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Side-effects of domestication: cultivated legume
seeds contain similar tocopherols and fatty acids
but less carotenoids than their wild counterparts
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Abstract

Background: Lipophilic antioxidants play dual key roles in edible seeds (i) as preservatives of cell integrity and seed
viability by preventing the oxidation of fats, and (ii) as essential nutrients for human and animal life stock. It has been
well documented that plant domestication and post-domestication evolution frequently resulted in increased seed size
and palatability, and reduced seed dormancy. Nevertheless, and surprisingly, it is poorly understood how agricultural
selection and cultivation affected the physiological fitness and the nutritional quality of seeds. Fabaceae have the
greatest number of crop species of all plant families, and most of them are cultivated for their highly nutritious edible
seeds. Here, we evaluate whether evolution of plants under cultivation has altered the integrated system formed by
membranes (fatty acids) and lipophilic antioxidants (carotenoids and tocopherols), in the ten most economically
important grain legumes and their closest wild relatives, i.e.: Arachis (peanut), Cicer (chickpea), Glycine (soybean),
Lathyrus(vetch), Lens (lentil), Lupinus (lupin), Phaseolus (bean), Pisum (pea), Vicia (faba bean) and Vigna (cowpea).

Results: Unexpectedly, we found that following domestication, the contents of carotenoids, including lutein and
zeaxanthin, decreased in all ten species (total carotenoid content decreased 48% in average). Furthermore, the
composition of carotenoids changed, whereby some carotenoids were lost in most of the crops. An undirected change
in the contents of tocopherols and fatty acids was found, with contents increasing in some species and decreasing in
others, independently of the changes in carotenoids. In some species, polyunsaturated fatty acids (linolenic acid
especially), α-tocopherol and γ-tocopherol decreased following domestication.

Conclusions: The changes in carotenoids, tocopherols and fatty acids are likely side-effects of the selection for other
desired traits such as the loss of seed dormancy and dispersal mechanisms, and selection for seed storability and taste.
This work may serve as baseline to broaden our knowledge on the integrated changes on crop fitness and nutritional
quality following domestication.
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Background
Plant domestication by humans likely started in the Middle
East approximately 13,000 years ago, although geogra-
phically and temporarily separated events occurred at
an estimated 13 locations around the World 13,000 to
3,000 years before present [1]. Both, initial domestication
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sensu stricto and post-domestication evolution have influ-
enced morphological and physiological traits of crops [2].
Most probably, taste, yield, storability, and heritability of
desired traits were major determinants in the decision
making of early farmers, similarly to present day prefer-
ences [2]. In addition, for some crops, unconscious selec-
tion of physical characters [3] or invisible nutritional
traits, such as high free tryptophan content that deter-
mines brain serotonin synthesis, could have been involved
in the decision of prehistoric humans to select species for
farming [4]. Genetic changes upon domestication and
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crop evolution related to the profitability of farming oper-
ations are well documented, such as diminution of seed
dispersal mechanisms and seed dormancy, increases in
seed size and other plant traits bearing on agronomic per-
formance [5-9].
In contrast, less attention has been paid to the effects of

domestication on the nutritional value of seeds. The scarce
literature available has focused on protein and amino acid
contents [4,10-13] and very little information exists on
other important nutritional traits such as starch [14] or oils
[15]. Carotenoids, tocopherols and fatty acids (FAs) play
crucial roles in edible seeds (i) as essential dietary elements
comprising vitamin precursors, antioxidants and essential
ω-3 FAs, required for human and livestock nutrition, and
(ii) for the seed they are required to support membrane in-
tegrity, contributing to seed fitness. Despite their pivotal
roles for seed viability and nutrition, it is unknown if these
metabolites were selected for by the early farmers, and if
they were changed upon post-domestication evolution.
Upon seed storage, seed viability can be compromised if

the antioxidant system fails, leading to the accumulation
of reactive oxygen species (ROS). Evidence is emerging
that ROS contribute to oxidative signalling required for
plant growth and development as well as cell death
[16-18]. The accumulation of ROS can result in seed death
when it occurs in critical amount or location such as in
the embryo [18-20]. Moreover, ROS can rapidly react with
other molecules, including FAs, resulting in lipid peroxi-
dation, phospholipid degradation and loss of membrane
integrity [19,21,22]. The composition of membrane FAs
has been correlated with seed storability [23]. Polyunsatur-
ated fatty acids (PUFAs) are particularly sensitive to lipid
peroxidation [24]. Lipophilic antioxidants protect cells
from lipid peroxidation and hence, from membrane dam-
age, and high tocopherol contents have been positively
correlated with seed viability [25-27]. The contribution of
carotenoids to the antioxidant activity of seeds is poorly
understood compared to their roles in photosynthetic tis-
sues, where they are accessory photosynthetic pigments
with antioxidant capacity involved in thermal dissipation
of excess light energy and ROS scavenging [28]. In seeds,
carotenoids are precursors of the phytohormone abscisic
acid (ABA), which is a positive regulator of seed dormancy
[29,30]. Moreover, as colourful molecules, they increase
attractiveness to seed dispersers [31].
In humans, tocopherols and carotenoids have roles as

antioxidants, as they do in plants, but with extended
impacts on human physiology. Carotenoids prevent
oxidation in the macula of the eye, and deficiency in ca-
rotenoids can cause blindness [32,33]. Tocopherols play
crucial roles in anti-inflammatory processes [34,35] and
deficiency results in a range of disorders, including
neuromuscular problems [36] and coronary diseases
[37]. Generally, a high intake of unsaturated fatty acids
(UFAs) relative to saturated fatty acids (SFAs) prevents
coronary heart disease [38].
Considering the highly beneficial effects of carotenoids,

tocopherols and UFAs on human health, and based on the
trends already found for other nutritionally relevant traits
[4], one would intuitively expect that our extant crops
contain higher contents than their wild progenitors. How-
ever, FAs and tocopherols are invisible to the human eye,
in contrast to the colourful carotenoids. Seed colour is an
agronomic trait subject to directional selection [9]. Hence,
a selective change in the coloured carotenoids could have
occurred independently of the changes in the invisible to-
copherols and FAs.
We chose a set of the ten most important species for

human and livestock feeding in the Fabaceae family and
their closest wild relatives to study the modification of
carotenoids, tocopherols and FAs upon domestication.
This family was chosen (i) because of its agricultural and
economic importance: with 41 domesticated species, the
legumes have the greatest number of crop species of all
plant families, most of which are cultivated for their
highly nutritious edible seeds [6,7]; (ii) because legume
seeds appear to contain higher levels of carotenoids than
the edible seeds of other plant families [39]. Our work is
intended to provide baseline information on the impact
of domestication and post-domestication evolution on
carotenoids, tocopherols and FAs, which could be key
contributors to future improvements of the nutritional
value and the storability of edible seed crops.
Methods
Plant material
Ten of the most widely consumed grain legume species
and their ten corresponding most closely related wild
relatives were selected for this study (Table 1). The ten
selected species account for 97% of total harvest tons
and 94% of World cultivated Ha for legume production
(FAO 2013, http://faostat.fao.org). For detailed informa-
tion, literature regarding wild progenitor assignment and
for suppliers see Additional file 1. All seed lots were sub-
mitted to the same protocol before analyses. Seeds were
transported from the providers (where they were stored
at low temperature and relative humidity) in sealed en-
velopes at low humidity. Once in the lab, seed material
was kept over silica gel at −20°C until use. Seeds were
then ground to a fine powder with mortar and pestle
using liquid nitrogen before extraction. Five independent
biological replicates (2 to 10 seeds per replicate, depend-
ing on seed size, to obtain at least 75 mg of dry material)
were produced for each seed lot. Each replicate was ana-
lysed for carotenoids, tocochromanols and FAs contents
(except for Cicer arietinum and Lens culinaris, for which
a separate set of seeds was used for FA analysis).

http://faostat.fao.org/


Table 1 Grain legumes used in this study and their closest wild relatives (D, domesticated; W, wild)

Common name Domestication status Scientific name Country of origin

Peanut W Arachis monticola Krapov. & Rigoni Argentina

D Arachis hypogaea L. China

Chickpea W Cicer reticulatum Ladiz. Turkey

D Cicer arietinum L. Spain

Soybean W Glycine soja Sieber & Zucc. Russia

D Glycine max (L.) Merrill Japan

Vetch W Lathyrus cicera L. Spain

D Lathyrus sativus L. Greece

Lentil W Lens culinaris subsp. orientalis (Boiss.) Ponert Cyprus

D Lens culinaris Medik. Spain

Lupin W Lupinus luteus L. Spain

D Lupinus luteus L. Spain

Bean W Phaseolus lunatus L. Peru

D Phaseolus lunatus L. Colombia

Pea W Pisum sativum L. Greece

D Pisum sativum L. Spain

Faba bean W Vicia narbonensis L. Spain

D Vicia faba L. Spain

Cowpea W Vigna unguiculata subsp. unguiculata (L.) Walp Nigeria

D Vigna unguiculata (L.) Walp. USA

Country of origin refers to the country where the seeds were collected.
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Carotenoids analysis
Approximately 20 mg dry mass (DM) (exact mass re-
corded) of seed powder per replicate were used for carot-
enoids analyses. Carotenoids were extracted in 250 μL of
95% acetone containing 0.1 g L−1 of CaCO3 at ≤ 4°C using
cold racks (IsoPack, Eppendorf 022510258 IsoTherm®,
USA) and centrifuged for 10 min at 16,100 g. The super-
natant was collected and the pellet resuspended in 250 μL
of 100% acetone and centrifuged for 10 min at 16,100 g.
The two supernatants were combined and filtered through
a 0.2 μm PTFE filter (Teknokroma, Barcelona, Spain).
Carotenoids were separated by HPLC (Waters, Barcelona,
Spain) on a reversed-phase C18 column (Waters Spheri-
sorb ODS1, 4.6 x 250 mm, 5 μm particle size, Milford,
Massachusetts, USA) and detected with a Photodiode
Array Detector (Waters 996, Waters, Barcelona, Spain),
following the method of García-Plazaola and Becerril
[40,41].

Tocochromanols analysis
Approximately 20 mg DM per replicate were used for
the analyses of tocochromanols (i.e., tocopherols and
tocotrienols). Tocochromanols were extracted at ≤ 4°C
(as above) in 500 μL of 99% heptane and centrifuged for
10 min at 16,100 g. The supernatant was collected, the
pellet resuspended in 500 μL of 99% heptane and centri-
fuged for 10 min at 16,100 g. The two supernatants were
combined and filtered through a 0.2 μm PTFE filter
(Teknokroma, Barcelona, Spain). Tocochromanols were
separated by HPLC on a Diol column (Supelcosil LC-Diol,
4.6 × 250 mm, 5 μm particle size, Supelco Analytical,
Sigma-Aldrich, Bellefonte, USA) using a modified method
of Bagci et al. [42]. The system was operated with heptane:
tert.-butylmethyl ether 97.5:2.5 v:v as an eluant at a flux of
1 mL min−1, and tocochromanols were detected with a
Scanning Fluorescence Detector (Waters 474, Waters,
Barcelona, Spain) set to an excitation wavelength of
295 nm and an emission wavelength of 330 nm. Toco-
chromanols were quantified using calibration curves of α-,
β-, γ-, and δ-tocopherol and α-, β-, γ-, and δ-tocotrienol
standards (Calbiochem, Darmstadt, Germany).

Total fatty acids analysis
Fatty acids were derivatised to fatty acid methyl esters
(FAMEs) as described by Li-Beisson et al. [43]. Briefly,
around 20 mg of freeze-dried seed powder were treated
with 2.64 mL of methanol:toluene:sulfuric acid 10:3:0.25
v:v:v containing 0.01% (w:v) butylated hydroxytoluene.
200 μg of heptadecanoic acid (C17:0, dissolved in hexane)
were added simultaneously as internal standard. Samples
were incubated at 80°C for 90 min with constant agitation
before adding 1 mL of hexane and 3 mL of 0.9% NaCl (w:v).
Samples were vigorously mixed before centrifugation for
10 min at 3,000 g. The supernatant was transferred to
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autosampler vials and kept at −20°C if not analysed imme-
diately. FAMEs were separated using a Trace 1300 gas
chromatograph (GC) (Thermo-Scientific, USA) on a 30 m
FAMEWAX column (Restek #12497, Bellefonte, USA) and
detected using a TSQ 8000 triple quadrupole detector
(Thermo-Scientific, Waltham, USA) operated in full scan
mode (50 – 550 m/z). The temperature gradient was first
set to 120°C for 1 min, then increased by 9°C per min up
to 200°C, and finally increased by 3°C per min up to 230°C,
which was held for 6 min with a carrier gas flow of
1 mL min−1 of helium. The ion source temperature was set
to 250°C and the transfer line to 240°C. The split ratio was
adjusted from 20 to 150 depending on total fatty acid
abundance. A commercial FAME mix (Sigma Aldrich ref.
18919, Missouri, USA) was used to confirm the identities
of the FAs. External standards of palmitic, stearic, oleic,
linoleic and linolenic acid were used in conjunction with
the internal standard to estimate the total amount of each
fatty acid. Data analysis was performed using the Xcalibur
software (Thermo-Scientific, Waltham, USA).

Data processing and statistics
Variations (Δ%) in the contents of carotenoids, tocoph-
erols and FAs following domestication were calculated as
percentages of the contents in the wild species as follows
[(domesticated-wild)/wild*100]. Two-way analysis of vari-
ance (ANOVA) was used to evaluate the effects of the
genus and of the domestication status (domesticated or
wild) and their random slope on total contents of caroten-
oid, tocopherol, oil, SFAs, MUFAs and PUFAs. The genus
was used as a random-effect factor, and the domestication
status was a fixed-effect factor. One-way ANOVA with
Dunnett C test as pot hoc was used to check for differ-
ences in total carotenoids and total tocopherol contents,
in FAs, total seed oil content and in the contents of SFAs,
MUFAs and PUFAs between each grain legume and its
corresponding wild relative. Pearsons’ correlation was used
to analyse the relationship between the variation of lipo-
philic seed antioxidants and FAs contents in grain legumes
and their wild relatives. Statistical analyses were performed
using the SPSS 19.0 statistical package.

Results
Lipophilic antioxidants
Overall, the total seed carotenoids contents of domesti-
cated plants was significantly lower than that of their wild
counterparts (two-way ANOVA; P < 0.001, Figure 1A).
Total carotenoids contents was lower in the domesticated
plants of the ten genera analysed (Table 2) whereby the ex-
tent of the difference with their wild progenitors was
genus-dependent (P < 0.001, Figure 1A). Pairwise compari-
son showed that this difference was significant in six of the
ten genera analysed (one-way ANOVA; Table 2) and great-
est in Glycine (Figure 1A). In contrast, total tocopherols
did not appear to show consistent differences between wild
and domesticated plants (Figure 1B and Table 2). Tocoph-
erols contents were significantly (P < 0.05) lower in some
of the grain legumes (Arachis, Lens and Lupinus) whereas
in other cases they were lower in the wild relatives (Gly-
cine, Cicer, Vicia) (Figure 1B). Accordingly, no dependency
was found between the changes in total tocopherols and
total carotenoids (Figure 1C).
The composition of individual carotenoids and tocoph-

erols in grain legumes also differed from that of their wild
relatives (Figure 2). Lutein was the predominant carotenoid
in all the species, followed by zeaxanthin and β-carotene
(Figure 2A), except for the Vigna wild relative. Of all to-
copherols, γ-tocopherol was the most abundant isoform in
all species, except for Vigna and Arachis monticola, where
δ − tocopherol and α-tocopherol were the main isoforms,
respectively. No tocotrienols were detected in any seed lot.
As a proportion of total seed carotenoids, lutein was higher
in the grain legumes than in their wild relatives, except for
Arachis. When present, lutein epoxide, neoxanthin, violax-
anthin, and antheraxanthin as a proportion of total caroten-
oids were lower in domesticated legume seeds (Figure 2A).
As a proportion of total tocopherols, α-tocopherol was
lower whereas γ-tocopherol was higher in domesticated
plants (Figure 2A). The absolute content of lutein was
lower in grain legumes than in their wild relatives, account-
ing for the lower amount of total carotenoids, whereas no
consistent difference between grain legumes and their wild
counterparts was found for the individual tocopherols
(Figure 2B, Additional file 2, Additional file 3).

Fatty acids
As found for tocopherols, total seed oil content did not ap-
pear to differ consistently between grain legumes and their
wild relatives (Figure 3A, Additional file 4). Total oil con-
tent tended to be higher (by up to 1.65 fold) in domesti-
cated Cicer, Glycine, Lathyrus, Phaseolus, and Pisum,
slightly lower in domesticated Lupinus and showed no
significant difference in the other four genera (Additional
file 4). Most FAs were higher in domesticated grain legumes
except linolenic acid, which was lower in the domesticated
plants of all genera but Cicer and Pisum (Figure 3B). Fatty
acids composition also did not show consistent differences
among the analysed species between wild and domesticated
plants (Figure 3, Additional file 4) and no dependence was
found between the variations in FAs and in seed caro-
tenoids and tocopherols contents following domestication
(Figure 4). Although no significant, the best relation-
ship was observed between total tocopherols and PUFAs
(Pearson’s correlation coefficient: 0.59; P = 0.07, Figure 4C).

Discussion
The advent of agriculture led to the transition of human
societies from hunter-gatherers to early farmers, but it is



Figure 1 Effects of domestication on total seed carotenoids
and tocopherols contents. (A) Bisector plots representing total
carotenoids contents and (B) total tocopherols contents of grain
legumes plotted against their closest wild relatives. Data points below
the dotted line (y = x) indicate that the domesticated species
contained less carotenoids or tocopherols than their wild relatives.
Data points show arithmetic means ± SE (n = 5). Note that the contents
of total carotenoids significantly decreased following domestication
(panel A; Fdomestication = 49.0, P < 0.001 and Frandom solpe = 32.3, P < 0.001,
two-way ANOVA) but no general pattern was found for tocopherols
(Fdomestication = 0.039, P = 0.843). (C) Dependency between the
variations in total seed carotenoids and tocopherols contents following
domestication. Variations (Δ%) are expressed as percentages of the
contents in the wild species. Data points represent means (n = 5).
Pearson’s correlation was not significant (P = 0.954), indicating that the
changes in carotenoids and tocopherols occurred independently.
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not fully understood how domestication impacted upon
the nutritional traits of edible seeds. By comparing crops
with their close wild relatives, recent studies have pro-
vided new insights into biometric and physiological
changes on the seed and the whole plant level [44,45].
We have used this approach to study the ten economic-
ally most important legume species cultivated for their
edible seeds, accounting for 24.4% of Fabaceae domesti-
cated species (10 out of the 41 domesticated species
within the Fabaceae family [7]). These ten species were
domesticated in several independent domestication cen-
tres [1] and are now cultivated on 190 million hectares
of land globally (http://faostat.fao.org). Domestication
implied a complex evolution process and although we
do not address here the influence of environment on
seed properties, our data suggest that domestication led
to unexpected changes in carotenoids, tocopherols and
FAs that are discussed with a view to seed quality and
future breeding opportunities.

Carotenoids, seed dormancy and dispersal
Although one might intuitively expect that compounds
that are beneficial to human health are more concentrated
in crops than in their wild relatives, total seed carotenoids
decreased following domestication in all ten genera stud-
ied (Figure 1, Table 2). Two possible explanations for this
unexpected finding are related to crop management re-
quirements. Firstly, genotypes defective in autodispersal
mechanisms were frequently selected for seed crops
[1,2,9], i.e.: in many grain legumes, domestication involved
the selection of genotypes lacking pod shattering mecha-
nisms, with subsequent dependence on humans for dis-
semination [46]. Among others, endo- and exo-zoochory
are important mechanisms that legumes use for seed dis-
persal [47,48]. Carotenoid derivatives are precursors of
volatile scent and aroma constituents, such as geranyl
acetone and β-ionone, which attract animals [49,50] and
carotenoids may also signal maturity to potential seed

http://faostat.fao.org/


Table 2 Concentration of total carotenoids and total tocopherols on domesticated (D) and wild (W) legume seeds

Total carotenoids (μg g−1DM) Total tocopherols (μg g−1DM)

Crop W D % Δ W D % Δ

Arachis 0.9 ± 0.2 0.3 ± 0.4 −63.3 120.2 ± 26.7 23.5 ± 4.6 −80.5*

Cicer 17.6 ± 3.0 9.4 ± 2.5 −46.3* 34.1 ± 4.2 64.9 ± 8.5 90.3*

Glycine 27.3 ± 2.3 6.4 ± 1.2 −76.4* 70.6 ± 2.3 146.9 ± 6.9 108.2*

Lathyrus 9.3 ± 1.2 7.2 ± 0.9 −23.0 9.1 ± 0.5 8.7 ± 0.9 −3.6

Lens 17.7 ± 2.2 10.1 ± 1.7 −42.9* 23.3 ± 2.0 9.1 ± 0.6 −60.7

Lupinus 7.5 ± 2.6 4.1 ± 0.3 −44.7* 22.7 ± 1.3 14.5 ± 1.0 −36.3*

Phaseolus 0.2 ± 0.0 0.1 ± 0.1 −51.5 13.8 ± 1.0 8.2 ± 0.9 −40.1*

Pisum 8.6 ± 2.7 3.7 ± 0.7 −57.0* 31.5 ± 2.3 31.8 ± 2.1 1.1

Vicia 3.5 ± 0.4 3.4 ± 0.6 −1.8 6.4 ± 0.6 9.4 ± 0.2 45.7*

Vigna 2.3 ± 0.5 0.6 ± 0.1 −73.2* 65.2 ± 4.3 59.5 ± 2.6 −8.8

The percentage of variation during domestication is also shown [% Δ = (D-W)/W.100] for both carotenoids and tocopherols. Values are means ± SE (n = 5).
Asterisks denote significant differences between grain legumes and their wild relatives (One-way ANOVA, P < 0.05).
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predators and dispersers [51]. Following this line of rea-
soning, seeds with lower carotenoid contents would have
been less attractive to seed dispersers.
Secondly, seed dormancy prevents synchronized and

uniform germination of a seed lot, which is clearly an
unwanted trait in crops. Dormancy is the inability to ger-
minate under optimal environmental conditions, allowing
persistence in soil seed banks for extended periods of time,
after which germination is completed only when environ-
mental conditions are favourable for the establishment of a
new plant generation [52]. Loss of seed dormancy was
among the most common events towards domestication of
legume crops [2]. Abscisic acid (ABA) is a positive regulator
of seed dormancy, and is synthesised from carotenoid pre-
cursors [53]. In Arabidopsis, overexpression of a phytoene
synthase gene led to the accumulation of carotenoids and
ABA and to delayed germination [54]. Therefore, the de-
crease in carotenoids upon domestication could be related
to the outbreeding of seed dormancy through down-
regulation of the ABA synthesis pathway. In summary, ca-
rotenoids contents could be lower in crops because of alter-
ation by humans of seed dispersal and seed dormancy.
Additionally, it should be considered that domestication

implied the translocation of plants from natural environ-
ments to agro-ecosystems, where resources are generally
plentiful and plant life is better buffered against environ-
mental risks such as drought, nutrient deficiency or patho-
gens. In that sense, carotenoids on seeds may have
decreased because, e.g., less oxidative stress because of im-
proved, and more predictable, supply of water and nutri-
ents might have relaxed selective pressures over their
metabolic pathways.

Lipophilic antioxidants, fatty acids and seed viability
In photosynthetic tissues the ratio between tocopherols
and carotenoids apparently evolved towards higher
tocopherols contents [55]. Apart from other roles, both
tocopherols and carotenoids are lipophilic antioxidants.
Thus, tocopherols and carotenoids complement one an-
other and act synergistically. In some cases it has been
shown that plants trend to compensate for the absence
of one by the overproduction of the other. For example,
in Arabidopsis the absence of zeaxanthin could be com-
pensated for by higher levels of tocopherol [56] and vice
versa [57]. Therefore, it is reasonable to assume that the
lower carotenoids levels found in crops (Figure 1A) were
compensated for by higher tocopherols levels. However,
we found no evidence that the changes in tocopherols
upon domestication were related to the changes in ca-
rotenoids (Figure 1C).
The composition and degree of saturation of membrane

FAs determine their susceptibility to oxidation. In seeds,
carotenoids and tocopherols are the main lipid soluble an-
tioxidants that protect membranes and oil bodies from
oxidation. In recalcitrant (i.e. desiccation sensitive) seeds
high levels of C18:3 and low levels of tocopherol were cor-
related with oxidative damage and lower storability [22].
In orthodox (i.e. desiccation-tolerant) seeds, such as those
studied here, diunsaturated FAs were suggested to facili-
tate survival in the desiccated state by improving mem-
brane properties, increasing their elasticity and facilitating
folding without loss of integrity [58,59]. In most of the do-
mesticated species analysed we observed an increase in
total SFAs, MUFAs and diunsaturated FAs (linoleic acid)
whereas linolenic acid decreased (Figure 3B, Additional
file 4). Overall, these changes in FAs composition could
have made membranes less prone to oxidation (due to de-
creased linolenic acid), thereby relaxing the selection pres-
sure for higher tocopherols levels to compensate for the
lower carotenoid contents, whereby the increased MUFAs
and linoleic acid could have contributed to the mainten-
ance of membrane fluidity.



Figure 2 Composition of carotenoids and tocopherols in seeds of grain legumes and their closest wild relatives. (A) Individual
carotenoids and tocopherols are expressed as proportions of total contents. Data are means (n = 5). (B) Bisector plots representing the absolute
contents of carotenoids and tocopherols in grain legumes plotted against their closest wild relatives (only compounds shared among most
species are shown). Data points below the dotted line (y = x) indicate that grain legumes contained less seed carotenoids or tocopherols than
their wild relatives.
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Lipophilic antioxidants and fatty acids as nutrients
Fruits, vegetables and seeds are the primary dietary
sources of carotenoids (including the provitamin A) and
tocopherols (vitamin E), which play pivotal roles in the
prevention of inflammatory processes, and coronary,
neuromuscular and visual disorders. Nevertheless, vitamin



Figure 3 Content and composition of fatty acids in the seeds of grain legumes and their closest wild relatives. (A) Bisector plots
representing the absolute contents of total oils, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids
(PUFAs) in grain legumes plotted against the contents in their closest wild relatives. Data points above the dotted line (y = x) indicate that grain
legumes contained higher contents than their wild relatives. Data points show means ± SE (n≥ 4) (the small standard errors are not appreciable
in the figure for most of the species). No general pattern of change was found for FA following domestication (TotalOil Fdomestication = 1.274,
P = 0.288; SFAs Fdomestication = 0.199, P = 0.666; MUFAs Fdomestication = 2.43, P = 0.153; PUFAs Fdomestication = 0.011, P = 0.920; two-way ANOVA).
(B) Relative abundances of the main seed fatty acids (FAs) in grain legumes compared to their closest wild relatives (log10 ratios), showing which
fatty acids increased (bars above zero) and which decreased (bars below zero) following domestication. FAs shown are: myristic acid (C14:0),
palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0) and behenic acid
(C22:0). Asterisks indicate significant differences between grain legumes and their wild relatives (one-way ANOVA, P < 0.05).
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A levels in the seeds of the most abundantly consumed
staple crops are insufficient to meet minimum nutritional
requirements [60] if not compensated for by dietary carot-
enoids intake from fruits and vegetables. Efforts are being
made to increase carotenoids synthesis in seed crops by
genetic engineering [61-63]. Alternatively, hybridization of
crops with wild progenitors could represent a complemen-
tary tool for enhancing the carotenoids contents in edible
seeds.
Most animals and humans require dietary intake of

plant lipids as major source of calories and essential FAs
[64]. A high ratio of UFAs to SFAs in the diet helps pre-
venting cardiovascular diseases [37]. Unexpectedly, we
found that the ratio of UFAs to SFAs decreased upon
domestication. However, FA composition also affects
seed taste. The by-products of lipid peroxidation, result-
ing in rancidification, have unpleasant odours or flavours
[65,66]. Hence, the decrease in PUFAs, which are most
susceptible to oxidation, that accompanied domestica-
tion of grain legumes (Figure 3) may have resulted from
directed human selection for better flavour after storage.

Conclusions
In summary, domestication of grain legumes was accom-
panied by a reduction in carotenoids contents, including
molecules that are essential to human nutrition. Addition-
ally, for many of the analysed species, domestication was
also accompanied by a decrease in linolenic acid content.
These changes are likely side-effects of the selection for
other desired traits such as the loss of seed dispersal
mechanisms and dormancy, and selection for seed stor-
ability and taste. In turn, the wild progenitors may still
offer untapped potential for future improvement of the
nutritional value of edible seeds. This novel work may



Figure 4 Dependency between the variations in seed fatty acids and carotenoids and tocopherols following domestication. Variations
(Δ%) are expressed as percentages of the contents in the wild species. In (A) and (B) the variations in total oil content are plotted against
variations in total tocopherols and carotenoids, respectively. In (C) and (D) the variations in total PUFAs are plotted against the variations in total
tocopherols and carotenoids, respectively. Data are means (n≥ 4). No significant correlation was found whereby the best correlation was
observed between total tocopherols and PUFAs (Pearson’s correlation coefficient: 0.59; P = 0.07).
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serve as baseline for future studies in other taxa and plant
organs to broaden our knowledge on the consequences of
domestication in the nutritious value and fitness of crop-
plants.
Availability of supporting data
Supporting data include details on seed suppliers
(Additional file 1), composition of individual caroten-
oids and tocopherols splitted by genera (Additional
file 2) and their percentage of change following domestica-
tion (Additional file 4), and ratios of fatty acids to seed dry
mass and total oil content (Additional file 3). All the sup-
porting data are included as additional files.
Additional files

Additional file 1: Detailed information on all seed lots studied.
Common and scientific names, tribes (all tribes were in the subfamily
Papilionoideae), domestication status (D: domesticated; W: wild),
accession identifier, seed origin information, and literature regarding wild
progenitor assignment (superscript numbers) are provided. Seed
suppliers (TAMU: Texas A&M University, USA; PRI: Peanut Research
Institute, Shangdong, China; ICARDA: International Center for Agricultural
Research in Dry Areas-FAO, Syria; CRF: Centro Nacional de Recursos
Fitogenéticos-INIA, Spain; IPK: Germplasm bank of the Leibniz Institute of
Plant Genetics and Crop Plant Research, Germany; WSU: Washington
State University, USA; La Orden: Centro de Investigación Agraria Finca La
Orden, Junta de Extremadura, Spain; UC: University of California, USA; JIC:
John Innes Centre of excellence in plant science and microbiology,
United Kingdom; Fitó: Semillas Fito international company, Spain; IITA:
International Institute of Tropical Agriculture, Nigeria; CCIA: California Crop

http://www.biomedcentral.com/content/supplementary/s12870-014-0385-1-s1.doc
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Improvement Association, USA. Accession identifiers refer to the code
assigned by each seed supplier (NA: non aplicable). Country of origin
refers to the country where the seeds were collected.

Additional file 2: Carotenoids and tocopherols composition
(μg g−1DM) in the seeds of grain legumes and their closest wild
relatives (D, domesticated; W, wild). Data are promedia (upper part)
and standard error (lower part of the table) of 5 independent replicates.

Additional file 3: Variation in the contents of individual seed
carotenoids and tocopherols following domestication. Variations
(Δ%) are expressed as percentages of the contents in the wild relatives.
Each data point represents one genus. The number (n) of genera for
which the calculation of D% was possible is shown at the bottom of the
panel.

Additional file 4: Total oil content (% of seed DM) and fatty acid
composition (expressed both as percentage of seed DM and of
percentage of total oil content) in the seeds of grain legumes and
their closest wild relatives (D, domesticated; W, wild). Asterisks
denote significant differences between grain legumes and their wild
relatives (Mann–Whitney-U test, P < 0.05). Data are means ± SE (n ≥ 4).
Significant decreases following domestication are highlighted in red and
increases in green.
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