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Abstract: Energy efficiency and environmental performance optimization at the district level are
following an upward trend mostly triggered by minimizing the Global Warming Potential (GWP) to
20% by 2020 and 40% by 2030 settled by the European Union (EU) compared with 1990 levels. This
paper advances over the state of the art by proposing two novel multi-objective algorithms, named
Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Harmony Search (MOHS),
aimed at achieving cost-effective energy refurbishment scenarios and allowing at district level the
decision-making procedure. This challenge is not trivial since the optimisation process must provide
feasible solutions for a simultaneous environmental and economic assessment at district scale taking
into consideration highly demanding real-based constraints regarding district and buildings’ specific
requirements. Consequently, in this paper, a two-stage optimization methodology is proposed in
order to reduce the energy demand and fossil fuel consumption with an affordable investment cost
at building level and minimize the total payback time while minimizing the GWP at district level.
Aimed at demonstrating the effectiveness of the proposed two-stage multi-objective approaches, this
work presents simulation results at two real district case studies in Donostia-San Sebastian (Spain)
for which up to a 30% of reduction of GWP at district level is obtained for a Payback Time (PT) of
2–3 years.

Keywords: energy; environmental; global warming potential; district refurbishment; multi-objective;
optimization

1. Introduction

The building sector is one of the highest energy consumers and, hence, one of the major sources of
environmental impacts worldwide [1]. In order to reduce climate change effects and move towards a
low carbon economy, the European Union (EU) has settled Global Warming Potential (GWP) reduction
targets [2]. For assuring the success in this energy transition process, municipalities have to be
necessarily involved and, therefore, the application of energy performance measures [3] at building
and district scale has become a relevant aspect to be considered nowadays [4–7].

Despite the efforts undertaken by municipalities for achieving GWP reduction objectives,
connection between targets at city level and the possibility of implementing specific measures at
building and district level remains an outstanding issue. More specifically, actions proposed at city
scale often disregard available budget or building architectural constraints. In line with it, several
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European projects [8–13] focused on decision support tools for yielding to an energy-efficient design
of buildings, cities and districts have recently been funded.

Due to the intrinsic characteristics of the environmental and optimal energy refurbishment
problems, most of the recent related works in this research area are based on multi-objective
optimization algorithms [14–21]. These algorithms commonly optimise several metrics (that often
pursue conflicting goals) while meeting the constraints of the problem at hand and achieving a large
number of non-dominated solutions approximating the Pareto front. Following this multi-criterium
optimization idea, the authors in [22] propose a retrofitting use case with the aim at minimizing the
energy consumption, the CO2 emissions and the overall costs while maximizing the thermal comfort
in a public school. The proposed solution is based on an evolutionary multi-objective optimization
algorithm (NSGA-III). Within the same line of research, several optimization problems involving
building design are tackled in [23,24]. These works present diverse population-based meta-heuristic
algorithms that range from the NSGA-II and the Pareto-Archived Evolution Strategy (PAES) to the
Particle Swarm Optimization (PSO). In [25], a hybrid optimization algorithm that selects the retrofit
actions to apply, such as: the window types, the external wall insulation materials, the roof insulation
materials, and solar collectors, is presented aiming at increasing the building energy savings and
decreasing energy consumption and retrofit cost. Moreover, authors in [26] use a Genetic Algorithm
(GA) merged with a dynamic simulation tool to investigate the best retrofit opportunities and, hence,
optimise the energy savings, the overall cost and the indoor thermal comfort. In addition, the work
in [27] presents different optimization methods at building design level based on a multi-objective
GA. The novelty of this work lies in modifying the behavior of the conventional GA by introducing
adaptive operators and also changing the meta-model approach so as to enhance the convergence and
speed of the algorithm.

In related literature, most retrofitting planning problems tackled with meta-heuristic algorithms
generate optimal solutions that meet highly demanding real-based requirements along the iterative
process. Moreover, at each generation, the procedure usually entails a great number of energy
calculations, which leads to overall time heightening. To overcome this issue, several works
in the literature are focused on alleviating the iterative process and enhancing the convergence
of the algorithms. Specifically, an optimal tuning of the algorithm’s parameters and a hybrid
meta-heuristic algorithm combined with a local search is presented in [28,29], respectively. In light of
the computational complexity that arises from the additional energy simulations required in this type
of problems, an optimization process for tuning parameters may be impractical. In order to address
this concern, an alternative approach based on hybrid optimization algorithms is presented in [30,31],
where the main objective is to restrain the search space in order to alleviate the complexity of the
problem, and then apply gradient-based local search algorithms for boosting the convergence towards
the optimal region.

Regarding optimization approaches for energy retrofitting at district scale, there is no much
related work in the literature. However, authors in [32] propose a multi-objective GA for assessing
cost-optimality in hospitals built in Italy between 1991 and 2005. In this proposal, domestic hot
water based on the installation of an efficient gas boiler is considered as a feasible energy retrofitting
measure. Similarly, in [33], a tool named RESCOM (Residential Energy System Concept design stage
Optimization Model) is provided as an optimal framework for efficiently solving retrofitting problems
at urban scale.

In this regard, there is no much research focused on deriving an approach in which the
optimization is jointly performed at building and district level. Therefore, the proposed two-stage
methodology, in which the multi-objective algorithms are specially designed ad hoc for the energy
retrofitting problem by means of considering different fitness functions at each stage, clearly represents
a novelty and an advance towards the state of the art in this field. Specifically, the presented approach
proposes two novel multi-objective meta-heuristics based on the Non-Dominated Sorting Genetic
Algorithm (NSGA-II) and on the Multi-Objective Harmony Search algorithm (MOHS) specially tailored
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for obtaining optimal refurbishment solutions at building and district scale. As mentioned above, the
paper proposes two different two-stage approaches based on the multi-objective algorithms NSGA-II
and MOHS in order to provide: (1) Stage 1: Building level optimization that maximizes the reduction
of Energy Consumption (REC) while minimizing the Investment Cost (IC); (2) Stage 2: District level
optimization aimed at maximizing the GWP reduction (RGWP) while minimizing the total Payback Time
(PT). The proposed work assesses the most common energy retrofitting approaches in terms of passive,
renewable and active strategies (see Section 2 for more details) and has been successfully applied to
two real-based case studies in Donostia-San Sebastian (Spain). First, a basic use case of the district
of Gros; and, second, a simple and an advanced use case in the historical city center. For both case
studies, optimal refurbishment strategies per building category are presented along with an extensive
assessment of multi-objective performance indicators for NSGA-II and MOHS, such as: Hypervolume,
Coverage Rate, among others. Finally, the selection of the optimal scenario at district level is provided
per case study based on the targets defined by Donostia-San Sebastian for 2030 in terms of GWP
reduction.

The paper is organized as follows: Section 2 establishes the formulation of the district energy
retrofitting problem, whereas Section 3 and subsections therein provide details on the considered
multi-objective heuristics. Section 4 describes the considered case studies in Donostia-San Sebastian
and Sections 5 and 6 discuss the simulation results obtained by using the aforementioned heuristics at
building and district level. Finally, Section 7 ends the manuscript by presenting the conclusions of the
work and by outlining future research lines.

2. District Energy Retrofitting Problem

As stated in Section 1, this paper proposes two multi-objective meta-heuristic approaches that
cost-effectively optimize the environmental and energy refurbishment of districts considering a set of
certain pre-established constraints at building level.

Despite the fact that nowadays there are diverse energy refurbishment strategies, this work
assesses some of these strategies, which are divided into three main groups. The first group refers to
some passive strategies or energy conservation measures, the main objective of which is to reduce
the energy demand of the building. The second group is composed of renewable strategies, the main
objective of which is to generate energy onsite or offsite of the building by renewable sources. Finally,
the third group contains some active strategies, which aim at reducing the energy consumption of
the building.

Passive strategies are designed to provide a significant reduction of the energy need for heating
and cooling, independently of the energy and of the equipment that will be chosen to heat or cool the
building. These strategies are mainly based on the increment of the thermal resistance of the envelope,
on the replacement of the current windows, on the reduction of air leakage or on the usage of bioclimatic
strategies, are aimed at improving the life quality of inhabitants reducing the energy demand, reducing
the economic bill, increasing the indoor air temperature in winter, reducing the indoor air temperature
in summer and increasing the thermal comfort of the inhabitants. According to the location of the
strategies related to the improvement of the thermal resistance of the envelope, there are three main
groups: external wall, internal wall and air chamber insulation strategies. The refurbishment strategies
of insulation of the external wall consist of acting from the outside of the existing wall, placing a
new skin that allows for improving the thermal performance of the wall. Mainly, there are two
systems for these types of actions: external thermal insulation systems and ventilated facades. For this
study, the application of the ventilated façade is considered, which is a coating system of the building
walls which leaves a ventilated chamber between the coating and the insulation. With this system,
a continuous insulation can be achieved for the exterior of the building, protection of the internal
sheet as well as the slab edges. Internal wall insulation involves the application of insulation to the
interior face of external walls in order to improve the thermal performance of the property. Internal
wall insulation can, however, be disruptive and requires the removal and re-fixing of items such as
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switches, radiators and kitchen units. There are several main methods of installation. For this work,
the method where a semi-rigid wool batten is placed against the wall is selected. Appropriately spaced
battens are placed on top and screws driven through the batten, through the insulation and into the
wall. Rigid or semi-rigid insulation can then be installed between the battens with plasterboard then
installed. Finally, in the case of the existence of air chambers in the thermal envelope of the building
to retrofit, it is possible to fill these chambers with thermal insulation. The most common methods
are the injection of polyurethane (PUR) foam and cellulose. Injected insulation reduces the thermal
conductivity of the envelope. However, this strategy increases the influence of the existing thermal
bridges. To conclude with these passive strategies, this work considers another relevant strategy,
which improves the thermal properties of the current windows by substituting the frame and also
the glazing.

With regard to the passive refurbishment strategies three efficiency levels—basic (B), efficient (E)
and advanced (A)—are defined in order to outline the degree of energy efficiency improvement of
buildings. Thus, different insulation thicknesses are proposed for the basic, efficient and advanced
efficiency levels. The basic efficiency level (B) only considers the refurbishment strategies that suffice
the minimum thermal requirements imposed by current Spanish regulations [34]. The efficient level
(E) is based on refurbishing strategies that improve the thermal properties by 30% compared with
current regulations. Finally, the advanced strategies (A) settle the building thermal parameters to
higher values, resembling those used in the Passive House standard [35].

This being the case, the first option proposed (1) corresponds to investing in a ventilated faςade
system that consists of a layer of insulation, an aluminum substructure and a ceramic outlayer.
The second strategy (2) proposes indoor thermal improvement solutions that entail a layer of insulation
and plasterboard. The third refurbishment strategy (3) is an air chamber insulation injection solution
composed of an insulation layer. Finally, the fourth refurbishment strategy (4) is focused on replacing
the windows by substituting the frame and also the glazing. As previously introduced, each strategy
has different efficiency levels, hence 11 different options (1B, 1E, 1A, 2B, 2E, 2A, 3B, 3E, 4B, 4E, 4A) are
considered.

Referring to the first, second and third strategies, ventilated faςade system, indoor thermal
improvement and air chamber insulation solutions, different insulation thicknesses are proposed for
basic (1B, 2B, 3B), efficient (1E, 2E, 3E) and advanced (1A, 2A) efficiency levels (see Table 1 for more
details). Similarly, in relation to the energy efficiency levels of the windows replacement (4), different
glazing options are defined for basic (4B), efficient (4E) and advanced (4A) types (Table 1). Finally,
regarding the air chamber insulation strategy (3), this work does not considere the application of the
advanced efficiency level (3A) due to the elevated thickness required for this level that cannot be
implemented in the current Spanish buildings.

Table 1. Insulation thicknesses and Glazing parameters for the considered Passive Refurbishment
Strategies (RS).

Refurbishment Strategies (RS)
Thicknesses (cm)

Deck Faςade First Floor Slab

1B, 2B, 3B 8 5 6
1E, 2E, 3E 9 10 13

1A, 2A 15 25 30

Glazing (W/(m2 K)

4B Double glazing (2.7) & Aluminium frame (2.9)
4E Low-emissivity coated glazing (2.0) & Polyvinyl chloride (PVC) frame (2.0)
4A Low-emissivity coated glazing (1.4) & Wooden frame (1.2)

The aforementioned strategies work towards energy conservation refurbishment, but this work
also considers renewable energy sources (5) such as the installation of a solar thermal system (5S) or
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installation of photovoltaic panels (5P) on the roof of the building. The solar thermal system uses solar
energy to heat the water in such a way that the electricity and natural gas usage of the installed water
heaters is reduced. The photovoltaic panels (PV) aim at generating electricity and exporting it to the
grid. Within this work, the self-consumption toll applicable in Spain for the electricity generated by
PV panels has not been considered.

Finally, some new energy generation technologies (6) such as a biomass boiler with 87% of
efficiency (6BI), a natural gas condensing boiler with 110% of efficiency (6N) and a water to air heat
pump with cooling and heating COP of 3.27 and 3.1, respectively (6HP), are also taken into account.

As it can be easily seen, all the refurbishment strategies cannot be jointly applied. Table 2 depicts
by means of a symmetric matrix representation the strategies that can be employed together (1 ) and
those that cannot be combined (0 ). It is important to note that solar and photovoltaic panels strategies
(5S, 5P) can be combined to cover up the total useful roof surface.

Table 2. Symmetric matrix for the total number of Refurbishment Strategies (RS).

RS 1B 1E 1A 2B 2E 2A 3B 3E 4B 4E 4A 5S 5P 6BI 6N 6HP

1B 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1E 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1A 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1
2B 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1
2E 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1
2A 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1
3B 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1
3E 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
4B 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
4E 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1
4A 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
5S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6BI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
6N 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0

6HP 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

Based on the Spanish energy regulation [34], and the information available on the web site of
the energy rating registrations, this study has considered categorizing the buildings of the case study
according its energy rating. The building energy rating system is defined by the existing Spanish
Technical Building Code, which, according the location (directly related to the climatic zone) and type
of building (single family or apartment block), several values for each residential building category are
defined: heating demand, cooling demand, global warming potential emissions or primary energy
demand. Please note that, for residential buildings, this regulation does not define any constructive or
energetic characteristics and it is simplified to a definition of the final energy demand or emissions of
GWP value. Table 3 depicts the Heating Demand (HD) per square meter of Heated Floor Area (HFA)
for each building category and for the specific location of the climate zone of the city of Donostia-San
Sebastian of the case study. Then, Table 4 presents the main parameters characterizing each energy
refurbishment strategy. As a result from the widely recognized energy simulation tool Energyplus [36]
using the International Weather for Energy Calculation [37], the energy demand reduction (ER) related
to the baseline has been calculated for passive strategies and per building category (C, D, E, F, G).
Similarly, based on the British Standard EN 15316-4-3: 2007 [38], the energy production (EP) per square
meter has been calculated for renewable strategies [39]. For active strategies, their energy performance
(ρ f ) has also been defined [40]. Furthermore, the cost value of each strategy per square meter c(k) is
also described based on related literature [41–44]. In order to calculate the reduction of energy use
achieved by different energy conservation measures, some correction factors (Table 6) are considered
for the assessment of different energy conservation measures in the same scenario.
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Table 3. Heating Demand (HD) per building category (kWh/m2·a) [34].

C D E F G

HD 48.7 81.6 144.1 157.1 212.1

Table 4. Main parameters characterizing each energy refurbishment strategy.

RS–Passive ER—Energy Demand Reduction (%) [39]
Building Category (BC): C-D-E-F-G c—Cost (e/m2) [40,41]

1B 19-21-23-25-26 143.4
1E 27-30-33-36-38 148.2
1A 33-36-40-43-46 185.3
2B 14-15-17-18-20 34.3
2E 24-26-29-31-33 38.5
2A 32-34-38-41-44 53.2
3B 12-14-15-16-17 29.8
3E 22-24-27-29-31 33.2
4B 11-12-13-14-15 198
4E 17-19-21-23-24 217
4A 22-23-26-28-30 380

RS—Renewable EP—Energy Production (kWh/m2·a) [39] c—Cost (e/m2) [43,44]

5S 454 (thermal energy) 437.2
5P 171 (electricity) 265.3

RS—Active ρ f —Energy Performance [40] c—Cost (e/m2) [40,41]

6BI 0.87 60
6N 1.1 19.22

6HP 3.27 (cooling COP) and 3.1 (heating COP) 50

Together with the properties of each of the refurbishment strategies, it should be noted that
each of them is directly linked to different strengths, weaknesses and barriers (Table 5). As can be
seen in Table 5, according to the objectives set by the stakeholder or the barriers of each case study,
the applicable strategies will be different, allowing for generating a first scenario of strategies to be
evaluated.

Table 5. Strenghts (S), weaknesses (W) and barriers (B) of each of the refurbishment strategies.

Strenghts (S), Weaknesses (W) and Barriers (B) 1 2 3 4 5S 5P 6N 6BI 6HP

Energy demand reduction (S) X X X X
Increase the thermal confort of the habitants (S) X X X X
Improvement of the building aesthetic performances (S) X
Applicable at protected buidlings (S) X X X X X X X X
Compatible with almost all the heat support systems (S) X X X X X X
The solar resource is virtually unlimited (S) X X
The solar energy conversion has no emissions (S) X X
Reduction of the energy consumption and bill (S) X X X X X X
Reduction of the environmental emissiones (S) X X X X X X X
High cost (W) X X
Not applied in protected areas (W) X X X X
Change of all internal objects or remove them for the installation (W) X X
Loss internal space of the houses (W) X
Inaccuracy during the construction process (W) X X
Difficulties in the store of thermal or electric energy (W) X X
Need some space to store the fuel (W) X
Maximum value façades can grow externally (B) X
Legal classification of plot doesn’t allow to intervene (B) X X X
Access to natural gas (B) X
Functional space/surface to implement (B) X X X X
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3. Proposed Two-Stage Multi-Objective Meta-Heuristics

This paper presents two different two-stage multi-objective approaches based on the NSGA-II
and the MOHS in order to provide: (1) Stage 1: Building level optimization that maximizes the Energy
Consumption reduction (REC) while minimizing the Investment Cost (IC); (2) Stage 2: District level
optimization aimed at maximizing the GWP reduction (RGWP) while minimizing the total Payback
Time (PT).

Thus, Figure 1 depicts the proposed methodology for optimizing (NSGA-II, MOHS) each building
category (C, D, E, F, G) and obtaining the percentage of application of each Refurbishment Strategy (RS).
Then, once the building level optimization is accomplished, a district level optimization (by means of
the MOHS) is performed for obtaining the optimal combinations per building category that achieve the
best performance at district scale. Note that building category corresponds to the energy performance
rating defined by the Spanish Building regulation [27], C having a better energy performance (lower
energy demand) than D and so on.

D FE G

Building level Multi-Objective Optimization
Maximize: Energy consumption reduction (REC)
Minimize: Investment cost (IC)

Building 
CategoryC

Stage 1: NSGAII
MOHS 

Stage 2: MOHS
District level Multi-Objective  Optimization

Maximize: Global warming potential (GWP) reduction (RGWP)
Minimize: Payback time (PT)

% of application of each strategy that maximizes REC and minimizes the IC per building typology

Optimal combinations per building category for maximizing RGWP and minimizing the PT 

C D E F G

District 

Figure 1. Proposed two-stage multiobjective approaches: (1) Building level optimization and (2) District
level optimization.

3.1. Stage 1: Building Level Optimization

As previously stated in Section 3, this paper focuses on a two-stage multi-objective optimization
that is performed firstly at building level and secondly at district scale based on the outputs of the first
stage optimization per building category (C, D, E, F, G).

This section presents two different multi-objective algorithms based on the NSGA-II and the
MOHS that simultaneously optimizes two (possibly conflicting) fitness functions at building level: IC
and REC. Thus, the proposed multi-objective algorithms do not converge towards a unique solution;
a set of solutions which represent good trade-offs (related to the bi-objective optimization) that
comprise the Pareto optimal front is proposed instead.
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In order to lay the foundations of the proposed meta-heuristics, the Harmony Search (HS)
algorithm was first proposed by Zong et al. in [45] and afterward utilized for tackling diverse
applications and problems that range from the Combined Heat and Power Economic Dispatch
problem (CHPED) [46], Telecommunications [47–49], the Traveling Salesperson Problem (TSP) [45],
Tour routing [50], Sudoku puzzle solving [51] and the optimal distribution of 24 h emergency units [52],
among others. Similarly, the Genetic Algorithm (GA) in its multi-objective version NSGA-II was first
proposed by Kalyanmoy in [53] and applied to different problems, such as: the Economic and Emission
Dispatch Problem [54] and the Vehicle Routing Problem [55].

Both multi-objective approaches are population-based algorithms in which a set of candidate
solutions {P(k)}K

k=0 are iteratively improved by means of the application of certain probabilistic
operators. Following the notation stated, it will be hereafter denoted each possible candidate solution
P(k) for the MOHS as harmony and for the NSGA-II as chromosome, whereas each of the N entries
of such vector is called note for MOHS and gene for the NSGA-II. Within this optimization problem,
each harmony/chromosome states the energy refurbishment strategy to be applied per building
category BC ∈ {C, D, E, F, G} and each note/gene indicates the percentage of application p(k) ∈
{0, 10, . . . , 100}% of each refurbishment strategy RS ∈ {1B, 1E, 1A, 2B, 2E, 2A, 3B, 3E, 4B, 4E, 4A, 5S, 5P,
6BI, 6N, 6HP}, as it is exemplified in Figure 2.

Figure 2. Example of encoding for basic and advanced use cases considering the applicable
Refurbishment Strategies (RS) per case.

This candidate vector represents a refurbishment solution that involves a 30% of application of an
indoor thermal improvement strategy (2B), a 20% of windows’ replacement with low-emissivity coated
glazing and wooden frames (4A). With regard to the renewable strategies, the implementation of
solar and photovoltaic panels in the 40% and 20% of the total useful roof surface, respectively. Finally,
it considers the 30% of application of Biomass boilers (6BI) as new energy generation technologies.
Note that two different use cases are considered: basic and advanced. For the advanced use case, new
refurbishment strategies such as efficiency levels (1E, 2E, 4E), air chamber insulation (4), and active
strategies (6) are included.

It is important to remark that an independent optimization process is executed per building
category ∈ {C, D, E, F, G}. Thus, five different populations (P) are iteratively optimised in parallel in
order to obtain optimal approximations of the Pareto frontier per building category as exemplified in
Figure 1.

The improvisation procedure of the MOHS is driven by three parameters that will be explained
below in step B1: (1) the Harmony Memory Considering Rate, HMCR; (2) the Pitch Adjusting Rate,
PAR and (3) the Random Selection Rate, RSR. NSGA-II, however, considers the crossover and the
mutation operators described in step B2. After generating new candidates, the quality of such new
solutions is analyzed in terms of the objective functions (Investment Cost (IC) and reduction of the
Energy Consumption (REC)) and the best K melodies—among the newly produced ones and the ones
stored in the HM from the previous iteration—will be kept for the next iteration. The entire process
is repeated until a fixed number of iterations I is completed. Concretely, the steps of the proposed
multi-objective algorithms are the following:
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A. The initialization step is just executed once; at the first iteration the N entries of P(k) are
randomly generated within the range {0, 10,. . . , 100}. It is important to remark that the constraints
of the District Energy Retrofitting problem must be met, i.e., the simultaneous application of the
refurbishment strategies must accomplish the symmetric matrix (Table 2) and the application of
renewables strategies cannot exceed the total useful roof surface per building category.

B1. The improvisation process of the MOHS is composed by three different probabilistic operators
that are sequentially applied to each note of the harmonies in order to produce a new improved
set of K harmonies. Note that the probabilistic operators have been specially designed for this
Energy Retrofitting problem:

– The Harmony Memory Considering Rate, HMCR ∈ [0, 1], sets the probability that the new
value for a certain note is randomly selected among the values of the same note in all the
other K− 1 harmonies. That being so, the percentage of application of each refurbishment
strategy per building typology is combined with the information of the remaining harmonies.

– The Pitch Adjusting Rate, PAR ∈ [0, 1], aims at introducing subtle modifications in the
harmony by establishing the probability that the new value for a given note is taken from its
neighbouring values, instead of among the values stored in the HM. Thus, a step of 10% is
added or subtracted with probability 1

2 , so as to apply slight changes in the new improvised
solution. Note that the PAR is only employed in notes with values distinct to zero. Therefore,
until this step, no new refurbishment strategy is generated.

– The Random Selection Rate, RSR ∈ [0, 1], sets the probability to generate a random value for
the new note from [0, 10, . . . 100]. Thus, refurbishment strategies can be deleted or newly
generated after the employment of this operator.

B2. The improvisation process of the NSGA-II is composed of two different probabilistic operators
that are sequentially applied to each gene of the chromosomes in order to produce a new improved
set of K chromosomes:

– The One Point Crossover operator, ∈ [0, 1], sets the probability to interchange the knowledge
from a previously selected mother and father chromosome in order to create the new
offspring.

– The Mutation operator, ∈ [0, 1], sets the probability to obtain a random value for the new
gene from [0, 10, . . . 100]. Thus, refurbishment strategies can be deleted or newly generated
after the employment of this operator.

Note that, during the improvisation process, the level of compliance of the newly improvised
solutions is checked in order to determine if the generated set is valid in terms of the combination
of refurbishment strategies. For example, regarding the renewable strategies, it must be checked
that the sum of the total useful roof surface is less than or equal to 100% and in all cases the
district strategies’ constraints (Table 2) must be fulfilled.

C. Evaluation: The new harmonies are evaluated in terms of Investment Cost (IC) Equation (1) and
Reduction of Energy Consumption (REC) Equation (2). These fitness functions have been selected
in order to seek for retrofitting solutions that intelligently cope up with the trade-off between cost
(IC) and benefit (REC) per building typology:

IC =
K

∑
k=1

p(k) c(k) A, A ≡


OFS (m2) if k ≤ 2; i.e., RS ∈ {1B, 1E, 1A, 2B, 2E, 2A, 3B, 3E, 3A},
OS (m2) if 3 ≤ k ≤ 5; i.e., RS ∈ {4B, 4E, 4A},
TURS (m2) if 6 ≤ k ≤ 7; i.e., RS ∈ {5S, 5P},
HFA (m2) if k ≥ 8; i.e., RS ∈ {6BI, 6N, 6HP},

(1)

where p(k) is a certain note/gene which denotes the percentage of application of a refurbishment
strategy, c(k) the cost value of the refurbishment strategy and A represents the area of available
surface for the strategy, i.e., Opaque Façade Surface (OFS) (1, 2 and 3), Opening Surface (OS)
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(4B, 4E, 4A), Total Useful Roof Surface (TURS) (5S, 5P) or Heated Floor Area (HFA) (6BI, 6N,
6HP). The values for these parameters are defined in Section 3; c(k): Table 4 and Section 4; A:
Tables 9 and 12.

As stated in Equation (2), the Reduction of Energy Consumption (REC) is calculated as the sum of
reduction of energy consumption related to passive (RECp ), renewable (RECr ) and active (RECa )
strategies implementation. It is important to note that REC is expressed in terms of non-renewable
Cumulative Energy Demand (CED) [56] (Equation (4)). Likewise, Equation (5) stands for the
reduction of energy consumption of passive (RECp ), renewable (RECr ) and active (RECa ) strategies.

When the method considers the application of a unique passive strategy, the 100% of energy
demand reduction (ER) defined in Table 3 is considered. However, when the refurbishment
scenario considers the application of two passive strategies, the method integrates the corrections
factors defined in the following Table 6, which were calculated in [39]. This correction factor (c f )
makes possible the assessment of different energy conservation measures in the same scenario
(see Equation (3)):

Table 6. Corrections factors considered for the assessment of different energy conservation measures
in the same scenario.

1B 1E 1A 2B 2E 2A 3B 3E 4B 4E 4A

1B 1 - - - - - - - 0.94 0.93 0.91
1E - 1 - - - - - - 0.95 0.95 0.93
1A - - 1 - - - - - 0.96 0.95 0.94
2B - - - 1 - - - - 0.91 0.89 0.87
2E - - - - 1 - - - 0.92 0.91 0.90
2A - - - - - 1 - - 0.95 0.93 0.93
3B - - - - - 1 - 0.89 0.89 0.87
3E - - - - - - - 1 0.92 0.91 0.90
4B 0.94 0.95 0.96 0.91 0.92 0.95 0.89 0.92 1 - -
4E 0.93 0.95 0.95 0.89 0.91 0.93 0.89 0.91 - 1
4A 0.91 0.93 0.94 0.87 0.90 0.93 0.87 0.90 - - 1

REC = RECp + RECr + RECa , (2)

RECp = (RECp1 + RECp2) · c f , (3)

REC = ES · fCED, (4)

RECp = ESp · fCED; RECr = ESr · fCED; RECa = ESa · fCED, (5)

where ES denotes the Energy Savings in terms of final energy consumption (kWh of Electricity or
Natural gas); ESp (Equation (6)) for passive strategies, ESr (Equation (7)) for renewables and ESa

(Equation (8)) for active strategies. The factor fCED allows for taking into account the primary
energy content of the fossil fuel substituted (i.e., 4.428 MJ/kWh for natural gas and 6.264 MJ/kWh
for electricity).

It is important to note that REC is expressed in terms of non-renewable Cumulative Energy
Demand (CED) [56] (Equation (4)). Likewise, Equation (5) stands for the reduction of energy
consumption of passive (RECp), renewable (RECr) and active (RECa) strategies:

ESp =
K

∑
k=0

p(k) · ER(k) · HD · HFA
ρi

(kWh), (6)

ESr =
K

∑
k=0

p(k) · EP(k) · TURS
ρi

(kWh), (7)
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ESa =
K

∑
k=0

p(k) · (HD · HFA− ESp) · (
1
ρi
− 1

ρ f (k)
) (kWh), (8)

where ER represents the % of energy demand reduction related to the implementation of the
passive strategy (Table 4), HD stands for the current Heating Demand per building category
(Table 3), HFA remains the Heated Floor Area per building category (Tables 9, 11 and 12),
EP corresponds to the Energy Production per square meter (Table 4), TURS refers to the Total
Useful Roof Surface per building category (Tables 9, 11 and 12), ρ symbolizes the performance of
the thermal generation system (ρi for the current state (0.99 for Electric Boiler and 0.7 for Natural
Gas Boiler) and ρ f related to the active strategy implemented (Table 4)).

D. Multi-objective sorting: Once the quality of the fitness functions is evaluated as established in
Equations (1) and (2), each solution is assigned with two new values: the rank and the crowding
distance. Then, as explained in [53], each newly generated harmony is associated with a rank
equal to its non-dominance level. Then, a specific crowding measure representing the sum of
distances to the nearest harmony/chromosome along each objective is used to define an ordering
among the solutions. In order to remain stored in the HM for the next iterations, solutions with
less rank value and the largest crowding distance value are preferred. If two different solutions
have the same rank, i.e., belong to the same front, then the point located in a region with less
solutions (larger crowding distance) is preferred. The main idea is to select the solutions that
optimise both metrics while providing a wider Pareto front formed by diverse solutions.

E. Stop criterium: The entire process continues until the maximum number of iterations I = 20 is
completed. Thus, while nIter < I , the algorithm continues iterating, sets nIter = nIter + 1 and
returns to step B (B1 for MOHS and B2 for NSGA-II). However, in the last iteration, the algorithm
stops and the set of solutions stored in the memory that conform the dominant Pareto front is
provided as possible results.

3.2. District Level Optimization

Once the building level optimization vian MOHS or NSGA-II is employed for each building
category ∈ {C, D, E, F, G}, a district level optimization strategy by means of an MOHS is performed.
Note that the result of the building level optimization is a Pareto front per building category and now
non-dominated Pareto optimal solutions at district scale are sought in terms of district global metrics:
the minimization of the Payback Time (PT) in Equation (9) and the maximization of the reduction of
the Global Warming Potential (RGWP) in Equation (10):

PT =
IC

ESp · fe + ESa · fe + ESr · fe
(years), (9)

RGWP =
ESp · fGWP + ESa · fGWP + ESr · fGWP

GWPb
· 100 (%), (10)

where fe stands for the cost of the natural gas (0.0857 e/kWh) or electricity (0.219 e/kWh), fGWP
denotes the GWP factor per fuel type (i.e., natural gas (0.204 kg CO2-eq/kWh), electricity (0.308 kg
CO2-eq/kWh) and GWPb, which represents the GWP of the baseline scenario calculated per district
and considering buildings’ energy consumption related to heating, cooling, Domestic Hot Water
(DHW), lighting and appliances multiplied by fGWP.

The steps of the MOHS algorithm at district level are similar to the ones presented in the building
level optimization but different initialization, improvisation operators and codification is used in this
case (see Table 7).

The harmony memory is initialized at the first iteration in which the entries are randomly
generated within the range [0, 1, . . . , Np{iBC}]. Np{iBC} represents the number of non-dominated
solutions encountered per building category iBC ∈ {C, D, E, F, G}.
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Table 7. Example of a Candidate Solution (CS) that represents the selected solutions per Building
Category (BC) (iBC ∈ {C, D, E, F, G}), which optimizes the trade-off between the Payback Time
(PT Equation (9)) and the reduction of the GWP (RGWP Equation (10)) at district level.

BC C D E F G

CS 12 20 33 2 35

This candidate solution at district level represents the value of the refurbishment solution selected
per building category ∈ {C, D, E, F, G} for which district global metrics in Equations (9) and (10)
are optimized. By this way, each solution at district level is composed of different solutions at
building scale.

The improvisation operators at district level are the following:

• The Harmony Memory Considering Rate, HMCR ∈ [0, 1], sets the probability that the newly
improvised note is randomly chosen among the values of the same note in all the other K − 1
harmonies.

• The Pitch Adjusting Rate, PAR ∈ [0, 1] aims at introducing subtle modifications in the harmony
by establishing the probability that the new value for a given note is taken from its neighbouring
values, instead of among the values stored in the HM. Thus, a step of 1 is added or subtracted
with probability 1

2 , so as to apply slight changes in the new improvised solution.
• The Random Selection Rate, RSR ∈ [0, 1], sets the probability to pick a random value for the new

note from the subset [0, 1 . . . Np{iBC}].

4. Case Studies Definition

In this section, the definition of the different case studies is presented. These corresponds to the
Gros and the Historical City Center districts in the city of Donostia-San Sebastian. Related to the
Historical City Center district, a simple and an advanced case study are defined in order to analyse
different degrees of complexity in the presented Energy Retrofitting problem.

4.1. Gros District Case Study Definition

The first case study proposed in this work embraces the district of Gros shown in Figure 3. This
district is selected for being a representative district of the city in which different buildings with a
mix of uses within the ground floors (commercial, garages and small industries) are being gradually
replaced by new residential buildings.

Figure 3. Gros district use case. The modelization and the environmental assessment has been obtained
by a NEST tool [57].

Most of the information required for modeling the baseline scenario of Gros has been obtained in
close collaboration with the municipality of Donostia-San Sebastian and based on assumptions from
previous studies [57], as shown in Table 8.
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Table 8. Gros district general data, building characteristics and available surface for renewable
strategies.

Gros District: General Data

Location Donostia-San Sebastian
Climate zone D1 [34]
District users 20,093
Total surface of the district 1,153,443 m2

Dwelling surface 1,126,050 m2

Tertiary building surface 8299 m2

Other activities 17,512 m2

Energy labelling–rating C, D, E, F and G [58]
Heating and DHW system Natural gas and electricity
Renewable generation None
Architectural protection grade Some buildings, grade 0–4 (according urban rules)

Total roof surface 159,964 m2

Maximum useful roof surface for solar technologies 50,726 m2

Regarding the buildings’ information, such as: the energy rating, heating system or heritage
protection level, Table 9 shows the main characteristics required as inputs for simulating the use case,
i.e., HFA, useful roof or opening and opaque faςade surface. For that purpose, the residential buildings
considered in the study have been grouped in categories according to the energy labelling rating, as
stated in Table 9. The systems considered for the estimation of heating and DHW consumptions
are natural gas boilers. Finally, due to the climatological conditions in Donostia-San Sebastian,
the residential buildings are not equipped with cooling systems.

Table 9. Main information of Gros district per building category. (HFA—Heated Floor Area,
OFS—Opaque Facade Surface, OS—Openings Surface, TURS—Total Useful Roof Surface).

# Blocks Building Category Use HFA (m2) OFS (m2) OS (m2) TURS (m2)

3 C Residential 6671 1676 558 486
42 D Residential 89,350 23,391 7797 3567
396 E Residential 781,204 214,207 71,402 37,705
55 F Residential 93,684 27,394 9131 4376
51 G Residential 80,998 22,122 7374 4569

As it is explained in Table 9, actually the energy labeling level of the 92% of the buildings of
Gros is less than D energy rating. Consequently, this fact reinforces the immediate need of tools as
the proposed one for assessing different refurbishment strategies in order to improve energy and
environmental performance of districts.

4.2. Historical City Center District Case Study Definition

The historical city center district (Figure 4) has been selected for its importance in the city of
Donostia-San Sebastian. It is protected by various regulations, thus reducing the number of conceivable
options in terms of energy refurbishment strategies. Consequently, a limited set of possible actions
for the use of renewable technologies and envelope renovation plans can be proposed. However,
due to the high number of energetically inefficient buildings, the energy improvement potential of the
district is high enough for considering it as an important case study for energy retrofitting purposes in
Donostia-San Sebastian.

Table 10 resumes the main information of the historical city center of Donostia-San Sebastian in
terms of general data, building characteristics and available surface for renewable strategies.
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Figure 4. Picture of the historical city center district use case. The modelization has been accomplished
by the NEST tool [57].

Table 10. Historical city center district general data, building characteristics and available surface for
renewable strategies.

Historical City Center District: General Data

Location Donostia-San Sebastian
Climate zone D1 [34]
District users 18,145
Total surface of the district 274,318 m2

Dwelling surface 233,240 m2

Tertiary building surface 30,389 m2

Other activities 13,427 m2

Energy labelling—rating C, D, E, F and G [58]
Heating and DHW system Natural gas and electricity
Renewable generation None
Architectural protection grade Some buildings, grade 0–4 (according urban rules)

Total roof surface 259,795 m2

Maximum useful roof surface for solar technologies 116,817 m2

In order to assess the energy refurbishment potential of the historical city center district, simulation
results for a simple and an advanced case study are performed. Table 11 sums up the main information
per building category ∈ {C, D, E, F, G} for the simple use case.

Table 11. Main information of historical city center district per building category ∈ {C, D, E, F, G}
in the simple case study. (HFA—Heated Floor Area, OFS—Opaque Facade Surface, OS—Openings
Surface, TURS—Total Useful Roof Surface).

# Blocks Building Category Use HFA (m2) OFS (m2) OS (m2) TURS (m2)

21 C Residential 44,836 24,813 8271 8974
6 D Residential 60,038 20,652 6884 12,603
42 E Residential 484,254 164,808 54,936 96,431
52 F Residential 549,373 179,797 59,932 110,955
29 G Residential 134,863 22,122 18,629 30,831

For the advanced historical city center district case study, eight new refurbishment strategies
are included (1A, 2A, 3B, 3E, 4A, 6BI, 6NC, 6HP), hence increasing the complexity of the problem.
Table 12 sums up the main information per building category for this advanced case study. Note that
additional constraints related to the real useful roof surface, the building heritage, the functional space
to implement biomass boilers (6BI) or the type of energy generation systems are considered. Similarly,
the building category will consider the energy rating and the forbidden strategies (see last column in
Table 12).
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Table 12. Main information of historical city center district per building typology ∈ {C1, C2, D,
E1, E2, F1, F2, G1, G2} in the advanced case study. (HFA—Heated Floor Area, OFS—Opaque Facade
Surface, OS—Openings Surface, TURS—Total Useful Roof Surface).

# Building HFA OFS OS TURS Forbidden
Blocks Category (m2) (m2) (m2) (m2) Strategies

20 C1 43,604 24,475 8158 3763 1B, 1E, 1A, 5S, 6BI
1 C2 1232 337 112 173 1B, 1E, 1A
6 D 60,038 20,652 6884 5036 1B, 1E, 1A, 5S, 6BI

33 E1 438,949 147,926 49,308 44,643 5S, 6BI
9 E2 45,304 16,881 5627 3699 1B, 1E, 1A

33 F1 388,793 124,497 41,499 27,575 1B, 1E, 1A
19 F2 160,580 55,300 18,433 20,219 1B, 1E, 1A, 5S, 6BI
7 G1 20,927 9670 3223 2104 1, 2, 3, 5, 6BI, 6HP

22 G2 90,480 46,217 15,405 9602 1B, 1E, 1A, 5S, 6BI

5. Simulation Results at Building Level

5.1. Gros District Case Study Simulation Results at Building Level

In this section, simulation results of the proposed Multi-Objective Meta-heuristic Algorithms
(MOHS, NSGA-II) for the case study of Gros are presented. Both approaches are designed for obtaining
optimal refurbishment scenarios in terms of Investment Cost (IC) and Energy Consumption reduction
(REC) applied to each building category.

The non-dominated district retrofitting solutions obtained per building category after 20 Monte
Carlo simulations are depicted in Figure 5. The objective functions are given in terms of initial economic
investment (IC) (e/m2) for the avoided Energy Consumption (REC) (kWh/year·m2). As it can be
observed, in order to effectively compare the cost-effectiveness of each building category, IC and REC
are normalized to units of surface (m2).
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Figure 5. Estimated Pareto fronts obtained per building category in terms of IC (e/m2) and REC

(kWh/year·m2).

As can be easily seen in Figure 5, building category C has currently the best energy performance,
i.e., these buildings have a poor energy efficiency improvement potential, whereas category G has the



Sustainability 2019, 11, 1495 16 of 24

highest energy refurbishment possibilities. The set of optimal refurbishment strategies achieved by
MOHS and NSGA-II are depicted in Table 13, which corresponds to the interpretation of the solutions
of the Pareto Fronts (Figure 5) per building category (BC).

Table 13. Optimal refurbishment strategies per building category ∈ {C, D, E, F, G} achieved by the
first optimization stage (NSGA-II and MOHS algorithms) in the Gros district—interpretation of the
Pareto Fronts (Figure 5).

BC Refurbishment scenario (P(k))

C (10–100%) Internal (2A) + (10–100%) Solar Thermal (5S) +
(10–100%) Replacement of windows (4)

D (10–100%) Internal (2A) + (10–100%) Solar Thermal (5S) +
(10%) Photovoltaics (5P) + (10–20%) Replacement of windows (4)

E, F (10–100%) Internal (2A) + (10–100%) Replacement of windows (4) +
(10–100%) Solar Thermal (5S) + Photovoltaics (5P)

G (10–100%) Internal (2A) + (10–100%) Replacement of windows (4) +
(10–100%) Solar Thermal (5S)

By means of analyzing in detail the evolution of the achieved optimal refurbishment strategies
for C building category (Table 13) after the application of the proposed multi-objective approaches,
the first strategy to be applied and henceforth the one that provides the highest REC / IC increment is
the internal refurbishment strategy (2A). In this regard, solutions from 10 to 100% (i.e., 10–100%) of 2A
are achieved by both multiobjective approaches. Once the 100% of this strategy is applied, the Solar
Thermal (5S) panels are introduced until covering the 100% of the total useful roof surface and finally
the replacement of windows is proposed. The achieved refurbishment scenarios for the remaining
building categories (D–G) consider also the introduction of Photovoltaics jointly with Solar Thermal
strategy in order to cover up to 100% of the total roof surface.

These conclusions—derived from the thoughtful analysis of the obtained solutions of MOHS and
NSGA-II—can be visually adverted within the Pareto frontier (see Figure 5), as two trend variations or
inflection points can be observed at 20 and 60 values of IC/m2, respectively. In addition, the linear
step variation of IC within the aforementioned three different stages corresponds to similar solutions
(in which the same strategies are applied) but with an application increment of approximately 10% per
refurbishment strategy. It is also worth mentioning that, for the lowest energy performance building
categories (E–G), a bigger reduction of energy demand with passive strategies (and hence a higher
slope in the first stage (IC/m2 ≤ 20) is obtained prior to the implementation of renewables.

The values of the probabilistic operators for both approaches have been optimized in order to
obtain the best performance in the scenario of Gros, and are extended to the remaining use cases.
Regarding MOHS, the values of the HMCR, PAR and RSR operators are set to 0.7, 0.3 and 0.1,
respectively. NSGA-II employs crossover with probability of 0.3 and a mutation operator of 0.01.

In order to evaluate the quality of the approximated Pareto fronts obtained by MOHS and NSGA-II
approaches, different complementary multi-objective performance metrics are employed in Table 14.
On one hand, cardinality metrics such as the number of solutions that exists in the resultant Pareto
Front is presented; intuitively, a high number of solutions—and hence a high value of such metrics—is
preferred. Then, the coverage rate metric (%) is computed representing the number of solutions
within each Pareto Front that are non-dominated by any solution in the rest of fronts. Finally, in terms
of diversity metrics, hypervolume (HV) metric is computed following the Slicing Objectives (SO)
procedure in [59].

As can be shown, MOHS obtains the highest number of non-dominated solutions for all building
categories due to its explorative capability. Furthermore, the coverage rate metric indicates that MOHS
encounters the greatest percentage of dominating solutions in its estimated Pareto front. Finally,
Hypervolume indicator, which calculates the fraction of space covered by solutions in the objective
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space with respect to a cuboid given by reference points, also reveals a higher value when employing
the MOHS approach as opposed to its NSGA-II counterpart. As argued before, MOHS has a better
explorative behavior that permits achieving a wider range of solutions as can be graphically adverted
in Figure 5. Nevertheless, MOHS requires more time to obtain the approximate Pareto frontier due to
the higher complexity of its probabilistic operators.

Table 14. Number of non-dominant points, Coverage Rate and Hypervolume in the resulting Pareto
Front per building category ∈ {C, D, E, F, G} and multi-objective approach in the Gros district.

Number of Coverage Hypervolume
Non-Dominant Rate (HV)

Points (%)

MOHS {69,77,78,78,73} {58, 63, 58, 65, 68} {57.83, 59.38, 124.30, 156.24, 181.64}
NSGA-II {39,45,39,40,33} {6, 17, 5, 5, 0} {6.05, 7.22, 19.02, 33.49, 38.54}

5.2. Simple Historical City Center District Case Study Simulation Results at Building Level

Table 15 summarizes the optimal refurbishment strategies encountered in the Pareto Front
approximations of the simple historical city center district case study. It considers the same buildings
categories {C, D, E, F, G} of the Gros case study. Accordingly, the optimal refurbishment strategies
per building category are similar to the ones obtained in the Gros district. The main difference is that,
for building category C, no strategy based on the replacement of windows (4) is obtained. Hence,
the implementation of Solar Thermal panels (5S) against faςade refurbishment is prioritized in this case.

Regarding multi-objective performance indicators, Table 16 presents the achieved values for the
number of non-dominant points, Coverage Rate and Hypervolume for MOHS and NSGA-II. As can
be observed and following the analysis performed for the Gros district, best outcomes are in general
obtained by the MOHS approach. Only NSGA-II achieves best results for the coverage rate metric in
building categories D and E.

Table 15. Optimal refurbishment strategies per building category ∈ {C, D, E, F, G} achieved by the
first optimization stage (NSGA-II and MOHS algorithms) in the simple historical city center district
case study.

BC Refurbishment scenario (P(k))

C (10–100%) Internal (2A) + (10–100%) Solar Thermal (5S)

D (10–100%) Internal (2A) + (10–100%) Solar Thermal (5S) +
(10%) Photovoltaics (5P) + (10–20%) Replacement of windows (4)

E, F, G (10–100%) Internal (2A) + (10–100%) Replacement of windows (4) +
(10–100%) Solar Thermal (5S)

Table 16. Number of non-dominant points, Coverage Rate and Hypervolume in the resulting Pareto
Front per building category ∈ {C, D, E, F, G} and multi-objective approach in the simple historical city
center district case study.

Number of Coverage Hypervolume
Non-Dominant Rate (HV)

Points (%)

MOHS {69, 77, 78, 78, 73} {66, 16, 13, 63, 71} {70.16, 22.75, 64.81, 72.15, 52.91}
NSGA-II {39, 45, 39, 40, 33} {26, 31, 32, 14, 14} {6.09, 7.97, 9.37, 13.66, 15.41}

5.3. Advanced Historical City Center District Case Study Simulation Results at Building Level

Regarding the advanced historical city center district case study, Table 17 presents the optimal
refurbishment strategies per building category ∈ {C1, C2, D, E1, E2, F1, F2, G1, G2} achieved by means
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of NSGA-II and MOHS. As can be observed, new strategies such as Natural Gas Condensing Boiler
(6N), Heat Pump (6HP) and Biomass Boiler (6BI) are obtained in most of the building categories due to
its capability of accomplishing a great reduction of energy consumption at low investment cost.

Table 17. Optimal refurbishment strategies per building category ∈ {C1, C2, D, E1, E2, F1, F2, G1, G2}
achieved by the first optimization stage (NSGA-II and MOHS algorithms) in the advanced historical
city center district case study.

BC Refurbishment scenario (P(k))

C1 (10–100%) Natural Condensing Boiler (6N) + (10–100%) Photovoltaics (5P)
or (10–100%) Heat Pump (6HP) + (10–100%) Photovoltaics (5P)

C2 (10–100%) Internal (2,3) + (10–100%) Solar Thermal (5S)
+ (10–50%) Natural Condensing Boiler (6N)

D (10–100%) Internal (2,3) + (10–100%) Natural Condensing Boiler (6N)
or (100%) Heat Pump (6HP) + (10–70%) Photovoltaics (5P)

E1, F2 (10–100%) Internal (2,3) + (10–100%) Natural Condensing Boiler (6N)
or (100%) Heat Pump (6HP) + (10–100%) internal (2,3) +

(10-50%) Photovoltaics (5P)

E2, F1 (10–100%) Internal (2,3) + (10–100%) Natural Condensing Boiler (6N)
or (70–100%) Biomass Boiler (6BI) + (10–100%) Solar Thermal (5S)

G1 (10–100%) Natural Condensing Boiler (6N) +
(10–100%) Replacement of windows (4)

G2 (10–100%) Internal (2,3) + (10–100%) Natural Condensing Boiler (6N)
or (100%) Heat Pump (6HP) + (10–100%) internal (2,3) +

(10-100%) Photovoltaics (5P)

The main difference between C1 and C2 stands for the possibility of implementing Solar Thermal
panels (5S) for the C2 building category. Furthermore, C2 proposes the faςade refurbishment via
internal (2) or air chamber (3) insulation. With regard to D building category, as 5S are not allowed (see
forbidden strategies in Table 12), Internal Insulation (2, 3), Natural Condensing Boiler (6N) or Heat
Pump (6HP) are proposed instead. Similarly to other case studies, E and F building categories achieve
similar results. The biggest difference is that Biomass Boilers (6BI) and Solar Thermal panels (5S)
cannot be implemented into E1 and F2 and Natural Gas Condensing Boilers (6N) or Heat Pumps (6HP)
are proposed instead. Finally, related to G building categories, G1 involves the application of more
constraints so in this case only the replacement of windows along with Natural Gas Condensing Boiler
(6N) are prioritized by the proposed multi-objective approaches as optimal refurbishment strategies.

Following the same rationale of previous case studies, Table 18 shows the multi-objective
performance indicators obtained per building category ∈ {C1, C2, D, E1, E2, F1, F2, G1, G2} and
multi-objective approach. As can be observed, apart from the number of non-dominant points
for building category C2, all performance metrics renders better outcomes for the proposed
MOHS approach.

Table 18. Number of non-dominant points, Coverage Rate and Hypervolume in the resulting Pareto
Front per building category ∈ {C1, C2, D, E1, E2, F1, F2, G1, G2} and multi-objective approach in the
advanced historical city center district case study.

Number of Coverage Hypervolume
Non-Dominant Rate (HV)

Points (%)

MOHS {94, 95, 101, 99, 101, {64, 44, 63, 55, 63, {35.40, 11.83, 104.63, 201.52, 66.72,
94, 95, 26, 111} 57, 48, 49, 58} 80.21, 190.20, 87.79, 201.27}

NSGA-II {53, 118, 58, 80, 45, {8, 22, 8, 5, 3, {9.14, 5.03, 13.64, 25.67, 9.06,
56, 66, 27, 60} 2, 10, 50, 2} 23.45, 21.76, 87.79, 32.61}
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Due to the goodness of the multi-objective performance parameters obtained by the proposed
MOHS, it is selected as a preferred multi-objective algorithm for tackling the energy retrofitting
problem at building level, since the response time is not a limitation for this case.

5.4. Complexity Analysis

For a predefined maximum number of iterations, MOHS performs four operations: three
probabilistic operations (HMCR, PAR, RSR) applied to each note of the harmonies and the evaluation
of the population. On the other hand, NSGA-II employs only three operations: a one point crossover,
a mutation and the evaluation of the population. The population size (K) and the number of iterations
(I) are the same for both approaches, so the number of metric evaluations is (InoK), being no the
number of objectives. Thus, it is expected that NSGA-II requires less computational time to complete
the optimization process since its operators are less time-consuming than those of its counterpart.

Following the rationale of [60], the computational complexity of NSGA-II is O(InoK2). As MOHS
employs the same non-dominated sorting procedure as NSGA-II, the complexity of MOHS equals the
one of the NSGA-II algorithm. To empirically verify the complexity analysis, Tables 19 and 20 compare
the average execution time (s) of each algorithm per building category and district case study. Note
that both multi-objective approaches have been executed in an Intel Core i7 CPU at 3.40 GHz, Spain.

From the results of Table 19, it can be observed that the execution time of NSGA-II is lower (almost
50%) than its MOHS counterpart for all building categories in the Gros and the simple historical city
center district case studies. Nevertheless, for the advanced historical city center case study, this
ratio decreases to 22%. In fact, it seems that, as long as the complexity of the case study increases,
the execution time of the NSGA-II increases, whereas the execution time for the MOHS remains almost
fixed. Thus, for more complex case studies, the execution time for MOHS would be the same or less
than the expected for the NSGA-II.

Table 19. Average CPU Time (s) per Monte Carlo simulation for MOHS and NSGA-II per Building
Category (BC) for the Gros District and the Simple Historical City Center District.

BC
Gros District
CPU Time (s)

(MOHS / NSGA-II)

Simple Historical City Center District
CPU Time (s)

(MOHS / NSGA-II)

C 1.346/0.661 1.332/0.546
D 1.347/0.718 1.373/0.758
E 1.362/0.723 1.363/0.551
F 1.331/0.676 1.347/0.583
G 1.409/0.582 1.394/0.598

Table 20. Average CPU Time (s) per Monte Carlo simulation for MOHS and NSGA-II per Building
Category (BC) for the Advanced Historical City Center District Case Study.

BC
Advanced Historical City Center District

CPU Time (s)
(MOHS / NSGA-II)

C1 1.327/1.019
C2 1.299/1.035
D 1.357/0.957
E1 1.283/1.066
E2 1.357/1.035
F1 1.394/1.036
F2 1.322/1.004
G1 1.326/1.076
G2 1.373/1.113
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6. Simulation Results at District Level

In this section, the best scenarios at district level are obtained based on the targets defined
by Donostia-San Sebastian for 2030 of 30% of Global Warming Potential (GWP) reduction [61].
Nevertheless, this study has established 2016 as the baseline scenario and summed up the CO2

eq. emissions related to heating, cooling, DHW, lighting and appliances.
Table 21 refers to the optimal refurbishment scenarios per building category achieved by the

second stage multi-objective approach (MOHS) which optimizes the trade-off between GWP reduction
RGWP (Equation (10)) and Payback Time (PT) (Equation (9)) at district level. In order to select one
optimal refurbishment scenario per building category, only those results from the first optimization
stage that cope up with the 30% reduction of GWP at district level are selected. For each selected
scenario, the obtained Payback Time (PT) is also shown.

Table 21. Optimal refurbishment scenarios obtained by the second optimization stage (MOHS
algorithm) per building category (BC) which cope up with the 30% of reduction of Global Warming
Potential at district level.

Gros District Case Study

BC Refurbishment scenario (P(k))
PT = 2.15 years

C 10% of internal insulation
D 80% of internal insulation and 20% of PV panels
E 90% of internal insulation and 10% of PV panels
F 100% of internal insulation, 10% of windows substitution and 10% of PV panels
G 100% of internal insulation, 90% of windows substitution and 10% of Solar thermal

Simple Historical City Center District Case Study

BC Refurbishment scenario (P(k))
PT = 2.57 years

C 10% of internal insulation and 10% of PV panels
D 90% of internal insulation
E 70% of internal insulation and 10% of PV panels
F 100% of internal insulation, 30% of windows substitution
G 100% of internal insulation, 80% of windows substitution and 10% of Solar thermal

Advanced Historical City Center District Case Study

BC Refurbishment scenario (P(k))
PT = 2.69 years

C1 20% of air chamber insulation
C2 30% of air chamber insulation and 20% of PV panels
D 100% of internal insulation
E1 90% of air chamber insulation and 40% of Natural Gas Condensing Boilers
E2 60% of air chamber insulation, 100% of Natural Gas Condensing Boilers

and 20% of PV panels
F1 80% of internal insulation and 30% of PV panels
F2 100% of internal insulation and 20% of Natural Gas Condensing Boilers
G1 20% of windows replacement and 100% of Natural Gas Condensing Boilers
G2 90% of air chamber insulation and 100% of Natural Gas Condensing Boilers

As can be derived from the results, PT remains between two and three years in all case studies,
which is a reasonable time period for amortizing the cost of investment of the proposed refurbishment
strategies. Note that retrofitting scenarios proposed for Gros and the simple historical city center district
are quite similar. This is due to the similarity in the building categories and proposed refurbishment
strategies. Note that the ratio and number of strategies increase when the current building energy
performance gets worse; the implementation of strategies for the C building category range from
10% to 30% faςade insulation, whereas, for G building category, it reaches nearly 100% of faςade
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insulation and 80% to 100% windows. For the advanced historical city center case study, different
refurbishment scenarios are proposed due to the new constrained formulation of the district energy
retrofitting problem.

7. Conclusions

This paper proposes two novel multi-objective algorithms (MOHS, NSGA-II) for tackling the
district energy retrofitting problem. The optimization procedure is focused on a two-stage process
in which real-based goals and constraints at building and district level are jointly considered.
The developed multi-objective heuristics are applied to two real-based case studies: Gros and the
historical city center of Donostia-San Sebastian with two different degrees of complexity. The achieved
simulation results and multi-objective performance indicators elucidate the goodness of the proposed
MOHS approach. It is capable of obtaining a wide range of feasible retrofit scenarios in terms of
environmental and economic aspects allowing the selection of the optimal scenario at district level
based on the targets defined by Donostia-San Sebastian for 2030 in terms of GWP reduction. In fact,
up to a 30% of reduction of GWP at district level is obtained for a Payback Time (PT) of 2–3 years,
which is a reasonable time period for amortizing the cost of investment of the proposed refurbishment
strategies.

Future research lines will delve into quantifying other impacts directly related to refurbishment
strategies. For example, most of the results show that the optimal cost-efficient passive strategy is
the internal insulation or the air chamber insulation. However, these strategies do not solve some
qualitative constructive pathologies, such as: the thermal bridges or the moisture problems. In addition,
the improvement of the refurbished buildings’ value can be also considered during the optimization
process at building level. More precisely, even if the ventilated faςade (1B, 1E, 1A) is not selected due to
its high investment cost, the economic value of the building would be considerably increased, mainly
due to the improvement of its external aesthetic. Therefore, for future studies, it could be interesting to
integrate these additional indicators into the proposed MOHS optimization algorithm. Finally, the lack
of information at city scale can be solved by the application of the proposed approach at representative
districts for which relevant data is available. Thus, municipalities can employ the achieved results to
easily generalize the decision-making process to districts with similar characteristics.

Author Contributions: Conceptualization, L.M., D.M. and X.O.; Methodology, D.M., L.M. and I.L.-T.; Software,
D.M.; Validation, L.M. and D.M.; Formal analysis, L.M. and D.M.; Data curation, D.M. and X.O.; Writing–original
draft preparation, D.M.; Writing–review and editing, D.M.

Funding: This research was funded by the European project OptEEmAL Grant No. 680676.

Acknowledgments: Part of this work has been developed from results obtained during the “Optimised Energy
Efficient Design Platform for Refurbishment at District Level” (OptEEmAL) project, Grant No. 680676.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. International Energy Agency. CO2 Emissions from Fuel Combustion Highlights; IEA: Paris, France, 2013; p. 158.
2. European Commission. Proposal for a directive of the European Parliament and of the council amending

directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2016. Available online: https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=CELEX%3A52016PC0761 (accessed on 11 March 2019).

3. European Commission, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010
on the energy performance of buildings. Off. J. Eur. Union 2010, L153/13, 13–35.

4. Paiho, S.; Ketomäki, J.; Kannari, L.; Häkkinen, T.; Shemeikka, J. A new procedure for assessing the
energy-efficient refurbishment of buildings on district scale. Sustain. Cities Soc. 2019, 46, 101454. [CrossRef]

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016PC0761
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016PC0761
http://dx.doi.org/10.1016/j.scs.2019.101454


Sustainability 2019, 11, 1495 22 of 24

5. Lidberg, T.; Gustafsson, M.; Myhren, J.A.; Olofsson, T.; Ödlund, L. Environmental impact of energy
refurbishment of buildings within different district heating systems. Appl. Energy 2018, 227, 231–238.
[CrossRef]

6. Ballarini, I.; Corrado, V.; Madonna, F.; Paduos, S.; Ravasio, F. Energy refurbishment of the Italian residential
building stock: Energy and cost analysis through the application of the building typology. Energy Policy
2017, 105, 148–160. [CrossRef]

7. Passer, A.; Ouellet-Plamondon, C.; Kenneally, P.; John, V.; Habert, G. The impact of future scenarios on
building refurbishment strategies towards plus energy buildings. Energy Build. 2016, 124, 153–163. [CrossRef]

8. URB-Grade. Decision Support Tool for Retrofitting a District towards the District as a Service. Available
online: www.urb-grade.eu (accessed on 11 March 2019).

9. CITyFiED. Future Innovative and Replicable Efficient Districts and Cities. Available online: www.cityfied.eu
(accessed on 11 March 2019).

10. R2CITIES. Renovation of Residential Urban Spaces: Towards Nearly Zero Energy Cities. Available online:
www.r2cities.eu (accessed on 11 March 2019).

11. EFFESUS. Energy Efficiency for EU Historic Districts’ Sustainability. Available online: www.effesus.eu
(accessed on 11 March 2019).

12. PLANHEAT. Integrated Tool for Empowering Public Authorities in the Development of Sustainable Plans
for Low Carbon Heating and Cooling. Available online: http://planheat.eu/ (accessed on 11 March 2019).

13. FASUDIR. Friendly and Affordable Sustainable Urban Districts Retrofitting. Available online: www.fasudir.
eu (accessed on 11 March 2019).

14. Chantrelle, F.P.; Lahmidi, H.; Keilholz, W.; el Mankibi, M.; Michel, P. Development of a multicriteria tool for
optimizing the renovation of buildings. Appl. Energy 2011, 88, 1386–1394. [CrossRef]

15. Ascione, F.; Bianco, N.; de Stasio, C.; Mauro, G.M.; Vanoli, G.P. Simulation based model predictive control
by the multi-objective optimization of building energy performance and thermal comfort. Energy Build.
2016, 111, 131–144. [CrossRef]

16. Karmellos, M.; Kiprakis, A.; Mavrotas, G. A multi-objective approach for optimal prioritization of energy
efficiency measures in buildings: Model, software and case studies. Appl. Energy 2015, 139, 131–150.
[CrossRef]

17. Gong, D.W.; Zhang, Y.; Qi, C.L. Environmental/economic power dispatch using a hybrid multi-objective
optimization algorithm. Int. J. Electr. Power Energy Syst. 2010, 32, 607–614. [CrossRef]

18. Zhang, Y.; Gong, D.W.; Ding, Z.H. A bare-bones multi-objective particle swarm optimization algorithm for
environmental/economic dispatch. Inf. Sci. 2012, 192, 213–227. [CrossRef]

19. Gong, D.W.; Sun, J.; Miao, Z. A set-based genetic algorithm for interval many-objective optimization
problems. IEEE Trans. Evol. Comput. 2016. [CrossRef]

20. Liu, Y.P.; Gong, D.W.; Sun, J.; Jin, Y.C. A many-objective evolutionary algorithm using a one-by-one selection
strategy. IEEE Trans. Cybern. 2016. [CrossRef] [PubMed]

21. Delgarm, N.; Sajadi, B.; Kowsary, F.; Delgarm, S. Multi-objective optimization of the building energy
performance: A simulation-based approach by means of particle swarm optimization (PSO). Appl. Energy
2016, 170, 293–303. [CrossRef]

22. Son, H.; Kim, C. Evolutionary Multi-objective Optimization in Building Retrofit Planning Problem.
Procedia Eng. 2016, 145, 565–570. [CrossRef]

23. Machairas, V.; Tsangrassoulis, A.; Axarli, K. Algorithms for optimization of building design: A review.
Renew. Sustain. Energy Rev. 2014, 31, 101–112. [CrossRef]

24. Karaguzel, O.T.; Zhang, R.; Lam, K.P. Coupling of whole-building energy simulation and multi-dimensional
numerical optimization for minimizing the life cycle costs of office buildings. Build. Simul. 2014, 7, 111–121.
[CrossRef]

25. Asadi, E.; da Silva, M.G.; Antunes, C.H.; Dias, L. Multi-objective optimization for building retrofit strategies:
A model and an application. Energy Build. 2012, 44, 81–87. [CrossRef]

26. Penna, P.; Prada, A.; Cappelletti, F.; Gasparella, A. Multi-objectives optimization of Energy Efficiency
Measures in existing buildings. Energy Build. 2015, 95, 57–69. [CrossRef]

27. Xu, W.; Chong, A.; Karaguzel, O.T.; Lam, K.P. Improving evolutionary algorithm performance for integer
type multi-objective building system design optimization. Energy Build. 2016, 127, 714–729. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2017.07.022
http://dx.doi.org/10.1016/j.enpol.2017.02.026
http://dx.doi.org/10.1016/j.enbuild.2016.04.008
www.urb-grade.eu
www.cityfied.eu
www.r2cities.eu
www.effesus.eu
http://planheat.eu/
www.fasudir.eu
www.fasudir.eu
http://dx.doi.org/10.1016/j.apenergy.2010.10.002
http://dx.doi.org/10.1016/j.enbuild.2015.11.033
http://dx.doi.org/10.1016/j.apenergy.2014.11.023
http://dx.doi.org/10.1016/j.ijepes.2009.11.017
http://dx.doi.org/10.1016/j.ins.2011.06.004
http://dx.doi.org/10.1109/TEVC.2016.2634625
http://dx.doi.org/10.1109/TCYB.2016.2638902
http://www.ncbi.nlm.nih.gov/pubmed/28092588
http://dx.doi.org/10.1016/j.apenergy.2016.02.141
http://dx.doi.org/10.1016/j.proeng.2016.04.045
http://dx.doi.org/10.1016/j.rser.2013.11.036
http://dx.doi.org/10.1007/s12273-013-0128-5
http://dx.doi.org/10.1016/j.enbuild.2011.10.016
http://dx.doi.org/10.1016/j.enbuild.2014.11.003
http://dx.doi.org/10.1016/j.enbuild.2016.06.043


Sustainability 2019, 11, 1495 23 of 24

28. Alajmi, A.; Wright, J. Selecting the most efficient genetic algorithm sets insolving unconstrained building
optimization problem. Int. J. Sustain. Built Environ. 2014, 3, 18–26. [CrossRef]

29. Nguyen, A.T.; Reiter, S.; Rigo, P. A review on simulation-based optimization methods applied to building
performance analysis. Appl. Energy 2014, 113, 1043–1058. [CrossRef]

30. Greiner, D.; Galvan, B.; Periaux, J.; Gauger, N.; Giannakoglou, K.; Winter, G. Advances in Evolutionary and
Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. In Computational
Methods in Applied Sciences; Springer: Berlin, Germany, 2015; ISBN 978-3-319-11541-2.

31. Juan, Y.K.; Gao, P.; Wang, J. A hybrid decision support system for sustainable office building renovation and
energy performance improvement. Energy Build. 2010, 42, 290–297. [CrossRef]

32. Ascione, F.; Bianco, N.; de Stasio, C.; Mauro, G.M.; Vanoli, G.P. Multi-stage and multi-objective optimization
for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality.
Appl. Energy 2016, 174, 37–68. [CrossRef]

33. Jennings, M.; Fisk, D.; Shah, N. Modelling and optimization of retrofitting residential energy systems at the
urban scale. Energy 2014, 64, 220–233. [CrossRef]

34. Spanish Technical Building Code, CTE. 2013. Available online: http://www.codigotecnico.org/ (accessed
on 11 March 2019).

35. IPHA. International Passive House Association. Available online: http://www.passivehouse-international.
org/ (accessed on 11 March 2019).

36. U.S. Department of Energy’s (DOE) Building Technologies Office (BTO). Energy Plus Energy Simulation
Tool. Available online: https://energyplus.net/ (accessed on 11 March 2019).

37. ASHRAE. International Weather Files for Energy Calculations 2.0 (IWEC2). Available online: https://www.
ashrae.org/resources\T1\textendashpublications/bookstore/iwec2 (accessed on 11 March 2019).

38. BS EN 15316-4-3—British Standard. Heating Systems in Buildings—Method for Calculation of System
Energy Requirements and System Efficiencies. Part 4-3: Heat Generation Systems, Thermal Solar Systems.
Available online: https://landingpage.bsigroup.com/LandingPage/Standard?UPI=000000000030309964
(accessed on 12 March 2019)

39. Oregi, X.; Hernandez, P.; Hernandez, R. Analysis of life-cycle boundaries for environmental and economic
assessment of building energy refurbishment projects. Energy Build. 2017, 136, 12–25. [CrossRef]

40. Verband der Fenster, Fassadenhersteller e.V., Bundesverband Flachglas e.V. In neuem Licht. Energetische
Modernisierung von alten Fenstern. VFF & BF, Frankfurt a.M. Troisdorf. 2014. Available
online: https://www.window.de/fileadmin/redaktion_window/vff/docs_und_pdf/VFF-BF_Studie_
Mehr_Energie_sparen_mit_neuen_Fenstern_2017-09.pdf (accessed on 11 March 2019).

41. Economic of Deep Renovation; Implications of a Set of Case Studies. ECOFYS and EURIMA. 2010
Available online: http://www.eurima.org/uploads/ModuleXtender/Publications/51/Economics_of_
Deep_Renovation_Ecofys_IX_Study_Design_FINAL_01_02_2011_Web_VERSION.pdf (accessed on 11 March
2019).

42. Generador de Precios, España. CYPE Ingenieros. Available online: http://www.generadordeprecios.info/
(accessed on 11 March 2019).

43. Solar District Heating Guidelines. 2012. Available online: http://solar-district-heating.eu/Portals/0/
Factsheets/SDH-WP3-D31-D32_August2012.pdf (accessed on 11 March 2019).

44. Smestad, G.P. The Basic Economics of Photovoltaics. In Solar Energy Materials and Solar Cells; Optical Society
of America: San José, CA, USA, 2008.

45. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search.
Simulation 2001, 76, 60–68. [CrossRef]

46. Vasebia, A.; Fesangharyb, M.; Bathaeea, S.M.T. Combined heat and power economic dispatch by harmony
search algorithm. Int. J. Electr. Power Energy Syst. 2007, 29, 713–719. [CrossRef]

47. Gil-Lopez, S.; del Ser, J.; Salcedo-Sanz, S.; Perez-Bellido, A.M.; Cabero, J.M. A hybrid harmony search algorithm
for the spread spectrum radar polyphase codes design problem. Expert Syst. Appl. 2012, 39, 11089–11093.
[CrossRef]

48. Gil-Lopez, S.; del Ser, J.; Olabarrieta, I. A novel heuristic algorithm for multiuser detection in synchronous
CDMA wireless sensor networks. In Proceedings of the 2009 International Conference on Ultra Modern
Telecommunications & Workshops, St. Petersburg, Russia, 12–14 October 2009.

http://dx.doi.org/10.1016/j.ijsbe.2014.07.003
http://dx.doi.org/10.1016/j.apenergy.2013.08.061
http://dx.doi.org/10.1016/j.enbuild.2009.09.006
http://dx.doi.org/10.1016/j.apenergy.2016.04.078
http://dx.doi.org/10.1016/j.energy.2013.10.076
http://www.codigotecnico.org/
http://www.passivehouse-international.org/
http://www.passivehouse-international.org/
https://energyplus.net/
https://www.ashrae.org/resources\T1\textendash publications/bookstore/iwec2
https://www.ashrae.org/resources\T1\textendash publications/bookstore/iwec2
https://landingpage.bsigroup.com/LandingPage/Standard?UPI=000000000030309964
http://dx.doi.org/10.1016/j.enbuild.2016.11.057
https://www.window.de/fileadmin/redaktion_window/vff/docs_und_pdf/VFF-BF_Studie_Mehr_Energie_sparen_mit_neuen_Fenstern_2017-09.pdf
https://www.window.de/fileadmin/redaktion_window/vff/docs_und_pdf/VFF-BF_Studie_Mehr_Energie_sparen_mit_neuen_Fenstern_2017-09.pdf
http://www.eurima.org/uploads/ModuleXtender/Publications/51/Economics_of_Deep_Renovation_Ecofys_IX_Study_Design_FINAL_01_02_2011_Web_VERSION.pdf
http://www.eurima.org/uploads/ModuleXtender/Publications/51/Economics_of_Deep_Renovation_Ecofys_IX_Study_Design_FINAL_01_02_2011_Web_VERSION.pdf
http://www.generadordeprecios.info/
http://solar-district-heating.eu/Portals/0/Factsheets/SDH-WP3-D31-D32_August2012.pdf
http://solar-district-heating.eu/Portals/0/Factsheets/SDH-WP3-D31-D32_August2012.pdf
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1016/j.ijepes.2007.06.006
http://dx.doi.org/10.1016/j.eswa.2012.03.063


Sustainability 2019, 11, 1495 24 of 24

49. Manjarres, D.; del Ser, J.; Gil-Lopez, S.; Vecchio, M.; Landa-Torres, I. A novel heuristic approach for
distance-and connectivity-based multihop node localization in wireless sensor networks. Soft Comput.
2013, 17, 17–28. [CrossRef]

50. Geem, Z.W.; Tseng, C.L.; Park, Y. Harmony Search for Generalized Orienteering Problem: Best Touring in
China. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3412, pp.
741–750.

51. Geem, Z.W. Harmony Search Algorithm for Solving Sudoku; International Conference on Knowledge-Based and
Intelligent Information and Engineering Systems; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4692,
pp. 371–378.

52. Landa-Torres, I.; Manjarres, D.; Salcedo-Sanz, S.; del Ser, J.; Gil-Lopez, S. A Multiobjective Grouping
Harmony Search Algorithm for the Optimal Distribution of 24-hour Medical Emergency Units. Expert Syst.
Appl. 2013, 40, 2343–2349. [CrossRef]

53. Kalyanmoy, D.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization: NSGA-II. IEEE Trans. Evol. Comput. 2000, 6, 182–197.

54. Dhanalakshmi, S.; Kannan, S.; Mahadevan, K.; Baskar, S. Application of modified NSGA-II algorithm to
combined economic and emission dispatch problem. Int. J. Electr. Power Energy Syst. 2011, 33, 992–1002.
[CrossRef]

55. Jozefowiez, N.; Semet, F.; Talbi, E.G. Enhancements of NSGA II and its application to the vehicle routing
problem with route balancing. In International Conference on Artifici l Evolution; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 131–142.

56. Frischknecht, R.; Wyss, F.; Knöpfel, S.B.; Lützkendorf, T.; Balouktsi, M. Cumulative energy demand in LCA:
The energy harvested approach. Int. J. Life Cycle Assess. 2015, 20, 957–969. [CrossRef]

57. Oregi, X.; Pousse, M.; Mabe, L.; Escudera, A.; Mardaras, I. Sustainability assessment of three districts in the
city of Donostia through the NEST simulation tool. Nat. Resour. Forum 2016, 40, 156–168. [CrossRef]

58. The Ministry of Presidency of the Spanish Government. Royal Decree 235/ 2013, of 5th of April 2013,
by Which It Is Approved the Basic Procedure for the Energy Performance Certification of Buildings. 2013.
Available online: http://www.boe.es/boe/dias/2013/04/13/pdfs/BOE-A-2013-3904.pdf (accessed on 11
March 2019).

59. While, L.; Bradstreet, L.; Barone, L.; Hingston, P. Heuristics for optimizing the calculation of hypervolume
for multi-objective optimization problems. In Proceedings of the 2005 IEEE Congress on Evolutionary
Computation, Edinburgh, UK, 2–5 September 2005; Volume 3, pp. 2225–2232.

60. Currya, D.M.; Daglia, C.H. Computational Complexity Measures for Many-objective Optimization Problems.
Procedia Comput. Sci. 2014, 36, 185–191. [CrossRef]

61. Hiri Berdea 2030. Environmental Strategy. Donostia/San Sebastian. Available online: http://www.energy-
cities.eu/db/San_Sebastian_environmental_strategy_2015_en.pdf (accessed on 11 March 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00500-012-0897-2
http://dx.doi.org/10.1016/j.eswa.2012.10.051
http://dx.doi.org/10.1016/j.ijepes.2011.01.014
http://dx.doi.org/10.1007/s11367-015-0897-4
http://dx.doi.org/10.1111/1477-8947.12104
http://www.boe.es/boe/dias/2013/04/13/pdfs/BOE-A-2013-3904.pdf
http://dx.doi.org/10.1016/j.procs.2014.09.077
http://www.energy-cities.eu/db/San_Sebastian_environmental_strategy_2015_en.pdf
http://www.energy-cities.eu/db/San_Sebastian_environmental_strategy_2015_en.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	District Energy Retrofitting Problem
	Proposed Two-Stage Multi-Objective Meta-Heuristics
	Stage 1: Building Level Optimization
	District Level Optimization

	Case Studies Definition
	Gros District Case Study Definition
	Historical City Center District Case Study Definition

	Simulation Results at Building Level
	Gros District Case Study Simulation Results at Building Level
	Simple Historical City Center District Case Study Simulation Results at Building Level
	Advanced Historical City Center District Case Study Simulation Results at Building Level
	Complexity Analysis

	Simulation Results at District Level
	Conclusions
	References

