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Abstract
Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for
solving high-dimensional optimization problems in across a broad range of bioinformatics problems.
Genetic algorithms, the most well-known and representative evolutionary search technique, have
been the subject of the major part of such applications. Estimation of distribution algorithms
(EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to
genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to
guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining
the nature and complexity of the probabilistic model of each EDA variant. We review a set of
innovative works that make use of EDA techniques to solve challenging bioinformatics problems,
emphasizing the EDA paradigm's potential for further research in this domain.

Introduction
As a consequence of increased computational power in
the last decades, evolutionary search algorithms emerged
as important heuristic optimization techniques in the
early eighties. Evolutionary optimization techniques have
demonstrated their potential across a broad spectrum of
areas such as transportation, machine learning or indus-
try. Based on the development of current high-throughput
data capturing devices in biotechnology, a wide range of
high-dimensional optimization problems surfaced in the

field of bioinformatics and computational biology over
the last decade. Because classic optimization techniques
only explore a limited portion of the solution space,
researchers soon realized that sequential search engines
that try to improve a single solution are clearly insufficient
to move through these huge search spaces. The use of pop-
ulation-based, randomized search engines was proposed
as an alternative that would overcome these limitations
and be better able to explore the vast solution space. Evo-
lutionary optimization techniques, of which genetic algo-
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rithms (GAs) are the most well known class of techniques,
have thus been the method of choice for many of these
bioinformatics problems.

Estimation of distribution algorithms (EDAs) are a novel
class of evolutionary optimization algorithms that were
developed as a natural alternative to genetic algorithms in
the last decade. The principal advantages of EDAs over
genetic algorithms are the absence of multiple parameters
to be tuned (e.g. crossover and mutation probabilities)
and the expressiveness and transparency of the probabil-
istic model that guides the search process. In addition,
EDAs have been proven to be better suited to some appli-
cations than GAs, while achieving competitive and robust
results in the majority of tackled problems. In this review,
we focus on a group of pioneering papers that have shown
the power of the EDA paradigm in a set of recent bioinfor-
matic, mainly genomic and proteomic, tasks. For each
problem, we give a brief description, the EDA used, and
the associated literature references. The solution represen-

tation and the cardinality of the search space are also dis-
cussed in some cases. Before discussing these problems,
the next section presents what an EDA is and how it
works, sets out a detailed taxonomy based on their main
features and what potential they have within the bioinfor-
matic discipline.

Estimation of distribution algorithms
Estimation of distribution algorithms [1-5] are evolution-
ary algorithms that work with a multiset (or population
sets) of candidate solutions (points). Figure 1 illustrates
the flow chart for any EDA approach. Initially, a random
sample of points is generated. These points are evaluated
using an objective function. An objective function evalu-
ates how accurate each solution is for the problem. Based
on this evaluation, a subset of points is selected. Hence,
points with better function values have a bigger chance of
being selected.

EDA algorithm flow chart (Figure 1-EDAChart.eps)Figure 1
EDA algorithm flow chart (Figure 1-EDAChart.eps). Diagram of how an estimation of distribution algorithm works. 
This overview of the algorithm is further specified by the pseudocode shown in Table 1.
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Then, a probabilistic model of the selected solutions is
built, and a new set of points is sampled from the model.
The process is iterated until the optimum has been found
or another termination criterion is fulfilled.

For more details, Table 1 sets out the pseudocode that
implements a basic EDA. The reader can find a complete
running example of an EDA in [6].

Characteristics of EDAs
Essentially EDAs assume that it is possible to build a
model of the promising areas of the search space, and use
this model to guide the search for the optimum. In EDAs,
modeling is achieved by building a probabilistic graphical
model that represents a condensed representation of the
features shared by the selected solutions. Such a model
can capture different patterns of interactions between sub-
sets of the problem variables, and can conveniently use
this knowledge to sample new solutions.

Probabilistic modeling gives EDAs an advantage over
other evolutionary algorithms that do not employ mod-
els, such as GAs. These algorithms are generally unable to
deal with problems where there are important interac-
tions among the problems' components. This, together
with EDAs' capacity to solve different types of problems in
a robust and scalable manner [3,5], has led to EDAs some-
times also being referred to as competent GAs [7,8].

A taxonomy of EDAs
Since several EDAs have been proposed with a variety of
models and learning algorithms, the selection of the best
EDA to deal with a given optimization problem is not
always straightforward. One criterion that could be fol-
lowed in this choice is to trade off the complexity of the
probabilistic model against the computational cost of
storing and learning the selected model. Both issues are
also related to the problem dimensionality (i.e. number
of variables) and to the type of representation (e.g. dis-
crete, continuous, mixed).

Researchers should be aware that simple models generally
have minimal storage requirements, and are easy to learn.
However, they have a limited capacity to represent higher-
order interactions. On the other hand, more complex
models, which are able to represent more involved rela-
tionships, may require sophisticated data structures and
costly learning algorithms. The impact that the choice
between simple and more complex models has in the
search efficiency will depend on the addressed optimiza-
tion problem. In some cases, a simple model can help to
reach non-optimal but acceptable solutions in a short
time. In other situations, e.g. deceptive problems, an EDA
that uses a simple model could move the search away
from the area of promising solutions.

Another criterion that should be taken into consideration
to choose an EDA is whether there is any previous knowl-
edge about the problem structure, and which kind of
probabilistic model is best suited to represent this knowl-
edge. The following classification of EDAs is intended to
help the bioinformatic researcher to find a suitable algo-
rithm for his or her application.

EDAs can be broadly divided according to the complexity
of the probabilistic models used to capture the interde-
pendencies between the variables: univariate, bivariate or
multivariate approaches. Univariate EDAs, such as PBIL
[9], cGA [10] and UMDA [4], assume that all variables are
independent and factorize the joint probability of the
selected points as a product of univariate marginal proba-
bilities. Consequently, these algorithms are the simplest
EDAs and have also been applied to problems with con-
tinuous representation [11].

The bivariate models can represent low order dependen-
cies between the variables and be learnt using fast algo-
rithms. MIMIC [12], the bivariate marginal distribution
algorithm BMDA [13], dependency tree-based EDAs [14]
and the tree-based estimation of distribution algorithm
(Tree-EDA) [15] are all members of this subclass. The lat-
ter two use tree and forest-based factorizations, respec-
tively. They are recommended for problems with a high
cardinality of the variables and where interactions are
known to play an important role. Trees and forests can
also be combined to represent higher-order interactions
using models based on mixtures of distributions [15].

Multivariate EDAs factorize the joint probability distribu-
tion using statistics of order greater than two. Figure 2
shows some of the different probabilistic graphical mod-
els covered by this category. As the number of dependen-
cies among the variables is higher than in the above
categories, the complexity of the probabilistic structure, as
well as the computational effort required to find the struc-
ture that best suits the selected points, is greater. There-

Table 1: EDA pseudocode

Set t ← 0. Generate M points randomly
Do

Evaluate the points using the fitness function
Select a set S of N ≤ M points according to a selection method
Estimate a probabilistic model for S
Generate M new points sampling from the distribution represented 
in the model
t ← t + 1

until Termination criteria are met

Estimation of distribution algorithms: evolutionary computation based 
on learning and simulation of probabilistic graphical models.
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fore, these approaches require a more complex learning
process. Some of the EDA approaches based on multiply
connected Bayesian networks are:

• The (Factorized Distribution Algorithm) FDA [16] is
applied to additively decomposed functions for which,
using the running intersection property, a factorization of
the mass-probability based on residuals and separators is
obtained.

• In [17], a factorization of the joint probability distribu-
tion encoded by a Bayesian network is learnt from the
selected set in every generation. The estimation of Baye-
sian network algorithm (EBNA) uses the Bayesian infor-
mation criterion (BIC) score as the quality measure for the
Bayesian network structure. The space of models is
searched using a greedy algorithm.

• The Bayesian optimization algorithm (BOA) [18] is also
based on the use of Bayesian networks. The Bayesian
Dirichlet equivalent metric is drawn on to measure the
goodness of every structure. The algorithm enacts a greedy
search procedure. BOA has been improved by adding
dependency trees and restricted tournament replacement.
The resulting, more advanced, hierarchical BOA (hBOA)
[5] is one of the EDAs for which extensive experimenta-
tion has been undertaken. The results show good scalabil-
ity behavior.

• The extended compact Genetic Algorithm (EcGA) pro-
posed in [10] is an algorithm in which the basic idea is to
factorize the joint probability distribution as a product of
marginal distributions of variable size.

There are alternatives to the use of Bayesian networks for
representing higher order interactions in EDAs. Markov
network-based EDAs [19-21] could be an appropriate
choice for applications where the structure of the optimi-
zation problem is known and can be easily represented

using an undirected graphical model. EDAs that use
dependency networks [22] can encode dependencies that
Bayesian networks cannot represent. Both classes of algo-
rithms need relatively complex sampling procedures
based on the use of Gibbs sampling [23].

In addition to the order of complexity encoded by the
probability model, there is another key feature when deal-
ing with an EDA algorithm: the way that model is learned.
There are two alternatives: induce the model structure and
its associated parameters, or induce just the set of param-
eters for an a priori given model. The first class is denoted
as structure+parameter learning, whereas the second is
known as parameter learning. Both approaches need to
induce the parameters of their models, but the first
approach's need for structural learning makes it more
time consuming. By contrast, parameter learning is
dependent on the fixed model, whereas structure+param-
eter learning exhibits a greater power of generalization.

Population-based incremental learning (PBIL) [9], the
compact GA (cGA) [10], the univariate marginal distribu-
tion algorithm (UMDA) [4] and the factorized distribu-
tion algorithm (FDA) [16] which use a fixed model of
interactions in all generations, are all parameter
approaches. On the other hand, the mutual information
maximization for input clustering algorithm (MIMIC)
[12], the extended compact GA (EcGA) [10] and EDAs
that use Bayesian and Gaussian networks [5,13,17,24-26]
belong to the structural+parameter class.

So as to have a graphical taxonomy of the subdivisions
presented through this section, Table 2 illustrates all the
above features and models providing a graphical taxon-
omy of the subdivisions presented throughout this sec-
tion. It also includes some useful tips to choose among
the available EDAs, such as their pros and cons.

Potential of EDAs in bioinformatics
Evolutionary algorithms, and GAs in particular, have been
widely and successfully applied in bioinformatics. It is
reasonable to expect that the improvements in EDA effi-
ciency and scalability can contribute to expanding the use
of these algorithms, particularly for difficult problems
where other evolutionary algorithms fail [3,27].

There are other situations where the use of EDAs can be
very useful for solving bioinformatics problems. For
instance, probabilistic models used by EDAs can be set up
a priori in such a way that they represent previous knowl-
edge about the structure of the optimization problem.
Even the use of incomplete or partial information about
the problem domain can considerably reduce the compu-
tational cost of the search. Similarly, practitioners can
manipulate the probabilistic models to favor solutions

EBNA and BOA paradigms (Figure 2-EBNA-BOA.eps)Figure 2
EBNA and BOA paradigms (Figure 2-EBNA-
BOA.eps). Diagram of probability models for the proposed 
EDAs in combinatorial optimization with multiple dependen-
cies (FDA, EBNA, BOA, and EcGA).

FDA EBNA, BOA EcGA
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with certain pre-established partial configurations. This
way they can test particular hypotheses about the config-
uration of the optimal solution.

EDAs have another advantage, also associated with the
capacity to model key features of the search space. The
models generated during the search can be mined to
reveal previously unknown information about the prob-
lem [28-30].

Furthermore, recent results of applying EDAs to problems
from other domains [31] have shown that the informa-
tion gathered by the models to solve a given problem
instance can, in some cases, also be employed to solve
other instances of the same problem. This paves the way
for building bioinformatics applications where the infor-
mation extracted from previous searches is reused to solve
different instances of a similar problem.

EDAs in genomics
Introduction
Due to advances in modern high-throughput biotechnol-
ogy devices, large and high-dimensional data sets are
obtained from analyzed genomes and tissues. The heuris-
tic scheme provided by EDAs has proved to be effective
and efficient, in a variety of NP-hard genomic problems.
Because of the huge cardinality of the solution spaces of
most of these problems, researchers are aware of the need
for an efficient optimization algorithm. In this way,
authors have preferred simple EDA schemes that assume
that the variables are independent. These schemes have
obtained accurate and robust solutions in reasonable CPU
times. Together with a brief definition of each tackled
genomic problem, we describe the main characteristics of
each EDA scheme are described, with a special emphasis
on the codification used to represent the search individu-
als.

Table 2: EDAs taxonomy

Statistical order Advantages Disadvantages Examples

Univariate Simplest and fastest Ignore feature dependencies PBIL (Baluja, 1994)
Suited for high cardinality 
problems 

Bad performance for deceptive 
problems

UMDA (Mühlenbein and Paaß, 
1996) 

Scalable cGA (Harik et al., 1999)

Bivariate (statistics of order two) Able to represent low order 
dependencies

Possibly ignore some feature 
dependencies

MIMIC (De Bonet et al., 1996)

Suited for many problems Slower than univariate EDAs Dependency trees EDA (Baluja 
and Davies, 1997) BMDA 
(Pelikan and Mühlenbein, 1999)

Graphically inquire the induced 
models

Tree-EDA/Mixture of distributions 
EDA (Santana et al., 1999)

Multivariate 
(statistics of order greater than 
two)

Parameter learning (only interaction model parameters)

Suited for problems with known 
underlying model

Possibly ignore complex feature 
dependencies

FDA (Mühlenbein et al., 1999)

Higher memory requirements than 
bivariate

Markov network-based EDA 
(Shakya and McCall, 2007)

Structure+parameter learning (interaction model & parameters of the model)

Maximum power of generalization Highest computation time EcGA (Harik et al., 1999)
Flexibility to introduce user 
dependencies

Highest memory requirements EBNA 
(Etxeberria and Larrañaga, 1999)

Online study of the induced 
dependencies

BOA/hBOA (Pelikan et al., 1999, 
2005)
Dependency networks EDA 
(Gámez et al., 2007)

A taxonomy of some representative EDAs. We highlight a set of characteristics that can guide the choice of a particular EDA suited to the goals and 
properties of a given problem.
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Gene structure analysis
As genomes are being sequenced at an increasing pace, the
need for automatic procedures for annotating new
genomes is becoming more and more important. A first
and important step in the annotation of a new genome is
the location of the genes in the genome, as well as their
correct structure. As a gene may contain many different
parts, the problem of gene structure prediction can be
seen as a segmentation or parsing problem. To solve this
problem automatically, pattern recognition and machine
learning techniques are often used to build a model of
what a gene looks like. This model can then be used to
automatically locate potential genes in a genome [32,33].

A gene prediction framework consists of different compo-
nents, where each component (often modeled as a classi-
fier) aims at identifying a particular structural element of
the gene. Important structural elements include the start
of the gene (start codon), the end of a gene (stop codon)
and the transitions between the coding and non-coding
parts of the gene (splice sites).

The exact mechanisms that the cell uses to recognize genes
and their structural elements are still under research. As
this knowledge is missing, one major problem in this con-
text is to define adequate features to train the classifiers for
each structural element. Consequently, large sets of
sequence features are extracted in the hope that these sets
will contain the key features. However, it is known that
not all of these features will be important for the classifi-
cation task at hand, and many will be irrelevant or redun-
dant.

To find the most relevant features for recognizing gene
structural elements, feature subset selection (FSS) tech-
niques can be used. These techniques try to select a subset
of relevant features from the original set of features
[34,35]. As this is an NP-hard optimization problem with
2n possible subsets for evaluation (given n features), pop-
ulation-based heuristic search methods are an interesting
engine for driving the search through the space of possible
feature subsets. Each solution in the population decodes a
feature subset as a binary string: features having a value of
1 are included in the subset, whereas the ones having a
value of 0 are discarded.

As a natural alternative to genetic algorithms, the use of
EDAs for FSS was initiated in [36] for classic benchmark
problems, and their use in large scale feature subset selec-
tion domains was reported to yield good results [37,38].
Furthermore, the EDA-based approach to FSS was shown
to generalize to feature weighting, ranking and selection
[39]. This has the advantage of getting more insight into
the relevance of each feature separately, focusing on
strongly relevant, weakly relevant, and irrelevant features.

The application of EDA-based FSS techniques in gene
structure prediction was pioneered for the most important
gene prediction components in [40]. Its most important
application was the recognition of splice sites. Using naïve
Bayes classifiers, support vector machines and C4.5 deci-
sion trees as base classifiers, an UMDA-based FSS scheme
was used to obtain higher performance models.

In addition to better models, an UMDA-based approach
was also used to get more insight into the selected fea-
tures. This led to both the identification of new character-
istics, as well as the confirmation of important previously
known characteristics [41].

Gene expression analysis
The quantitative and qualitative DNA analysis is one of
the most important areas of modern biomedical research.
DNA microarrays can simultaneously measure the expres-
sion level or activity level of thousands of genes under a
set of conditions. Microarray technology has become a
popular option for partial DNA analysis since Golub et
al.'s pioneering work [42].

The starting point of this analysis is the so called gene
expression matrix, where rows represent genes, columns
represent experimental conditions (or samples), and the
values at each position of the matrix characterize the
expression level of the particular gene under the particular
experimental condition. Additional biological informa-
tion about the genes and the experimental conditions can
be added to the matrix in the form of gene and/or sample
annotation. Depending on how we treat the annotation,
gene expression data analysis can be either supervised or
unsupervised. When sample annotation is used to split
the set of samples into two or more classes or phenotypes
(e.g. 'healthy' or 'diseased' tissues), supervised analysis (or
class prediction) tries to find patterns that are characteris-
tic of each of the classes. On the other hand, unsupervised
analysis (or class discovery) ignores any annotation.
Examples of such analysis are gene clustering, sample
clustering and gene expression data biclustering.

The FSS paradigm has taken a leading role due to the chal-
lenge posed by the huge dimension of DNA microarray
studies (datasets of close to 20,000 genes can be found in
the experimental setups reported in recent literature),
small sample sizes (gene expression studies with more
than a hundred hybridizations are not common) and the
notable influence of different sources of noise and varia-
bility. Thus, the application of dimensionality reduction
techniques has become a must for any gene expression
analysis.
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Classification of DNA microarray data
It is broadly assumed that a limited number of genes can
cause the onset of a disease. Within this scenario biolo-
gists demand a reduction in the number of genes. In addi-
tion, the application of a FSS technique to microarray
datasets is an essential step to achieve an accurate classifi-
cation performance for any base classifier.

Although univariate gene ranking procedures are very
popular for differential gene expression detection, the
multivariate selection of a subset of relevant and non-
redundant genes has borrowed from the field of heuristic
search engines to guide the exploration of the huge solu-
tion space (there are 2n possible gene subsets, where n is
the number of initial genes). Two research groups have
proven that the EDA paradigm is useful for this challeng-
ing problem. Both groups have implemented efficient
algorithms that have achieved accuracy levels comparable
to the most effective state-of-the-art optimization tech-
niques:

• Using a naïve Bayes network as the base classifier and
the UMDA as the search algorithm, Blanco et al. [43]
achieve competitive results in two gene expression bench-
marking datasets. The authors show that the predictive
power of the models can be improved when the probabil-
ity of each gene being selected in the first population is
initialized using the results provided by a set of simple
sequential search procedures.

• Paul and Iba [44,45] propose two variations of the PBIL
search algorithm to identify subsets of relevant and non-
redundant genes. Using a wide variety of classifiers, nota-
ble results are achieved in a set of gene expression bench-
marking datasets with subsets of extremely low
dimensionality.

Using a continuous-value version of the UMDA proce-
dure, EDAs have been used as a new way of regularizing
the logistic regression model for microarray classification
problems [46]. Regularization consists of shrinking the
parameter estimates to avoid their unstability present
when there are a huge number of variables compared to a
small number of observations (as in the microarray set-
ting). Therefore, the parameter estimators are restricted
maximum likelihood estimates, i.e. the maximum value
of a new function including the likelihood function, plus
a penalty term where the size of the estimators is con-
strained. There are different norms for measuring estima-
tors size. This leads to different regularized logistic
regression names [47]: ridge, Lasso, bridge, elastic net, etc.

EDAs could be used to optimize these new functions and
be a good optimization method especially in some cases
where numerical methods are unable to solve the corre-

sponding non-differentiable and non-convex optimiza-
tion problems. However, another possibility, taken up in
[46], is to use EDAs to maximize the likelihood function
without having to be penalized (which is a simpler opti-
mization problem) and to include the shrinkage of the
estimates during the simulation of the new population.
New estimates are simulated during EDA evolutionary
process in such a way that guarantees their shrinkage
while maintaining their probabilistic dependence rela-
tionships learnt in the previous step. This procedure yields
regularized estimates at the end of the process.

Clustering of DNA microarray data
Whereas the above papers propose a supervised classifica-
tion framework, clustering is one of the main tools used
to analyze gene expression data obtained from microarray
experiments [48]. Grouping together genes with the same
behaviour across samples, that is, gene clusters, can sug-
gest new functions for all or some of the grouped genes.
We highlight two papers that use EDAs in the context of
gene expression profile clustering:

• Peña et al. [49] present an application of EDAs for iden-
tifying clusters of genes with similar expression profiles
across samples using unsupervised Bayesian networks.
The technique is based on an UMDA procedure that works
in conjunction with the EM clustering algorithm. To eval-
uate the proposed method, synthetic and real data are
analyzed. The experimentation with both types of data
provides clusters of genes that may be biologically mean-
ingful and, thus, interesting for biologists to research fur-
ther.

• Cano et al. [50] use UMDA and genetic algorithms to
look for clusters of genes with high variance across sam-
ples. A real microarray dataset is analyzed, and the Gene
Ontology Term Finder is used to evaluate the biological
meaning of the resulting clusters.

Like clustering, biclustering is another NP-hard problem
that was originally considered by Morgan and Sonquist in
1963 [51]. Biclustering is founded on the fact that not all
the genes of a given cluster should be grouped into the
same conditions due to their varying biological activity.
Thus, biclustering assumes that several genes will only
change their expression levels within a specified subset of
conditions [52]. This assumption has motivated the
development of specific algorithms for biclustering analy-
sis.

An example is the work by Palacios et al. [53], which
applies an UMDA scheme to search the possible bicluster
space. They get accurate results compared to genetic algo-
rithms when seeking single biclusters with coherent evo-
lutions of gene expression values. Like the classic
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codification discussed for the FSS problem, the authors
use two concatenated binary arrays to represent a biclus-
ter, (x1, ..., xn | y1, ..., ym). The first array represents each
gene of the microarray, where the size is the number of
genes. The second array represents each condition, with a
size equal to the number of conditions. A value of 1 in the
ith position of the first array shows that the ith gene has
been selected for inclusion in the bicluster. Likewise, a
value of 1 in the jth position of the second array indicates
that the jth condition has been selected for inclusion in the
bicluster. This codification results in a space of 2n+m possi-
ble biclusters.

Inference of genetic networks
The inference of gene-gene interactions from gene expres-
sion data is a powerful tool for understanding the system
behaviour of living organisms [54].

This promising research area is now of much interest for
biomedical practitioners, and a few papers have even
applied EDAs to this domain. One of these early works
uses Bayesian networks as the paradigm for modeling the
interactions among genes, while an UMDA approach
explores the search space to find the candidate interac-
tions [55]. The subsequent literature evaluation of the
most reliable interactions unveils that many of them have
been previously reported in the literature.

EDAs in proteomics
Introduction
The objective of protein structure prediction is to predict
the native structure of a protein from its sequence. In pro-
tein design, the goal is to create new proteins that satisfy
some given structural or functional constraints. Fre-
quently, both problems are addressed using function opti-
mization. As the possible solution space is usually huge,
complex and contains many local optima, heuristic opti-
mization methods are needed. The efficiency of the opti-
mization algorithm plays a crucial role in the process. In
this section, we review applications of EDAs to different
variants of protein structure prediction and protein design
problems.

We start by reviewing some important concepts related to
protein models and energy functions in optimization.
Then, we propose an initial general classification of EDA
applications to protein problems according to how
sophisticated and detailed the protein models used are.
Subsequently, we give a more detailed classification based
on the specificities of the protein problems.

Protein structure prediction and protein design
Protein structure prediction and protein design are usually
addressed by minimizing an energy function in the candi-
date solution space. Two essential issues in the applica-

tion of EDAs and other optimization algorithms to these
problems are the type of protein representation employed
and the energy function of choice.

There are many factors that influence the stability of pro-
teins and have to be taken into account to evaluate candi-
date structures. The native state is thought to be at the
global free energy minimum of the protein. Electrostatic
interactions, including hydrogen bonds, van der Waals
interactions, intrinsic propensities of the amino acids to
take up certain structures, hydrophobic interactions and
conformational entropy contribute to free energy. Deter-
mining to what extent the function can represent all of
these factors, as well as how to weight each one are diffi-
cult questions that have to be solved before applying the
optimization method.

Simplified protein models omit some of these factors and
are a first problem-solving approximation. For example,
the approximate fold of a protein is influenced by the
sequence of hydrophobic and hydrophilic residues, irre-
spective of what the actual amino acids in that sequence
are [56]. Therefore, a first approximation could simply be
constructed by a binary patterning of hydrophobic and
hydrophilic residues to match the periodicity of secondary
structural elements. Simplification can be further devel-
oped to consider proteins represented using this binary
patterning and to approximate the protein structure pre-
diction problem as two- and three-dimensional lattices. In
this case, the energy function measures only hydrophobic
and hydrophilic interactions. An example of this type of
representation is shown in Figure 3, where a sequence of
64 aminoacids is represented on a two-dimensional lat-
tice.

EDA approaches
Depending on how sophisticated and detailed the protein
model used is, EDAs can be divided into two groups:
EDAs applying a simplified model [57-60] and EDAs
using more detailed (atomic-based) models [61-63]. A
more thorough classification is related to the type of prob-
lems addressed:

• Protein structure prediction in simplified models
[58,60].

• Protein side chain placement [62,63].

• Design of protein peptide ligands [61].

• Protein design by minimization of contact potentials
[59,64].

• Aminoacid alphabet reduction for protein structure pre-
diction [57].
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• Using EDAs as a simulation tool to investigate the influ-
ence of different protein features in the protein folding
process [63].

In [58-60], EDAs are used to solve bi-dimensional and
three-dimensional simplified protein folding problems.
The hydrophobic-polar (HP) [65], and functional protein
models [66] are optimized using EDAs based on probabi-
listic models of different complexity (i.e. Tree-EDA [67],
mixtures of trees EDA (MT-EDA) [67] and EDAs that use
k-order Markov models (MK-EDAk) [58]).

The results achieved outperform other evolutionary algo-
rithms. For example, the configuration shown in Figure 3
is the optimal solution found by MK-EDA2. Due to the
particular topology of this instance, other evolutionary
algorithms consistently fail to find the optimal solution
[58].

Side chain placement problems are dealt with using
UMDA with discrete representation in [62,63]. The
approach is based on the use of rotamer libraries that can
represent the side chain configurations using their
rotamer angles. For these problems, EDAs have achieved
very good results in situations where other methods fail
[63]. Results are better when EDAs are combined with
local optimization methods as in [63], where variable
neighborhood search [68] is applied to the best solutions
found by UMDA.

Belda et al. [61] use different EDAs to generate potential
peptide ligands of a given protein by minimizing the
docking energy between the candidate peptide ligand and
a user-defined area of the target protein surface. The
results of the population based incremental learning algo-
rithm (PBIL) [9] and the Bayesian optimization algorithm
(BOA) [18] are compared with two different types of
genetic algorithms. Results showed that some of the lig-
ands designed using the computational methods had bet-
ter docking energies than peptides designed using a purely
chemical knowledge-based approach [61].

In [64], three different EDAs are applied to solve a protein
design problem by minimizing contact potentials:
UMDA, Tree-EDA and Tree-EDAr (the structure of the tree
is deduced from the known protein structure, tree param-
eters are learned from data). Combining probabilistic
models able to represent probabilistic dependencies with
information about residue interactions in the protein con-
tact graph is shown to improve the search efficiency for
the evaluated problems. In [59], EDAs that use loopy
probabilistic models are combined with inference-based
optimization algorithms to deal with the same problems.
For several protein instances, this approach manage to
improve the results obtained with tree-based EDAs.

The alphabet reduction problem is addressed in [57]
using the extended compact genetic algorithm (EcGA)
[69]. The problem is to reduce the 20-letter amino acid
(AA) alphabet into a lower cardinality alphabet. A genet-
ics-based machine learning technique uses the reduced
alphabet to induce rules for protein structure prediction
features. The results showed that it is possible to reduce
the size of the alphabet used for prediction from twenty to
just three letters resulting in more compact rules.

Results of using EDAs and the HP model to simulate the
protein folding process are presented in [64]. Some of the
features exhibited by the EDA model that mimics the
behaviour of the protein folding process are investigated.
The features considered include the correlation between
the EDA success rate and the contact order of the protein
models, and the relationship between the generation con-
vergence of EDAs for the HP model and the contact order
of the optimal solution. Other issues analyzed are the dif-
ferences in the rate of formation of native contacts during
EDA evolution, and how these differences are associated
with the contact separation of the protein instance.

Conclusion
Throughout this paper, we reviewed the state-of-the-art of
EDA applications in bioinformatics. As soon as research-
ers realized the need to apply a randomized, population-
based, heuristic search, EDAs emerged as a natural alterna-
tive to commonly used genetic algorithms. Since the pos-

Optimal protein structure (Figure 3-ProteinStructure.eps)Figure 3
Optimal protein structure (Figure 3-ProteinStruc-
ture.eps). Optimal solution of an HP model found by an 
EDA that uses a Markovian model.
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sible solution space is huge for most of the addressed
problems, researchers have made use of efficient EDA
implementations.

A group of interesting papers demonstrate the efficiency
and the competitive accuracy of this novel search para-
digm in a set of challenging NP-hard genomic and pro-
teomic bioinformatic tasks. As the number of EDA
application papers in bioinformatics is modest and the
number and variety of problems is constantly growing,
there is room for new EDA applications in the field.

An interesting opportunity for future research is the adap-
tation and application of multivariate EDA models that
can efficiently deal with the huge dimensionality of cur-
rent bioinformatic problems. Going further than simple
univariate models, bio-experts could explicitly inspect the
probabilistic relationships among problem variables for
each generation of the evolutionary process. This would
create opportunities for improved accuracy. These proba-
bilistic relationships induced from the evolutionary
model are an attractive way of proposing novel biological
hypotheses to be further tested by bio-experts.
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