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Abstract

Understanding the energetic requirement of brain cells during resting state and
during high neuronal activity is a very active research area where mathematical
models have contributed significantly by providing a context for the interpre-
tation of the experimental results. In this thesis, we present three new com-
putational predictive mathematical models to elucidate several dynamics in the
brain, comprising electrophysiological activity, cellular metabolism and hemody-
namic response. Many computational challenges had to be addressed, mostly due
to the very different characteristic times at which the electrical, metabolic and
hemodynamic events occur.

The first part of the thesis proposes a novel predictive mathematical electro-
metabolic model connecting the electrophysiological activity and the metabolism
through a double feedback mechanism based on energy demand and production.
This model sheds light on the role of the glial potassium cleaning in brain en-
ergy metabolism by integrating a four compartment metabolic model with one
describing in details the electrical activity. The results of computed experiments
performed with this model for different protocols, namely awake resting state,
transitions between resting state and neuronal activation and ischemic episodes
are in agreement with experimental observations.

In the second part of the thesis, the electro-metabolic model is expanded
to comprise the brain hemodynamic response. This is attained through a triple
feedback mechanism between the electrophysiology, metabolism and a three com-
partment hemodynamic model tracking the changes of cerebral blood flow and
cerebral blood volume through arteries, capillaries and veins. During neuronal ac-
tivation, the increase in extracellular potassium concentration triggers an increase
in the cerebral blood flow and concurrently vasodilation, ensuring the supply of
nutrients necessary for the metabolic response to sustain the increased energy
demand. The ensuing hemo-electro-metabolic model provides a better insight on
the transitions between resting state and neuronal activation.

In the third and last part of the thesis, we propose a variant of the electro-
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ABSTRACT iv

metabolic model that adequately describes the changes in the brain in connec-
tion with cortical spreading depression (CSD) waves. In addition the dynamics
of sodium and potassium, the new model accounts for chloride dynamics, the
glutamate-glutamine cycle, as well as neuronal swelling accompanied by shrink-
age of extracellular space. As illustrated with computed experiments, with this
model it is possible to follow simultaneously the changes in ionic homeostasis, the
alterations in the volumes of the cellular compartments and of the extracellular
space, and large modifications in brain metabolism during cortical spreading de-
pression waves. The model predictions, in agreement with findings reported in
the experimental literature, show a large decrease in glucose and oxygen concen-
tration and a significant increase in lactate concentration during the passing of

cortical spreading depression waves.
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Resumen

A pesar de que el peso promedio del cerebro representa tan sélo el 2% del cuerpo
humano, su elevado consumo energético ha cautivado el interés de diferentes
comunidades cientificas en las tltimas décadas. Como resultado de muchos anos
de investigacién, hoy en dia estd se suele atribuir la mayor parte de la energia
consumida por el cerebro a las bombas ionicas, al mantenimiento del potencial
de reposo y a la propagacién los potenciales de accién [1, 2.

A pesar de que en un principio, la mayor parte del interés cientifico estaba
enfocado al estudio de las neuronas, en los ultimos afnos, la importancia del
estudio de los astrocitos ha sido reconocida [3, 4, 5, 6, 7|. Més especificamente,
los astrocitos son destacados por jugar un papel determinante a la hora de reducir
la concentracién extracelular del potasio durante la activacion neuronal, isquemia
o depresién cortical propagada. Asimismo, muy recientemente se ha propuesto
que debido a la proximidad de los pies terminales de los astrocitos al capilar,
estas céelulas pueden tener un rol significativo en la regulacion de la respuesta
del flujo sanguineo cerebral [1].

Las técnicas de neuroimagen disponibles hoy en dia permiten visualizar difer-
entes aspectos del cerebro por separado, por lo cual es dificil de elucidar cémo
el cerebro coordina sus diferentes funciones. La actividad eléctrica del cerebro
se puede observar mediante electroencefalografia (EEG), magnetoencefalografia
(MEG) o electrocorticografia. Por otro lado, a través de la tomografia por emisién
de positrones (PET) se puede visualizar cambios en el metabolismo, mientras que
la respuesta del flujo sanguineo se puede determinar a través de la imagen por
resonancia magnética funcional (fMRI) y, en particular, mediante la Imagen de
contraste dependiente del nivel de oxigeno en la sangre (BOLD). En los tltimos
20 anos, los modelos matematicos se han convertido en una herramienta impor-
tante en el estudio de diversas condiciones adecuadas y patoldgicas del cerebro.
En esta disertacion se proponen tres modelos matematicos que proporcionan una
vision holistica sobre los diferentes procesos que ocurren en el cerebro.

Una de las principales contribuciones de esta disertacion se centra en el de-
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sarrollo de un modelo Hemo-Electro-Metabdlico integrado, que coordina y sin-
croniza tres funciones cerebrales diferentes pero conectadas. El modelo propor-
ciona una comprension mas completa de céomo la actividad eléctrica cerebral, su
metabolismo y su respuesta hemodindmica interactiian, como se regulan mutu-
amente y cémo el deterioro de uno de estos aspectos puede provocar una inter-
rupciéon de los demas.

Es sabido que la actividad electrofisioldgica del cerebro sélo se puede man-
tener si el conjunto de procesos bioquimicos, que tienen lugar en el metabolismo,
es capaz de producir una cantidad adecuada de energia (ATP), que puede variar
sustancialmente segin el nivel de activacién neuronal. Por otro lado, la canti-
dad de energia producida por el metabolismo depende de la disponibilidad de
diferentes especies bioquimicas y, por lo tanto, también de la cantidad de flujo
sanguineo, ya que éste transporta glucosa y oxigeno.

El acoplamiento de la electrofisiologia y el metabolismo se puede encontrar
en varios articulos publicados en los ultimos anos, tanto en la literatura sobre el
metabolismo cerebral [8, 9, 10] como en la literatura sobre la actividad electrofi-
siolégica [11]. Por ejemplo, en [8], Aubert et al. incluyen en su modelo metabdlico
el costo de la bomba de sodio y potasio, mientras que en [9], Cloutier et al. agre-
gan el costo del ciclo de glutamato-glutamina al modelo metabdlico propuesto.
Asimismo, varios modelos relacionados con la actividad electrofisioldgica, tienen
en cuenta, al menos parcialmente, la disponibilidad de algunos de los metaboli-
tos. Por ejemplo, en el modelo propuesto por Wei et al. en [11], que capta
la actividad electrofisiologica del cerebro durante diferentes patrones de disparo
neuronal, la actividad de la bomba de sodio y potasio estd expresada con respecto
a la concentracién disponible de oxigeno.

En este trabajo, proponemos un modelo de doble retroalimentacion, que no
solo incluye el costo energético de la bomba de sodio y potasio en el metabolismo,
sino también interpone la respuesta metabdlica a este costo energético. Una de
las principales dificultades en el desarrollo de dicho modelo acoplado se debe a
que los distintos procesos caracteristicos tienen diferentes 6rdenes de magnitud
en las escalas de tiempo: mientras la actividad electrofisiolégica del cerebro se
ejecuta en milisegundos, la contraparte metabdlica es mucho més lenta, con una
dindmica del orden de minutos. Debido a que estas escalas de tiempo son tan
drasticamente diferentes, se requiere una atencién especial y un manejo computa-
cional adecuado, por lo cual desarrollamos un algoritmo de integracion de tiempo
para resolver el sistema acoplado.

Esta disertacion esta estructurada en cinco capitulos: los dos primeros capitulos
estan dedicados a la descripcion del modelo electrofisioldgico y metabdlico. El

acoplamiento electro-metabdlico se desarrolla en el Capitulo 3, donde abordamos



RESUMEN 3

las dificultades matemaéticas que surgen de las diferentes escalas de tiempo de
los dos procesos. En el Capitulo 4 explicamos cémo enriquecer el modelo agre-
gando una descripcion detallada de la respuesta del flujo sanguneo cerebral du-
rante la activacién neuronal, acoplando nuestro modelo Electro-Metabdlico a un
modelo hemodinamico en el que los cambios en el flujo sanguineo se rastrean
a través de tres compartimentos diferentes: arterias, capilares y venas. Como
la respuesta del flujo sanguineo es mas lenta que la respuesta electrofisiolégica
y metabdlica, introducimos una escala de tiempo adicional en nuestro enfoque
multiescalar. El ultimo capitulo de esta tesis estd dedicado a un nuevo mod-
elo matematico electro-metabdlico disenado especificamente para investigar la
depresion cortical propagada (CSD) y las grandes alteraciones que estas ondas
producen en las concentraciones iénicas, en las concentraciones de metabolitos y
la respuesta hemodindmica. Debido a los cambios masivos provocados por CSD,
reemplazamos el modelo de actividad electrofisiolégica descrito en el Capitulo 1
por un modelo mas complejo especificamente disenado para simular las ondas de
depresién cortical propagada (CSD). Posteriormente, abordamos el acoplamiento
de este modelo con el modelo metabdlico presentado en el Capitulo 2, en el cual
ademas consideramos los grandes cambios en las fracciones de volumen durante
el paso de las ondas CSD.

El primer capitulo de esta tesis esta dedicado a la descripcion de la actividad
electrofisiologica del cerebro. La primera seccion consiste en una revisién de los
modelos matematicos que capturan la actividad eléctrica, a partir del modelo
clasico de Hodgkin-Huxley, y continuando con el modelo de Fitzhugh-Nagumo,
el modelo de Hindmarsh-Rose y el modelo de Izhikevich. El modelo electrofi-
siologico utilizado en los primeros cuatro capitulos de esta tesis esta presentado
en detalle en la segunda seccién del primer capitulo. Este modelo, que fue prop-
uesto originalmente por Cressman et al. [12, 13] ha sido modificado para obtener
una concentracion extracelular de potasio para el cerebro en reposo de aprox-
imadamente 3 mM, como se sugiere en la literatura experimental mas reciente
[14]. Luego, calibramos este modelo de manera que pueda producir la frecuencia
de 4 Hz caracteristica de la neurona en reposo, y desarrollamos un mecanismo
de activacion neuronal mediante el aumento temporal de las conductancias de
fuga de sodio y potasio. Los resultados obtenidos en estas simulaciones estan
analizados para tres frecuencias diferentes que caracterizan el estado de reposo
alfa: 8 Hz, 10 Hz y 12 Hz. Los cambios a lo largo del tiempo en el potencial
de la membrana, la concentracion de potasio extracelular, la concentracién del
sodio intracelular y las variables de activacién correspondientes se presentan en
la seccion de resultados del Capitulo 1.

El segundo capitulo, dedicado al metabolismo cerebral, inicia con una intro-
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duccion a la modelacion matematica asociada a los modelos metabdlicos espacial-
mente agrupados en multiples compartimentos; luego, hacemos una descripcién
matematica de las tasas de transporte y de los flujos de reaccién, y proseguimos
con una descripcion de las principales reacciones bioquimicas consideradas. Adi-
cionalmente, presentamos una breve resena de dos modelos metabdlicos muy re-
conocidos: el modelo de Aubert y Costalat [8] y el modelo de Cloutier [9], ambos
incluyen parcialmente el costo energético de la bomba de sodio y potasio. En
la cuarta seccién del Capitulo 2 presentamos el modelo metabdlico utilizado a lo
largo de esta tesis; describimos la dindmica de las concentraciones de metabolitos
en los cuatro compartimentos y presentamos la descripcién matematica de los
flujos de transporte entre los diferentes compartimentos y los flujos de reaccién
en los dos compartimentos celulares.

El modelo metabdlico que consideramos estd constituido por 26 ecuaciones
diferenciales en las cuales se rastrean las especies bioquimicas en cuatro com-
partimentos: sangre, neurona, astrocito y espacio extracelular. El sistema resul-
tante de ecuaciones diferenciales es muy rigido y, por lo tanto, requiere atencién
especial. En primer lugar, garantizamos la positividad de nuestras 26 especies
bioquimicas expresandolas en forma exponencial y, posteriormente, desarrollamos
el marco matematico para resolver numéricamente dicho sistema. En particular,
utilizamos una familia de métodos implicitos conocidos como las férmulas de difer-
enciacién hacia atras (BDF, por sus siglas en inglés), disenadas especificamente
para este tipo de sistemas. Posteriormente, calibramos nuestro modelo, eligiendo
la energia necesaria para los procesos de mantenimiento de manera que el indice
de oxigeno glucosa (OGI), definido como la divisién entre el flujo de oxigeno y
el flujo de glucosa entre la sangre y el espacio extracelular, caiga en el rango
sugerido en la literatura durante el estado de reposo alfa y durante la activacion
neuronal sostenida. A lo largo de las simulaciones realizadas en este capitulo,
el costo energético proporcionado por la actividad electrofisiolégica se mantiene
constante y estda determinado por el modelo descrito en el Captulo 1, para cuatro
niveles diferentes de activacién: 8 Hz, 10 Hz, 12 Hz y 90 Hz. A continuacién,
realizamos dos simulaciones en las cuales describimos la respuesta metabdlica a
la transicion del sistema de un estado de reposo de 8 Hz a un periodo de tres min-
utos de activacion neuronal correspondiente a una frecuencia de 90 Hz, seguido
de otro perodo de disparo neuronal de 8Hz. En el primer caso, correspondiente
a un experimento in vitro, el flujo sanguineo se mantiene constante a lo largo de
la simulacién, mientras que durante el segundo experimento aumentamos el flujo
sanguineo un 30% durante el periodo de activacién neuronal, protocolo que corre-
sponde a un analisis in vivo. La tltima secciéon muestra los resultados obtenidos

para los dos protocolos de manera comparativa y de acuerdo con la literatura
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experimental.

El tercer capitulo describe el modelo electro-metabdlico de doble retroali-
mentacién. En este capitulo presentamos el método por el cual, segtin el con-
sumo y la demanda de ATP, realizamos el acoplamiento entre el modelo de ac-
tividad electrofisiologica y el modelo metabdlico. Las diferentes escalas de tiempo
empleadas por los dos modelos requieren una consideracién especial: en la ter-
cera seccién describimos el enfoque computacional multiescala que desarrollamos.
Nuestro modelo ha sido probado en diferentes escenarios: primero consideramos
activaciones neuronales consecutivas, separadas por diferentes periodos de re-
cuperacion y evaluamos como la duraciéon del periodo de recuperacion afecta la
segunda activacion neuronal. El segundo protocolo simula un episodio isquémico,
durante el cual el flujo sanguineo muestra una disminucién del 90% durante un
periodo de 90 segundos y en el tercero, un episodio isquémico es seguido por un
periodo de activacion neuronal. Para todos estos casos, mostramos los cursos
de tiempo del potencial de la membrana, las concentraciones iénicas, las con-
centraciénes de los metabolitos principales y las tasas de transporte y reaccion.
Ademads, para comparar los resultados obtenidos con aquellos de la literatura,
mostramos el curso temporal del indice de oxigeno-glucosa que hemos obtenido
en cada caso.

La hemodindmica del cerebro es el tema del Capitulo 4, en cuya introduccién
describimos los mecanismos basicos de la imagen por resonancia magnética fun-
cional (fMRI) y la imagen de contraste dependiente del nivel de oxigeno en la san-
gre (BOLD) destacando ademads algunos debates abiertos sobre el tema en la liter-
atura. Para completar, ofrecemos una breve revision de los modelos matematicos
del flujo sanguineo cerebral, incluido el modelo de Buxton [15, 16, 17] y un modelo
reciente de tres compartimentos de Barrett et al. [18]. Por otro lado, acoplamos
una extension del modelo de Barret et al., que ha sido recientemente propuesta en
[19, 20], a nuestro modelo electro-metabdlico que hemos descrito en el Capiitulo
3 vy expresamos el estimulo vasodilatador en términos de la concentracion ex-
tracelular de potasio. Las predicciones calculadas por este modelo hemo-electro-
metabdlico con triple retroalimentacién son presentadas en la tltima seccién para
dos protocolos: uno en el cual el estado de reposo es seguido por un periodo de
activacién neuronal y otro donde hay dos activaciones neuronales consecutivas.
Nuestros resultados estan en concordancia con la literatura mas reciente.

En el Capitulo 5, se propone un nuevo modelo mateméatico para investigar
los cambios en la actividad eléctrica y metabdlica durante la depresién cortical
propagada (CSD), donde las ondas de depolarizacién celular, que se propagan
lentamente, estan acompanadas del silenciamiento neuronal y de cambios rad-

icales en la homeostasis iénica. Después de una breve introduccion sobre las
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ondas de depresion cortical propagada y de las alteraciones extremas que se pro-
ducen en las concentraciones iénicas, la morfologia celular, el metabolismo y la
hemodinamica, presentamos una breve revision de algunos modelos matematicos
que generan ondas de depresion cortical propagada. En particular, nos referimos
al modelo de Wei et al. [11] y al modelo de Huguet et al. [21]. En la tercera
seccion de este capitulo, proponemos un nuevo modelo, basado en el trabajo de
Hubel et al. en [22], especificamente disenado para capturar la actividad electrofi-
siolégica durante la CSD. Ademds, describimos cémo los pardametros del modelo
son calibrados para lograr el disparo a las frecuencias deseadas y como se im-
plementa el acoplamiento de este nuevo modelo electrofisioldgico con el modelo
metabdlico descrito en el Capitulo 2. Para tener en cuenta los grandes cambios
morfoldgicos que se producen durante el paso de las ondas de depresién corti-
cal propagada, nuestro modelo electro-metabdlico de CSD asume fracciones de
volumen variables tanto en el modelo de actividad electrofisiolégica como en el
metabdlico. Los resultados obtenidos, al simular las ondas de CSD con nue-
stro modelo electro-metabdlico de CSD, capturan no sélo los grandes cambios en
las concentraciones idnicas proporcionadas por aumentos masivos en la concen-
tracion extracelular de potasio y en la concentracién intracelular de sodio, sino
también la caracteristica metabdlica observada tipicamente durante la CSD: una
disminucién significativa en la glucosa y un aumento masivo en la concentracion
de lactato. Nuestro modelo predice, de acuerdo con los hallazgos experimentales
reportados en la literatura, una contraccién pronunciada del espacio extracelular,

debido a la expansion de los compartimentos celulares.



Summary

The sizable energetic consumption of human brain, when considering its relatively
small weight of approximately 2% of an average human body, has captivated the
interest of different scientific communities for the past few decades. As a result
of many years of investigation on brain energetics, today it is generally agreed
that most of the energy consumed by the brain goes on driving the ionic pumps,
on maintaining the resting potential and on propagating action potentials [1, 2].

While most of the scientific interest at first was directed towards studying
neurons, in the last years, the essential role of astrocytes in the brain has been
acknowledged [3, 4, 5, 6, 7]. More specifically, astrocytes are credited with playing
a crucial role in cleaning the large concentration of extracellular potassium in the
wake of neuronal activation, ischemic events or cortical spreading depression. In
addition, recently it was proposed that due to the proximity of the astrocytic
endfeet to the capillary, they may have a very significant role on regulating the
cerebral blood flow response [1].

The neuroimaging modalities currently available visualize different aspects
of the brain separately, thus making it difficult to elucidate how the brain co-
ordinates its different functions. Brain electrical activity is observed through
electroencephalography (EEG), magnetoencephalography (MEG) or electrocor-
ticography (ECOG). Positron emission tomography (PET) monitors metabolic
events, while the blood flow response is determined via functional MRI and in
particular through the blood oxygenation dependent signal (BOLD). In the last
20 years, mathematical models have become an important tool in studying var-
ious healthy and pathologic conditions in the brain. This thesis proposes three
new mathematical models to provide a holistic view over the different processes
occurring in the brain.

One of the main achievements of this thesis is an integrated Hemo-Electro-
Metabolic model, that coordinates and synchronizes three different, yet con-
nected brain functions. The model provides a more complete understanding of

how brain electrical activity, its metabolism and its hemodynamic response in-
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teract, how they are mutually regulated and how the impairment of one of these
aspects can lead to a disruption of the other ones.

It is known that brain electrophysiological activity can only be sustained if
the ensemble of biochemical processes taking place in the metabolism is able to
produce an adequate quantity of energy (ATP), which can vary substantially
depending on the level of neuronal activation. In turn, the amount of energy pro-
duced by metabolism depends on the availability of different biochemical species
and therefore, also on the amount of blood flow, as it transports glucose and
oxygen.

Coupling the electrophysiology and metabolism can be found in a number of
articles published in recent years, both in the literature regarding brain metabolism
[8, 9, 10] and the literature regarding electrophysiological activity [11]. For ex-
ample, in [8], Aubert et al. include in their metabolic model the cost of the
sodium potassium pump and in [9], Cloutier et al. add the cost of the glutamate-
glutamine cycle to the metabolic model they developed. On the other hand,
various models concerning the electrophysiological activity, take into account, at
least in part, the availability of some of the metabolites. For example, in the
model proposed by [11] in Wei et al., able to capture brain electrophysiological
activity and different firing patterns, the activity of the sodium potassium pump
is expressed with respect to the available concentration of oxygen.

In this thesis we propose a double-feedback model, which not only accounts
for the energetic cost of the sodium potassium pump in the metabolism, but also
for the metabolic response to this energetic cost. A major difficulty in develop-
ing such a coupled model comes from the different orders of magnitude in the
time scales of the characteristic processes: while brain electrophysiologic activity
runs at milliseconds, the metabolic counterpart is much slower, with dynamics
of the order of minutes. These dramatically different time scales require special
attention and adequate computational handling, which we address by developing
a time integration algorithm to solve the coupled system.

This thesis is structured in five main chapters: the first two chapters are
devoted to the description of the electrophysiologic and the metabolic model.
The Electro-Metabolic coupling is discussed in detail in Chapter 3, where we
address the mathematical difficulties arising from the different time scales of the
two processes. Chapter 4 describes how to enrich the model by adding a de-
tailed description of the cerebral blood flow response during neuronal activation,
by linking our Electro-Metabolic model to a hemodynamic model in which the
changes in blood flow are tracked through three different compartments: arter-
ies, capillaries and veins. As the blood flow response is slower than the electro-

physiologic and metabolic response, one additional time scale is introduced in
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our multiscale approach. The last chapter of this thesis is dedicated to a novel
electro-metabolic mathematical model specifically designed to investigate corti-
cal spreading depression (CSD) and the large changes which occur in the ionic
concentrations, metabolites concentrations and hemodynamic response. Due to
the massive alterations triggered by CSD, we replaced the electrophysiological
activity model described in Chapter 1, with a more complex model, specifically
taylored for simulating CSD. We then address the coupling of this model with
the metabolic model presented in Chapter 2, in which we account also for the
large changes in the volume fractions during the passing of CSD waves.

The first chapter of this thesis is devoted to describing the brain electro-
physiological activity. The first section consists of a review of the mathematical
models capturing electrical activity, starting from the classical Hodgkin-Huxley
model, and continuing with Fitzhugh-Nagumo model, Hindmarsh-Rose model
and Izhikevich model. The electrophysiologic model used in the first four chap-
ters of this thesis is described in detail in the second section of the first chapter.
This model, which was originally proposed by Cressman et al. [12, 13], was mod-
ified to match an extracellular potassium concentration for the brain at rest of
approximately 3 mM, as suggested in the most recent experimental literature
[14]. We calibrated this model so that it can produce the frequency of 4 Hz
characteristic to the neuron at rest, and we developed a mechanism of inducing
neuronal activation by temporarily increasing the leak conductances of sodium
and potassium. The results obtained in these simulations are presented for three
different frequencies characterizing the alpha awake resting state 8 Hz, 10 Hz and
12 Hz. The changes over time in the membrane potential, concentration of extra-
cellular potassium, intracellular sodium and the corresponding gating variables
are presented in the results section of Chapter 1.

The second chapter dedicated to brain metabolism, starts with an introduc-
tion of mathematical modeling of spatially lumped metabolic models featuring
multiple compartments, the mathematical description of the transport rates and
reaction fluxes, and continuing with a description of the main biochemical reac-
tions we are considering. A short review of two well known metabolic models
follows: the Aubert and Costalat model [8] and the Cloutier model [9], both of
which partially include the energetic cost of the sodium potassium pump. In the
fourth section of Chapter 2 we introduce the metabolic model [41] used through-
out this thesis; we describe the dynamics of the metabolites concentrations in the
four compartments and we present the mathematical description of the transport
fluxes between the different compartments and the reaction fluxes in the two
cellular compartments. In summary, the metabolic model we consider consists

of 26 differential equations in which the biochemical species are tracked in four
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different compartments: blood, neuron, astrocyte and extracellular space. The
resulting system of differential equations is very stiff, and therefore requires spe-
cial attention. Therefore, we first guarantee the positivity of our 26 biochemical
species by expressing them in exponential form, and we develop the mathemat-
ical framework to numerically solve such a stiff system. We use a family of im-
plicit methods known as the Backward Differentiation Formulae (BDF) methods,
specifically designed for stiff systems. We then calibrate our model, by choosing
the household energy such that the oxygen glucose index (OGI) index, defined as
the ratio between the flux of oxygen and the flux of glucose between the blood
and the extracellular space, falls in the range reported by the literature during
alpha awake resting state and during sustained neuronal activation. Through-
out the simulations performed in this chapter, the energetic cost provided by
the electrophysiological activity was kept constant and was determined from the
model described in Chapter 1, for four different levels of activation: 8 Hz, 10 Hz,
12 Hz and 90 Hz. We perform two computed experiments in which we describe
the metabolic response to the system transitioning from an awake resting state
of 8 Hz to a a period of three minutes of neuronal activation corresponding to a
frequency of 90 Hz, followed by another period of 8Hz neuronal firing. In the first
case we considered, the blood flow is kept constant throughout the experiment,
corresponding to an in vitro experiment, while during the second experiment we
increase the blood flow by 30% during the neuronal activation period, protocol
which corresponds to an in vivo case. The last section shows the results obtained
for the two protocols in a comparative manner and agree with the experimental
literature.

The third chapter describes the double feedback Electro-Metabolic model. In
this chapter we describe the manner in which, based on the ATP consumption and
ATP demand, we perform the coupling between the electrophysiological activity
model and the metabolic model. The different time scales employed by the two
models, required special consideration: in the third section we describe the ad
hoc multiscale computational approach we developed. Our model is tested in
various situations: we first consider consecutive neuronal activations, separated
by different recovery periods and we assess how the duration of the recovery
period impacts the second neuronal activation. The second protocol simulates an
ischemic episode, during which the blood flow exhibits a 90% decay for a period
of 90 seconds and in the third one, an ischemic episode is followed by a neuronal
activation period. For all these cases, we show the time courses of the membrane
potential, the ionic concentrations, the concentration of the main metabolites,
the transport rates and the reaction rates. In addition, for comparison with the

experimental literature, we show the time course of the oxygen glucose index we
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obtained in each case.

Brain hemodynamics is the topic of Chapter 4, where in the introduction
section, we describe the basic mechanisms of functional Magnetic Resonance
Imaging (fMRI) and Blood Oxygenation Level Dependent (BOLD) highlight-
ing some open debates in the literature. For completeness, we provide a short
review of mathematical models of cerebral blood flow response, including the
Balloon Model [15, 16, 17] and a recent three compartment model by Barrett et
al. [18]. We couple an extension of the latter recently proposed in [19, 20] to our
Electro-Metabolic model introduced in Chapter 3 and we express the vasodila-
tory stimulus in terms of extracellular potassium concentration. The computed
predictions of this three way feed-back Hemo-Electro-Metabolic model are pre-
sented in the last section for two protocols: one where resting state is followed by
a period of neuronal activation and one where there are two consecutive neuronal
activations. Our results and are in agreement with the most recent literature.

Chapter 5 proposes a new mathematical model for investigating the changes
in electric and metabolic activity during cortical spreading depression (CSD),
where slowly propagating waves of cellular depolarizations are accompanied by
neuronal silencing and extreme changes in the ionic homeostasis. After a short
introduction to CSD waves and the extreme alterations they produce in the ionic
concentrations, cellular morphology, metabolism and hemodynamics, we present
a brief review of some mathematical models generating cortical spreading de-
pression waves. In particular, we refer to the Wei model [11] and Huguet model
[21]. In the third section of this chapter we propose a new model, based on
the work of Hubel et al. in [23], specifically designed for capturing the electro-
physiological activity during CSD. In addition, we describe how we calibrated the
model parameters to attain firing at the desired frequencies and how the coupling
with the metabolic model described in Chapter 2 is implemented. To take into
account the very large morphologic changes which occur during the passing of
cortical spreading depression waves, our coupled CSD Electro-Metabolic model
assumes variable volume fractions in both the electrophysiological activity model
and in the metabolic one. The results obtained when simulating CSD waves with
our coupled CSD Electro-Metabolic model capture not only the large changes in
ionic concentrations given by massive increases in the concentration of extracellu-
lar potassium and intracellular sodium, but also the metabolic signature typically
observed during CSD: a significant decrease in glucose and a massive increases
in lactate concentration. Our model predicts, in agreement with experimental
findings reported in the literature, a pronounced shrinkage of the extracellular

space, due to the swelling of the cellular compartments.
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CHAPTER 1

Electrophysiology

Brain electrophysiology is concerned with the study of the electrical activity of
neurons. In the recent years, mathematical modelling and computer simulations
have become an essential tool in uncovering fundamental mechanisms in neuro-
science: numerous mathematical models have been developed for describing a
wide range of phenomena: from characterizing the biophysical mechanisms of
current flow through individual ion channels to modeling the activity of large
populations of neurons [24]. This chapter provides an overview of mathematical
models for describing the electrical activity of the brain and the differences in the
ionic homeostasis during resting state and neuronal excitation periods. We begin
with a short review of the mathematical models for the brain electrophysiological
activity and we then concentrate on describing the electrophysiologic model we

are going to use throughout this thesis.

1.1 Review of electrophysiological models

In this section we present a general overview of the mathematical models to de-
scribe electrical activity in the brain, starting with the pioneering work by Sir
Alan Hodgkin and Sir Andrew Huxley for the ionic mechanisms underlying action
potentials. The next subsection presents the Fitzhugh-Nagumo model, reducing
the complexity of the Hodgkin-Huxley model while maintaining its essential char-
acteristics. Modifications of this model include the Hindmarsh Rose model and
the Izhikevich model, and we focus on their capacity of producing not only tonic

spiking behavior but also various bursting patterns.
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1.1.1 Hodgkin-Huxley model

The foundation of most of today’s electrophysiological models is the work of Sir
Alan Hodgkin and Sir Andrew Huxley [25, 26, 27], who in the middle of the
twentieth century, performed experiments on the squid giant axon and subse-
quently provided a description of the behaviour of the macroscopic ionic currents
with respect to changes in the sodium and potassium conductances in the axon
membrane.

Their discoveries led to the formulation of the Hodgkin-Huxley model (HH),
describing the dependency of the sodium and potassium conductances on voltage
and time. Every ion channel consists of one or more gates that regulate the
flow of ions through the channel [24]. In the squid axon there are three major
currents: the persistent potassium current, Ik, with four activation gates, the
transient sodium current Iy, with three activation gates and one inactivation
gate and the Ohmic leak current, Iy, carried mostly by chloride ions [28]. The
ionic currents are proportional to the maximum conductance characteristic to
each current (gna, gk, Jleax), multiplied by the difference between the membrane

voltage (V') and the equilibrium voltage (Vi, VNa, Vieak):

INa = gNa(V - VNa)> Ix = gK(V - VK)7 Dieax = gleak(v - Vleak)-

Their sum represents the total ionic current Ij,,:

Iion - gNa(v - VNa) + gK(V - VK) + gleak(v - ‘/leak)-

The empirical expressions found by Hodgkin and Huxley for the sodium and

potassium channel conductances are:

gNa = gnam’h, gx = gxn', (1.1)

where n represents the open probability for the activation gate of potassium
channel, m is the open probability for the activation gate of sodium and h is the
inactivation gate for the sodium channel.

The Hodgkin-Huxley model consists of four differential equations, one de-
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scribing the change in membrane voltage over time and the others describing the

changes in the rate processes over time:

1

dn
dt
dm
dt
dh
dt

av
dt
an(V)(1 = n) = Bu(V)n,

am(V)(L =m) = B (V)m,

Cm + Iiom

an(V)(1 = h) = Bu(V)h,

(1.2)
(1.3)
(1.4)

(1.5)

where «;, f3; for i = {n,m,h} are dimensionless rate constants corresponding to

each of the gates; their expressions are listed in Table 1.1.

w m

h

n

25-V

(V)

Bu(V)

Ollexp((25 —-V)/10) —1

dexp(—V/18)

0.07 exp(—(V/20)

1
1+ exp((30 — V)/10)

10-V

0'Olexp ((10-Vv)/10) -1

0.125 exp(—V/80)

Table 1.1: Gating variables: voltage-dependent saturation functions for Hodgkin-

Huxley model.

In the original work by Hodgkin and Huxley [25, 26, 27], the parameters of the

model (see Table 1.2) were chosen such that the resting potential is approximately

0, and hence the membrane potential was shifted by 65 mV.

Name Symbol | Value | Units
Membrane capacitance Cm 1 uF/ cm”
Applied current Lion 0 pA /em”
Sodium Nernst equilibrium potential Na 120 mV
Potassium Nernst equilibrium potential | Vi -12 mV
Leak Nernst equilibrium potential Vieak 10.6 mV
Sodium maximal conductance JNa 120 mS/ cm?
Potassium maximal conductance K 36 m$S /cm”
Leak maximal conductance Gleak 0.3 mS/ cm?

Table 1.2: Parameters values in HH model.

Figure 1.1 shows the resulting action potential and the gating variables for

the choice of parameters given in Table 1.2.

In this simulation, the stimulus
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I =25 pA/cm? was applied at time ¢ = 5 milliseconds and had a duration of 5
milliseconds. These initial conditions were obtained by setting V' = 0, yielding
n(0) = 0.318, h(0) = 0.5963 and m(0) = 0.053. For this simulation, we solved the
system of differential equations (1.2) using the Matlab built-in function odel5s.
The right panel of Figure 1.1 shows the time course of the conductances defined in
equation (1.1). Notice that the amplitude of the injected current [ is sufficiently
large to induce an increase in the sodium conductance and the peak of the action

potential coincides with the peak of the sodium conductance.
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Figure 1.1: Voltage (left), gating variables (middle) and conductances (right) in
the Hodgkin Huxley model.

1.1.2 Fitzhugh-Nagumo model

The complexity of the Hodgkin-Huxley model was reduced in 1961 by Fitzhugh
[29], who observed that the time scale of the activation gate for the sodium
channel m is much faster than the other gates (see Figure 1.1), justifying the
assumption that the activation gate m reaches its value immediately, thus, its
value can be determined by simply setting Cil—? = 0 while keeping h constant.
This consideration reduces (1.2)-(1.5) to the following system containing only

two differential equations.

av

Cm% =1- gNa(O-8 - n)(v - VNa) - gK(V - VK) - gleak(v - Vieak)7
at (1.6)
i a,(V)(1 —n) = 6,(V)n.

Using the fact that the V nullcline has the shape of a cubic function and
could be approximated by a straight line, Fitzhugh reduced the complexity of
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the model (1.6) even further, by proposing a polynomial model of the form:

LI S
a3 YT
J (1.7)
—y:l(x—b +a)
dt v 4 '

The action potential generated with this model is shown in Figure 1.2 together
with the time course for the gating variable y. For this simulation we used the
built-in Matlab solver odelbs, with the choice of parameters: a = 0.8, b = 0.7
and v = 13. At t = 5 milliseconds, we consider a stimulus I = 0.4 having a

duration of 3 milliseconds.

o
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o

o
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Figure 1.2: Voltage (left) and the gating variable y (right) in the Fitzhugh-
Nagumo model.

1.1.3 Hindmarsh-Rose model

The Hindmarsh-Rose model is a modification of the FitzHugh-Nagumo model.
An adaptation variable z was added to control the termination of the firing by
lowering the effective current when the neuron is firing, and by returning to zero
when the membrane potential has reached its resting value. In this manner, the
neuron does not fire indefinitely and it is capable of generating oscillations which
exhibit long intervals between the spikes [30, 31].

The model consists of three nonlinear differential equations (1.8) where x is
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the membrane voltage, y is the recovery current and z is the bursting variable.

C;—f:—x3—|—3x2+y—z+l,

dy 2

A — 1 1.8
7 Sz y+ 1, (1.8)
%:,u(él(x—l—h)—z).

An essential feature of the Hindmarsh model is its capacity to generate two
of the most common signals: the tonic spiking, characterized by the continuous
firing of the action potentials, and the bursting behaviour, in which oscillations
appear. Numerous articles [30, 31, 32, 33| study in detail the transitions between
these states.

The time courses obtained for solving equations (1.8) with h = 1.6 and [ = 2
are showed in Figure 1.3. The parameter u represents the ratio of time scales
between fast and slow fluxes in the membrane. We performed experiments with
various values of u: the first row of Figure 1.3 illustrates the bursting behav-
ior obtained for p = 0.002, while in the bottom row we show the tonic firing

corresponding to pu = 0.02.

2 2 2.2
> 0 N21
1 © o
o Qo
© 8
L4 < 2
0 > >
> 6 219
£ =
= -8 |14
-1 % 5
%) 1.8
-10 [11]
-2 -12 1.7
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
time (msec) time (msec) time (msec)
2 2 25
> 0 N
1 o o
2 8
g 4 S
0 g Bl
2 e 2
£ =
- \) % -8 g
-10 o
-2 -12 1.5
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
time (msec) time (msec) time (msec)

Figure 1.3: Simulation results of the Hindmarsh-Rose model with A = 1.6 and
I =2 in two cases: p = 0.002 (top row) and p = 0.02 (bottom row)



CHAPTER 1. ELECTROPHYSIOLOGY 19

1.1.4 Izhikevich model

The Izhikevich model, like the Hindmarsh-Rose model, is able to reproduce both

spiking and bursting behaviour [34] and consists of two differential equations:

dv

Cd_ == k('U - Urest)(v - Uthresh) —u+ Ia
¢ (1.9)
du _ [b(v — Vyest) —
dt a rest )
coupled with the following after-spike resetting:
v =c,
if v > vpear then (1.10)
u=u-+d.

Here v is the membrane potential, u the recovery current, C' is the membrane
capacitance, a the recovery time constant, ¢ the value to which the voltage resets
after having reached the peak value vpeax; the threshold potential is denoted by
Uthresh- Whenever the depolarization exceeds vynesn the resting membrane poten-
tial v,est, a spike response is induced. The parameter d accounts for the difference
between the outward and the inward currents activated during the spike, affecting
the behavior after the spike. The parameters k£ and b can be determined using
the information about the membrane excitability, i.e. the rheobase and the input
resistance of the neuron [28]. As discussed in detailed in [28, 34], various classes of
firing patterns corresponding to various neuron types can be observed by varying
these parameters. In Table 1.3 we present the parameter values corresponding to
three situations: a tonic neuronal firing, a fast rythmic bursting, also known as
chattering, and an intrinsically bursting behavior.

In Figure 1.4 we show simulations obtained with model (1.9), using an explicit

forward Euler method,

Cu(t+ At) = v(t) + At [k(0(t) = Vrest) (0(t) — Vitwes) — u(t) + 1(#)],

u(t + At) = u(t) + a[b(v(t) — vrest) — u(t)],

with time step At = 0.5 msec; the parameters corresponding to the three different

firing patterns are given in Table 1.3.
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Parameter | Tonic | Fast rythmic | Intrinsically Unit
firing bursting bursting measure
Viest -60 -60 =75 mV
‘/thresh -40 -40 -45 mV
Vieak 30 25 50 mV
C 100 50 150 pF
k 0.7 1.5 1.2 -
a 0.03 0.03 0.01 -
b -2 1 5 -
c -50 -40 -56 -
d 100 150 130 -
I 70 400 500 pA

Table 1.3: Parameter values in Izhikevich model for different neuronal firing

patterns.

In addition to the continuous firing showed in the left column of Figure 1.4,

in the center we observe high frequency bursts of spikes characterized by a very

short interburst period. On the other hand, in the right column of Figure 1.4

we see that multiple spikes are being generated at the beginning of a sufficiently

strong pulse, while further on, a regular firing pattern is formed.
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Figure 1.4: Simulation of the Izhikevich model [28, 34] using parameters defined
in Table 1.3 corresponding to tonic firing (left), fast rythmic bursting (middle)
and intrinsically bursting neurons (right).
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1.2 The proposed electrophysiological model

In this section we provide a detailed description of the electrophysiologic model
we used throughout this thesis. Based on Hodgkin-Huxley model, Cressman et
al. [12, 13] features important additions as they include an ionic current for the
sodium potassium pump, an ionic current for the glial uptake and a diffusion
current of potassium outside the neighborhood. This section contains various
modifications we brought to the original model [12, 13], based on physiological
considerations. One of most important changes we have done was to adjust the ex-
tracellular potassium concentration to approximately 3mM during resting state.
This is significantly lower than the value initially proposed by Cressman [12] and
Barreto [13] but it represents the currently accepted value for the concentration

of extracellular potassium for the brain during resting state [14].

1.2.1 Description

The model for the electrophysiological activity portion of this thesis follows the
one developed by Cressman et al. in [12, 13]. Starting from the classical Hodgkin-
Huxley model for the neuron membrane potential described in Section 1.1.1,
the Cressman model introduces various essential features, including sodium and
potassium dynamics and accounts for the ionic currents induced by the sodium
potassium pump, glial potassium cleaning and potassium diffusion.

Following the Hodgkin-Huxley paradigm, the membrane potential and the

gating variables n, m and h are governed by the differential equations:

dV

Cmg - _INa+ - _[KJr - ]leak7 (111)
d
= = el -w) = Bu(Vw), we{nmh},  (112)

where ¢,, is the membrane capacitance, ¢ the time constant of the gating variables
and the saturating functions «a,, and 3, corresponding for each gating variable
w € {n,m, h}, are specified in Table 1.4.

As in the Fitzhugh-Nagumo model, Cressman and Barreto [12, 13] assume

that the activation gate for sodium m = m(V’) is much faster than the other gates,
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w m h n

V 430 V+34

V) | O v+ 30y/a0) | 0T SRV HAD/20) 1 000 i)
1

Bu(V) | dexp(—(V +55)/18) 1+ exp(—(V +4)/10)

0.125 exp(—(V + 44)/80)

Table 1.4: Gating variables: voltage-dependent saturation functions.

reaching equilibrium sufficiently fast to justify the steady state approximation:

(V')
am (V) + B (V)

m=m(V) =

The equations governing the ionic currents [13] corresponding to sodium,

potassium and chloride are:

[NaJr = gNa+m3h(V - VNa*) + gNa*,leak(V - VNa*)a (113>
Ix+ = g+ (V = Vit ) + gkt geac(V = Vicr ), (1.14)
Leakcrr = ga-(V = Vo), (1.15)

where gna+, Inat teak> I+ and gi+ jeqx are the conductances and the leak conduc-
tances of sodium and potassium, and gq- is the leak conductance of chloride;
their values are listed in Table 1.5. The total leak current is the sum of the leak

currents of sodium, potassium and chloride:

Ileak = gNa+,leak<V - VNa+) + gK"",leak(V - VK+) + 9ar- (V - VCI_)'

The reversal potentials Vy,+, Vk+ and V- are expressed in terms of the ionic
concentrations inside and outside the membrane, and are obtained via the Nernst

equations,

Vx = 26.641n (P[i]) , X e{Na" K" Cl}. (1.16)

As the model does not include chloride dynamics, the concentrations of chloride
inside and outside the cell are kept constant: [Cl™]e.s=6 mM and [Cl™ ;=130 mM,

yielding a reversal potential of chloride of -81.93mV.
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Name Symbol | Value | Units
Capacitance Cm 1 uF /cm?
Time constant ® 3 1/msec
Sodium conductance INa+ 46 mS/ cm?
Potasium conductance i+ 16.25 | mS/ cm?
Sodium leak conductance INat lea | 0.0175 | mS/ cm?
Potassium leak conductance | gg+ e | 0.02 mS/ cm?
Chloride conductance ga 0.05 mS/cm”

Table 1.5: Parameter values for the Cressman model

In the Cressman model, the total concentration of sodium is assumed to be
conserved, while the intracellular concentration of sodium is compensated by the

potassium concentration outside the cell:

[Natles = 144mM — B([Na™}; — 10.5mM), (1.17)

[K*]; = 140mM + (10.5mM — [Na™];), (1.18)

where 10.5mM and 140 mM are the concentrations at rest of sodium and potas-
sium inside the neuron, and 144 mM is the resting concentration of extracellular
sodium.

The differential equations governing the intracellular concentration of sodium

and the extracellular concentration of potassium are:

d Na+1 [ a+

. dt b 5~ 3 oump e (1.19)
d K+ ecs

T - [ dt] = ,YIK"F - 26qump7Na+ - ngia,K+ — JdiH,K+7 (120)

where 7 = 1000 is a conversion factor from seconds to milliseconds, the parameter
v = 0.33 mMcm?/uC converts the electric current to mass flux [12] and 8 =
1 /MECcs 18 the ratio between the intracellular and extracellular volume of the cell,
which in our case is § = 1.33.

In the model, J, + represents the ion current induced by the sodium

ump,Na
potassium pump, Jy;, x+ is the ion current induced by the astrocytic potassium

cleaning and Jg4x+ accounts for the diffusion of potassium. These ion mass
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currents are defined through the equations:

_ P 1
Toump.Nat = (1 + exp(25 — [Na+]i)/3)) 8 (1 + exp(2.2 — [Kﬂecs)) (1:21)
Gglia
Tuiact 1+ exp((14.7 — [Kees) /25) (1.22)
Jdif‘f,KJr - Z':([Ii—i_]ecs - koo), (123)

where p is the strength of the sodium potassium pump, G, the strength of the
glial uptake, ¢ is the diffusion coefficient and k., is the potassium bath concen-

tration.

1.2.2 Neuronal activation

In this section we provide a detailed description of the mechanism underlying
neuronal activation in our model and describing the different metabolic response
to various levels of synaptic activity.

Rather than driving neuronal activation by explicitly modelling the glutamate-
glutamine cycle as done in [9], here we rely on the fact that during the neuronal
activation the glutamate secreted by the presynaptic neuron is sensed by the
postsynaptic glutamate receptors and there is an increase of the influx of sodium
and potassium ions [35].

Mathematically, this physiological observation translates into a temporary
increase of the leak conductances of sodium and potassium for the period of

neuronal excitation:

gNa+,leak(t> - (1 + g(t))glgla+,leak (124)

gK+,leak<t) = (1 + g(t))gg{ﬂleak (125)

where ggaﬂeak and gg{"’,leak are the constant resting values of the leak conduc-
tances, and & = £(t) is the time dependent activation function that models the
effect of glutamate. The effect of this function on the neuronal firing frequency
is discussed in Section 1.2.4.

To summarize, our electrophysiological model consists of 5 differential equa-
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tions (1.11), (1.12), (1.19) and (1.20) and can be expressed as:

du

B e (120

where u is a vector containing the unknows:

: (1.27)

while ¢ is an activation function controlling the level of neuronal firing (see Figure

1.7).

1.2.3 Calibration

In light of the in-vitro experiments confirming that the excitability of the neuron
depends strongly on the concentration of potassium in the extracellular space [36],
the firing pattern of the electrophysiological model depends on the parameters
that control the extracellular potassium concentration, which in Cressman model
are ks, €ecs, Gglia, and p. In [12] the authors performed a bifurcation analysis
for these parameters, by considering a reduced model consisting of equations
(1.17)-(1.20), in which the fast scale effects of the complete model were ignored.
In this manner they were able to distinguish between regions characterized by
high-frequency firing bursts and regions of continuous firing.

In our case, rather than controlling the potassium level itself, we induce the
firing mechanism by controlling the input function £. Firstly, we performed a
manual calibration of the electrophysiological model such that the choice of the
four parameters mentioned above results in a 4 Hz background firing. With re-
spect to the original model proposed by Cressman [12], we neglected the calcium
dynamics, as it was done by the same author in a more recent publication [13].
Also, in order to be in agreement with the recent experimental literature [14]

on the concentration of extracellular potassium during resting state for a human
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brain, we downgraded the potassium bath concentration k., to 3 mM. The par-
titioning of the total potassium cleaning power 7, = Ggi, + p was done such
that 60% of the total cleaning power was attributed to the glia and 40% to the
neuron. The parameter values chosen in order to obtain a firing frequency of
4Hz, characteristic for the neuron at rest, are given in Table 1.6, while the initial

conditions are showed in Table 1.7.

Name Symbol | Value | Units
Potassium bath concentration | k. 3 mM
Diffusion coefficient £ 9.33 | st
Glial uptake strength Gllia 20.75 | mM/s
Neuronal pump strength p 13.83 | mM/s

Table 1.6: Parameter values in the electrophysiological model corresponding to
a 4Hz background firing rate.

V (mV) n h [KT]ecs (mM) | [Na™t]; (mM)
-57.3351 | 0.1417 | 0.9177 2.9871 10.0039

Table 1.7: Initial conditions of membrane potential, ionic concentrations and
gating variables for the Cressman model.

1.2.4 Simulation results

In this section we show various results obtained from simulating our modification
of the Cressman model by using the odel5s built in Matlab solver.

In Figure 1.5 we see the membrane potential, the intracellular sodium concen-
tration, the extracellular potassium concentration and the two gates of activation,
respectively inactivation for sodium and potassium, for the parameter choice sum-
marized in Table 1.6 with the initial conditions given in Table 1.7. Setting the
activation function to & = 0, produces the characteristic response for the neu-
ron at rest: a neuronal frequency of 4 spikes within one second, a concentration
of intracellular sodium of approximatively [Na); ~# 10 mM and an extracellular

potassium concentration of [K]ees &~ 3 mM.
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Figure 1.5: Simulation of the Cressman model corresponding to a 4Hz back-
ground firing obtained for £ = 0 and the parameter values defined in Table 1.6.

In the experiments above, the parameter k., was tuned to obtain the 4Hz
background firing. Multiple simulations to study the dependency between k.,
and the firing frequency suggest that increasing the value of the potassium bath

concentration leads to an increase in the firing frequency as shown in Figure 1.6.

20

15+

frequency (Hz)
o

(&)}

=
T

3.4 3.6
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0.0

3 3.2 3.8 4

Figure 1.6: Frequency dependence of the k., parameter. Increasing the bath

concentration of potassium produces an increase in the frequency.

As described in Section 1.2.2, the neuronal activation is modeled through
a temporary increase in the sodium and potassium leak conductances, in turn

regulated by the time dependent activation function £. As expected, increasing
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the function £ leads to an increase in the firing frequency. Figure 1.7 shows the
effect of & on the firing frequency. In these experiments we used the parameters

as defined in Table 1.6 and we varied £ € [0, 10].

200

150

frequency (Hz)
o
o

(&)
o

0 2 4 6 8 10
§

Figure 1.7: Dependence of frequency on the activation parameter &.

The frequency band characterized by a firing frequency between 8 and 13 Hz,
known as the alpha state, occurs during awake resting state. When simulating
the alpha state we considered three different values of the activation function:
& = 0.05 corresponding to 8 Hz, & = 0.07 corresponding to 10 Hz and £ = 0.1
corresponding to 12Hz. In Figure 1.8 we show the time courses of membrane
potential, ionic concentrations of intracellular sodium and extracellular potassium
and gating variables n and h for these three cases. Note the change in the
intracellular sodium concentration from the first column, where it settles around
[NaJ; = 10.5 mM for a 8Hz firing to the last column where [Na]; = 11.3 mM

corresponds to a firing of 12 Hz.
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Figure 1.8: Results obtained for simulating the Cressman model for & = 0.05
(8Hz, left column), £ = 0.07 (10Hz, middle column) and £ = 0.1 (12Hz, right

column).

Figure 1.9 shows the ionic currents related to sodium potassium pump and
glial potassium cleaning for the three frequencies that we consider in alpha awake
resting state. These quantities will play a role in the next chapter, where we

discuss the metabolic response during different levels of neuronal activity.
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Figure 1.9: Time course of the ionic current corresponding to the sodium potas-
sium pump (upper row) and the glial uptake (bottom row) for an alpha firing
frequency of 8Hz (left column), 10Hz (middle column) and 12Hz (right column).

The Cressman model, like the Izhikevich and Hindmarsh models discussed in
Section 1.1.4 and Section 1.1.3, can produce other firing patterns: the five bursts
that can be observed in Figure 1.10 were obtained with a modified Cressman

model where the diffusion coefficient ¢ is reduced to a third of its baseline value.

100 T 9.86 297
9.84 2.96
S = =
E S 92 Z 295
[S
© E £
I8 = a
8 3
5 z 9.8 < 2.94
S 9
9.78 2.93
|
: 9.76 2.92
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
time (sec) time (sec) time (sec)

0.8 y T 1

4
©

0.6

o
o

Gating variable n
o
IS
o
IS

Gating variable h

o
o

o
o

0 5 10 15 20 25

o
o

10 15 20 25
time (sec) time (sec)

Figure 1.10: Bursting pattern obtained by simulating the modified Cressman
model with the parameters defined in Table 1.6 but reducing the diffusion coef-
ficient to a third of its normal value.



CHAPTER 1. ELECTROPHYSIOLOGY

31



CHAPTER 1. ELECTROPHYSIOLOGY

32



CHAPTER 2

Brain Metabolism

Brain energetics plays an important role in neuronal activity because the latter
can be sustained only if the metabolic processes can produce enough energy to

restore the difference in the transmembrane potential.

2.1 Introduction

Spatially lumped metabolic models comprise separate compartments, established
according to physiological considerations to be investigated. Each compartment
is, in turn, characterized by its biochemical species and corresponding biochemical
reactions. The communication between compartments occurs through exchange
of biochemical species. Mathematically, spatially lumped dynamic metabolic
models are governed by systems of ordinary differential equations. Each reaction
occurring in a compartment has a corresponding reaction flux denoted by ;
similarly, for each exchange between compartments, there is a related transport
rate J. The aggregate of biochemical species, reaction fluxes and transport rates
for all compartments are the constituents of the metabolic network.

The mathematical description of the reaction rates depends on the type of
enzyme and the expression level [37]. The classic Michaelis-Menten form assumes
that an enzyme e interacts with a substrate S to form an enzyme-substrate eS

which is then decomposed into the enzime e and a product P:

v:e+S—eS—e+ P

33
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The corresponding reaction flux ¢ can be can written as:

[5]

= Vmax T 1o
A

where V.« is the maximum reaction velocity, K., is the affinity constant and
[S] the concentration of the substrate S.

On the other hand, the transport fluxes of biochemical species can take place
either via passive diffusion, as is usually the case for gases and lipids, or with the
help of a transporter. In the passive diffusion case, the transport rates can be

expressed as:

J = A([5]= = [S]),

where [S], and [S], are the concentration of the species in compartment  and
y respectively. Many molecules however, are too large or too charged to pass
through the cell membrane and require carrier proteins to facilitate their cross-
membrane transport. Carrier facilitated transfers can be seen as enzymatic re-
actions in which the role of enzyme is played by a membrane bound protein X
[37]:

J: S+ X —SX —X+95,

and the corresponding transfer rate can be written as:

where M is the affinity and T),.x is the maximum transport rate. When the

carrier acts isotropically, the bidirectional transport flux can be written as:

B 5], ),
7= T (M+ S, M+ [S]y) |

2.2 Main biochemical reactions

Glycolysis refers to a chain of chemical reactions taking place in the cytosol of

the cell that convert one molecule of glucose (Glc) into two molecules of pyruvate
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(Pyr),

Glc + 2NAD™ + 2ADP + 4P; — 2Pyr + 2NADH + 2ATP.

The first step of the glycolysis reaction adds one phosphate group to the sixth
carbon of the glucose molecule, producing a molecule of glucose 6-phosphate
(G6P). This process is catalyzed by the enzyme hexokinase and consumes one
molecule of ATP. In the second step, the enzyme phosphoglucose isomerase (pfg)
transforms the G6P molecule into fructose 6-phosphate (F6P), which is later
changed into fructose 1,6-phosphate (FBP) with the help of phosphofructokinase
(pfk). In this third step, one molecule of ATP is consumed.

Further on, the aldolase enzyme separates FBP into two individual molecules
consisting of three carbon atoms each: glyceraldehyde-3-phosphate (GAP) and
hydroxyacetone phosphate (DHAP), which is transformed through the enzyme
triphosphate isomerase (tim) into GAP; as a result, at the end of the fifth step,
two molecules of GAP have been produced. So far in the process two molecules of
ATP have been consumed. GAP is then transformed into 1,3 biphosphoglycerate
(BPG), with the action of the glyceraldehyde phosphate dehydrogenase (gapdh)
enzyme, in a process where one NAD™ molecule is consumed. In the seventh
step, one phosphate group is cleaned from BPG through the enzyme phospho-
glycerate kinase (PK) forming 3-phosphate glycerate (3PG), in a reaction where
two molecules of ATP are being produced. Subsequently, the enzyme phospho-
glyceromutase shifts one phosphate group from the third carbon to the second
one, therefore producing one molecule of 2-phosphoglycerate (2PG). In the next
step, through the enolase enzyme, 2PG loses one molecule of H,O and becomes
phosphoenolpyruvic acid (PEP). The last step of glycolysis consists of the con-
version of PEP into pyruvate, which occurs with the aid of pyruvate kinase and
generates two ATP molecules.

In Figure 2.1 we present a schematic overview of this process. The initial and
the end product of the glycolysis reaction (Gle, respectively Pyr) are coloured in
green while the intermediary products are given in blue. The enzyme correspond-
ing to each reaction is indicated on top of the arrow; additionally, we specify the

steps in which ATP is consumed in red and the steps in which ATP is produced
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in blue.
Gle | Gep —PB > gep | PX . ppp
-1 ATP -1 ATP
DHAP — ™ GAP
gapdh
pyr |« PK | ppp |&Olasel ono pEm | apg PR ppg
+2 ATP +2 ATP

Figure 2.1: Glycolysis reaction: intermediate steps

Some metabolic models [9, 38] include, in addition to glucose and pyruvate,
various intermediary products. For example, in [38], the glycolysis reaction con-
sists of the following steps: the hexokinase-phosphofructokinase system (HK-
PFK), phosphoglycerate kinase (PGK) and pyruvate kinase (PK), and addition-
ally the intermediary products PEP and GAP are modelled through differential
equations. On the other hand, the glycolysis model used in [9] follows hex-
okinase, phosphoglucose isomerase, phosphofructokinase and phosphoglycerate
kinase, and the dynamic behavior of G6P, F6P, GAP and PEP is being studied.

A portion of the pyruvate produced in the glycolysis reaction enters mito-
chondria and participates in the tricarboxylic acid cycle (TCA), also known
as the Krebs cycle, where it is transformed into three carbon dioxide molecules

in a process where one ATP and five NADH are produced:

Pyr + ADP + 5NAD" — 3CO, + ATP + 5NADH.

Oxidative phosphorylation is the last stage of cellular respiration, and it com-
prises two steps: the electron transport chain and chemiosmosis. In the electron
transport chain, electrons pass from one molecule to another through a series
of redox reactions. The energy released in these reactions is then used to pro-
duce ATP in the process called chemiosmosis. In the oxidative phosphorylation
the NADH produced in the two reactions described above pass their electrons
to oxygen, with the help of some intermediary species that are embedded in the

membrane. The energy released in this process pumps H™ ions, causing them to
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move into the intermembrane space and later on, with the help of the enzyme

ATPsynthase ATP is being produced:

Oy + 2NADH + 5ADP — 2NAD™ + 5ATP + H,O0.

Creatine phosphorylation is a reversible reaction in which one phosphate

group is transferred from phosphocreatine to ADP to form ATP:

PCr+4 ADP «+— Cr + ATP.

During intense activity, phosphocreatine can be used as a buffer of ATP concen-
tration.

Some of the concentrations of the species mentioned above can be measured
through nuclear magnetic resonance spectroscopy (NMR) or (MRS), a
noninvasive diagnostic test that analyzes molecules such as hydrogen protons and
uses this information in order to determine the concentration of various brain
metabolites [39)].

The oxygenation status and the brain hemodynamics can be assessed through
near infrared spectroscopy (NIRS), which is a noninvasive optical image
technique in which blood flow changes associated with brain activity can be mea-
sured by using low levels of light. NIRS relies on two main tissue characteristics:
the relative transparency of tissue to light in the near infrared range, and the
oxygenation dependent light that absorbs hemoglobin features. Through this
procedure any changes in oxyhemoglobin, deoxyhemoglobin or total hemoglobin

can be detected.

2.3 Review of metabolic models

2.3.1 Aubert and Costalat models

In 2002, Aubert and Costalat [38] proposed a mathematical model to follow
the behaviour of the main metabolites during neuronal activation. The model
consists of two compartments, tissue and capillaries, and comprises of fifteen state

variables including glucose (intracellular and capillary), lactate (intracellular and
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capillary), oxygen (intracellular and capillary), pyruvate, phosphocreatine, ATP,
NADH, glyceraldehyde-3-phosphate, phosphoenolpyruvate, intracellular sodium
concentration, venous volume and deoxyhemoglobin.

Neuronal activation is attained by increasing intracellular sodium concentra-
tion, which leads to an increase in the blood flow and eventually an increase in
venous blood volume. The two input functions consist of a stimulus &(¢) which
establishes the energetic need depending on different levels of neuronal activation
and the function Fj,(t) controlling the increase in the blood flow level that occurs
during activation. The oxygen in the capillaries is used as an input for the bal-
loon model [15, 16, 17], while the BOLD signal obtained from the balloon model
and the metabolite concentrations represent the outputs. Figure 2.2 contains a

schematic representation of this model.

e Sodium dynamics Metabolites:
f e Energy metabolism (——s [GIc], [Lac]
e BBB exchanges [Pcr], [ATP]
Fi, Oxygen | O,
Balloon Model BOLD Signal
dHb, dV,

y(t)

Figure 2.2: Schematic overview the Aubert and Costalat model.

The stimulus enters in the equation for intracellular concentration of sodium:

d[NaJF]Z-
dt

= ]Na,leak - 3qump,Na+ + f(t)v (21)

where Iy, jeax 18 the sodium leak current modelled in [38] through the Hodgkin-

Horowicz equation:

Ileak,Na = (22)

Sm gNat RT [Na+]ecs
Seie (11, M%)

F [Nat];

Joump Na+ TepPresents the rate of the sodium potassium pump and depends on the
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availability of ATP and on the intracellular sodium concentration:

Spn [ATP] \
‘]pump,Na+ - Vikpump [ATP] [NaJr]i (]_ + m) 5 (23)
and
Vo —1
Et) =1+ exp ( ) for 0 <t < tepa, (2.4)
Tstim Tstim

drives the energetic need. The description and values of the parameters used in

equations (2.2) and (2.3) are given in Table 2.1

Description Parameter Value Unit
Membrane potential V -70 mV
Sodium conductance INat 0.0039 mS/cm?
Faraday constant F 9.65 - 10* C/mol
Product between the universal rate constant and

temperature divided by the Faraday constant RT/F 26.73 mV
Ratio of membrane area and intracellular volume | S,/V; 9-10% 1/cm
Extracellular concentration of sodium [Nat]ecs 150 mM
Intracellular resting concentration of sodium [Nat]9 15 mM
Transport rate constant kpump 0.29-1076 M
Affinity constant for the sodium potassium pump | K pump 0.5 mM

Table 2.1: Parameters used for describing the intracellular concentration of
sodium in Aubert and Costalat model [38].

The model tracks the changes in the concentration of the biochemical species,
X = {Gle, Lac, O,, Pyr, GAP, PEP, PCr, NADH, ATP}, accounting separately
when they belong to different compartments. More specifically, the concentra-
tions of glucose, lactate and oxygen are tracked separately in tissue and in cap-
illaries. To distinguish the compartment where they belong, by [X]; we denote
the intracellular concentrations and by [X]. the concentrations in the capillaries.
The steady state values of the metabolites and intermediate concentrations are

listed in Table 2.2.

| [Gl]  [0)) [Lad [Pyr] [PCr] [GAP] [PEP] [NADH] [ATP]
c| 456 701 035
i| 1.2  0.026 1 0.16 5! 0.0057  0.02 0.026 2.2

Table 2.2: Metabolites: List of metabolites in the two compartments (capillary
(¢), intracellular (i)) and their resting concentrations (in mM).
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The dynamics of the metabolites inside the tissue is modeled through the

following differential equations [38].

d[Glc], iy
a JGle — YHK-PFK,
d[Lac], .
T = YrDH — JLac,
dt O2 aero/mit
d|Pyr
P — orc — o — o,
d|GAP
[ o ] = 2¢uk-prk — YPGK, (2:5)
d[PEP] B
pTa YpaKr — VYpPK,
d[PCr] B
dt - _wCK7
dINADH
[ —dt ] e ¢PGK — wLDH - ¢mit7
d[ATP
[ - ) = (Ypak — 2UnK-PFK + VPK — YaTPase — Jpump Nat + TopUrmit + ek ) ¢,
where:

-t

where jo denotes the transport rate of metabolite C' = {[Glc|, [Lac], [O2]} across
the BBB where the mathematical expressions follow (2.8) and (2.9), ¥uk_prk, Yk
and Ypgk are the reaction rates corresponding to hexokinase-phosphofructokinase,
pyruvate kinase and phosphoglycerate kinase, respectively and ¥ ck represents the
rate of the creatine kinase. The ATPase flux ¥arpase set to 0.149 mM /s accounts
for the energetic need required for processes other than the sodium potassium
pump. The equations for the reaction rates and the relevant parameters are listed
in Table 2.11.

The dynamics of the capillary glucose, lactate and oxygen concentrations are:

d[Glc], 1

dt = JGIC - T_leca
d[Lac]. 1.
= J ac —.JLac; 2.6
7 Lac T TCJL (2.6)
d0s). -
dt — J02 - /r_CJOza

where 7. is the ratio between capillary volume (V,) and intracellular volume (V;)
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and Jo for C = {Glec,Lac, O2} denotes the contribution from the blood flow,
governed by equations (2.10). In [38] the concentration of oxygen in capillaries
is expressed as the average of the arterial concentration and the concentration at

the end of the capillaries:

02 a + 02 c
(O] = [Oc) 1[0z (2.7)
2

Rate equations Parameter Value Unit

Hexokinase phosphofructokinase ({pk.prk) kHK-PFK 0.12 g1
[ATP] \"#1™'  [Gld; Ko arp L mM

kuk-prx[ATP] |1 + K | 4 -

1ATP (Gleli + Ky | f¢, 0.05 mM

Pyruvate kinase (1pk) kpk 86.7 mM s !

kpk [PEP][ADP]

Lactate dehydrogenase (¢1,pm) kf;DH 2000 mM:isj

KpulPyt][NADH) — ki py [Lac)i[NAD] Fian e mis

Creatine kinase (¢¥ck)
k& 3666 ~ mM ls~!
+ - CK
k¢ [PCr][ADP] — kg [Cr][ATP] ko 20 mM-—1s1
where [PCr|+[Cr] = Pyt Piot 10 mM

Phosphoglycerate kinase (1pck)

[NAD"]

/

FpaiGAP][ADP] [NADH] p— 42.6 mM~ts—!
where [NADH]+[NAD+] =N N 0.212 mM

Table 2.3: Rate equations and their corresponding parameters in Aubert and
Costalat model [38].

The transport rates of glucose and lactate across the Blood-Brain-Barrier are

described following a classical Michaelis Menten formalism:

Jcle = Tmax.Gl [ G B B }
© 7 I Gl G, + Koare (Gl + Kone) | (2.8)
Jrac = Tmax.L { Lach B - } |
ac max,Lac [Lac]i + Kt,LaC [LaC]C+Kt,G1C

where Thaxclec and Thaxrac are the maximum transport rates for glucose and
lactate and K gl and K. are affinity constants, whose values are listed in

Table 2.4.

The oxygen transport rate depends on the intracellular concentration of oxy-
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gen ([Og);), the capillary concentration of oxygen ([Os].), the permeability of the
Blood-Brain-Barrier (P), the surface S., the intracellular volume (V;), hemoglobin
(Hb) and its oxiphoric power (OP) defined as the maximum number of oxygen
molecules carried by one mole of hemoglobin, as well as on the affinity constant

for oxygen Ko,:

The blood flow related contributions to the variations of glucose, lactate and

oxygen concentrations are described by:

2F;,(t

JGlc - % (Cart,Glc - [Glc]c) )
2F;,(t

JLaC = % (Cart,LaC - [Lac]c) ) (210)
2F;,(t

JOQ = ( ) (C(art,O2 - [02}0) )

Ve

where F;,(t) is the input function controlling the blood flow defined in equation
(2.19), V. is the volume of the capillaries, Ca,Gic, Cart,Lac and Cyy 0, are the arte-
rial concentrations of glucose, lactate and oxygen, which are assumed to remain
constant, and [Glc]., [Lac]. and [O,]. the capillary concentrations.

The values of the arterial concentrations and of the other parameters in the

description of the blood flow can be found in Table 2.5.

Table 2.4: Parameters corresponding to the transport fluxes in Aubert and Costa-

lat model [38].

Transport flux | Parameter Value Unit
Glucose Tnax,Cle 0.0476  mM/s
Kt,Glc 9 mM
Lactate Tmax,Lac 0.00628 mM/s
Kt,LaC 0.5 mM
Ko, 0.0261  mM
Oxygen Hb - OP 8.6 mM
ngy 2.73 —
PScap/Vi 1.6 s~1
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Blood Flow parameters Arterial concentrations
Parameter Value Units | Parameter Value Units
Fy 0.012 s! Cart,Gle 48  mM
Q 0.5 - Clart,Lac 0.313 mM
Vo 0.0237 - Cart,0, 8.34 mM
T 35 S

Table 2.5: Blood related parameters and arterial concentrations

In light of the fact that a molecule of adenosine triphosphate (ATP) and
adenosine monophosphate (AMP) produces two molecules of adenosine diphos-
phate (ADP) in a reversible reaction ATP + AMP <— 2ADP, known to be

nearly at equilibrium in the brain [38], the authors express the concentration

of ADP and AMP as a function of ATP

[ADP] = @ <—qAK + \/qu + 4gax ([A?—P] — 1)) , (2.11)
[AMP] = A —[ATP] - [ADP], (2.12)

where gak is the equilibrium constant of adenylate kinase and A is the total
adenine nucleotide concentration. Furthermore, the ATP is also produced or
consumed at the rate ®ck in the reversible reaction between phosphocreatine
(PCr) and adenosine diphosphate (ADP), PCr + ADP +— Cr + ATP, where
[PCr] +[Cr| = Pyot.

The total amount of ATP produced through the mitochondrial respiration is
the product between i, and no, where i is the number of pyruvate moles
per unit cell volume and time which are being oxidized by the mitochondria and
nop the number of ATP moles that are being produced per each mole of pyruvate.
One of the novelties of this model is that it allows variations in the intracellular
concentration of oxygen and it account for both exchanges through the blood
brain barrier and consumption of oxygen by the mitochondria. For example, the
right hand side of the differential equation of intracellular oxygen concentration
(2.5) contains the term nuerotmiy accounting for the cerebral metabolic rate of
oxygen; here n,q, is just a stoichiometric coefficient, while four different scenarios
are tested for 1.

In the first one, the number of pyruvate moles oxidized by the mithocondria
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0

(¥mit) is kept constant during neuronal stimulation ¥.,;; = ., while in the

second, it increases according to:

wmit<t> - (]- + amit)¢?ﬂit for tl S t S tf,

7~prnit(t>: 0 fOTtIOOTtth+t1,

mit

(2.13)

where a.,;; represents the rate at which the cerebral metabolic rate of oxygen
increases during activation.

The third and the fourth scenarios rely on the dependency of ¥,;; on pyruvate,
intracellular oxygen, ATP and ADP. The equation used in the third case is of the

form
[Pyr] 1 [O2];

mit — Vmax mi n ;
e = Vs o 3 Ko (__[ATP]_\™ Koy, + O3]
[ADP] - K it

(2.14)

where Vijax mit 15 the maximal rate of mitochondrial activity, K\, mi is the affinity
constant of pyruvate, Ko,, is the Michaelis constant for oxygen, Kj i is an
inhibition coefficient and ng is the Hill coefficient.

In the fourth case, an additional input function f(t) is added to the expression
used in (2.14) in order to account for the potential messengers action on the Krebs

cycle or the respiratory chain [38]:

[Pyr] 1 [Oy];

mit — Vmaxmi n t). (2.15
w ' o [Pyr] + Km’mit 1+1- [ATP] " KO2,¢ + [02]zf( ) ( )
[ADP] - Ky it
The quantity f(¢) increases during stimulation:
tanh(by(t —t 1
Ft)=1+a,- 2 (J(Q 1) + , for t < ty, (2.16)
and decreases exponentially after the end of the activation:
, tp—t
f(t)=1+d;exp ) for t > ty, (2.17)

where a; is the maximum increase fraction of the cerebral metabolic rate of

oxygen, by is the slope, ¢; the characteristic time of the increase and o/, has been
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calculated to guarantee the continuity of the function at ¢ = ¢;. The description
of the blood flow follows the Buxton’s Balloon model [15, 16], a hemodynamical
model to be discussed in more detail in Chapter 4. In this model, the venous
compartment is seen as a balloon, with inflow the cerebral blood flow F;, and
whose outflow, F,;, depends on the balloon’s volume. The time course of the

venous volume satisfies the differential equation:

v,
= F,,(t) — Fou, 2.18
= Fou(t) — Fou (215)
where
1l+ap)fy for t1<t<t
Famy = e i 7 (2.19)
FO for tZOOTtth+t1
and

1 1
Vie | 1 (Vo) 2dV
Fou = F — — | = : 2.20
t ((V) + 75 (v%) dt) (2:20)
Here Fj is the value of the blood flow during rest, ar is the increase of the blood
flow during neuronal activation and ¢; marks the time at which the activation
is started and t; the final time of the activation, 7, is the viscosity parameter
and V2 is the value of the venous volume at rest. The steady state values of the
relevant parameters are listed in Table 2.5.

The changes in deoxyhemoglobin (dHb) content per unit tissue are governed

by
ddHb

WD Fo(t)- (Coao, — [02) — Fo

dHb

— 2.21
VU ) ( )

where C; o, is the arterial oxygen concentration and [Os]z is the concentration of
oxygen at the end of the capillaries.

The blood oxygen-level dependent (BOLD) signal is expressed in terms of
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deoxyhemoglobin and venous volume, normalized to their resting value, i.e.

dHb
dHb 0 v,
y(t) = V2 h(l—aﬁ§>+%a 1—Q%%- -+@<1—V5>, (2.22)
vy

where k1 = TEy, ko = 2, k3 = 2Fy — 0.2, dHb is the resting deoxyhemoglobin

content and V) is the resting volume, whose values can be found in Table 2.5.
The model predictions corresponding to four different protocols reported in

[38] agree with the experimental results reported in the literature in some but

not all cases.

2.3.2 Cloutier model

The model proposed by Cloutier et al. [9], comprising of separate compart-
ments for neuron, astrocyte, capillaries and extracellular space, extends the work
in [38, 40] by adding glycogen dynamics in the astrocyte compartment and by
extending the glycolysis model from three intermediary steps (as in [38]) to five
intermediary steps: hexokinase (HK), phosphoglucose isomerase (PFG), phospho-
fructokinase (PFK), phosphoglycerate kinase (PGK) and pyruvate kinase (PK)
(see Figure 2.1). Glycogen acts as a buffer in the transition between resting
state and neuronal activation. The kinetic parameters in the reaction rates are
calibrated according to in vivo neurochemical measurements.

The Cloutier model subdivides the tissue compartment into neurons and as-
trocytes, and follows the time course of the intracellular concentration of sodium
in each of compartment separately, while keeping extracellular sodium concen-
tration ([Nat].s) constant. The governing equations for intracellular sodium is
similar to equation (2.1)

d[Na'], i i
dt - Ileak,Na —3J

pump,Na

L E), (2.23)

for the index ¢ specifying the neuron (i = n) or astrocyte (i = a). The sodium

n a 3 3 .
leak currents Ijt, v, and Iit,, v, in neuron and astrocyte are modeled as in [38]:

, S G4 (RT . [Nat]ees
I = —22( —] — 2.24
leak,Na V; F ( F n [Na+]i 4 ) ( )
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where gi, are the sodium conductances, V; the corresponding volumes, F the
Faraday constant, R the perfect gas constant and T the temperature. The values
of these parameters are given in Table 2.7. The sodium potassium pump J,

ump,Nat

depends on the availability of the energy supply

‘ _ Sm e [ATP]; \ ™
o n; Kpump[ATP];[Na™]; (1+—) , (2.25)

ump,Nat
pump, ) Km,pump

as in [38]. The mathematical expressions for sodium inflow due to stimulation in

the neuron £"(t) and astrocyte £%(t) are of the form

iy 1 217%‘
') =v;, + vi—e b for 0 <t <t

st

(2.26)
£'(t) =0 for t > ty,

where t; is the final time of the stimulation.

Following the activation triggered by the sodium inflow £", neuron releases
glutamate which is then taken up by astrocyte and transformed into glutamine.
This process, showed schematically in Figure 2.3, known as the glutamate cy-
cling, requires two ATP molecules to process one molecule of glutamate, one for
pumping sodium and another one for the conversion of glutamate to glutamine
and makes it possible to account for the activation of the ATPase in astrocyte
at the end of neuronal activation. The governing equations of glutamate cycling

are of the form

d|Glul,, a—n n
[ o ] — Gﬁ — Ryacné™,
d[GlU.]a ecs—a a-=n
il (R (T .
d[Glu]ecs _ n "
T == Rn_ecsRNa—Gluf 5 )

with glutamate release rate, glutamate uptake and glutamate transfer to neurons
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rates given by:

n—recCs n
Ic;]u 25 RNa—Glu;

[ecsﬁa __ Jecs—a [Ghl]ecs
Glu — ‘max,Glu [Glu]ecs + Km Glu, (228)
Ia—>n _ 1a—n [GIU]a [ATP]a
Glu MG Glu], + KonGra [ATPlq + Katp
/ Neuron /ASt"OCVte \
Ia—)‘n
Glu, Glu Glu,
4
Neuronal
stimulation / \\
[noecs I
¢ Glu —> Gluecs—mu>

Figure 2.3: Schematic view over the glutamate cycling.

Compartment Sodium Glutamate
neuron 15

astrocyte 15 le-6
extracellular space 150 le-6

Table 2.6: Steady state values for the sodium and glutamate dynamics.

Description Parameter Value Unit
Membrane potential v -70 mV
Sodium conductance in the neuron INa 0.0039 mS/cm?
Sodium conductance in the astrocyte INa 0.0039 mS/cm?
Faraday constant F 9.65 - 104 C/mol
Perfect gas constant and temperature kPa RT 2577340 L/ mmol
Characteristic sodium length in the neuron Sy, 40500 1/cm
Characteristic sodium length in the astrocyte Sy 10500 1/cm
Extracellular concentration of sodium [Nat]ees 150 mM
Transport rate constant kpump 3.17-1077  cm/(mM - s)
Affinity constant for the sodium potassium pump | K pump 0.4243 mM
Sodium glutamate ratio RNaclu 0.075 -

Table 2.7: Parameters in the description of the intracellular concentration of
sodium and the glutamate cycling in Cloutier et al. model [9].
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The blood flow is described using the balloon model with the venous volume

changing according to

dv,
Yo _ Flt) = Fyult), (2.29)
dt
where
Fi.(t) = Fy+ fepr(t), (2.30)
v, 1/x v, —1/2 1 dv
Fou(t) = Fy (W) + Ty (W) Vo | (2.31)
and

fopr(t) = 1+ Ap[f(t,2,25) — f(t,2 + t, 25)],

where ¢ is the post stimulation time and ¢ is the duration of the stimulation.The
switch function f(t,d, @) describes the changes in the cerebral blood during stim-

ulation

1

J(t0,0) = 55

(2.32)

Note that in (2.32) ¢ is the time, ¢ is the time at which the stimulation starts
and « indicates the slope during the stimulation. The description and values of

the parameters in the description of the dynamics of the blood flow are given in

Table 2.8.

Description Parameter Value Unit
Baseline venous volume fraction VY 0.0237 -
Characteristic time for venous volume dynamics To 35 S
CBF fractional increase during activation Ap 0.42 -
Stimulation duration te 300 S

Table 2.8: Parameters used for describing the blood flow [9].

Since in Cloutier et al. glycolysis is described in five steps, additional metabo-
lites and intermediates are considered, namely glucose 6-phosphate (G6P), fruc-
tose 6-phosphate (F6P), glyceraldehyde 3-phosphate (GAP) and phosphoenolpyru-
vic acid (PEP). The list of the metabolites and their resting values in four com-

partments is presented in Table 2.9.
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[M] n a ecs ¢ [M] n a ecs c
[Glc] | 043 0.16 047 464 [GAP] | 0.05 005 - -
[Lac] | 0.28 0.89 0.37 0.33 [PEP] |0.025 0.025 - -

[0, [0.102 0102 - 746 [Py | 012 012 - -
[CO. | - - = 098] [PCr] | 25 15 - -
[G6P| | 0.75 075 - - | [NADH]| 004 004 - -
[F6P] | 02 02 - - | [ATP] | 225 22 - -

Table 2.9: Steady state values for the metabolites. List of the metabo-
lites M = {Glc, Lac, Oy, COo, G6P, F6P, GAP, PEP, Pyr, PCr, NADH, ATP} in
the four compartments (neuron (n), astrocyte (a), extracellular space (ecs) and
capillary (c)) and their resting concentrations (in mM).

We denote the rates r = {HK, PG1, PGK, PPP, LDH} corresponding to the
5 steps of the glycolysis reaction: hexokinase, phosphoglucose isomerase, phos-
phofructokinase, phosphoglycerate kinase respectively lactate dehydrogenase by
Wy, and let ¥; denote the rate of the mitochondrial pyruvate oxidation, ¢k the
creatine kinase rate, ©¥pk the pyruvate kinase rate, and 1 atpase the ATP turnover.
The kinetic equations and the values of the corresponding parameters are given
in Table 2.11. The ATP requirement during neuronal stimulation is accounted

for through the sodium potassium pump rate J, whose expression is given

ump,Nat >
in equation (2.25).

FeCs—n

We use superscripts, e.g. joo°7", to indicate the reaction flux or the transport

direction of the metabolite m from the extracellular space to the neuron. By

SC—N

Joo™ we refer to the flux from the capillary to the neuron.

The changes in metabolites concentrations inside the neuron compartment
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are modeled through the following differential equations:
d[GlC]n -eCS—n n
di = Jce " — Vi,
dt = ¢HK - wPGl - wGﬁPDH,
d[F6P]n n n n
dt = ¢PG1 - ¢PFK - wPPPv
d[GAP], . . .
% = 2¢PFK - @Z}PGK - ¢PPP7
d[PEP], . .
% = ¢PGK - @DPK,
d[LaC]n n -eCS—MN
—a UlpH — Jlae (2.33)
d[PCr], N
a - Y
dt = ¢PK - wLDH = ¥Ymit»
d[NADH], n n n
T = ¢PGK - ¢LDH = Wit
—a (—YuKk — VYprk + Ypak + Ypk + VUL + ¥ik) <1 - m ;
d; = .70? - 3wmit7

where 9] = 15¢]} J"

mit ~ “pump,Nat ,QZ}XTPase'
Similarly, in the astrocyte compartment, the time course of the metabolites

is described through the following differential equations:
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d[GlC]CL ‘eCs—ra -C—a

dt = JGiec +]Glc _w%K>
d G6P a a a a a
| 7 ] = Yk + Ypa1 — Yérys T Yéryes
d[F6P], “ a
[ dt ] = @/JPG1 - @ZJPFKa
d|GAP], u u
[ I ] = 2¢Uppk — Yok
d|PEP], “ u
[ dt ] = wPGK - ¢PK7
d|Lac]|, ) .
2% o + G — st (2.31)
dPCr],
dt - wCKaa
d|Pyr|, a a u
[ dt ] = 77ZJPK - ¢LDH = Ymit»
d[NADH], “ a “
| 7 ] = VYpak T Uipn — Ymits
d[ATP], . . . . W d[AMP],\ '
% = (—fix — VYprk + VYpak + VYpx + Vs + ¥ik) (1 - ﬁ) )
d[OZ]CL .c—a a

dt = jOg - meitﬂ

where ¢ = 1597, — Jgump,NaJr — YA TPase-

In the astrocyte, the contribution of glycogen to the energy metabolism is
mediated through G6P. The authors argue that it is important to consider this
contribution because the glycogen pool in astrocyte could sustain cerebral activity
for a couple of minutes [9)].

The time course of glycogen in the astrocyte is:

d[GLY],

dt = ¢éLYS - wéLYFH (235)

where ¢ vg and Yaryp are the reaction rates for the the glycogen synthase and

phosphorylase given by:

— o
GLYS = Ymax,GLYS [G6P]a + Km,GBP

a a G6P],
Yéryp = VinaxcLyp ([G6P][ —l—;( G6P> (1+ fary),

) (1 — f([GLY],,4.2,20)),
(2.36)
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with

Jary = Ay [f(t to,cry, 4) — f(t, tocry + ticry, 4)] -

The maximum reaction rates for synthase of glycogen from G6P, and glycogen
breakdown, denoted by Vii,« qryp and Vi, q1ys, are specified in Table 2.10. The
function f is the switch function used for describing the changes in the blood

flow during neuronal stimulation and was given in equation (2.32).

Description Parameter Value Unit
Maximum reaction rate for glycogen synthase Vinax,GLYS 1.53¢=* mM /s
Maximum reaction rate for glycogen phosphorylase Vinax,GLYP 4.92¢7°> mM/s
Glycogen breakdown fractional increase during stimulation | Agry 62 -
Delay before glycogen breakdown to,GLy 71 s
Duration of glycogen breakdown tr oLy 403 S

Table 2.10: Parameters used for describing the glycogen dynamics in Cloutier et
al. model [9].

The model assumes that the sum of the energetic shuttles, denoted by ANP,

remains constant at the value given in Table 2.12:
[ATP| + [ADP]+[AMP] = [ANP].

In light of adenylate kinase equilibrium, adenosine diphosphate concentration can

be expressed in terms of adenosine triphosphate:

[ATP]

[ADP] = T (—QAK + \/ﬂ) 5

and the derivative of adenosine monophosphate can be expressed as

d[AMP] 4AK [ANP]
JATP] ~ T2 T 0.5v/ + gax ATP]\/u’

where u = g% +4qax (%) and gax is the equilibrium constant for adenylate

kinase reaction, listed in Table 2.12.
Similarly, it is assumed that the sum of the concentrations of NADH and
NAD™ is constant:
[NADH] + [NADT] = N**,
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as is the sum of the concentrations of phosphocreatine and creatine:

[PCr] + [Cr] = Piot.

o4

The values of N** and P, assumed by the Cloutier model are given in Table

2.12.
Kinetic equations for the neuron and the astrocyte | Parameter Value Unit
Hezokinase (V)
4 i, ki 0.051 mM /s
iy [ATP); (GIK’) (1 — f(IG6P];,0.6,20)) ko 0.050 mM /s
[Gle]; + Kinc1c K cle 0.105 mM
Phosphoglucose isomerase (b, ) d’ﬁffPGl 0.502 mM/s
a,f
o ( [G6P]; ) i ( [F6P), ) zigl,fel gggg Ini/l/[ js
m,PG1 : ~VYmpci | TrepT T m,PG1 . mM/s
[G6P]7 + Km,GﬁP [F6P]z + Km,FGP wz;’rPGl 0451 mM/b
K Fep 0.06 mM
Kmcep  0.50 mM
Phosphofructokinase (Vbpi) kRpk 0.558 mM s~ !
- kg 0.403 mM s~
. ATP]; \ ™"\ 7 F6P); PFK
kppi [ATP]; <1 + <[ ]> ) ([ 6P: > K rep 0.06 mM
K aTp [F6P]; + K, Fop K1 arp 0.7595 mM
ng 4 -
Phosphoglycerate kinase (Ypak)

; [NAD™; kR ax 0.429 mM " 's~!
kPGK[GAP]i[ADP]im k% o 0.251 mM~'s~!
Mitochondrial pyruvate ozidation (¢ ;) Thax,mit 0.0556 mM/s

\ ( Pyl ) ( [ADP]; ) ; Viwomis 00084 M/

nllax,mit . ] m m,Pyr . m

[Pyr]z + Km,Pyr [ADP]z + Km,ADP Km,ADP 0.00107 mM
_ 11 _ p(lATP) [O2];
where fr, =[1 f([ADP]i,2075)} <[Oz]i Koo, Ko, 0.00297 mM
Pyruvate kinase (Ypy) kpk 8.61 mM st
a -1 -1
ki [PEP);[ADP]; kb 2.73 mM™ s
Lactate dehydrogenase (V% 5y) kipm ¢ 5.30 mM ™~ Ts~

; ; kg 6.26 mM s

ki pp ¢ + [Pyr]i[NADH]; — kf pyy  [Lac];[NAD™); k%iif 0.105 M-l
T 0.547 mM 5!
Creatine kinase (b ) kix ¢ 0.0524 mM s~

; ; kg 0.0243 mM 's7!
kt PCrl|;[ADP]; — k¢ Cr|;[ATP); CK.f

b lPCILIADP]; — K O [ATP) s

kg 0.0207 mM 's!
ATPase (excluding the Na-K pump cost) (Yrpase) K aTp 0.0153 mM
Vi [ATP]; VI Atpase  0.0489 mM /s
mATPase \ TATP]; + Ko aTp Ve rpase  0.0357 mM/s

Table 2.11: Rate equations and their corresponding parameters in Cloutier et al.

model [9].
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Description Parameter Value Unit
Total concentration of NADH and NAD™ Niot 0.22 mM
Total concentration of PCr and Cr P 5 mM
Total energy shuttles [ANP] 238 mM
Equilibrium constant for adenylate kinase reaction | gak 0.92 -

Table 2.12: Physical constants and known values for the reaction fluxes [9].

The changes in glucose and lactate concentration in extracellular space follow

the differential equations

d|Gle , . ,
[ dt]ecs — jézecs + Rn—)ecsjgﬁscﬁn _ Ra%cesj?}‘clsc*)aa
(2.37)
d[LaC]eCS _ .n—secs R ‘a—ecs _ recs—e
dt — JLac ecs—n + ecs—aJLac Lac >

where the transport fluxes j&:°®, j&u " and j&7* obey equations (2.39).

Volume fractions | Volumetric ratios
Parameter Value | Parameter  Value

U 0.45 Recs—m, 4/9
Na 0.25 Recs—>a 0.8
TNecs 0.2 Revecs 0.0275
Ne 0.0055 Re sa 0.022

Rep 0.01222

Table 2.13: Volume fractions and volumetric ratios in the Cloutier et al. model.

The time courses of the four metabolites in the capillary compartment are

governed by the system of differential equations

d[GIC}C e +C—>€eCs -c—a
dt = JGlc — RecsﬁchZ - Ra%cj(}?c )
d[LaC}C -C -C—>€eCS -C—a
T = JLac — Recsac](;?é - Ra%C]L; )
40, (2.38)
2]c -c c—a :c—n
dt =Jo, — Rc—mjo? + Rc—m]O? )
d[COQ}C -C -C—a ~C—N
—aJco. T Reajéoy + Resnjcon -

The glucose and lactate transport rates across the Blood-Brain-Barrier follow
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classical Michaelis Menten form:

:c—>ecs __ Y/c—recs
Glc max,Glc
cc—a __ Y7c—a
JGle = Vmax,Gle
‘ecs—n __ [/ecs—n
JGle max,Glc
-ecs—a __ Y/ecs—a
JGle max,Glc
‘eCsS—C __ Y/ecs—c
JLac — VYmax,Lac
‘n—recs __ J/n—recs
JLac max,Lac
ca—c __ Y7a—c¢
JLac = max,Lac
-a—»ecs __ Y/a—ecs
JLac max,Lac

Glde Gl ]
[Gle]e + K{ais  [Gleloes + KEGES |
[ G, [Glda ]
[Gle]. + Kfgi  [Gle]a + K{gn ’
[ [Glde,  [Cld, ]
[Glefees + Ko™ [Gle], + K™ |
[ [Gldes Gld, |
[Glefees + KiG0®  [Glefa + Kigize |
[ [Lac]ees B [Lac], ]
[Laclees + K{550¢ [Lac]. + Ki55° ’
[ [Lac],, B [Lacees ]
[Lac], + Kprecs [Lac]ees + K{prees ’
[ [Lac], B [Lac]. ]
[Lacl, + K7t [Lacle + K |
[ [Lac], B [Lacees ]
[Lacla + K{pes  [Laclees + K |

o6

(2.39)

where Vinax,cle, Vimax,Lac are the maximum transport rate and K qie, Kt rac are

affinity constants for glucose and lactate. The values of these parameters are

given in Table 2.14.

Transport Flux Glucose Lactate
p Parameter Value Units | Parameter Value  Units
c—recs ecs—c
Capillary < ecs Vmai;GlC 0.0496 mM/s Vmax,iac 0.0325 mM/s
K{ae® 8.45 mM K etfiacc 0.764 mM
. N 0.010 mM/s | V2 >€ 0.0002 mM/s
C 1 o Ast t max,Glc max,Lac
WY I ASOIC gesa T 092 mM | Kepe 0128 mM
ecs <5 Neuron n‘i‘;i_’(ﬁc 0.504 mM/s g:xefzc 0.1978 mM/s
Keag" 5.32 mM Ko 0.093 mM
yecs—a 0.038 mM/s ya—recs 0.0861 mM/s
o Ast t max,Lac max,Lac
08 T ASHOCyRe Keg® 352 mM | KOpes 0221 mM

Table 2.14: Parameters

model [9].

corresponding to the transport fluxes Cloutier et al.

The exchange rate of oxygen between the capillaries and neurons or astrocytes

is expressed in terms of the permeability (P) of the blood brain barrier, capillary

surface S,, cellular compartment volume (V,,, V), hemoglobin (Hb) and oxiphoric
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power (OP):
oo _ PSE ([ (EWOP_l)AM:{O] (2.40)
]02 77” Oy [02]C 2|n ) .
PSa Hb - OP 1/
ora = 22 | Ko [ ——— —1 — [0s]a ], 2.41
o= ( o (M) - 2]> (241

where Ko, is the oxygen transport constant. The values of the relevant parame-
ters are given in Table 2.15.

The blood flow contributions to the variations of glucose, lactate and oxygen

are [38]:

_ 2F,, (t
jore = 220 (Cone 10,
L 2F.(
JLac = n—() (Cart,Lac - [Lac]0> ) (242)
L 2F(t
]()2 = A (Cart,Og - [OQ]C) s

C

where Fj,(t) is the input function controlling the blood flow in equation (2.19),
V. the volume of the capillaries, Ciat,qle, Cart,Lac and Cir 0, the arterial concen-

trations of glucose, lactate and oxygen and [Glc]., [Lac]. and [Og]. their capillary

concentration.
Blood Flow parameters Arterial concentrations
Parameter Value Units | Parameter Value Units
nOP 15 Clart,Gle 4.8 mM
HbOP 8.6 mM Clart,Lac 0.313 mM
Naero 3 Cart,0, 8.34 mM
CBFy 0.012  s!' | Catco, 275 mM
PS? 0220 st
PSs? 0.245 st
Ko, 0.0897 mM
np 2.7

Table 2.15: Blood related parameters and arterial concentrations in the Cloutier
et al. model.
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2.4 Metabolic model

The metabolic model used in this thesis is based on that proposed by Calvetti
et al. in [41, 42], which comprises separate compartments for neuron, astrocyte,
extracellular space surrounding them and blood. Both neuron and astrocyte are
equipped with their own metabolic network and interact biochemically through
extracellular space. The latter interfaces with the blood compartment by ex-
changing some metabolites through the permeable Blood-Brain-Barrier (BBB).
Each compartment X = {b, ecs, n, a} is assumed a volume fraction, denoted by
nx, listed in Table 2.16.

This metabolic model does not explicitly describe the glutamate - glutamine
cycling between the cellular compartments (see Figure 2.3), which was included
in previous models to account for the energetic cost of activation. In our case,
this is no longer necessary due to the fact that the energetic link is done in a
more physiological manner, being directly correlated to the changes in the ionic

concentrations which depend on the level of activation [43].

2.4.1 Blood compartment

In the blood compartment, our model follows the concentration of three sub-
stances: glucose (Glc), lactate (Lac) and oxygen (O3). We denote the metabolite
by m, where m = {Glc, Lac, O,}. To indicate the concentration in blood and the
arterial concentration of the metabolite m, we use the notation [m]y, respectively
Cart,m- The arterial concentrations are assumed to be constant and their values
are given in Table 2.16. The blood flow is a function of time ¢ = ¢(¢) and the
mixing ratio between the arterial and the venous blood is denoted by F', where
Fe(0,1).

The concentrations of the three metabolites in blood are modeled through the

differential equations:

d|Glc

28— e e (Gl o, (2.43)
d|Lac

My [ dt ]b = %(Cart,Lac - [Lac]b) - JLaca (244)
d|O

Ty [ 2]b = g(C’art,OQ - [OQ]b) - ‘]027 (245)

dt F
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where the transport rates of glucose, lactate and oxygen between blood and
extracellular space Jgic, Jrac and Jo, are expressed in terms of the metabolite
concentrations in the two compartments, by using symmetric Michaelis-Menten

expressions

[GIC] b [GIC] ecs

P - , 2.46
“l >al <Mb,Glc + [Glc]b Mecs,Glc + [Glc]@CS) ( )

[Lac]y, [Lac]ecs )
J) ac  — T ac - . 2.47
- bk <Mb,Lac + [LaC]b Mecs,Lac + [LaC]ecs ( )

Here T3, Gic, 11 Lac are the maximum transport rates, and My, ,,, Mecs,m the affinity
constants of the metabolites in blood compartment and extracellular space, given
in Table 2.17.

The oxygen in the blood can be either freely dissolved in plasma or bound to
hemoglobin. The total oxygen concentration can be written with respect to the

free oxygen concentration [Osl, fee according to Hill’s equation [44]:

[OQ] ﬁ,free

O =[O0 ree T 4 Het [Hb
Oz = [Oalbro + 4 Het [Hb] =705 1 —

= H([O2]b,free)7

where [Hb] is the hemoglobin concentration in plasma, Het the hematocrit, Ky
the affinity constant and Hill’s constant is set to n = 2.5.

The transport flux of oxygen follows a modified Fick’s law:

J02 - )\b,Og ([02]b,free - [02]ecs)ﬁ = /\b,02 (H71<[O2]b> - [OQ]ecs)Hy (248)

where A, 0, is the membrane’s permeability to oxygen and ~ was set to 0.1.
For notational convenience, we collect the concentrations of metabolites in

blood compartment in the vector

t) |- (2.49)
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Volume fractions Blood Flow parameters Arterial concentrations

Parameter Value | Parameter Value Units Parameter Value Units
Mn 0.4 Hct 0.45 Cart,Gle 5 mM
Na 0.3 Hb 5.18 Clart,Lac 1.1 mM
Necs 0.3 Ky 36.4-107°  mM Cart0, 914 mM
b 0.04 q 0.40 mL/min

Table 2.16: Volume fractions and blood related parameters: List of the
volume fractions of the four compartments (left), values of the parameters in the
expression for blood flow (center) and arterial concentrations of glucose, lactate
and oxygen (right).

2.4.2 Extracellular space

Changes in concentrations of glucose, lactate and oxygen depend only on ex-

changes with other compartments, hence

d|Glclees . a
necs% = JG]C — JGle — JGle (25())

d|Lac|ecs . a
necs% - JLac — JLac — JLac (251)

d|O ecs n .a,
ecs% = J02 —JOy — JOgs (252)

where Jgie, Jrac and Jo, are the fluxes from the blood to the extracellular space,

defined in (2.46), (2.47) and (2.48), and j%, j*/* and joa are the transport
rates of glucose, lactate and oxygen from the extracellular space to the neuron
or astrocyte, with the convention that positive fluxes are directed away from the
extracellular space.

The transport of glucose and lactate into the cellular compartments occurs
with the facilitation of glucose (GLUT) and monocarboxylate (MCT) trans-

porters, whose rates are expressed in Michaelis-Menten form:

e = T“GIC( s i it s o KR
o = ( e M[Lj[L]) (254)
JGe = aGlc( aGSIC eglc T Ma,G[ch"l:][aGlC]a>’ (2.55)
fw = ( e M[LJ[L]) (256)
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where T, gic, Ta,cle, TnLac and T 1 are the maximum transport rates and M, gic,
M, cie, Myrac and M, 1. are the affinity constants, whose values are listed in
Table 2.17.

Oxygen transport into neuron and astrocyte obeys Fick’s law with constant

permeabilities,

jgg = )\n,Oz ([OZ]ECS - [02]1’1>7 (257)
jgz = )‘a,Og ([02]ecs - [02]a)- (258)

We collect the concentrations of metabolites in extracellular space in the vector

[Gle] o (t)
Cecs<t) = [Lac]ecs(t) . (259)
[Oz]ecs(t)
Flux Blood <« Ecs Ecs <» Neuron Ecs < Astrocyte
Param Value Units | Param Value Units | Param Value Units
[GIC] Tb,Glc 0.02 mM/s Tn,Glc 83.33 HlM/S Ta,Glc 83.33 mM/s
My 460 mM M,cie 5.00 mM M, cie  12500.00 mM
Lad] Ty Lac 017 mM/s | Thrac 66.67 mM/s | Ty rac 66.67 mM /s
Mprac 500 mM My1ac 040 mM M, 1ac 0.40 mM
[Ol2 | A0, 0.04 1/s An,0, 094 1/s Aa,0, 0.68 1/s

Table 2.17: Transports: List of parameters in the expression of the transport
rates and their corresponding values. By 1, we denote the maximum transport
rate, while by M, ,, we denote the affinity constant in the Michaelis-Menten ex-
pressions describing the transport rate of the metabolite m = {Glc, Lac} from
compartment ¢, where ¢ = {blood, neuron, astrocyte or ecs}. A. o, is the param-
eter in Fick’s law describing the diffusion of oxygen from compartment c.

2.4.3 Neuron and astrocyte

In the two cellular compartments, we follow the time course of the concentra-
tions of glucose, lactate, oxygen, pyruvate (Pyr), creatine (Cr), phosphocreatine
(Pcr), adenosine triphosphate (ATP), adenosine diphosphate (ADP) and the ox-
idized and reduced forms of nicotinamide adenine dinucleotide (NAD™, respec-
tively NADH). These ten metabolites, whose resting concentrations are listed in

Table 2.18, participate in the chemical reactions in Table 2.19.
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| [Gl] [05] [Lac] [Pyr] [PCr] [Cr] [ATP] [ADP] [NADH] [NAD]

b | 451 6.67 1.24
ecs | 1.19 0.04 1.30
n | 1.19 0.03 1.30 0.38 10.33 3.0e-4 2.18 6.3e-3 1.2e-3 0.03
a | 0.65 003 130 035 10.32 1.1e-3 2.17 0.03 1.2e-3 0.03

Table 2.18: Metabolites: List of metabolites in the 4 compartments (blood (b),
extracellular space (ecs), neuron (n) and astrocyte (a)) and their corresponding
resting concentrations expressed in mM.

Name Symbol Reaction

Gel Vel /a Glc +2NADT +2ADP — 2Pyr + 2NADH + 2 ATP
LDH1  ¢ipuima Pyr+ NADH — Lac+ NAD™

LDH2  ¢ipHana Lac+ NADT — Pyr + NADH

TCA Urcama  Pyr+ ADP +5NADT — 3CO, + ATP + 5NADH
OxPhos  Yoxphosm/a O2 + 2NADH + 5ADP — 2NAD™ + 5 ATP + 2 H,0O
PCr VpCrn/a PCr+ ADP — Cr+ ATP

Cr Yern/a Cr+ ATP — PCr+ ADP

ATPase arpasen/a ATP — ADP

Table 2.19: Reactions: List of the lumped reactions included in the model.
Abbreviations for the reaction names: Gel = Glycolysis, LDH = Lactate de-
hydrogenase, reversible reaction, TCA = Tricarbocylic acid cycle, OxPhos =
Oxidative phospohorylation, PCr = Phosphocreatine dephosphorylation, Cr =
Creatine phosphorylation, ATPase = ATP dephosphorylation, mostly account-
ing for the Na® /K™ ATPase. Observe that the glutamate/glutamine cycling is
not included in the dynamic system, as they are used as a coupling between the
electrophysiology and metabolism.

The mass balance of the ten species in the two cellular compartments, is
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expressed by the set of equations:

28 e — vt
ﬁj% = JLac + YLom1 — YLpn2s
T
W d[i)iir]c = 2¢)Ga — Yo + YipH2 — Yreas
e e
dCre . c (260)
ﬁjT = Upcr — Ve
LTI — 31t U+ S0ten + Ve — U6 — Uirpae
POVl g — Uion — SUpies — Vo + U + Vi
Uj% = 2YGa — VLo + Yipnz T 5¥Tca — 2¥0xPhos:
773‘d[%1]?+]C = —2¢Ga + YIpm — Yipnz — 9¥Tca + 2U0xphos:

where ¢ = {n,a}, j&., ji.. and j&, are the transport rates from the extracellular
space defined in equations (2.53)-(2.58). By 1 we indicate the rate corresponding
to each reaction occurring in the neuron and the astrocyte, they are concentration
dependent and their mathematical expressions are given in Table 2.20.

We define the phosphorylation state as the ratio between the ATP concentra-

tion and the ADP concentration in the two compartments:

[ATP], [ATP],

Pn = [ADP]H’ Pa = [ADP]a, (261)

and the redox state, as the ratio between the concentration of NADH and NAD™:

[NADH], [NADH],

= NAD (2.62)
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Reaction Parameter Units  Neuron Astrocyte
Glycolysis (¥qel) Vae mM/s  0.26 0.25
Kl mM 4.60 3.10
VGal MGC1/+1/P TZ’Gcll/Jrl/T [GIC[S:;](Gcl HGel 0.09 0.09
YGel 10.00 10.00
Lactate dehydrogenase (¥1pu1) VipH1 mM/s  1436.00 4160.00
. , (Py] Kipm ~ mM 2.15 6.24
LDHI % pa1+r Pyt]+Krpm YLDHL 0.10 0.10
Lactate dehydrogenase (¢1.pm2) VipHe mM/s  1579.83 3245.00
v 1/r [Lac] Kipas mM 23.70 48.66
LDH2 3 5 ho+1/7 [Lac]+ KLpma VLDH2 10.00 10.00
TCA cycle (¢rca) Vrca mM /s 0.03 0.01
Vien 1/p 1/r [Py Krcoa mM 0.01 0.01
prca+1/p Yrea+1/r [Pyrl+Krca LUTCA 0.01 0.01
oA 10.00 10.00
Oxidative phosphorylation (¢¥0xphos) VoxPhos mM/s 8.18 2.55
o KOXPhOS mM 1.00 1.00
VOxPhos uoxpiéf-ﬁ-l/p 1/1OxP:os+7‘ [02]+[K2c1xphos HLDH1 0.01 0.01
YLDH1 0.10 0.10
Creatine phosphorylation (tc;) Ver mM/s 16666.67 16666.67
, i Ky mM 49500  495.00
Ct oo Tp [O+ Ko LCr 0.01 0.01
Creatine dephosphorylation (vpcy) Veer mM/s 16666.67 16666.67
v 1/p [PC1] Kpcor mM 528.00 528.00
PCriipc+1/p PCil+Kpce e 100.00 100.00
ATP dephosphorylation (aTpase) Joump,base mMM/s  0.0811 -
H1/2 + E81/2 ngia,base mM/S - 0.1897
Jpump,act mM/s  0.4444 -
Jgliaact mM/s - 0.1933

Table 2.20: Reactions rates: Michaelis-Menten type expressions for the reac-
tion fluxes in neuron and astrocyte and the values of the respective parameters.

The concentrations of all the metabolites in neuron and astrocyte are collected
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into the vectors Cy(t) and C,(t)€ R,

[O2],/,(t)
[Pyr],,/(t)
[PCrl,, /(1)
[Cr],,/a(t)
[ATP], ,(t)
[ADP], . (t)
[NADH],, , (1)
[NAD™], (1)

(2.63)

The expression for ATP dephosphorylation reaction (see Table 2.19), not ex-
pressed in terms of metabolite concentrations, will be discussed in more detail in
the following chapter, where the coupling between the electrophysiological and
metabolic model is addressed. We define 1)arpase as the sum of the energetic cost

towards housekeeping tasks H, and the energetic cost for signaling F

z/}XTPase = H1 + ELi? wXTPase = H2 + E? (264)

In this chapter, the signaling costs E! and E? are assumed to be constant and
their values depend on the activation level. On the other hand, quantifying the
household energy continues to be topic debated in recent literature [45, 2]. We

will revisit these energetic costs in Section 2.4.5.

2.4.4 Mathematical considerations

After collecting the concentrations of the metabolites in the four compartments

in a vector

Cu(1)

Cecs(t)
O(t) = € R, (2.65)
Ca(t)

Ca(t)
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we can write the differential equations of the metabolic model compactly in the

form

ac
— = f(0). (2.66)

For simplicity, equation (2.66) deals with the metabolites concentrations. This
aspect will be revisited in the next chapter where we will address the roles of

blood flow and ATP dephosphorylation.

To guarantee the positivity of the concentrations, we make the change of

variable:
Cj = Coe", 1<j<n. (2.67)
Writing
U
C=h(U), where X = | : |, (2.68)
Un

and applying the chain rule, it follows that

dC’j:dhj(U): %@, (2.69)
dt dt p U, dt
which can be written in shorthand notation as
ac  d oh dU
-~ = =, 2.
dt dt< (@) oU dt (270)
Differentiating (2.68) with respect to the variable X, we obtain:
oh;
a—(]‘; - hj(sj,k;
which, in our case, becomes
oh
— =diag(h(U)) = AN(U), (2.71)

ou
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and we can write our initial system (2.66) with respect to the variable X as

dU

— = NU) (), (2.72)
H(U) = NU)" f(R(V)), (2.73)
the system (2.66) becomes:
dU
— =H({U
dt (). (2.74)
Ulty) = Uo

Due to the different characteristic time scales of the metabolic processes, the sys-
tem (2.74) is stiff: special care must therefore be given to its numerical solution.
Backward Differentiation Formulae (BDF), a family of implicit methods, are well
suited for this purpose. The BDF linear multistep methods are characterized by

the following formulas:

a) BDF1
Un+1 - Un = dtH(tn+1, Un+1), (275)
b) BDF2
4 1 2
Uni2 = 3Uns1 + SUp = ZdtH (tn42, Uns2), (2.76)
3 3 3
¢) BDF3
18 9 2 6
Un+3 - ﬁUn_A,_Q + ﬁUTH‘l - ﬁUn = ﬁdtH(tn-H}a Un+3)7 (277)
d) BDF4
48 36 16 3 12
Un+4 - 2_5Un+3 + %UTLA-Q - %Un+1 + %Un = %dtH(tn_Hl, Un+4>7 (278)

where dt represents the step size: ¢, = £y + ndt.
Introduce the vector HY = [HY Hy HY HJ]" which contains the right hand
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side of each of the equations (2.75)-(2.78), we can write

HY = Upiy — Uy — AtH (21, Unsr), (2.79)
HY = 3Upyo — AUy + Uy — 2dtH (t49, Unso), (2.80)
HY = 11Uy, 3 — 18Upp0 + WUyyq — 2U, — 6dtH (tn15, Upys), (2.81)
HY = 25U, 14 — 48Up 13 + 36U, — 16Ups1 + 3U, — 12d6H (ty 4, Upsa). (2.82)

The nonlinear equations (2.79)-(2.82), are solved by Newton’s Method, hence
the value of U at t =n + 1 is:

Ut =U" — Jy' - Hea, (2.83)

where we can write the Jacobian Jy, formally as

-dt
—2dt | OH
Ju, = —.
—6dt 8U
—12dt

The (7, k) element of the Jacobian matrix of the function H:

oH,  oH
om _| % O
ou o0H,, 0H,

oU, ou,

18

oH oH, & ( 1
(@), = o ()

1 Oh 1 af;

= “woron T Loyen Y

From (2.71), we have

Lo
gj<U)2 8Uk

fi(U) = 5j,k%fj(U) = 0, H;(U),
J
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hence,

0OH

oH of
oU

= —diag(H) + N1 ==.
ing(H) + A1 5L

We calculate the partial derivative of f with respect to U by an application of

the chain rule:

af; df; Ohy of; of;
U, Z oC, 0U, Z ac,ghz ~ a0, ac,

and write it in matrix notation as

of _of
au ~ ac

In summary,

on
ou

af

= —diag(H) + A\~ 180

A.

Given the stoichiometric matrix S € R?®*? and the vector ¥(C) € R* col-

lecting the convection terms in blood, the transport rates and the reaction fluxes:

B
J
jn
U= , (2.84)
ja
wl’l
we can express f as
f(C)=S¥(0). (2.85)
More specifically, the stoichiometric matrix S € R?*26 i5 of the form
]I3><3 _]13><3
I —I —1I
g — 3x3 3x3 3x3 , (2.86)

Sl ©10><3 52
St Ouoxr 52
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where I is the identity matrix, O the null matrix, S; € R'9%3 and S, € R19x7

S1 =

o O O O o o o o o =

o O o o o o o = o o

o O O o o o ~= o o o

S

-1 0

2 -1

0 1

0 0

0 O

0 0

2 0

-2 0

2 -1

| -2 1

0O 0 0 0 O
1 -1 0 0 O
-1 0 0 0 0
0O 0 -1 0 0
0 0 0 -1 1
o 0 0 1 -1
o 1 5 1 -1
0 -1 -5 -1 1
1 5 -2 0 0
-1 -5 2 0 0

The vector B in (2.84) contains the first term of the right hand side of each

equation (2.43)-(2.45):

SIS

(Cart,Glc -

(Cart,Lac -

[Glc]p)

[Lacly)

f(cart,oz — [Oa]s)

while J is the vector of the fluxes from blood to extracellular space defined in

equations (2.46)-(2.48). The vectors j°, ¢ = {n,a}, contain the transport fluxes

from extracellular space to neuron and astrocyte, whose mathematical expres-

sions were given in (2.53)-(2.58), while the reaction rates given in Table 2.20 are

collected into the vector °.
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Vaele
YLDH1c
Jaie JGle Y1LDH2,c
J=| Juae | 3= | jtuc | » ¥"=| trcac |, wherec={n,a}.
Jo, 70, P Oxphos,c

¢PC1‘.C

77ZJCr,C

2.4.5 Calibration

The recent literature on brain energetics [45, 2] emphasizes the fact that most
of the energy consumed by the brain goes toward activating the sodium potas-
sium pump, maintaining the ion gradients and restoring the membrane potentials.
Other energy needs go towards other processes including neurotransmitter pack-
ing into vesicles and neurotransmitter recycling. The energy required for these
secondary processes is referred to as household energy, while the signaling energy
refers to the energetic cost of the sodium potassium pump J,,,, o+ and glial

uptake Jy;, k+

E; = Snanump,NaJr? (287)
B2 = S%ngw, (2.88)

where 7, and 7, are the volume fractions of neuron and extracellular space and s
is a parameter introduced to compensate for considering different total volumes.

In this chapter, the energetic cost of the sodium potassium pump and glial
uptake are treated as inputs obtained from the electrophysiological model and
are dependent on the level of neuronal activation.

To properly calibrate our model, we set the household energy (H; and H,)
and the parameter weighting the energetic need (s) so that the Oxygen Glucose
Index (OGI) is in agreement with values reported in literature. The OGI is
defined [46, 47] as:

Jo,

OGI = 202
JGIC

(2.89)
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where Jg. and Jo, are the fluxes of glucose and oxygen from the blood to the
extracellular space; see equations (2.46) and (2.48). We consider OGI during
four different levels of neuronal activity: 8 Hz, 10 Hz, 12 Hz and 90 Hz. The
first three frequencies correspond to the alpha resting state [48, 49, 50], while
the last one corresponds to a neuronal activation period. In our simulations, we
used the input of the energetic cost of the sodium potassium pump and the glial
potassium cleaning which were obtained from the electrophysiological model. The
8 Hz frequency corresponds to activation factor & = 0.05, the 10 Hz frequency
to a & = 0.07, the 12 Hz frequency to & = 0.1 and the 90 Hz to £ = 2.5. Each
case carries a different signaling cost (E! and E?), and we vary the household
energy H;, and the parameter s, while maintaining constant the ratio between

the household energy of the neuron and astrocyte:

Hy = 0.833H;.

Figure 2.4 shows the corresponding OGI values: the three frequencies in the alpha
state range are rendered through colour maps, while the OGI during neuronal
activation (90 Hz frequency) is shown in the form of red curves. Our results are
in agreement with OGI values reported in literature: ranging from 4 to 4.5 during

neuronal activation and 5 to 5.5 during resting state [51, 46, 52, 47, 53].
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OGIl: 8 Hz vs 90 Hz

0.2 0.22 0.24

Figure 2.4: OGI analysis: cross scales parameter s versus household energy H;.
OGI values for three frequencies characterizing the awake resting state: 8 Hz (top
row), 10 Hz (middle row) and 12 Hz (bottom row). The colour map shows OGI
regions as the cross scaling parameter s ranges from 0.2 to 0.25 and the household
energy Hp ranges from 4 to 4.9 mM/min. The OGI values corresponding to the
neuronal activation are shown using the red curves.

In light of these results, in the remainder of this thesis we set a household

energy H; = 4.3 mM/min and the proportionality parameter s = 0.23, so as
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to have an OGI index of approximately 5.2 during resting state and 4.2 dur-
ing neuronal activation, values which are in agreement with recent experimental

literature [46, 52, 47, 53].

2.4.6 Results

In this section we show the response of the metabolic model described in the
previous sections to neuronal activation. We consider a total simulation time of
30 minutes, during which we induce a three minutes neuronal activation, while
the remainder 27 minutes are spent in awake resting state with firing frequency
of 8 Hz. The transition between resting state and activation is attained through

the different ATP requirements dictated by the two states:

(
Hi + snndpumpact if t € [2,5]

¢ATPase,n = s (290)
Hy + 81pJpump pase  €lsewhere

Hy; + S%ngia,act if te [2, 5]
2/}ATPaLse,a - (291)
\ Hy + 8752 Jyjiapase  €lsewhere

where Joump,acts Jgliaact,; Jpump,bases Jelia,base are the values of the sodium potassium
pump, respectively for the glial potassium cleaning corresponding to the two levels
of activation.

We consider the following two protocols, which differ on the blood flow re-

sponse during neuronal activation
A: The blood flow is constant throughout the neuronal activation (in vitro).

B: The blood flow increases by approximatively 30% during the sustained ac-

tivation (in vivo).

According to hemodynamic experimental literature [54], the blood flow response
to neuronal activation is slightly delayed at the start and the end of the neuronal
stimulation. We model this physiological response by using a piecewise model
q(t) = A(t)qo, where A(t) is described in Table 2.21, with a delay of d; = 2
seconds at the beginning of the stimulation and df = 5 seconds at the end of the

neuronal activation. If we denote the initial time of activation by t;, then the
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blood flow increase starts at ¢; + d; and it reaches 130% of its resting state value
at t; + d; + r;, where r; = 10 seconds represents the ramping time response to
the start of the neuronal activation. Similarly, once the activation has ended, we

consider a ramping time response of ry = 20 seconds.

Time | [to,ti +di) | [t +di,ti+di+71) | [ti+di +7i,te+de) | [tr + de, te + de + 7¢) [ty + dg + 7, T)

t—t; — di 4
A(t) 1 146 ——— 146 e~ (t—te=ds) g 1 p 1

Ty

(1+0)a,

ti+di ti+di+ri tf+df tf+df+rf

Table 2.21: Blood flow regulation during sustained neuronal activation
(Protocol B). The definition of the activation function A(t) can be seen in the
table above, where the first row shows the periods in time at which the function
is defined according to its corresponding cell on the bottom row. The graph
underneath the table shows the resulting blood flow course where qq represents
the baseline blood flow, § gives the increase of blood during neuronal activation,
t; and t; are the initial respectively final time of the activation, d; and d; are
delays in the blood flow response and r; and r¢ are the ramping time response
to the beginning and the end of the stimulus. The values and the units of all
these parameters are given in Table 2.22. The parameters «, a and b are chosen
such that the continuity of the blood flow function is ensured throughout the
experiment: a = 0.1, a = 0.35, and b = 0.95.

Param | Value | Description Unit
Qo 0.4 | Baseline blood flow mL/min
o 0.3 | Blood flow increment during neuronal activation -
8 10 Ramping time response to the start of the activation | s
e 20 Ramping time response to the end of the activation | s
d; 2 Delay time in response to the start of the activation | s
ds ) Delay time in response to the end of the activation s

Table 2.22: Parameters corresponding to the activation function A(t) defined in
Table 2.21.



CHAPTER 2. BRAIN METABOLISM 76

Using the blood flow protocols defined above, we run two simulations: one
with protocol A and another with protocol B. Both protocols induce a three
minutes neuronal activation starting at t = 2 minutes. The results are presented
in a comparative manner in Figures 2.5-2.10. In all figures blue dashed lines refer
to Protocol A while red lines refer to Protocol B. In these tests we can observe the
behavior of the brain metabolites during neuronal activation when blood supply
is constant (in vitro) or increased (in vivo).

Figure 2.5 shows the time course of the concentrations of glucose, lactate and
oxygen in the four compartments. As expected, the activation period ¢ € [2, 5] is
characterized by high consumption of glucose and oxygen, accompanied by high
production of lactate. More specifically, the decrease in glucose concentration in
neuron and extracellular space is of approximately 65% under protocol A and 63%
under protocol B, both compared to its value during the awake resting state. The
consumption of glucose is much higher in the astrocyte compartment, where we
record a decay to 89% in the case of protocol B and 88% in the case of protocol
A of its value during the resting state. In neuron, astrocyte and extracellular
space, the concentration of lactate exhibits a big increase from its baseline value:
65% under protocol A and 75% under protocol B. In the case of oxygen, we note
a decay of 90% in the neuron, 76% in the astrocyte and 50% in the extracellular
space.

As expected, we see very different behaviors under the two protocols in the
blood compartment. Under protocol A, we observe an immediate decrease of 4%
of glucose concentration below resting value, while under protocol B, we see an
initial increase of 2% followed by a slow decrease. The same response also holds
for the level of oxygen in blood: if the blood level is kept constant throughout
the neuronal stimulation, we notice a decay of 5% in the case of oxygen, while
under the increased blood flow protocol, the oxygen shows an increase of 4%
compared to its baseline value and is followed by a dip at the end of the activation.
Both protocols show a significant lactate production during neuronal activation,

slightly bigger under protocol A.
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Figure 2.5: Neuronal activation: in vivo and in vitro. Time course of
metabolite concentrations in the neuron (top row), astrocyte (second row), ex-
tracellular space (third row) and blood compartment (bottom row). In blue we
see the concentrations when the blood flow is kept constant throughout the neu-
ronal activation (protocol A), while the continuous red line shows the metabolites
under protocol B, in which the blood flow exhibits an increase of 30% during the
three minutes neuronal stimulation as described in Table 2.21.

Figure 2.6 shows the transport rates of glucose, lactate and oxygen from blood

compartment to the extracellular space, with a higher increase in the cerebral

metabolic rate of oxygen under protocol B (15% over its baseline value) than

under protocol A (13% above baseline). This shows that due to the higher amount

of blood flow available, the transfer of oxygen from the blood to the extracellular

space is higher than before. The same holds for glucose flux from the blood

compartment to the extracellular space, which has an increase of 40% under

protocol B and 38% under protocol A, both calculated with respect to the value
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of this flux during awake resting state. These flux values are used to calculate
from (2.89) the OGI index, whose time course under the two protocols is showed
on the bottom right corner of Figure 2.6. At the beginning of the activation,
there is a spike in OGI for both protocols, followed by an 18% decrease below the

resting state value.

0.45 CMRGilc CMRLac
0.4 -0.1
£ £
g 0.35 = protocol A | g -0.2 = protocol A
> —protocol B > .03 —protocol B| |
(S IS
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RS = protocol A E
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g =
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Figure 2.6: Neuronal activation: in vivo and in vitro. First row: Cere-
bral metabolic rate of glucose (left) and lactate (right). Bottom row: Cerebral
metabolic rate of oxygen (left) and the resulting Oxygen-Glucose Index (right).

Figure 2.7 shows a depletion of pyruvate during the three minutes of the
activation period: the concentration decreases by 84% in the neuron and by
59% in the astrocyte. As expected, the phosphorylation rates in neuron and
astrocyte dramatically decrease during the activation period, due to the larger
requirement of ATP during activation than during awake resting state. In both
neuron and astrocyte, phosphorylation rate exhibits a decrease of approximatively
98.5% during the increased blood flow protocol B, and a 99.5% decrease when
considering the blood flow constant. On the other hand, during activation, redox

state increases 8 fold in the neuron and 4 fold in the astrocyte.
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pyruvate, phosphorylation states and redox states in the neuron (top row) and

astrocyte (bottom row).

Figure 2.8 illustrates the rates at which metabolites are transported from the

extracellular space to the cellular compartments; glucose and oxygen transport

rates substantially increase in the neuron during the activation period, while

decaying in the astrocyte.

On the other hand, the lactate flux dramatically

decreases during activation to a negative value, and indicating that there is lactate

exiting from the neuron to the extracellular space during the activation. Similarly,

the lactate flux in the astrocyte is negative during baseline and increases slightly

during activation.
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Figure 2.8: Neuronal activation: in vivo and in vitro. Metabolic fluxes
between the extracellular space and the neuron (top row) and between the ex-
tracellular space and the astrocyte (bottom row).
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The reaction fluxes in the two cellular compartments are shown in Figures
2.9 and Figure 2.10. The rate of glycolysis increases during activation in neuron,
while dropping in astrocyte after an initial peak. Similar patterns are observed

for the flux of the TCA cycle and oxidative phosphorylation fluxes, as well as for

lactate dehydrogenase net flux.
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Figure 2.9: Neuronal activation: in vivo and in vitro. Reaction fluxes

in the neuron (top row) and astrocyte compartments: glycolysis (left), TCA

(middle) and oxidative phosphorylation (right).
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Figure 2.10: Neuronal activation: in vivo and in vitro. Reaction fluxes

in the neuron (top row) and astrocyte compartments: lactate dehydrogenase
balance flux (left) and creatine phosphorylation balance flux (right).
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CHAPTER 3

Electro-Metabolic model

3.1 Introduction

In the previous two chapters we described two important aspects of brain dy-
namics: electrophysiology and metabolism. Despite their strong interconnection,
these two aspects have been long studied in a separate manner by two scientific
communities: one concerned with the study of the electrical properties of the
brain cells and the other with the study of the main biochemical reactions occur-
ring in the brain. In this chapter, we couple the two perspectives on the basis
of their energetic production and consumption. On one hand, electrophysiologi-
cal activity requires a sufficient amount of ATP, produced through the complex
biochemical reactions occurring in the brain. On the other hand, the amount of
energy produced depends on the availability of the different metabolites, and is
dictated by the electrophysiology. This process is sketched in Figure 3.1.

In this chapter we describe a double feedback Electro-Metabolic model and
propose an algorithm to deal with the dramatically different time scales of the
processes: milliseconds for the electrophysiology and minutes for the metabolism.
In the numerical results section we report simulations of awake resting state,

consecutive neuronal activations and ischemic episodes.

83
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/E(t} INPUT C,(t) Q(t}/
l-I»"ATPase,n
—{  ATP demand
t‘l‘,ﬂTPQSE,a

l l l Neuron Astrocyte
ECS :

Electrophysiology

Pn | Pa Metabolism
— ATP production )+

Figure 3.1: Schematic representation of the Electro-Metabolic model emphasiz-
ing the two dynamics through the ATP supply and demand [43]. p, and p,
are the phosphorylation states of neuron, respectively astrocyte, 1arpasen and
Y ATPase,o are the ATP dephosphorylation fluxes in neuron and in astrocyte, while
&(t) is the stimulus which induces neuronal activation and it is an input for the
electrophysiology subunit. ¢(t) is the blood flow while C, x(t) are the arterial
concentrations of glucose, lactate and oxygen, all of which represent external
inputs for the metabolic subunit.

3.2 Double-Feedback Model

A partial coupling of brain electrophysiology and metabolism was proposed by
Aubert et al. in [38], where the energetic cost of the sodium potassium pump is
added to the metabolic model, as described in Section 2.3; however, its major lim-
itation is that their uni-directional approach does not account for how metabolic
response affects electropysiological activities.

The double feedback mechanism described in this chapter includes the en-
ergetic cost of the electrophysiological activity in the metabolism and accounts
for the metabolic response in the electrophysiological activity. This coupling of
the electrophysiology and metabolism is based on the ATP supply and demand,

rather than explicit modeling of the glutamate cycles as in [9].
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3.2.1 Metabolism to Electrophysiology

To account for the metabolic response to the energetic cost demanded by the
electrophysiology, we modify the expressions of the sodium potassium pump and

the glial uptake given in Chapter 1, in equations (1.21) and (1.22) into (see [43]):

S _Dn P . (3.1)
pump,Na fip + o \1+exp(25 — [Nat);)/3) ) \1 +exp(2.2 — [KY)ewo) )
a G ia
ngia,K+ P el (32)

fhg + Do 1+ exp((14.7 — [Kees)/25)

where p, = pn(t), pa = pa(t) are the phosphorylation states in the neuron and
astrocyte, and p, = 0.1, 1z = 0.1 are affinity constants.

The modified pump activity model is such that, if the phosphorylation states
determined by the metabolism are not sufficiently large, the sodium and potas-
sium ion fluxes slow down, leading to an imbalance in ionic concentrations. We
remark that the astrocytic potassium flux Jy;, x+ is not directly dependent on
ATP, but takes into account a metabolic cost to account for potassium cleaning
by the astrocyte [55]. After the addition of the metabolic feedback, the electro-

physiological model (1.26) becomes

% - f(u7 £7pmpa)7 (33)

where £ is the stimulus controlling the activation, as explained in Section 1.2.2.

3.2.2 Electrophysiology to Metabolism

The electrophysiological feedback is encoded into the metabolic model through
the energetic cost of the ion pump action [43]. The ATP dephosphorylation
reaction: ATP — ADP releases a binding energy of AE = 30.5 kJ/mol which
can be used to maintain the pump actions. It is also well known that one ATPase
is required for the exchange of three sodium ions for two potassium ions, therefore,
the following stoichiometric relation holds for both cells:

+t — ADP + 3Na’

ecs ecs

ATP + 3Na + 2K + 2K
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The mass balance equations for intracellular sodium and extracellular potassium

defined in (1.17) and (1.18) can be written with respect to the ATPase fluxes as:

d Na+ i
" [ dt ] = _777n[1—\~1_a - 3wATPase,n7
d K+ ecs
necs% - rYnnI}J{r - 2wATPase,n - 21/JATPase,a - gecs<[K+]ecs - koo)

If we denote by Iy,+ e the leak sodium current induced by the increase of

membrane permeability given by the function &:

]Na+,leak = gNa*,leak(t)(V - VNaJr)’

and by I¢

n the average sodium leak current obtained during resting state, we
Na™,leak ’

can model the sodium current that acts alongside the neurotransmitter activity

as:

INa+,leak<t) - I§a+,leak if g(t> >0

. (3.4)
0 it () =0

[Na+,act(t) -
In light of the relation above between glutamate release and sodium ion cur-

rents, we assume a glutamate-glutamine flux relation of the form:
g
ngu = ;‘[Na+,act7 (35)

where o accounts for the energetic cost of the glutamate-glutamine cycling during
synaptic activity. The value of o was established in [43] according to the following

considerations [45]:

1. The cost of each molecule of glutamate taken up by astrocyte and trans-
formed into glutamine is of approximately 2.33 ATP, of which 1.33 ATP
go towards glutamate uptake and the other 1 ATP is spent on glutamate

conversion to glutamine.

2. A vesicle contains 4000 glutamate molecules. The energetic cost in neuron

for vesicle packing is of 0.33 ATP per glutamate molecule.

3. When the glutamate molecules located inside a vesicle are released into the
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synaptic cleft, 15-200 non-NMDA dependent sodium channels open with
mean opening time in the range of 0.6-1.4 milliseconds. The release of
each glutamate vesicle causes the entrance of 200.000 sodium ions in the

postsynaptic neuron.

4. The presence of glutamate in the synaptic cleft opens the NMDA dependent
channels for approximately 50 milliseconds, which allows the entrance of
180.000 sodium and 10.000 calcium ions per vesicle. The removal of the
extra calcium requires the activation of the calcium-sodium pump, whose
1:3 calcium to sodium ratio means that in order to extrude 10.000 ions of

calcium, 30.000 ions of sodium enter.

In summary, for each vesicle containing 4000 glutamate molecules there are
410.000 sodium ions entering postsynaptic neuron. Consequently, we assume
that the number ¢ of sodium ions entering the neuron for each molecule of gluta-
mate released in the synaptic clef is approximately 103. In Chapter 2, the ATP
dephosphorylation fluxes in neuron and astrocyte were expressed as the sum of
the household energy H and signaling energy E,. We add to this sum the ener-
getic cost of glutamate recycling, arriving at the following expression for ATPase

Huxes:

Q/)ATPase,n = Hi+s <77n‘]pun[1p,NaﬂL + 0'3331Na+,act> ) (36)
wATPase,a = H2 +s <%ngia,K7L + 2'33g[Na+,act> ’ (37>

where v is a conversion factor for transforming the electric current into a mass
flux that depends on the cell geometry as discussed in Chapter 1.

We indicate explicitly the dependence of the metabolic system (2.66) on the
dephosphorylation fluxes ¥ arpasen and P arpasea, on the blood flow ¢ and on the

arterial concentrations Cy; by writing:

ac

/\% = g<C> Cart> ¢ATPase,n7 wATPase,aa Q>7 (38)

where the ATPase fluxes are, in turn, functions of the electrophysiological activ-
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ity:
(wATPase,na Q/}ATPase,a) = @(U)

Conversely, in the equation for the electrophysiological system, we indicate ex-
plicitly the dependence on the phosphorylations states in the neuron (p,) and

astrocyte (p,) and write:

du

a = f(uvpnapaaf)' (39)

where the phosphorylation states depend on the metabolite concentrations:

(Pn, pa) = 0(C).

To summarize, the governing differential equations of our Electro-Metabolic

model [43] are given by (3.8) and (3.9).

3.3 Multiscale computational approach

The Electro-Metabolic model that we proposed in [43] couples two different mod-
els with dramatically different typical time scales; the milliseconds range of the
electrophysiological model proposed in Chapter 1 and the minute range for the
metabolic model discussed in Chapter 2. This difference in the orders of magni-
tude of the time scales makes the computation of the Electro-Metabolic model
predictions very challenging. Therefore, we dedicate this section of the thesis to
address the multiscale nature of our coupled model from a computational point of
view. The electrophysiological propagation is carried out with a finer discretiza-
tion than the metabolic one, and at the end of each slow step, we synchronize the
coupling quantities [43]. Throughout this thesis, we denote by At the coarser time
scale of the metabolism and by A7 the finer time scale of the electrophysiology.

In Chapter 2, where we described how to compute the predictions of the
metabolic system (2.66) and we introduced a change of variable (2.67) that guar-
antees the non-negativity of the solutions, we advocated using a BDF solver to
address the stiffness of the system.

In the simulations of the Electro-Metabolic model, we proceed in a similar
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manner: starting from equation (3.8), we make the change of variable:
Cj = h(U;) = Coexp(Uj),

and we obtain the ordinary differential equation system:

du

E = A(U)_lg(h(U), ¢ATPase,n7 ¢ATPase,a7 Q) (310)

= (I)<h‘(U)7 wATPase,ny wATPase,ay Q); (311)

that we solve by with a time numerical integrator based on the BDF solver. More

specifically, letting

t; = jAL, 7 =0,1, .. Jnax, Jmax = Y 1,
and
U = Uy, (312
(I)j = o (Uja wATPase,n(tj)a wATPaSB,a(tj)ﬂ q(tj)) : (313)

The BDF time integrator of order r estimates U; from the value U;_,, 1 < ¢ <7
at r previous time instances and some scalars «; and 8 by solving an equation of

the form

Z aUj—e = A 5P;,
=0

with a few steps of the Newton method. Denoting the r-step BDF-based inte-

grator symbolically as B,, we can write
Uj = Br(®;,Uj-1).

We see from (3.13) that @, is a function of the ATP dephosphorylation fluxes in
neuron and astrocyte (Yarpasen(tj); Yarpasea(tj)), which are in turn obtained by
numerically integrating the electrophysiology model over the interval (jAt, (5 +
1)At). The time step A7 used for the numerical time integration in the elec-
trophysiology model is much smaller than the At used for the metabolic one.

Moreover, the electrophysiology system is independent of the time at which
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is updated at the metabolic time scale and can be computed on the interval
[0, At]. To update the electrophysiologic portion we employ a built-in Matlab
odelbs stiff integrator, which uses an adaptive A7. Given the interpolation grid
7 = [Tz, g, Of the electrophysiology in (0, At), we compute the values of
Joump Nat (Tm)s Jgtiaxct (Tm) and I+ 4e0(Tim) at each time instant 7,,,. These values
are then inserted into equation (3.6) and (3.7) which returns the value of the
ATPase dephosphorylation fluxes in neuron and astrocyte ¥arpasen/a(Tm) at each
electrophysiologic time instant. To input this value into the metabolism model,
we first need to compute the energetic cost between two successive updates of the
metabolism, which is achieved by averaging tarpasen/a Over the interval (0, At)
through a quadrature rule.

Additionally, to insert the metabolic cost into the electrophysiology through
the phosphorylation states p,, and p,, we proposed in [43] the following predictor-
corrector iteration scheme. At first, the values of the phosphorylation states are

those computed at the last metabolic state, then they are updated by interpo-

lating their previous values and the newly computed ones. Algorithmically, for

j=0,1,..., Jmax define a time grid 7o, 71, ... 7, of the time interval [0, At] and
let: ~ ) ) )
To u’?
i1
T A u’ A A — ,
T = . T = . = u]707 wMi — uj+170’
j7Mj

The predictor-corrector sequence is performed twice with the midpoint quadra-
ture rule to compute the ATPase fluxes [43]. The implementation details are

explained in Algorithm 1.
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Algorithm 1 Multiscale Metabolic Update

1. Given: the metabolite concentrations {Uy, U_1,...U_, 41} at the previous
r time instances

2. For j=0,..., Joax

Calculate p? and p? from (2.61).
Set p)t =pl, Pt =p]
Predictor Step:
Define
fal) =pn (L= %) + o0 &
falm) =2, (L= %) + 7' &
Step 1: Compute w7 from f,(7), f.(7) and w’ using a time
integrator based on BDF

Approximate f,(7) and f,(7) in T by computing
,m T . T "M.
pm = (1= 3) Pl + T
), m Tm j Tm '7M.
== 3)pt + R

Jm Jm Jm
Evaluate qump’Na+, Jgha’ o+ and INa+7aCt at the fine scale from

(3.1), (3.2) and (3.4).

Evaluate the ATPase fluxes in the fine scale from (3.6) and
(3.7).

Update the ATPase fluxes in the coarse scale model:

Mj—1
wATPase,n((j + 1)At> = ﬁ Z—jo wk’?l:’ase,n@—erl - 7'rrrl)

M—1
wATPase,a«j + 1)At) = ﬁ Z ¢X?Pase,a(7m+1 - Tmfl)
m=0

Step 2: Compute U;;; by integrating numerically ®;4; from
(3.13) with a time integrator based on BDF

Uj+1 = Br(q)j—i-la U])

Corrector Step: Update p/t' and p/™! via (2.61) using the most
recent value of U

Repeat from Predictor Step
End j
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3.4 Results

In this section we present the computed predictions of the coupled Electro-
Metabolic model. All results were computed using a self-developed Matlab code.
In the first example we consider two consecutive neuronal activations accompa-
nied by an increase in the blood supply as explained in Chapter 2, Protocol B,
Figure 2.21. In the second example, we simulate a short ischemic event during
which the blood supply is reduced by 90 percent and we analyze the behaviour
of the main metabolites and ionic concentrations during such a drastic reduction
of blood. The third example simulates an ischemic event followed by a neuronal

activation.

3.4.1 Consecutive neuronal activations

In the first experiment we consider two brief consecutive neuronal activations,
each lasting 3 minutes, separated by a resting period. The awake resting state
characterized by a frequency of 8Hz is obtained by setting the stimulus £ to 0.05,
while for the neuronal activations, characterized by a frequency of 90Hz, the
stimulus € is set to 2.5.

As the system transitions from the awake resting state to neuronal activation,
we closely follow the electrophysiologic and metabolic changes. The blood flow
protocol used in this example increases by 30% during each neuronal stimulation,
as shown in Table 2.21.

According to the model prediction, neuronal activation is accompanied by
a big increase in intracellular sodium concentration and extracellular potassium
concentration, a large consumption of glucose and oxygen and a massive produc-
tion of lactate, in agreement with recent experimental work [56, 57, 35]. However,
the neuronal response depends on the resting time between two consecutive acti-
vations. We further investigate how recovery time changes the system’s behavior
in the second activation in the following subsections, where we consider two cases:
one where the resting period is 5 minutes and another one where the period is 10
minutes.

In both situations, the neuronal frequency does not immediately return from

90Hz to the 8Hz alpha awake resting state. As a matter of fact, at the end of
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each activation, our model is able to capture a very short gap in the firing known
in the literature as the slow after-hyperpolarization effect (sAHP). This
effect has generated a lot of interest over the last years in the literature [58, 59,
60] as many authors are interested in determining the mechanisms that greatly
influence sAHP. In [58], Gulledge et al. observe how trains of action potentials
produce a 20 seconds after-hyperpolarization effect, which is mainly mediated
by the sodium-potassium pump. On the other hand, Shah et al. investigate
in [60] the role of the calcium channels in generating the sAHP effect, while in
[61], Turner et al. assess the role of the IKCa channels in producing the sAHP
in hippocampal pyramidal cells. In our numerical experiments, the slow after-
hyperpolarization effect lasts approximately 16 seconds and it coincides with a

drop in the extracellular potassium concentration under the baseline value.

Resting time: 5 minutes

The action potential and corresponding frequency are shown in Figure 3.2 to-
gether with the intracellular sodium and extracellular potassium concentrations.
In this simulation, we allowed a resting time of five minutes between the neuronal
activations. Intracellular sodium concentration increases from 10.5 mM during
the awake resting state to 16 mM during the two neuronal activation periods,
while extracellular potassium concentration increases from 3 mM to 3.05mM.
During the neuronal stimulation periods, the model predicts a reduction of the

amplitude of the action potential, in agreement with the literature [35].
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Figure 3.2: Consecutive activations with a 5 minutes interval between.
Upper row. Left: action potential (black) and corresponding firing frequency
(magenta). Right: time course of extracellular potassium concentration. Bottom
row: Detail of the action potential and frequency around the time ¢t = 5 min
when the first activation is stopped. Right: time course of intracellular sodium
concentration.

Time courses of the concentrations of the main metabolites in the blood com-
partment are showed in Figure 3.3 together with the corresponding transport
fluxes of glucose, lactate and oxygen from the blood to the extracellular space
and from the extracellular space to the two cellular compartments. At the begin-
ning of the first neuronal activation, the concentration of glucose increases by 2%,
followed by a sudden decrease of 4%. By the start of the second activation, the
glucose concentration in blood had recovered to 99% of its baseline value, before
showing a similar behavior to that during the first activation, except for a slightly
lower initial increase of 1.5% above baseline. Lactate concentration in the blood
compartment increases, during the first activation, by 37% with respect to the
resting state value and is followed by a decrease to a lower value. At the begin-
ning of the second activation, lactate concentration had only recovered to 91% of
its resting value, and exhibits a smaller increase to 30% above its baseline value
during the second neuronal activation event. Oxygen concentration in the blood
compartment exhibits a modest increase of 4.3% above baseline during neuronal
activation, followed by a decrease at the end of the activation, and then by a fast

return to 99% of baseline value, after 5 minutes. The transport fluxes between
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blood and the extracellular space increase by 38% above baseline for glucose, 15%

for oxygen, while the lactate flux decreases 6 fold from its resting state value.
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Figure 3.3: Consecutive sustained activations with a 5 minutes interval
between. Time course of metabolite concentrations in the blood (top row):
glucose (left), lactate (middle), and oxygen (right). Metabolic fluxes between
compartments (bottom row): oxygen (black), lactate (red), and glucose (blue)
between blood and extracellular space (left), between extracellular space and
neuron (middle), and between extracellular space and astrocyte (right).

The first row of Figure 3.4 shows the time course of the concentrations of
glucose, lactate and oxygen in neuron, astrocyte and extracellular space, while
the second row captures the behavior of pyruvate, the phosphorylation and redox
states in the two cellular compartments. During activation, glucose concentration
decays by 64% of its resting state value in the neuron and extracellular space, and
even more in the astrocyte, where it falls 87% below baseline. At the end of the
5 minutes resting period, glucose returns to 89% of its initial value in the neuron
and extracellular space, and just 85% in astrocyte. In the second neuronal activa-
tion period, which starts with a lower glucose concentration, the decay is slightly
larger in the astrocyte, where glucose concentration drops by 88% of baseline,
while in neuron and extracellular space the decay is of 64%. Concurrently, lac-
tate concentration shows a large increase of 65% over baseline value during the
neuronal activation, at the end of which it starts decreasing. Once the 5 minutes
resting period has ended, lactate concentration is 88% of baseline value. During

the second neuronal activation, the increase in lactate concentration is slightly



CHAPTER 3. ELECTRO-METABOLIC MODEL 96

smaller, topping at 53% above the resting state value. While oxygen consumption
varies in the different compartments, with its concentration decreasing by 90%
in neuron, 75% in astrocyte and 50% in extracellular space, its recovery time is
much shorter than for glucose and lactate. At the end of the 5 minutes resting
period, oxygen concentrations recover to 97% of their baseline value in all three
compartments.

Figure 3.4 shows a significant consumption of pyruvate in both cellular com-
partments during neuronal activation, more pronounced in neuron, where the
concentration drops 83% below its baseline value, while in astrocyte, it drops
60% below the resting state. In both compartments the recovery tops at 84% of
its baseline value by the start of the second neuronal activation. The decrease
in pyruvate during the second activation is larger than before, reaching a 84.5%
decay in neuron and a 63% decay in astrocyte.

The effect of energetic requirement during the neuronal activations on the sys-
tem can be clearly observed in Figure 3.4, where we see that during the 3 minutes
neuronal stimulations, the phosphorylation states in the cellular compartments
are almost entirely depleted: 99.8% below baseline value in the neuron and 97.7%
in astrocyte, with an almost full recovery, up to 98% in neuron and 95% in astro-
cyte of initial baseline values. The redox states, which exhibit a massive increase
during activation, 8 fold in the neuron and 4 fold in astrocyte, have fully recovered

at the end of the 5 minutes resting period.
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Figure 3.4: Consecutive sustained activations with a 5 minutes inter-
val between. Time course of metabolite concentrations in the neuron (in red),
astrocyte (blue) and extracellular space (black): glucose (top left), lactate (top
middle), oxygen (top right), and pyruvate (bottom left). Time course of phos-
phorylation (bottom middle) and redox (bottom right) states.

Figure 3.5 shows the time course of the main reaction fluxes. The panel on the
top row shows that the fluxes of glycolysis, tricarboxylic acid cycle and oxidative
phosphorylation exhibit a significant increase during the activation periods in
neuron, and an initial increase followed by a slight decrease in astrocyte. All fluxes
return to their initial pre-activation value by the start of the second activation.
The lactate dehydrogenase flux shows a large increase during neuronal stimulation
in neuron, while in astrocyte, an initial increase is followed by a significant decay.
Phosphocreatine fluxes in neuron and astrocyte show a slight increase during
activation, and a large decrease at the end.

The OGI index calculated according to (2.89) is shown in Figure 3.5. Within
the first seconds of the first neuronal activation, the OGI increases by 10% with
respect to the baseline value of 5.15, after which it slowly decreases until it reaches
the value 4.25 at the end of the neuronal activation. The five minutes recovery
time are sufficient for the index to reach 95% of its initial value. During the
second neuronal activation, the initial spike is lower than before: 5% above the
resting state value, while the minimum value of 4.20 recorded at the end of the

activation is slightly lower than the minimum during the previous activation.
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Figure 3.5: Consecutive sustained activations with a 5 minutes inter-
val between. Reaction fluxes. Top row: glycolysis (left), TCA (middle) and
oxidative phosphorylation (right) in neuron (red) and astrocyte (blue). Middle
row: lactate dehydrogenase balance flux (V1py; —¥ipne, left), and creatine phos-
phorylation balance flux (Vpc, — Wy, middle) in the neuron; time course of the
cerebral metabolic oxygen rate of glucose (right). Bottom row: lactate dehydro-
genase balance flux (Vypy1 — Wrppe, left), and creatine phosphorylation balance
flux (Vper — Ve, middle) in astrocyte; time course of the OGI index (right).

Resting time: 10 minutes

The results of the previous section show that the metabolites do not return to
their initial resting state value at the same speed. In the first protocol, while
some metabolites, like oxygen, recover very fast, others are significantly slower,
like glucose, lactate and pyruvate.

Here, we considered two neuronal activation periods of 3 minutes each, but we
extended the in between resting period to 10 minutes. In Figure 3.6 we visualize
the action potential, the intracellular concentration of sodium and the extracel-
lular concentration of potassium. We observe that the different period allowed
between activations is not of relevance in this case and therefore, we obtain iden-

tical results to the one seen in Figure 3.2, probably because the electrophysiology
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time scale is much faster than the time scale of the metabolism.
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Figure 3.6: Consecutive activations with a 10 minutes interval between.
Upper row. Left: action potential (black) and corresponding firing frequency
(magenta). Right: time course of extracellular potassium concentration. Bottom
row: Detail of the action potential and frequency around the time ¢ = 5 min
when the first activation is stopped. Right: time course of intracellular sodium
concentration.

Figure 3.7 displays the time course of the metabolites in the blood compart-
ment. In this case, the differences between the time courses of the metabolites
during the first and the second activation are minimal, because the larger resting
period in between the activations has allowed the metabolites to fully return to
their initial resting state values prior to the second activation. More specifically,
by the start of the second activation period, glucose and oxygen concentrations
returned to their initial values, while lactate is 96% of it.

Similar observations are in order for the concentrations in extracellular space,
in neuron and astrocyte, where the recovery is up to 98% for glucose, 100%
for oxygen, 95% for lactate and 94% for pyruvate. The phosphorylation states
are almost entirely replenished by the start of the second activation: 98.9% in

astrocyte and 99.7% in neuron.
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Figure 3.7: Consecutive sustained activations with a 10 minutes interval
between. Time course of metabolite concentrations in the blood (top row):
glucose (left), lactate (middle), and oxygen (right). Metabolic fluxes between
compartments (bottom row): oxygen (black), lactate (red), and glucose (blue)
between blood and extracellular space (left), between extracellular space and
neuron (middle), and between extracellular space and astrocyte (right).

The reaction fluxes, showed in Figure 3.9, have fully reestablished their initial

values at the end of the ten minute resting state period, as did the OGI index.
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Figure 3.8: Consecutive sustained activations with a 10 minutes inter-
val between. Time course of metaboli