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Abstract: The monitoring of small houses and rooms has become possible due to the advances in
IoT sensors, actuators and low power communication protocols in the last few years. As buildings
are one of the biggest energy consuming entities, monitoring them has great interest for trying to
avoid non-necessary energy waste. Moreover, human behaviour has been reported as being the
main discrepancy source between energy usage simulations and real usage, so the ability to monitor
and predict actions as opening windows, using rooms, etc. is gaining attention to develop stronger
models which may lead to reduce the overall energy consumption of buildings, considering buildings
thermal inertia and additional capabilities. In this paper, a case study is described in which four
meeting rooms have been monitored to obtain information about the usage of the rooms and later use
it to predict their future usage. The results show the possibility to deploy a simple and non-intrusive
sensing system whose output could be used to develop advanced control strategies.

Keywords: buildings; ambient intelligence; occupancy detection; behaviour modelling; sensor
networks; smart meeting room; Internet of Things (IoT)

1. Introduction

Internet of Things (IoT) devices are becoming popular both for sensing and actuating.
The integration of those systems is rapidly increasing, and it is expected to continue to do so; different
entities have forecasted different increase levels for the next years, but most estimations forecast
between 20 to 30 billion connected devices by 2020 [1]. Several fields have evolved influenced by the
advances in the IoT paradigm; the way these devices offer simple and affordable monitoring and
actuating functionalities has facilitated the development of various research paths in the past years.

One of the areas that has received a great impulse from the IoT field advances is the smart building
framework. This area is gaining increasing attention as people spend most part of their time inside
a building, including their home, office, restaurant, etc. Considering that, it is not a surprise that
buildings are responsible for about 40% of the energy consumption in developed countries, accounting
for a larger proportion of the total energy consumption than both the industry and transportation [2].
Moreover, such energy usage is expected to grow about 45% over the next 20 years [3], thus gaining
knowledge about the energy usage and finding ways to reduce such consumption is a common goal
sought by researchers and practitioners.

On most actions related with the energy consumption in buildings the user is direct or indirectly
involved, whether it is switching on/off lights, adjusting the air conditioning temperature, etc.
A proper modelling and prediction of those actions could greatly reduce the energy consumption.
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That is why developing sensing networks and predictive systems is gaining increasing attention in the
field. One of the methodologies to deal with predictive systems is the Model Predictive Control (MPC),
which considers real building models (designed for example with EnergyPlus), and predictive models
to develop control strategies mainly for heating, ventilating and air-conditioning (HVAC) systems.

In this paper, the presented solution is proved in four smart meeting rooms (SMR), which are a
sub-discipline of Ambient-Intelligent environments [4]. SMR are referred as intelligent systems that are
able to extract information from past events and reuse such knowledge to detect behaviour patterns
and predict similar behaviours in the future [5,6]. The approach presented in this paper consists of
monitoring room level usage, and a posterior prediction of room usage using pre-calculated usage
patterns. Such information is valid on its own, but it could be used as an input for MPC systems to
correct the HVAC control strategies for example. The obtained usage information has also been used
to contrast real usage with the room reservations registered in the booking system.

We present a valid solution to deploy a sensing network to gather data in four meeting rooms
of an office-building of a Technology Centre placed in Derio (Spain), located in the Bay of Biscay in
a region whose climate is classified as oceanic. The presented network is wirelessly interconnected
making it possible to gain valuable knowledge without making much changes in the environment.
The knowledge obtained by performing a data analysis is shown, by presenting the usage patterns
of each monitored room and validating the usage patterns as predictive models. Finally, we discuss
on the results obtained and on the application of the proposed methodology to make corrections in
MPC strategies.

The article has the following structure: in Section 2 the work related to this paper is presented;
later in Section 3 the material and techniques used to develop this research are introduced. After
that, in Section 4 the obtained results are presented. Finally, the results obtained during the study are
discussed and future research paths are described in Section 5.

2. Related Work

Recent advances in IoT, big data and machine learning algorithms have driven advances in many
fields including smart buildings. The smartization of buildings requires to gather data from various
sources, which requires to place a considerable number of sensors making as few changes as possible
and covering various assets in the building. The ability to communicate via various wireless protocols
and to develop scalable architectures to easily include new sensors make IoT devices the way to go in
building monitoring. This kind of systems is used in buildings for monitoring various behaviours,
usually comfort and energy usage related parameters [7]. The multiple possible inputs and architecture
options create a wide variety of configuration possibilities. Those systems which allow scalability are
the ones which have a brighter future as they allow to easily deploy new nodes in the installation [8].

In the actual digitisation era there is great interest in monitoring as much assets as possible,
with policies for doing so being established in many developed countries as in South Korea, where
BEMS installation was made mandatory for public buildings over 10,000 m2 [9]. According to smart
homes several efforts have been made to develop energy management systems, as in [10] where
they introduce a home energy management system (HEMS) to collect status and power consumption
demand from home appliances. Research has also been focused in the field of machine-to-machine
communications as in [11,12] where they make use of the ZigBee communication protocol for
developing a HEMS.

As previously mentioned, the interaction of users with the built environment affects greatly the
energy usage, being the main reason of the differences between energy usage simulations and real
usage [13,14]. Due to that fact, several efforts are being made to model human behaviour in indoor
spaces. According to human-building interaction, various research paths are opened for both detection
and prediction [13]. This area covers research in occupancy detection (binary), occupancy estimation
(amount of people in a room), window opening/closing prediction, etc. According to the occupancy
detection and estimation various solutions have been proposed as it is not a directly measurable
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quantity, from PIR (Passive Infrared) motion detectors and CO2 sensors to smart metering data [15].
Those indirect ways are primarily used instead of cameras as they are not intrusive for people, even if
the accuracy obtained with images from video recordings is usually higher and are commonly used
for setting the ground truth in test scenarios [16].

Occupancy detection and estimation by using PIR sensors receives great attention as they are easily
installable and provide a non-intrusive measuring method in contrast with regularly used cameras,
which may suffer from cyberattacks and non-desired access to the recordings [17]. PIR sensors have
been applied to this problem in multiple ways: a unique PIR sensor, multiple PIR sensors working
together [18,19] or merged with data from other sensors such as temperature, humidity, etc. [14,20].
The application of machine learning methods has also been studied to infer occupancy and activity
patterns from various data sources directly or indirectly related with human presence [21]. Recently
other possibilities have been studied to detect presence by using wireless sensing possibilities provided
by Wi-Fi and Bluetooth signals [22–24], and by monitoring personal computer usage by detecting
keyboard and mouse movements [25].

The knowledge acquired by analysing the interaction between users and the building itself may
be used to develop advanced control strategies where not only online measures can be used but
also predictions are used to improve the control, this is the idea behind the MPC [26]. This strategy
considers the actions that a user can perform to try to predict them in advance to make the necessary
changes before the user acts from an energy saving perspective [27]. To be able to develop valid MPC
strategies it is necessary to process the information in real time to obtain real values from the building
and to make predictions in short and long term to forecast user behaviours, requiring to deploy a
sensing network able to provide the necessary information in real time [28]. The required computing
power to handle these scenarios may benefit from developments in cloud computing services as in [29]
where they propose a building energy management system that takes advantage of available cloud
services to reduce cost and installed equipment.

The room usage information is not only applicable to develop advanced control strategies, but
they have also been applied to check real usage with room booking systems [17], especially in office
buildings in which the private space is frequently needed and having them blocked and unused
results in unnecessary wastes [30]. In addition, the wastes are not only economic as Corporate Real
Estate (CRE) decisions address challenges such as productivity, employees’ well-being, innovation and
flexibility; for which pervasive technologies offer potential for increasing workplace efficiency on a
long-term basis [31].

3. Materials and Methods

One of the main advantages of the development of wireless IoT equipment is that there is no
need for a wired installation between devices, that way the effort when deploying such a network
is considerably reduced. The solution proposed in this paper consists of IoT sensors as nodes (view
Figure 1), with at least one node connected per monitored meeting-room, and a microcontroller
responsible for receiving the data from the nodes, store the data in a database and making it accessible
via cloud.

The use of wireless IoT nodes benefits the system we propose in the way that it allows to reduce
the changes to be made in the rooms to be monitored, allowing for fast installations in cases in which
many rooms in a building have to be equipped with the proposed configuration [32], this way the
proposed system gains in scalability. Not only does the wireless nature of the systems benefit the
installation, but it will also facilitate the relocation and re-usability of the sensors in other places at
a very low cost in time and money. This way the proposed system is scalable and reusable with the
counterpart of having to replace batteries from time to time, which should last at least for two years
with the adequate configuration and taking advantage of low power communication protocols.
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Figure 1. Configuration of the deployed IoT sensing equipment.

The proposed configuration was tested in an office building of a Research and Development
centre, equipped with advanced HVAC systems. Four meeting rooms of the mentioned building where
equipped with sensors to monitor presence and thermal behaviour related data. The monitored rooms
are mainly used for meetings, both physical and virtual, and are reserved using the intranet of the
company. In this test case the Multisensor 6 by Aeotec, which contains six built-in sensors: temperature,
relative humidity, ultra-violet radiation, vibration, light and motion, were used. Such multisensor
device has built-in Z-Wave low power communication, which was used to establish the communication
between the sensing devices and the main node. This communication protocol is mainly used in home
automation applications, it makes use of low energy radio signals for communication between devices
allowing wireless control of residential appliances. Moreover, the protocol provides interoperability
between home control systems of different manufacturers. The previously mentioned wireless nodes
have enough smartness to send the data when there is a change in the measured value, this way
the power consumption is low, which is necessary as the nodes are powered by batteries while the
database does not increase with redundant data.

Our aim here is to develop an easily installable and portable system which offers facilities to
move between different spaces while maintaining its functionalities, consequently other variables, a
priori more related to human presence such as CO2 or sound, have not been considered here. CO2 and
sound measurements suffer from great changes in small and middle sized rooms due to the nearness
of occupants, that way the behaviour of the system could arise false positives or negatives once the
behaviour of the system is established but its location is changed for whatever reason. This argument
could also be applied for PIR movement sensors, but due to their lower price it is possible to deploy
more than one sensor per room, constructing a virtual movement sensor whose output is the result of
using a logical OR operation of all PIR sensor outputs, to avoid location problems while maintaining a
low cost.

The main node in the test scenario consisted of a Raspberry Pi 3 model B which was equipped
with a RaZberry card to communicate via the Z-Wave protocol with the sensing devices. The system
runs the GNU/Linux-based Raspbian 8.0 distribution. As commented before, the main role of this
node is to receive the data from all the rooms via wireless communication and store it. The received
data is locally stored in a typical SQLite database, data can later be accessed from outside via RESTful
web services.

As previously mentioned the installed multisensors measure motion which is in fact a binary value
representing movement or lack of it. Consequently, they do not directly give presence information, so a
modelling needs to be performed to obtain it [27]. In this case an automatic data modelling process
has been implemented to convert motion data from five-minute interval to binary occupancy data;
motion data obtained in every five-minute period is considered to determine the occupancy of the
room in those five minutes, the pseudo-code of the modelling procedure is shown in Algorithm 1.
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Algorithm 1 Algorithm to model 30 minute occupancy level

Function Occupancy30Min(pirData):
Data: pirData: 30 minute raw PIR data
Result: 30 minute occupancy level
30minData← {}
for (t=0;t<30;t=t+5) do

pirDataT← int (pirData[t:t+5].any() or lastPir.equals(1))
30minData.add(pirDataT)

end
return mean(30minData)

After the first modelling step in which five-minute binary occupancy data is obtained, the data
goes through a second step in which such five-minute information is averaged in thirty minute bins to
obtain a more representative value which gives an idea of the room usage, this is done to avoid sensor
misreading when there is no much movement, for example when meeting attendants are seated and
no movement is detected by the sensor [33].

The patterns shown in Figure 2 give an idea of the room usage as a percentage in a regular basis,
that way, they do not directly tell if a room is used or not but give a clear idea of how the rooms are
regularly used, which can be used to determine day periods when the rooms are most likely to be
occupied. In certain applications like HVAC systems controlling; having this knowledge may lead to
develop advanced control strategies which could in fact reduce considerably the amount of energy
used in non-necessary time periods.
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Figure 2. Modelling performed to obtain a percentage of presence from the raw PIR data for a workday.

The pattern in Figure 2 corresponds to a day with a working time table from 8:30 to 17:30. It can
be seen that there is a clear descent in use from 13:00 to 14:00 which corresponds with lunch time in
the building. The pattern shows high usage in the morning and in the afternoon in this particular case,
giving an idea of how the already explained data modelling works.

4. Results and Discussion

As mentioned in Section 3, the installed multisensors have six built-in sensors whose data was
analysed for the monitoring period which lasted from July to December, that way capturing data from
the two working time-tables (the first one is valid from June to mid-September and the second one is
valid for the rest of the year) followed by the occupants of the building. In this case due to the artificial
control of temperature and humidity performed by the HVAC systems installed in the building, it is
not expected to suffer from big changes in temperature nor humidity by external factors. Due to that
behaviour, it was not possible to detect significant variances in temperature and humidity, so presence
related information could not be obtained from them.
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As shown in Figure 3, the temperature and humidity are maintained stable in a small variation
range by the HVAC systems. It can be seen how the systems maintain the temperature and humidity
values in fixed ranges, especially in the morning. Thus, the system is capable of detecting working
and not working days by using this information, which could be very helpful for a plug and play
device which does not require to be fed with extra information. Because temperature and humidity
measurements do not provide the information needed for presence estimation the movement sensors
outputs were analysed to obtain such information.

15

20

25

30

35

40

Te
m

pe
ra

tu
re

 (%
)

Temperature in room A Temperature in room B

0    4    8    12    16    20    
15

20

25

30

35

40

Te
m

pe
ra

tu
re

 (%
)

Temperature in room C

0    4    8    12    16    20    

Time(Hour)

Temperature in room D

(a)

30

40

50

60

70

80

H
um

id
ity

 (%
)

Humidity in room A Humidity in room B

0    4    8    12    16    20    

30

40

50

60

70

80

H
um

id
ity

 (%
)

Humidity in room C

0    4    8    12    16    20    

Time(Hour)

Humidity in room D

(b)
Figure 3. Temperature and humidity measurements in the monitored rooms: (a) temperature and
(b) humidity measurements in each of the monitored rooms.

4.1. Occupancy of the Rooms

Passive infrared sensors only provide binary information when movement is detected and
lost, because of that, they do not provide occupancy information directly making it necessary to
process the data to obtain usage information. The data processing that had to be performed has been
described in Section 3. After performing such modelling, data from different months were analysed
obtaining information about usage of the rooms, which showed similar behaviours for each weekday
(Monday-Thursday) except Friday when workers usually leave the office before.

Considering that different weekdays show similar behaviours from week to week, some usage
patterns were calculated taking the average usage per half-hour intervals. Those patterns were
constructed using data from individual months, showing some similar behaviours between them.
To take advantage of that we propose to use those patterns as predictors for the following month.
Usage patterns obtained with usage data from different months are shown in Figure 4. It can be seen
how the usage from Monday to Thursday is mainly given in the morning and afternoon with a stop
at midday, while on Fridays the rooms are mainly used in the morning. The mentioned patterns can
clearly be seen in room A data in Figure 4d.

As it can be seen in Figure 4 the usage patterns for different months show similar behaviour where
meeting-rooms are mainly used in the morning and afternoon with a break in the noon. Of course
this was an expected behaviour, as it was not probable to detect usage outside working hours, but
obtaining the expected results shows the validity of the proposed model. It can also be seen how the
room usage on Friday afternoon is very rare. As the calculated patterns seem to be quite regular, they
are used as predictors of room usage, this approach is further explained in Section 4.2.
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Figure 4. Calculated usage patterns for different months in each of the monitored meeting-rooms:
(a–d) contain the usage patterns for September, October, November and December (2017) respectively.

When computing the dissimilarities of the patterns between different months of the same room,
Euclidean distance (see Equation (1)) between them take values of the order of 1–5 when the maximum
difference could theoretically be 240 (as there are 240 entries in each month pattern: 1 value per 30 min,
that is 48 values a day, or 240 values a work-week (Monday to Friday)). A summary of the Euclidean
distances between the different month patterns per monitored room can be seen in Figure 5. Those
Euclidean distances tell that the monthly usage patterns are similar between them and in consequence
that the room usage is quite regular, and therefore, it should be possible to predict it.

dEucl(p, q) = dEucl(q, p) =

√
n

∑
i=1

(qi − pi)2 , n = 240 (1)
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Figure 5. Euclidean distances between monthly usage patters for each of the monitored rooms (A–D).

4.2. Predicting Day-Ahead Room Usage

As previously shown in Figure 4, the usage patterns seem to be quite regular, which has been
proved analysing the Euclidean distances of the monthly patterns, opening the way to think of them as
predictors. In this first approach, we propose to use the usage patterns of one month to predict daily
usage of the following month. The prediction in this case consists of using the pattern calculated for
Mondays as the prediction for all Mondays of the next month. This kind of predictive methodology
considers only information about previous usage, focusing on the regular usage described before.

The proposed modelling helps determining the room usage and analysing how each of the rooms
is used regularly, but when it comes to feeding control techniques for systems like the HVAC the
information needs to be converted to occupied/non-occupied. To obtain such information via the
patterns the room is defined as occupied in an interval if the mean occupancy is at least 0.2, this way
avoiding to set the room as occupied in enter-exit actions. When using such definition and applying
the patterns from one month to the following month, the accuracy scores obtained are around 80%.
The presented approach suffers limitations as for example not being able of updating the data with
newest available data. The obtained accuracy scores are shown in Table 1. It can be seen how the
months that are less accurate are August and especially September, what could be expected as are the
months when most workers take their summer vacation; to consider that some other approach should
be tried to consider for actual information when calculating the patterns. It can also be seen how the
results are very similar in all cases showing that the room usage is quite regular.

Table 1. Accuracy scores obtained applying patterns from month (t − 1) to month t.

Month Pattern from Month Accuracy

8 7 0.81
9 8 0.78
10 9 0.83
11 10 0.82
12 11 0.82

To try to improve the predictions, another approach was implemented by calculating the
predictors, that is the patterns, for weeks instead of months using patterns from the previous n
weeks to calculate the actual one. That way the information used as predictor is nearer from the
prediction horizon and the information updates more rapidly. The weak point of this approach is that
if there is a rare event one week the prediction can be nonsense for the next week.

For evaluating the impact of feeding the patterns with live information, several usage patterns
were calculated using different previous week configurations for each. Patterns for the previous
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weeks were calculated, from just using last week patterns to the last six weeks. When evaluating the
patterns as predictors different accuracy scores were obtained which can be seen in Figure 6. In general,
the results are similar to monthly patterns, but it can be seen how using more actual information seems
to improve the results in some cases.
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Figure 6. Accuracy scores of the predictions with the usage patterns using different number of previous
weeks for constructing the patterns in each of the monitored meeting-rooms (separated per week-day,
boxes are in order: Monday-Friday): (a) 1 week, (b) 2 weeks, (c) 3 weeks, (d) 4 weeks, (e) 5 weeks,
(f) 6 weeks.

Results in Table 2 show that results with the proposed two approaches are similar. The mean
accuracy obtained for each month, when applying patterns calculated with previous 1, 2, 3 or 4 weeks
(column Acc. prev. n weeks) and the ones obtained when applying previous months’ patterns (column
Acc. month) are shown. In the majority of the cases the patterns calculated once a month give better
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results, but there are cases, such as September, in which the mean accuracy values improve when using
the n previous week approach. In this case the effect of the end of summer holidays is notorious.

Table 2. Means of the accuracy scores obtained applying patterns calculated with the previous n week
data, and patterns obtained monthly.

Month n Acc. Prev. n Weeks Acc. Month

8 1 0.81 0.81
8 2 0.78 0.81
8 3 0.78 0.81
8 4 0.79 0.81
9 1 0.79 0.78
9 2 0.80 0.78
9 3 0.80 0.78
9 4 0.80 0.78

10 1 0.80 0.83
10 2 0.81 0.83
10 3 0.81 0.83
10 4 0.79 0.83
11 1 0.81 0.82
11 2 0.81 0.82
11 3 0.81 0.82
11 4 0.81 0.82
12 1 0.81 0.82
12 2 0.81 0.82
12 3 0.81 0.82
12 4 0.81 0.82

The usage of the patterns as predictors shows that the results are accurate and because of their
simplicity they can therefore be calculated and tested in the same device where the data acquisition is
performed. That way, avoiding installing additional computing capabilities and thereby maintaining a
low cost for the entire system while providing predictive capabilities.

4.3. Comparing Reservations and Real Usage

The installed movement sensors and the work commented on previous sections can be reused to
study the correct reservation of meeting rooms, comparing the real usage with the reservations stored
in the room booking system, taking advantage of its existence. In several office buildings the incorrect
usage of reservations may result in having empty meeting rooms while workers are trying to reserve
one without success, which in fact may lead to an important loose in productivity.

When comparing the real usage of the meeting rooms with the reservations we found that the
incorrect usage of them is quite popular, with workers reserving the meeting-rooms normally around
30% more time than they really use them, even in some cases meeting rooms are reserved but they are
not used. Figure 7 shows examples of correct and incorrect meeting-rooms reservation-usage relation.

When analysing the usage and reservations during the monitoring period, it can be seen that
in general rooms are reserved around 25% more in mean, which is acceptable as a margin time.
However, there are cases in which the rooms are reserved much more time than they should (see
Figure 8). Taking that into account, some company policies should be defined to avoid those incorrect
room reservations.
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(a) (b)
Figure 7. Example of good and bad usage of meeting rooms (Saturdays, Sundays and holidays have
been removed): (a) shows a correct usage of the booking system, especially in the second half of the
month. (b) on the contrary shows a worse usage of the booking system as a big part of the time the
room is reserved but not used.
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Figure 8. Percentages of time in which a room is reserved but not used.

5. Conclusions

The methodology described in this paper shows some of the possibilities that a simple IoT network
installation can provide. In this paper several usage patterns have been calculated, the procedure of
calculating them does not require big computing resources, which makes it possible to compute them
in the edge device, allowing to take the decisions in the installed infrastructure itself.

When using the patterns as predictors the accuracy scores obtained are around 80% which are
more than enough for many purposes in the described application area. It has been shown how
updating the patterns with the newest available information improves the results in some special cases.
Considering that, an automatic system in which the patterns are updated with online information and
applied for the following days seems to be a correct approach to design control scenarios for HVAC
and similar devices. That way, the information obtained with the presented solution could fed Model
Predictive Control strategies making it possible to adjust better human behaviour allowing to use
energy more accurately.

When contrasting reservations with usage, we were able to determine how rooms are sometimes
used incorrectly, reserving the rooms for much more time than they are later used. In this sense,
the idea of using the installed infrastructure to determine room usage and detect reservations that are
not being used should be considered. A system could be developed to cancel reservations that are not
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being used or at least notify the user that has made the reservation about it and make it possible to
cancel the reservation if it is not going to be used.

The methodology presented in this paper has been designed to be applied in any type of room of
a building, even if the study is based on measurements done in meeting-rooms. The main limitation
of the proposed system is not related with the activities that can be carried out in the rooms (it just
requires small movements to activate the sensors), but by the detection range of PIR sensors. The system
cannot guarantee the correct functioning in rooms bigger than the detection range of the used PIR
sensors, this can be fixed for those cases by a minor upgrade consisting of deploying more PIR sensors
distributed through the room covering the entire space and defining occupancy as the output of a
logical OR gate applied to all the PIR outputs.

The proposed system and methodology is also interesting to consider for domestic monitoring.
In this particular case the nature of the patterns will vary depending on the type of user. The expected
pattern will be totally different in the case of a worker who is outside home for most part of the day,
or in the case of an elderly person who spends most part of the day at home. In the domestic case we
expect the patterns to be more stable and regular as the number of users is sensibly smaller, that way
reducing the variance. Such nature opens the possibility to detect not only the usage of the different
spaces of the house, but to detect behaviours such as the regular breakfast hour, or detecting when a
person returns home from work, allowing to have a smarter monitoring.

In the future, we intend to research deeper in the reservation information to be able to predict
room usage information from previous knowledge and the registered room bookings for the following
days. We intend to check if this complementary information can help to improve the predictions
capabilities described in this paper,as well as testing the proposed configuration in this paper in other
scenarios, especially in houses.
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The following abbreviations are used in this manuscript:

IoT Internet of Things
MPC Model Predictive Control
HVAC Heating, Ventilating and Air-Conditioning
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