble {GNBk}K
k=1; training example {xtr, ltr};

Poisson rate λ
Output: Updated ensemble {GNB?

k}K
k=1

1 for k = 1 to K do
2 Initialize the updated ensemble to the input one:

GNB?
k = GNBk

3 Draw a realization Zk from a Poisson(λ) distribution
4 while Zk > 0 do
5 Train incrementally the k-th learner in the ensemble

with the training example: GNB?
k ({xtr, ltr})

6 Decrease the value of Zk: Zk = Zk − 1
7 end
8 end

2. The so-called class-switching technique is a powerful way for
training diverse ensembles [111]. This approach hinges on us-
ing original training samples with randomized class labels: the
class label of each example is switched according to a proba-
bilistic threshold p, which bias the learning process of every
learner towards stability (no label change) or plasticity (label
change). This scheme is described in Algorithm 3 and will be
referred to as SWITCHING(pth).

3. The online learning method proposed in [69], based on the
batch boosting algorithm AdaBoost [70], is similar to the bag-
ging one (BAGGING(λ)) but with the difference that when a base
learner misclassifies a training example, the Poisson distribu-
tion parameter λ associated with that example is increased
when presented to the next base learner; otherwise it is de-
creased. Similarly to AdaBoost, the online boosting algorithm
gives those examples wrongly classified by one stage half the
total weight in the next stage, whereas the correctly classified
examples are given the remaining half of the weight.



64 Chapter 3. Challenge 1: Diversity Creation in Ensembles

Algorithm 3: Class Switching SWITCHING(pth)

Input : Ensemble {GNBk}K
k=1; training example {xtr, ltr};

threshold pth
Output: Updated ensemble {GNB?

k}K
k=1

1 for k = 1 to K do
2 Draw p uniformly at random from [0, 1]
3 if p ≤ pth then
4 Train incrementally the k-th learner in the ensemble

with the training example with its original label:
GNBk({xtr, ltr})

5 else
6 Train incrementally the k-th learner in the ensemble

with the training example with its changed label:
GNBk({xtr, not ltr})

7 end
8 end

When used for concept drift adaptation, the diversity genera-
tion techniques (BAGGING(λ), SWITCHING(pth) and BOOSTING(λ)) op-
erate as follows: before the drift, they use a low diversity ensemble
(driven by parameters λlow for BAGGING and BOOSTING, and plow

th for
SWITCHING), whereas after a drift occurs they shift to a high diversity
ensemble controlled by λhigh for BAGGING and BOOSTING, and phigh

th for
SWITCHING during a window of 100 time steps for the four synthetic
data sets (CIRCLE, LINE, SINEH, and CIRCLE). This period repre-
sents the moment in which high diversity ensembles are more likely
to outperform low diversity models, according to the empirical evi-
dence presented in [25]. In the case of SEA data set, this period is set
to 500 time steps. After this window, they return to their low diversity
mode. However, this procedure implicitly requires a fine tuning of
the parameter set {λlow, λhigh} (corr. {plow

th , phigh
th }), as well as a pri-

ori estimation of the duration of the transition between concepts so
as to adjust properly the number of time steps over which the high
diversity ensemble is used. In the case of DRED hybrids (labeled
as DRED-OB, DRED-CS, and DRED-BOOST), they only use one ensem-
ble for low (stable concept) and high diversity phases, but trained in
low diversity mode (also driven by parameters λlow for DRED-OB and
DRED-BOOST, and plow

th for DRED-CS) and high diversity mode (con-
trolled by λhigh for DRED-OB and DRED-BOOST, and phigh

th for DRED-CS).
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Algorithm 4: Online Boosting BOOSTING(λ)

Input : Ensemble {GNBk}K
k=1; training example {xtr, ltr};

Poisson rate for each sample λtr; λsc
m = 0; λsw

m = 0
Output: Updated ensemble {GNB?

k}K
k=1

1 for k = 1 to K do
2 Initialize the updated ensemble to the input one:

GNB?
k = GNBk

3 Draw a realization Zk from a Poisson(λ) distribution
4 while Zk > 0 do
5 Train incrementally the k-th learner in the ensemble

with the training example: GNB?
k ({xtr, ltr})

6 Decrease the value of Zk: Zk = Zk − 1
7 end
8 if GNB?

k ({xtr, ltr}) is the correct label then
9 λsc

m = λsc
m + λtr

10 εm = λsw
m /(λsc

m + λsw
m )

11 λtr = λtr/(2(1− εm))

12 else
13 λsw

m = λsw
m + λtr

14 εm = λsw
m /(λsc

m + λsw
m )

15 λtr = λtr/(2εm)

16 end
17 end

After the window, they use their low diversity mode again.
While the stability phase entails accumulating knowledge regard-

ing the supposedly stationary phase underlying concept, plasticity
phase requires forgetting some or all of the old acquired knowledge
in order to learn the new upcoming concept. In [21] the authors pro-
pose to eliminate the worst learner by picking randomly a learner
from the subset of the K′ (K′ < K) worst base learners. They con-
clude that a subset size of K′ = 1 in the stability phase and K′ = K
for the plasticity phase is the best selection. We adopt this criterion
to set the value of K′, but removing the less/more diverse learner in
the plasticity/stability phase instead of using the performance of the
learner.

In what refers to the quantification of the predictive performance,
discussions will be centered on the so-called prequential accuracy met-
ric, first proposed in [129] and frequently used by the online learning
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community (e.g. [8]). This score quantifies the average accuracy ob-
tained by the prediction of each test example before its learning in
an online test-then-train fashion, and is given by:

preACC(t)

=


preACCex(t), if t = tre f ,

preACCex(t-1) +
preACCex(t)-preACCex(t-1)

t-tre f + 1
, otherwise,

(3.9)

where preACCex(t) = 0 if the prediction of the test example at time
t before its learning is wrong and 1 if it is correct; and tre f is a refer-
ence time that fixes the first time step used in the calculation. This
reference time allows isolating the computation of the prequential
accuracy before and after a drift has started. Statistics of the ob-
tained results will be extracted based on 30 independent runs for
each data set and technique.

3.4.3 Estimation of Parameters

Parameters λhigh, phigh
th and K are inherent to any diversity-based

adaptation technique. They may vary depending on the base learner
and other factors, yielding different values reported and used the
state of the art. In the case of the parameter W, and as it will be fur-
ther explained in Section 3.5, is inherent to any drift detection tech-
nique based on a reservoir of past samples to study the distribution
of data, but in the case of DRED serves as a source to generate syn-
thetic samples. Only the parameter h (the bandwidth for the KDE
technique), and those for the MOT (size of population, number of
generations and number of synthetic samples) are unique to DRED.

In order to find the suitable values for the high diversity phase
(plow

th and λlow are always set to 1.0 as done in [8]), an off-line exper-
iment was carried out previously using a GNB ensemble for each
data set:

1. Perform 30 independent runs for every traditional diversity
technique using λhigh ∈ {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}
and phigh

th ∈ {0.6, 0.7, 0.8, 0.9}. In order to encourage different
levels of diversity for BAGGING and BOOSTING, the Poisson dis-
tribution can adopt different values depending on the diver-
sity phase. In the case of SWITCHING, a probability lower than
0.6 causes that the ensemble is too misfitted due to an excessive
number of switched classes for training.
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2. Select those values which show a better average prequential
accuracy after the drift occurs during a period of 100 (CIRCLE,
LINE, SINEH, SINEV), 500 (SEA), and 48 (ELEC2) time steps. The
configuration leading to the best average value for the four
combinations (severity/speed) of every data set is selected as
the result set included in the benchmark (Table 3.1).

In the case of BAGGING and BOOSTING, higher/lower λ values are
associated with lower/higher average Bhattacharyya distance (low-
er/higher diversity), whereas for SWITCHING higher/lower pth val-
ues are associated with lower/higher average Bhattacharyya dis-
tance (lower/higher diversity). In order to find the suitable number
of models in the ensemble (K) for all approaches, and the reservoir
size (W) and the bandwidth parameter (h) for DRED hybrids, an
experiment with different values over all of the four data sets was
carried out:

1. Perform 30 independent runs combining K ∈ {5, 10, 20}, W ∈
{10, 20, 40} for CIRCLE, LINE, SINEH, SINEV, and SEA, and W ∈
{96, 144, 192} for ELEC2, and h ∈ {1, 2, 3} for each data set.

2. Determine the prequential accuracy obtained by each run af-
ter the drift occurs and during a window of 100 (CIRCLE, LINE,
SINEH, SINEV), 500 (SEA), and 48 (ELEC2) time steps, to check the
best value of K for traditional approaches, and the best combi-
nation of K, W and h for DRED hybrids.

3. Select the best values of K, W and h that showed a better av-
erage performance in all data sets. These values are shown in
Table 3.1.

Regarding the rest of the parameters setting of DRED, simula-
tions will be run with neighbor-based KDE models with Gaussian
kernels. The reservoir size (W of Table 3.1) is the source from which
N� = 30 synthetic samples are drawn and fed to the MOT for their
optimal labeling, and N� = 100 samples are equally extracted for
estimating the predictive performance within the MOT operation.
For the sake of computational efficiency DRED is configured with an
off-the-shelf NSGA-II solver with a minimal configuration (popula-
tion size of Pop = 10 individuals and Gen = 25 generations), binary
tournament selection, uniform crossover with probability Pc = 0.5
and random mutation with probability Pm = 0.1. These values are
in line with typical parameter settings configured for this solver in
the literature.
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BAGGING SWITCHING BOOSTING DRED-OB DRED-CS DRED-BOOST
λhigh K phigh

th K λhigh K λhigh K W h phigh
th K W h λhigh K W h

CIRCLE 1-1 0.5 10 0.6 20 0.005 10 0.5 5 10 2 0.6 5 10 1 0.005 5 10 1
CIRCLE 1-3 0.5 5 0.6 5 0.005 10 0.5 5 20 1 0.6 5 40 1 0.005 5 40 1
CIRCLE 3-1 0.5 5 0.6 10 0.005 5 0.5 20 10 3 0.6 5 20 3 0.005 5 10 2
CIRCLE 3-3 0.5 5 0.6 5 0.005 10 0.5 5 40 1 0.6 5 40 2 0.005 20 40 1
LINE 1-1 0.05 20 0.8 5 0.1 5 0.05 10 20 3 0.8 5 10 1 0.1 5 20 3
LINE 1-3 0.05 10 0.8 5 0.1 10 0.05 5 40 2 0.8 5 40 1 0.1 5 40 1
LINE 3-1 0.05 5 0.8 5 0.1 5 0.05 5 10 2 0.8 5 10 1 0.1 10 10 3
LINE 3-3 0.05 5 0.8 5 0.1 10 0.05 10 10 2 0.8 10 10 1 0.1 5 10 1
SINEH 1-1 0.1 10 0.6 20 0.005 20 0.1 5 10 1 0.6 5 10 1 0.005 5 20 1
SINEH 1-3 0.1 10 0.6 5 0.005 5 0.1 10 10 2 0.6 5 40 2 0.005 10 40 1
SINEH 3-1 0.1 5 0.6 5 0.005 20 0.1 10 40 1 0.6 5 40 1 0.005 5 20 2
SINEH 3-3 0.1 10 0.6 5 0.005 5 0.1 10 10 2 0.6 5 10 2 0.005 10 40 1
SINEV 1-1 0.1 20 0.6 5 0.1 5 0.1 5 10 3 0.6 20 20 1 0.1 5 20 1
SINEV 1-3 0.1 5 0.6 5 0.1 5 0.1 5 20 1 0.6 5 5 1 0.1 5 20 1
SINEV 3-1 0.1 5 0.6 5 0.1 5 0.1 5 10 3 0.6 5 5 1 0.1 5 10 1
SINEV 3-3 0.1 5 0.6 5 0.1 5 0.1 5 40 1 0.6 5 5 2 0.1 5 10 1

SEA 0.0005 10 0.6 10 0.0005 10 0.0005 10 20 3 0.6 10 20 3 0.0005 10 20 3
ELEC2 0.1 5 0.8 20 0.5 5 0.1 5 192 1 0.6 20 192 1 0.1 10 192 1

TABLE 3.1: Parameters of the traditional diversity
generation schemes and DRED hybrids for the syn-
thetic data sets. Following the notation in [8], the
first number (i.e. circle 3-1) refers to the severity
and the second one to the speed, being the combi-
nations as follows: 3 represents the maximum and 1
the minimum severity respectively, whereas 3 rep-
resents the minimum and 1 the maximum speed re-

spectively.

3.4.4 Complexity Analysis

The implementation of DRED utilizes NSGA-II as its core MOT, who-
se complexity is known to be dominated by the non-dominated sort-
ing part of the algorithm [114]. This operation has a complexity per
iteration equal to O(FPop2), where F is the number of objectives
(two in our case) and Pop is the population size. In DRED this pa-
rameter is set to Pop = 10 individuals (i.e. a small population size),
indeed aimed at reducing the impact of the solver on the overall
proposed method. Other elements of relevance for the complexity
of the MOT are the number of models in the ensemble K and the
number of synthetic samples for training N�, which jointly set the
number of optimization variables per individual and consequently,
the number of times the evolutionary operators (e.g. crossover and
mutation) are applied. Finally, the number of class labels L does not
impact on the complexity of the NSGA-II solver per iteration, as op-
posed to the computation of the diversity measure as per Expression
(3.5), whose complexity is O(LK2).

The analysis on the complexity of DRED is concluded by the
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KDE model, whose naive implementation requires O(WN�) evalu-
ations andO(WN�) multiplications and additions for N� test points
based on a kernel density estimated from W samples [106]. Scales
handled in this chapter for these parameters (W ≤ 40 samples and
N� = 30) are affordable for current computation technologies under
demanding online settings.

3.5 Results and Discussion

In this section we analyze the behavior of the traditional diversity
generation schemes (BAGGING, SWITCHING, and BOOSTING) in compar-
ison with their versions powered by DRED (DRED-OB, DRED-CS, and
DRED-BOOST). Average prequential accuracy results for all data sets
and techniques are listed in Appendix A, discussing in what follows
those cases from which more relevant conclusions can be drawn.

We start the discussion by analyzing the comparison between the
approaches powered by DRED and the traditional diversity gener-
ation schemes in the CIRCLE data set. A first look on Figures 3.4,
3.5 and 3.6 reveals that DRED hybrids outperforms the traditional
ones in almost all cases (stability and plasticity periods). Not only
it recovers faster from the drift, but also attains a higher accuracy
level in the stability period after the drift. The reason for this domi-
nant behavior stems from several aspects: to begin with, the dynam-
ics of the drift and the data set itself are characterized by circularly
shaped regions, shown in Figures 3.7.a and 3.7.b. Such regions are
suitable for Gaussian kernel fitting. Furthermore, drift occurs fast,
and the new concept is built incrementally from the old one and
uniformly across all features, which again favors the generation of
synthetic samples using the KDE approach with bandwidth tuning
proposed in DRED. Indeed, the effect of h in the learned density of
every class is to smooth uniformly the overall kernel aggregation.
Since the new concept is modeled as one of the classes expanding
its decision region over the feature space, the dynamics of the drift
are matched to the effect of h when generating new synthetic sam-
ples for diversifying the ensemble. Interesting is also to remark that
the significantly better accuracy score attained by DRED long after
the drift is a byproduct of the fact that it is run only once after the
drift has been detected: besides lowering dramatically the compu-
tational cost of this approach, it also allows the ensemble to quickly
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capture the new concept, letting the learning process of the new con-
cept itself reduce the diversity gained after DRED as the new data
distribution becomes stable.

FIGURE 3.4: Prequential accuracy preACC(t) of
DRED-OB (—) and BAGGING (—) for the CIRCLE data

set under high severity and speed levels.

Regarding the parameters tuning, the results show that a higher
bandwidth (h ∈ {2, 3}) is needed when high severity and speed con-
ditions are present, which is totally aligned with our previous expla-
nations. Besides, it seems that a bigger window (W = 40) is required
when the drift is slower, which is expected due to the necessity of
more information to generate synthetic samples in order to adapt to
the slow change. In general, a smaller ensemble (K = 5) than tra-
ditional approaches (K ∈ {10, 20}) suffices for outperforming their
scores.

We follow the discussion by replicating the above analysis with
the LINE and SINEV data sets. In these cases, results reveal that
the overall behavior of DRED hybrids is as follows: BAGGING and
BOOSTING generally outperforms the traditional approaches in the
plasticity period when the drift is fast, and when the drift is slower
in the case of SWITCHING. In the stability period after the drift only
DRED-BOOST outperforms the traditional scheme when the drift oc-
curs fast. In these two data sets, the dynamics of the drift and the
data set itself are characterized by linearly-shaped data patterns that
are shown in Figure 3.7.c and 3.7.d (LINE), and 3.7.e and 3.7.f (SINEV).
Their class distributions before and after the drift make them not so
suitable for kernel fitting than the CIRCLE data set; however, DRED
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FIGURE 3.5: Prequential accuracy preACC(t) of
DRED-CS (—) and SWITCHING (—) for the CIRCLE data

set under high severity and speed levels.

FIGURE 3.6: Prequential accuracy preACC(t) of
DRED-BOOST (—) and BOOSTING (—) for the CIRCLE

data set under high severity and speed levels.

still performs competitively due to the fact that the new concept
again grows incrementally from the previous one, yet only along the
vertical feature. All in all, the constituent learners of the ensemble
are pushed towards the new concept.

In the case of SINEH, only DRED-BOOST outperforms the tradi-
tional scheme in the stability periods. This is the data set in which
DRED hybrids score worst when compared to the rest of data sets.
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(b) CIRCLE after the drift
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(c) LINE before the drift
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(d) LINE after the drift
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(e) SINEV before the drift

X1

1 2 3 4 5 6 7 8 9

X
2

-8

-6

-4

-2

0

2

4

6

8

(f) SINEV after the drift
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(g) SINEH before the drift
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(h) SINEH after the drift

FIGURE 3.7: Feature space evolving after the drift
occurs in each data set.

In this regard, Figures 3.7.g and 3.7.h evince that the dynamics of
the drift and the data set itself do not grow incrementally with re-
spect to the old concept, nor is the distribution followed by data
samples appropriate for Gaussian kernel density estimation. As a
result, the synthetic samples generated by DRED are not represen-
tative of the new concept and counterproductive when fed to the
ensemble. Among all DRED hybrids, DRED-BOOST provides the best
overall performance in all data sets.

The SEA data set compiles three drifts with different severities.
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FIGURE 3.8: preACC(t) of DRED-OB (—) and
BAGGING (—) for the SEA data set.

In this case, the results reveal that the overall behavior of DRED hy-
brids is as follows: in the first two drifts, DRED-OB and DRED-BOOST
outperform the traditional ones, and only in the case of DRED-CS and
DRED-BOOST their performance is lower than traditional approaches
in the third drift. DRED-OB is the best hybrid showing the best per-
formance in all the drifts and being as good as the traditional one in
the stability periods. The performance of DRED hybrids is depicted
in Figures 3.8, 3.9, and 3.10. The behavior of DRED in this data set
confirms the fact that the performance of DRED is not punished for
the number of drifts in the data stream.

We now delve into the influence of the selected values for W (size
of the window) in the performance of DRED hybrids. To this end
Figures 3.11.a and 3.11.b unveil that the optimal value for this pa-
rameter is tightly liked to the drift dynamics. When the drift occurs
fast and implies a severe change of the underlying distribution, the
window size should be small enough to capture quickly the new
concept and forget the old one. This is indeed what can be seen in
Figure 3.11.a, where the performance degrades as W increases. On
the contrary, when the drift evolves slowly and the old and new
concepts prevail during a longer period, the value of W imposes a
trade-off between the reaction time and the quality of the diversity
injected by DRED in the ensemble. As shown in Figure 3.11.b, a
slow transition between concepts requires tuning W so as to capture
and model properly the new concept at an admissible delay in the
injection of the generated synthetic samples.



74 Chapter 3. Challenge 1: Diversity Creation in Ensembles

FIGURE 3.9: preACC(t) of DRED-CS (—) and
SWITCHING (—) for the SEA data set.

FIGURE 3.10: preACC(t) of DRED-BOOST (—) and
BOOSTING (—) for the SEA data set.

We end the discussion highlighting the relevance of the hybridiza-
tion process of DRED with a drift detector. When dealing with real
data sets it is not possible to know a priori the beginning of the drift,
its severity, duration or even determine reliably if the observed chan-
ge is an evidence of a drift start or an isolated outlier. For this rea-
son, firstly the analysis of DRED hybrids has been based on artificial
data sets with perfect drift detection. Under these circumstances, for
a thorough study of its behavior it is necessary to assume certain in-
formation of the drift, which affects the selection of values for the
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(a) CIRCLE 3-1 (severe, fast drift) (b) CIRCLE 1-3 (smooth, slow drift)

FIGURE 3.11: Mean prequential accuracy
preACC(t) of DRED-OB in CIRCLE 3-1 (a) and
CIRCLE 1-3 (b) data sets imposing different values
of W. K has been fixed to their best value as per

Table 3.1 (i.e. 20 and 5, respectively).

parameters (W, h, duration of the drift, its severity and speed, even
the shape of the change in what refers to the features evolution after
the change occurs, etc.).

To this end, DRED has been hybridized with the so-called Early
Drift Detection Method (EDDM, [50]) and applied to the ELEC2 data-
set. A period of 48 time steps that corresponds to one day was as-
sumed to study its behavior during the drift. EDDM has been se-
lected to detect drifts due to its simplicity, its results dealing with
abrupt and very slow changes, and its capacity to detect repeatedly
occurring concept drifts even with very noisy data. In this case, the
first month has been used to tune off-line the values of parameters
α (to establish the warning level) and β (to set the drift level), be-
ing set to 0.94 and 0.89, respectively. With this configuration, EDDM
detects 50 drifts from month 2 to month 7.

Results collected in Table A.6 elucidate that DRED-OB outperforms
its naïve counterpart (BAGGING) in the period before the drift and
during the drift period, being equally well-performing in the period
after the drift. On the other hand, DRED-CS is as good as SWITCHING
before and after the drift, but DRED-CS outperforms SWITCHING in the
drift period. In the case of DRED-BOOST is as good as BOOSTING in all
of the periods. A closer inspection to the obtained results – for ex-
ample, the performance of DRED-OB and BAGGING in several different
drifts detected in this data set, depicted in Figure 3.12 – buttresses
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FIGURE 3.12: preACC(t) of DRED-BAGGING (—) and
BAGGING (—) for the ELEC2 data set. Average per-
formance scores during and after specific drifts have

been magnified for discussion.

the need for matching the configuration of DRED to the characteris-
tics of the drift at hand.

This insightful conclusion should motivate further research to-
wards deriving drift detectors that could supply DRED with valu-
able information on the drift. There is a plethora of schemes in the
literature such as Drift Detection Method (DDM, [29]) from which
DRED could extract information about the size of the window by
analyzing the size of the samples that belongs to the warning level
prior to the drift occurrence. This warning period, which could
be used to set W, can be also inferred by another three detectors:
EDIST2 [113], Exponentially Weighted Moving Average (EWMA)
[130] and Concept Drift Detection (ECDD). Adaptive Windowing
(ADWIN) [27] could also supply DRED with information on the size
of the window as it uses sliding windows of variable size, dynam-
ically enlarging the window when there is no apparent change in
the context, and shrinking it when a change is detected. Here it is
worth mentioning that DRED should delimit the maximum length
of the window provided by ADWIN (in turn, the main drawback of
this detector). Finally, the output of an adaptive CUSUM [131] could
inform DRED on the starting and ending point of the drift, as well
as the amplitude (duration) of the drift. All of them, among others,
were recently compared in [26] concluding that each drift detection
method performs best in data sets with different characteristics.
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3.6 Summary

Nowadays fast-arriving information flows lay the basis of many data
mining applications. Such data streams are usually affected by non-
stationary events that eventually change their distribution (concept
drift), causing that predictive models trained over these data become
obsolete and do not adapt suitably to the new distribution. Specially
in online learning scenarios, there is a pressing need for new algo-
rithms that adapt to this change as fast as possible, while maintain-
ing good performance scores. Recent studies have revealed that a
good strategy is to construct highly diverse ensembles towards uti-
lizing them shortly after the drift (independently from the type of
drift) to obtain good performance scores. However, the existence
of the so-called trade-off between stability (performance over sta-
ble data concepts) and plasticity (recovery and adaptation after drift
events) implies that the construction of the ensemble model should
account simultaneously for these two conflicting objectives. In this
regard, this chapter has presented a new approach coined as DRED
to artificially generate an optimal diversity level when building pre-
diction ensembles once shortly after a drift occurs. DRED uses a
KDE method to generate synthetic data, which are subsequently la-
beled by means a multi-objective optimization method that allows
training each model of the ensemble with a different subset of syn-
thetic samples. Computational experiments have revealed that the
proposed approach can be hybridized with other traditional diver-
sity generation approaches, yielding optimized levels of diversity
that render an enhanced recovery from drifts.
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Chapter 4

Challenge 2: Data Reduction
Techniques and New Stream
Learning Algorithms

4.1 Introduction

Unfortunately, most off-the-shelf classification models need to be re-
trained if they are used in a changing environment and fail to scale
properly. One of the most promising machine learning techniques
in the field that can overcome this noted drawback is the Spiking
Neural Network (SNN) [132]. The advent of SNNs was propelled
by the need for a better understanding of the information process-
ing skills of the mammalian brain, for which the community com-
mitted itself to the development of more complex biologically con-
nectionist systems. SNNs have revealed themselves as one of the
most successful approaches to model the behavior and learning po-
tential of the brain, and exploit them to undertake practical learning
tasks. In essence SNNs leverage spike information representation so
as to construct spike-time learning rules that capture temporal asso-
ciations between a large number of temporal variables in streaming
data. Among other applications (e.g. simulation of space-time sys-
tems), such a learned knowledge can be exploited to predict future
events. In fact, SNNs must be regarded as a portfolio of models for
different computational uses and applications, all inspired by the the
same design principles (information encoding and neural process-
ing based on time spikes). One of the successful SNNs is the Evolv-
ing Spiking Neural Networks (eSNNs) [133], [134], where the num-
ber of spiking neurons evolves incrementally in time to infer tem-
poral patterns from data. First proposed in [135], [136], eSNNs are
based on the principles of evolving connectionist systems (ECOS)
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and Thorpe’s neural model [137]. In SNNs, changes in the input
stream data are encoded immediately as binary events - spikes. As
we will motivate in forthcoming sections, they use one of the most
suitable data encoding strategies for adapting to drifts.

Several works have focused on implementing SNNs for online
learning environments. The most early attempt in this regard is
SpikeProp, an adaptation of the classical backpropagation algorithm
that was the first supervised learning algorithm developed for SNNs
[138]. However, it is too slow to be used in an online setting, and
prone to get stuck in local minima as a result of its gradient-based
learning algorithm. In [139] the authors proposed a derivative-free
supervised learning algorithm comprising an evolutionary strategy
with a reportedly better performance than SpikeProp, but the train-
ing process was extremely time-consuming and hence, not suitable
for online learning. ReSuMe [140]–[142] integrated the idea of learn-
ing windows with remote supervision; despite this method claimed
to be suitable for online learning, the network structure used in this
method is fixed and does not adapt to incoming stimuli. In addi-
tion, the desired precise output spike timing is crucial to ReSuMe
learning [102]. Other studies have addressed the online learning in a
more realistic approach. The method proposed in [143] can perform
learning in an online mode through synaptic plasticity and adaptive
network structure. More recently, the SpikeTemp method proposed
in [102] offers an enhanced rank-order-based learning method for
SNNs with an adaptive structure where the precise times of incom-
ing spikes are used to determine the required change in synaptic
weights. With these few exceptions, there is a lack of efficient and
scalable SNN-based algorithms in online learning scenarios.

Interestingly for the scope of this challenge, none of the contri-
butions reviewed above takes into account the requirement of a lim-
ited size for the neurons repository, which is of utmost importance
to meet the processing requirements of online learning. Should this
crucial aspect not be taken into account, the number of neurons in
the repository would increase every time step. Therefore, further
efforts are still needed to devise new online learning mechanisms
for SNNs and increase their applicability to real-world problems. To
this end not only the SNN model should learn incrementally from
the data stream, but the content of its neurons repository should also
be limited in size and adapted when concept drift occurs. To the best
of our knowledge, these two issues have not been addressed in the
community. The contribution of this thesis with respect to this chal-
lenge can be summarized as follows:
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1. We develop a new eSNN model that incorporates a set of novel
ingredients for efficiently dealing with online learning appli-
cations, such as a limitation of the size of the neurons reposi-
tory and the use of a sliding window. The developed model is
able to classify inputs after just one presentation of the training
samples, without requiring the entire training set to be avail-
able in advance. Regarding the limited size of the neurons
repository, the proposed approach will embrace the adoption
of Data Reduction Techniques (DRTs) [5], which aim to obtain
a representative training set with a lower size when compared
to the original one, and with similar or even higher general-
ization capability when fed to a predictive model. They can be
divided into prototype selection (PS) techniques [144], [145],
which consist of choosing a subset of the original training data;
and prototype generation (PG) techniques [146]–[148], which
build new artificial prototypes for a better adjusting of the de-
cision boundaries between classes.

2. We hybridize the proposed eSNNs approach with a drift detec-
tor, yielding a solid learning model to be deployed in a realistic
online scenario.

3. We analyze the impact of different data reduction techniques
in the newly devised eSNN model over a wide range of on-
line learning data sets, with emphasis on the predictive per-
formance of the model after a drift occurs, the data reduction
percentage achieved by every DRT, and the implications of the
proposed strategy in the future of the online learning field.

4. As a result of this work, we provide an online learning tech-
nique based on a single classifier, proven to perform competi-
tively in comparison with other techniques based on ensem-
bles while using less storage capacity. Single classifiers are
widely regarded as an attractive solution for mining massive
data streams due to their reduced computational cost when
compared to their ensemble counterparts [15].

4.2 The Evolving Spiking Neural Networks

An eSNN consists of an encoding part that transforms a real-valued
vector into spikes generated over time, a neuron model, and a learn-
ing mechanism that calculates the connection weights between the
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input and the output neurons. eSNNs are now a part of a compre-
hensive SNN architecture for spatio-temporal data modeling, Neu-
Cube [149], which can deal with a wide range of applications [150].

4.2.1 Architecture

Input Sample Pre-synaptic/input 
neurons
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fields

Evolving
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ss
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FIGURE 4.1: Architecture of feed-forward eSNN
[135].

As depicted in Figure 4.1, the architecture of the eSNN is com-
posed by three layers [135], [136], [143], [151]. The first layer corre-
sponds to the input data. The second layer is for encoding purposes,
where the real values of the features of every sample are encoded
as trains of spikes, generating the pre-synaptic neurons and each of
them having a receptive field. Receptive fields of neighboring neu-
rons overlap with each other by adopting the shape of Gaussian or
Logic functions, in all cases covering the whole range of the values
of each feature (as explained below). The number of encoding neu-
rons N (or receptive fields) may vary depending on the nature of
the data at hand, and must be tuned for achieving a good predic-
tive performance of the overall model. The third layer is the evolv-
ing output layer, where a repository of spiking neurons representing



4.2. The Evolving Spiking Neural Networks 83

samples (divided in one subrepository per every class in the prob-
lem) evolves as new data arrive. Each output neuron is linked to all
input neurons through connections whose weights are learned from
the data samples fed to the model.

4.2.2 Neural Encoding

In order to learn from real-valued data, each sample is encoded to a
sequence of spikes over time (spike trains) by using a neural encod-
ing technique, e.g. rank order population [152], [153] or any other
encoding approach alike. The rank order population scheme works
on the basis of the order of the spikes across all the synapses con-
nected to the particular neuron. It creates the priority in the input
spikes depending on the order of spike arrival to the neuron, which
provides extra information to the network regarding the order of
the spike [137]. In this chapter we adopt the Gaussian Receptive
Field (GRF) population encoding scheme, where the input can be
distributed over several neurons with overlapping and graded sen-
sitivity profiles by using Gaussian activation functions. Each encod-
ing neuron is fired only once during the time coding interval T. As
a result, each input sample is translated into a spatio-temporal spike
pattern. Specifically, the center Cj and the width Wj of each GRF of
pre-synaptic neuron j are computed as:

Cj = In
min +

2j− 3
2

(
In
max − In

min
N− 2

)
, (4.1)

and:

Wj =
1
β

(
In
max − In

min
N− 2

)
, (4.2)

where N is the number of receptive fields, whose value impacts on
the amplitude of the input neuron and must be optimized for the
problem. The range of the n-th input variable is assumed to be
R[In

min, In
max]. Parameter β ∈ R[1, 2] (also referred to as overlap fac-

tor) establishes the width of receptive fields, thereby their amount of
overlapping and ultimately, the firing time of the pre-synaptic neu-
ron j. The output of neuron j is defined as:

outputj = exp

(
−
(x− Cj)

2

2W2
j

)
, (4.3)



84 Chapter 4. Challenge 2: DRTs and OeSNNs

where x is the input value. The firing time of each pre-synaptic neu-
ron j is defined as:

Tj = bT(1− outputj)c (4.4)

where T is the simulation or spike interval. Figure 4.2 exemplifies
the GRF encoding process for the feature of any given sample.
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FIGURE 4.2: Example of population encoding based
on 6 GRFs. For an input value of 0.7 (bold
straight line) the intersection points with each
GRF are computed (0.96, 0.76, 0.32, 0.13, 0.0, 0.0),
which are in turn translated into firing times

(0.04, 0.24, 0.68, 0.87, 1.0, 1.0).

4.2.3 Neural Model

A simplified Leaky Integrate-and-Fire (LIF) model was formally pro-
posed in [137], but the idea can be tracked to publications as early as
1990. LIF states that the spike response of a neuron depends only on
the arrival time of pre-synaptic spikes, that is, the earlier the spike
arrives to a neuron, the stronger its weight will be when compared
to a later spike. Each neuron in this model can spike at most once,
and a neuron fires when its PSP reaches its threshold value. The PSP
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of a neuron i is defined as:

PSPi=

{
0, if fired,
∑j wji ·modorder(j), otherwise,

(4.5)

where wj,i represents the weight of the synaptic connection between
pre-synaptic neuron j to output neuron i; mod is the modulation fac-
tor with a range R[0, 1]; and order(j) defines the rank of the pre-
synaptic neurons spike. The first rank is assigned as 0 and sub-
sequently, rank is increased by 1 based on firing time of each pre-
synaptic neuron.

4.2.4 Supervised Learning

When utilized in a supervised learning setting, the aim of the eSNN
learning method is to produce and update a repository of output
neurons, each of them labeled with a certain class label.

In this classification context, the eSNN training algorithm is al-
gorithmically described in Algorithm 5. First, the model creates a
repository of output neurons for the training patterns. For each pat-
tern that belongs to a same given class, a new output neuron is cre-
ated and connected to all pre-synaptic neurons in the previous layer
through weights wji (see Figure ??). The value of wj,i is calculated
based on the spike order through a synapse j as wj,i = modorder(j),
where j is the pre-synaptic neuron of the output neuron i (line 7).
A numerical threshold γi is set for the newly created output neuron
as the fraction C ∈ R(0, 1) of its maximum post-synaptic potential
PSPmax,i), i.e. γi = PSPmax,i · C. The weight vector of a newly cre-
ated output neuron is then compared with the already trained out-
put neurons in the repository. If the Euclidean distance between the
newly created output neuron weight vector and that of anyone of
the already trained output neurons is smaller than a similarity pa-
rameter (SIM), they are considered to be similar. As a result, their
thresholds and weight vectors are merged according to:

wj,i =
wnew + (wj,i ·M)

M + 1
, (4.6)

and:

γi =
γnew + (γi ·M)

M + 1
, (4.7)
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where M is the number of previous merges of similar neurons dur-
ing the learning history of the eSNN. After merging, the weight vec-
tor of the newly created output neuron is discarded, and the new
pattern is presented to the model. If none of the already trained
neurons in the repository is found to be similar (as per the SIM pa-
rameter) to the newly produced output neuron, then it is added to
the repository.

Algorithm 5: eSNN algorithm

1 Initialize neurons repository, NR = {}
2 Set eSNN parameter mod = [0, 1], C = [0, 1], SIM = [0, 1]
3 Set eSNN encoding parameters β, T, N
4 Calculate Imax, Imin for the training data set
5 for every sample s belonging to class c do
6 Calculate Cj and Wj for encoding s into firing time of

multiple pre-synaptic neurons j
7 Create a new output neuron i and the connection weights

as wj,i = modorder(j)

8 Calculate PSPmax(i) = Σjwj,i ·modorder(j)

9 Compute PSP threshold value γi = PSPmax(i) · C
10 if min distance(Newly output neuron weight vector,Neurons

repository weight vectors in in NR)) ≤ SIM then
11 Update the weight vector and threshold of the most

similar neuron wj,i =
wnew+(wj,i ·M)

M+1 and γi =
γnew+(γi ·M)

M+1
12 Set M = M + 1
13 else
14 Add the weight vector and threshold of the new

output neuron to NR
15 end
16 end
17 Go to 1 and repeat for all target classes

The testing phase propagates the spikes that encode the test sam-
ple to all trained output neurons. The class label for the test sample
is assigned according to the class label of the output neuron which
has fired first after reaching its threshold value γi.
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4.2.5 eSNN in Online Learning

The neural model of eSNN models allows for a very fast real-time
simulation of large networks and a low computational cost. These
properties make eSNNs a very suitable candidate for online learning
scenarios, where stringent restrictions on computational cost and
processing time prevail. Besides, the evolving nature of the network
makes it possible to accumulate knowledge as data become avail-
able, without the requirement of storing and retraining the model
with past samples. We will later evince how this evolving nature
is also useful for adapting the model to eventual drifts along the
stream.

Several approaches have been developed so far in order to adapt
eSNNs to online learning setups [136], [142], [154], [155]. However,
most of them are unable to predict inputs after just one presentation
of the training samples, hence requiring the entire training set to be
available in advance. The online learning field has not certainly been
as thoroughly addressed in the eSNN literature as its offline (batch)
counterpart. The reason for this lack of research lies on the afore-
mentioned computational restrictions, which require adapting the
original eSNN learning algorithm to meet these design constraints.

In online learning scenarios tailored predictive scores metric are
often proposed to shed light not only on the net accuracy of online
learning models, but also to quantitatively analyze its reaction ca-
pability against changes in the data streams. Discussions in this
chapter will follow the common practice in this research area by em-
bracing the so-called prequential accuracy metric, already defined in
Equation (3.9) and widely used by the community [8]. This metric
quantifies the sample-by-sample progression of the average accu-
racy obtained by a learning model in a test-then-train basis (i.e. null
verification latency).

4.3 Data Reduction Techniques

In eSNN, if the Euclidean distance between the newly created out-
put neuron weight vector and that of anyone of the already trained
output neurons is smaller than SIM, they are considered to be close
and they are merged. Closeness is decided based on the similarity
between the weight vectors {wj,i} of every output neuron i to the
weight vector produced by the newly input sample. This distance-
based prediction strategy can be regarded as that of the k-Nearest
Neighbors (kNN), one of the most utilized algorithms in machine
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learning due to its simplicity and effectiveness. However, kNN mod-
els are known to suffer from several drawbacks [156]:

• The need for a high storage capacity to retain the set of training
samples so as to perform the decision rule;

• the computational burden associated to the search for the clos-
est example, due to multiple similarity computations between
the test sample and the training examples; and

• the low tolerance of to noisy samples within the training data.

The literature is rich in methods proposed to tackle the above
drawbacks. In this chapter we will embrace DRTs to simultaneously
face all such issues in an online setting. DRTs aim to obtain a rep-
resentative training set with a lower size compared to the original
one, yet with similar or even higher classification accuracy for new
incoming data. DRTs can be classified depending on whether the
method at hand is based on filtering and selecting samples from the
training set (prototype selection, PS) or, alternatively, on synthesiz-
ing representative examples therefrom (prototype generation tech-
niques, PG). Next we overview both categories and show how DRTs
can be applied to reduce the number of output neurons in the reposi-
tory providing a useful mechanism to limit the size of the repository.

4.3.1 Prototype Selection Techniques

PS techniques select a subset of the original training data for con-
structing the model, hence discarding the remaining data samples.
The main advantage of these techniques is their capacity to discrimi-
nate relevant examples without synthesizing artificial data. A widely
used categorization of PS techniques include edition, condensation,
and hybrid methods [157]. Edition methods remove noisy samples
in order to increase the classification performance. Condensation
methods remove superfluous samples that do not affect the clas-
sification performance. Hybrid methods are based on combining
edition and condensation methods to yield a PS technique leverag-
ing specific computational and/or performance aspects of both ap-
proaches.

The exhaustive study of PS techniques presented in [157] shows
the advantages and disadvantages of all DRT methods falling in this
category. Indeed this work empirically proved that the choice of
a certain method depends on diverse factors, in essence a multi-
criteria decision that becomes even more crucial when dealing with
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online learning in the presence of concept drift. For example, an
edition method usually outperforms a naive kNN in the presence
of noise, but only a few samples will be removed [157]. However,
although they allow for a high data reduction rate while preserv-
ing the model accuracy, edition-based PS techniques are usually the
slowest ones due to their greedy search procedure. On the contrary,
condensation PS approaches are fast and achieve high data reduc-
tion rates, but they usually render classification performance scores
lower than those of naive kNN schemes [157].

Figures 4.3 and 4.4 show the behavior of 4 different PS techniques
on a synthetic data set, illustrating the nature of decision boundaries
after applying sample reduction techniques.

FIGURE 4.3: A comparison of the mean accuracies
(95.00%, 82.50%, 87.50%, 77.50%) and data reduc-
tion percentages (0.00%, 11.67%, 78.33%, 16.67%) of
kNN, ENN, CNN, and RENN techniques respec-
tively on a synthetic data set. The figure shows
training points in solid colors and testing points

semi-transparent.

FIGURE 4.4: A comparison of the mean accu-
racies (92.50%, 90.00%, 85.00%) and data reduction
percentages (18.33%, 10.00%, 91.67%) of AllKNN,
TCNN, and SSMA techniques respectively on a syn-
thetic data set. The figure shows training points in

solid colors and testing points semi-transparent.
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4.3.2 Prototype Generation Techniques

Prototype generation techniques build new artificial prototypes to
better adjust the decision boundaries between classes in kNN clas-
sifiers. To this end, PG methods produce and replace training data
samples with new artificial data filling regions in the domain of the
problem lacking representative samples in the original data set. The
thorough categorization and empirical assessment of PG techniques
reported [146] drew similar conclusions to those obtained for PS
schemes in [157]: a categorical claim cannot be made in regards to
the comparative performance of different PG techniques: the choice
of one approach or another will roughly depend on the problem un-
der consideration.

Figure 4.5 shows the behavior of 3 different PG techniques on
a synthetic data set, illustrating the nature of decision boundaries
after applying the sample reduction techniques.

FIGURE 4.5: A comparison of the mean accuracies
(95.00%, 92.50%, 85.00%, 90.00%) and data reduc-
tion percentages (0.00%, 65.00%, 81.67%, 75.00%) of
kNN, SGP, SGP2 and ASGP techniques respectively
on a synthetic data set. The figure shows train-
ing points in solid colors and testing points semi-

transparent.

As it will be further explained, the reduction power of DRTs at
the same time that their accuracy remains competitive will be used
in favor of our proposed approaches.

4.4 Proposed Approach: Online Evolving Spik-
ing Neural Networks (OeSNN)

As in other online learning algorithms, the proposed online version
of eSNN (OeSNN) stores a reduced amount of samples taken over
aW-sized sliding window. In our case, however, such samples are
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not used for statistical tests [27], but rather for performing the neu-
ral encoding procedure described in Section 4.2.2. Every time a new
sample arrives in the stream, the neural encoding is performed for
the samples falling inW . This encoding is also used for the predic-
tion of the test sample, following a test-then-train scheme [158]. The
value ofW can be 1) set fixed, e.g. whenever a new sample arrives
it is stored in the memory and the oldest one is discarded; or 2) ad-
justed over time depending on e.g. the information provided by a
drift detector analyzing the statistical characteristics of the stream.
A fixed size is often adopted as a baseline scheme when evaluating
new online learning algorithms [10]; the study will follow this com-
mon practice from the related literature.

As explained in previous sections, the learning procedure of the
eSNN relies mostly on the neurons repository. Therefore, the size of
this repository should be upper bounded in order to meet the restric-
tive storage constraints imposed in an online learning scenario. The
neurons repository collects all the available knowledge in the form
of output neurons, so that the more knowledge (neurons) is stored
in this model stage, the more likely it will be to find an output neu-
ron similar to the one under test, and ultimately the better accuracy
will be achieved. Consequently, the proposed OeSNN approach uti-
lizes a fixed size of the neurons repository NR_size: the new output
neuron produced by the test sample through the eSNN structure is
stored whenever there is room in the repository, i.e. its current occu-
pation CNR_size is below the net capacity of the reservoir NR_size;
if there is no free space (corr. CNR_size = NR_size), the oldest out-
put neuron will be replaced by the new output neuron. Intuitively,
this repository updating strategy addresses two different constraints
in online learning under concept drift: the need for a limited size
reservoir of output neurons, and an inherent forgetting mechanism
to discard outdated concepts when data streams are non-stationary.

Other related studies usually divide the data set into training and
testing phases, applying the online learning to the test part after once
a well-trained eSNN classifier has been attained [102], [103], [134].
However, in fast streaming scenarios the algorithm must update it-
self one sample at a time from the beginning of the data streaming
process. This is accomplished by adopting incremental methods for
warm-start model training while predicting test samples in parallel.
This will be the scheme adopted in this chapter.

Algorithm 6 reflects the adaptations made to the original eSNN
in Algorithm 5 in order to deploy it in online learning scenarios
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by fulfilling with the restrictions described before. The aforemen-
tioned W-sized sliding window yields a group of recent samples
from which the encoding parameters are computed (lines 4, 8, and
9). The neurons repository is limited to a fixed size (line 5), which is
checked in order to decide whether the recent sample can be stored
directly or instead, replaces the oldest output neuron in the reposi-
tory.

At this point it is important to underline that every time a merg-
ing process is performed, only two neurons are involved at most.
Therefore, it is likely that the output neurons repository stores re-
dundant information when processing a stream, with emphasis dur-
ing those periods where the data distribution remains stable, i.e.
before the drift occurs and long after the drift event. Here lies the
rationale for further optimizing the information stored within the
OeSNN neurons repository by applying data reduction techniques,
which is exposed in the next section.

4.4.1 Data Reduction for OeSNN Models: OeSNN-PS and
OeSNN-PG

The proposed OeSNN approach sketched in Algorithm 6 is the basis
for the OeSNN models hybridized with DRTs schemes (OeSNN-PS
and OeSNN-PG), in which PS and PG techniques are applied respec-
tively on the neurons repository. For this purpose we have selected
a wide portfolio of DRTs:

• OeSNN-PS, all based on a majority voting between the k most
similar samples to a given unseen observation (the value of k
has to be defined beforehand):

– Edited Nearest Neighbor (ENN) [159], which is a modi-
fied editing version of the kNN rule, applies a NN algo-
rithm and edits the data set by removing samples which
do not agree enough with their neighborhood. For each
sample in the class to be undersampled, the set of nearest
neighbors are computed; if the selection criterion is not
fulfilled, the sample is removed.

– Repeated Edited Nearest Neighbor (RENN) [160] extends
ENN by repeating the algorithm multiple times so that
more data samples are deleted.

– Condensed Nearest Neighbor (CNN) [161] was suggested
as a rule which retains the basic approach of the NN rule,
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Algorithm 6: Proposed OeSNN algorithm

1 Initialize neuron repository, NR = {}
2 Set eSNN parameter mod = [0, 1], C = [0, 1], SIM = [0, 1]
3 Set eSNN encoding parameters β, T, N
4 Set sliding window sizeW
5 Set neuron repository of size NR_size
6 Set current neuron repository size CNR_size = 0
7 for every sample s belonging to the class c do
8 Update sliding window with sample s
9 Calculate Imax, Imin for theW samples in the sliding

window
10 Calculate Cj and Wj over the sliding window for encoding

s into firing time of multiple pre-synaptic neurons j
11 Create a new output neuron i and the connection weights

as wji = modorder(j)

12 Calculate PSPmax(i) = Σjwji ·modorder(j)

13 Get PSP threshold value γi = PSPmax(i) · C
14 if min distance(Newly output neuron weight vector,Neurons

repository weight vectors in in NR)) ≤ SIM then
15 Update the weight vector and threshold of the most

similar neuron wj,i =
wnew+(wj,i ·M)

M+1 and γi =
γnew+(γi ·M)

M+1
16 Set M = M + 1
17 else
18 if CNR_size < NR_size then
19 Add the weight vector and threshold of the new

output neuron to NR
20 CNR_size = CNR_size + 1
21 else
22 Remove the oldest weight vector and its threshold,

and put the new ones into NR
23 end
24 end
25 end
26 Repeat above for all target classes

but without imposing its stringent storage requirements.
CNN picks out points near the boundary between the
classes, achieving an important reduction of the sample
size while maintaining the underlying distribution. It uses
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a 1-NN rule to iteratively decide if a sample should be re-
moved or not. It is important to note that it is sensitive to
noise and will add noisy samples.

– AllKNN [162] differs from RENN in the fact that the num-
ber of neighbors of the kNN algorithm is increased at
each iteration so as to yield a smoother decision region.

– Tomek Condensed Nearest Neighbor (TCNN) [163] re-
moves every pair of samples x and x′ of different class
that form a Tomek link, i.e. whenever there is no other
sample z such that d(x, z) < d(x, x′) or d(x′, z) < d(x, x′),
where d(·, ·) is the distance measure of the problem at
hand.

– Steady-State Memetic Algorithm (SSMA) [164], which is
an evolutionary prototype selection algorithm that uses a
memetic algorithm in order to perform a local search. In
this case, an additional parameter max_it sets the maxi-
mum number of iterations performed by the search algo-
rithm.

• OeSNN-PG, all controlled by parameters min_size_cluster and
error_tol, which determine the minimum size of the cluster
and the error tolerance before splitting a group, respectively:

– Self-Generating Prototypes (SGP) [165], [166], which is a
centroid-based prototype generation algorithm that uses
a space splitting mechanism to generate prototypes in the
center of every cluster in which data can be grouped;

– Self-Generating Prototypes 2 (SGP2) [165], [166] is the sec-
ond version of the SGP algorithm. It has a higher general-
ization power, including merge and pruning procedures;
and

– Adaptive Self-Generating Prototypes (ASGP) [165], [166],
which has been specially designed to cope with imbal-
anced data sets.

We propose two different strategies for the resulting hybrid ap-
proaches, hereafter labeled as OeSNN-DRT, where

DRT ∈ {ENN, RENN, CNN, AllKNN, SSMA, SGP, SGP2, ASGP}.

In the first strategy data reduction is carried out every time the neu-
rons repository is full (Algorithm 7), whereas in the second approach
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a drift detector notifies when the data reduction process needs to be
triggered (Algorithm 8). As it will be further explained, the first one
(passive strategy) will be used for those experiments with synthetic
data where the drift moment is known beforehand, whereas the sec-
ond one (active strategy) will be adopted for the experiments with
real data, where the drift moment is unknown.

One of the differences between the proposed OeSNN approach
(Algorithm 6) and the approaches hybridized with DRTs schemes
(Algorithms 7 and 8) is that the neurons repository size is limited
and the merging process is hence unnecessary. The main goal of
the DRTs is to summarize the underlying characteristics of the neu-
rons repository over long periods of time, such that every newly
included neuron has relevant information from two perspectives: 1)
timeliness, as it replaces old neurons when the knowledge base in
the neuron repository has no free space; and 2) predictive represen-
tativeness, because the new neuron will be fused with other neu-
rons in the repository if it provides no further information on the
prevailing concepts along the stream. This process can be regarded
as a merging strategy of the whole neurons repository rather than a
fusion between any two output neurons. Furthermore, the knowl-
edge stored in the repository becomes more optimally assigned and
hence, leads to a more suitable model design for online learning en-
vironments.

Algorithms 7 (passive strategy) and 8 (active strategy) evince
that the operation of the OeSNN-PS and OeSNN-PG variants is sim-
ilar to that of the OeSNN baseline in Algorithm 6. In essence, when
the neurons repository is full DRTs are used to summarize the con-
tent of the neurons repository (line 18 in Algorithms 7 and 8). In the
case of an active strategy, a drift detector is used (lines 16 and 17) to
infer the moment at which DRTs should be applied: while no drift
is detected and the neurons repository is not full, produced output
neurons are always stored in the repository. When the repository
saturates, the oldest output neuron is removed and the new one is
stored instead. When a drift is detected, a DRT is applied to the
neurons repository so as to make more room to store samples of the
newly arriving concept.

The proposed OeSNN approach and those hybridized with DRTs
schemes (OeSNN-PS and OeSNN-PG in both passive and active op-
eration modes schematically depicted in Figure 4.6) have been spe-
cially devised for online learning purposes: on the one hand, win-
dowing strategies are usually preferred for sudden drifts, while on
the other hand, samples selection strategies are instead adopted to
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handle gradual drifts and reoccurring contexts [11]. Both charac-
teristics have been included in the proposed approaches by using a
sliding window and neurons repository composed of prototypes.

START

Encode s
into time pulses

Create output neuron
i and weights wj,i

Active? Drift?

Repository
full?

DRT

No Yes

Yes

Yes

Repository
full?

No

END

Add new neuron
i to repository

No

Yes

Compute
threshold γi

Remove oldest
neuron from
repository

No

FIGURE 4.6: Scheme of the proposed OeSNN-DRT
schemes with passive and active strategies.
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Algorithm 7: OeSNN algorithm with DRTs: passive approach

1 Initialize neuron repository, NR = {}
2 Set eSNN parameter mod = [0, 1], C = [0, 1], SIM = [0, 1]
3 Set eSNN encoding parameters β, T, N
4 Set sliding window sizeW
5 Set Neuron repository of size NR_size
6 Set current neuron repository size CNR_size = 0
7 for every sample s belonging to the class c do
8 Update sliding window with sample s
9 Calculate Imax, Imin for theW samples in the sliding

window
10 Calculate Cj and Wj over the sliding window for their

encoding into firing time of multiple pre-synaptic
neurons j

11 Create a new output neuron i and the connection weights
as wji = modorder(j)

12 Calculate PSPmax(i) = Σjwji ·modorder(j)

13 Get PSP threshold value γi = PSPmax(i) · C
14 if CNR_size < NR_size then
15 Add the weight vector and threshold of the new

output neuron to NR
16 CNR_size = CNR_size + 1
17 else
18 Apply a DRT over the neurons repository (PS or PG)
19 Add the weight vector and threshold of the new

output neuron to NR
20 Update CNR_size
21 end
22 end
23 Repeat above for all target classes
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Algorithm 8: OeSNN algorithm with DRTs: active approach

1 Initialize DriftDetector()
2 Initialize neuron repository, NR = {}
3 Set eSNN parameter mod = [0, 1], C = [0, 1], SIM = [0, 1]
4 Set eSNN encoding parameters β, T, N
5 Set sliding window sizeW
6 Set Neuron repository of size NR_size
7 Set current neuron repository size CNR_size = 0
8 Set drift_detection = False
9 for every sample s belonging to the class c do

10 Update sliding window with sample s
11 Calculate Imax, Imin for theW samples in the sliding

window
12 Calculate Cj and Wj over the sliding window for their

encoding into firing time of multiple pre-synaptic
neurons j

13 Create a new output neuron i and the connection weights
as wji = modorder(j)

14 Calculate PSPmax(i) = Σjwji ·modorder(j)

15 Get PSP threshold value γi = PSPmax(i) · C
16 drift_detection = DriftDetector()
17 if drift_detection = True then
18 Apply a DRT over the neurons repository (PS or PG)
19 Add the weight vector and threshold of the new

output neuron to NR
20 Update CNR_size
21 Set drift_detection = False
22 else
23 if CNR_size < NR_size then
24 Add the weight vector and threshold of the new

output neuron to NR
25 CNR_size = CNR_size + 1
26 else
27 Remove the oldest weight vector and its threshold,

and insert the new one into NR
28 end
29 end
30 end
31 Repeat above for all target classes
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4.5 Computer Experiments

An extensive experimental benchmark has been designed to shed
light on the performance of the proposed schemes over synthetic
and real streaming data sets. Such experiments are divided into two
main blocks:

• In the first set of experiments, the naive OeSNN approach (Al-
gorithm 6) will be compared to passive OeSNN-PS and OeSNN-
PG techniques (Algorithm 7) when they are applied over syn-
thetic data sets, assuming that the drift moment is known be-
forehand.

• In the second set of experiments, the naive OeSNN will be
compared to active OeSNN-PS and OeSNN-PG approaches o-
ver real data streams, where drifts are unknown and therefore
motivates the use of a drift detector.

As a result of this experimental design, we will first analyze the
performance of OeSNN-PS and OeSNN-PG approaches with syn-
thetic data sets, and assess their benefits during the plasticity period
(i.e. shortly after the drift). The main advantage of OeSNN-PS and
OeSNN-PG is that while the neurons repository is not full, it can ac-
cept more neurons (the latest ones) inside. But when it is full, all the
information is condensed in a reduced number of neurons (proto-
types), letting more free space to accept more neurons inside until
the neurons repository is full again. Therefore, we should expect
OeSNN-PS and OeSNN-PG to react better (faster) to sudden drifts.
Next, a set of experiments with real data sets and a drift detector are
planned to confirm this benefit in a realistic setting. To numerically
quantify the predictive performance of the proposed schemes dur-
ing the stability and plasticity periods, the prequential accuracy will
be measured at three different points in time: right before the drift
occurs (BD), during the drifting period (D), and after the drift occurs
(AD). The exact time ticks at which this score is computed will be set
explicitly for every data set in the benchmark, which are described
in the following section.

4.5.1 Data sets

As was argued in Section 3.5, working with real data sets, it is not
possible to know exactly when a drift occurs, which type of drift
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arises when a drift is detected, or even if there is any drift. Conse-
quently, it is not possible to perform a detailed analysis of the behav-
ior of different algorithms in the presence of concept drift by using
only real-world data sets. In order to analyze the effect of DRTs for
facing concept drift and to complement the analysis of our proposed
approaches, we first use the renowned set of synthetic data sets de-
scribed in [3].

Results for 4 different problems (see Section 3.4.1) will be con-
sidered as synthetic data. As for real drifting scenarios we resort to
three different data sets. The first two data sets are well-known in
the online learning community, since they have been used in several
relevant studies of online approaches [8], [27], [167]. The third one
was published in Kaggle1, a platform for predictive modeling and
analytics competitions and challenges. It is a brand new data set,
recently used for the first time in a work on evolving data stream
classification [168]. More details on these three data sets are next
provided:

• The Australian New South Wales Electricity Market, already
used in Section 3.5.

• The National Oceanic and Atmospheric Administration of the
United States Department of Commerce2 (USDC) has built a
database (labeled as NOAA) with 18, 154 daily weather measure-
ments (50 years) from over 7, 000 weather stations all around
the world. Data samples include 8 features, such as temper-
ature, dew point, sea level pressure, visibility, average wind
speed, and other weather related predictors alike. These vari-
ables are used to infer whether each day was rainy or not.

• The Give Me Some Credit3 data set (labeled as GMSC) is a credit
scoring data set aimed at deciding whether a loan should be
granted. This is a core decision for banks due to the risk of un-
expected expenses and future lawsuits. The data set comprises
supervised historical data of 150, 000 borrowers described by
10 features.

1https://www.kaggle.com
2Available at: ftp.ncdc.noaa.gov/pub/data/gsod. Last access in March 20th,

2018.
3 Available at: https://www.kaggle.com/c/GiveMeSomeCredit. Last access in

March 20th, 2018.
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4.5.2 Drift Detection

When dealing with real-world streaming data sets, drifts moments
are unknown. As a consequence, a drift detector is required for those
active approaches that need to know this information as soon as pos-
sible in order to trigger their adaptation mechanisms. This is the
case of our proposed approaches: to this aim, they have been hy-
bridized with the so-called Early Drift Detection Method (EDDM)
[50]. Its simplicity and capacity to detect repeatedly occurring con-
cept drifts even with very noisy data [50] has motivated the selec-
tion of EDDM for the experimental benchmark discussed in what
follows. But there is the possibility of hybridizing with other drift
detection methods in the literature.

4.5.3 Parameters Configuration

Parameters configuration for synthetic data sets CIRCLE, LINE, SINEH
and SINEV data sets are presented in Table 4.1. Empirical experi-
ments have been carried out to find the values.

W T β N MOD C SIM k max_loop min_size_cluster error_tol
OeSNN 100 20 1.5 10 0.85 0.75 0.15 - - - -

OeSNN-TCNN 100 20 1.5 10 0.85 0.75 - 3 - - -
OeSNN-SSMA 100 20 1.5 10 0.85 0.75 - 3 50 - -
OeSNN-ENN 100 20 1.5 10 0.85 0.75 - 3 - - -

OeSNN-RENN 100 20 1.5 10 0.85 0.75 - 3 - - -
OeSNN-AllKNN 100 20 1.5 10 0.85 0.75 - 5 - - -

OeSNN-CNN 100 20 1.5 10 0.85 0.75 - 1 - - -
OeSNN-SGP 100 20 1.5 10 0.85 0.75 - - - 0.2 0.3
OeSNN-SGP2 100 20 1.5 10 0.85 0.75 - - - 0.2 0.3
OeSNN-ASGP 100 20 1.5 10 0.85 0.75 - - - 0.2 0.3

TABLE 4.1: Parameter values set for OeSNN when
applied over CIRCLE, LINE, SINEH and SINEV.

In a real scenario, there is no a priori knowledge about the stream-
ing data that the algorithm will predict, thus we cannot assume any
configuration of parameters. Given this issue, an effective yet unre-
alistic workaround is to isolate a representative portion of the data
set to make offline assumptions about the distribution of the data
and to assign a suitable parametric configuration through a heuristic
wrapper. We embrace this strategy to initialize the algorithm with a
realistic configuration. Remarkably, the recent literature has widely
acknowledged that the parametric optimization of predictive mod-
els for data streams while in operation still remains an open research
problem [18], a paradigm that has been also noted in the research
trends exposed in this thesis (see Section 2.7.1).
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Regarding the ELEC2 data set, we have used the first 12 months
(38%) of the data set to tune the parameters of the algorithms, where-
as the remaining months have been used for prediction and perfor-
mance assessment. A period of 48 time steps that corresponds to
one day was assumed to study the behavior of our approaches dur-
ing the drift (D). The sliding window sizeW was set to 96 samples.
As for the NOAA data set we proceed similarly: the first 5 years (10%)
of data were used for parameter tuning, whereas the following years
were used for testing purposes. A period of 2 time steps that corre-
sponds to two days was assumed to study the behavior of our ap-
proaches during the drift (D). The value ofW was set to 25 samples.
Finally, in the GMSC data set the first 20000 samples (16%) of the data
set were used for model configuration, and the rest for performance
assessment. The behavior of our approaches during the drift (D)
was studied over 50 time steps. In this case, W was established to
25 samples.

T β N MOD C SIM k max_loop min_size_cluster error_tol
OeSNN 20 1.5 10 0.85 0.75 0.15 - - - -

OeSNN-TCNN 20 1.5 10 0.85 0.75 - 3 - - -
OeSNN-SSMA 20 1.5 10 0.85 0.75 - 1 50 - -
OeSNN-ENN 20 1.5 10 0.85 0.75 - 3 - - -

OeSNN-RENN 20 1.5 10 0.85 0.75 - 3 - - -
OeSNN-AllKNN 20 1.5 10 0.85 0.75 - 3 - - -

OeSNN-CNN 20 1.5 10 0.85 0.75 - 2 - - -
OeSNN-SGP 20 1.5 10 0.85 0.75 - - - 0.2 0.3

OeSNN-SGP2 20 1.5 10 0.85 0.75 - - - 0.2 0.3
OeSNN-ASGP 20 1.5 10 0.85 0.75 - - - 0.2 0.3

TABLE 4.2: Parameter values utilized for the real
data sets ELEC2, NOAA and GMSC.

Table 4.2 summarizes the parameter values for experiments with
the real data sets. The warning level α and the drift level threshold β
of the EDDM detector were set to 0.95 and 0.90, respectively. In order
to inspect the impact of the DRTs on the neurons repository, three
storage capacities NR_size ∈ {50, 100, 150} have been simulated for
all data sets (either synthetic or real).

4.6 Results and Discussion

This section analyzes the behavior of the proposed OeSNN when
hybridized with OeSNN-PS and OeSNN-PG schemes, in which PS
and PG data reduction techniques are applied respectively to the
neurons repository. The analysis focuses not only on the accuracy
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of the approaches during the stability (BD and AD) and plasticity
periods (D), but also on the data reduction percentage they achieve.

4.6.1 Impact of the Neurons Repository with Synthetic Data

To begin with, Table 4.3 shows the prequential accuracies of the
naive OeSNN (i.e. the OeSNN without DRTs that has been detailed
in Algorithm 6) when the neurons repository has a storage capac-
ity of 50, 100, and 150, measured at points BD, D, and AD for all
synthetic data sets. The table is complemented by Figure 4.7, which
exemplifies the occupancy level of the neurons repository along the
stream. Little variations of the occupancy correspond to those time
instants at which the incoming sample is found to be similar to an-
other one in the neurons repository, thus triggering the merging pro-
cess. As evinced in this plot, this procedure occurs frequently de-
pending on the SIM parameter. However, the main drawback is that
this process only involves two neurons at every time, so there is no
real contribution of this merging process to the optimized manage-
ment of the neurons repository that stream processing clearly de-
mands.

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.884/0.889/0.888 0.790/0.750/0.760 0.851/0.880/0.873 0.884/0.889/0.888 0.940/0.960/0.950 0.876/0.909/0.904
LINE 0.926/0.935/0.948 0.900/0.910/0.880 0.932/0.950/0.948 0.926/0.935/0.948 0.890/0.940/0.960 0.912/0.922/0.930
SINE 0.907/0.928/0.942 0.880/0.900/0.880 0.921/0.950/0.944 0.907/0.928/0.942 0.940/0.990/0.970 0.929/0.937/0.936
SINEH 0.792/0.811/0.827 0.760/0.770/0.670 0.753/0.795/0.794 0.792/0.811/0.827 0.840/0.840/0.830 0.736/0.781/0.797

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.884/0.889/0.888 0.810/0.730/0.740 0.831/0.845/0.834 0.884/0.889/0.888 0.880/0.890/0.910 0.791/0.834/0.823
LINE 0.930/0.940/0.949 0.850/0.690/0.650 0.912/0.901/0.893 0.930/0.940/0.949 0.890/0.940/0.950 0.879/0.882/0.866
SINE 0.927/0.947/0.956 0.820/0.680/0.610 0.917/0.918/0.880 0.927/0.947/0.956 0.890/0.910/0.920 0.878/0.884/0.865
SINEH 0.792/0.811/0.827 0.670/0.460/0.460 0.773/0.766/0.744 0.792/0.811/0.827 0.830/0.840/0.840 0.699/0.738/0.757

TABLE 4.3: Prequential accuracies of the proposed
naive OeSNN model with neurons repository sizes
50, 100, and 150 for CIRCLE, LINE, SINEH and SINEV

data sets.

We now turn the focus on the OeSNN incorporating DTRs in a
passive strategy. Tables 4.4 and 4.5 summarize the results obtained
for the proposed model hybridized with selective DRTs (OeSNN-
PS): OeSNN-TCNN, OeSNN-SSMA and OeSNN-ENN (Table 4.4),
and OeSNN-RENN, OeSNN-AllKNN and OeSNN-CNN (Table 4.5)
when the neurons repository has a storage capacity of 50, 100, and
150 neurons, measured in the points BD, D, and AD over synthetic
data sets. Figures 4.8 and 4.9 depict the evolution of the reposi-
tory occupancy over the stream for all the aforementioned OeSNN
schemes. Finally, the same set of results are shown in Table 4.6 and
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FIGURE 4.7: Evolution of the occupancy of the
neurons repository for the proposed OeSNN in the
CIRCLE data set under low severity and high speed
conditions. The averaged occupancy is 98.08% (50
neurons), 96.56% (100 neurons), and 94.57% (150

neurons).

Figure 4.10 for OeSNNs based on generative data reduction tech-
niques (OeSNN-PG).

4.6.2 Impact of the Neurons Repository with Real Data

Once OeSNN-PS and OeSNN-PG approaches have been simulated
with synthetic data sets, a second set of experiments has been per-
formed with real data sets. The OeSNN-DRT hybridized with a drift
detector (Algorithm 8) has been used in these simulations to be com-
pared with the naive version of the proposed OeSNN because no a
priori information about the drift moments is known. The drift de-
tector serves as an active strategy to notify when it is necessary to
trigger the DRT at hand. In this second experimental benchmark,
averaged prequential accuracy scores for all cases (OeSNN, active
OeSNN-PS and active OeSNN-PG) are jointly summarized in Table
4.7 for all real data sets, repository sizes (50, 100, and 150 neurons),
and measured at points BD, D, and AD. Statistics during the same
periods for the drift detector are also provided. The averaged pre-
quential accuracies have been calculated over all BD, D, and AD pe-
riods that occur in all drift detections.
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(a) OeSNN-AllKNN: 98.47%, 97.19%, 95.96%

(b) OeSNN-CNN: 69.93%, 67.60%, 64.71%

(c) OeSNN-ENN: 98.60%, 97.32%, 96.08%

FIGURE 4.8: Occupancy of the neurons repository
for the OeSNN-PS approaches (OeSNN-AllKNN,
OeSNN-CNN, OeSNN-ENN) in the CIRCLE data set
under high severity and speed conditions. Occu-
pancy (in %) for repository sizes equal to 50, 100 and

150 neurons is displayed.
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(a) OeSNN-RENN: 98.57%, 97.26%, 95.99%

(b) OeSNN-SSMA: 55.83%, 54.97%, 53.40%

(c) OeSNN-TCNN: 98.64%, 97.39%, 96.16%

FIGURE 4.9: Occupancy of the neurons reposi-
tory for the OeSNN-PS approaches (OeSNN-RENN,
OeSNN-SSMA, OeSNN-TCNN) in the CIRCLE data
set under high severity and speed conditions. Oc-
cupancy (in %) for repository sizes equal to 50, 100

and 150 neurons is displayed.
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Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.848/0.882/0.895 0.780/0.770/0.894 0.857/0.885/0.915 0.848/0.882/0.895 0.870/0.940/0.940 0.845/0.916/0.922
LINE 0.911/0.932/0.946 0.920/0.930/0.900 0.910/0.927/0.925 0.911/0.932/0.946 0.920/0.910/0.960 0.888/0.910/0.913
SINE 0.892/0.933/0.938 0.900/0.900/0.870 0.888/0.915/0.901 0.892/0.933/0.938 0.940/0.940/0.960 0.893/0.910/0.921
SINEH 0.764/0.802/0.836 0.720/0.740/0.710 0.751/0.801/0.797 0.764/0.802/0.836 0.780/0.850/0.850 0.746/0.811/0.810

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.848/0.882/0.895 0.840/0.750/0.730 0.777/0.780/0.769 0.848/0.882/0.895 0.890/0.920/0.900 0.764/0.772/0.752
LINE 0.932/0.937/0.951 0.650/0.620/0.610 0.755/0.709/0.697 0.932/0.937/0.951 0.910/0.910/0.950 0.780/0.759/0.748
SINE 0.922/0.943/0.942 0.680/0.630/0.630 0.710/0.707/0.701 0.922/0.943/0.942 0.910/0.920/0.920 0.779/0.763/0.748
SINEH 0.764/0.802/0.836 0.560/0.460/0.440 0.664/0.658/0.656 0.764/0.802/0.836 0.760/0.840/0.840 0.661/0.653/0.617

(a) OeSNN-TCNN

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.832/0.861/0.888 0.770/0.780/0.850 0.803/0.836/0.888 0.812/0.864/0.882 0.890/0.890/0.960 0.824/0.879/0.895
LINE 0.902/0.922/0.944 0.890/0.900/0.890 0.889/0.932/0.932 0.898/0.918/0.932 0.860/0.870/0.910 0.866/0.900/0.912
SINE 0.886/0.904/0.917 0.840/0.860/0.870 0.892/0.922/0.924 0.870/0.904/0.916 0.880/0.950/0.940 0.871/0.909/0.928
SINEH 0.768/0.778/0.795 0.770/0.800/0.710 0.727/0.785/0.785 0.753/0.770/0.789 0.760/0.810/0.840 0.727/0.747/0.759

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.817/0.870/0.898 0.750/0.770/0.740 0.785/0.819/0.833 0.828/0.866/0.872 0.870/0.880/0.890 0.740/0.772/0.813
LINE 0.890/0.919/0.927 0.840/0.800/0.870 0.874/0.915/0.916 0.886/0.912/0.929 0.840/0.880/0.910 0.828/0.876/0.880
SINE 0.875/0.914/0.930 0.830/0.780/0.810 0.872/0.910/0.912 0.873/0.918/0.931 0.870/0.890/0.900 0.858/0.861/0.891
SINEH 0.731/0.766/0.784 0.750/0.710/0.660 0.724/0.776/0.773 0.743/0.766/0.784 0.700/0.840/0.830 0.670/0.709/0.716

(b) OeSNN-SSMA

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.727/0.839/0.848 0.700/0.780/0.780 0.710/0.850/0.871 0.727/0.839/0.848 0.700/0.850/0.910 0.716/0.870/0.889
LINE 0.890/0.943/0.938 0.900/0.900/0.910 0.903/0.891/0.904 0.890/0.943/0.938 0.910/0.940/0.900 0.891/0.901/0.901
SINE 0.859/0.908/0.932 0.840/0.880/0.910 0.837/0.881/0.907 0.859/0.908/0.932 0.900/0.900/0.950 0.850/0.882/0.914
SINEH 0.724/0.784/0.807 0.650/0.740/0.720 0.691/0.749/0.735 0.724/0.784/0.807 0.750/0.790/0.810 0.723/0.775/0.751

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.727/0.839/0.848 0.630/0.730/0.730 0.677/0.717/0.713 0.727/0.839/0.848 0.740/0.830/0.880 0.672/0.711/0.717
LINE 0.884/0.930/0.941 0.660/0.640/0.630 0.656/0.652/0.659 0.884/0.930/0.941 0.850/0.840/0.920 0.698/0.696/0.718
SINE 0.885/0.907/0.922 0.630/0.640/0.640 0.672/0.666/0.658 0.885/0.907/0.922 0.880/0.890/0.900 0.736/0.739/0.736
SINEH 0.724/0.784/0.807 0.400/0.350/0.350 0.400/0.410/0.380 0.724/0.784/0.807 0.760/0.770/0.790 0.475/0.493/0.474

(c) OeSNN-ENN

TABLE 4.4: Prequential accuracies obtained by (a)
OeSNN-TCNN, (b) OeSNN-SSMA and (c) OeSNN-
ENN working with repository sizes of 50, 100, and
150 neurons over the CIRCLE, LINE, SINEH and SINEV
data sets. Prequential accuracies in bold denote an
improvement greater than 0.01 in comparison with
the traditional OeSNN for the same scenario setup.
On the contrary, prequential accuracies in italics are
declared to be worse than the traditional OeSNN
if they are at least 0.01 below the accuracy scored
by the latter. Prequential accuracies in regular text
stand for performance gaps less than 0.01 in abso-

lute value.
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Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.723/0.825/0.833 0.690/0.770/0.810 0.718/0.842/0.876 0.723/0.825/0.833 0.720/0.840/0.880 0.727/0.851/0.881
LINE 0.869/0.943/0.941 0.780/0.900/0.910 0.835/0.891/0.916 0.869/0.943/0.941 0.910/0.940/0.910 0.847/0.901/0.926
SINE 0.859/0.908/0.924 0.840/0.880/0.890 0.837/0.881/0.894 0.859/0.908/0.924 0.900/0.900/0.930 0.850/0.882/0.907
SINEH 0.724/0.783/0.806 0.650/0.740/0.720 0.691/0.749/0.736 0.724/0.783/0.806 0.750/0.790/0.810 0.723/0.772/0.752

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.723/0.825/0.833 0.640/0.750/0.750 0.681/0.734/0.736 0.723/0.825/0.833 0.740/0.830/0.860 0.669/0.724/0.730
LINE 0.884/0.930/0.940 0.660/0.640/0.630 0.656/0.652/0.659 0.884/0.930/0.940 0.850/0.840/0.920 0.698/0.696/0.718
SINE 0.885/0.907/0.919 0.630/0.640/0.640 0.672/0.666/0.659 0.885/0.907/0.919 0.880/0.890/0.900 0.736/0.739/0.735
SINEH 0.724/0.783/0.806 0.400/0.350/0.350 0.400/0.407/0.380 0.724/0.783/0.806 0.760/0.770/0.790 0.475/0.491/0.474

(a) OeSNN-RENN

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.794/0.828/0.852 0.770/0.800/0.820 0.747/0.856/0.876 0.794/0.828/0.852 0.770/0.830/0.880 0.803/0.850/0.886
LINE 0.870/0.894/0.929 0.880/0.860/0.860 0.882/0.891/0.911 0.870/0.894/0.929 0.880/0.890/0.900 0.855/0.874/0.892
SINE 0.879/0.906/0.918 0.780/0.840/0.880 0.839/0.873/0.904 0.879/0.906/0.918 0.930/0.900/0.950 0.847/0.890/0.915
SINEH 0.719/0.793/0.790 0.660/0.780/0.680 0.638/0.785/0.728 0.719/0.793/0.790 0.730/0.800/0.810 0.657/0.801/0.757

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.794/0.828/0.852 0.730/0.800/0.780 0.649/0.781/0.787 0.794/0.828/0.852 0.800/0.820/0.860 0.655/0.743/0.763
LINE 0.922/0.930/0.940 0.700/0.640/0.650 0.809/0.782/0.779 0.922/0.930/0.940 0.870/0.900/0.910 0.845/0.811/0.805
SINE 0.849/0.906/0.918 0.710/0.660/0.660 0.783/0.800/0.782 0.849/0.906/0.918 0.810/0.880/0.890 0.825/0.808/0.816
SINEH 0.719/0.793/0.790 0.460/0.440/0.500 0.488/0.600/0.613 0.719/0.793/0.790 0.720/0.820/0.810 0.565/0.617/0.615

(b) OeSNN-AllKNN

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.795/0.841/0.840 0.740/0.770/0.750 0.807/0.823/0.810 0.837/0.846/0.862 0.930/0.890/0.870 0.825/0.840/0.826
LINE 0.903/0.924/0.938 0.860/0.860/0.910 0.913/0.909/0.937 0.916/0.929/0.945 0.860/0.880/0.910 0.851/0.871/0.879
SINE 0.889/0.916/0.928 0.840/0.860/0.860 0.902/0.918/0.908 0.870/0.902/0.927 0.900/0.960/0.960 0.887/0.916/0.907
SINEH 0.734/0.772/0.804 0.770/0.680/0.720 0.744/0.750/0.762 0.709/0.756/0.782 0.780/0.730/0.830 0.712/0.727/0.740

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.847/0.841/0.848 0.730/0.670/0.680 0.776/0.758/0.760 0.861/0.846/0.849 0.850/0.790/0.780 0.759/0.745/0.731
LINE 0.891/0.911/0.927 0.750/0.730/0.700 0.863/0.829/0.818 0.899/0.922/0.925 0.910/0.920/0.850 0.795/0.801/0.804
SINE 0.856/0.913/0.931 0.750/0.740/0.700 0.841/0.853/0.852 0.884/0.908/0.923 0.840/0.900/0.920 0.799/0.762/0.793
SINEH 0.726/0.773/0.809 0.550/0.540/0.560 0.676/0.693/0.688 0.733/0.787/0.793 0.690/0.780/0.820 0.651/0.662/0.631

(c) OeSNN-CNN

TABLE 4.5: Prequential accuracies obtained by
(a) OeSNN-RENN, (b) OeSNN-AllKNN and (c)
OeSNN-CNN working with repository sizes of 50,
100, and 150 neurons over the CIRCLE, LINE, SINEH
and SINEV data sets. The same notational crite-
ria hold in terms of statistical significance between

these schemes and the naive OeSNN scheme.

4.6.3 Comparison to Other Methods

In Table 4.8 a comparison with some of the most recent and well-
known online learning methods in the presence of concept drift is
presented, namely, Hoeffding Trees or also known as Very Fast De-
cision Trees (HTs, [58]), Random Forests (RFs, [169]), and Hoeffding
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Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.860/0.876/0.859 0.750/0.810/0.760 0.823/0.855/0.859 0.860/0.876/0.882 0.860/0.920/0.950 0.843/0.878/0.888
LINE 0.918/0.928/0.932 0.910/0.940/0.920 0.927/0.943/0.951 0.918/0.928/0.932 0.880/0.900/0.910 0.899/0.916/0.923
SINE 0.911/0.922/0.918 0.910/0.890/0.850 0.923/0.930/0.934 0.911/0.922/0.918 0.950/0.960/0.950 0.917/0.923/0.933
SINEH 0.766/0.780/0.785 0.760/0.770/0.760 0.754/0.766/0.787 0.766/0.780/0.785 0.830/0.800/0.830 0.742/0.757/0.762

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.860/0.876/0.882 0.770/0.750/0.740 0.800/0.812/0.820 0.860/0.876/0.882 0.850/0.870/0.860 0.754/0.797/0.799
LINE 0.925/0.924/0.929 0.820/0.850/0.770 0.897/0.912/0.904 0.925/0.924/0.929 0.870/0.880/0.870 0.858/0.859/0.870
SINE 0.900/0.916/0.928 0.880/0.810/0.760 0.912/0.911/0.912 0.900/0.916/0.928 0.890/0.900/0.890 0.873/0.878/0.883
SINEH 0.766/0.780/0.785 0.690/0.710/0.690 0.741/0.960/0.767 0.766/0.780/0.785 0.850/0.770/0.830 0.707/0.712/0.734

(a) OeSNN-SGP, OeSNN-SGP2

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.860/0.876/0.882 0.750/0.810/0.760 0.822/0.855/0.859 0.860/0.876/0.882 0.870/0.920/0.950 0.834/0.878/0.888
LINE 0.918/0.928/0.932 0.910/0.940/0.920 0.927/0.943/0.951 0.918/0.928/0.932 0.880/0.900/0.910 0.889/0.916/0.923
SINE 0.911/0.922/0.918 0.910/0.890/0.850 0.923/0.930/0.934 0.911/0.922/0.918 0.950/0.960/0.950 0.917/0.923/0.933
SINEH 0.766/0.780/0.785 0.760/0.770/0.760 0.754/0.766/0.787 0.766/0.780/0.785 0.830/0.800/0.830 0.742/0.757/0.762

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.860/0.876/0.882 0.770/0.750/0.740 0.807/0.821/0.823 0.860/0.876/0.882 0.860/0.870/0.860 0.752/0.780/0.798
LINE 0.925/0.924/0.929 0.820/0.850/0.770 0.897/0.912/0.904 0.925/0.924/0.929 0.870/0.880/0.870 0.858/0.859/0.870
SINE 0.900/0.916/0.928 0.880/0.810/0.760 0.912/0.911/0.912 0.900/0.916/0.928 0.890/0.900/0.890 0.873/0.878/0.883
SINEH 0.766/0.780/0.785 0.690/0.710/0.690 0.741/0.760/0.767 0.766/0.780/0.785 0.850/0.770/0.830 0.707/0.712/0.734

(b) OeSNN-ASGP

TABLE 4.6: Prequential accuracies of the (a)
OeSNN-SGP/OeSNN-SGP2 and (b) OeSNN-ASGP
approach working with the neurons repository
sizes of 50, 100, and 150 respectively for CIRCLE,
LINE, SINEH and SINEV data sets. Where prequential
accuracies are in bold, there is a notable improve-
ment in comparison with the traditional OeSNN,
whereas prequential accuracies in italics are worse
than the traditional OeSNN. When prequential ac-
curacies are in regular text means that there is no

significant difference.

Naive Bayes Tree ensembles (HNBTs, [168]). Active implementa-
tions of some of the above detectors are also included in this chapter,
encompassing drift detectors such as DDM [29], EDDM [50], AD-
WIN [27] or EDIST2 [113]. For the sake of fairness and comparabil-
ity the table only reports experimental results of schemes published
in the literature by other authors. Unfortunately, to the best of our
knowledge no prior work for NOAA data set has been carried out un-
der similar conditions and evaluation criteria, hence this data set has
not been considered in this last experimental phase.
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FIGURE 4.10: Averaged neurons repository occu-
pancies (52.64%, 50.85%, 50.01%) of the all OeSNN-
PG approaches for the sizes 50, 100, and 150 respec-
tively with the CircleG data set under high severity

and high speed conditions.

A first look at the results in this table reveals that the perfor-
mance of several OeSNN-DRT approaches occurs to be very com-
petitive with respect to the state of the art, above all after consider-
ing that our OeSNN-DRT approaches are based on a single model
and the rest are based on ensemble models composed of 10 [170] or
100 [168] base learners. Nevertheless, the next section will elaborate
on this comparison in depth.

4.6.4 Discussion

A first look in Figures 4.8, 4.8, and 4.10 reveals that DRTs are able
to retain the knowledge with a reduced number of output neurons,
but not all DRTs achieve a good classification performance and a rel-
evant data reduction percentage at the same time. This is a key point
in online learning scenarios where the storage capacity is limited.

We start the discussion by analyzing the results of the synthetic
data, which are presented in Tables 4.3 to 4.6. The obtained scores
for OeSNN-PS show that in general, OeSNN-TCNN, OeSNN-ENN,
OeSNN-RENN and OeSNN-AllKNN render a degraded performan-
ce when compared to the naive OeSNN approach. Some exceptions
deserve further attention at this point: the OeSNN-TCNN approach
has a general better classification performance in the plasticity pe-
riod D, mostly in those data sets with low severity and high speed.
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BD D AD # drifts
OeSNN approach

OeSNN
ELEC2 0.817/0.808/0.806 0.802/0.793/0.784 0.810/0.802/0.796 n.a.
NOAA 0.700/0.675/0.685 0.692/0.640/0.674 0.702/0.630/0.673 n.a.
GMSC 0.907/0.919/0.908 0.901/0.916/0.898 0.912/0.923/0.905 n.a.

Active OeSNN-PS approaches

OeSNN-TCNN
ELEC2 0.827/0.806/0.801 0.822/0.792/0.763 0.834/0.802/0.776 13/117/23
NOAA 0.697/0.689/0.692 0.604/0.689/0.623 0.669/0.686/0.646 50/61/12
GMSC 0.907/0.911/0.907 0.888/0.908/0.906 0.896/0.912/0.906 44/33/50

OeSNN-SSMA
ELEC2 0.819/0.807/0.807 0.792/0.804/0.800 0.802/0.810/0.805 5/106/66
NOAA 0.684/0.706/0.675 0.647/0.567/0.715 0.652/0.540/0.705 85/4/22
GMSC 0.902/0.917/0.908 0.891/0.932/0.896 0.889/0.921/0.907 45/7/19

OeSNN-ENN
ELEC2 0.817/0.804/0.800 0.800/0.784/0.774 0.805/0.801/0.792 106/111/99
NOAA 0.697/0.699/0.695 0.679/0.710/0.646 0.705/0.726/0.687 56/17/57
GMSC 0.908/0.913/0.915 0.907/0.919/0.918 0.913/0.923/0.923 51/49/47

OeSNN-RENN
ELEC2 0.811/0.804/0.804 0.740/0.784/0.788 0.768/0.801/0.800 5/111/100
NOAA 0.693/0.684/0.681 0.659/0.664/0.583 0.639/0.675/0.621 56/71/15
GMSC 0.908/0.913/0.915 0.907/0.923/0.912 0.913/0.924/0.921 51/49/46

OeSNN-AllKNN
ELEC2 0.815/0.811/0.802 0.792/0.784/0.785 0.808/0.801/0.803 106/100/126
NOAA 0.719/0.696/0.728 0.783/0.674/0.669 0.742/0.704/0.716 12/19/8
GMSC 0.908/0.912/0.914 0.911/0.921/0.925 0.912/0.919/0.925 51/46/45

OeSNN-CNN
ELEC2 0.816/0.806/0.800 0.798/0.791/0.787 0.806/0.814/0.802 60/26/114
NOAA 0.684/0.763/0.716 0.702/0.919/0.571 0.650/0.951/0.642 55/1/3
GMSC 0.915/0.911/0.865 0.846/0.915/0.841 0.845/0.886/0.820 5/6/21

Active OeSNN-PG approaches

OeSNN-SGP
ELEC2 0.817/0.813/0.813 0.815/0.807/0.809 0.814/0.810/0.811 112/113/104
NOAA 0.695/0.674/0.683 0.657/0.739/0.720 0.698/0.623/0.698 51/21/28
GMSC 0.911/0.920/0.908 0.914/0.931/0.911 0.913/0.935/0.912 45/6/30

OeSNN-SGP2
ELEC2 0.819/0.811/0.810 0.815/0.805/0.802 0.819/0.810/0.812 113/112/98
NOAA 0.695/0.682/0.688 0.657/0.662/0.754 0.698/0.680/0.741 51/59/39
GMSC 0.911/0.920/0.908 0.914/0.931/0.911 0.916/0.935/0.912 45/6/30

OeSNN-ASGP
ELEC2 0.816/0.812/0.805 0.811/0.806/0.797 0.815/0.809/0.802 117/117/52
NOAA 0.697/0.678/0.687 0.713/0.638/0.693 0.696/0.658/0.686 48/38/69
GMSC 0.912/0.904/0.896 0.875/0.893/0.873 0.882/0.880/0.880 18/13/7

TABLE 4.7: Averaged prequential accuracies and
number of detected drifts of the OeSNN-DRT ap-
proaches working with the neurons repository sizes
50, 100, and 150 for the real data sets. Where pre-
quential accuracies are in bold, there is a notable
improvement in comparison with the traditional
OeSNN, whereas prequential accuracies in italics
are worse than the traditional OeSNN. When pre-
quential accuracies are in regular text means that

there is no significant difference.

Similarly, OeSNN-ENN and OeSNN-RENN yield a better perfor-
mance in the plasticity period D in data sets with low severity and
high speed when the size of the repository is large (150 neurons).
The OeSNN-AllKNN approach performs best in the plasticity pe-
riod D over data sets with high severity and high speed, again for
large repository sizes. This interesting result advocates for one of
the postulated hypothesis: the larger the neuron repository is, the
more important an optimized management of its contents is in an
online learning setup; this fact becomes even more noticeable when
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TECHNIQUES TYPE ELEC2 GMSC
OeSNN-DRT approaches

OeSNN-TCNN Single 0.822/0.792/0.763 0.888/0.908/0.906
OeSNN-SSMA Single 0.792/0.804/0.800 0.891/0.932/0.896
OeSNN-ENN Single 0.800/0.784/0.774 0.907/0.919/0.918
OeSNN-RENN Single 0.740/0.784/0.788 0.907/0.923/0.912
OeSNN-AllKNN Single 0.792/0.784/0.785 0.911/0.921/0.925
OeSNN-CNN Single 0.798/0.791/0.787 0.846/0.915/0.841
OeSNN-SGP Single 0.815/0.807/0.809 0.914/0.931/0.911
OeSNN-SGP2 Single 0.815/0.805/0.802 0.914/0.931/0.911
OeSNN-ASGP Single 0.811/0.806/0.797 0.875/0.893/0.873

[170]
HTs ensemble + EDIST2 Ensemble (10) 0.848 -

[168]
Adaptive RFs Ensemble (100) 0.885 0.935
Online Bagging (HNBTs) Ensemble (100) 0.825 0.935
Online Accuracy Updated Ensemble (HNBTs) Ensemble (100) 0.863 0.935
Online Boosting (HNBTs) Ensemble (100) 0.901 0.926
Online Smooth-boost (HNBTs) Ensemble (100) 0.875 0.925
Leveraging Bagging (HNBTs) Ensemble (100) 0.885 0.935

TABLE 4.8: Comparison during the drifting phase
of the average prequential accuracies of OeSNN-
DRTs and some of the most relevant ensemble-
based techniques in the literature. The same evalu-
ation criteria was used in all works: a test-then-train
scheme and average of prequential accuracies dur-

ing the drifting phase as the performance metric.

the drift imprints deep changes on the stream data (high severity,
high speed drifts), as the repository needs to be refreshed quickly so
as to grasp and learn the newly evolving concept.

On the contrary, OeSNN-SSMA and OeSNN-CNN (those with
higher data reduction percentages) offer further performance im-
provements in other periods over the simulated streams. OeSNN-
SSMA has in general better classification performance in 1) the plas-
ticity period D in data sets characterized by fast drifts, and 2) in the
stable period AD for data sets with high severity and high speed.
Besides, for stable periods BD and AD in many other cases, OeSNN-
SSMA outperforms the proposed OeSNN, remarkably when the size
of the repository is the largest one (150). On the other hand, the
OeSNN-CNN approach produces in general better accuracy scores
in the plasticity period D over data sets with high speed, and occa-
sionally outperforms the naive OeSNN in other specific conditions.
But it is the OeSNN-SMMA technique which provides better pre-
quential accuracies and a more efficient use of the neurons repos-
itory capacity (more data reduction percentage) at the same time.
Unfortunately, this comes along with a computation penalty, since
the SMMA encompasses a heuristic search demanding for memory
and processing resources that could eventually clash with stringent
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computational constraints of the online problem in question.
Regarding OeSNN-PG approaches whose results are compiled in

Table 4.6, OeSNN-SGP and OeSNN-SGP2 approaches rendered the
same results and show a general better classification performance
than the OeSNN approach in the plasticity period D for high speed
data sets. They were found to be also competitive in low speed
data sets, even in stable periods. The OeSNN-ASGP approach has
similar results than OeSNN-SGP and OeSNN-SGP2, but it performs
better in the CIRCLE data set for low severity and high speed drifts
in the stable period BD when the size of the neurons repository is
150. It also shows a general better classification performance than
the OeSNN approach in the plasticity period D for high speed data
sets, and it is also a competitive technique in the low speed data sets,
even in stable periods.

Once analyzed the impact of applying DRTs to OeSNN, we pro-
ceed by analyzing the set of experiments with real data sets leverag-
ing the use of a drift detector to trigger the application of the data
reduction technique. Regarding OeSNN-PS approaches, in Table 4.7
one can observe that OeSNN-TCNN, OeSNN-ENN, and OeSNN-
RENN perform competitively in the stability and plasticity periods
for several data sets. However, OeSNN-SSMA, OeSNN-AllKNN
and OeSNN-CNN are the approaches rendering the best overall ac-
curacy scores, with OeSNN-AllKNN dominating all OeSNN-PS tech-
niques specially in the NOAA and GMSC data sets. As for OeSNN-
PG approaches, Table 4.7 elucidates that the three approaches un-
der this category perform better than the naive OeSNN in a wider
spectrum of data sets and regions than their OeSNN-PS counter-
parts. Nonetheless, OeSNN-SGP and OeSNN-SGP2 are the tech-
niques producing better results in all real data sets.

All in all, from the above experiments insightful conclusions can
be drawn: OeSNN-SMMA, OeSNN-CNN, and all OeSNN-PG ap-
proaches (OeSNN-SGP, OeSNN-SGP2, and OeSNN-ASGP) achieve
very high data reduction ratios and a competitive classification per-
formance in comparison with the naive OeSNN approach in plas-
ticity periods (D). They allow for more space for newly produced
output neurons to enter the repository, thus favoring a quicker adap-
tation to the drift. Besides, these approaches decrease the processing
time when the newly output neuron is compared to the rest of the
neurons in the repository in the training phase: the less neurons in
the repository, the less the number of pairwise comparisons will be
needed to find the most similar neuron (SIM parameter for the merg-
ing process), and ultimately the less processing time and less storing
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space will be required. Interestingly, OeSNN-PG approaches have
revealed themselves as the most suitable models to be applied right
after a drift occurs.

Finally, the results in Section 4.6.3 certify that OeSNN-DRT sche-
mes perform very competitively in comparison with other meth-
ods from the state of the art, getting comparable accuracy scores to
avant-garde schemes over the ELEC2 and GMSC data sets. At this point
the reader should not overlook the fact that most online learning
methods are based on ensemble classifiers rather than single mod-
els. Ensemble classifier models are widely acknowledged to be more
accurate due to their robustness to error variance. Furthermore, they
are more flexible to assimilate new available data into their learning
algorithm, and they provide more straightforward mechanisms to
forget irrelevant knowledge once a drift has been detected (e.g. by
simply discarding the oldest classifier from the ensemble). In con-
trast, single model approaches generally trade lower accuracy re-
sults for a reduced computational cost, reason for which they are of-
ten regarded as an attractive solution for massive data streams [15].
Bearing the previous observations and considering key performance
factors such as the size of the window or the number of base learners
utilized in the compared ensembles (10 in the case of HTs ensemble
+ EDIST2 [170] or 100 in the case of ARFs and HNBTs approaches in
[168]), we can conclude that OeSNN-DRTs are along with the state
of the art related to online learning and concept drift in terms of ac-
curacy and computational efficiency (since, as already argued in the
introduction, single classifiers are considered more suitable for on-
line scenarios with stringent timing constraints that jeopardize the
adoption of ensemble-based approaches). This statement stimulates
further research around different extensions of the proposed family
of online classifiers, as will be next outlined.

4.7 Summary

Nowadays huge volumes of data affected by non-stationary phe-
nomena are produced in the form of fast streams. The resulting lack
of stationarity in the distribution of the produced data calls for effi-
cient and scalable algorithms for online analysis capable of adapting
such changes. The online learning field has lately turned its focus
on this challenging scenario, by designing incremental learning al-
gorithms that avoid becoming obsolete after a concept drift occurs.
Despite the noted activity in the literature, a need for new efficient
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and scalable algorithms that adapt to the drift still prevails as a re-
search topic deserving further efforts. Surprisingly, eSNN, one of
the major exponents of the third generation of artificial neural net-
works, have not been thoroughly studied as an online learning ap-
proach, even though they are naturally suited to easily and quickly
adapt to changing environments. This chapter covers this research
gap by adapting eSNN to meet the processing requirements that on-
line learning scenarios impose. In particular, this chapter focuses on
limiting the size of the neuron repository and making the most of
this limited size by resorting to DRTs. Experiments with synthetic
and real data have been discussed, leading to the empirically vali-
dated assertion that, by virtue of a tailored exploitation of the neu-
ron repository, eSNNs adapt better to drifts, obtaining higher accu-
racy scores than naive versions of eSNN for online learning environ-
ments.
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Chapter 5

Challenge 3: Drift Detection
based on eSNN

5.1 Introduction

Several model approaches have been presented in the literature to
deal with concept drift [26], [36]. Some of them base their strategy
on adapting the internal structure of their classifiers [8], [37], while
others utilize an ensemble of models [38] to which techniques to in-
duce diversity are applied [39]. When focused on drift detection
approaches, they can be used as a module inside other classifiers to
adapt either the classifier’s internal structure or the number of clas-
sifiers within the ensemble. All of them usually use a specific clas-
sifier called base learner, and analyze its performance score (in gen-
eral, accuracy or error rate) to indicate whether a drift has occurred.
This base learner is trained on the current samples, an incremental
process repeated for each incoming sample from the stream.

This challenge proposes a novel drift detection method coined
as eSNN-DD (Evolving Spiking Neural Network for Drift Detection),
which hinges on the OeSNN proposed in Chapter 2. Such learn-
ing models leverage the representation of information as tempo-
ral spikes, based on which a number of spike-time association are
learned to that capture temporal associations between a large num-
ber of variables in streaming data. One of the most promising fla-
vors of SNNs is the eSNN [133], [134], where the number of spik-
ing neurons evolves incrementally over time to unveil temporal pat-
terns from data. The proposed eSNN-DD embraces eSNNs to derive a
drift detection mechanism inspired by how spiking neurons evolve
along time, which is an inner architectural part of the eSNN learn-
ing method. Indeed, as opposed to the majority of drift detection
mechanisms, eSNN-DD does not require any additional base learner
to analyze its performance metrics towards indicating when a drift



118 Chapter 5. Challenge 3: Drift Detection based on eSNN

has occurred. Similarly to other drift detection methods, eSNN-DD is
independent of the learning/adapting algorithm and can therefore
be seamlessly combined with any algorithmic choice in this regard.
We assess the performance of the proposed drift detection method
by comparing it to that of a number of consolidated methods from
the state of the art, in terms of true positives, false alarms (false pos-
itives), missed detection (false negatives) and distance to the drift
point. As will be shown by the results of experiments with synthetic
data sets, eSNN-DD performs competitively as a drift detector yet
it does not need to compare distributions or monitor performance
statistics to detect the drift, thus making it easier and computation-
ally lighter to detect drifts.

5.2 Proposed Approach

A detailed description of the eSNN has been already presented in
Section 4.2, thus we turn now to elaborate the eSNN-DD approach.
The proposed eSNN-DD method is based on the number of merges
that occur in a sliding window W with size |W| = W. While the
data distribution remains stable, it is more likely that any of the out-
put neurons in the repository is more similar to the incoming one,
and thus there will be more merging processes. In contrast, when
a drift occurs the data distribution changes and the resulting neu-
rons start to be different from those in the output neuron repository,
correspondingly decreasing the number of merging processes. With
this intuition in mind, the proposed detection mechanism considers
that a change has taken place when there has not been any merging
process W time ticks after the last fusion of neurons in repositoryR.

Figure 5.1 depicts the differences of the merging processes be-
fore and after the drift (sample 1000) for CIRCLE, one of the synthetic
data sets compounding the landmark repository contributed in [3]
for concept drift and used in previous chapters. This data set con-
tains a single drift starting at sample 1000. During the first 100 sam-
ples the input data distribution is frequently new for the eSNN and
the merging process is carried out only occasionally as a result of the
transient to the stable period. From the first 100 samples onwards,
and until drift occurs, the merging process is more usual because
the input data distribution remains stable. When the drift occurs,
the input data distribution does not resemble the previous concept
any longer, and the merging process is not triggered again until the
eSNN captures the new distribution (concept). This new knowledge
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FIGURE 5.1: Time instants at which output neurons
are merged for the CIRCLE synthetic data set with
high severity and high speed. Before drift occurs
at instant 1000, merging processes are held recur-
rently, whereas right after the drift (area shaded in
gray) merges do not occur until the new concept is

captured by the eSNN learning algorithm.

is acquired by storing output neurons that represent the new data
distribution.

It should be noted that this detection mechanism overrides any
need for further processing elements in the model pipeline, as it
exploits changes in the structural change of the eSNN in response
to newly arriving concepts. Algorithm 9 describes the drift detec-
tion mechanism along with the learning procedure of eSNNs. If at
least one neuron has been merged in the previous W time instants
or the repository size limit |R|max has not been reached, no drift is
declared. In case of a full repository and when a neuron must be
merged, the oldest output neuron is discarded yielding one free slot
for the newly produced output neuron. When no neuron has been
merged over W time instants, then a drift is declared.

Some of the eSNN parameters impact significantly on the per-
formance of eSNN-DD. The size W ofW is a key point due to the fact
that the method declares a drift when there are no merges during
W consecutive time instants. In the case of the repository size |R|,
the higher this parameter is, the more likely a similar neuron will be
found, thus the number of merges is also affected by this parame-
ter. Finally, SIM defines the threshold under which two neurons are
regarded as similar and by which the merging process is triggered,
hence it drives directly the detection behavior of eSNN-DD.
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Algorithm 9: Proposed eSNN-DD drift detection algorithm

1 Set an empty repository: R = ∅
2 Set mod ∈ R[0, 1], C ∈ R[0, 1], SIM ∈ R[0, 1]
3 Set eSNN encoding parameters β, T, N and
4 Set sliding window size W
5 Set neuron repository maximum size |R|max
6 Set number of merging operations as #merges = W
7 foreach input sample xi from the stream do
8 UpdateW with xi by discarding the oldest sample in the

window
9 Calculate Cj and wj,i with the samples inW to encode x

into firing time of multiple pre-synaptic neurons j
10 Create a new output neuron i and the connection weight

vectors
11 Calculate PSPmax,i and γi = C · PSPmax,i
12 if minr∈R EuclideanDistance(i, r) ≤ SIM then
13 Update weight vector & threshold of most similar

neuron inR
14 #merges = #merges + 1
15 else
16 if |R| < |R|max then
17 Add the new neuron to the repository: R = R∪ {i}
18 else
19 Remove the oldest neuron inR
20 Insert the new neuron: R = R∪ {i}
21 end
22 #merges = #merges + 0 (no merging performed)
23 end
24 if #merges = 0 then
25 Issue a drift alarm
26 Set #merges = W
27 end
28 end

5.3 Computer Experiments

A set of experiments has been designed to analyze the behavior of
eSNN-DD over several synthetic data sets. To this end, we will first
find suitable values for the eSNN parameters, and then we will dis-
cuss on its detection performance in comparison with drift detectors
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from the literature. Before proceeding forward, details on the con-
sidered data sets and drift detectors are next given.

When dealing with real data it is not possible to determine ex-
actly when a drift occurs, its type, or if it is actually a drift. There-
fore, it is not possible to carry out an analysis of the behavior of a
new drift detector by focusing on real-world data sets. For this ra-
tionale, 4 synthetic data sets have been chosen, already described in
Section 3.4.1.

Drift detection methods for the benchmark were selected based
on their impact on the field (e.g. high number of citations), and
their thorough description in the literature, which eased their im-
plementation and minimized misunderstanding. All of them resort
to a Naive Bayes classifier as their base learner [26], [27] due to the
efficiency and simplicity of this class of models. As such, the first
considered method is DDM [29], which departs from the intuitive fact
that, when the concept changes, the base learner will incorrectly pre-
dict the incoming samples that are shaped on a different data distri-
bution. Therefore, when the error rate increases DDM asumes that a
new concept emerges from the stream. EDDM [50] is partly based on
DDM, but differs in the monitored performance metric (i.e. instead
of error rate, DDM uses the so-called distance-error-rate). ADWIN [27]
operates with two sub-windows of a variable-sized window, and
it makes a comparison to find differences between them; in such a
case it will consider that a drift has occurred. Finally, drift detec-
tion methods based on the Hoeffding’s bound (HDDM, [171]) monitor
the mean of the base learner’s performance over time, but without
assuming any distribution for the incoming data. we will refer as
HDDM_A to the HDDM approach that uses a window and a moving
average as its estimator. Likewise, HDDM_W does not use a window
and uses EWMA as its estimator, giving a higher weight to the most
recent samples.

When it comes to the evaluation of the obtained results, drift de-
tection metrics vary considerably. Nevertheless, we have embraced
the recommendations provided in [26]; therefore, comparisons are
carried out in terms of FP, TP, FN, DT. FP indicate the number of
drifts identified at time instants when no drift was present in the
data set whatsoever: therefore, lower values mean that the method
does not detect false drift events. Likewise, a high TP value in-
dicates that the method has identified true drifts during a specific
period of time, which in this research is given by the drifting time
of every data set. FN indicates the number of missed drift detec-
tions, which can easily reach 100% because the methods are based
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on test-then-train. For this reason TP are computed during the drift-
ing time. Finally, DT indicates the average distance to the true drift
whenever TP > 1. The accuracy metric is not analyzed because in
our experiments eSNN-DD is not hybridized with any base learner so
as to focus exclusive on its performance as a drift detector. Only
if hybridized with an adaptation method a comparison analysis on
accuracy scores could be undertaken.

5.3.1 Configuration of Parameters

In order to find suitable values for the parameters related to DD-eSNN
encoding (T, N and β) and learning (mod and C), a set of offline ex-
periments was designed to empirically find the configuration best
balancing between all detection performance metrics, which resulted
to be T = 20, N = 10, β = 1.5, mod = 0.85 and C = 0.95. For those
parameters with high impact on the detection (W, |R| and SIM), dif-
ferent configurations were tested for each of the 16 data sets: W ∈
{20, 25, 30}, |R| = {20, 25, 30} and SIM = {0.20, 0.25, 0.30}. Com-
paring their results in terms of TP, FP, FN, and DT, the more suitable
configuration was W = 20, |R| = 30 and SIM = 0.25. For the rest
of drift detectors, their configuration was retrieved from the litera-
ture using each technique. In the case of DDM, the minimum number
of samples before the detection of a drift is permitted (min_samples)
was set to 20, 25 and 30 [29]. As for EDDM, after occurring 30 clas-
sification errors this detector uses thresholds α = 0.95 and β = 0.9
to detect a concept drift, and as in DDM min_samples equals 30 as
suggested in [50]. Regarding ADWIN, the confidence level is δ = 0.1
and the minimum frequency of samples needed for the window size
to be reduced is set to f = 16 [26]. For HDDM_W the confidence inter-
val for the drift detection is cid = 0.001, the confidence interval for
the warning is cid = 0.001, and the parameter controlling the weight
given to the most recent data with respect to older data is λ = 0.05.
Finally, for HDDM_A, cid = 0.001, cid = 0.001, and the window sizes
are set to 5, 20, and 50, which is included in the label as HDDM_A-ω
(with ω ∈ {5, 20, 50}).

5.4 Results and Discussion

A first look at the obtained statistics presented in Table 5.1 reveals
that eSNN-DD is very competitive in comparison with the rest of drift
detectors. Indeed, eSNN-DD shows good results in terms of detection
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statistics for both abrupt (data sets with high speed drift dynamics)
and gradual drift dynamics (correspondingly, those with low values
of drift speed). Specifically, the proposed method never suffers from
a non-detection (ND) and FN, a fact that evinces its robustness to
missed detections. It can be observed that eSNN-DD yields a higher
number of false positives than the rest of approaches, but in return
it detects the drift earlier, mostly in abrupt data sets. This noted fact
suggests the existence of a trade-off between the number of FP and
the distance to the drift (detection delay), a particularity that was al-
ready revealed in [172], [173] for other detectors. Finally, it is worth
mentioning that although eSNN-DD operates with a smaller window
(W = 30) than HDDM_A_50 (respectively, W = 50), the proposed
detector outperforms this latter counterpart in what regards to the
distance to the drift over many data sets, such as CIRCLE, SINEH,
LINE (high severity, high speed), SINEV (low severity, high speed)
and SINEV (low severity, low speed).

5.5 Summary

Drift detection in changing environments is a key factor for those
active adaptive methods which require trigger mechanisms for drift
adaptation. Most approaches are relied on a base learner that pro-
vides accuracies or error rates to be analyzed by an algorithm. In this
chapter, we have proposed the use of eSNN as a new form of drift
detection, which resorts to the own architectural changes of this par-
ticular class of models to estimate the drift location without requir-
ing any external base learner. By virtue of its inherent simplicity and
lower computational cost, this embedded approach can be suitable
for its adoption in online learning scenarios with severe resource
constraints. Experiments with synthetic data sets have shown that
the proposed technique is very competitive when compared to other
drift detection techniques.
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CIRCLE

Methods
Low severity, high speed Low severity, low speed High severity, high speed High severity, low speed

DT FP TP FN DT FP TP FN DT FP TP FN DT FP TP FN
ADWIN 20± 13.17 26 11 0 273.89± 103.92 19 28 0 48± 1.41 27 5 0 220.36± 93.50 29 25 0
DDM-20 49± 0.0 0 1 0 265± 0.0 0 1 0 23± 0.0 0 1 0 227± 0.0 0 1 0
DDM-25 49± 0.0 0 1 0 265± 0.0 1 1 0 23± 0.0 0 1 0 227± 0.0 0 1 0
DDM-30 49± 0.0 0 1 0 265± 0.0 1 1 0 23± 0.0 0 1 0 227± 0.0 0 1 0
EDDM 29± 0.0 0 1 0 339± 116 2 2 0 11± 0.0 6 1 0 314.33± 138.88 4 3 0

HDDM_A-5 17.66± 15.86 38 3 0 275.9± 138.82 23 10 0 25± 24 36 2 0 272.23± 126.56 28 13 0
HDDM_A-20 11± 0.0 10 1 0 310.5± 127.76 4 4 0 5± 0.0 5 1 0 255.8± 142.37 5 5 0
HDDM_A-50 9± 0.0 2 1 0 271± 114 2 2 0 25± 22 3 2 0 209± 123.28 3 3 0
HDDM_W ND 2 0 1 ND 3 0 1 23± 8 25 2 0 420.66± 55.40 18 6 0
eSNN-DD 3± 0.0 21 1 0 191.80± 107.35 19 5 0 22.5± 19.5 16 2 0 163± 184.11 14 4 0

LINE

Methods
Low severity, high speed Low severity, low speed High severity, high speed High severity, low speed

DT FP TP FN DT FP TP FN DT FP TP FN DT FP TP FN
ADWIN 20.81± 8.36 24 11 0 240.92± 152.32 26 14 0 35.66± 3.74 36 12 0 260.25± 115.33 29 24 0
DDM-20 ND 1 0 1 325.5± 33.5 0 2 0 21± 0.0 0 1 0 156.5± 13.5 0 2 0
DDM-25 ND 1 0 1 325.5± 33.6 0 2 0 21± 0.0 0 1 0 164± 21 0 2 0
DDM-30 ND 1 0 1 325.5± 33.6 0 2 0 21± 0.0 0 1 0 143± 0.0 0 1 0
EDDM ND 3 0 1 206± 0.0 1 1 0 9± 0.0 0 1 0 258.66± 144.98 1 3 0

HDDM_A-5 19± 10 32 2 0 216.25± 136.34 23 8 0 15± 14 42 2 0 235.84± 140.90 30 13 0
HDDM_A-20 21± 0.0 7 1 0 232± 108.07 6 4 0 9± 0.0 8 1 0 250.14± 119.37 6 7 0
HDDM_A-50 27± 0.0 2 1 0 193± 0.0 2 1 0 24± 19 2 2 0 245.66± 156.06 2 3 0
HDDM_W ND 0 0 0 ND 0 0 0 39± 0.0 17 1 0 439± 20 12 2 0
eSNN-DD 27± 10 30 2 0 230.92± 134.58 26 12 0 9± 0.0 7 1 0 271.14± 130.39 7 7 0

SINEH

Methods
Low severity, high speed Low severity, low speed High severity, high speed High severity, low speed

DT FP TP FN DT FP TP FN DT FP TP FN DT FP TP FN
ADWIN ND 48 0 1 ND 32 0 1 ND 49 0 1 438.91± 24.18 35 12 0
DDM-20 ND 0 0 0 ND 0 0 0 ND 1 0 1 ND 1 0 1
DDM-25 ND 0 0 0 ND 0 0 0 ND 1 0 1 ND 1 0 1
DDM-30 ND 0 0 0 ND 0 0 0 ND 1 0 1 ND 1 0 1
EDDM ND 0 0 0 ND 0 0 0 ND 10 0 1 ND 3 0 1

HDDM_A-5 33.33± 10.20 67 3 0 271.95± 133.97 56 20 0 42± 6 71 2 0 315.66± 131.99 57 15 0
HDDM_A-20 34± 0.0 18 1 0 247.5± 120.32 12 6 0 ND 20 0 1 291.4± 113.99 15 5 0
HDDM_A-50 34± 0.0 8 1 0 375± 0.0 7 1 0 ND 9 1 0 245.33± 91.22 6 3 0
HDDM_W 7± 0.0 32 1 0 190.4± 81.18 26 5 0 25.5± 19.5 36 2 0 272.84± 128.39 28 13 0
eSNN-DD 7± 0.0 33 1 0 244.08± 119.38 27 13 0 7± 0.0 36 1 0 242.86± 130.97 26 14 0

SINEV

Methods
Low severity, high speed Low severity, low speed High severity, high speed High severity, low speed

DT FP TP FN DT FP TP FN DT FP TP FN DT FP TP FN
ADWIN 40± 4.96 37 3 0 347.93± 97.49 23 16 0 31.78± 9.11 47 14 0 278.89± 142.38 27 29 0
DDM-20 ND 2 0 1 495± 0.0 1 1 0 19± 0.0 0 1 0 174.5± 12.5 0 2 0
DDM-25 ND 2 0 1 495± 0.0 1 1 0 19± 0.0 0 1 0 186.5± 24.5 0 2 0
DDM-30 ND 2 0 1 495± 0.0 0 1 0 19± 0.0 0 1 0 187± 25 0 2 0
EDDM 31± 0.0 2 1 0 349± 0.0 0 1 0 ND 5 0 1 357.33± 106.55 4 3 0

HDDM_A-5 19± 10 38 2 0 244.3± 139.61 26 10 0 ND 39 0 1 256.07± 130.20 28 13 0
HDDM_A-20 17± 0.0 9 1 0 273± 82 5 2 0 1± 0.0 10 1 0 254.66± 140.66 7 6 0
HDDM_A-50 ND 1 0 1 359± 0.0 0 1 0 22± 21 3 2 0 269.33± 159.70 3 3 0
HDDM_W ND 0 0 0 ND 0 0 0 41± 0.0 20 1 0 382.33± 84.21 11 6 0
eSNN-DD 5± 0.0 28 1 0 264.55± 158.74 22 11 0 24.50± 11.50 11 2 0 310.40± 91.79 5 5 0

TABLE 5.1: Drift detection statistics for the synthetic
data sets. Those statistics in which eSNN-DD shows
better results are in bold, and in italics when the re-
sults are just competitive. ND refers to a simulation
where no drift is detected within the drifting period.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

This thesis has provided an overview of the current state of the art
for the online learning and concept drift fields. After that, it has iden-
tified a set of open challenges, and we have selected some of them
to be part of this thesis. The addressed challenges stand out among
others for their high relevance, being highlighted in recent publica-
tions by prominent authors of the field. By addressing these chal-
lenges, we have provided new perspectives and methods that take
a step further beyond the current state of the art.

Regarding the first addressed challenge of this thesis work, Chap-
ter 3 has elaborated on a new approach for generating diversity in
ensembles for online learning scenarios, considering the need for
achieving a good balance between predictive performance in sta-
ble data distributions and adaptability to concept drifts. Coined as
DRED, this approach has proven to be a suitable additive for the tra-
ditional diversity-induction methods such as BAGGING, SWITCHING,
and BOOSTING, improving their performance in those cases where
the dynamics of the drift and the data set itself are characterized by
a shape that does fit well with the Gaussian kernel. Under this cir-
cumstance, the generation of synthetic samples produced by DRED
manages to promote the diversity artificially and prepares the algo-
rithm for the drift period. These artificial data is subsequently opti-
mally labeled by a multi-objective optimization technique, allowing
to find a range of Pareto-optimal labels with different levels of di-
versity in order to train the ensemble. The Bhattacharyya distance
has been utilized throughout the study, demonstrating its capabil-
ity to serve as diversity measure to build diverse ensembles, being
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the basis of an optimization process focused on keeping the balance
between stability and plasticity during the adaptation.

Computer experiments have been carried out over artificial data
sets of common use in the related literature. Interestingly, DRED hy-
brids have been found to outperform traditional approaches more
remarkably when the new concept grows incrementally upon the
prior distribution of classes over the feature space. While this partic-
ularity does pose a challenge for the proposed diversity generation
scheme, it is also a niche of opportunity towards refining the syn-
thetic sample generation process so as to accommodate non-incre-
mental drift dynamics. This motivates further research dealing with
different approximations to incorporate such dynamics during the
sample generation process.

Finally, DRED can be hybridized with any drift detector of the
literature, especially interesting with those that provide useful in-
formation about the dynamics of the drift, such as the duration of
the drift, its severity and speed, the size of the window to store
past data, even the speed and shape of the evolution of the feature
space after the change occurs. At this stage, more drift detectors are
needed to infer information about the type of drift (abrupt or grad-
ual) and even predict how the feature space will evolve over time.

Continuing with the second addressed challenge, Chapter 4 has
presented a portfolio of new adaptations of eSNNs for online learn-
ing scenarios under concept drift. Firstly, the traditional eSNN tech-
nique has been adapted to be used over online data streams by limit-
ing the size of the neurons repository, yielding the so-called OeSNN.
Secondly, we have embraced the use of selective and generative data
reduction techniques (DRTs) to optimize the contents of the neu-
rons repository so as to achieve a better adaptability of the model
to changing concepts over the processed data stream. Both pas-
sive and active strategies have been defined to incorporate DRTs
into the OeSNN learning procedure: the active comprises a drift de-
tector that detects changes along the data stream and triggers the
application of the DRT at hand to the neurons repository. Two dif-
ferent families of OeSNN models have been proposed: OeSNN-PS
(using prototype-selection DRTs) and OeSNN-PG (using prototype-
generation DRTs), both capable of operating in passive and active
modes when processing data streams.

An extensive set of computer experiments over synthetic and
real streaming data sets has been designed and discussed to find
performance differences between the above approaches. Part of the
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OeSNN-PS variants (OeSNN-SMMA and OeSNN-CNN) and all Oe-
SNN-PG approaches (i.e. OeSNN-SGP, OeSNN-SGP2, and OeSNN-
ASGP) have been proven to attain better predictive scores during
plasticity periods than the naive version of the OeSNN (i.e. the pro-
posed OeSNN with no DRT included in its learning algorithm). The
application of DRTs to the proposed OeSNN model also allows re-
ducing the required space to store output neurons, thus decreasing
the processing time needed to train with newly samples: the less
neurons in the repository, the less similarity computations during
the learning phase. This alleviation of the computational resources
demanded by the model is of utmost importance in online learning,
where processing times and storage should be kept as low as possi-
ble to process high stream data rates.

Those approaches that use DRTs achieving the lowest occupancy
of the neurons repository retain the old concept by generating or se-
lecting prototypes, and at the same time they adapt better to the new
concept by storing more information (output neurons) of the new
concept during the plasticity period after a drift occurs. This is possi-
ble due to the fact that high data reduction ratios lead to more avail-
able space in the neurons repository where to store neurons with
more recent information. Thus, the adaptation to the new concept is
better (a higher accuracy is achieved) and faster (less similarity com-
putations in the training phase as argued previously). Although the
selection of a data reduction technique is not straightforward (it de-
pends on the characteristics of the data set), empirical evidences in-
dicate that OeSNN-PG approaches feature a better adaptability right
after the drift occurs, while performing very competitively in stabil-
ity periods.

In summary, this challenge brings to light the natural capability
of the proposed family of OeSNN-DRTs to:

1. simultaneously learn the new incoming concept while retain-
ing the older one without incorporating any forgetting mecha-
nisms (W is used just to compute encoding parameters, there
is no windowed adaptation whatsoever as Section 4.2.2 clearly
shows);

2. update the model without requiring a retraining mechanism;

3. use less capacity storage by reducing the amount of required



128 Chapter 6. Conclusions and Future Work

neurons for the overall model to achieve a better balance be-
tween stability (performance over stationary data distributi-
ons) and plasticity (reaction against drift events in the pro-
cessed data stream);

4. be faster than the traditional OeSNN approach by carrying out
less similarity computations (less output neurons) in the train-
ing phase;

5. be competitive in terms of their balance between predictive
performance and complexity in comparison with ensembles of
classifiers, which makes OeSNN-DRTs a better match for sce-
narios under severe computational restrictions; and

6. to provide a realistic solution to be hybridized with a drift de-
tector.

Finally, the third challenge addressed in this thesis (Chapter 5)
has been elaborated on a novel drift detection technique coined as
eSNN-DD, which does not rely on the performance of any base learner
as opposed to other approaches from the literature utilized for drift
detection. Instead, the proposed approach exploits the structural
changes (neural merges) of an eSNN predictive model to identify
the drift point, hence it can be regarded as an embedded drift detec-
tion approach that stems as a byproduct of the particular learning al-
gorithm of this class of neural networks. Contributions dealing with
drift detection often build upon the hybridization of a classifier and
a detection criteria. The embedded strategy suggested in this chal-
lenge can be useful to simplify the drift detection process in those
applications with stringent computational constraints. Neverthe-
less, eSNN-DD can also work in collaboration with any other adaptive
technique, roughly like most of the other detection approaches. A
set of computer experiments with synthetic data sets has shed light
on the competitive behavior of eSNN-DD when compared to other
well-known drift detectors.

6.2 Future Work

6.2.1 Addressed Challenges

Regarding the first addressed challenge of this thesis, future efforts
will be invested on several research directions. On the one hand,
it is essential to address the aforementioned need for incorporating
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a priori inferred information on the dynamics of the drift during
the sample generation process. This would allow steering newly
produced data towards regions in the feature space where the new
concept is evolving. It is also interesting to study further the perfor-
mance of this technique when new input variables appear on the fly,
or even when new class labels emerge in the data stream. Regarding
the Bhattacharyya distance,it will be also interesting to analyze the
utility of this measure in comparison with other traditional diversity
measures from the field. Additionally, the practical adaptability of
DRED when complementing drift detectors in real data sets could
be analyzed, with emphasis on its resiliency against false detections.
Finally, it is worth mentioning that, when the choice of the optimal
kernel bandwidth is computationally more intensive than the online
requirements impose by the system or application, it has been re-
cently presented a solution called fastKDE [174], which is more com-
putationally efficient. A new version of DRED considering fastKDE
could be a good solution for those constricted scenarios.

Continuing with the second addressed challenge, and as men-
tioned before for the first challenge, the incorporation of information
of dynamics of the drift (concretely severity and velocity), which
can be estimated in practice when drifts occur in a recurrent fash-
ion, could be very useful to choose the suitable data reduction tech-
nique for the plasticity period. Besides, it would be also interesting
to explore the posibility of building ensembles of OeSNNs and study
their behaviour in comparison with other ensemble approaches.

In the third addressed challenge, the extensive offline search for
suitable eSNN-DD parameters suggests that in the near future research
efforts should be invested towards the use of online optimization
techniques to tailor the parametric configuration of the detector while
in operation. A first portion of the data set could be used to find a
proper initial configuration, after which parameters could be tuned
slightly during the stream mining process. Besides this research
path, it would be interesting to find out whether the learning pro-
cedure of eSNN models can unveil more characteristics of the drift
than its occurrence (e.g. duration, severity). Finally, it is necessary
to assess the performance of eSNN-DD over more diverse data sets,
encompassing not only more complex concepts (number of features
and/or number of classes), but also different types of drifts (such
as recurring or incremental). Additionally, further research towards
quantifying the diversity of the output neurons could be helpful in
order to develop new innovative approaches for drift adaptation
and detection.
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Finally, the fusion of eSNN with DRED could be very interesting
as a new drift adaptation approach. For this purpose, it is necessary
first to undertake a deeper study of the eSNNs parameters configu-
ration, and how the optimization of this process could be performed
in a stream learning process. Besides, it also becomes necessary to
delve further into encoding techniques that are used in eSNNs.

6.2.2 Others

Other research interests for the future that are also related to the
addressed challenges of this thesis are next outlined.

Diversity and Self-Configuring Ensembles

Not much attention has been given to self-configuring ensembles
problem in the state of the art, as the author of [175] revealed, and
more recently in [18]. Many efforts have been devoted to the self-
configuring field using evolutionary computation in traditional ma-
chine learning problems (e.g. hyper-parameter tuning), but not to
online learning scenarios from a diversity point of view. Neverthe-
less, the work in [176] carried out extensive experiments to study
different adaptive forms: the first concerns the self-organizing na-
ture of the base learners in the ensemble; the second is about the
weighted contribution of the base learners when incorporated into
an incremental ensemble, and the third is about the incremental and
dynamic update over time of the structure of the ensemble.

Most online and batch learning approaches use models with pa-
rameters that require individual tuning or they use preset values
fixed for the whole analysis process. However, after a change oc-
curs in the data stream, these preset values-fixed parameters may no
longer be good for the task at hand (especially in case of parameter-
sensitive techniques such as SVM or Neural Networks). Therefore,
researching on a new methodology for self-tuning streaming ensem-
ble systems may lead to improved predictive power. Besides, pa-
rameter tuning for single classifiers should contemplate that they
are members within the ensemble. Thus, more global update meth-
ods that can lead to obtain more complementary models seems to
be worth exploring in line with recent developments contributed in
[177].
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eSNN as a General-Purpose Lifelong Learning Algorithm

Nowadays, we find two relevant limitations of the Artificial Intel-
ligence (AI). On the one hand, AI is only as smart as the data sets
served, which means that any inaccuracies in the data will be re-
flected in the AI results. On the other hand, AI is one-purpose de-
signed, it is trained to do a clearly defined task, that is, an AI model
that plays chess cannot play solitaire or poker. This latter limitation
is more restricting than the former one, due to the fact that, despite
nowadays we have enough different high quality data sets to train
an AI to perform different tasks, we cannot do it because of the sec-
ond limitation. In this regard, this caveat has lately stimulated one
big area of research typically referred to as transfer learning [178],
which is based on the idea of how to take models or learnings or
insights gained from one task and extrapolate them to another task.
Despite progress in transfer learning, it is actually one of the hardest
problems to solve.

Recently, AlphaGo Zero [179], the latest evolution of AlphaGo
(the first computer program to defeat a world champion at the an-
cient Chinese game of Go) is able to play three different games but
has just a generalized structure of games. It is able to do this by
using a novel form of reinforcement learning [180], but even that is
limited in the sense that it is still limited to games that take a cer-
tain form. Reinforcement learning is a type of unsupervised machine
learning where an AI learns to interact with an environment (e.g. a
game) entirely through trial and error.

With machine learning, given enough quality example data, the
same neural network algorithm, or at least a suite of similar network
models, can be trained to solve both face detection and speech recog-
nition problems. By virtue of recent advancements in deep learning
[181], machines are beginning to see, hear, and understand the world
around them in ways and volumes that humans simply cannot (mul-
timodal learning) [182]. Innovations in Convolutional Neural Net-
works [183] have enjoyed widespread use in batch processing the
billions of images that are uploaded to social networks, extracting
information that allows them to identify people and contextualize
their surroundings to build up a profile of the people that use their
services.

Recent implementations of Recurrent Neural Networks (RNNs)
[184], particularly those using Long Short Term Memory (LSTM)
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processing units as neurons are becoming increasingly able to syn-
thesize sequential patterns like text, speech, and even music. To-
wards this end, perhaps one of the most promising advancements in
machine learning over the past few years are Generative Adversarial
Networks (GANs) [185]. GANs are sophisticated generative models
that are able to generate stunningly accurate synthesized images of
objects, people, and places among other things. Research into GANs
is very new and the results are already overwhelmingly promising.

All these subfields (transfer learning, reinforcement learning, online
learning, multi-task learning, knowledge representation and maintenance)
are usually framed within the terms Lifelong Machine Learning, or
Continuous Learning, or Continual Learning. It is now a fast emerg-
ing paradigm in AI, which focuses on developing versatile systems
that accumulate and refine their knowledge over time [12], [13].

LML is built on the idea of learning continuously and adaptively
about the external world and enabling the autonomous incremen-
tal development of ever more complex skills and knowledge. In the
context of machine learning it means being able to smoothly update
the prediction model to take into account different tasks and data
distributions but still being able to reuse and retain useful knowl-
edge and skills during time. Hence, LML is a paradigm which force
us to deal with an higher and realistic time-scale where data (and
tasks) become available only during time, we have no access to pre-
vious perceived information and it is imperative to build on top of
previously learned knowledge. In [186], it has been recently ex-
plored the connecting link between LML and Neural Networks.

As Pedro Domingos (the author of The Master Algorithm [187])
explains, we have used the same basic paradigms since the 1950s,
thereby, we are going to eventually need some new ideas. In this line
of reasoning, we have seen how eSNN have revealed themselves as
one of the most successful approaches to model the behavior and
learning potential of the brain, and exploit them to undertake practi-
cal learning tasks. Future work should be invested in developing an
eSNN capable of learning in an online manner from different data
sets at the same time, exploit their relationships, and study how
the eSNN evolves and which are its limits as a bigger size of neu-
ron repository is available and new data sets are added to the data
stream. This would provide a new approach to be considered under
the LML paradigm.



133

Appendix A

Challenge 1

A.1 Experimental Results for All Data Sets

Note: Those results in which one of the approaches shows a better
performance have been highlighted in bold. The statistical signif-
icance of the obtained performance gaps has been assessed via a
non-parametric Wilcoxon rank-sum test with a confidence interval
of 95%. BD, D and AD correspond to Before Drift, Drift and After
Drift, respectively.

Sev. Sp. Region DRED-OB BAGGING DRED-CS SWITCHING DRED-BOOST BOOSTING

CI
RC

LE

1 1 BD 0.976± 0.001 0.974± 0.008 0.972± 0.009 0.972± 0.001 0.974± 0.004 0.972± 0.004
1 1 D 0.950± 0.003 0.780± 0.001 0.970± 0.001 0.970± 0.002 0.960± 0.001 0.890± 0.009
1 1 AD 0.978± 0.003 0.852± 0.002 0.976± 0.002 0.870± 0.011 0.973± 0.002 0.852± 0.003
1 3 BD 0.977± 0.005 0.975± 0.005 0.972± 0.007 0.972± 0.001 0.974± 0.005 0.972± 0.001
1 3 D 0.970± 0.004 0.970± 0.001 0.970± 0.005 0.950± 0.013 0.960± 0.011 0.920± 0.006
1 3 AD 0.939± 0.002 0.864± 0.003 0.915± 0.001 0.866± .009 0.962± 0.002 0.870± 0.005
3 1 BD 0.980± 0.007 0.975± 0.006 0.972± 0.008 0.972± 0.008 0.974± 0.007 0.973± 0.008
3 1 D 0.890± 0.007 0.670± 0.008 0.860± 0.006 0.780± 0.008 0.880± 0.008 0.760± 0.010
3 1 AD 0.885± 0.007 0.706± 0.008 0.874± 0.008 0.714± 0.007 0.848± 0.009 0.564± 0.009
3 3 BD 0.972± 0.003 0.975± 0.005 0.972± 0.006 0.972± 0.005 0.970± 0.008 0.972± 0.007
3 3 D 0.940± 0.002 0.940± 0.004 0.940± 0.004 0.920± 0.001 0.940± 0.005 0.910± 0.001
3 3 AD 0.738± 0.006 0.740± 0.007 0.759± 0.008 0.739± 0.009 0.766± 0.006 0.741± 0.002

TABLE A.1: Average prequential accuracy results
(mean± standard deviation) obtained by the diver-
sity generation schemes in the benchmark for the
CIRCLE data set with several severity and speed lev-

els.



134 Appendix A. Challenge 1

Sev. Sp. Region DRED-OB BAGGING DRED-CS SWITCHING DRED-BOOST BOOSTING
LI

NE
1 1 BD 0.980± 0.005 0.978± 0.003 0.979± 0.009 0.979± 0.003 0.977± 0.006 0.978± 0.008
1 1 D 0.890± 0.003 0.870± 0.003 0.880± 0.004 0.880± 0.004 0.900± 0.001 0.880± 0.004
1 1 AD 0.914± 0.007 0.909± 0.005 0.916± 0.002 0.910± 0.004 0.918± 0.003 0.905± 0.005
1 3 BD 0.975± 0.006 0.978± 0.006 0.979± 0.006 0.979± 0.005 0.970± 0.003 0.969± 0.006
1 3 D 0.950± 0.007 0.960± 0.009 0.950± 0.005 0.940± 0.006 0.950± 0.005 0.970± 0.002
1 3 AD 0.926± 0.006 0.925± 0.005 0.925± 0.008 0.922± 0.002 0.929± 0.010 0.922± 0.002
3 1 BD 0.973± 0.002 0.975± 0.002 0.974± 0.004 0.974± 0.003 0.971± 0.001 0.973± 0.003
3 1 D 0.650± 0.001 0.630± 0.005 0.650± 0.005 0.650± 0.001 0.650± 0.005 0.640± 0.004
3 1 AD 0.746± 0.004 0.748± 0.004 0.754± 0.007 0.748± 0.007 0.758± 0.005 0.738± 0.008
3 3 BD 0.971± 0.004 0.966± 0.006 0.974± 0.007 0.974± 0.004 0.974± 0.004 0.972± 0.002
3 3 D 0.880± 0.008 0.930± 0.003 0.890± 0.008 0.840± 0.005 0.910± 0.005 0.930± 0.002
3 3 AD 0.767± 0.007 0.767± 0.007 0.767± 0.007 0.760± 0.006 0.770± 0.007 0.764± 0.004

TABLE A.2: Average prequential accuracy results
(mean± standard deviation) obtained by the diver-
sity generation schemes in the benchmark for the
LINE data set with several severity and speed lev-

els.

Sev. Sp. Region DRED-OB BAGGING DRED-CS SWITCHING DRED-BOOST BOOSTING

SI
NE

V

1 1 BD 0.970± 0.001 0.965± 0.005 0.965± 0.005 0.965± 0.005 0.966± 0.007 0.965± 0.005
1 1 D 0.860± 0.006 0.850± 0.004 0.870± 0.007 0.870± 0.006 0.880± 0.006 0.850± 0.006
1 1 AD 0.918± 0.002 0.909± 0.003 0.920± 0.002 0.920± 0.002 0.925± 0.005 0.910± 0.009
1 3 BD 0.967± 0.006 0.974± 0.004 0.965± 0.005 0.965± 0.005 0.966± 0.002 0.966± 0.006
1 3 D 0.980± 0.001 0.970± 0.004 0.970± 0.007 0.940± 0.004 0.970± 0.007 0.970± 0.005
1 3 AD 0.938± 0.006 0.927± 0.007 0.937± 0.006 0.928± 0.008 0.940± 0.005 0.920± 0.002
3 1 BD 0.967± 0.007 0.969± 0.006 0.968± 0.006 0.968± 0.003 0.969± 0.004 0.966± 0.005
3 1 D 0.650± 0.005 0.620± 0.002 0.670± 0.007 0.740± 0.007 0.660± 0.001 0.660± 0.004
3 1 AD 0.731± 0.001 0.724± 0.004 0.740± 0.004 0.740± 0.002 0.731± 0.004 0.724± 0.004
3 3 BD 0.970± 0.007 0.969± 0.007 0.968± 0.008 0.968± 0.008 0.969± 0.009 0.964± 0.006
3 3 D 0.900± 0.005 0.920± 0.002 0.900± 0.004 0.840± 0.006 0.910± 0.002 0.920± 0.001
3 3 AD 0.778± 0.008 0.778± 0.008 0.784± 0.004 0.770± 0.002 0.778± 0.005 0.778± 0.008

TABLE A.3: Average prequential accuracy results
(mean± standard deviation) obtained by the diver-
sity generation schemes in the benchmark for the
SINEV data set with several severity and speed lev-

els.

Sev. Sp. Region DRED-OB BAGGING DRED-CS SWITCHING DRED-BOOST BOOSTING

SI
NE

H

1 1 BD 0.731± 0.001 0.731± 0.003 0.728± 0.001 0.728± 0.008 0.728± 0.003 0.716± 0.006
1 1 D 0.630± 0.003 0.650± 0.005 0.630± 0.006 0.650± 0.005 0.670± 0.007 0.650± 0.005
1 1 AD 0.713± 0.005 0.716± 0.004 0.712± 0.002 0.719± 0.009 0.715± 0.005 0.713± 0.003
1 3 BD 0.731± 0.004 0.739± 0.009 0.728± 0.002 0.728± 0.004 0.726± 0.007 0.716± 0.003
1 3 D 0.760± 0.006 0.790± 0.007 0.760± 0.006 0.770± 0.006 0.780± 0.008 0.780± 0.006
1 3 AD 0.733± 0.003 0.733± 0.008 0.728± 0.007 0.732± 0.002 0.730± 0.003 0.733± 0.001
3 1 BD 0.732± 0.002 0.729± 0.002 0.728± 0.008 0.728± 0.004 0.728± 0.002 0.712± 0.002
3 1 D 0.590± 0.009 0.640± 0.006 0.580± 0.005 0.620± 0.006 0.590± 0.009 0.640± 0.003
3 1 AD 0.627± 0.007 0.634± 0.003 0.624± 0.004 0.634± 0.004 0.627± 0.007 0.612± 0.006
3 3 BD 0.731± 0.005 0.731± 0.001 0.728± 0.001 0.728± 0.008 0.726± 0.006 0.716± 0.004
3 3 D 0.780± 0.006 0.800± 0.007 0.770± 0.007 0.780± 0.007 0.800± 0.004 0.800± 0.008
3 3 AD 0.664± 0.004 0.667± 0.007 0.663± 0.003 0.664± 0.004 0.665± 0.003 0.664± 0.005

TABLE A.4: Average prequential accuracy results
(mean± standard deviation) obtained by the diver-
sity generation schemes in the benchmark for the
SINEH data set with several severity and speed lev-

els.
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Region DRED-OB BAGGING DRED-CS SWITCHING DRED-BOOST BOOSTING

SE
A

BD1 0.874± 0.004 0.874± 0.008 0.874± 0.006 0.874± 0.004 0.874± 0.005 0.872± 0.006
D1 0.830± 0.007 0.814± 0.006 0.828± 0.008 0.824± 0.009 0.830± 0.007 0.812± 0.004

AD1-BD2 0.833± 0.006 0.833± 0.008 0.834± 0.007 0.834± 0.006 0.833± 0.006 0.834± 0.007
D2 0.802± 0.007 0.730± 0.008 0.800± 0.008 0.792± 0.006 0.802± 0.008 0.756± 0.009

AD2-BD3 0.840± 0.009 0.839± 0.006 0.838± 0.006 0.839± 0.007 0.840± 0.008 0.837± 0.007
D3 0.808± 0.008 0.774± 0.009 0.810± 0.006 0.828± 0.007 0.808± 0.008 0.822± 0.006

AD3 0.830± 0.008 0.829± 0.007 0.832± 0.007 0.832± 0.009 0.830± 0.006 0.831± 0.006

TABLE A.5: Average prequential accuracy results
(mean± standard deviation) obtained by the diver-
sity generation schemes in the benchmark for the
SEA data set. BD, D and AD correspond to Before
Drift, Drift, and After Drift, respectively. As such,
BD-1 denotes the period before drift 1 present in the

SEA data set.

Region DRED-OB BAGGING DRED-CS SWITCHING DRED-BOOST BOOSTING

EL
EC

2 BD 0.593± 0.002 0.582± 0.007 0.596± 0.006 0.590± 0.003 0.565± 0.005 0.565± 0.007
D 0.652± 0.005 0.630± 0.007 0.662± 0.007 0.617± 0.008 0.625± 0.006 0.625± 0.004

AD 0.588± 0.005 0.585± 0.006 0.594± 0.007 0.591± 0.006 0.558± 0.005 0.558± 0.008

TABLE A.6: Average prequential accuracy results
(mean± standard deviation) obtained by the diver-
sity generation schemes in the benchmark for the
ELEC2 data set. BD, D and AD correspond to av-
erage values Before Drift, Drift, and After Drift, re-
spectively, measured over the 50 periods between

the detected drifts.
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