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Abstract
This paper describes a voice conversion system designed with
the aim of improving the intelligibility and pleasantness of oe-
sophageal voices. Two different systems have been built, one
to transform the spectral magnitude and another one for the
fundamental frequency, both based on DNNs. Ahocoder has
been used to extract the spectral information (mel cepstral co-
efficients) and a specific pitch extractor has been developed to
calculate the fundamental frequency of the oesophageal voices.
The cepstral coefficients are converted by means of an LSTM
network. The conversion of the intonation curve is implemented
through two different LSTM networks, one dedicated to the
voiced unvoiced detection and another one for the prediction
of F0 from the converted cepstral coefficients. The experi-
ments described here involve conversion from one oesophageal
speaker to a specific healthy voice. The intelligibility of the
signals has been measured with a Kaldi based ASR system. A
preference test has been implemented to evaluate the subjective
preference of the obtained converted voices comparing them
with the original oesophageal voice. The results show that spec-
tral conversion improves ASR while restoring the intonation is
preferred by human listeners.
Index Terms: voice conversion, speech and voice disorders,
alaryngeal voices, speech intelligibility

1. Introduction
The laryngectomees are persons whose larynx has been surgi-
cally removed. The larynx is a fundamental organ in the pro-
duction of speech since the vocal folds are located inside it. In
spite of this, it is still possible to utter intelligible speech us-
ing alternative vibrating elements. The acquired new voice is
called alaryngeal. There are three main ways to produce the
alaryngeal voice: oesophageal (ES), electrolaryngeal (EL) and
tracheoesophageal (TES) speech. The experiments described in
this paper use only oesophageal speech.

Unlike the other two methods, the production of ES does
not require any device. This kind of speech is learned with
the help of a speech therapist. In this method the pharyngo-
oesophageal segment is used as a substitutive vibrating element
for the vocal folds. Due to the nature of the intervention, the
air used to create the vibration of the oesophagus can not come
from the lungs and the trachea as happens during normal speech
production. Instead, the air is swallowed from the mouth and in-
troduced in the oesophagus, being then expelled in a controlled
way while producing the vibration.

These huge differences in the production mechanisms lead
to a diminution of naturalness and intelligibility [1, 2, 3]. As
a consequence, the communication with others is hindered.
Moreover, these less intelligible voices are an added problem
for the automatic speech recognition algorithms that are becom-

ing ubiquitous in the human computer interaction technologies.
The work presented in this paper aims at improving the quality
and intelligibility of ES, with the final purpose of contributing
to a better life of the laryngectomee.

There have been different approaches to enhance the qual-
ity and the intelligibility of alaryngeal voices. Some research
works use the source-filter analysis of the pathological signal
and focus on the modifications of one or both source and filter.
An example of this approach can be found in [4] where an adap-
tive gain equalizer algorithm is used to modify the source of ES;
or in [5] where a reconstruction of normal sounding speech for
laryngectomy patients is attempted through a modified CELP
codec. Another approach is to work with the prosodic elements.
In [6], the pitch information extracted from an electroglotto-
graph (EGG) is used to create a synthetic glottal signal, reduc-
ing jitter and shimmer. Additionally, spectral smoothing and
tilt correction were applied. These modifications reduced the
harshness and breathiness of the TE speech. The same authors
relate in [7] a repairing method of the durations of the patho-
logical phonemes. In the same line, [8] presents a system where
concatenation of randomly chosen healthy reference patterns re-
places the pathological excitation, adjusting the short, medium
and long-term variability of the pitch.

A different approach to the problem is to make use of a
voice conversion (VC) system. In a VC system the pursued
goal is to transform utterances from a given source speaker into
a specific target speaker, i.e., apply some techniques to per-
ceive the sentences as uttered by the specific target speaker. For
the purpose of enhancing alaryngeal voices, a healthy speaker
is chosen as target speaker. Different examples of techniques
based on statistical voice conversion can be found in [9], [10]
or [11], where the characteristics of the target speaker can be
tuned to obtain a more personalized converted voice.

The VC process can be divided in two stages: Firstly, a
training phase is needed in order to learn the correspondences
laying between source and target acoustic features. These
learned relationships are then stored in the form of a conversion
function. The second step is the conversion itself. The con-
version function is applied to transform new input utterances
from the source speaker. Although the identity of the speaker
is also contained in the suprasegmental (prosody) and even lin-
guistic features, VC research has been focused mostly on map-
ping spectral features [12, 13, 14].

The VC is a field that has been researched for a long time,
an exhaustive recent review of the field can be found in [15].
A wide variety of approaches have been proposed to obtain
the conversion function: from codebooks [16, 17] and hid-
den Markov models [18, 19, 20] to Gaussian Mixture Models
(GMMs) [21, 12, 22, 23] or Gaussian processes [24]. In the
last years, special focus has been given to shallow/deep neural
networks (S/DNNs) solutions [25, 26, 14, 27, 28].
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In this paper we propose to take advantage of the recent ad-
vances in machine learning techniques to train a deep learning
system to convert from the audio of an oesophageal speaker to
a healthy speaker. Though the literature focuses specially on
spectral conversion, the importance of prosody in oesophageal
speech can not be left out. A good intonation is important
for the utterances to be perceived as more natural and pleas-
ant. Therefore, the proposed system will not only convert the
spectral features but will also estimate f0. The spectral and f0
conversion contributions have been then evaluated separately by
means of word error rate (WER) and a perceptual test.

2. Voice conversion system
The proposed architecture uses two parallel DNN based systems
to convert separately the spectral envelope and the fundamental
frequency curve f0. They will be described in detail in the fol-
lowing subsections.

The acoustic analysis is performed using Ahocoder [29].
This vocoder does the harmonic analysis of the speech audio
files every 5 ms, extracting the Mel-cepstral (MCEP) represen-
tation of the spectral envelope, logf0 and maximum voiced fre-
quency (MVF). The MVF is related to the harmonicity of the
signal and will not be converted (the MVF value obtained from
the source signal is used). To extract f0 from the alaryngeal
signals, the default method of Ahocoder has been replaced by
a more specific method, designed to cope with the irregularities
present in these signals. This strategy mainly consists on using
the autocorrelation method for pitch extraction over the residue
signal of the PSIAIF analysis [30]. In this work 25 MCEP co-
efficients in combination with their first order derivatives are
used for spectral conversion. In the experiment described here
the 0th coefficient (related to the energy), is not converted but
directly copied from the source to the target. Similarly, the
source MVF is not modified and it is directly copied to the tar-
get. Other alternatives such us using a constant MVF were also
experimented but showed no significant differences in informal
tests. For pitch prediction 40 MCEP coefficients are used. This
number was chosen due to quality reasons observed during the
training stages.

For the networks architecture, the chosen approach was to
use a Long Short-Term Memory (LSTM) architecture. This
type of neural network allows the net to retain (and gradually
forget) information about previous time instants taking advan-
tage of the strong temporal dependency that exists between con-
secutive frames in the speech signals, specially for the f0 curve.
The neural networks are implemented in Python using the Keras
library.

2.1. Spectral conversion

Before training the LSTM network, it is necessary to align the
source and target utterances. Due to the characteristics of the
oesophageal speech, there is a very important mismatch be-
tween both healthy and oesophageal signals which causes the
inadequacy of using a dynamic time warping (DTW) algorithm
directly [31]. This is why both signals were labelled at phone
level, and then the iterative alignment procedure described in
[32] and [33] was applied for each pair of oesophageal and
healthy phones.

With the alignment results, the inputs and outputs of the
network are built. The corresponding first order derivatives
are appended to the 24 source aligned cepstra (c0 and c′0 ex-
cluded). All vectors from all sentences are appended one after

Figure 1: MSE of each normalized MCEP coefficient with the
95% confidence interval for one fold - 10 sentences (test data)

the other, resulting in two matrices for the source-target speaker
pair. Then, mean and variance normalization is applied to each
dimension of the cepstrum vector and its derivative. In addition,
a voiced/unvoiced decision vector in the form of 0 or 1 obtained
from the logf0 values is appended, so the dimension of the in-
put is finally 49. The resulting matrix is divided in sequences of
50 frames before entering the net.

The net will predict the 48 MCEP coefficients of the target
speaker and the voiced/unvoiced decision vector. The metric we
search to minimize is the MSE.

The number of cells of the LSTM layer is 100. As stated be-
fore, the number of frames that composes each batch sequence
is 50, and the input dimension is equal to 49. The output is ob-
tained from a fully connected layer and gives us a sequence of
50 frames and dimension 49 for each sequence in the input.

We used the RMSProp optimizer (divide the gradient by a
running average of its recent magnitude) with a learning rate of
0.0001. To avoid overfitting, a dropout ratio of 0.5 was used.
We trained the network for 60 epochs.

The performance of the network has been analysed compar-
ing the predicted result with the target data. As the order of the
coefficients goes up, the similarity between the predicted MCEP
and the target one goes down. This can be seen by calculating
the MSE for each normalized cepstral coefficient between the
predicted and target MCEPs (Figure 1).

2.1.1. Maximum Likelihood Parameter Generation (MLPG)

In order to solve the problem of the smoothing present in the
conversion process, we apply the maximum likelihood parame-
ter generation algorithm [12]. We consider the MCEP obtained
from the LSTM spectral conversion network as the mean vec-
tors of a Gaussian distribution. Same as in [34], the covariance
matrix is obtained from the squared error between the original
features and the predicted converted vectors.

The global variance (GV) is calculated from the target train-
ing data and is used in the MLPG to do the spectral conversion
along the mean vectors and covariance matrices for each test
sentence.
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Figure 2: Architecture of the f0 estimation system for training
and conversion stages.

2.2. Fundamental frequency estimation

Two different networks have been used to perform the estima-
tion of the fundamental frequency, one for the prediction of f0
and another one for U/V decision estimation (see Figure 2). In
both cases, the LSTM model is trained to map the relationship
between the healthy target MCEPs and their corresponding f0
sequence. Mean and variance normalization is applied to each
dimension of the cepstrum vector. Log f0 is linearly interpo-
lated in unvoiced frames and mean and variance normalization
is also applied in this case. Development experiments showed
that the use of 40 MCEP coefficients provided better results for
the U/V estimation than using only 25 coefficients, therefore, 40
MCEP (no derivatives) are used for the intonation modelling.

For the U/V decision we use one Bidirectional LSTM layer
with 64 cells. A fully connected layer with sigmoid activation
provides the final output. The network is optimized using the
Adam algorithm with minibatches of size 10 and trained for 60
epochs. A dropout ratio of 0.2 was applied as regularization.
We employ the binary cross-entropy as loss function.

The same configuration is used for the f0 prediction: one
Bidirectional LSTM layer with 64 cells followed by a fully con-
nected layer, with linear activation in this case. Also the MSE
is now the metric we search to minimize, as it occurs for the
cepstrum network.

In the conversion stage, 40 converted MCEP coefficients
are needed. Therefore another network has been trained, similar
to the one used for spectral conversion, to obtain the necessary
number of coefficients. Finally, the logf0 is estimated from the
converted MCEPs by the two conversion networks.

2.3. Training and testing data

Due to the nature of the data, the amount of data available
for training and testing the conversion system is scarce. The
parallel data used are the recordings of 100 phonetically bal-
anced sentences selected from a bigger corpus [35] made by
one healthy speaker and one oesophageal speaker. Out of the
100 utterances, 90 are chosen for training and 10 for testing the
system, using 10-fold cross-validation.

3. Evaluation

3.1. Objective evaluation: Kaldi ASR

To have an objective measure (WER) of the effect of the conver-
sion we have prepared an automatic speech recognizer (ASR)
for Spanish using the Kaldi toolkit [36]. It is implemented
following the recipe s5 for the Wall Street Journal database.
The acoustic features used are 13 Mel-Frequency Cepstral Co-
efficients (MFCCS) to which a process of mean and variance
normalization (CMVN) is applied to mitigate the effects of the
channel.

The training begins with a flat-start initialization of context-
independent phonetic Hidden Markov Models (HMM), and
then a series of accumulative trainings are done. For the fi-
nal step of the recognizer, a neural network is trained. The
input features to the neural network consist of a series of 40-
dimensional features. The network sees a window of these fea-
tures, with 4 frames on each side of the central frame. The fea-
tures are derived by processing the conventional 13-dimensional
MFCCs. The necessary steps are described in [37], and ba-
sically consist in applying a series of transformations to the
normalized cepstra: first linear discriminant analysis (LDA),
then maximum likelihood linear transform (MLLT) and global
feature-space maximum likelihood linear regression (fMLLR).
At the recognition stage, the same transformations are applied
to the test data, handling them as a block.

The audio material used to train the ASR is described in
[38]. However, although the acoustic models have been main-
tained, the lexicon has been created from the 100 sentences cor-
pus used in the experiment (701 words). This has been done be-
cause using the original lexicon (with 37, 632 entries) as much
as 23% of the words were out of vocabulary (OOV) words.
This is due to the fact that the sentences are phonetically bal-
anced and many sentences containing proper names and many
unusual words were chosen to maximize the variability of the
phonetic content. Together with this reduced lexicon, a unigram
language model with equally probable words has been used. Al-
though the final WER numbers obtained this way are not com-
parable to a realistic ASR situation, the procedure serves our
purpose of evaluating the ability of the conversion system to
improve (or not) the performing of any ASR system.

Three different recognition experiments have been carried
out. The first one does the recognition of the 100 original sen-
tences recorded by the laryngectomee speaker. The second one
evaluates the resynthesized audio signals with Ahocoder using
the original cepstrums and the estimated f0 obtained from the
network. The last one uses as input the 100 sentences resynthe-
sized with the converted cepstrum and the estimated f0.

The results are shown in Table 1. The WER of the orig-
inal oesophageal signal is very high (56.93% vs 10.15% ob-
tained for the target healthy speaker) showing the difficulty of
the task. As expected, the system performs very similarly when
only f0 is changed. The small differences are probably due to
the resynthesis process and recalculation of the parameters from
the waveforms performed by Kaldi. However, when the recog-
nized signals are those which are resynthesized using the con-
verted cepstrum and f0, the WER drops by a 15% in absolute
terms showing that some problems present in the oesophageal
spectrum are corrected by the conversion system. The WER of
the converted signals is though far away from the performance
for the healthy voice.
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Table 1: WER results for the different experiments

Case WER (%)

original healthy 10.15
original oesophageal 56.93
original spectrum + estimated f0 57.91
converted spectrum + estimated f0 41.48

Figure 3: Averaged preference results with confidence intervals
(-2:I strongly prefer sentence 1, -1:I prefer sentence 1, 0:I don’t
have any preference, 1:I prefer sentence 2, 2: I strongly prefer
sentence 2).

3.2. Subjective evaluation: perceptual test

A perceptual listening test has been designed in order to eval-
uate the degree of preference over each processing technique
(including no processing at all) by human evaluators. In this
test, a total of 18 random sentences are selected for each lis-
tener, and for each of the sentences two of the three cases (orig-
inal oesophageal (ORIGINAL), original spectrum + estimated
f0 (F0) and converted spectrum + estimated f0 (F0 & SPEC))
are presented to the listener. He or she is asked to rate his or her
preference over one of the two cases, by giving a score in a five
point scale.

A total of 31 native Spanish speakers took part in the test.
Figure 3 shows the averaged preference results of comparing the
three systems in pairs. As it can be seen, the preferred system
is the one with the original spectrum and modified intonation.
The system that converts only f0 is clearly preferred over the
system with converted spectrum and f0. Additionally, the orig-
inal oesophageal signals are preferred over the signals with the
converted spectrum. Thus, the signals with a converted spec-
trum are least preferred. This can be due to the loss of quality
introduced by the conversion of the MCEP coefficients. Fig-
ure 4 shows the degree of preference for each pair of systems.
The figure shows that the ’strong preference’ option is the least
chosen option in all three pairs. Also, it can be seen that the
f0-only modification is the most preferred method, followed by
no modification (original signals).

A few examples of the converted utter-
ances can be found in the following website:
http://aholab.ehu.eus/users/lserrano/ib18/demoib18.html.

4. Conclusions
In this paper we have presented a conversion system from one
oesophageal speaker to one healthy speaker using a deep learn-
ing approach. We have trained an LSTM network to convert the
spectral features of the speaker, and two BLSTMs to estimate
the intonation curve: one to learn the underlying relationship
existing between the healthy MCEPs and their corresponding
logf0, and another to predict from the same healthy cepstrum
the V/U decision. With the system implemented, we have eval-
uated the effects that the conversion has in comparison with the

Figure 4: Detailed results of the preference test. (-2:I strongly
prefer sentence 1, -1:I prefer sentence 1, 0:I don’t have any
preference, 1:I prefer sentence 2, 2: I strongly prefer sentence
2).

original pathological signal in terms of intelligibility and pleas-
antness. The effect of the conversion of the prosody has been
evaluated separately from the complete conversion (spectral and
f0 conversion together).

The intelligibility has been evaluated by means of ASR,
using the WER. The results show that using a healthy target
speaker the recognition rate can be greatly improved (as much
as an absolute gain of 15% in our experiment). The WER rate is
still far away from that obtained for the healthy voices, but this
demonstrates that the conversion of the spectral parameters is
helping the oesophageal signal to be more similar to the healthy
voices used to train the ASR system.

As expected, f0-only modification has little or no effect in
the recognition rate. However, this modification was the most
preferred by the listeners in the perceptual test, even over the
original oesophageal voice with no modifications at all. This
is an important result because it corroborates the relevance of
having a restored source without modifying the speaker charac-
teristics.

Once the deep learning conversion approach has been
proved as valid, in the future we will better adjust the LSTM pa-
rameters, for example, the sequence size, to capture the prosody
of a speaker in a more adequate way. We also plan to experi-
ment different network architectures.
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