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A B S T R A C T

A contact mechanics study of three-dimensional conformal contact with friction is presented, based on numerical
calculations with Finite Element models and an extension of Kalker's exact contact theory which takes into ac-
count the effects of conformity. Both the normal and the tangential parts of the contact problem are studied in
situations with different conformity levels, up to total contact angle variations in the contact patch of about 100�,
assessing the particular characteristics brought about by conformity and the differences with respect to non-
conformal contact. The study may be of interest in important industrial applications where conformal contact
may be found, such as rolling bearings or the wheel-rail case.
1. Introduction

It is essential to use adequate contact models in vehicle dynamic MBS
simulations. Precise contact modelling is even more imperative for the
study of tribological phenomena in the contact interface such as wear and
rolling contact fatigue. Notably in the wheel-rail case, the hypothesis of
non-conformity is adopted as a simplifying assumption in most wheel-rail
rolling contact theories. However, in some situations the contact area
may become considerably curved in the lateral direction, thereby
compromising the adequacy of a non-conformal analysis. Moreover,
conformal rolling contact is also common in other industrial application
as important as rolling bearings.

2D conformal cylindrical contact is characteristic of pinned joints,
which are present in numerous engineering applications, and has been
extensively studied in the literature. Following the work of Persson [1],
in Ref. [2] the formulation of the 2D conformal cylindrical contact
without friction was developed, obtaining the load-contact angle varia-
tion relationship in closed form, and extending the range of validity of
the formulation to any value of Dundurs' first material parameter. In
Ref. [3] the study was extended for the case of non-zero Dundurs' second
material parameter, solving numerically the governing integral equations
of the problem. Further, an analytical approximation was proposed for
the load-contact angle variation relationship, based on the assumption,
verified by the numerical calculations in the work, that the impact of
Dundurs' second material parameter on the pressure distribution (for a
given contact angle variation) can be neglected. The analytical
load-contact angle variation relationship was also derived in Ref. [4] for
the case of identical materials in contact, and a fracture mechanics study
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was conducted considering a radial crack emanating from the surface of
the circular hole of the plate. In Refs. [5,6] the formulation for the 2D
conformal cylindrical contact problem with friction was developed, for
the case of rigid and elastic pin respectively. The influence of remote
stresses in the plate was incorporated in the analysis. The analytical
Green's functions of the displacements of the pin and the hole subject to
boundary point loadings were used, and a numerical method was pro-
posed to solve the governing singular integral equations of the problem,
valid provided the contact is not split in more than one contact patch.
Double conforming cylindrical contacts without friction, in which an
intermediate annular elastic body between the pin and the infinite elastic
plate with a hole was present, were studied in Refs. [7,8]. The dis-
placements of the pin and the plate were calculated making use of their
corresponding Green's functions, and those of the ring were calculated by
means of a Fourier series technique. In Ref. [8] the model was extended
to cope with interference in the contact, and the influence of geometric
irregularities on the resulting contact pressure distributions was studied.
Other references of studies about 2D conformal contact may be found in
Ref. [9] for instance.

The works about 3D conformal contact in the literature are compar-
atively few compared with 2D contact. Refs. [10,11] are early examples
of wheel-rail conformal frictionless contact studies. The study of fric-
tional contact entails more complexity, and has been less studied than
frictionless contact. In Ref. [12] an analysis method for conformal contact
problems including friction in the interface was proposed. The normal
part of the contact problem was solved with a simplified procedure
assuming an elastic behaviour of the solids in contact similar to the
elastic half-space, and the tangential part of the contact problem was
17
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solved with FASTSIM [13,14], but accounting for the non-flat geometry
in the calculation of the rigid slip velocities. A simplified method based
on the strip theory was used in Chapter 8.5 of [15] to study frictional
conformal rolling contact. STRIPES [16,17] is another simplified fric-
tional rolling contact algorithm, which is based on the idea of dividing
the contact patch in longitudinal strips, and is able to deal with contact
cases with conformal geometries. In Ref. [18] Kalker's exact rolling
contact theory [13,14] was generalized for conformal contact by
replacing the half-space influence coefficients (ICs) by appropriate ICs for
non-planar geometries, and was later used in Ref. [19] for a case study
with conformal contact. The same approach was applied in Ref. [20] with
Kalker's exact contact theory programmed in the CONTACT soft-
ware [21].

Recently, the authors have investigated about the three-dimensional
wheel-rail conformal rolling contact [22,23], considering cases with
moderate total contact angle variations in the contact area, of up to about
41� in the lateral direction. In the present work the study on three-
dimensional conformal contact with friction is further extended to
higher levels of conformity. For this purpose, both FE models and an
extension of the exact contact theory for conformal contact, previously
described by the authors in Ref. [23] and which will be referred to as
CECT (Conformal Exact Contact Theory) here, are used. The qualitative
differences between conformal and non-conformal contact are pointed
out, and the adequacy of currently widely used non-conformal contact
models under different conformal contact situations is discussed. In this
way, the paper provides insight into some phenomena related to 3D
conformal contact, and examines the errors which may arise when dis-
regarding the effects of conformity in the analysis. The work may be of
particular interest in applications in which accurate contact mechanics
results are necessary in conformal contact conditions, such as in analyses
of damage phenomena in the contact interface like wear.

2. Description of the models

In this section the most relevant aspects of the models used in this
work are summarized. On the one hand, Finite Element models, and on
the other hand, an extension of Kalker's exact rolling contact theory for
conformal contact, developed along the same lines as in Refs. [18] and
[20] and designated here as CECT, are used. A more detailed description
of the models may be found in Ref. [23].
Fig. 1. Conformal contact geometry with definition of mean contact angle δo and local conta
direction x.
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Before going further, a brief description of the representation of the
conformal contact geometry is given. The three-dimensional contact
between a body of revolution and a body with constant cross section in
the longitudinal direction is considered, which will be called the wheel
and the rail respectively. The contact is assumed to be conformal in the
plane perpendicular to the rolling direction only, as represented in Fig. 1,
and non-conformal in the longitudinal or rolling direction. As the contact
angle is variable in the lateral direction, in order to provide a quick
measure of it in each studied case, the concept of the mean contact angle
is used. This is defined as the contact angle at the first or rigid point of
contact (which will usually be at or near the central point of the contact
patch). The local quantities of interest in the contact (stresses, de-
formations, etc.) are expressed in the local contact coordinate system.
This is a Cartesian coordinate system tangent to each point in the contact,
its three principal orthogonal directions being defined as the longitudinal
(rolling) x, the tangential lateral s, and the normal n axes. The origin of
the x and s coordinates is taken to be at the first or rigid point of contact.
2.1. Finite Element models

The Finite Element Method offers the possibility to model diverse
physical phenomena, considering dynamic effects, complex material
behaviours or contact interactions for example. However, its application
to rolling contact mechanics poses some challenges, coming basically
from the fact that the region to be modelled has to be typically much
larger than the (contact) region of interest. The resulting models
frequently have hundreds of thousands of degrees of freedom, and have
high computational costs. Additionally, usually a fine-tuning process of
the model and associated parameters such as numerical tolerances or
incrementation controls becomes necessary in order to obtain valid re-
sults for a given application, see Ref. [24] for example.

In this work detailed 3D Finite Element models are constructed
meshing a part of both solids in contact with linear solid elements, with a
high refinement around the contact area so that the contact patch is
discretized in up to around 40 elements in each direction. With these
models, static contact, transient or steady rolling contact cases can be
simulated. The contact simulations are performed imposing predefined
motions to the central point of the wheel in successive steps. For the
steady state rolling contact simulations (Section 3.3) the results are ob-
tained after a rolling length of about 3 times the total longitudinal
ct coordinate system with directions s and n. Section view, perpendicular to the rolling
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dimension of the contact patch, executed in about 100 substeps. It is
verified that in the cases shown in this work the subsequent variation of
the results after this point is small (i.e. the results have almost converged
to the steady state rolling contact situation).

2.2. Conformal Exact Contact Theory

Kalker's exact contact theory is applicable to general non-Hertzian
contact geometries, to contact with elastically similar or dissimilar ma-
terials, and to non-stationary or to stationary rolling contact problems in
elastostatics. Few simplifications of the mechanical behaviour of the
contacting bodies are done; these are limited to linearity, absence of
inertia forces and, in its usual form, the half-space assumption. In its
practical numerical implementation, the potential contact area is dis-
cretized into a grid of elements. The elastic displacements at each
element are calculated superimposing the influence of all the elements in
the contact area, and the contact conditions are checked at each of the
elements. Due to the fact that the problem has to be solved iteratively and
that a system of coupled equations is involved, the computational costs of
this contact model are relatively high as compared with other simplified
rolling contact models. In past decades, its application for online rail
vehicle MBS dynamic simulations was considered impractical due to the
high computational costs. However, nowadays this has become feasible
thanks to recent advances [25,26].

The extension of the exact rolling contact theory from its usual form
for application in non-conformal contacts, to conformal contact, com-
prises the following aspects:

- Normal undeformed distances: in many simplified rolling contact
models, a quadratic form of the undeformed distance function is
assumed in the rolling direction, see Refs. [16,27] for example.
However, with conformal contact, this may result in high inaccura-
cies, especially with high contact angles and yaw angles. In some
cases, it may not be accurate to represent the undeformed distance
with quadratic variation in the rolling direction and constant trans-
verse undeformed distance profile even with zero mean contact and
yaw angles, as will be shown later.
In the developed extension of the exact rolling contact theory, the
normal undeformed distances are computed in a rigorous way at each
point in the contact. For this purpose, the intersection of both con-
tacting bodies with planes orthogonal to the x direction is computed
at all the positions of the contact mesh. The normal undeformed
distance is calculated at each lateral position as the projection of the
position difference vector between homologous points in both con-
tacting bodies, over the local normal direction of the surface of the
potential contact area. Homologous points are defined as points
having the same longitudinal x and lateral s coordinates in the local
contact coordinate system.

- Rigid slip velocities: with non-planar contact areas, it is no longer
possible to calculate the rigid slip velocities throughout the contact
patch from a single set of creepages, typically of the rigid contact
point, as can be done with planar contact areas. In this work they are
calculated as the projection of the relative rigid velocity vector be-
tween the two contacting bodies, on the tangent plane in each posi-
tion of the potential contact area.

- Influence coefficients: the ICs characterize the mechanical response of
the solids in contact near the contact area. Here they are defined as
the response of the elastic bodies in terms of surface displacements, to
distributed tractions applied over an element of the contact surface
mesh. In the case of punctual contact between homogeneous,
isotropic and linear elastic bodies, it can be assumed that the con-
tacting bodies behave like elastic half-spaces around the contact,
which is very convenient because the influence functions of the elastic
half-space can be analytically calculated, are not specific for each
contact problem, and are readily available in the literature, see
Ref. [15] for example.
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This last assumption is implicit in most of the rolling contact models
used nowadays, but with conformal geometries it becomes questionable.
In Ref. [23] it was shown that the Bsn ICs (i.e. the displacements along the
s direction due to tractions applied in the n direction) play an important
role in the tangential part of the contact problem, and that the Bsn ICs
computed for the half-space can deviate significantly from the true Bsn ICs
for non-planar geometries. Consequently, the results in the tangential
part of the contact problem can be substantially degraded even with low
to moderate total contact angle variations in the contact patch. Here it
will be shown that for higher total contact angle variations, the results in
the normal part of the contact problem are also compromised if the Bnn
ICs for the half-space are used.

Therefore the need to compute the ICs with more precision for
conformal or non-planar geometries arises. However, this represents a
considerable hindrance, since in general they have to be computed
numerically for each particular geometry. In order to overcome this
difficulty, in Ref. [23] a simple approximation was proposed, based on
combining the ICs for the half-space according to the decomposition of
the applied tractions along the principal directions of each point in the
contact. That is, the applied tractions are decomposed into a normal and
a lateral tangential component at each point, and the contribution due to
each of these components is approached with the corresponding
half-space IC. Thus, a different decomposition of the applied tractions is
carried out at each lateral position of the non-planar potential contact
area, depending on the difference in orientation between the position
where the traction is applied and each lateral position of the potential
contact area. In this work this same approximation is used. As was shown
in Ref. [23], with this approximation the results in the tangential part of
the contact problem are markedly improved. In that work, a remarkable
accuracy improvement was shown in the computed Bsn ICs for a convex
body with circular geometry in its cross section. In Figs. 2 and 3 other
geometries are tested. In Fig. 2 a body with double curvature is consid-
ered, having a central concave zone delimited by two convex zones in its
cross section, and in Fig. 3 a body with elliptical geometry in its cross
section is considered, with a major semi-axis of 20 mm and 2:1 semi-axes
ratio (with its major semi-axis oriented in the vertical direction). In both
cases, the load is applied uniformly distributed on a rectangle of longi-
tudinal dimension of 0.24 mm and lateral dimension of 0.21 mm
approximately, centred in the lateral plane of symmetry of the bodies.
The surface displacements are observed along the lateral curvilinear s
coordinate on the surface of the bodies, in a cross section 0.24 mm away
from the centre of the loaded rectangle. The curvilinear s coordinate is
orthogonal to the x direction, and its origin is taken to be at the lateral
plane of symmetry of the bodies in these cases.

As can be seen in Figs. 2 and 3, although with these geometries the
proposed approximation is somewhat less accurate (especially in the
body with the abrupt change in curvature of Fig. 2), it is still reasonably
good, and provides a much better representation of the true ICs of these
non-planar geometries than the half-space ICs.

3. Results

Situations with varying conformity levels are analyzed, with the
presented FE models and with CECT. The Hertzian theory and CECT
neglecting some aspect of conformity will be used as well, with the
purpose of showing the errors that result with these simplifications. In
order to better illustrate the particular features of conformal contact,
geometries as simple as possible are studied, considering bodies with
constant curvatures in the contact, in situations with zero mean contact
angles and yaw angles. Specifically two different cases will be consid-
ered, with different ratios of the longitudinal to the lateral dimensions of
the resulting contact patches. The relevant geometric parameters of both
cases considered, named as Case 1 and Case 2, are listed in Table 1.

In Table 1, Ryr and Ryw designate the transversal curvature radii of the
rail and the wheel respectively, and Rxw the rolling radius of the wheel at
the first point of contact. Convex curvatures are defined with positive



Fig. 2. Comparison of Bsn ICs for the half-space and for a non-planar prismatic body with double (concave and convex) curvature in its cross section. (a) Cross section of the body (only part
of one of the halves of the symmetric cross section is shown) and (b) Bsn ICs (anti-symmetric about s ¼ 0). Blue solid line: half-space. Red dashed line: proposed analytical approximation for
non-planar geometries. Green dotted line with þmarks: computed with FEM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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sign, and concave curvatures with negative sign. (a/b)Hz is the ratio of the
longitudinal to the lateral dimension of the Hertzian contact ellipse in
each case.

The contact surfaces are considered to be smooth, with no roughness,
and the material of both contacting bodies is assumed to be steel, with
isotropic and linear elastic behaviour. The following elastic properties
are considered for the material: shear modulus of 81 GPa, and Poisson's
ratio of 0.30.
3.1. Frictionless contact

In this section the normal part of the contact problem is studied,
assuming frictionless contact, for the two cases described above. Even in
these simple cases, a simple Hertzian calculation will not provide precise
results with sufficiently high total contact angle variations in the contact
patch. For example, in Case 2, when the total contact angle variation in
the contact patch reaches around 60�, the contact patch width predicted
with the Hertzian theory is around 10% higher than the reference
computed numerically. However, the Hertzian results can be consider-
ably improved applying a geometric correction as shown next. For this,
the influence of the rigid approach between the contacting bodies on the
resulting normal undeformed distance has to be considered. The reason is
that this influence is variable across the width of the contact patch,
because it is multiplied by a cosine term according to the difference in
orientation between the direction along which the approach takes place,
and the normal direction at each point in the contact patch. The rela-
tionship between the normal undeformed distance before and after
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application of the approach is expressed in Eq. (1) and depicted sche-
matically in Fig. 4, with hd and h being the normal undeformed distances
after and before the application of the approach respectively, d the
approach, and α the angular difference between the direction of the
approach and the direction of the local normal at each point in the
contact patch.

hd ¼ h – d cos(α) (1)

Even with quite high total contact angle variations in the contact
patch, in the simple cases considered here the normal undeformed dis-
tance h can be expressed to a first order approximation according to
Eq. (2):

h ¼ A cos(α) x2 þ B s2 (2)

In Eq. (2), x and s are the longitudinal and lateral coordinates in the
local contact reference system, being the point (0, 0) the rigid point of
contact; and A and B are respectively the longitudinal and lateral cur-
vatures of the normal undeformed distance, calculated in the usual way
according to the longitudinal radii of curvature rx1 and rx2 and the lateral
radii of curvature ry1 and ry2 of the two bodies in contact as shown in
Eq. (3):

A ¼ (1/rx1 þ 1/rx2) / 2 (3)

B ¼ (1/ry1 þ 1/ry2) / 2

In this equation, convex curvatures have to be taken as positive, and
concave curvatures as negative. Next, the expression in Eq. (2) for h is



Fig. 3. Comparison of Bsn ICs for the half-space and for a non-planar prismatic body with elliptical geometry in its cross section. (a) Cross section of the body (only part of one of the halves
of the symmetric cross section is shown) and (b) Bsn ICs (anti-symmetric about s ¼ 0). Blue solid line: half-space. Red dashed line: proposed analytical approximation for non-planar
geometries. Green dotted line with þ marks: computed with FEM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Geometric parameters of the studied cases.

Case 1 Case 2

Ryr [mm] 10.0 10.0
Ryw [mm] �10.1 �10.5
Rxw [mm] 500.0 653.7
(a/b)Hz [�] 0.63 2.13

Fig. 4. Cross section of two bodies in conformal contact showing the normal undeformed
distance before and after application of the approach.

J. Blanco-Lorenzo et al. Tribology International 119 (2018) 143–156
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substituted in Eq. (1). Taking the series expansion of the cosine function,
neglecting higher order terms and rearranging, Eq. (4) is obtained.

hd ¼ A cos(α) x2 – d þ (B þ d/2r2) s2 (4)

In Eq. (4), r is the mean radius of curvature of the final contact sur-
face, which with identical materials in contact can be taken as the mean
of the absolute values of the lateral radii of curvature ry1 and ry2 of both
bodies in contact. In view of Eq. (4), a corrected B coefficient, Bcorr, for
the undeformed distance may be defined as:

Bcorr ¼ B þ d/2r2 (5)

The approach d needed in Eq. (5) to compute the corrected Bcorr co-
efficient, may be obtained from a usual Hertzian calculation. The second
term in the right hand side of Eq. (5) is negligible in non-conformal
contact, but in conformal contact it can easily be of the same order of
magnitude as B or higher. Therefore, it is seen that in conformal contact
the effective lateral curvature of the undeformed distance function
around the contact is increased with the approach or the load.

The most representative results of the normal contact problem, ob-
tained with different contact models, are plotted as a function of the
applied load in Figs. 5 and 6, for Cases 1 and 2 respectively. The results
shown in the figures are the maximum normal pressure, the total contact
angle variation Δδ, the ratio of the longitudinal to the lateral dimensions
of the contact patch (which will be also referred to as a/b ratio in order to
abbreviate) and the approach. The models described in the previous



Fig. 5. Main results of normal contact problem for Case 1 with different analysis methods
as a function of the applied load. (a) Maximum normal pressure. (b) Total variation of
contact angle in contact patch. (c) Ratio of longitudinal to lateral dimensions of contact
patch. (d) Approach. FEM results in solid, thick blue lines; results from CECT in dashed,
thick red lines; Hertzian results in dotted, thick green lines; results from CECT with ICs of
the half-space in dashed, thin black lines; and corrected Hertzian results in dash-dotted,
thin magenta lines with þ marks. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Main results of normal contact problem for Case 2 with different analysis methods
as a function of the applied load. (a) Maximum normal pressure. (b) Total variation of
contact angle in contact patch. (c) Ratio of longitudinal to lateral dimensions of contact
patch. (d) Approach. FEM results in solid, thick blue lines; results from CECT in dashed,
thick red lines; Hertzian results in dotted, thick green lines; results from CECT with ICs of
the half-space in dashed, thin black lines; and corrected Hertzian results in dash-dotted,
thin magenta lines with þ marks. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

J. Blanco-Lorenzo et al. Tribology International 119 (2018) 143–156
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Fig. 7. Unitary contribution of each longitudinal strip of the contact patch to the normal
displacement at the central point of the left lateral strip, for Hertzian cases with fixed
lateral b semi-axis and different longitudinal to lateral (a/b) semi-axis ratios.
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section have been used (i.e. FEM models and the exact contact theory
extended for conformal contact or CECT), as well as the Hertzian theory.
Additionally, results have been computed also with CECT, but without
performing any correction of the ICs for non-planar geometries (i.e. using
directly the half-space Bnn ICs, with no correction), and also with the
Hertzian theory performing the correction in the lateral curvature of the
undeformed distance in the contact as described above.

As can be seen in Fig. 5, in Case 1 the agreement between the FEM and
CECT is very good. The errors in the maximum contact pressure and in
the approach are limited to less than 1% in the whole range of contact
angle variations studied, up to a Δδ of about 100�. The precision in the
results directly related to the contact patch dimensions (i.e. Δδ and the a/
b ratio) computed with the numerical models is limited by the resolution
provided by the used discretization, which has been on the order of 50
elements at most in the lateral direction (i.e. about 25 elements in each
half of the contact patch). So, the resolution in the computed dimensions
of the contact patch is limited to around 4%. This is the reason of the
noise seen in the trends of these results computed with FEM and with
CECT. Nevertheless, the differences in the computed Δδs with FEM and
with CECT remain below 5% in the whole range of Δδs studied. The
differences in the a/b ratios are a bit higher with Δδs above 80�, reaching
around 7%with a Δδ of around 100�. The contact patches computed with
CECT are somewhat narrower than those computed with FEM. The dif-
ferences in the computed contact patch areas (not shown in these figures)
are lower, below 2%, the areas computed with FEM being slightly higher
than those computed with CECT.

The effect of the ICs may be appraised by comparing the results
computed with CECT using the ICs of the half-space, with those
computed with FEM and with CECT using the proposed analytical
approximation of the ICs for non-planar geometries. In order to isolate
the effect of the ICs, differences between the results computed with both
used versions of CECT (i.e. with the half-space ICs on the one hand, and
with the proposed analytical approximation of the ICs for non-planar
geometries on the other hand) are quoted next. For the normal part of
the contact problem, in Case 1 it is seen that with Δδs of up to about 40�

(which corresponds to a load of about 5 kN for this case as can be seen in
Fig. 5b), the use of the half-space ICs is satisfactory, the errors in the
computed maximum pressures and approaches being below 1%. How-
ever, as Δδ increases, the errors introduced by this simplification become
more appreciable, increasing to about 5.5% and 6.8% in the maximum
pressure and approach respectively in the case with the highest Δδ. Using
directly the half-space ICs without any correction, the computed contact
patches are narrower, with higher maximum pressures, and the ap-
proaches are higher. The reason for this is that, with conformal geome-
tries –and identical materials in contact-, as the lateral angular difference
in orientation between any two points increases, the real Bnn IC between
those points (i.e. the IC relating the displacement along the normal di-
rection at one point due to the normal pressure on the other point) is
lower than the half-space Bnn IC. As a result, using the half-space Bnn ICs,
the elastic displacements caused at different points in the contact patch
by points located at different orientations will be overestimated, and thus
will be the computed approach. By the same reason, the elastic dis-
placements at the sides of the contact patch caused by the normal pres-
sures acting on the central part will also be overestimated, so that, in
order to maintain compatibility in the normal contact conditions, the
normal pressures sustained at the sides of the contact patch will decrease,
and those sustained at the central part will necessarily increase in order
to maintain equilibrium. Therefore the net effect is that in conformal
contacts, there is a lateral spreading effect associated with the real elastic
behaviour of non-planar geometries; i.e. the load is more effectively
shared between the different longitudinal strips of the contact patch, and
the contact patch is more spread in the lateral direction than predicted
with the use of the half-space ICs.

Referring to the Hertzian results, these are seen to provide quite ac-
curate results in Case 1 for Δδs of up to about 40�. With this Δδ, the errors
in the computed maximum pressure and approach are around 2.6% and
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2.0% respectively with respect to the reference FEM results. And with a
Δδ of 103� in the lateral direction, these errors increase to 19% and 9.6%
respectively. With this Δδ, the corresponding errors in the contact angle
variation and in the a/b ratio are of 26% and 28% respectively. As seen in
Fig. 5, with the Hertzian calculation the maximum pressure, approach
and a/b ratio are underestimated, and the contact angle variation is
overestimated.

Performing the correction in the lateral curvature of the undeformed
distance as explained above, a notable improvement is achieved in the
Hertzian results. For a Δδ of around 100�, the errors in the maximum
pressure, approach, contact angle variation and ratio of longitudinal to
lateral contact patch dimensions, decrease from the mentioned values to
2.7%, 3.3%, 13% and 20% respectively, and have the opposite sense: the
maximum pressure, approach and a/b ratio are overestimated, and the
contact angle variation is underestimated. It is remarkable that the
contact pressures and approaches computed with the corrected Hertzian
calculation, are even more precise than those computed with CECT using
the half-space ICs. This is explained because of two sources of error that
are partially counteracting each other in the corrected Hertzian calcu-
lation. On the one hand, as a result of the half-space elastic behaviour
which is implied in the Hertzian calculation, the maximum pressures and
approaches tend to be overestimated, as explained above. On the other
hand, the approach d from the pure Hertzian calculation that is used to
calculate the corrected lateral curvature of the undeformed distance ac-
cording to Eq. (5), is lower than the real value as seen in Fig. 5d.
Therefore the computed lateral curvature of the undeformed distance is
lower than the real one, and this has the effect of decreasing both the
computed approaches and maximum pressures.

In Case 2, the agreement between the results computed with FEM and
with CECT is not as good as in Case 1, as can be seen in Fig. 6. For
example, with a Δδ of 101� computed with FEM, the differences in the
maximum normal pressures and approaches computed with both models
are of 4.2% and 2.2% respectively, while in Case 1 they were below 1% as
mentioned earlier. At the same time, also higher discrepancies are
encountered between the results computed with CECT using the
approximation of the ICs for non-planar geometries on the one hand, or
directly those of the half-space on the other hand. In the case with a Δδ of
101�, the difference in the computed maximum pressure with both ver-
sions of CECT is of 14%; cf. the difference quoted earlier for Case 1, of
5.5%. The reason for the increased discrepancies seen in Case 2, between
the FEM results and CECT as well as between the two versions of CECT
with different ICs, lies on the fact that as the contact patch becomes more
elongated in the longitudinal direction, the relative contribution to the
elastic displacements at different points in the contact patch becomes
more spread across the lateral direction of the contact patch. In order to
show this, in Fig. 7 the unitary contribution of the normal pressures
acting on each longitudinal strip of the contact patch to the normal elastic
displacement of a point located in the lateral part of the contact patch, for
different a/b ratios of the contact ellipse in Hertzian contact, are plotted.
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As can be seen in Fig. 7, at higher a/b ratios these contributions become
more spread across the contact patch. Therefore, with more elongated
contact patches it is more important to characterize accurately the lateral
variation of the ICs. For this same effect, which also happens in non-
conformal contact, the improvement gained with the corrected Hert-
zian calculation in Case 2 is more limited than in Case 1.

Next, the contact patch contours for both cases considered in this
Section are shown in Fig. 8, for different Δδs in the contact patch, plotted
in nondimensional axes. The longitudinal x and lateral s coordinates are
nondimensionalized dividing them by the corresponding maximum co-
ordinates of the contact patch in each direction, xmax in the longitudinal
direction and smax in the lateral direction. The reference elliptic contour
for the non-conformal case is also shown in the figures. As Δδ increases,
the resulting contact patches deviate from the non-conformal elliptic
shape, changing towards a more rectangular-like shape. This can be
explained by the geometry of the undeformed distance function. As
indicated in Eq. (4), the longitudinal curvature decreases in the lateral
parts of the contact area due to the multiplication by the cosine term, and
due to this the longitudinal dimension of the strips in the lateral parts of
the contact area tends to increase.
3.2. Frictional static contact

In this Section as well as in the next Section 3.3, the frictional
behaviour in the contact interface is modelled using Coulomb's law, with
a constant static and kinetic coefficient of friction of 0.30. Here, the same
two cases of Section 3.1 are considered. As before, the static compression
between both contacting bodies is computed, but this time with friction
added in the interface. Starting from zero load, a monotonically
increasing compressive load is imposed between the two contacting
bodies, with no tangential shifts.

Fig. 9 shows the lateral distributions of lateral tangential stress ps
across the middle section of the contact patch, for different Δδs,
computed both with FEM and with CECT. The tangential stresses are
nondimensionalized in the figure dividing them with the maximum
traction bound (i.e. the maximum normal pressure pnmax multiplied by
the coefficient of friction μ) in each case, and the nondimensional values
of the abscissa axes of the graphs are the lateral s coordinates divided by
the maximum s coordinate in the contact patch in each case. The results
used to nondimensionalize the variables are those computed with FEM,
except for the cases with lowest Δδs, where the results computed with
CECT have been used. Only one half of the section is shown, as the
tangential stresses are anti-symmetric with respect to s¼ 0. Additionally,
the curves of nondimensional normal pressure at the same cross section
computed with FEM are also shown in the figure, for the situations with
the highest Δδ in each case, with an approximate Δδ of 100�, both
Fig. 8. One quarter of the contact patch contours (symmetric in the lateral and in the
longitudinal directions about s ¼ 0 and x ¼ 0 respectively) obtained in Cases 1 (a) and 2
(b) for approximate Δδs of 40� , 70� and 100�, plotted in nondimensional axes. 40�: solid
blue lines. 70�: dashed red lines. 100�: dash-dotted green lines. Elliptic contour shown in
thin, black dotted lines. All results computed with FEM except for the case with a Δδ of 39�

in Case 1, which has been computed with CECT. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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considering friction in the interface as explained above, and for equiva-
lent frictionless cases. The normal pressures are nondimensionalized
dividing them by the maximum normal pressure in each case.

Qualitatively the results are similar in both cases, and apart from the
noise in the numerical solutions the agreement between the results ob-
tained with the FEmodels and with CECT is good. This good agreement is
maintained in the contours of the adhesion and slip zones, depicted in
Fig. 10 for the situations with the highest Δδ in each case. As can be seen
in Fig. 10, the width of the adhesion zone, located in the centre of the
contact patch, is nearly constant along the contact patch, with the
boundary between the adhesion and slips zones being nearly parallel to
the longitudinal direction both in Case 1 and in Case 2. The relative width
of the adhesion zone decreases, and the magnitude of the tangential
stresses increases with Δδ. Evidently, a purely non-conformal contact
model would not capture these tangential stresses.

Regarding the normal pressures, as can be seen in Fig. 9 there are
appreciable differences between the distributions of normal pressures
obtained with and without friction, the maximum normal pressures
tending to decrease with friction in the interface. As explained in
Ref. [23], this is due to the coupling between the normal and the
tangential parts of the contact problem, which happens in conformal
contact in spite that the materials of both contacting bodies are elastically
identical. This leads to a difference in the maximum normal pressure
between the frictional and the frictionless cases of 6.3% in Case 1, and
8.9% in Case 2. The coupling between the normal and the tangential
parts of the contact problems happens at two levels: on the one hand, at
the level of the global equilibrium equations as explained in Ref. [18],
due to the fact that the tangential stresses sustain part of the normal load;
and on the other hand at the purely contact mechanics level, via the Bns
ICs as explained in Ref. [23]. This coupling is stronger in Case 2 than in
Case 1, due to the higher cross-influence between different longitudinal
strips of the contact patch with more elongated contact patches, as
depicted in Fig. 7. It has to be mentioned that in order to be able to make
a more direct comparison between the frictional and the frictionless
cases, the total normal load has been adjusted in the frictionless cases, so
that the resultant of the normal pressures is the same that in the frictional
cases (i.e. the total normal load is higher in the frictional cases, due to the
contribution of the tangential stresses). Therefore, the differences in the
maximum normal pressures are entirely due to the coupling via the Bns
ICs. In the frictional cases, the proportion of the normal load sustained by
the tangential stresses amounts to 8.9% of the total normal load in Case 1,
and to 8.5% in Case 2.

3.3. Rolling contact

In this Section the laterally symmetric steady state rolling contact,
with zero yaw angle and lateral creepage, is studied with the geometry of
Case 1 of Table 1. The normal load is 80 kN, and the resulting Δδ is about
88�. In order to describe the different rolling contact scenarios, the
creepage term inherited from non-conformal contact is used here. In this
context, the creepage is defined according to the rigid slip velocities
applied at the rigid or central contact point. In the following subsections,
different aspects of the tangential part of the rolling contact problem
are discussed.

3.3.1. Tangential stresses and slip velocities
To start with two situations are considered, one of them of braking

rolling and the other of tractive rolling. In both situations the yaw angle
and the lateral creepage are zero. The tangential traction distributions
and contours of adhesion and slip zones computed both with FEM and
with CECT are shown in Fig. 11 for the situation of braking rolling
contact, and in Fig. 12 for the situation of tractive rolling contact. The
rolling takes place in the positive x direction of the figures. In order to
make a more representative comparison between the results computed
with the two types of models, the longitudinal creepages are adjusted in
each case in order to obtain the same longitudinal resultant force with



Fig. 9. Nondimensional lateral tangential stress across the middle section of the contact patch in static compression with monotonically increasing load, for approximate Δδs of 22� (in
magenta lines), 40� (in blue lines), 70� (in red lines) and 100� (in green lines). a) Case 1. b) Case 2. Results computed with FEM in solid lines and results computed with CECT in dashed
lines. Nondimensional normal pressure for the case with an approximate Δδ of 100�, with friction in black dash-dotted lines, and without friction in grey dotted lines. Lateral tangential
tractions ps anti-symmetric about s ¼ 0, and normal pressures pn symmetric about s ¼ 0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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both models. In the braking rolling contact case shown in Fig. 11, the
resultant unitary longitudinal contact force, defined as the resultant
longitudinal force Fx divided by the product of the coefficient of friction μ
Fig. 10. One quarter of the contact patches (symmetric in the lateral and in the longitudinal
computed for the case with an approximate Δδ of 100�, for Case 1 (a) and Case 2 (b). Results com
and limits between adhesion and slip areas in thin dotted lines), and results computed with CE
between adhesion and slip areas in thin dotted lines). (For interpretation of the references to c
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and the normal load Fn, is �0.27. The longitudinal creepage applied in
the FEM analysis is �0.2%, and that applied in the analysis with CECT is
�0.153%. In the tractive rolling contact case shown in Fig. 12, the
directions about s ¼ 0 and x ¼ 0 respectively) with contours of adhesion and slip zones
puted with FEM in blue lines (limits between interior and exterior areas in thick solid lines,
CT in red lines (limits between interior and exterior areas in thick dashed lines, and limits
olour in this figure legend, the reader is referred to the web version of this article.)



Fig. 11. Tangential traction distributions and contours of adhesion and slip zones in conformal, braking rolling contact with zero mean contact angle, zero yaw angle and zero lateral
creepage, computed with FEM (a), and CECT (b). Only one half of the contact patch is shown, the results being symmetric about the longitudinal centreline.

Fig. 12. Tangential traction distributions and contours of adhesion and slip zones in conformal, tractive rolling contact with zero mean contact angle, zero yaw angle and zero lateral
creepage, computed with FEM (a), and CECT (b). Only one half of the contact patch is shown, the results being symmetric about the longitudinal centreline.

Fig. 13. Lateral distribution of integrated frictional work in the rail after a wheel passage,
in conformal rolling contact with zero yaw angle and lateral creepage, for different values
of longitudinal creepage as shown in the legend of the figure. Results computed with FEM
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resultant unitary longitudinal contact force is 0.65, and the longitudinal
creepages applied in the analyses with the FEM and with CECT are 0.05%
and 0.086% respectively.

In the two cases shown in Figs. 11 and 12 the tangential stresses have
a variable direction across the contact patch, due to the variable contact
angle and associated geometrical spin. In the tractive case of Fig. 12, the
positive creepage adds to the effect of the increasing rolling radii away
from the central longitudinal slice of the contact area, while in the
braking case of Fig. 11 the effects are in opposite senses. As a result, the
way in which the rigid slip velocities vary throughout the contact patch is
different in each case. The net effect is that the adhesion zone tends to
become more extended in the lateral direction in the braking case, and it
becomes more acute shaped in the tractive case. In both situations, the
lateral zones of the contact patch, with a high contact angle and high
associated geometrical spin, are sliding, and remain so not only in the
two particular situations shown here, but in the whole range of longi-
tudinal creepages. It is observed as well that the adhesion zone is less
extended in the longitudinal direction in the braking case than in the
tractive one, even though the resultant longitudinal force is smaller in the
braking case. This is due to the fact that the absolute value of the
creepage is higher in the braking case, cf. the creepage values for both
cases quoted above. Despite the higher absolute value of the creepage in
the braking case, the resultant longitudinal force is smaller than in the
tractive case, due to the contribution of the most lateral longitudinal
slices of the contact patch, which, as a result of the higher rolling radii at
these zones, is tractive.

3.3.2. Frictional work
In some contact wear models, wear is assumed to be directly related

to the frictional work density, see e.g. Ref. [28]. Therefore, this magni-
tude is of primary interest in the study of wear in the contact interface. In
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Fig. 13 the lateral distributions of the frictional work in the rail after a
wheel passage Wfric, computed with FEM, are depicted for several cases
with varying longitudinal creepages. The abscissa axis of the graph of the
figure spans only one half of the contact patch width, as the results are
symmetric about s ¼ 0. Starting with the case with the highest braking
(i.e. negative) longitudinal creepage shown in the figure, the maximum
frictional work density is clearly located in the central part of the contact
patch, due to the fact that both the highest tractions and slip velocities
are located in this part. On the other hand, at not too high braking lon-
gitudinal creepages, a relative maximum in the lateral distribution of the
frictional work density begins to appear in the sides of the contact area,
associated to the increasing slip velocities in those parts.
(symmetric about s ¼ 0).



Fig. 15. Gradients of the longitudinal elastic displacement differences with respect to the
longitudinal x coordinate with changed sign, -∂uxi/∂x, along the x direction at s ¼ 0,
caused by the different tractions pi in the contact patch in the tractive case of Fig. 12a.
Gradients corresponding to the different components of ux in different colours as follows:
uxx in blue, uxs in red, uxn in green and total ux in black lines. Solid thick lines: results
computed with FEM numerical ICs. Dashed thin lines with circle marks: results computed
with analytical approximation of ICs for non-planar geometries. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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As the longitudinal creepage increases towards the tractive regime,
the frictional work density in the central part of the contact patch initially
decreases, while it increases in the sides, because the slip velocities are
decreasing in the central part, and increasing in the sides of the contact
patch. With a longitudinal creepage of �0.05%, the frictional work
almost vanishes in the central part of the contact patch in roughly one
quarter of its width, as the contact patch is in adhesion along most of its
length in that part. With this longitudinal creepage, the resultant unitary
longitudinal contact force is already tractive, with a value of 0.30.

As the longitudinal creepage increases further into the tractive
regime, the frictional work increases in the whole width of the contact
patch, due to the general increase of the slip velocities in the contact
patch, while the position of the maximum frictional work density grad-
ually moves towards the central strip of the contact patch. At sufficiently
high positive creepages, the maximum frictional work density will be
located again in the central part of the contact patch, where the
maximum contact stresses are located. Nevertheless, in a wide range of
longitudinal creepages, it is displaced from the centre, as can be seen in
Fig. 13, towards the sides of the contact patch, where the maximum slip
velocities take place. In the limit of full slip, the frictional work density is
more evenly distributed across the contact patch in the tractive regime
than in the braking regime, due to the competing maximum contact
stresses of the central part with the maximum slip velocities of the sides
of the contact patch in the tractive regime.

It has to be taken into account that the described characteristics for
the braking and for the tractive regimes, are for a concave wheel rolling
on a convex rail. If a convex wheel –or ball– rolling on a concave rail –or
groove– is considered, the different behaviour described here for the two
regimes is interchanged. The differing behaviour in the braking and the
tractive situations in the conformal rolling contact case considered here,
contrasts with what happens in non-conformal rolling contact with
elastically similar materials: in the latter case, as it is known, when
changing just the sign of the creepages, just the sign of the tangential
tractions is changed.

3.3.3. Longitudinal creep-force curve
Going back to Figs. 11 and 12 in Section 3.3.1, it can be seen that the

agreement between the results obtained with FEM and with CECT is
reasonably good. However, higher discrepancies are observed between
the two models in the tangential part of the contact problem than in the
normal part. For example, comparing the lateral distributions ofWfric, the
maximum differences between bothmodels with respect to the maximum
values computed for each case with FEM are about 8% in the braking case
of Figs. 11 and 6% in the tractive case of Fig. 12. The tangential traction
distributions obtained with both models, although being qualitatively
quite similar in the contact patch as a whole as seen in Figs. 11 and 12,
present non-negligible differences between each other. As an example, in
Fig. 14a the distributions of longitudinal tractions px along the central
longitudinal strip of the contact patch obtained with both models in the
tractive case of Fig. 12, are compared.

Additionally, as has been previously mentioned, in order to obtain the
same resultant longitudinal contact force Fx, it has been necessary to
Fig. 14. a) Longitudinal tractions px along the contact patch at s ¼ 0, in the tractive case of Fig.
creepage. Blue solid lines: FEM results. Red dashed lines: results computed with CECT. (For inte
version of this article.)

153
apply different longitudinal creepages ξ in the FEM models on the one
hand, and in the calculations with CECT on the other hand. This can be
seen comparing the longitudinal creepage-creep force curves computed
with both models shown in Fig. 14b. As seen in the figure, the slopes of
the longitudinal creepage-creep force curves computed with FEM and
with CECT are similar (the maximum slope of the curve computed with
FEM is just about 4% lower than that of the curve computed with CECT),
but there is an offset between both curves, and for the same longitudinal
creepage, the curve computed with FEM renders higher tractive longi-
tudinal forces than the curve computed with CECT.

In order to understand these discrepancies, the elastic displacements
in the longitudinal direction ux computed with bothmodels are examined
in detail. The total longitudinal elastic displacement difference between
the two contacting surfaces ux may be decomposed in the contributions
from the tangential longitudinal tractions px, the tangential lateral trac-
tions ps and the normal pressures pn, as indicated in Eq. (6).

ux ¼ uxx þ uxs þ uxn ¼ Bxx � px þ Bxs � ps þ Bxn � pn (6)

In Eq. (6), uxi is the longitudinal displacement difference caused by
the traction in the direction i (with i equal to x, s or n), and Bxi is the IC
giving the longitudinal elastic displacement difference due to a unitary
traction in the direction i. This equation may be written for any pair of
points in the contact patch, or for the entire contact patch, putting the
whole matrices of ICs [Bxi] and the vectors of tractions {pi} and
displacement differences {uxi} for all the points of the discretization of
the contact area in the latter case.

With the purpose of performing this decomposition of the elastic
displacement differences {ux} obtained with the FEM models, the
matrices of ICs [Bxi] of the FEM models have been derived applying
12. b) Longitudinal creepage-creep force curve for Case 1, with zero yaw angle and lateral
rpretation of the references to colour in this figure legend, the reader is referred to the web
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unitary tractions at each lateral position of the FE mesh for both the
wheel and the rail, and extracting the elastic displacements throughout
the contact patch for each load case. To obtain the desiredmatrices of ICs,
these extracted displacements are further processed arranging them in a
suitable order and performing the necessary interpolations to map the
obtained displacements of the wheel and the rail into a common mesh
(the mesh of the potential contact area, similar to that defined in the
implementation of the exact contact theory).

In Fig. 15 the gradients with respect to the longitudinal x direction of
the longitudinal elastic displacement differences uxi caused by the
different tractions pi acting in the contact patch in the tractive rolling
contact situation of Fig. 12a are represented along the centreline of the
contact patch (i.e. along the x direction, at s ¼ 0). The results corre-
sponding to both the FE model and to CECT are shown in the figure. The
gradients of the longitudinal elastic displacement differences with
respect to the x direction ∂uxi/∂x, rather than the elastic displacement
differences uxi, are shown, because the gradients are the ones which enter
directly in the basic kinematic equation of the tangential part of the
contact problem, as indicated in Eq. (7).

vrel ¼ wrel – ∂u/∂x þ 1/V ∂u/∂t (7)

In Eq. (7), vrel, wrel and u are the vectors containing respectively the
relative slip velocities, the relative rigid slip velocities and the elastic
displacement differences in both principal directions (longitudinal x and
lateral s) of the local tangent contact plane at each point, and V is the
rolling velocity. The relative slip velocities are defined as the absolute
slip velocities divided by the rolling velocity. In steady state rolling
contact as are the cases shown in this work, the last, transient term of the
right hand side of Eq. (7) vanishes. Additionally, in the adhesion area,
vrel ¼ 0, and therefore ∂u/∂x ¼ wrel at each point in the adhesion area in
steady state rolling.

In order to observe more clearly the differences between both models,
the longitudinal elastic displacement differences for both models shown
in Fig. 15 have been computed with the tractions obtained with the FE
model. That is, on the one hand, the longitudinal elastic displacement
differences corresponding to the FE model are computed with the trac-
tions obtained with the FE model, and with the “real” ICs computed
numerically with the FE model. And on the other hand, the longitudinal
elastic displacement differences corresponding to CECT are computed
with the tractions obtained with the FE model as well, and with the
analytical approximation of the ICs for non-planar geometries proposed
in Ref. [23], which has been used in CECT in this work. In this way, the
displacement differences computed for the FE model are the actual ones
corresponding to the tractive rolling contact situation of Fig. 12a, but
those computed for CECT do not correspond to any of the rolling contact
cases shown here.

As can be seen in Fig. 15, the contributions from the tangential lon-
gitudinal and lateral contact stresses px and ps to the longitudinal elastic
displacement differences are similar with both sets of ICs. However, there
is an appreciable difference in the contribution coming from the normal
pressures pn. So it is concluded that the differences seen in this Section in
the results of the tangential part of the contact problem between the FE
models and CECT come mainly from the Bxn ICs. A sample of the com-
bined Bxn ICs of the elastic displacement differences between both con-
tacting bodies computed with the FE models and with the analytical
approximation for non-planar geometries are compared in Fig. 16.

First, in Fig. 16a the Bxn ICs are plotted together with the Bxx ICs, and
in Fig. 16b the Bxn ICs are plotted alone. It may be striking to see that the
Bxn ICs can reach such an appreciable effect on the results of the
tangential part of the contact problem, in spite that they seem insignifi-
cant in comparison with the Bxx ICs (in fact they are about two orders of
magnitude lower), which produce the dominant uxx contribution to the
total longitudinal elastic displacement difference ux in this case. But it has
to be taken into account that in the considered cases the normal pressures
in the contact patch are considerably higher than the tangential stresses,
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and that the Bxn ICs reverse their sign with the longitudinal distance xrel
from the centre of the loaded element, while the Bxx ICs don't. It has to be
mentioned as well that the uxx contribution of the longitudinal
displacement differences has a high constant component, which does not
contribute to its gradient in the longitudinal direction.

As can be seen in Fig. 16b, there is a clear discrepancy between the
“real” Bxn ICs obtained from the FE model, and the Bxn ICs computed with
the analytical approximation for non-planar geometries. This can be
explained looking at the individual ICs of the displacements of each of the
contacting bodies shown in Fig. 17: the Bxn ICs of the concave wheel are
lower than the corresponding half-space ICs, while the Bxn ICs of the
convex rail are higher. This is due to the higher stiffness in the longitu-
dinal direction of the wheel than that of the rail. This effect, which de-
pends not only on the contact angle variation in the contact patch but also
on the overall geometry of the cross sections of the solids in contact, is not
taken into account with the analytical approximation of the ICs for non-
planar geometries used in this work. Something similar happens with the
Bxx and the Bxs ICs. However, in the combined ICs giving the displace-
ment differences between both contacting bodies, the differences in the
ICs of each of the contacting bodies cancel each other in the case of the
Bxx and the Bxs ICs, while they sum to each other in the case of the Bxn ICs.

The consequences of the difference in the longitudinal stiffness of
both contacting bodies on the contributions to the longitudinal elastic
displacement differences caused by the normal pressures can be easily
understood considering for simplification the effect of the normal pres-
sures in planar geometries. As it is known, in planar geometries the
normal compressive loads tend to move the surrounding surface points
towards where the load is applied. If the wheel is stiffer than the rail, in
the front or leading part of the contact patch the points of the rail will
have a backwards displacement with respect to the points of the wheel as
a result of the normal pressures, and conversely, in the back or trailing
part of the contact patch the points of the rail will have a forward
displacement with respect to the points of the wheel. So as the points of
the wheel and the rail traverse the contact patch from the leading to the
trailing edge, the points of the wheel have a relative backwards longi-
tudinal displacement with respect to the points of the rail. The net effect
is similar to having an extra tractive creepage applied. In the case of non-
planar geometries, the picture is not so clear because the Bxn ICs reverse
their sign not only at xrel¼ 0, as can be seen in the curve corresponding to
the FEM results of Fig. 16b. Nevertheless, in the considered case the effect
is in the same sense as anticipated with the reasoning for planar geom-
etries in the majority of the contact patch, and only in the most lateral
parts of the contact area this effect is reversed.

Lastly, it is noted again that a concave wheel rolling on a convex rail
has been considered. In the case of having a convex wheel rolling on a
concave rail, the rail would be stiffer than the wheel in the x direction,
and the offset between the longitudinal creepage-creep force curves
calculated with CECT (with the analytical approximation of the ICs for
non-planar geometries used in this work) on the one hand and with FEM
on the other hand would happen in the opposite sense.

4. Conclusions

A detailed investigation of 3D frictional conformal contact has been
carried out, in situations with different conformity levels, up to total
contact angle variations in the contact patch Δδ of about 100�. The study
has been focused in steel-on-steel contact, which is present in some
important industrial applications like rolling bearings and the wheel-rail
contact in railway vehicles. Models with varying degrees of complexity
have been used in the study, from the Hertzian model, to the rigorous
exact rolling contact theory properly extended for conformal contact
(named here as CECT), and to comprehensive FE models.

As was illustrated in Ref. [23], when using the exact contact theory to
study conformal contact problems, it is essential to use realistic normal
undeformed distances in the normal part of the contact problem and rigid
slip velocities in the tangential part of the contact problem, which may



Fig. 16. Combined Bxn and Bxx ICs of the elastic displacement differences between both contacting bodies along the longitudinal direction at s ¼ 0, as a function of the longitudinal
distance xrel from the centre of the loaded element. The loaded element has a longitudinal dimension dx of 0.33 mm, a lateral dimension ds of 0.32 mm, its centre is located at s ¼ 1.26 mm,
and it is loaded with an uniform load. a) Bxn and Bxx. A value of 1.128 � 10�5 mm/GPa has been substracted from the Bxx ICs computed with FEM in order to account for the global
displacements present in the FE models. b) Bxn. Blue and black solid lines: FEM results. Red and magenta dashed lines: analytical approximation for non-planar geometries. Bxn anti-
symmetric, and Bxx symmetric with respect to xrel ¼ 0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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deviate considerably from those calculated in the usual “non-conformal”
way. Nevertheless, in some situations even a simple Hertzian calculation
can provide quite accurate figures for the most representative magni-
tudes of the normal part of the contact problem up to considerable levels
of conformity. As an example, two simple geometries were studied, with
constant curvatures in the contact patch, zero mean contact angle and
yaw angle, and with different ratios of the longitudinal to the lateral
dimensions of the resulting contact patches. It is found that the effects of
conformity begin to be appreciable in the tangential part of the contact
problem first, but as Δδ increases they have to be taken into account in
the normal part of the contact problem as well. Other conclusions of the
study are listed below:

- A Hertzian calculation can provide good results in the normal part of
the contact problem up to considerable degrees of conformity, with a
Δδ of at least 40�.

- A correction is proposed for the combined lateral B curvature of the
contact, which considerably improves the results provided by the
Hertzian theory in conformal contact, especially in cases with low
length to width ratio of the contact patch.

- The use of the half-space influence coefficients for the normal part of
the contact problem in the exact contact theory is a good approxi-
mation up to moderate Δδs in the contact patch. However, with higher
Δδs, it becomes necessary to use more accurate ICs to obtain precise
results. In order to avoid the calculation of the ICs for each particular
geometry, an approximation of the ICs of non-planar geometries may
be made, based on the ICs of the half-space, which are readily
Fig. 17. Bxn ICs of the displacements of each of the contacting bodies computed with FEM,
and of the half-space, along the longitudinal direction at s ¼ 0, as a function of the lon-
gitudinal distance xrel from the centre of the loaded element. The loaded element has a
longitudinal dimension dx of 0.33 mm, a lateral dimension ds of 0.32 mm, its centre is
located at s ¼ 1.26 mm, and it is loaded with an uniform load. Blue solid line: rail. Red
dashed line: wheel. Green dash-dotted line: half-space. Results anti-symmetric with
respect to xrel ¼ 0. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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available. This approximation has been seen to substantially improve
the results obtained with the direct use of the half-space ICs.

- The use of accurate ICs for the exact contact theory is more important
with contact patches with high length to width ratios, due to the
higher cross influence between the different longitudinal strips of the
contact patch.

- In cases with constant curvatures in the contact patch, the contact
patches deviate from the Hertzian elliptic shape as Δδ increases,
tending to become more square-shaped.

- The qualitative behaviour of the tangential stresses which are present
in frictional static conformal contact even in the absence of net lon-
gitudinal or lateral forces, does not seem to be significantly affected
by the ratio of the longitudinal to the lateral dimensions of the contact
patch. These tangential stresses increase in magnitude with Δδ, and
should be taken into account for proper damage evaluation when
significant friction is present in the contact interface.

- In contrast to non-conformal rolling contact with elastically similar
materials, in conformal rolling contact different characteristics are
observed in the tangential part of the contact problem depending on
the sign of the creepages. Considering the rolling of a concave wheel
on a convex rail, in situations with zero mean contact angles and
lateral creepages, the adhesion area in the contact patch tends to be
more acute shaped, and more extended in the longitudinal direction,
in tractive rolling than in braking rolling. On the other hand, the
frictional work density tends to be more evenly distributed across the
width of the contact area in tractive rolling, while it is more
concentrated in the central region of the contact patch in braking
rolling.

- As a result of the non-planar geometry of the contacting bodies, there
is a difference between the longitudinal stiffness of both contacting
bodies, in spite of having elastically identical materials. This differ-
ence has an effect similar to having an additional longitudinal
creepage (similar to what happens in non-conformal rolling when the
materials of the wheel and the rail are dissimilar), and gives rise to an
offset in the longitudinal creepage-creep force curve, although the
slope of the curve is not altered significantly.

In its current implementation, the CECT model is particularized to a
straight rail geometry in the rolling direction, but the necessary changes
to account for a curved geometry in the rolling direction of both con-
tacting bodies would be relatively straightforward. An interesting topic
for further research could be to use the CECT model in a rolling bearings
application, after performing these modifications.

In the studied cases the computational costs have been found to be
roughly three orders of magnitude higher with the FE models than with
CECT. This figure is to be considered only as orientative, as the run times
vary considerably from case to case, and may also depend on a number of
circumstances other than the physical models themselves, such as
convergence tolerance settings or the particular algorithmic imple-
mentation of the models. The exact contact theory, while having much
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lower computational costs than the FE models, has been proved to pro-
duce good results with high levels of conformity, being capable to cap-
ture the particular characteristics of conformal contact both in the
normal and in the tangential parts of the contact problem.
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