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I.1. Self-healing polymers 

Following the development of the first synthetic plastics in the 20
th

 century, polymers have 

become an indispensable part of modern life. In fact, plastics have become so widespread in 

our society that, for the first time since their emergence, people and governments have been 

forced to realize the impact of plastic waste on the environment, which has become an urgent 

and global problem. Part of the problem can be linked to the inherent drawback of many 

polymer materials being relatively prone to damage leading to catastrophic failure after which 

the polymer cannot perform its function anymore. A protective polymer coating that gets 

damaged by a small scratch, for instance, becomes instantly useless in preventing corrosion, 

an issue that alone costs hundreds of billions of dollars a year.
3
 Together with the emerging 

understanding of the issues associated with polymer materials, researchers have been 

focusing on diminishing material damage and extending product life-time by the development 

of “self-healing” materials in order to provide a solution to the problems mentioned above.
4–11

 

The exponential increase in documents that have been published per year mentioning the 

terms “self-healing” “materials” (Figure I.1) demonstrates that this is a thriving research field 

which started at the turn of the 21
st
 century. From the different materials that can be studied, 

such as ceramics and concrete, polymers have seemingly attracted a lot of attention over the 

last two decades, accounting for about 50% of the published documents (Figure I.1).
11–14

 

These trends in academic research have also been reflected by commercial interest, with 

predictions that the self-healing materials market will reach $2.4 (€2.1) billion by 2022 (Figure 

I.2) in which healable polymers would still account for 37% of the market.
1,2
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Figure I.1. Published documents per year for "self-healing" "materials" and "polymers" (Scopus). 

 

Figure I.2. Total market for self-healing materials predicted by n-tech Research from 2017-2026.
2
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Self-healing materials can be categorized into two types based on the process through which 

healing is achieved: extrinsic and intrinsic (Figure I.3).
15,16

 Extrinsically healable materials 

have active fillers, so called healing agents, such as encapsulated monomers and catalysts 

embedded in the polymer matrix.
5,17–20

 These healing agents are released into the matrix upon 

rupture and act as fillers which solidify and repair the damaged area. This is a single-use non-

reversible process that demands the availability of the healing agents on the damaged 

interface, i.e. a relatively high load of encapsulated agent. This may be a problem in many 

cases and therefore such materials are likely to be used only in highly specialist applications.  

On the other hand, self-healing polymers which can heal intrinsically make use of “built-in” 

reversible chemical and/or physical bonds to recover from damage and are especially 

interesting for long term use as they are able to undergo multiple healing events without 

detriment to the system.
15,16

 In case of damage, the polymer network rearranges to bridge the 

gap thanks to inherent molecular mobility of the polymer chains and reconfigurable bonds 

within the chain which allow the restoration of the structural integrity of the polymer once the 

defect is filled.
21–24

 Furthermore, since the ability to heal is incorporated through chemical 

groups, it is possible to preserve the material properties of conventional polymers. For these 

reasons, intrinsically healing polymers will be the focus of this introduction.   
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Figure I.3. Different self-healing processes based on extrinsic and intrinsic healing.  
(Inspired by Teixeira et al.

15
) 

In 1981, already some decades before research on intrinsic self-healing materials became 

prominent, Wool and O’Connor proposed a model for crack healing for conventional non-

dynamic polymers involving a sequential process consisting of (a) surface rearrangement and 

(b) approach, (c) wetting, (d) diffusion and (e) randomization.
25

 When considering a damaged 

object, e.g. a scratch or a deep cut (Figure I.4), where no external stimulus is applied, the first 

driving force for closure of the gap is the reduction of the surface tension. In this case, surface 

rearrangement (a) and surface approach (b) bring the two fractured interfaces back into close 

proximity through elastic recovery, the shape memory effect and/or interfacial flow.
23,26–29

 Next, 

wetting or adhesion (c) can be seen as the process in which the two fractured surfaces come 

into contact so that re-formation of the broken bonds and supramolecular interactions can take 

place at the interface inducing the recovery of the initial mechanical properties and promoting 

Damaged

network

Healed

network

Healing

agent

Built-in 

ability

Extrinsic healing Intrinsic healing
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the following healing steps.
25,30

 Interestingly, under specific conditions, the wetting process was 

recently described to proceed through a zipper-like cut closure, since the driving force is the 

inward tension on the crack which diverges at the tip, where the stress field displays a 

singularity.
31

 However, the presence of the tip was found to be crucial, as for brittle fractures 

that traversed the entire sample and lacked a distinct tip this zipping motion was not observed. 

 

Figure I.4. Process for scratch healing involving (1) movement of material to close the gap, (2) 
interdiffusion of the polymer across the interface, (3) bond reorganization to fully heal the cut. 

(Inspired by Susa et al.
33

) 

After good wetting, polymer chains may start to diffuse at the interfacial region from one side to 

the other, which is called interdiffusion (d). For a linear polymer, the extent of interdiffusion will 

depend on the mobility of the chains and the time according to the scaling laws developed by 

Wool and O’Connor.
4,25,32

 The mechanical properties of the polymer will be recovered once the 

length of the chains in both pieces is longer than the characteristic entanglement length of the 

polymer. On the other hand, for a cross-linked polymer (a thermoset material) interdifussion will 

be limited to dangling chains, typically shorter than the entanglement length, resulting in a 

material that is mechanically weaker than the pristine cross-linked network. The static nature of 

the cross-linked network prevents the further interdiffusion required for complete restoration of 

mechanical strength. However, when dynamic bonds are incorporated into the polymer 

backbone, the kinetics of the interdiffusion process can be enhanced. In the case of linear 

polymers, the rearrangement of the dynamic bonds after modest interpenetration leads to the 

Damage 2D interface formed 3D interphase formed Interphase dissapears

1 2 3
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formation of polymer chains that extend to both sides of the cut reducing the time needed for 

the material to recover its mechanical strength (Figure I.5A). Unlike regular thermosets, cross-

linked polymers containing dynamic bonds are able to heal and recover their mechanical 

strength, since the interdiffusion of dangling chains containing dynamic bonds allows the 

formation of a new cross-linked network at the interface as illustrated in Figure I.5B.  

            

Figure I.5. Healing of a linear (A) and cross-linked (B) polymer containing dynamic bonds following 
dissection of the polymer chains into two fragments. 

It is important to emphasize here that healing of polymer networks is only possible if both 

interdiffusion and dynamic bond exchange can take place as this induces the last step of the 

crack healing process described by Wool and O’Conner, namely randomization (e). The 

Interdiffusion

Healing

Fragment 1 Fragment 2

Interdiffusion

Healing

Fragment 1 Fragment 2B A 
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presence of dynamic chemical or physical bonds in the polymer backbone is therefore crucial 

to complete the healing process as, once all aforementioned steps have been attained, they 

provide the material with the capability to rearrange and reorganize the polymer network in 

such a way that the original polymer structure and consequently material properties such as 

mechanical strength can be recovered. 

Summarizing and simplifying the initial crack healing theory, it can be concluded that three 

series-parallel processes are required to obtain complete healing, which are (1) the movement 

of the material to close the gap so that a 2D interface is formed (2) interdiffusion of the polymer 

through the closed gap creating a 3D interphase and (3) dynamic bond exchange leading to 

rearrangements in the polymer network so that the 3D interphase eventually disappears 

(Figure I.4).
25,33

 A polymer that is capable of both closing the gap and subsequently healing the 

interface is termed a self-healing polymer. From this model, it becomes clear that the kinetics 

of self-healing may be controlled by any of these processes and it is therefore of fundamental 

importance to consider all aspects of the healing process in material design.  

With consideration of the mechanism of self-healing outlined above, polyurethanes are 

uniquely placed to provide self-healing polymers. One of the main beneficial properties of 

polyurethanes is the phase separated microstructure of segmented polyurethanes (Figure I.6), 

as it enables the production of materials with molecular mobility in the soft phases while 

preserving physical, structural and mechanical integrity through the presence of hard 

phases.
23,34

 Furthermore, polyurethanes (PUs) have a built-in supramolecular healing ability 

due to the formation of hydrogen bonds between their backbones which provides the material 

with a basic level of intrinsic recovery upon damage without the intervention of any other active 
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element. This particular characteristic reinforces the action of the active moieties included for 

self-healing,
35–37

 and in addition, can guide reactive functionalities allowing them to interact 

more easily with functional groups in their vicinity.
38–40

 Aside from the rheological properties 

possessed by polyurethanes that make them of interest for self-healing materials, the 

chemistry involved in polyurethane synthesis is also highly versatile, allowing diverse functional 

groups to be incorporated.
34

 This versatility of polyurethanes and their ease of functionalization 

has led to the incorporation of almost all possible chemical moieties reported to provide self-

healing properties into polyurethane systems which will be discussed in the next section of this 

introductory chapter. 

 

 

Figure I.6. Dynamic interactions presented in poly(urea-urethane) structures. 
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I.2. Intrinsically healable polyurethanes 

Intrinsic self-healing materials have captured the imagination of polymer chemists leading to 

the creation of an extensive library of potential bond exchange reactions that can be used to 

create the basis of such materials. As shown in Figure I.7, two main synthetic pathways 

towards dynamic bond rearrangements for intrinsically healable polyurethanes have been 

proposed that can be divided into (1) supramolecular interactions and (2) dynamic covalent 

reactions. The incorporation of such structures is responsible for the repair at a molecular 

level and therefore the understanding of the underlying mechanism as well as the reaction 

performance is of prime importance. In this section, representative examples of the systems 

will be given in a short overview.   

 

Figure I.7. General classification of intrinsically healable polyurethanes. 
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I.2.1. Supramolecular interactions 

Supramolecular interactions are non-covalent links which are based on the equilibrium 

between “bound” and “non-bound” states and which present a high stability with time since 

problems with side reactions can largely be avoided (Figure I.8).
22,41

 On the other hand, since 

the strength of most supramolecular interactions is weaker than a typical covalent bond, these 

links can be broken with relative ease. Therefore, one of the main objectives when developing 

strong self-healing PUs is to maximize the strength and number of supramolecular interactions. 

 

Figure I.8. Schematic representation of the relevant interactions in supramolecular healable PUs. 
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Hydrogen bonding interactions are one of the most widely used strategies to develop 

supramolecular healable polyurethanes. In this way, some healable PUs were described just 

relying on the inherent H-bonding between urethane or (thio)urea units.
35,42

 Alternatively, the 

specific design of self-healing hydrogen bonding networks has been attempted, for instance by 

introducing multiple substituted and non-substituted urea bonds,
43

 or by increasing the strength 

of active motifs that generate H-bonds such as the well known self-complimentary 

ureidopyrimidone (UPy) unit (Figure I.8 a).
44–46

 The introduction of  -  stacking interactions, 

has also been applied in the development of healable PUs (Figure I.8 b).
47,48

 However, only a 

few examples exist introducing these interactions due to the high insolubility of the polymer and 

the difficulty in finding systems capable of self-assembly by means of  -  interactions. 

Ionomers are polymers that contain a small number of pendent ionic groups which can 

aggregate and form physical cross-links within the bulk material. Since these supramolecular 

cross-linking points are dynamic, PU-based ionomers have also been described which 

demonstrate self-healing behavior for example by the introduction of sulphonate groups (Figure 

I.8 c),
49

  amino and acid groups,
50

 or zwitterionic groups.
51

 Polymer materials based on 

coordination bond interactions make use of the dynamic cross-linking between ligands and  

metal ions which are dispersed in the polymer structure to achieve their self-healing ability. The 

most widely used coordination bond system is based on pyridine derivatives (Figure I.8 d).
52,53

 

The application of host-guest interactions is one of the most recent approaches for 

intrinsically healable materials, and therefore very few examples have been applied in PU 

systems (Figure I.8 e).
54,55

 The main advantage is the high selectivity of the interaction, which 

prevents the passivation of the healing process.
56
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I.2.2. Dynamic covalent reactions 

Alternatively to supramolecular interaction, intrinsic healable features can also be obtained by 

introducing dynamic covalent bonds. Contrary to most conventional covalent bonds, these 

moieties can easily be broken and/or reformed, so that their dynamic equilibrium permits the 

recovery of the damaged polymer network by forming new covalent bonds. The incorporation 

of dynamic covalent bonds permits a fundamental change in the way polymers can be used, as 

incorporating them in a cross-linked network can allow reprocessing, something that is off-limits 

for conventional thermosets.
43,57,58

  

According to the bond exchange mechanism, three main groups of dynamic covalent reactions 

have been applied in the field of healable polymers termed here dissociative, associative and 

chain transfer reactions (Figure I.9). During a dissociative reaction (Figure I.9 a), the active 

motif is cleaved into two components which are able to subsequently recombine afterwards. In 

contrast, the exchange in associative reactions (Figure I.9 b) occurs because a free functional 

group present in the polymer chain reacts with an active motif in its vicinity, generating a new 

active motif. The third alternative, termed here chain transfer reactions, can be considered as 

a mixture of the other mechanisms (Figure I.9 c). First, an external agent is added (e.g. a 

radical source) or the dynamic bond is activated to produce free reactive species. These 

reactive species are able to exchange with dynamic bonds in the vicinity, simultaneously 

producing analogous dynamic bonds in the backbone and new reactive species. The process 

finishes when the reactive species are terminated by recombination or side reactions. Although 

the difference between these three cases may appear small, they represent highly different 

kinetics requiring appropriate selection for certain applications or application conditions. 
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Figure I.9. Schematic of the dynamic covalent reaction mechanisms (Inspired by Denissen et al.
 58

). 

I.2.2.1. Dissociative reactions 

Dissociative reactions are based on a dynamic equilibrium involving sequential breaking and 

reforming of covalent bonds usually requiring an external stimulus, such as heat or light, to shift 

the equilibrium to the dissociated state so that bond exchange can occur. Since the bond 

energies of dynamic covalent bonds are usually lower than a typical C-C bond, it is obvious 

that the introduction of the dynamic bond represents “weak links” in the polymer backbone, 

which reduces the mechanical properties of the material. Moreover, at elevated temperatures, 

where the equilibrium is shifted to the dissociated state, the network integrity may be 

completely lost which causes a serious problem in applications where a minimal strength is 

required. However, dissociative strategies also are advantageous in that, in most cases, at 

room temperature the equilibrium is shifted so far to the dormant state that the materials can 

effectively be considered static which makes them reasonably stable with time.  
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Figure I.10. Dissociative reactions used in the development of healable polyurethanes. 

At very high temperatures (T>150ºC), urethane and urea groups can undergo dynamic 

dissociative reactions forming an isocyanate and a hydroxyl or amine group respectively, which 

usually results in decomposition of the polymer.
59

 However, recently, some specifically 

reversible urethane or urea configurations have been introduced into PUs inducing self-healing 

at moderate temperatures (Figure I.10 a),
60–63

 or even at room temperature in hindered PUUs 

(Figure I.10 b).
64

 Alternatively, dynamic oxime-carbamate bonds (Figure I.10 c),
65

 or reversible 

uretdiones and isocyanurates (Figure I.10 d),
66

 have been exploited to obtain healable PUs. An 

obvious drawback, however, is the formation of toxic isocyanates which are highly reactive 

towards water (moisture) which would eventually degrade the material with time.  

Also Diels-Alder (DA) reactions (Figure I.10 e), taking place between a diene and a dienophile 

via a [4+2] cycloaddition, have been employed to reversibly chain extent or cross-link PUs so 

that the material could recover from damage upon heating.
67–70

  However, extensive heating to 
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temperatures higher than 120ºC are generally necessary for these DA adducts to be reactive 

which limits their attractiveness for applications. Alternatively, photoinduced cycloaddition 

reactions can also be utilized to stimulate dynamic covalent behavior in PUs, such as the [2+2] 

cycloaddition reactions involving coumarin derivatives (Figure I.10. f),
71–73

 or [4+4] 

cycloaddition reaction based on anthracene derivatives (Figure I.10 g).
74,75

 Although these 

photoinduced processes are advantageous over heat triggered systems as they present easy 

spatial and temporal control,
76,77

 the application of light obviously restricts the use to 

transparent and/or thin surfaces and can be problematic in many practical applications where 

materials are constantly exposed to (sun)light.  

Radical mediated dissociative reactions make use of moieties which can provide polymers 

with a dynamic self-healing behaviour due to the formation of stable free radicals after 

reversible homolytic scission upon stimulation or damage. Often, alkoxyamine derivatives are 

used for this purpose in PUs leading even to healing at room temperature (Figure I.10 h),
78–80

 

but also diarylbibenzofuranones can recover from damage at mild temperatures or with 

mechanical force (Figure I.10 i).
81,82

 Advantageously, these radical reactions are very fast and 

highly dynamic without provoking complete disintegration of the polymer network, however, 

their reactivity can also lead to side reactions (e.g. with oxygen) and passivation over time. 

Finally, a condensation reaction of dynamic catechol-boronic ester bonds can lead to pH 

dependent reversible hydrolysis inducing (underwater) healing in specific PUs (Figure I.10 

j).
83,84

 However, these systems are mostly hydrogels of which the sensitivity to pH and moisture 

content has to be taken into account towards its applicability. 
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I.2.2.2. Associative reactions 

Associative reactions can be considered as interchange reactions between a dormant center 

and a reactive functional group within the polymer matrix (Figure I.11), so that, in contrast to 

dissociative processes, the degree of cross-linking remains constant along the process. The 

unique mechanism of these reactions has allowed them to be employed in the development of 

a new generation of materials known as vitrimers. They behave as cross-linked materials at 

low temperatures, but present a glass-like fluidity at high temperatures due to the rapid 

interchange of functional groups in the polymer network.
57,58

 A major drawback of the 

associative mechanism is its reliance on the reactivity of pendant functional groups, such as 

hydroxyl or amine groups, which can cause problems in commercial products or might lead to 

side reactions limiting their long term stability. In addition, bond exchange, even at lower 

temperatures, leads to creep which could be a significant problem in practical applications.  

 

Figure I.11. Dynamic reactions undergoing associative mechanism in healable PUs. 
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Transcarbamoylation leads to the dynamic exchange of carbamoyl groups with free hydroxyl 

groups which are present in polyhydroxyurethane based materials which makes reprocessing 

possible at T>140ºC (Figure I.11 a).
85,86

 Transcarbamoylation of carbamates has also been 

reported to induce dynamic exchange reactions in the material which could be reprocessed at 

even higher temperatures (T>180ºC).
87

  An alternative associative chemistry is based on the 

urethane-urea conversion in methyl α-D-glucopyranoside (MGP) based PU networks in the 

presence of zinc acetate (Figure I.11 b).
88

 This mechanism is distinctive from the general 

associative mechanism as the free amine groups are only formed upon damage after which 

they irreversibly react with the urethane groups in the polymer matrix to produce urea linkages 

and free hydroxyl groups. However, such free amine groups could also be deliberately 

incorporated into the PUU backbone so that an amine-urea exchange reaction could occur 

leading to recyclable cross-linked materials at T>150ºC and under pressure (Figure I.11 c).
89

 

Similarly, vinylogous urethane or urea based polymer containing amine terminated dangling 

chains have been developed which are capable of reprocessing and recycling at high 

temperatures (Figure I.11 d).
90,91

 Although the increased reactivity of the vinylogous 

urethane/urea group is advantageous, the long term stability of amines necessary to induce 

exchange could cause problems. Finally, there are alternative associative chemistries that 

have yet to be used in polyurethane systems, but have already been able to provide self-

healing characteristics to other polymer systems, such as transalkylation of C-N bonds (Figure 

I.11 e),
92

 or boronic esters.
93
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I.2.2.3. Chain transfer reactions 

The chain transfer reaction mechanism presents features both from dissociative and 

associative mechanisms (Figure I.12). The first step involves the generation of active species 

after which these species react with other dynamic bonds in the vicinity leading to exchange. 

Generally, chain transfer reactions occur via radical mediated intermediates. It should be 

highlighted that the potential advantage of this strategy over the purely dissociative radical 

mechanism is that the number of active species at a given time is comparatively low. However, 

in this case, the rate of bond exchange can still be fast even when the concentration of active 

species is low, since all the dynamic bonds present in the backbone are susceptible to react 

with the formed active species. Nevertheless, the intermediate species can possibly undergo 

side reactions that may limit their long term stability.   

 

Figure I.12. Chain transfer reactions introduced to develop healable polyurethanes. 

...
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Most of the examples of chain transfer reactions are based on disulfide exchange reactions 

as depicted in Figure I.12 a. Already in 1964, the introduction of disulfide and tetrasulfide 

groups into cross-linked polyurethane elastomers was demonstrated.
94

 This early work showed 

two interesting points; 1) the dynamic nature of the S-S bond allowed for efficient stress 

relaxation of cross-linked materials, 2) bond exchange was much more rapid in the tetrasulfide 

linkages than in the disulfide linkage, while the latter showed greater stability in spectroscopic 

tests.
94

 By now, the incorporation of these dynamic aliphatic disulfide bonds into PUs have led 

to the development of self-healing materials under exposure to heat or light.
95–101

 Interestingly, 

by using aromatic instead of aliphatic disulfides, the development of a cross-linked PUU was 

described which was able to heal at room temperature without using any catalysts and, in 

addition, could be reprocessed at elevated temperatures.
102,103

 Very recently, the ease of 

implementation of this chemistry in PUs has attracted (our) attention, leading to alternatives 

proposing waterborne PU systems
104

 and enhanced mechanical strengths.
105,106

 Later in this 

work (Chapter III-V), we will similarly present new waterborne healable PUUs based on the 

introduction of modified aromatic disulfides leading to even stronger and simultaneously more 

mobile materials. 

Although disulfides are often classed in the same bracket as the associative chemistries, only 

recently we were able to clarify that the underlying mechanism of disulfide exchange actually 

occurs through disulfide scission generating sulfur-based radicals followed by bond exchange 

between the formed radicals and other disulfides, i.e. chain transfer, which will be discussed in 

Chapter II.
107,108

 With this radical mediated mechanism, the reasoning for choosing aromatic 

disulfides over aliphatic ones is twofold. First of all, as the bond dissociation energy of the 
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disulfide bond in diaryldisulfides is lower (50 kcal.mol
-1

) than the value in dialkyldisulfides (65 

kcal.mol
-1

) a faster dissociation rate is obtained for the aromatic disulfides.
107,109

 Moreover, 

since phenyl rings give rise to electron delocalization, the formed aromatic S-based radicals 

are more stable than the aliphatic counterparts.
107

 This enhanced stability of the S-based 

radicals, however, does not limit the exchange reactions in a second step, since recently it was 

theorectically described that the phenyl rings can lower the energy barrier of the exchange 

reactions as     stacking stabilize the transition state.
110

 It can therefore be concluded that 

the use of aromatic disulfides is advantageous due to their enhanced dissociation and 

exchange reaction and additionally since stabilized S-based radicals are formed in the 

presence of phenyl rings making them attractive towards applications as they supposedly 

would be less prone to side reactions and therefore could provide more long term stability. 

It is noteworthy to mention that due to the underlying radical mediated mechanism, it is not 

straightforward to incorporate the disulfide bonds in alternative polymer systems which contain 

radicals or double bonds.
111

 For example, recently unusual cross-linking density rather than 

self-healing was observed when aromatic disulfides were introduced into a polybutadiene 

based PUU.
112,113

 This unexpected behaviour of the disulfides was linked to side reactions, like 

proton abstraction and radical induced thiol-ene addition, occuring in presence of double bonds 

which led to chain coupling. In addition to radical-based chain transfer reactions, disulfide 

moieties can undergo an associative reaction with thiol compounds.
114,115

 However, due to the 

high reactivity of the thiol groups and their tendency to oxidize in ambient conditions their 

extent of dynamic exchange is reduced with time. Moreover, disulfides can also be induced to 

undergo exchange by addition of a reducing agent, such as tri-n-butylphosphine (TBP), which 
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leads to the formation of a thiolate anion allowing shuffling of disulfide bonds.
116

 Nevertheless, 

in the presence of water, an irreversible side-reaction of TBP with disulfides can lead to the 

formation of phosphine oxide and thiols which might be undesirable as this inactivates the 

catalyst, cleaves the disulfide bonds and ceases the exchange reaction.
116,117

 

Alternatively, very recent research has focused on the development of (aromatic) diselenide 

and ditelluride based PUs, in which both enhanced healing kinetics and efficiency have been 

described due to faster exchange since the bond energy of both Se-Se and Te-Te is lower 

compared to that of disulfides (Figure I.12 b).
118–120

 Nevertheless, it is noteworthy to mention 

that these weaker bonds also lower the mechanical strength of the PUs and are supposedly 

less stable with time. Finally, incorporation of addition-fragmentation chemistries, such as 

thiuram,
121

 trithiocarbonates,
122,123

 and dithiocarbamate units,
124

  into PUs similarly allows for 

bond exchange and healing (Figure I.12 c). However, these mainly photo-activated reactions 

pose similar drawbacks as the photo-induced dissociative reactions, questioning their stability 

under long exposure to (sun)light. 
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I.3. Applicability of intrinsically healable polyurethanes 

Having discussed the various chemistries that can be employed to obtain self-healing 

polyurethanes, it is also important to mention that, since they can act as thermoplastic, 

elastomeric or thermosetting materials, it possible to use them in various application fields, 

such as adhesives, elastomers and coatings.
34

 Especially the last group has captured a lot of 

interest, as one of the most widely cited potential applications in academic literature for 

intrinsically healable polyurethanes is their use in (protective) coatings.
125–127

 Nevertheless, 

only a handful of examples can be found where self-healing (PU) coatings are actually 

employed in industrial applications, with the biggest interest coming from the car industry. 

Nissan was one of the first to mention self-healing clear-coats,
125

 after which Bayer Materials 

science (now Covestro) described scratch-resistant and healable topcoats for cars and 

proposed their usefulness in furniture industry.
128

 More recently, also NEI cooperation,
129,130

 

Croda,
131

 and Lubrizol,
132

 have been promoting self-healing properties of their commercial 

products. So why is research on self-healing polymers booming (Figure I.1), while there is 

almost no existing market for self-healing materials so far (Figure I.2)?  

The reason is that for these self-healing polymers to be able to make the transition to industrial 

applications it is fundamental that they possess analogous properties to the non-healing 

alternatives, which is not trivial to achieve. For example, self-healing polyurethanes are 

expected to provide physical strength, i.e. limited motion, in order to meet the mechanical 

requirements of industrial coatings. However, this material property actually imposes a major 

stumbling block when it comes to their application. In fact, the incorporation of supramolecular 

interactions or dynamic covalent bonds into the polymer network, to provide dynamics and 
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mobility of the material enabling healing, tends to lower the mechanical properties of the bulk 

polymer due the inherent weakness of the dynamic bonds as mentioned above.  

These conflicting requirements, with material strength on the one side and network mobility on 

the other side, have limited the self-healing PU polymers reported in academic literature to 

attain similar mechanical properties as described for polyurethane coatings in patents so far. 

With a special focus on the disulfide based PU materials which were described in Section I.2., 

this issue is exemplified in Figure I.13, where the ultimate tensile strengths in the patent 

literature of non-healable PU(U) dispersions are above 15 MPa, while almost all academically 

reported examples of self-healing PU(U)s based on disulfide bonds are below this threshold.  

 

Figure I.13. Tensile properties of PU coatings from the patent literature in black symbols (●: sealing 
coatings,

133
 ■: hardwood floor coatings,

134
 ▲,▼: textile/leather coatings,

135,136
 ♦: sports floor 

coating
137

) and for self-healing PUs based on aliphatic disulfides (●),
95–101,114–116

 and aromatic 
disulfides (■),

102–106
 described in the literature overview in Section I.2.  
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Thus, from the above it is clear that in order to overcome the gap that currently exists between 

academic research and industrial applicability, self-healing PUs with increased mechanical 

properties need to be developed. Although recently a few studies have recognized this issue 

and have tried to enhance the strength of healable PU materials based on disulfides,
95,101,105,106

 

the target region of industrial coatings has not been reached yet (Figure I.13).  

It is also important to notice that although in many cases it is attractive to obtain self-healing at 

room temperature, this inherently demands a certain level of mobility of the polymer which 

compromises the mechanical properties and can lead to creep as well as a limited ability to 

withstand wear.
24,138

 It may therefore be advantageous to develop a material which shows 

sufficient mechanical resistance at the service temperature, while self-healing is “triggered” by 

application of an external stimulus such as heat, which can stimulate both chain dynamics and 

bond exchange. In order to restrict the heat necessary for activation, obviously the selection of 

the dynamic system, i.e. the type of reversible chemistry, is crucial as described in Section 

I.2. However, taking the crack healing theory described in Section I.1 back into mind, it is clear 

that the dynamic system mostly plays a role in the last step of randomization through bond 

reorganization of the polymer network and is not the only factor affecting the healing process.  

Another key parameter for successful self-healing is the chain mobility of the polymer. On the 

one hand, this can easily be enhanced by increasing the temperature above the glass 

transition temperature (Tg) so that molecular interdiffusion can take place. One the other hand, 

one can also play with the chain mobility of the material by altering the polymer architecture, 

which has only received limited attention to date as it has often been considered as a 

secondary factor next to the type of reversible chemistry.
138

 In the last few years, however, 
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researchers have realized the importance of this factor and therefore an increasing effort has 

been done to study the impact of the polymer structure when developing self-healing polymers. 

For example, as cross-linked polymers have a high mechanical strength, the impact of the 

cross-linking density on the healing ability of poly(urethane-urea)s has been studied,
139,140

 and 

alternatively the effect of trapping dynamic disulfides in the hard phase of PU elastomers has 

been investigated.
95

 Other non-PU based work has been directed towards the understanding of 

influence of polymer composition and physical properties on self-healing polymers,
33,141,142

 for 

example focusing on the effect of the disulfide or tetrasulfide content on the healing 

ability.
143,144

 In these studies, typically scratch closure kinetics were monitored to obtain a first 

qualitative measure for the healing potential of the polymer. Tensile testing and/or fracture 

mechanics were performed in order to quantitatively measure the mechanical properties of the 

material and their recovery after damage and healing. Finally, by combining this information 

with results from rheological measurements, more insight in the relationship between the 

polymer dynamics and architecture and the self-healing ability could be obtained. Although 

more work has been focusing on the influence of the polymer structure recently, it is clear that 

the understanding of its relationship with healing is still limited compared to the extent of 

research that has been done on linking the reversible chemistry to healing (Section I.2).  

Only if we are able to understand not solely the effect of the reversible chemistries, but also the 

influence of the polymer architecture on the healing ability of polymers, will we be capable of 

effectively developing self-healing materials with enhanced mechanical properties that answer 

the requirements of industrial applications so that the expectations of reaching a $2.4 billion 

market for self-healing materials by 2022 can be met (Figure I.2).
1,2
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I.4. Main motivation and objectives 

As described above, despite the significant efforts that have been done in academic research 

regarding self-healing polymers, it remains a huge challenge to try and develop a polymer that 

can meet the demand of industry for high material strength and simultaneously provide the 

attractive ability to self-heal under mild conditions. In this thesis, the development and 

characterization of newly synthesized monomers, polymers and polymer coatings will be 

described with the aim to close the gap between academic and industrial research and produce 

strong self-healing poly(urethane-urea)s which would be attractive for coating applications. 

Additionally, since, the coating market is shifting from solvent-based to waterborne coatings, 

because of environmental concerns and governmental regulations, the synthesis of the 

described poly(urethane-urea)s will be performed so that they are obtained as aqueous 

polymer dispersions limiting the use of volatile organic compounds (VOC). 

Since aromatic disulfide bonds have the potential of providing enough mechanical strength to 

the material at room temperature, while offering an easily initiated and fast dynamic exchange 

at elevated temperatures as described above, we want to incorporate aromatic disulfide bonds 

into waterborne poly(urethane-urea) materials so that self-healing can be achieved both by 

supramolecular interactions (H-bonding) and dynamic covalent bonds (disulfide bonds). 

However, first, we need to clarify which mechanisms play a role in the disulfide exchange so 

that we obtain full understanding of the polymer chemistry that will be introduced into the 

poly(urethane-urea) materials. Afterwards, we aim to investigate the limits of commercially 

available aromatic disulfide compounds, so that new and improved aromatic disulfides can be 
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synthesized and incorporated offering stronger and more efficiently healable PU(U)s. 

Furthermore, we seek to optimize the polymer architecture by playing with the different building 

blocks so that the materials with an enhanced mechanical strength show sufficient mobility 

leading to self-healing which would be of interest in coating applications. In other words, we 

pursue to attain the ultimate goal of getting into the region of scope for the mechanical 

properties of industrial coatings (Figure I.13), while still showing a certain extent of self-healing. 

Finally, we desire to test the protective barrier properties of the developed materials at the 

application level, i.e. as coatings. 
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I.5. Thesis outline 

Chapter I gives a general introduction on self-healing materials focusing on the different 

intrinsic chemistries introduced into polyurethanes to obtain recovery after damage and 

describing the current issues regarding their applicability. Moreover, the main motivation and 

objectives of the thesis are specified. 

In Chapter II, the underlying mechanism of disulfide exchange will be elucidated using a 

variety of spectroscopic techniques to monitor the model exchange reaction between two 

aromatic disulfide compounds, so that full understanding of the polymer dynamics can be 

obtained.  

The synthesis of waterborne poly(urethane-urea)s containing dynamic aromatic disulfide bonds 

will be described in Chapter III. Additionally, it will be demonstrated that the incorporation of a 

new flexible disulfide monomer increases both the mechanical strength and the dynamic 

behaviour of the materials making them more attractive for self-healing applications. These 

analyses will be performed mainly using polymer characterization methods, scratch closure 

tests and rheological measurements. 

Chapter IV will focus on the optimization of the polymer microstructure in order to enhance the 

strength of the poly(urethane-urea)s at room temperature, while obtaining sufficient mobility at  

elevated temperature, so that healable waterborne coatings can be developed which can 

overcome the currently existing gap between academic research and industry (Figure I.13). In 

order to reach this goal, we will not only play with the amount and flexibility of the self-healing 
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disulfide moiety, but we will also modify the degree of functionality of the chain extender, so 

that the characteristics of both linear and cross-linked self-healing materials can be compared. 

In Chapter V, the explicit influence of the dynamic covalent disulfide bonds on the strength, 

mobility and self-healing ability will be determined for linear poly(urethane-urea)s and cross-

linked PUU networks by comparing them with non-dynamic counterparts using fracture 

mechanics in addition to the other characterization techniques.  

Chapter VI will investigate the capability of these healable polymers to protect metal substrates 

from corrosion in pristine, damaged and healed conditions.  

Finally, Chapter VII summarizes the most relevant conclusions of this thesis. 

In order to avoid too elaborate representations and discussions in the individual chapters, the 

Supporting Information of Chapter III-V is represented in Appendixes I-III respectively, while 

the Abbreviations and acronyms used in the thesis are listed at the very end. 
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II.1. Introduction 

As discussed in Chapter I, self-healing polymers have attracted a lot of attention over the last 

decades as they provide a potential solution for the persisting problem of material damage, 

enabling an extended product life-time.
1–7

 Especially, self-healing polymers which can heal 

intrinsically, making use of reversible chemical or physical bonds, are interesting for long-term 

use as they are able to undergo multiple healing events.
8
 In order to develop self-healing 

materials with a desirable high mechanical strength, it seems advantageous to introduce 

reversible covalent bonds into the polymer backbone, as they are typically stronger than the 

supramolecular interactions. Among the broad range of dynamic chemistries that have already 

been introduced into intrinsically healable polymers (Section I.2.2),
9–12

 the dynamic covalent 

disulfide bonds seem to be particularly interesting due to their versatility, the relatively simple 

applicability for a large variety of polymers and the fact that they dynamically exchange when 

exposed to various stimuli, e.g. heat, light, redox or pH.
13–15

  

Therefore, in this thesis, we will focus on the incorporation of these dynamic disulfide bonds, 

but before starting to incorporate these bonds into the polymer backbone, it is important to 

understand the underlying mechanisms involved in this disulfide exchange. Like this, we can 

obtain more insight in the self-healing event taking place in the polymers incorporating these 

bonds, so that ideally a more effective development of stronger self-healing materials is 

possible. However, up till recently, the underlying mechanisms taking place during disulfide 

exchange were still ambiguous as both metathesis
16–18

 and a radical mediated mechanism
19,20

 

had been described in literature. Moreover, some work had been published in which both 

mechanisms were used indistinctly to describe the exchange reaction,
21–23

 while other research 
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described the disulfide exchange without specifying the underlying mechanism.
24

 Therefore, it 

was obvious that further analysis of the mechanisms involved in this highly relevant reaction for 

self-healing was necessary in order to be able to provide a clarifying overview on this topic.   

In this context, it is important to emphasize the difference between the [2+2] metathesis 

reaction mechanism and a [2+1] radical mediated mechanism. As distinctively described by 

Ruipérez and co-workers, in the first case, the disulfide bonds would break and form 

simultaneously, while in the radical mediated mechanism, the breaking of one disulfide bond 

would lead to the formation of sulfur-centered (thiyl) radicals that would eventually attack other 

disulfide bonds (Figure II.1).
25

 These authors theoretically predicted that the main reaction 

mechanism would go through the formation of sulfur-based radicals and three-membered 

transition states. In this chapter, we focus on the experimental validation of these theoretical 

calculations and clarification of the underlying mechanisms of disulfide exchange by 

investigating the kinetics of the exchange of a mixture of aromatic disulfides. 

 

Figure II.1. Schematic representation of the [2+2] metathesis (upper)  
    and [2+1] radical mediated (lower) mechanisms. 
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First, kinetic studies are performed by quantitative 
13

C Nuclear Magnetic Resonance (NMR) 

spectroscopy in order to gain more knowledge about the mechanism of the disulfide exchange 

reaction. A model exchange reaction of bis(4-aminophenyl)disulfide with diphenyl disulfide is 

investigated and compared with modified reactions by adding or changing specific reagents 

(initiator, inhibitor, catalyst, monomer or disulfide compound) or changing the reaction 

conditions (with or without UV radiation). Additionally, solid-state and solution Electron 

Paramagnetic Resonance (EPR) measurements are carried out to provide some insight in the 

presence of radicals in the disulfide bonds of different disulfide compounds and to check the 

influence of catalysts on the presence of these radicals. Finally, Ellman’s reagent (5,5'-

dithiobis-(2-nitrobenzoic acid), DTNB) is used to establish the presence of thiolate compounds 

when certain catalysts are added to the system. 

II.2. Experimental 

II.2.1. Materials 

2,2'-azobis(4-methoxy-2,4-dimethyl valeronitrile) (V70, Wako Pure Chemical Industries, 

technical grade), 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB/Ellman’s reagent, Sigma Aldrich, 

≥98%), 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, Sigma Aldrich, 98%), bis(4-

aminophenyl)disulfide (TCI, >98.0%), bis(4-hydroxyphenyl)disulfide (TCI, >98.0%), 

diethylamine (DEA, Sigma Aldrich, ≥99.5%), diphenyl disulfide (Sigma Aldrich, 99%), methyl 

methacrylate (MMA, Quimidroga, technical grade), triethylamine (TEA, Sigma Aldrich, ≥99%) 

and tri-n-butylphosphine (TBP, Sigma Aldrich, 97%) were used as received. 
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II.2.2. Methods 

X-band EPR measurements were performed on a Bruker ELEXSYS 500 spectrometer 

equipped with a super-high-Q resonator ER-4123-SHQ and a maximum available microwave 

power of 200 mW. Solid samples and solutions were placed in quartz tubes and spectra were 

recorded at room temperature using typical modulation amplitudes of 0.05-0.1 mT at a 

frequency of 100 kHz. A NMR probe was used to calibrate the magnetic field and the frequency 

inside the cavity (~9.4 GHz) was determined with an integrated MW-frequency counter. The 

liquid NMR spectra were recorded on a Bruker AVANCE 500 spectrometer equipped with a Z-

gradient BBO probe. The kinetic studies of the reactions were conducted at 35°C using 
13

C 

spectra. The 
13

C spectra were recorded every 5/15 min for 2/12 h using an inverse gated 

sequence at 125.13 MHz. A time domain of 64k and a spectral width of 31 kHz were 

considered, while the interpulse delay was 5 s and the acquisition time 1 s. In some 

experiments the interpulse delay was changed from 5 s to 20 s.  An ultraviolet (UV) chamber 

(model BS 03, Dr. Gröbel UV-Elektronik GmbH) was used equipped with 20 UV lamps of 

wavelength range from 315 to 400 nm with a maximum intensity at 368 nm. Ultraviolet-visible 

(UV–vis) spectra were obtained using a Cary-1 (Varian) spectrophotometer and analyzed using 

UVProbe as the appropriate software. 

II.2.3. Kinetic studies performed by 
13

C NMR spectroscopy 

In a typical reaction, 24.8 mg of bis(4-aminophenyl)disulfide was dissolved in 500 μL of DMSO 

and brought up to the temperature of 35°C in the NMR spectrometer after which an initial scan 

was recorded. Subsequently, a solution of 21.8 mg of diphenyl disulfide in 200 μL of DMSO 
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was added and the NMR tube was mixed briefly before inserting it in the spectrometer. Other 

reactions were performed and analyzed similarly after adding or varying certain reagents or 

reaction conditions as described in detail in Table II.1. The degree of product formation for the 

different reactions was calculated by introducing the integrals of signals a and b (Figure II.3) 

into equation II.1: 

X= 
    

    

 
     

    (II.1) 

The measured T1 values of a (1.14 s) and b (1.71 s) are low enough so that, with an interpulse 

delay of 5 s, the values obtained for the degree of product formation can be considered 

quantitative. To confirm, these additional experiments with a delay time of 20 s were performed 

with quantitatively similar results. It should be noted that the carbons c and d as shown in 

Figure II.3 and Figure II.5 (results and discussion section) have significantly longer relaxation 

times (T1=4.01 and 3.22 s for carbons c and d respectively), therefore quantitive comparison is 

not possible for these signals.  Analogously, also the reaction of 21.8 mg of diphenyl disulfide 

with 175 μL of MMA was followed using 
13

C NMR spectroscopy in 525 μL DMSO at room 

temperature. NMR measurements of the mixtures where taken after 2 days at room 

temperature (RT) and after additional exposure to UV radiation for 1h10min also at RT. 

Furthermore, the reaction between MMA and diphenyl disulfide (1 eq.) in DMSO and in the 

presence of 1.4 µL (0.1 eq.) of TEA was followed using 
13

C NMR spectroscopy, measuring the 

reaction after 2 d at RT. 
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II.2.4. EPR measurements 

Bis(4-aminophenyl)disulfide and bis(4-hydroxyphenyl) disulfide were analyzed for the presence 

of radicals by EPR spectroscopy. An amount of 70 mg of each disulfide compound was used to 

be able to carry out solid-state measurements. Furthermore, to analyze the effect of TEA on the 

disulfide bond and the presence of radicals in this bond, also measurements in solutions were 

performed.  In 1.5 mL eppendorf tubes, a solution was made of 2 mg of the solid disulfide 

compound in the required amount of TEA as solvent to reach a total volume of 1.5 mL. 

Eventually 0.5 mL of mixture was used to perform the solution EPR measurements. 

II.2.5. UV-vis measurements in the presence of Ellman’s reagent  

Quantitative experiments were performed by using UV-vis spectroscopy. In these experiments 

TEA, DEA and TBP were tested by adding 50 μL of a DTNB solution (4 mg DTNB/ mL DMSO) 

to a 14.3 mM solution of the reagents in DMSO. These reaction mixtures where then measured 

by UV-vis spectroscopy in a spectral range varying form 190-700 cm
-1

. 

II.3. Results and discussion 

II.3.1. Model exchange reaction 

First, the model exchange reaction of bis(4-aminophenyl)disulfide with  diphenyl  disulfide  

forming  the  mixed  product   (Figure II.2)  was followed kinetically for 12 h at 35°C using NMR 

spectroscopy. The product formation was analyzed through the change of signals in the 
13

C 

NMR spectra as depicted in Figure II.3. The signals a and c in Figure II.3 were both assigned 

to the reactants, while b and d were ascribed to the formed product. The degree of product 
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formation for the model exchange reaction (i) (Table II.1) was calculated by monitoring the 

change in the relative integrals of the 
13

C NMR spectra and is shown in Figure II.4. It can be 

seen that, after 12 h, the exchange reaction reached a conversion of almost 60%. When 

experiments were performed under inert conditions (N2-atmosphere), similar results were 

obtained which indicated that oxygen has little to no influence on the disulfide exchange 

reaction. Addition of the radical scavenger TEMPO (0.1 mol eq.) resulted in a complete 

inhibition of the disulfide exchange (Figure II.5). This inhibition is possible since TEMPO 

combines with sulfur-based radicals forming an adduct which can also decompose to give inert 

species.
26

 It is particularly important to highlight that complete inhibition of the exchange would 

not be possible using such a low amount of TEMPO if it is assumed that the exchange 

proceeds via a simple cleavage and recombination of the disulfide bond. 

 

Figure II.2. Exchange reactions studied by 
13

C NMR spectroscopy. 

Table II.1 Detailed description of the exchange reactions studied by 
13

C NMR spectroscopy. 

Reaction A:B R X Time (h) 

i 

1:1 
 

-NH2 / 12 
ii -NH2 0.1 mol eq. TEMPO 12 
iii -NH2 0.1 mol eq. V70 12 
iv -NH2 UV (10 min) 12 
v -OH / 12 
vi -NH2 0.1 mol eq. TEA 2 
vii -NH2 0.1 mol eq. TEA + 0.1 mol eq. TEMPO 12 
viii -NH2 0.1 mol eq. TBP 2 
iv -NH2 0.1 mol eq. TBP + 0.1 mol eq. TEMPO 12 
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Figure II.3.
 13

C NMR spectra of the exchange reaction of bis(4-aminophenyl)disulfide with diphenyl 
disulfide (delay time of 20 s) 

 

Figure II.4. Formation of the exchange product in function of time for the exchange reactions (i), 
(iii), (iv) and (v) 
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Figure II.5. Formation of the exchange product via the model exchange reaction (i)  
 and in the presence of TEMPO (ii) (delay time of 20 s) 

When an initiator with a fast decomposition at low temperature (t1/2=10 h at 30°C), V70 (0.5 mol 

eq.), was introduced into the model reaction mixture, a fast increase to a maximum product 

formation (70%) at 2 h was observed (Figure II.4 iii). Based on the change in kinetics of the 

disulfide exchange in the presence of a radical trap and a radical source, it can be presumed 

that the mechanism for the disulfide exchange is radical mediated as theoretically proposed.
25

  

To further confirm the radical mechanism, the reaction conditions of the model exchange 

experiment were modified. When the reaction mixture was exposed to UV radiation, the 

exchange reaction was rapid. After exposure for 10 min to UV radiation (iv), the reaction 

mixture was kinetically studied and the corresponding data obtained by 
13

C NMR spectroscopy 

are illustrated in Figure II.4 (iv). This result demonstrates that the exchange reaction had 

already reached a product formation of 70% at the first measurement of the kinetic study (15 

min). This drastic increase in the rate of product formation when conducted under UV radiation 

further confirmed the proposed mechanism. 
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In order to investigate the influence of the molecular structure of the disulfide compounds on 

the exchange reaction, more specifically the effect of alternative substituents on the aromatic 

ring, the reactant bis(4-aminophenyl)disulfide was replaced by bis(4-hydroxyphenyl)disulfide in 

the model reaction. As visible in Figure II.4, this exchange reaction (v) reached a conversion of 

60% after approximately 2 h in comparison to 12 h in the case of bis(4-aminophenyl)disulfide. 

The increase in the rate of conversion suggests that the radical generation of bis(4-

hydroxyphenyl)disulfide is faster than that of bis(4-aminophenyl)disulfide.  

Further confirmation of the radical mediated exchange mechanism was obtained via EPR 

spectroscopy. Solid-state EPR measurements showed an EPR signal, visible in Figure II.6, for 

bis(4-hydroxyphenyl)disulfide while no signal could be observed for bis(4-aminophenyl)-

disulfide. The isotropic EPR signal with a g-value of 2.0025 affirmed the presence of a (sulfur-

based) radical in bis(4-hydroxyphenyl)disulfide which is in strong accordance with the g-value 

of a sulfur-based radical in a thiuram disulfide diol unit (g=2.004).
19

 An explanation for the 

absence of an EPR signal in the analysis of the bis(4-aminophenyl)disulfide would be the lower 

radical concentration present in this disulfide compound which is in agreement with the slower 

rate of product formation as depicted above in Figure II.4 and the limited sensitivity of solid-

state EPR spectroscopy which probably prevents the detection of this lower concentration.  
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Figure II.6. EPR signal of bis(4-hydroxyphenyl)disulfide. 

As a final experiment to validate the presence of radicals in the underlying mechanism of 

disulfide exchange, diphenyl disulfide was reacted with MMA at RT. Since disulfides can act 

simultaneously as initiator, transfer agent and terminator (iniferter) in radical polymerization, 

poly(methyl methacrylate) (PMMA) is expected to be formed with initiator fragments of the 

disulfide compound as end groups.
27,28

 The 
13

C NMR spectra of the reaction of diphenyl 

disulfide with MMA after 2 d at RT and after an additional exposure to UV radiation for 10 min 

and 1h 10 min at RT are depicted in Figure II.7. These spectra show that after 2 d a small 

amount of PMMA could be observed at the region of 1-0.5 ppm. However, when UV radiation 

was applied to increase the cleavage of the disulfide compound, larger signals for the formed 

product were appearing. This proves that UV radiation cleaves the disulfide bond forming S-

based radicals which can induce radical polymerization of MMA, since a blank of MMA in 

DMSO under UV radiation for the same time interval did not show any polymer product. 
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Figure II.7. 
13

C NMR spectra of the reaction of diphenyl disulfide with MMA. 

The suppression of the exchange reaction by the inhibitor, the enhancement by the initiator, by 

UV radiation and by changing the disulfide and the role of the disulfide as iniferter in the radical 

polymerization of MMA all suggested that the underlying mechanism for the disulfide exchange 

reaction is radical mediated. However, the experimental results of the model reaction in the 

presence of TEMPO showed that a mechanism which only forms radicals via cleavage and 

recombination could be ruled out, because only 0.1 equivalent of TEMPO was necessary to 

suppress the formation of the product. Therefore a radical mediated mechanism in which 
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cleavage leads to the formation of two radicals which can recombine or undergo a chain-

transfer reaction can be proposed (Figure II.8). According to this mechanism, only a small 

amount of radicals have to be formed to achieve extensive disulfide exchange, and hence even 

a small amount of inhibitor (0.1 mol eq. TEMPO) can kill the possibility of forming any product.  

 

Figure II.8. Probable radical mediated mechanism for the disulfide exchange reaction. 

II.3.2. Effect of the addition of catalysts on the model exchange reaction 

While the aromatic disulfides undergo spontaneous exchange, other disulfide compounds 

require the addition of catalysts, such as triethylamine (TEA)
29

 and tri-n-butylphosphine 

(TBP),
18

 to enhance the disulfide exchange reaction. Kinetic studies were carried out using 
13

C 

NMR spectroscopy to verify the enhancing influence of TEA as catalyst on the exchange 

reaction as described by Rekondo et al..
29

 Figure II.9 demonstrates that the exchange reaction 

with the addition of TEA (vi) had already reached a conversion of 70% after approximately 1 h. 

Similar results were obtained adding TBP (viii) as catalyst to the model exchange reaction. In 

order to verify the underlying mechanism of this increase, additional solution EPR 

measurements were carried out in order to examine the effect of a catalyst (TEA) on the 

presence of radicals in the disulfide bonds of both disulfide compounds. Since the rate 

enhanced substantially, a corresponding large increase in the EPR signal would be expected 

when a radical mechanism is assumed. However, no increase in EPR signal was observed in 
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the presence of the catalyst, indicating that the increase in rate could not be associated with a 

radical mediated mechanism. Furthermore, addition of TEA had no impact on the extent of 

polymerization of MMA in the presence of diphenyl disulfide after 2 d at RT, proving that adding 

catalyst does not lead to an increase in the radical concentration. 

 

Figure II.9. Formation of the exchange product in function of time for the exchange reactions (i), 
(vi), (vii), (viii) and (ix). 

Since both catalysts, TEA and TBP, are nucleophiles and are known to reduce disulfide 

compounds, forming thiolate anions, the most probable effect of these catalysts is to enhance 

the disulfide exchange reaction through the formation of sulfur-based anions.
30

 In order to 

prove this, Ellman’s reagent (DTNB), an aromatic disulfide similar in structure to the 

compounds used in this chapter, was used as a reactant. Upon reduction, 5,5'-dithiobis-(2-

nitrobenzoic acid) (DTNB) yields a highly coloured thiolate species, 2-nitro-5-thiobenzoate 
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(TNB), which can be detected by UV-vis spectroscopy.
31,32

 Thus, the disulfide DTNB was 

reacted with TEA, TBP and DEA in similar concentrations as used in the previous NMR studies 

and UV-vis spectroscopy was used to measure the formation of the coloured TNB. As can be 

derived from Figure II.10, the UV-vis signal increased with the nucleophilicity of the catalyst 

(TBP>DEA>TEA),
33,34

 starting from small in the case of TEA, to bigger in the case of DEA and 

the biggest for TBP as catalyst, confirming that in the presence of nucleophiles aromatic 

disulfide compounds fragment to yield thiolate anions.  

 

Figure II.10. UV-vis measurements of different catalysts (TBP, TEA, DEA) with DTNB. 

Based on these experiments, it would be suggested that in the presence of a catalyst both 

radical mediated and thiol mediated exchanges occur simultaneously as shown in Figure II.11. 

In order to confirm this, reactions were conducted in the presence of both catalyst and the 

400 500 600
0,00

0,05

0,10

0,15

A
b

so
rb

an
ce

Wavelength (nm)

 Et
3
N + Ell

 Et
2
NH + Ell

 TBP + Ell

 

  

400   500   600   
0 . 00   

0 . 05   

0 . 10   

0 . 15   

Wavelength (nm)   

  TEA   
  
     + Ell   

  DEA         + Ell   

    
TBP + Ell   



Chapter II                  

60 

radical scavenger TEMPO. Whilst TEMPO was capable of completely preventing the radical 

mediated exchange in the absence of catalyst, when a catalyst (TEA or TBP) is added the 

disulfide exchange still occurs, although at a slower rate than when no TEMPO is present 

(Figure II.9). The faster relative rate of conversion in the presence of TBP compared to TEA is 

due to the higher nucleophilicity of the TBP in comparison to TEA, since a higher nucleophilicity 

enhances the formation of sulfur-based anions and therefore promotes the disulfide 

exchange.
31

 In the presence of TEMPO and catalyst, the radical pathway is blocked, but the 

exchange can still occur due to the generation of thiols by the catalyst. However, it is 

noteworthy to mention that when an excess of TEMPO (1 eq.) is added to the model reaction in 

the presence of TEA (0.1 mol eq.) no product formation was visible. This indicates that TEMPO 

may also retard the formation of sulfur-based anions formed by the addition of catalysts.
35

  

 

Figure II.11. Disulfide exchange through the formation of S-based radicals and S-based anions. 
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II.4. Conclusions 

In summary, the results presented herein demonstrate that the general mechanism responsible 

for the self-healing event of disulfide bonds is radical mediated and involves homolytic 

cleavage of the disulfide bond followed by subsequent radical transfer of sulfur-based radicals. 

In the presence of nucleophiles, such as TEA and TBP, disulfides yield thiolate anions which 

can similarly undergo a series of transfer reactions and enhance the rate of the disulfide 

exchange. It is aspired that this mechanistic picture of the disulfide exchange reaction will 

enlarge the understanding of the self-healing event in disulfide-based polymers and help the 

synthesis of new strong self-healing materials as described in Chapter III. 
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III.1. Introduction 

Since the underlying mechanisms of disulfide exchange have been elucidated in Chapter II, we 

can now introduce this reversible chemistry into polymers so that intrinsically healable 

materials can be developed. Polyurethanes are perhaps the most attractive candidates to 

achieve this objective, as clarified in Chapter I, since these versatile materials not only provide 

strength and mobility due to their phase separated structure, but they also are able to 

inherently heal due to formation of H-bonds and allow incorporation of additional functional 

moieties to further enhance recovery from damage.
9,10

 Therefore, by incorporating dynamic 

disulfides into polyurethanes, self-healing materials can be created which provide strength by 

the unique polyurethane architecture and simultaneously enable healing via both 

supramolecular interactions, i.e. H-bonds, and dynamic covalent bonds, i.e. disulfide bonds. 

In this way, several PUs have already been developed using the dynamic exchange of linear 

aliphatic disulfides in order to obtain intrinsically healable polymers under the influence of 

external stimuli.
16–21

 However, by introducing an aromatic disulfide compound, bis(4-

aminophenyl)disulfide (S2(PhNH2)2, Figure III.1), Rekondo et al. described that the dynamic 

disulfide exchange could be enhanced compared to aliphatic ones, as was demonstrated by 

the healing of a cross-linked poly(urethane-urea) that could take place at room temperature 

without the use of any catalysts.
22

 The dynamic behaviour of the aromatic disulfide at reduced 

temperatures has subsequently been explored by several groups in the area of self-healing.
24–

26
 For example, using the same disulfide, Yang et al. synthesized a PU elastomer with 

improved tensile strength for which self-healing could be induced by heating to 60°C. They 

observed that for more cross-linked materials a higher tensile strength was obtained, but this 
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occurred with a concomitant lowering of the ability to self-heal.
27

 Kim et al. developed a 

thermoplastic polyurethane with an increased toughness by introducing an aromatic disulfide 

diol, bis(4-hydroxyphenyl)disulfide (S2(PhOH)2, Figure III.1), which could also heal at room 

temperature. Using this system, they reported an ultimate tensile strength of 6.8 MPa, which is 

at the upper limit of the reported values for self-healing systems at room temperature.
28

  

 

Figure III.1. Chemical structure of bis(4-aminophenyl)disulfide (S2(PhNH2)2) and bis(4-
hydroxyphenyl)disulfide (S2(PhOH)2). 

However, as already commented in Section I.3, healing at room temperature inherently 

demands a certain level of mobility of the polymer which compromises the mechanical 

properties, wear resistance and can lead to creep.
29–31

 This is a major issue in polyurethane 

materials as in many high-end applications the higher cost of polyurethanes is overlooked 

owing to their superior mechanical strength. For example, while there are a wide variety of 

polymers that are used in waterborne coatings, few can match polyurethane dispersions for 

applications requiring strong coatings such as furniture, automotive and floor coatings. As a 

result, the majority of applications of PU dispersions require high tensile strengths, typically 

exceeding 15-20 MPa.
32–36

 This requirement for high tensile strength puts the constraints of 

commercial materials beyond the limits of current self-healing polymers (Chapter I, Figure I.13).  
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To overcome this gap, in Chapter III, we seek to develop waterborne polymer dispersions 

which show sufficiently high mechanical resistance at room temperature and additionally 

recover from damage when chain mobility is induced by external stimuli such as heat. In order 

to meet this objective, the synthesis of waterborne poly(urethane-urea)s containing aromatic 

disulfide compounds is described.  

First, the influence of the hard 2,2-bis(hydroxymethyl)propionic acid (DMPA) monomer, which 

acts as an internal ionic stabilizing agent upon neutralization in dispersion, on the self-healing 

ability of linear poly/urethane-urea)s (PUUs) is investigated via scratch closure and rheological 

measurements. Afterwards, the limits for solubility, reactivity and flexibility of the readily 

available aromatic disulfides, bis(4-aminophenyl)- and bis(4-hydroxyphenyl)disulfide (Figure 

III.1), in the synthesis of the waterborne PU(U)s is tested. Finally, on the basis of these 

investigations, a structurally modified aromatic disulfide compound, bis[4-(3’-

hydroxypropyloxy)phenyl]disulfide (S2(Ph(CH2)3OH)2), is synthesized and introduced to a 

higher extent into the polymer backbone so that a waterborne PU(U) material is developed with 

an increased strength and mobility. Hence, incorporation of the modified aromatic disulfide 

compound enlarges the efficiency of developing stronger self-healing polymers of interest for 

applications requiring strength, such as coatings.  
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III.2.  Experimental 

III.2.1.  Materials 

Acetone (Sigma-Aldrich, ≥99.5%), bis(4-aminophenyl)disulfide (S2(PhNH2)2, TCI, >98.0%), 

bis(4-hydroxyphenyl)disulfide (S2(PhOH)2,TCI, >98%), 2,2-bis(hydroxymethyl)propionic acid 

(DMPA, Sigma-Aldrich, 98%) 3-bromo-1-propanol (Apollo Scientific, 96%), bromophenol blue 

(Fluka), dibutyltin dilaurate (DBTL, Sigma-Aldrich, 95%), diethylamine (DEA, Sigma-Aldrich, 

≥99.5%), ethyl acetate (EtOAc, ACROS Organics, ≥99.5%), hexane (Fisher Chemicals, >99%), 

hydrochloric acid 1N (HCl, Panreac), isophorone diisocyanate (IPDI, Sigma-Aldrich, 98%), 

methyl ethyl ketone (MEK, ACROS Organics, >99%),  polytetrahydrofuran (PolyTHF, BASF, 

2000 g.mol
-1

), potassium carbonate (K2CO3, Sigma-Aldrich, ≥99%), sodium chloride (NaCl, 

Sigma-Aldrich, ≥99.5%), sodium sulfate (Na2SO4, Sigma-Aldrich, ≥99%), tetrahydrofuran (THF, 

Scharlab), triethylamine (TEA, ACROS Organics, 99%) were used as received. 

III.2.2.  Synthesis of bis[4-(3'-hydroxypropoxy)phenyl]disulfide  

 S2(Ph(CH2)3OH)2 

Inspired by the synthetic method reported by Ohishi et al.,
37

 a mixture of bis(4-

hydroxyphenyl)disulfide (100 g, 0.40 mol), 3-bromo-1-propanol (51 mL, 1.00 mol) and 

potassium carbonate (554 g, 4.01 mol) in THF (100 wt% of the solid reagents) as solvent was 

stirred at 60°C for 48 h under N2-atmosphere (Figure III.2), in a jacketed glass reactor 

equipped with a mechanical stirrer and a condenser. Afterwards, the reaction mixture was 

filtered and washed with EtOAc. The obtained organic filtrate was washed with 1N HCl and 

brine, after which it was dried over anhydrous Na2SO4. The solvent was removed from the 

http://www.tcichemicals.com/eshop/nl/be/commodity/B3827/
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product under vacuum and the residue material was purified by recrystallization in an 

EtOAc:Hexane-mixture (3:5). Finally, the product was dried at 50°C under vacuum to give 

bis[4-(3’-hydroxypropyloxy)phenyl]disulfide S2(Ph(CH2)3OH)2 [IUPAC: ((disulfanediylbis(4,1-

phenylene))bis(oxy))bis(propan-1-ol)]. 

 

Yield: 70.5 g (64 mol%). Pale yellow powder. FTIR (neat, cm
-1

): 3319.19, 2945.40, 2870.80, 

1883.87, 1589.02.  m.p.: 60.3 - 61.2ºC.  
1
H NMR (500 MHz, Chloroform-d) δ 7.44 – 7.37 (d, J = 

8.79 Hz, 2H), 6.89 – 6.82 (d, J = 8.80 Hz, 2H), 4.12 (t, J = 6.0 Hz, 2H), 3.87 (t, J = 5.9 Hz, 2H), 

2.05 (m, J = 5.9 Hz, 2H), 1.81 (s, 1H (OH)) (Figure A I.1, Appendix I). 
13

C NMR (126 MHz, 

Chloroform-d) δ 159.31, 132.82, 128.77, 115.36, 77.50, 77.25, 76.99, 65.88, 60.40, 32.12 

(Figure A I.2). Anal. Calcd. for C18H22O4S2: C 58.99, H 6.05, S 17.50. Found: C 58.96, H 6.01, 

S 17.42. HRMS (ESI) for C18H22O4S2 calculated [M+H]
+
: 366.0960. Found: 366.0960.  

 

Figure III.2. Claisen etherification to obtain bis[4-(3'-hydroxypropoxy)phenyl]disulfide. 

III.2.3.  Synthesis of waterborne poly(urethane-urea) dispersions 

III.2.3.1. Synthesis of the waterborne PUU dispersions based on  

   bis(4-aminophenyl)disulfide S2(PhNH2)2 

In order to obtain the prepolymer, PolyTHF (Mn=2000 g.mol
-1

), DMPA and IPDI were fed 

together into a 100 mL jacketed glass reactor equipped with a mechanical stirrer and a 

condenser. Next, DBTL (0.2-0.4 wt% of reactants) as catalyst and acetone (45-60 wt%) as 
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solvent were added and the mixture was stirred for 2 h at 56ºC under refluxing conditions. A 

first series of PUUs was prepared varying the amount of DMPA added to the reaction mixture 

from 3 to 7 wt% of reactants. The formulation for the syntheses of these different pre-polymers 

can be found in Table III.1. After 2 h, the isocyanate concentration had reduced to the 

theoretical level as determined by back titration and the mixture was cooled down to room 

temperature so that bis(4-aminodiphenyl)disulfide (0.33 mol eq. of IPDI) could be added into 

the vessel to react with the residual free NCO-groups of the prepolymer for 4 h. Finally, the 

mixture was neutralized with TEA (1 mol eq. of DMPA) after which deionized water (100-150 

wt%) was added dropwise to obtain a dispersion. Acetone was removed from the filtered 

dispersion by evaporation using a rotary evaporator at 556 mbar so that a solids content of 30-

35 wt% was obtained. A summary of the synthetic process is shown in Figure III.3. 

 

Figure III.3. Synthetic procedure of waterborne PUU dispersions. 

For the second series of PUUs based on S2(PhNH2)2, a constant amount of DMPA was used (3 

wt% of reactants), while a variable amount of bis(4-aminophenyl disulfide) was added to the 

prepolymer for incorporation into the PUU backbone as is depicted in Table 1. Due to the 

variable amount of disulfide and therefore varying necessity of free NCO-groups, the 

prepolymer reaction times were 2 h, 1.5 h and 1 h for PUU-3D-0.33S, PUU-3D-0.44S and 
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PUU-3D-0.53S, respectively. Subsequently, a reaction time of 6 h instead of 4 h was required 

for PUU-3D-0.44S and PUU-3D-0.53S to assure full incorporation of the larger amount of bis(4-

aminophenyl disulfide) before neutralization, dispersion and evaporation could be carried out.  

Table III.1. Formulation of different PUU syntheses performed varying the amount of DMPA and 
bis(4-aminophenyl disulfide) (wt% based on the total amount of reactants). 

Run Sample Unit DMPA  IPDI PolyTHF S2(PhNH2)2 

1 PUU-3D-0.33S 
wt% 3 19 71 7 

mol eq. 0.25 1 0.42 0.33 

2 PUU-4D-0.33S 
wt% 4 21 67 8 

mol eq. 0.31 1 0.36 0.33 

3 PUU-5D-0.33S 
wt% 5 22 64 8 

mol eq. 0.35 1 0.32 0.33 

4 PUU-6D-0.33S 
wt% 6 24 61 9 

mol eq. 0.38 1 0.28 0.33 

5 PUU-7D-0.33S 
wt% 7 26 57 10 

mol eq. 0.42 1 0.24 0.33 

6 PUU-3D-0.44S 
wt% 3 22 64 11 

mol eq. 0.23 1 0.33 0.44 

7 PUU-3D-0.53S 
wt% 3 24 58 14 

mol eq. 0.21 1 0.27 0.53 

 

III.2.3.2. Synthesis of the waterborne PU dispersion based on bis(4-    

    hydroxyphenyl)disulfide S2(PhOH)2 

PolyTHF (Mn=2000 g.mol
-1

, 8.40 g, 4.20 mmol), DMPA (1.16 g, 8.63 mmol), IPDI (6.00 g, 27.00 

mmol) and bis(4-hydroxyphenyl)disulfide (3.55 g, 14.18 mmol) were fed together into a 100 mL 

jacketed glass reactor equipped with a mechanical stirrer and a condenser. Next, DBTL (0.3 

wt% of reactants) and MEK (55 wt%) were added into the vessel and the mixture was stirred 

for 60 h at 80ºC under refluxing conditions. The mixture was cooled down to room temperature 

http://www.tcichemicals.com/eshop/nl/be/commodity/B3827/
http://www.tcichemicals.com/eshop/nl/be/commodity/B3827/
http://www.tcichemicals.com/eshop/nl/be/commodity/B3827/
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and neutralized with TEA (1.20 mL, 8.63 mmol) after which deionized water (100 wt%) was 

added dropwise to obtain a dispersion. MEK was removed from the filtered dispersion by 

evaporation using a rotary evaporator at 243 mbar so that a solids content of about 30 wt% 

was obtained. 

III.2.3.3. Synthesis of the waterborne PU dispersions based on bis[4-(3'  

   hydroxypropoxy)phenyl]disulfide (S2(Ph(CH2)3OH)2) 

PolyTHF (Mn=2000 g.mol
-1

), DMPA, IPDI and bis[4-(3'-hydroxypropoxy)phenyl]disulfide 

(S2(Ph(CH2)3OH)2) were fed together into a 100 mL jacketed glass reactor equipped with a 

mechanical stirrer and a condenser. Next, DBTL (0.3 wt% of reactants) and MEK (60 wt%) 

were added into the vessel and the mixture was stirred for 8h at 80ºC under refluxing 

conditions. The amount of DMPA added in the synthesis was constant (6 wt% of reactants), 

while the amount of S2(Ph(CH2)3OH)2 was varied as shown in Table III.2. Finally, the mixture 

was neutralized with TEA (1 mol eq. of DMPA) after which deionized water (100 wt%) was 

slowly added dropwise to obtain a dispersion. MEK was removed from the filtered dispersion 

by evaporation using a rotary evaporator at 243 mbar giving a solids content of about 30 wt%. 

Table III.2. Formulation of different PUs and PUUs based on bis[4-(3'-
hydroxypropoxy)phenyl]disulfide (wt% based on the total amount of reactants). 

Run Sample Unit DMPA  IPDI PolyTHF S2(Ph(CH2)3OH)2  

8 PU-6D-0.33S 
wt% 6 25 54 14 

mol eq. 0.42 1 0.24 0.33 

9 PU-6D-0.44S 
wt% 6 27 46 20 

mol eq. 0.37 1 0.19 0.44 

10 PU-6D-0.53S 
wt% 6 30 38 26 

mol eq. 0.33 1 0.14 0.53 
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III.2.3.4. Synthesis of the waterborne PUU dispersion containing both    

   S2(PhNH2)2 and S2(Ph(CH2)3OH)2 

The dispersion termed PUU-6D-0.53S-MIXED was obtained by first feeding PolyTHF (Mn=2000 

g mol
-1

, 5.30 g, 2.65 mmol), DMPA (0.79 g, 5.90 mmol), IPDI (4.00 g, 18.00 mmol) and bis[4-

(3'-hydroxypropoxy)phenyl]disulfide (2.08 g, 5.67 mmol) together into a 100 mL jacketed glass 

reactor equipped with a mechanical stirrer and a condenser. Next, DBTL (0.3 wt% of reactants) 

and MEK (60 wt%) were added into the vessel and the mixture was stirred for 3 h at 80ºC 

under refluxing conditions. Afterwards, the mixture was cooled down to room temperature and 

bis(4-aminodiphenyl)disulfide (0.94 g, 3.78 mmol) was added into the vessel to react with the 

residual free NCO-groups of the prepolymer for 6 h. Finally, the mixture was neutralized with 

TEA (0.82 mL, 5.90 mmol) after which deionized water (100 wt%) was slowly added dropwise 

to obtain a dispersion. MEK was removed from the filtered dispersion by evaporation using a 

rotary evaporator at 243 mbar so that a solid content of approximately 30 wt% was obtained. 

III.2.4.  Characterization 

III.2.4.1. Monomer characterization 

Infrared spectra were recorded on an FTIR spectrometer (Bruker). All melting points were 

determined in a Büchi Melting Point B-540. The NMR spectra were recorded at 500 MHz for 

1
H-NMR, and 126 MHz for 

13
C{H}-NMR in CDCl3 at room temperature. The data are reported 

as s = singlet, d = doublet, t = triplet, m = multiplet, coupling constant(s) in Hz, integration. 

Elemental analysis was carried out using a TruSpec Micro (LECO) analyzer. HRMS-analysis 

was performed with an LC/Q-TOF with Agilent Jet Stream ESI ionization source.  
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III.2.4.2. Prepolymer and dispersion characterization 

To determine the NCO content of the PU prepolymer, a back titration of the excess of 

diethylamine (DEA) molecules, which were added to neutralize the free NCO-groups of the PU, 

with HCl was performed.
38,39

 The Z-average diameter of the polymer particles was measured 

by dynamic light scattering (DLS) using a Malvern Zetasizer Nano ZS (Malvern Instruments). 

Samples were prepared by diluting a fraction of the latex with deionized water, and the 

analyses were carried out at 25°C.  

III.2.4.3. Polymer characterization 

Films with a final thickness of 0.50-0.75 mm were obtained by casting the dispersion in silicon 

molds (25 x 55 mm
2
). The casted films were first dried for 1 day at 23°C and subsequently for 3 

days at 60°C after which they were equilibrated for 3 days at 23°C while maintaining 55% RH. 

The molecular weight of the dried films dissolved in THF was determined by Size Exclusion 

Chromatography/Gel Permeation Chromatography (SEC/GPC). The instrument consisted of a 

pump (LC-20A, Shimadzu), an autosampler (Waters 717), a differential refractometer (Waters 

2410), a UV detector measuring at 262nm (Waters 2487) and three columns in series (Styragel 

HR2, HR4 and HR6, with pore sizes ranging from 102-106 Å). Chromatograms were obtained 

at 35 °C using a THF flow rate of 1 mL.min
-1

. A series of polystyrene (PS) standards in the 

range of 580–3 848 000 g.mol
-1

 were used to obtain the calibration curve which provided 

molecular weights of the polymer relative to polystyrene. Thermogravimetric analysis (TGA) 

was performed in a temperature range of 40-800 ºC at 10ºC/min under a nitrogen atmosphere 

with a TA Instruments Q500. Dynamic mechanical analysis (DMA) measurements were carried 
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out in a Triton 2000 DMA (Triton Technology) or on a TA Instruments DMA Q800 (only for 

sample PUU-6D-0.53S-MIXED) equipped with a liquid nitrogen cooling system. The 

measurements were performed in tension mode at a single frequency of 1 Hz. The samples 

were cooled down to ≈-150 ºC and heated with a rate of 4ºC.min
-1

 till the temperature at which 

the minimum dynamic force of 0.01 N was hit. Stress-strain measurements were carried out on 

dumbbell type specimen under controlled conditions (23ºC and 55% RH) on a tensile 

apparatus (Stable Micro System TA HD Plus Texture Analyzer) with a crosshead velocity of 25 

mm min
-1

. For each experiment, the average of 3-6 replicate measurements is reported. For 

the scratch closure experiments, scratches were made with a depth of roughly 75% of the 

thickness ( 0.7 mm) of the films using a razor blade with a thickness of 0.40 mm and 

subsequently closure at 80ºC was followed using an optical microscope (Nikon Eclipse 

LV100ND). The rheological data were obtained from a stress-controlled Anton Paar Physica 

MCR101 rheometer using parallel plate geometry (plate ∅ = 8mm, disk-shaped specimens of 

approximately 10 mm in diameter and 0.50-0.75 mm in thickness). Frequency sweeps (0.001-

20 Hz) at a strain of 0.5% were conducted at fixed temperatures ranging from 50-120ºC.  

III.3.  Results and discussion 

III.3.1. Waterborne PUU dispersions based on diamine-terminated 

disulfide compounds 

III.3.1.1. Dispersion and polymer characteristics 

A series of poly(urethane-urea) dispersions containing varying amounts of bis(4-

aminophenyl)disulfide (S2(PhNH2)2) and the DMPA were synthesized using the formulations 
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described in Table III.1 and the process outlined in Figure III.3 which can be found in the 

experimental section of this chapter. Through the variation of DMPA and aromatic disulfide 

content, the objective was to explore the balance between material strength and chain mobility 

in order to obtain mechanically strong self-healing polymers. In a first set of experiments (Runs 

1-5, Table III.1), the amount of IPDI and disulfide compound was kept constant, while the 

DMPA content varied from 3 to 7 wt%. In a second set of experiments (Runs 1, 6 and 7), the 

amount of IPDI and DMPA was kept constant, but here the amount of bis(4-

aminophenyl)disulfide varied from 7 to 14 wt%.  

In agreement with the function of DMPA as ionic stabilizer, Table III.3 shows that the particle 

sizes (dp) of dispersions decreased when the amount of DMPA increased. In contrast, when 

the amount of the disulfide compound was increased, the particle size increased significantly 

and broad particle size distributions were obtained. It is noteworthy to mention that, due to the 

high amount of disulfide compound added for the synthesis of PUU-D3-0.53S, the prepolymer 

was no longer a homogeneous solution, but a highly viscous and optically turbid mass, which 

may explain the large particle sizes. The presence of large particles additionally led to 

sedimentation of PUU-3D-0.44S and PUU-3D-0.53S (Series 6 and 7). The characteristics of 

the waterborne PUU dispersions are also reflected in the films formed after casting the 

dispersions, as can be seen in Figure III.4. PUU-3D-0.33S yielded a rather transparent and 

homogeneous film, while PUU-3D-0.44S showed a more turbid film and PUU-3D-0.53S formed 

an even more turbid and inhomogeneous film. This puts a limit on the amount of disulfide that 

can be introduced into the system, since unfavorable dispersions and film properties are 

obtained for too high levels of the self-healing moiety. 
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Table III.3. Dispersion and polymer characteristics of PUUs based on S2(PhNH2)2. 

Run Sample 

DLS measurement GPC measurement (RI) TGA 

dp   
(nm) 

PDI 
Mn 

(kDa) 
Mw 

(kDa) 
Đ 

Td (°C) 
 (5 wt% loss) 

1 PUU-3D-0.33S 125 0.07 18 34 1.9 262 

2 PUU-4D-0.33S 71 0.06 16 33 2.0 255 

3 PUU-5D-0.33S 55 0.07 15 27 1.8 244 

4 PUU-6D-0.33S 47 0.10 14 26 1.9 236 

5 PUU-7D-0.33S 42 0.10 12 21 1.7 230 

6 PUU-3D-0.44S 260 0.80 11 23 2.0 255 
7 PUU-3D-0.53S 520 0.83 8 16 2.0 253 

 

PUU-3D-0.33S  

 

PUU-3D-0.44S   

 

PUU-3D-0.53S   

 

Figure III.4. Films cast from dispersions with an increasing disulfide S2(PhNH2)2 content. 

When looking at the molecular weights (Mw) shown in Table III.3, it can be noted that the Mw 

decreased with DMPA. This was due to the fact that when keeping the level of IPDI/S2(PhNH2)2 

constant, an increase of DMPA inevitably means a decrease of the macrodiol PolyTHF, and 

therefore lower molecular weights at similar degree of polymerization were obtained. Similarly, 

the values obtained for the molecular weights of the PUUs with a variable amount of disulfide 

compound, show that the Mw decreased drastically with increasing disulfide content, although 

in this case the decrease was significantly greater. Moreover, the molecular weight distributions 

(MWD) of these PUUs showed the presence of low molecular weight polymer in the case of 

PUU-3D-0.53S (Figure III.5). The lower molecular weight PUU chains were most probably a 

result of a less effective incorporation of the disulfide compound due to the solubility problems 
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observed at high concentrations of disulfide. Moreover, while PUU-3D-0.33S and PUU-3D-

0.44S had almost complete incorporation of the disulfide, from the molecular weight distribution 

obtained by GPC using an UV absorption detector, it could be calculated that PUU-3D-0.53S 

still had 2.5% of unreacted disulfide compound with respect to the total amount of disulfide 

added. As a result, the degree of conversion was lower and therefore a lower Mw of the 

polymer was observed.  

    

Figure III.5. MWD distribution obtained by GPC (RI) of the PUUs with varying amount of S2(PhNH2)2. 

III.3.1.2. Thermal and mechanical properties of the PUUs 

Regarding the thermal properties of the PUUs, it can be stated that although all polymers are 

stable up to 230°C, it seems that an increasing amount of DMPA or disulfide decreases the 

thermal stability of the material, as shown by the thermal degradation temperatures (Td) 

presented in Table III.3. Thus, increasing the incorporated DMPA or disulfide content, not only 

leads to a lower molecular weight of the PUU, but also seems to decrease its thermal stability.  
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The dynamic mechanical properties of the PUUs were analyzed by DMA (Figure III.6). It is 

noteworthy to mention that a peak can be observed for the curves of the loss modulus at the 

lowest temperatures, around -140°C. Such a relaxation at low temperatures in the glassy state 

of the PUUs is comparable to the ones which have already been described in literature for 

bisphenol A polycarbonate and can therefore be linked to secondary relaxation processes due 

to the presence of closely interconnected aromatic rings, in this case linked through dynamic 

disulfide bonds.
40,41

 The most obvious relaxation, located around -70ºC for all the samples, is 

linked to the glass transition temperature of PolyTHF (Tg = -77ºC). At high temperatures, a 

broad relaxation is observed for PUU-5D-0.33S, PUU-6D-0.33S and PUU-7D-0.33S, which can 

reflect segmental motions of the hard parts of the PUUs. This high temperature relaxation shifts 

to higher temperatures with the amount of DMPA (Figure III.6 A) or disulfide content (Figure 

III.6 B), i.e. as the amount of soft PolyTHF is reduced and the number of hard units increased. 

Since the high temperatures relaxation is not observed for PUU-3D-0.33S and PUU-4D-0.33S, 

it can be deduced that a minimum of hard units of PUU is necessary for this relaxation.  

Additionally, this has a relevant influence on the overall mechanical properties of the samples, 

because the presence of organized hard units also provokes a considerable increase of the 

storage modulus E’, in particular close to room temperature. Moreover, as can be seen in 

Figure III.6, E’ decreases severely with temperature above the Tg of -70ºC in the case of PUU-

3D-0.33S and PUU-4D-0.33S, which is due to the absence of organized hard units in these 

samples.   
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Figure III.6. DMA results of PUUs based on a varying DMPA (A) or S2(PhNH2)2 (B) content. 
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Tensile test results obtained at room temperature were also affected by the presence of hard 

units. Figure III.7 and Table III.4 show that increasing the amount of DMPA or disulfide in the 

PUU backbone led to an enhancement of both the Young’s modulus and ultimate tensile 

strength (UTS). The unexpected lower tensile strength for the PUU-7D-0.33S (Figure III.7A) 

might be explained either by the lower Mw of the material compared to the other PUUs or 

alternatively due to the higher Tg of the material (Figure III.6) which could lead to a restricted 

film formation. It is noteworthy to mention that the values obtained for the tensile strength of 

these PUUs are significantly higher (UTS ≈ 17 MPa at a strain rate of 25 mm.min
-1

) than those 

obtained for self-healing elastomers based on bis(4-aminophenyl)disulfide (UTS ≈ 0.8 MPa at 

500 mm.min
-1

),
22

 and for waterborne organic-inorganic hybrids with the same self-healing 

moiety (UTS ≈ 4.5 MPa at 20 mm.min
-1

).
24

 Even when comparing with values of the “tough” 

self-healing polyurethane elastomers reported previously (UTS ≈ 7.7 MPa at 500 mm.min
-1

 and 

6.8 MPa at 100 mm.min
-1

),
27,28

 it can be concluded that the PUUs presented here are 

significantly stronger, especially considering the low strain rate employed for the tensile tests. 

     

Figure III.7. Stress-strain (σ-ε) curves of PUUs with varying DMPA (A) and disulfide (B) content. 
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Table III.4. Tensile testing results of PUUs with varying DMPA and disulfide content. 

 

III.3.1.3. Scratch closure  

Although for coating applications damage resistance and therefore strength is required, the 

polymer chains still need to show some mobility in order to repair the damage and allow 

recovery of broken bonds and interactions. As a qualitative method to check the overall mobility 

of the chains, the scratch closure of the PUUs was optically monitored. In order to reach the 

terminal or flow zone of the viscoelastic response, and so induce chain mobility, the films were 

heated up to a temperature of 80°C, well above the glass transition temperature of all the 

samples. Figure III.8 A shows that increasing the amount of DMPA, scratch closure was 

slower, because the material became stiffer as reflected by the higher values of E’ (Figure III.6) 

and Young modulus (Figure III.7 A). An increase in disulfide content, that also provided 

polymers with higher rigidity, led to the same effect in scratch closure (Figure III.8 B). It is worth 

emphasizing that these results show that self-healing is the result of the interplay between 

rheology and bond exchange and that for self-healing moieties that affect both characteristics, 

the use of higher quantities of the self-healing moiety may have a negative effect on the 

healing process.  

Run Sample Young’s modulus (MPa) UTS (MPa) εf  (%) 

1 PUU-3D-0.33S 2.7   0.3 0.9   0.1 850   10 

2 PUU-4D-0.33S 5.0   0.6 2.4   0.5 970   110 

3 PUU-5D-0.33S 26.2   1.8 6.3   0.3 610   20 

4 PUU-6D-0.33S 85.8   2.6 16.5   0.2 680   30 

5 PUU-7D-0.33S 141.5   4.2 11.3   0.3 470   20 

6 PUU-3D-0.44S 33.0   1.1 11.3   0.4 680   25 
7 PUU-3D-0.53S 128.0   2.8 16.7   0.5 400   15 
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PUU-4D-0.33S PUU-5D-0.33S PUU-6D-0.33S PUU-7D-0.33S 

    
  1 d  1 d   2 d   7 d 

    
 

PUU-3D-0.33S PUU-3D-0.44S PUU-3D-0.53S 

   
  2 h   1 d   7 d 

   

Figure III.8. Scratch closure at 80°C of PUUs based on a varying amount of  
DMPA (A) or S2(PhNH2)2 content (B). 

III.3.1.4. Rheological behaviour of the PUUs 

The scratch closure measurements demonstrated that a certain degree of chain mobility is 

generated in these rather stiff materials. Contrary to the local or segmental motions, the global 

mobility of the chains is only detected in the terminal viscoelastic zone, at which parameters 

involving large scale motions can be measured. A representative parameter of the mobility of 

A 

B 
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the chains is the so-called terminal relaxation time ( d), that for a given temperature is the 

inverse of the frequency ( d=1/d) at which the crossover between the storage (G’) and the 

loss (G’’) moduli occurs.
42–45

 Figure III.9 presents the master curves of G’ and G’’ at a 

reference temperature of 80°C. In order to obtain these curves, the viscoelastic behaviour of 

the PUUs was studied by performing frequency sweep measurements at temperatures ranging 

from 50 to 120ºC and afterwards applying the time-temperature superposition (TTS) principle.  

However, this principle is only valid for materials that do not change their microstructure upon 

exposure to temperature, which is not always the case for polymers based on dynamic 

bonds.
46–55

 A way to verify if the TTS principle is applicable is using the van-Gurp-Palmen-plot 

(vGP-plot), in which the phase angle δ of the measured rheological data is depicted versus the 

corresponding absolute value of the complex shear modulus     . If the isothermal frequency 

curves merge into a common line, the principle holds.
56

 For all PUUs, a good overlap of these 

different curves was obtained (Figures A I.5 and A I.6 in Appendix I), which shows that the TTS 

principle is applicable for these materials, at least for temperatures above the high temperature 

relaxation (Figures III.6) associated to the hard units of the PUUs.  

The relaxation times (d) of the different PUUs presented in Table III.5 follow the same trend as 

the scratch closure times with the harder materials presenting the longer relaxation times. 

However, comparison with the results in Figure III.8 shows that the times required for scratch 

closure were much longer than the relaxation times. Likely the different time scales are due to 

the fact that scratch closure requires the creep deformation of the polymer over relatively large 

times, which is a complex viscoelastic process that implies a spectrum of retardation times.
46
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Figure III. 9. Master curves (Tref=80ºC) for the PUUs based on S2(PhNH2)2 with varying DMPA (A) and 
disulfide content (B) obtained by applying TTS using horizontal shift factors (aT). 
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Table III.5. Characteristic values for G’-G’’ crossover in the master curves (Tref=80ºC) of PUUs based 
on S2(PhNH2)2 with varying amount of DMPA and disulfide. 

 

 

 

It is clear from the preceding that the use of bis(4-aminophenyl)disulfide presents a number of 

issues. First, due to the relatively low solubility in the polymerization reaction, the amount of 

bis(4-aminophenyl)disulfide that can be incorporated is limited, influencing the MW of the PUU 

that can be obtained. Furthermore, a significant increase in bis(4-aminophenyl)disulfide 

renders the PUU dispersion instable. In addition, increasing the amount of the self-healing 

moiety in the PUU backbone makes the material stiffer limiting its mobility which hampers self-

healing. Therefore, there is a need for alternative self-healing moieties that still contain reactive 

aromatic disulfides, but that additionally provide enough flexibility so the self-healing ability is 

not hindered by the rigidity of the material. 

III.3.2.  Waterborne PU(U) dispersions based on diol-terminated 

 disulfide compounds 

III.3.2.1. Polymer synthesis  

In the search for other aromatic disulfide compounds, the commercially available bis(4-

hydroxyphenyl)disulfide was considered as an interesting alternative. Due to the lower 

reactivity of alcohols towards isocyanates, the reaction was performed at 80 ºC using MEK as 

Run Sample  d (rad.s
-1

)  d 

1 PUU-3D-0.33S 0.2315 30 s 

2 PUU-4D-0.33S 0.0062 17 min 

3 PUU-5D-0.33S 0.0089 12 min 

4 PUU-6D-0.33S 0.0013 1.5 h 

5 PUU-7D-0.33S 0.0005 3.5 h 

6 PUU-3D-0.44S 0.0082 13 min 
7 PUU-3D-0.53S 0.00001 7 d 
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solvent. However, even at the high reaction temperature and with the prolonged reaction times 

(60 h), more than 15% of the bis(4-hydroxyphenyl)disulfide was not incorporated into the PU-

backbone, as shown by the molecular weight distribution obtained by GPC using an UV 

absorption detector in Figure A I.7 (Appendix I). This incomplete incorporation was due to the 

fact that the reactivity of phenolic OH-groups towards isocyanates is significantly lower than 

that of water.
57,58

 

Since the commercially available diamine- and diol-terminated disulfides showed the 

aforementioned problems, bis[4-(3'-hydroxypropoxy)phenyl]disulfide (S2(Ph(CH2)3OH)2, Figure 

III.2 in the experimental section) was synthesized. The reactivity of the primary alcohols was 

expected to increase sufficiently so that full incorporation of the self-healing moiety would be 

possible in acceptable reaction times. Moreover, by introducing an alkyl chain consisting of 

three carbon atoms onto the aromatic rings, the flexibility of alkyl chain can counteract the rigid 

aromatic rings of the disulfide compound and therefore a more mobile polymer was anticipated. 

Additionally, the alkyl chain would also increase the solubility of the polymer in the reaction 

mixture, providing the opportunity to increase the disulfide content into the PU-backbone 

without encountering solubility issues.  

Advantageously, bis[4-(3'-hydroxypropoxy)phenyl]-disulfide was added to the reactor together 

with the other diols (DMPA and PolyTHF) reacting together in one step to form a polyurethane 

(PU) in MEK at 80°C, as depicted in Figure III.10. After that, the waterborne PU dispersion 

could be obtained through neutralization with TEA and addition of deionized water.  
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Figure III.10. Scheme of synthesis procedure of waterborne PU dispersion 

For the series of PUs synthesized by introducing S2(Ph(CH2)3OH)2, the amount of IPDI and the 

DMPA content (6 wt%) were kept constant. The higher DMPA content was used so that the 

polymer had acceptable rigidity for coating applications. The amount of S2(Ph(CH2)3OH)2 

varied from 0.33 mol eq. of IPDI (14 wt%) for PU-6D-0.33S and 0.44 mol eq. of IPDI (20 wt%) 

for PU-6D-0.44S to a maximum of 0.53 mol eq. of IPDI (26 wt%) for PU-6D-0.53S (Table III.2, 

experimental section). For the same number of molar equivalents, the weight fraction of 

S2(Ph(CH2)3OH)2 was higher than in the previous cases due to the higher molecular weight. 

Unlike the aromatic diamine disulfide, during the synthesis of the series of PUs with increasing 

amounts of S2(Ph(CH2)3OH)2, no solubility issues of the polymer in the solvent were observed.  

Additionally, a mixed disulfide polymer, PUU-6D-0.53S-MIXED, was synthesized by introducing 

both S2(Ph(CH2)3OH)2 and S2(PhNH2)2 as self-healing moieties into the PUU backbone. The 

formulation of the mixed disulfide polymer was chosen with the intention that the amounts of 

IPDI, PolyTHF and DMPA were similar to the amounts used in the synthesis of PU-6D-0.53S, 

described in detail in the experimental section of this chapter, so that direct comparison of PU-

6D-0.53S with PUU-6D-0.53S-MIXED was possible.  
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III.3.2.2. Dispersion and polymer characteristics 

For all PUs and the mixed disulfide polymer (PUU-6D-0.53S-MIXED) nearly complete 

incorporation of disulfide compound was obtained even for the highest disulfide content. In 

addition, stable dispersions of small particle size and relatively narrow PDI were obtained 

(Table III.6). The films cast from the PU(U) dispersions were homogeneous, transparent and 

almost colourless (Figure III.11) even though the amount of disulfide was substantially higher 

than that used for the PUUs that yielded yellowish films (Figure III.4). PUU-6D-0.53S-MIXED is 

slightly more yellow due to the presence of S2(PhNH2)2. The molecular weights obtained for the 

PUs were similar to that of PUU-6D-0.33S (Table III.6). Moreover, contrary to the PUUs based 

on S2(PhNH2)2, the Mw of the polymer did not decrease with the amount of DMPA or disulfide. 

Table 0.6. Dispersion and polymer characteristics of PUs and PUUs based on S2(Ph(CH2)3OH)2. 

Run Sample 

DLS  GPC (RI) TGA 

dp  (nm) PDI 
Mn 

(kDa) 
Mw 

(kDa) 
Đ 

Td (°C) 
 (5 wt% loss) 

4 PUU-6D-0.33S 47 0.10 14 26 1.9 235 

8 PU-6D-0.33S 35 
32 
36 

0.18 11 22 1.9 243 
9 PU-6D-0.44S 0.15 13 23 1.8 244 

10 PU-6D-0.53S 0.14 11 27 2.4 241 

11 PUU-6D-0.53S-MIXED 50 0.11 14 26 1.8 230 

 
PU-6D-0.33S  

 

PU-6D-0.44S  

 

PU-6D-0.53S 

 

       PUU-6D-0.53S-MIXED 

     

Figure III.11. Films from dispersions PUs based on S2(Ph(CH2)3OH)2 and PUU-6D-0.53S-MIXED. 
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III.3.2.3. Thermal and mechanical properties of the PU(U)s 

The thermal stabilities obtained for the PUs were similar to that of PUU-6D-0.33S and were not 

seemingly affected by the amount disulfide (Table III.6). The dynamic mechanical properties of 

the PU series were analyzed by DMA (Figure III.12). Similar to the PUUs reported above, the 

secondary relaxation of closely interconnected aromatic rings led to a peak in E’’ modulus at 

around -140ºC. Additionally, also here, a low temperature Tg was observed at -70°C in all 

samples and a broad relaxation, which probably reflects segmental motions of the hard units of 

the system, was observed at temperatures close to room temperature. As could be expected, 

with increasing amounts of disulfide the Tg was shifted to higher values. Therefore, the general 

interpretation of the results of Figure III.12 is the same as those of Figure III.6. However, the 

values obtained for the PUs were lower than those of PUU-6D-0.33S, due to the introduction of 

a more flexible self-healing moiety into the backbone and the absence of urea groups that 

reduced H-bonding, which decreased the rigidity of the PUs.  

   

Figure III.12. DMA results of PU(U)s based on a varying S2(Ph(CH2)3OH)2 content. 
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The results obtained from the tensile tests are presented in Figure III.13 and Table III.7. It can 

be seen that the Young’s modulus and the ultimate tensile strength (UTS) increased, and the 

elongation at break (εf) decreased with the S2(Ph(CH2)3OH)2 content. The PUs show a more 

ductile behaviour after reaching a yield point in which the stress does not increase above the 

yield strength anymore. When replacing 21 mol% of S2(Ph(CH2)3OH)2 by S2(PhNH2)2 (PUU-

6D-0.53S-MIXED), a significant increase of the Young’s modulus and ultimate tensile strength 

was obtained compared to PU-6D-0.53S, although the measured strain was similar for both 

materials. This highlights the effect of the flexibility offered by the alkyl chain on the aromatic 

rings of the PUs and that of the urea groups. These effects are also evident when all these 

polymers are compared with PUU-6D-0.33S which displays a strong and non-ductile behaviour 

without a significant yield point. 

 

Figure III.13. Stress-strain (σ-ε) curves of PU(U)s based on varying S2(Ph(CH2)3OH)2 content. 
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 Table III.7. Tensile testing results of PU(U)s based on variable amount of S2(Ph(CH2)3OH)2. 

 

III.3.2.4. Rheological behaviour of the PU(U)s 

Figure III.14 presents the master curves of G’ and G’’ at a reference temperature of 80 ºC of 

the polymers based on a variable amount of S2(Ph(CH2)3OH)2 in comparison with PUU-6D-

0.33S. These curves were obtained from frequency sweep measurements carried out at 

different temperatures using the TTS principle. 

 In this case, however, the isothermal frequency curves in the van-Gurp-Palmen-plots did not 

merge into a single line (Figure A I.8) indicating that the materials showed some local change 

with temperature. This behavior was not unexpected, since the dynamic disulfide bonds can be 

activated at higher temperatures and therefore would give rise to a change in the 

microstructure. The reason why this effect appears for these materials, but could not be 

observed for the PUUs based on S2(PhNH2)2, could possibly be explained by the fact that 

S2(Ph(CH2)3OH)2 generated a softer PU backbones where the dynamic disulfide exchange can 

act more freely than in the more rigid PUU backbone where additionally H-bonds between the 

urea groups physically cross-link the material and further lock the ability of the disulfide bonds 

to exchange. Although the TTS principle does not hold as strongly as for the PUUs based on 

Run Sample Young’s modulus (MPa) UTS (MPa) εf (%) 

4 PUU-6D-0.33S 85.8   2.6 16.5   0.2 680   30 

8 PU-6D-0.33S 2.8   0.4 0.3   0.1 520   35 
9 PU-6D-0.44S 53.0   3.8 2.3   0.1 385   10 
10 PU-6D-0.53S 321.0   7.8 10.2  0.2 210   10 

11 PUU-6D-0.53S-MIXED 577.4  11.4 23.1  0.5 260  10 
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S2(PhNH2)2, using both horizontal (aT) and vertical shift factors (bT) acceptable superposition 

could be achieved to obtain the master curves in Figure III.14.  

   

Figure III.14. Master curves (Tref=80ºC) of PU(U)s based on varying S2(Ph(CH2)3OH)2 content. 

Table III.8. Characteristic values for G’-G’’ crossover in the master curves (Tref=80ºC) of PU(U)s 
based on varying S2(Ph(CH2)3OH)2 content. 

 

 

The relaxation times (d) calculated from the crossover points in Figure III.14 are presented in 

Table III.8. It can be seen that the relaxation time increases with the S2(Ph(CH2)3OH)2 content, 

because the polymer becomes stiffer. Similarly, the incorporation of S2(PhNH2)2 in the PUU-

6D-0.53S-MIXED resulted in a further increase of the relaxation time. The broader crossover 
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Run Sample  d (rad.s
-1

)  d 

4 PUU-6D-0.33S 0.0013  1.5 h 

8 PU-6D-0.33S 784  0.008 s 
9 PU-6D-0.44S 240  0.026 s 
10 PU-6D-0.53S 12  0.524 s 

11 PUU-6D-0.53S-MIXED 0.1 – 0.001  1 min - 2 h 
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region observed in PUU-6D-0.53S-MIXED was attributed to the fact that a less homogeneous 

polymer was obtained as two different aromatic disulfide compounds were introduced into the 

PUU-backbone which broadens the time frame at which the different segments of the polymer 

relaxed. Nevertheless, for the considerably stiffer PUU-6D-0.53S-MIXED, the frequency at 

which G’ and G’’ start crossing over is higher than for PUU-6D-0.33S, indicating a higher 

molecular mobility for some part of the polymer. However, for PUU-6D-0.53S-MIXED to start 

flowing completely, almost the same relaxation time (d) has to be considered as PUU-6D-

0.33S (Table III.8). 

III.3.2.5. Scratch closure 

Scratch closure of the PUs and the mixed disulfide PUU was optically monitored at 80°C 

(Figure III.15). It can be seen that the time needed for scratch closure (tscratch) increases with 

the relaxation time, but as in the case of the S2(PhNH2)2-based PUUs, in all cases tscratch >> d, 

because as explained above, creep deformation of the polymer is needed for scratch closure. 

The scratch closure times correlate quite well with the storage modulus (E’) at the temperature 

at which the test was carried out (80ºC) as can be observed in Figure III.16 A. In order to 

construct this figure, the values of the storage modulus at 80ºC were obtained from the data in 

Figures III.6 and III.12, while the values of tscratch were roughly estimated from Figures III.7 and 

III.15. Although the use of the approximate interrelations among viscoelastic functions, which 

allows estimating creep from dynamic viscoelastic results, is out of the scope of this thesis, it is 

known that E’ is inversely proportional to the creep compliance function D(t).
46

 Therefore, 

increasing the storage modulus E’ should give rise to a lower compliance or deformation 

capacity, which leads to higher scratch closure times.  
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PU-6D-0.33S PU-6D-0.44S PU-6D-0.53S PUU-6D-0.53S-MIXED 

    
  1 h   1 h   2 h   7 d 

    

Figure III.15. Scratch closure at 80°C of PU(U)s based on varying amount of S2(Ph(CH2)3OH)2. 

   

Figure III.16. Relationship between the storage modulus E’ (T=80ºC) (A) or the Young’s modulus E 
(RT) (B) and the time for scratch closure tscratch (T=80ºC) for all PU(U)s. 
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Figure III.16 B compares the Young’s modulus (E) determined in the tensile tests carried out at 
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additional advantage of having a higher concentration of disulfide groups. The reason for the 

high E-value of the PUs at room temperature is that the absence of the strong H-bonds 

provided by the urea groups is compensated by the reduction of the soft PolyTHF content. On 

the other hand, at the healing temperature, the alkyl moiety of the disulfide unit of the PUs 

allows a certain mobility of the hard segments lowering the storage modulus below that of the 

PUUs. These results highlight the importance of playing not only with the dynamic moieties, but 

also with the polymer microstructure to develop attractive self-healing materials.  

The combination of good mechanical properties at the service temperature with considerable 

mobility at easily reachable healing temperatures marks a significant improvement on previous 

self-healing PUs and potentially allows the production of strong yet healable coatings systems. 

Interestingly, to best of our knowledge, the strongest self-healing PU elastomers based on 

aromatic disulfides described in literature so far were developed by Kim et al.,
28

 presenting 

stress-strain curves with an ultimate tensile strength of 6.8 MPa at a 100mm.min
-1

 strain rate. 

With this in mind, the unique mechanical properties of the developed PU(U)s are obvious as 

PU-6D-0.53 has a yield strength of 10 MPa and PUU-6D-0.53S-MIXED has an ultimate tensile 

strength of 23 MPa at 25 mm.min
-1

, whilst demonstrating complete scratch closure at 80ºC.  

It seems clear from the presented results that a material with a mechanical strength required 

for high-end applications cannot be expected to undergo healing at the room temperature, 

since the short relaxation time of the material would inevitably lead to creep which limits its 

practical utility. However, through careful tuning of rheological behaviour of the polymer via 

designed synthesis, it appears possible for a material to show a marked transition from a 

strong material at room temperature, to a softer, healable material at elevated temperatures.   
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III.4.  Conclusions 

In summary, a series of waterborne PU(U) dispersions were synthesized with varying amount 

of hard monomers, namely DMPA and aromatic disulfide compounds, incorporated into the 

polymer backbone. By increasing the DMPA content, PUUs with better mechanical properties 

could be obtained (UTS   17 MPa), however, this limited the mobility of the polymer that could 

be observed in scratch closure and which was confirmed by longer relaxation times in 

frequency sweep measurements. Furthermore, it could be demonstrated that, contrary to the 

intuition of a chemist, an increasing amount of the self-healing moiety does not necessarily 

offer a higher mobility of the material which is crucial to obtain self-healing. Since the 

incorporation of both the commercial bis(4-aminophenyl)- and bis(4-hydroxyphenyl)disulfide 

into the PU(U) backbone was restricted due to limitations towards solubility, reactivity and 

mobility, the more flexible bis[4-(3'-hydroxypropoxy)phenyl]disulfide was introduced in order to 

obtain waterborne PU materials. In this way, it was possible to increase the amount of the self-

healing moiety incorporated in the backbone, without compromising the mechanical properties 

of the materials reaching ultimate tensile strengths in the range of 10 to 23 MPa, at the service 

temperature and providing good mobility at the healing temperature.  

This proved the fact that, next to the presence of dynamic bonds or supramolecular 

interactions, the polymer architecture and in this case the structure of the introduced disulfides 

plays a crucial role in the mobility and consequently self-healing ability of the material. Further 

optimization of the developed waterborne PU(U) materials, incorporating more flexible aromatic 

disulfides, may therefore lead to more efficient self-healing polymers which can serve in 

coating applications requiring higher mechanical strength which will be the focus of Chapter IV. 
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IV.1. Introduction 

As already mentioned in Chapter III, the main challenge self-healing materials are facing is to 

meet the requirements imposed by the applications, particularly in the case of coatings, where 

damages leave the substrate unprotected against the initiation and rapid propagation of 

corrosion processes. A strategy to achieve self-healing in materials which still provide damage 

resistance, minimize dirt pickup and improve blocking (so that undesired adhesion of the 

coated surface with any other surface can be avoided), was described in Chapter III. PU(U)s 

were developed with a microstructure that offers mechanical strength at the service 

temperature and that undergoes a conformational change upon exposure to external stimuli, in 

this case heat, so that it became mobile enough to allow scratch closure and bond exchange. 

This mobility was made possible due to both supramolecular H-bonding between the urethane 

and urea units and the incorporation of dynamic aromatic disulfide moieties with an enhanced 

mobility. Moreover, considering environmental concerns and governmental regulations, the 

polymer was additionally synthesized in an aqueous dispersed system, where the coating is 

the result of coalescence of individual particles after water evaporation.  

In comparison with other self-healing waterborne PU(U)s, based on dynamic sulphonate 

groups (8 MPa, strain rate not disclosed),
1
 light-responsive coumarin derivatives (2 MPa at 

cross-head speed of 20 mm.min
-1

),
2
 or other aliphatic (18 MPa at 200 mm.min

-1
),

3,4 and 

aromatic disulfide moieties (4.5 MPa at strain rate of 20 mm.min
-1

),
5
 it is clear that for the 

waterborne PU(U)s of Chapter III attractive ultimate tensile strengths reaching up to 10-23 MPa 

(cross-head velocity of 25 mm.min
-1

) could be obtained that would be of interest for coating 

applications. However, it is still possible to further optimize the self-healing ability of these 
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linear PU(U) materials while achieving higher mechanical strength by introducing more flexible 

aromatic disulfides which do not hinder the mobility when incorporated to a higher extent, as 

demonstrated in Chapter III. 

A first way to induce a higher strength and a better water resistance of the PU materials based 

on the diol-terminated disulfide moiety S2(Ph(CH2)3OH)2, synthesized in Chapter III, is by 

terminating the PU synthesis with the implemention of diamine-terminated chain extenders so 

that also urea units are incorporated into the polymer backbone. In this way, poly(urethane-

urea)s are obtained providing additional H-bonding between the urea motifs which further 

enhance the self-healing that can occur through supramolecular interactions.   

Moreover, as cross-linked polymers typically provide a higher mechanical strength than their 

linear counterparts and even thermoset polymers containing dynamic bonds can be 

reprocessed,
6–8

 they may be an interesting alternative to consider for the development of 

healable coatings. Moreover, the impact of the cross-linking density on the ability of a polymer 

to heal has been the focus of several recent studies.
9–12

 For example, García and co-workers 

recently described the effect of the polymer structure of a self-healing PUU on the viscoelastic 

and interfacial healing behaviour by performing rheological measurements and fracture 

mechanical tests and correlating them to healing tests.
13

 They produced polymeric networks 

with different cross-linking densities, while retaining the same amount of reversible bonds 

through the introduction of an aromatic disulfide compound. Although the polymers containing 

lower cross-linking densities showed high viscoelastic and healing properties, only low tensile 

strength could be obtained in that case, showing that finding a good balance between 

mechanical properties and a high healing ability is not straightforward.  
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In this chapter, we will mainly focus on the effect of the polymer microstructure/architecture on 

mechanical properties and self-healing ability of the waterborne poly(urethane-urea) 

dispersions based on aromatic disulfide moieties with an enhanced flexibility. The structural 

modifications studied here are the concentration and flexibility of the aromatic disulfide units 

and the effect of cross-linking. More specifically, the two disulfide compounds incorporated into 

the PUU backbone are S2(Ph(CH2)3OH)2 (S3), which was already discussed in Chapter III, and 

the more flexible alternative S2(Ph(CH2)6OH)2 (S6). Linear polymers were obtained using a 

bifuntional chain extender (hexane-1,6-diamine, HDA) and trifunctional chain extenders 

(diethylenetriamine, DETA) were used to form polymer networks. The effects and limits of 

these structural changes on the mechanical properties of the polymers and their healing ability 

will be determined via a combination of DMA measurements, tensile tests, and rheological and 

scratch closure experiments. 

IV.2. Experimental 

IV.2.1. Materials 

Bis(4-hydroxyphenyl)disulfide (S2(PhOH)2, Enamine, 95%), 2,2-bis(hydroxymethyl)-propionic 

acid (DMPA, GEO specialty chemicals, >96%), 3-bromo-1-propanol (Apollo Scientific, 96%), 6-

bromo-1-propanol (Apollo Scientific, 96%), dibutylamine 0.1N in xylol (DBA, Bernd Kraft), 

dibutyltin dilaurate (DBTL, TCI, >95%), ethyl acetate (EtOAc, Brenntag, >98%), diethylene 

triamine (DETA, Merck KGaA, ≥98%), hexane-1,6-diamine (HDA, Sigma-Aldrich, 98%), hexane 

(Brenntag, 100%), hydrochloric acid 1N in water (HCl, Bernd Kraft), isophorone diisocyanate 

(IPDI, Bayer Material Science, >99%), N-methylpyrrolidon (NMP, Honeywell, ≥99.9%), methyl 

ethyl ketone (MEK, Honeywell, ≥99.5%),  polytetrahydrofuran (PolyTHF, BASF, 2000 g.mol
-1

), 

http://www.tcichemicals.com/eshop/nl/be/commodity/B3827/
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potassium carbonate (K2CO3, Sigma-Aldrich, ≥99%), sodium chloride (NaCl, Sigma-Aldrich, 

≥99.5%), sodium sulfate (Na2SO4, Honeywell, ≥99%), tetrahydrofuran (THF, Scharlab), 

triethylamine (TEA, Sigma-Aldrich, ≥99%) were used as received. 

IV.2.2. Synthesis of modified aromatic disulfide compounds 

The synthesis of bis[4-(3’-hydroxypropyloxy)phenyl]disulfide (S2(Ph(CH2)3OH)2 or S3, Figure 

IV.1) was implemented as already described in Chapter III (Section III.2.2). Additionally, a 

newly modified aromatic disulfide compound with longer alkyl chain, bis[4-(6’-

hydroxyhexoxy)phenyl]disulfide (S2(Ph(CH2)6OH)2 or S6) (Figure IV.1), was synthesized based 

on the same synthesis procedure. A mixture of bis(4-hydroxyphenyl)disulfide (53.5 g, 0.21 

mol), 6-bromo-1-hexanol (68.6 mL, 0.52 mol), potassium carbonate (290.0 g, 2.10 mol) in THF 

(120 wt% of solid reagents) as solvent was stirred at 60°C for 120h under N2-atmosphere in a 

jacketed glass reactor equipped with a mechanical stirrer and a condenser. Afterwards, the 

reaction mixture was filtrated and washed with EtOAc. The obtained organic filtrate was 

washed with 1N HCl and brine, after which it was dried over anhydrous NaSO4. The solvent 

was removed from the product under vacuum and the residue material was purified by 

recrystallization in an EtOAc:Hexane-mixture (3:5). Finally, the product was dried at 50°C 

under vacuum to give bis[4-(6'-hydroxyhexoxy)phenyl]disulfide S2(Ph(CH2)6OH)2 (S6) [IUPAC: 

6,6'-((disulfanediylbis(4,1-phenylene))bis(oxy))bis-(hexan-1-ol)].  

Yield: 30.3g (32 mol%). Pale yellow powder. FTIR (neat, cm
-1

): 3424.97, 3372.48, 2937.83, 

2925.88, 2864.63, 1735.82, 1589.27. m.p. 59.4 – 60.6 ºC.
 1

H NMR (500 MHz, Chloroform-d): δ 

7.33 – 7.26 (d, J = 8.7 Hz, 2H), 6.76 – 6.71 (d, J = 8.8 Hz, 2H), 3.86 (t, J = 6.5 Hz, 2H), 3.58 (t, 
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J = 6.6 Hz, 2H), 1.76 – 1.66 (m, 2H), 1.57 – 1.48 (m, 2H), 1.47 – 1.30 (m, 4H + 1H (OH)). 
13

C 

NMR (126 MHz, Chloroform-d): δ 159.67, 132.95, 132.71, 128.45, 115.35, 77.50, 77.25, 76.99, 

68.20, 63.11, 32.89, 29.38, 26.09, 25.75. (The 
1
H, 

13
C, g-COSY, g-HSQC NMR spectra of S6 

are depicted in Figures A II.1-4 in Appendix II) Anal. Calcd. for C24H34O4S2: C 63.97, H 7.60, S 

14.23.  Found: C 63.72, H 7.54, S 14.05. HRMS (ESI) for C24H34O4S2 calculated [M + H]
+
: 

450.1899. Found: 450.1896.  

 

Figure IV.1. Chemical structure of bis[4-(3’-hydroxypropyloxy)phenyl]disulfide (S3) and  bis[4-(6'-
hydroxyhexoxy)phenyl]disulfide (S6). 

IV.2.3. Synthesis of waterborne polyurethane-urea dispersions 

The synthesis of the PUU dispersions was carried out as summarized in Figure IV.2 using the 

formulation in Table IV.1. In order to obtain the disulfide-containing prepolymer, PolyTHF 

(Mw=2000 g.mol
-1

), DMPA, IPDI and S2(Ph(CH2)3OH)2 (S3) or S2(Ph(CH2)6OH)2 (S6) were fed 

together into a 100 mL jacketed glass reactor equipped with a mechanical stirrer and a 

condenser. Next, DBTL (0.7-0.9 wt% of reactants) as catalyst and MEK (55-65 wt%) as solvent 

were added and the mixture was stirred for 105-140 min (depending on the formulation as 

shown in Table IV.1) at 80ºC under refluxing conditions. The amount of DMPA added in the 

synthesis was constant (3 wt% of reactants), while the amount of S3 or S6 varied as shown in 
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Table IV.1. After the prepolymer synthesis, the isocyanate concentration reduced to the 

theoretical level as determined by back titration and the mixture was cooled down to room 

temperature and neutralized with TEA (1 mol eq. of DMPA). Then, deionized water (100 wt%) 

was added dropwise to obtain a dispersion. Finally, the chain extender was added to react with 

the residual NCO groups of the dispersed prepolymer for 30min. MEK was removed from the 

filtered dispersion by evaporation using a rotary evaporator at 243 mbar so that approximately 

45 mL of a waterborne PUU dispersion was obtained with a solids content of 30 wt%.  

 

Figure IV.2. Scheme of synthesis procedure of waterborne PUU dispersion. 

The dispersions were named according to their varying amount and type of chain extender, L 

(linear obtained with HDA) and X (cross-linked obtained with DETA) followed by an indication 
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of the amount and type of disulfide S2(Ph(CH2)3OH)2 (S3) or S2(Ph(CH2)6OH)2 (S6). For 

example, a sample called 1.8X-0.56S3 contains 1.8 wt% of DETA combined with 0.56 mol eq. 

of IPDI of the aromatic disulfide S2(Ph(CH2)3OH)2 (S3), while 1.8X-0.56S6 has the same 

formulation where the alternative aromatic disulfide S2(Ph(CH2)6OH)2 (S6) with longer alkyl 

chain is introduced instead.  

Table IV.1. Formulation (based on mol equivalents) of the different PUU syntheses. 

Sample DMPA IPDI PolyTHF S3 S6 HDA DETA t (min) 

L-S3 

2.5L-0.44S3 0.18 1 0.20 0.44 / 0.18 / 120 

2.5L-0.54S3 0.16 1 0.13 0.54 / 0.17 / 105 

2.5L-0.59S3 0.15 1 0.10 0.59 / 0.16 / 110 

1.8L-0.56S3 0.17 1 0.15 0.56 / 0.13 / 130 

L-S6 1.8L-0.56S6 0.17 1 0.15 / 0.56 0.13 / 140 

X-S3 

2.5X-0.44S3 0.18 1 0.20 0.44 / / 0.18 120 

2.5X-0.54S3 0.16 1 0.13 0.54 / / 0.17 105 

2.5X-0.59S3 0.15 1 0.10 0.59 / / 0.16 110 

1.8X-0.56S3 0.17 1 0.15 0.56 / / 0.13 130 

X-S6 1.8X-0.56S6 0.17 1 0.15 / 0.56 / 0.13 140 

Two series of dispersions were synthesized. In a first series, linear polymers were prepared. 

Using S2(Ph(CH2)3OH)2 (S3) as the self-healing moiety, three linear (L-S3) PUUs were 

synthesized varying the amount of S3 from 0.44 mol eq. of IPDI for 2.5L-0.44S3 and 0.54 mol 

eq. for 2.5L-0.54S3 to 0.59 mol eq. for 2.5L-0.59S3, but keeping the amount of HDA (2.5 wt%) 

constant (Table IV.1). In order to obtain a softer material and understand the influence of the 

urea groups, an additional linear PUU (1.8L-0.56S3) was obtained by lowering the amount of 

HDA to 1.8 wt% of reactants, while keeping the amount of IPDI and DMPA constant. Another 

polymer dispersion (1.8L-0.56S6) was obtained by using the more flexible self-healing moiety 
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S2(Ph(CH2)6OH)2 (S6) for the same formulation of the S3-based alternative (1.8L-0.56S3). The 

second series of polymer dispersions is formed by the cross-linked versions of the first series 

that were obtained by changing the chain extender from HDA to DETA. A schematic overview 

of the different series is depicted in Figure IV.3. 

 

Figure IV.3. Schematic of linear PUUs (L-S3 and L-S6) and cross-linked PUUs (X-S3 and X-S6). 
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IV.2.4.  Characterization 

IV.2.4.1. Monomer characterization 

Infrared spectra were recorded in a FTIR spectrometer (Bruker). All melting points were 

measured in a Büchi Melting Point B-540. The NMR spectra were recorded at 500 MHz for 
1
H-

NMR, and 126 MHz for 
13

C{H}-NMR in CDCl3 at room temperature. The data are reported as s 

= singlet, d = doublet, t = triplet, m = multiplet, coupling constant(s) in Hz, integration. 

Elemental analysis was carried out using a TruSpec Micro (LECO) analyzer. HRMS-analysis 

was performed with a LC/Q-TOF with Agilent Jet Stream ESI ionization source.  

IV.2.4.2. Monomer, prepolymer and dispersion characterization 

The NCO content of the PU prepolymer was determined by means of a back titration with HCl 

of the excess of dibutylamine (DBA) molecules, which were added to neutralize the free NCO-

groups of the PU.
14–16

 The particle sizes and distributions were measured by hydrodynamic 

chromatography (HDC) with a Matec CHDF3000 instrument equipped with UV detector 

operating at 254 nm and a PL-PSDA Type 2 (Agilent) column using a carrier flux of 1 mL.min
-1

. 

For these measurements, samples were diluted to 1% solids content, passed through a 1.2 μm 

nylon filter and injected with an autosampler (25 μL). The eluent was an aqueous solution of 

sodium dihydrogenphosphate (0.24 g.L
-1

), sodium dodecyl sulfate (0.5 g.L
-1

), Brij35 (poly 

alkylenglycolether, 2 g.L
-1

) and sodium azide (0.2 g.L
-1

) was used. Periodic calibration of the 

system was performed using narrowly dispersed polystyrene standards. 
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IV.2.4.3. Polymer characterization 

Films with a thickness of 0.50-0.75 mm were obtained by casting the dispersion in silicon 

molds (25x55 mm
2
). The films were first dried for 1 day at 25°C and subsequently for 2 days at 

60°C after which they were equilibrated for 3 days at 25°C.  

The molecular weights of the dried films which could completely dissolve in THF after 1h were 

determined by injecting them into a Size Exclusion Chromatography/Gel Permeation 

Chromatography (SEC/GPC) instrument after filtering them. The instrument consisted of a 

pump (LC-20A, Shimadzu), an autosampler (Waters 717), a differential refractometer (Waters 

2410), a UV detector measuring at 262nm (Waters 2487) and three columns in series (Styragel 

HR2, HR4 and HR6, with pore sizes ranging from 102-106 Å). Chromatograms were obtained 

at 35 °C using a THF flow rate of 1 mL.min
-1

. A series of polystyrene (PS) standards in the 

range of 580–3 848 000 g.mol
-1

 were used to obtain the calibration curve which provided 

molecular weights of the polymer relative to PS. It is perhaps worth emphasizing here that 

longer dissolution times than 1h in THF should be avoided for the GPC measurements of the 

PUU materials, since immersion into solvents like THF or MEK led to the cleavage of the 

polymer chain resulting in lower molecular weights of the PUUs, as was demonstrated for 

0.18L-0.56S3 depicted in Figure A II.5 (Appendix II).  

For the water resistance tests, samples of 5 x 5 x 0.5mm
3
 were weighted (M0) and immersed in 

10 ml of deionized water at room temperature. At specific times t, the films were weighed (Mt) 

after smoothly blotting with a filter paper and put back again in the deionized water. Finally, the 
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water uptake was calculated in relation to the initial dry weight of the sample based on the 

following equation IV.1:  

Water uptake (%) =
       

  
 .100   (IV.1) 

Thermogravimetric analysis (TGA) was performed in a temperature range of 40-800 ºC at 

10ºC/min under a nitrogen atmosphere with a TA Instruments Q500. Dynamic mechanical 

analysis (DMA) was carried out in a TA Instruments DMA Q800 equipped with a liquid 

nitrogen cooling system. The measurements were performed in tensile geometry at a fixed 

frequency of 1 Hz, an initial static force of 0.35 N and a constant strain of 0.03% with the static 

force 20% larger than the dynamic one. The samples (typical size = 10 x 10 x 0.5 mm
3
) were 

cooled down to -150/-100ºC and heated with a rate of 4ºC.min
-1

 till the temperature at which 

the minimum dynamic force of 0.01 N was hit.  

Stress-strain measurements were carried out on dumbbell type specimen at 23ºC and 50%RH, 

meeting the requirements of ISO 291-23/50-class 1, on a universal testing machine 

Z050/zmart.pro with testcontrol by Zwick GmbH at a 25 mm.min
-1 

strain rate. The averages of 

3-5 replicate measurements are reported. For the scratch closure experiments, scratches were 

made with a depth of roughly 75% of the thickness ( 0.7 mm) of the films using a razor blade 

with a thickness of 0.40 mm and subsequently closure at 80ºC was followed using an optical 

microscope (Nikon Eclipse LV100ND). The rheological data were obtained from a stress-

controlled Anton Paar Physica MCR101 rheometer using parallel plate geometry (plate   = 

8mm, disk-shaped specimens with   = 10 mm and a thickness of 0.50-0.75 mm). Frequency 

sweeps (0.001-20 Hz) at 0.5% strain were conducted at fixed temperatures from 70-130ºC.  
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IV.3. Results and discussion 

IV.3.1. Dispersion and polymer characteristics 

All synthesized PUU dispersions were stable and coagulum free. The particle size distributions 

(Figures A II.6-7, Appendix II), determined by HDC, show a broad variation with average 

particle sizes in the range of 50 to 300 nm, since the chain extension step that was performed 

after dispersion of the PUU in water is more difficult to control on this small scale. However, 

homogeneous and transparent films were obtained in all cases (Figure IV.4). By increasing the 

disulfide content, the molecular weights of the linear S3-based (L-S3) PUUs decreased (Table 

IV.2). This was due to the fact that an increase of disulfide inevitably implies a decrease of the 

macrodiol PolyTHF (Table IV.1, experimental section) and therefore lower molecular weights 

were obtained at a similar degree of polymerization. On the other hand, the molecular weight 

increased when S6 was used instead S3, which might be due to the higher flexibility of S6 that 

could lead to better availability of the alcohol functionalities when long chain lengths were 

obtained during polymerization leading to higher conversion levels that yield higher molecular 

weights.  

Furthermore, less than 20% of water uptake could be measured for all PUUs after 1 month of 

immersion in water (Figure A II.8, Appendix II), which is a significant improvement compared to 

the PUs of Chapter III which already partially disintegrate after 5 d in water. This might be due 

to a low degree of H-bonding in the PUs, as the water uptake tests demonstrate that a higher 

level of chain extender or changing from linear PUUs to networks leads to less water uptake, 

since more physical and/or chemical cross-linked materials are generally more water resistant. 
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2.5L-0.59S3 

 

2.5X-0.54S3 

 

2.5X-0.59S3 

 

Figure IV.4. Films from the dispersions which show the broadest PSD in Figures A II.6-7. 

 Table IV.2. Polymer characteristics of PUUs based on S2(Ph(CH2)3/6OH)2 (S3/S6). 

IV.3.2. Thermal and mechanical properties of the PUUs 

Regarding the thermal properties of the PUUs, it can be concluded that all materials show a 

high Td > 250°C, while the cross-linked materials show lower thermal stability in comparison 

with the linear counterparts (Table IV.2). The DMA results of the PUUs are depicted in Figures 

IV.5-6. First of all, a secondary relaxation linked to the presence of closely interconnected 

aromatic rings can be observed around -140°C, similarly to the PU(U)s described in Chapter 

III.
17,18

 Additionally, also here, two different glass transition regions can be observed for all 

Sample 
GPC (IR) TGA DMA 

Mn (kDa) Mw (kDa) Đ 
Td (°C) 

(5 wt% loss) 
Tg (ºC)  

(=Tmax Tan   ) 

L-S3 

2.5L-0.44S3 34 65 1.9 265 43 

2.5L-0.54S3 23 44 1.9 258 67 

2.5L-0.59S3 20 39 1.9 262 75 

1.8L-0.56S3 22 45 2.1 267 59 

L-S6 1.8L-0.56S6 35 71 2.0 263 27 

X-S3 

2.5X-0.44S3 

Insoluble in THF 

259 53 

2.5X-0.54S3 256 73 

2.5X-0.59S3 254 77 

1.8X-0.56S3 263 64 

X-S6 1.8X-0.56S6 259 33 
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PUUs based on S3 (Figure IV.5 B and D). While the low T glass transition temperature (Tg) is 

situated again around -70ºC, a second broader transition could be observed at higher 

temperatures. This high temperature glass transition, which can be followed easily by looking 

at the peak of the tan δ as this is also considered as a measure for the Tg, differed significantly 

between samples as depicted in Figure IV.5 and in Table IV.2.  

   
 

      

Figure IV.5. Storage modulus (E’), loss modulus (E’’) and Tan δ vs. T, of linear (A; C) and cross-
linked (B; D) PUUs based on S3. 
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Figure IV.6. Storage modulus (E’) (A), loss modulus (E’’) and Tan δ (B) vs. T of 1.8L/X-0.56S3 in 
comparison with 1.8L/X-0.56S6. 

In the samples containing the same amount of chain extender, the high temperature Tg 

increased with the content of S3 in the polymer, in accordance to what could be observed in 

Chapter III, because more aromatic moieties were incorporated into the backbone. In addition, 

the Tg increased with the content of chain extender because of the augmentation of the urea 

groups that led to a higher degree of H-bonding. Figure IV.5 also shows that cross-linking led 

to an increase of the high temperature Tg and to a rubbery plateau, which is a fingerprint of the 

polymer network, at higher temperatures. Moreover, Figure IV.6 depicts that the storage 

modulus at room temperature and the high temperature Tg strongly decreased when the more 

flexible disulfide moiety S6 was incorporated instead of S3. 

Alternatively, the polymer structure also influenced the tensile test results as can be seen in 

Table IV.3 and Figure IV.7. By increasing the amount of the self-healing moiety (S3) or chain 

extender or by introducing cross-linking points into the PUU material, the rigidity and strength 

of the material increased, as can be seen at the increasing value of the Young’s modulus, yield 
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strength ( y) and tensile strength at fracture ( f). However, at the same time they decreased 

the elongation at fracture ( f), which is most obvious for the most rigid PUU 2.5X-0.59S3 

(Figure IV.7 A). On the other hand, by introducing the more flexible self-healing moiety (S6) 

into the polymer backbone, the strength and rigidity of the PUUs decreased (Figure IV.7 B). 

Additionally, Figure IV.7 shows that several of the PUUs synthesized in this chapter showed 

tensile strengths at fracture in the range of 16-18.5 MPa, which are improved values compared 

to the ones that were obtained in Chapter III. There, values up to 17 MPa could be reached for 

the PUUs based on the diamine-terminated disulfide compound, but these materials only gave 

limited mobility, while the PUs based on S2(Ph(CH2)3OH)2 (S3), without the use of a diamine-

terminated chain extender which was introduced in an additional synthesis step in this chapter, 

could only achieve ultimate tensile strengths of 10 MPa.  

Table IV.3. Tensile testing results of PUUs based on S2(Ph(CH2)3OH)2 (S3) or S2(Ph(CH2)6OH)2 (S6). 

Sample Young’s modulus (MPa)  y (MPa)  f  (MPa)  f (%) 

L-S3 

2.5L-0.44S3 31.2   1.9 / 12.5   0.7 460   10 

2.5L-0.54S3 321.2   1.1 10.3   0.3 15.2   0.5 240  20 

2.5L-0.59S3 707.8   11.6 21.2   0.5 17.7   0.4 135   10 

1.8L-0.56S3 207.2   6.8 7.2   0.2 11.6   0.3 295   10 

L-S6 1.8L-0.56S6 15.1   1.1 / 8.3   0.3 410   5 

X-S3 

2.5X-0.44S3 41.0   2.7 / 18.5   0.5 450  5 
2.5X-0.54S3 340.3   6.4 11.7   0.6 18.0   1.0 235   10 
2.5X-0.59S3 751.9   12.9 23.7   0.4 13.6   3.0 30   10 
1.8X-0.56S3 278.5   7.2 9.3   0.1 16.3   0.3 315  35 

X-S6 1.8X-0.56S6 27.9   1.9 / 9.5   0.2 340   10 
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Figure IV.7. Stress-strain curves measured of PUUs based on S3 (A) and PUUs based on S6 (B) 
obtained at 23ºC using a cross-head velocity of 25 mm.min

-1
. 

IV.3.3. Rheological behaviour of the PUUs 

The results discussed above show that the combination of aromatic disulfides of different 

flexibility (S3 versus S6) and chain extenders with different functionalities (HDA versus DETA) 

allows the synthesis of PUUs with a wide range of mechanical properties. However, the self-

healing ability of these materials should also be characterized which can be carried out by 

studying the molecular mobility of the PUUs by performing frequency sweep measurements in 

a similar fashion as described in Chapter III.  

Also for the PUU materials presented here, the van-Gurp-Palmen-plots were constructed in 

order to check the applicability of the TTS principle to construct the master curves of G’ and G’’ 

(Figures A II.9-10 in Appendix II). These plots showed that, similar to what was described for 

the PUs in Chapter III, the depicted isothermal frequency curves did not completely merge to a 

single line indicating that the materials underwent some change with temperature, likely due to 
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the activation of the dynamic disulfide bonds at higher temperatures. This also explains the 

growing divergence between the isothermal frequency curves as the amount of disulfide 

compound S3 increased (Figure A II.9, Appendix II). However, by using horizontal (aT) and 

vertical shift factors (bT), an acceptable superposition could be achieved for the linear PUUs 

and the cross-linked 1.8X-0.56S3 and 1.8X-0.56S6. For these polymers, the master curves 

were constructed using 80 ºC as reference temperature. This temperature was chosen 

because it is high enough so the Tg of all PUUs is surpassed and the materials are able to 

molecularly interdiffuse (Figure IV.5-6), but simultaneously it is low enough to avoid any 

possible degradation (e.g. by cleavage of urethane linkages   150ºC).
35

 For the other cross-

linked PUUs, superposition was not good enough to obtain acceptable master curves at 80ºC.  

The master curves at 80 ºC for the linear polymers and the cross-linked 1.8X-0.56S3 and 1.8X-

0.56S6 are presented in Figure IV.8. The values of the crossover frequency ωd, at which G’ 

and G’’ intersect and which is indicated with an arrow (Figure IV.8), as well as those of the 

relaxation time d are reported in Table IV.4. From the values obtained from the master curves 

of the L-S3 (Figure 8 A), it is clear that the mobility of the material decreased by either a too 

low amount of the self-healing moiety (S3) (e.g. soft 2.5L-0.44S3), as only a limited amount of 

disulfide bonds are present, or a too high disulfide content (S3) (e.g. rigid 2.5L-0.59S3), since 

dynamic exchange is restricted by the stiffness of the PUU backbone. This is a different trend 

than the one that was described in Chapter III which only demonstrated a decrease in mobility 

of the PUs by an increasing amount of disulfide units. This can be explained by the fact that the 

PUUs described here additionally contain urea units which induce a higher degree of H-

bonding and physical cross-linking. Therefore, sufficient disulfide bonds are required for 
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dynamic exchange to be able to enhance the mobility in the PUU backbone. Once enough 

disulfide bonds have been incorporated, a similar trend as for the PUs of Chapter III can be 

demonstrated. Additionally, the mobility also decreased with the content of the chain extender 

(HDA) as again more H-bonds led to a more rigid and less mobile structure. 

 

 

Figure IV.8. Master curves (Tref=80ºC) of the L-S3 series (A) and 1.8L/X-0.56S3 vs. 1.8L/X-0.56S6 (B). 
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Table IV.4. Characteristic values for G’-G’’ crossover in the master curves (Tref=80ºC) of the PUUs. 

 

 

 

 

Furthermore, it is remarkable that some of the cross-linked PUUs showed a G’-G’’ crossover 

point at 80 ºC. Generally, for cross-linked polymers, no G’-G’’ crossover point is expected as 

the network prevents the material from flowing. However, when activated by temperature, the 

dynamic disulfide bonds present in the PUU backbone break the polymer chains between 

cross-linking points allowing the rearrangement of the network structure and therefore inducing 

some flow. This was the reason for the presence of G’-G” crossover in the PUUs cross-linked 

with the lowest DETA concentration (1.8 %, samples 1.8X-0.56S3 and 1.8X-0.56S6). However, 

when the DETA concentration was increased to 2.5% (samples 2.5X-0.44S3, 2.5X-0.54S3 and 

2.5X-0.59S3), the network was so densely cross-linked that the exchange of some disulfide 

bonds did not allow sufficient flow of the material at 80ºC. In any case, Table IV.4 shows that, 

even for 1.8X-0.56S3 and 1.8X-0.56S6, the network reduced the mobility of the polymer.  

A way to overcome these restrictions in the mobility of the PUUs, is by using the more flexible 

disulfide (S6) as shown in Figure IV.8 B and Table IV.4. It is particularly remarkable that in the 

case of the cross-linked PUUs the relaxation time was reduced by a factor of 50, whereas in 

the linear polymers d decreased only by a factor of 2, when comparing the S6-based materials 

Sample ωd (rad.s
-1

) d 

L-S3 

2.5L-0.44S3 4*10
-4

 4.5 h 

2.5L-0.54S3 6*10
-4

 3 h 

2.5L-0.59S3 5*10
-5

 1.5 d 

1.8L-0.56S3 0.008 13 min 

L-S6 1.8L-0.56S6 0.016 6.5 min 

X-S3 1.8X-0.56S3 2*10
-6

 36 d 

X-S6 1.8X-0.56S6 1*10
-4

 17.5 h 
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to their S3-based counterparts. This clearly indicates that dynamic covalent bonds placed in 

flexible moieties facilitate the rearrangement of polymer networks making the healing of cross-

linked polymers possible under moderate conditions. From these results, it can therefore be 

concluded that although mechanical properties can influence the mobility of the system, 

ultimately the polymer architecture with the possibility of incorporating intramolecular 

interactions, dynamic bonds, cross-linking points and/or more or less flexible monomers has a 

decisive role on determining the final mobility and thus healing ability of the material. 

IV.3.4. Scratch closure 

All the polymers in Table IV.4 showed mobility and flow at 80 ºC although the relaxation time d 

varied from a few minutes to days. In order to test if the mobility of these PUUs also leads to 

self-healing, scratch closure tests were performed as a simple method to macroscopically 

assess the healing ability of materials. In Figures IV.9 and 10, the evolution of the scratches is 

depicted which showed that complete closure of the scratches could be achieved, although in 

most cases the time required (tscratch) was considerably longer than the relaxation time d. This 

could be expected as scratch closure requires creep deformation, as explained in Chapter III, 

which is a complex viscoelastic process with a spectrum of retardation times.
28

 Interestingly, 

there is a linear relationship between tscratch and d (Figure IV.11). Nevertheless, it is noteworthy 

to mention that, contrary to the other examples, tscratch seemed shorter than the relaxation time 

d for 1.8X-0.56S3. This might be explained by the fact that the higher cross-linking degree 

induces a delayed elastic recovery at higher temperatures leading to a strong scratch closing 

behaviour after already 1 d, which supposedly promotes scratch closure in shorter times.
36–38
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2.5L-0.44S3 2.5L-0.54S3 2.5L-0.59S3 1.8L-0.56S3 

    
  1 d   1 d   1 d   1 h 

    
  2 d   2 d   2 d   4 h 

    
Figure IV.9. Scratch closure at 80°C of linear PUUs based on S2(Ph(CH2)3OH)2 (S3). 

1.8L-0.56S3 1.8X-0.56S3 1.8L-0.56S6 1.8X-0.56S6 

    
  1 h   4 h   1 h   4 h 

    
  4 h   20 d   4 h   2 d 

    
Figure IV.10. Scratch closure at 80°C of PUUs based on S6 vs. S3. 
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Figure IV.11. Relationship between the time needed for scratch closure (tscratch) and the relaxation 

time (d) at 80ºC for the linear PUUs and the cross-linked 1.8X-0.56S3 and 1.8X-0.56S6. 

As the long scratch closure times needed at 80 ºC may be an issue when considering the 

application of these materials, the effect of the healing temperature on the relaxation time was 

explored by using the TTS principle (Figure IV.12). Using the soft 2.5L-0.44S3 and relatively 

hard 2.5L-0.59S3 as examples, increasing the healing temperature to 100 ºC decreased their 

relaxation times to 560 s (0.16h) and 900 s (0.25h), respectively. Using Figure IV.11 as a 

reference, tscratch is expected to decrease from days to about a few hours, which could also be 

confirmed experimentally showing a tscratch of 3h and 5h for the soft and hard example, 

respectively (Figure A II.11, Appendix II). This result shows that the linear relationship between 

tscratch and d (Figure IV.11) can be considered as a master curve, as also 2.5L-0.44S3 and 

2.5L-0.59S3 demonstrated this trend even at a temperature of 100ºC. Next to playing with the 

flexibility of the polymer microstructure, further increasing the healing temperature might 

therefore be another way to overcome the mobility restrictions in order to develop stronger 

polymer networks with more efficient self-healing abilities.  

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

2.5L-0.44S3 80ºC
2.5L-0.44S3 100ºC
2.5L-0.54S3
2.5L-0.59S3 80ºC
2.5L-0.59S3 100ºC
1.8L-0.56S3
1.8L-0.56S6
1.8X-0.56S3
1.8X-0.56S6

t s
c

ra
tc

h
 (

h
)


d
 (h)



Chapter IV                  

130 

    

Figure IV.12. Calculated relaxation times in function of T for the linear PUUs based on S3 (A) and 
for 1.8L/X-0.56S3 versus 1.8L/X-0.56S6 (B). 

IV.4. Conclusions 

For this new series of waterborne PUU dispersions based on the more flexible aromatic 

disulfide moieties and chain extended with amine-terminated compounds, the effect of the 

polymer microstructure on the mechanical properties, rheological behaviour and scratch 

closing ability of the material could be systematically studied. Although incorporation of a 

sufficiently high amount of the self-healing moiety was necessary to introduce enough mobility 

into the PUU backbone, higher amounts of aromatic disulfide increased the rigidity to a level 

that it limited the disulfide exchange. Nevertheless, reducing the amount of chain extender and 

thus the formation of urea moieties and their associated H-bonds, allowed the incorporation of 

sufficient disulfide compound, so that materials with significant strength as well as mobility 

could be obtained since the disulfide exchange is less hindered by physical interactions.  
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Additionally, by changing the chain extender from a difunctional amine (HDA) into a 

trifunctional amine (DETA), cross-linking points could be introduced into the PUU material 

which strongly decreased the mobility of the polymer. Interestingly, since dynamic disulfide 

bonds are present in the network, a crossover point could still be observed in the master 

curves (Tref=80ºC) obtained by TTS, showing a relaxation time significantly above the levels of 

those of the linear PUUs.  

However, replacing the disulfide S2(Ph(CH2)3OH)2 (S3) by its more flexible alternative 

S2(Ph(CH2)6OH)2 (S6) increased the mobility of the material to an even higher extent, so that 

possibly by incorporating more self-healing moiety even stronger and simultaneously more 

mobile materials could be developed.  

This proved the fact that varying and optimizing the various building blocks involved in the 

polymer synthesis can give rise to a polymer architecture which is necessary to obtain self-

healing materials which present high mechanical properties with tensile strengths up to roughly 

20 MPa, while showing sufficient mobility at moderate temperatures. In Figure IV.13, the 

results obtained in this chapter can now be compared with the previously discussed results of 

Chapter I, showing the limited mechanical strength of academic self-healing PU(U)s based on 

disulfide bonds compared to industrial PU(U) dispersions for coatings. From this plot, it 

becomes clear that with these materials we tend to overcome the gap that currently exists 

between academic research and industry. Finally, in Chapter V, the focus will be on the 

quantitative determination of the recovery upon damage of these strong polymers in 

comparison with the counterpart materials lacking dynamic covalent bonds in their PUU 

backbone.  
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Figure IV.13. Indication of the results obtained for this chapter in green added to the already 
discussed Figure I.13 of Chapter I. 
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V.1. Introduction 

In the previous chapters, disulfide containing PUUs were developed which are able to 

simultaneously provide high strength at room temperature and show mobility at moderate 

healing temperatures making them attractive for waterborne coating applications. These 

characteristics could be obtained due to the presence of three types of dynamic bonds with 

different interaction or bond strengths: the reversible covalent disulfide bonds which give rise to 

dynamic disulfide exchange, the H-bonding between the urethane units and the stronger H-

bonds formed between the urea moieties.
1–3

 However, the quantitative differentiation between 

the effect of these dynamic disulfide bonds and the influence of H-bonding on the mechanical 

strength and healing ability of the developed PUUs has not yet been discussed in this thesis. 

Looking into literature, the influence of these dynamic disulfide bonds on self-healing of cross-

linked PUU elastomers has been studied by comparing the self-healing efficiency of PUUs 

containing aromatic disulfide groups with PUUs of the same polymer structure but in which the 

disulfide bond was substituted by a C-C bond.
4,5

 For a relatively open network and using the 

recovery of the toughness (area under the stress-strain curve obtained by tensile testing) as a 

measure of the self-healing efficiency, a recovery of 80% could be achieved at room 

temperature in only 2 h, while this recovery was nearly complete after 24 h.
4
 On the other hand, 

the healing efficiency obtained for the cross-linked PUUs lacking disulfide motifs (but showing 

the same mechanical strength) was about 50% after 24 h, which was attributed to the 

contribution of the H-bond between the urea groups. The increase in recovery from 50 to 100% 

was thus attributed to the disulfide moieties, but the mechanism that led to this enhancement 

was not discussed. Alternatively, the effect of substituting the aromatic disulfide bonds by C-C 
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bonds was also studied for more densely cross-linked elastomers using fracture mechanics to 

measure self-healing efficiency.
5
 It was found that the PUU containing aromatic disulfide 

groups showed a recovery of about 30% after 6 h at 90 ºC, whereas the PUU with similar 

strength but lacking the disulfide groups did not show any significant recovery even after 24 h 

at 120 ºC. These differences upon heating were attributed to the fact that strong covalent 

disulfide bonds could be reformed at the healing interface, while the material without these 

disulfide moieties could only re-establish reversible weak bonds that provided a limited 

recovery of the original fracture properties. Therefore, both the aforementioned works suggest 

that the formation of strong disulfide bonds at the healing zone is the main reason for the 

higher healing efficiency in PUU elastomers.  

In this chapter, we want to investigate if this is also the case for the stronger self-healing PUU 

materials that were developed in Chapter IV. For this, linear and cross-linked waterborne PUU 

dispersions containing either disulfide groups or C-C bonds were synthesized. Disulfide groups 

are incorporated using the previously described bis[4-(3’-hydroxypropyloxy)phenyl]disulfide 

(S2(Ph(CH2)3OH)2), while the second polymer incorporates a similar monomer in which the 

disulfide bond is replaced by a C-C bond, namely 1,2-[4-(3-hydroxypropoxy)phenyl]ethane 

(C2(Ph(CH2)3OH)2). In the same way as described in Chapter IV, the linear PUUs were 

obtained using hexane-1,6-diamine (HDA) as chain extender and the cross-linked ones using 

diethylene triamine (DETA). In this chapter, a thorough study of the mechanical properties, 

rheological behaviour and self-healing ability of these polymers will be carried so that the 

influence of the dynamic disulfide bonds additional to the H-bonds, already inherently present 

in the PUUs, can be demonstrated in linear as well as cross-linked materials.  
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V.2. Experimental 

V.2.1. Materials 

Bibenzyl-4.4’-diol (S2(PhOH)2, Interchim, >95%), bis(4-hydroxyphenyl)disulfide (S2(PhOH)2, 

Enamine, 95%), 2,2-bis(hydroxymethyl)-propionic acid (DMPA, GEO specialty chemicals, 

>96%), 3-bromo-1-propanol (Apollo Scientific, 96%), dibutylamine 0.1N in xylol (DBA, Bernd 

Kraft), dibutyltin dilaurate (DBTL, TCI, >95%), ethyl acetate (EtOAc, Brenntag, >98%), 

diethylenetriamine (DETA, Merck KGaA, ≥98%), hexane-1,6-diamine (HDA, Sigma-Aldrich, 

98%), hydrochloric acid 0.1N in water (HCl, Bernd Kraft), isophorone diisocyanate (IPDI, Bayer 

Material Science, >99%), N-methylpyrrolidon (NMP, Honeywell, ≥99.9%), methyl ethyl ketone 

(MEK, Honeywell, ≥99.5%),  polytetrahydrofuran (PolyTHF, BASF, 2000 g.mol
-1

), potassium 

carbonate (K2CO3, Sigma-Aldrich, ≥99%), sodium chloride (NaCl, Sigma-Aldrich, ≥99.5%), 

sodium sulfate (NaSO4, Honeywell, ≥99%), tri-n-butylphosphine (TBP, Sigma-Aldrich, 97%), 

triethylamine (TEA, Sigma-Aldrich, ≥99%), tetrahydrofuran (THF, Scharlau), were used as 

received. 

V.2.2. Synthesis of alternative carbon-based aromatic compound 

Similar to the in Chapter III (Section III.2.2) described synthesis of bis[4-(3’-

hydroxypropyloxy)phenyl]disulfide (S2(Ph(CH2)3OH)2), a carbon-based counterpart compound 

was synthesized, 1,2-[4-(3-hydroxypropoxy)phenyl]ethane (C2(Ph(CH2)3OH)2), in which the 

disulfide bond of S2(Ph(CH2)3OH)2 was replaced by a C-C bond (Figure V.1). A mixture of 

bibenzyl-4,4’-diol (79.0 g, 0.37 mol), 3-bromo-1-propanol (83.4 mL, 0.92 mol), potassium 

carbonate (509.6 g, 3.69 mol) in THF (120 wt% of solid reagents) as solvent was stirred at 

http://www.tcichemicals.com/eshop/nl/be/commodity/B3827/
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60°C for 95h under N2-atmosphere in a jacketed glass reactor equipped with a mechanical 

stirrer and a condenser. Afterwards, the reaction mixture was filtrated and washed with EtOAc. 

The obtained organic filtrate was washed with 1M HCl and saturated aqueous NaCl solution, 

after which it was dried over anhydrous NaSO4. The solvent was removed from the product 

under vacuum and the residue material was purified by recrystallization in EtOAc. Finally, the 

product was dried at 50°C under vacuum to give 1,2-[4-(3-hydroxypropoxy)phenyl]ethane 

C2(Ph(CH2)3OH)2 [IUPAC: 3,3'-((ethane-1,2-diylbis(4,1-phenylene))bis(oxy))bis(propan-1-ol)]. 

Yield: 44.6 g (37 mol%). Pale brown powder. FTIR (neat, cm-1): 3249.02, 2908.08, 2870.14, 

1878.29, 1611.05, 1582.41. m.p. 138.9-140.4 ºC.
 1

H NMR (500 MHz, DMSO-d6) δ 7.13 – 7.06 

(d, J = 8.6 Hz, 2H), 6.85 – 6.78 (d, J = 8.6 Hz, 2H), 4.54 (t, J = 5.1 Hz, 1H (OH)), 3.98 (t, J = 

6.4 Hz, 2H), 3.55 (t, J = 6.2 Hz, 2H), 2.76 (s, 2H), 1.84 (p, J = 6.3 Hz, 2H). 
13

C NMR (126 MHz, 

DMSO) δ 157.28, 133.80, 129.72, 114.58, 64.88, 57.82, 40.48, 40.32, 40.15, 39.98, 39.81, 

39.65, 39.48, 36.95, 32.66. (The 
1
H, 

13
C, g-COSY, g-HSQC NMR spectra are depicted in 

Figures A III.1-4 in Appendix III) Anal. Calcd. for C20H26O4: C 72.70, H 7.93, S 0. Found: C 

72.89, H 7.86, S 0. HRMS (ESI) for C20H26O4 calculated [M + H]
+
: 330.1831. Found: 330.1822 

 

Figure V.1. Chemical structure of bis[4-(3’-hydroxypropyloxy)phenyl]disulfide S2(Ph(CH2)3OH)2 and 
1,2-[4-(3-hydroxypropoxy)phenyl]ethane C2(Ph(CH2)3OH)2. 
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V.2.3. Synthesis of the waterborne PUU dispersions based on sulfur-

based and carbon-based monomers 

The synthesis procedure for the PUU dispersions was similar to the one described in Chapter 

IV using the formulations described in Table V.1. In order to obtain the S-containing or C-based 

prepolymers, PolyTHF (Mw=2000 g.mol
-1

), DMPA, IPDI and S2(Ph(CH2)3OH)2 or 

C2(Ph(CH2)3OH)2 were fed together into a 100 mL jacketed glass reactor equipped with a 

mechanical stirrer and a condenser. Next, DBTL (0.8 wt% of reactants) and MEK (60 wt%) 

were added and the mixture was stirred for 130 min at 80ºC under refluxing conditions. The 

mixture was cooled down to room temperature and neutralized with TEA (1 mol eq. of DMPA) 

after which deionized water (100 wt%) was slowly added dropwise to obtain a dispersion. In the 

last synthesis step, a constant amount (13 mol%) of chain extender (HDA or DETA) was added 

into the vessel to react with the residual free NCO-groups of the dispersed prepolymer for 30 

min. MEK was removed from the filtered dispersion by evaporation using a rotary evaporator at 

243 mbar. The waterborne PUU dispersion had a solids content of 25 wt%.  

The samples were named according to their varying type of chain extender, L (linear) for HDA 

and X (cross-linked) for DETA, followed by an indication of the incorporation of the disulfide 

compound S2(Ph(CH2)3OH)2 (S) or the C-based monomer C2(Ph(CH2)3OH)2 (C) into PUU 

backbone as depicted in Figure V.2. The formulations for the S-based PUUs are equal to the 

ones of 1.8L-0.56S3 and 1.8X-0.56S3 described in Chapter IV and are simplified in this chapter 

by naming them L-S and X-S, respectively. Their C-based counterparts are synthesized using 

the same formulation (based on mol equivalents), but replacing S2(Ph(CH2)3OH)2 by 

C2(Ph(CH2)3OH)2, and are respectively named L-C and X-C. 
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Table V.1 Formulation of PUU syntheses performed based on S2- or C2(Ph(CH2)3OH)2. 

Sample Data DMPA  IPDI PolyTHF S C HDA/DETA 

L/X-S 
wt% 3 29 38 27 / 1.9/1.7 

mol eq. 0.17 1 0.15 0.56 / 0.13 

L/X-C 
wt% 3 30 39 / 25 2.0/1.7 

mol eq. 0.17 1 0.15 / 0.56 0.13 

 

 

Figure V.2. Schematic of linear PUUs (L-S and L-C) and cross-linked PUUs (X-S and X-C). 
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V.2.4.  Characterization 

V.2.4.1. Polymer characterization 

The same standard monomer, prepolymer and dispersion characterization techniques as in 

Chapter IV were used (Section IV.2.4.1-2). The films were dried and GPC, TGA and DMA were 

carried out as described in Chapter IV (Section IV.2.4.3). The gel content of the materials was 

defined by immersing small samples cut from the polymer films during 24 h in MEK. 

Afterwards, the films were filtered from the solvent and dried overnight at 60ºC under vacuum 

to make sure all the residual MEK evaporated. The gel content could then be calculated as the 

ratio of the weight of the different samples after drying and before immersion. Stress-strain 

measurements were carried out on dumbbell type specimen at 23ºC and 50%RH, meeting the 

requirements of ISO 291-23/50-class 1, on a universal testing machine Z050/zmart.pro with 

testcontrol by Zwick GmbH at a crosshead velocity of 25 mm.min
-1

. For each experiment, the 

average results of 3-5 replicate measurements are reported here. It is noteworthy to mention 

that due to the high toughness of the C-based materials, breaking in the clamp or slippage 

occurred in some tensile measurements and therefore the results that could be obtained with 

this tensile apparatus only give an estimate of the absolute strength of the C-based polymers. 

As an alternative technique to tensile testing, fracture mechanics were performed, so that the 

absolute difference in toughness between the S-based and C-based materials could be 

obtained. Differential scanning calorimetry (DSC) was performed using a TA Instruments 

Q2000. The samples were heated from -70ºC to 150ºC with a heating rate of 20ºC/min during a 

first heating cycle after they were cooled again to -70ºC during a cooling cycle. Finally, they 

were heated during a second heating cycle from -70ºC to 150ºC. 
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The rheological data were obtained from a stress-controlled Anton Paar Physica MCR101 

rheometer using parallel plate geometry (plate   = 8mm, disk-shaped specimens with   = 10 

mm and 0.50-0.75 mm in thickness). Frequency sweeps (0.001-20 Hz) at a strain of 0.5% were 

conducted at fixed temperatures ranging from 70-150ºC. Creep measurements were performed 

on a stress-controlled ARG2 (TA Instrument) rheometer. A nominal stress of 35 Pa was applied 

at 120ºC during 30 min after which the stress was removed from the sample and the residual 

strain behaviour was measured during an additional 30 min. The relaxation experiments were 

performed using a strain-controlled ARES (TA Instrument) rheometer at a temperature of 

120ºC for which a 0.05% strain was applied, and the resulting stress was monitored over time. 

V.2.4.2. Scratch closure and fracture mechanics tests  

For the scratch closure experiments, scratches were made with a depth of roughly 75% of the 

thickness ( 0.7 mm) of the films using a razor blade with a thickness of 0.40 mm and 

subsequently closure at 80ºC was followed using an optical microscope (Nikon Eclipse 

LV100ND). Fracture experiments were performed on Single Edge Notch Tensile (SENT) 

specimens (70x20x2 mm) at room temperature using a MTS (model 810) testing machine fitted 

with a 15 kN load cell. The SENT specimens were cut using a rectangular die from flat 

polymeric sheets which were obtained from casting the dispersion in the silicon molds (60 x 75 

mm) and drying the first  layer for 1 d at 23°C, 3 d at 50°C and 1 d at 60ºC while maintaining a 

relative humidity of 50%, after which a second layer was formed in a similar fashion and the 

obtained specimens with a residual thickness of  2 mm were further dried for 2 d at 60ºC and 

3 d at 25°C. For the pristine samples, a pre-notch with a length of 10 mm was introduced into 

the center of the longest side, perpendicular to the tensile direction, of the specimens using a 
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sharp razor blade. The pre-notched pristine specimens were then clamped in the tensile 

machine using a gauge length of 40 mm and stretched until failure. For the healing 

experiments, new samples were cut completely in the center of the longest side, perpendicular 

to the tensile direction, using a sharp razor blade. Afterwards, the fractured parts were 

accurately positioned in Teflon moulds (70x20x2 mm) using a thin (0.065 mm) Teflon film to 

retain an unhealed pre-notch of approximately 10 mm. The fractured samples were healed at 

80ºC and the effect of the healing time (6 h, 12 h, 1 d, 2 d, 7 d, 14 d or 24 d) on the recovery of 

the fracture properties was investigated. After an equilibration at room temperature for at least 

1h, the healed samples were tested following the same SENT fracture procedure. A constant 

cross-head separation velocity of 10mm.min
-1

 was employed in each experiment and force and 

displacement data were collected. The low cross-head speed was applied so that the crack 

initiation and evolution could be accurately recorded by a camera positioned in the front of the 

rectangular samples, as depicted for a typical sequence (e.g. L-C) in Figure V.3.  

 

Figure V.3. Image sequence for fracture tests on SENT specimen taking pristine L-C as example. 
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V.3. Results and discussion 

V.3.1. Dispersion and polymer characteristics 

The particle size of the dispersions determined by hydrodynamic chromatography (HDC, Table 

2) show that in general small particle sizes (dp   100 nm) were obtained with narrow particle 

size distributions (PSD) in which no obvious effect of changing the monomer from 

S2(Ph(CH2)3OH)2 to C2(Ph(CH2)3OH)2 or altering the polymer structure from linear to network 

could be observed. Comparable molecular weights were obtained for the linear PUUs (L-S and 

L-C) when performing GPC measurements (RI) after dissolution of 1 h in THF.  

Table V.2. Dispersion and polymer characteristics of PUUs based on S2 – and C2(Ph(CH2)3OH)2. 

 

 

 

 

These molecular weights are higher than the critical molecular weights (Mc) for entanglements 

(L-S   5.5 kDa, L-C   7 kDa), based on the entanglement molecular weight (Me Mc/2) which 

could be calculated from the plateau modulus (GN =ρRT/ Me) obtained from rheological data.
6
 

Due to the insolubility of the cross-linked films in THF on a short timeframe, the molecular 

weight of X-S and X-C could not be determined by GPC. In order to be able to compare the 

cross-linking degree of the networks, the gel content measured for both polymers and showed 

to be in the range of around 50-60 % demonstrating that the polymers were not completely 

Sample 
HDC GPC (IR) 

dp  (nm) PSD Mn (kDa) Mw (kDa) Đ 

L-S 40 - 85 Sligtly bimodal 22 45 2.1 

L-C 100 Gauss 26 49 1.9 

X-S 70 Monomodal 
Insoluble in THF 

X-C 45 - 100 Bimodal 
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cross-linked, likely due to the low reactivity of the secondary amine of the DETA. Moreover, 

since similar molecular weights between the cross-links could be calculated from rheological 

data for X-S (9.5 kDa) and X-C (10.5 kDa), it could be confirmed that similar networks were 

formed for both materials. 

V.3.2. Thermal and mechanical properties of the PUUs 

The mechanical behaviour of the PUUs in both linear and non-linear regimes was studied by 

means of DMA and tensile tests, respectively. From the DMA results of the PUUs represented 

in Figure V.4, it is clear that for both linear and cross-linked systems, the S-based and C-based 

PUUs show a very similar behaviour for the storage modulus E’, loss modulus E’’ and tan δ 

(E’’/E’) in function of temperature. This already makes these polymers of interest to compare 

them towards their healing ability as will be discussed below. For all materials, a secondary 

relaxation can be observed for the loss modulus at around -140°C, which is linked to the 

presence of closely interconnected aromatic rings as discussed in the previous chapters. Also 

for these PUUs, a low temperature Tg that can be seen around -70ºC, and a second broader 

transition appeared at higher T, related to the glass transition of the hard phase of the material.  

This broad glass transition showed a slight shift to higher temperatures for the cross-linked 

polymers which could also be observed in the DSC results (Figure A III.5, Appendix III). 

Nevertheless, the cross-linked materials are clearly distinguishable from the linear PUUs due to 

the presence of a rubbery plateau at temperatures higher than 70 °C. In a temperature range 

starting from 150ºC, the urethane linkages begin to degrade leading to a loss in mechanical 

integrity, as can be observed in the DMA results of the cross-linked PUUs (Figure V.4).
7
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Figure V.4. DMA results of PUUs: storage modulus (E’), loss modulus (E’’) and tan δ versus T. 

DMA measures the mechanical response in the linear regime over a wide range of 

temperatures, which was seen to be same for both the S- and C-based monomers. In order to 

explore the mechanical properties in the non-linear regime, tensile tests were carried out at 

room temperature as shown in Table V.3 and Figure V.5. In this case, significant differences 

were observed between the C-based and S-based materials regarding their toughness. 

Although the Young’s modulus (E) and the yield strength (σy) show similar values for all 

materials, it is clear that the tensile strength (σf) and strain (εf) at fracture are lower for the S-

based materials. Comparing in particular L-S and L-C, it seems that at first, the materials are 

behaving similarly, as may be expected based on the DMA results in the linear regime, but as 

the strain (ε) surpasses 150%, L-S shows less strain hardening than L-C and breaks at lower 

stress σf and strain εf. This suggests that the disulfide bonds broke when subjected to high 

stress (strain). This clear difference in strength between the S-based and C-based materials 

10
4

10
5

10
6

10
7

10
8

10
9

10
10

0

0.5

1

1.5

2

-150 -100 -50 0 50 100 150 200

L-S (E')
L-S (E'')
L-C (E')
L-C (E'')
X-S (E')
X-S (E'')
X-C (E')
X-C (E'')

L-S

L-C

X-S

X-C

E
',
 E

''
 (

P
a
) T

a
n

 

Temperature (ºC)



How do dynamic covalent bonds influence PUU materials? 

151 

was not observed for the softer elastomeric PUUs described above that was subjected to 

tensile tests.
4,5

 Although the bond energy of covalent disulfides is greater than the energy of H-

bonds of the urethane and urea groups,
2
 the higher number of the latter H-bonding interactions 

in the strong coating makes the disulfide bonds to be the weak point in the PUU.  

  

Figure V.5. Stress-strain (σ-ε) curves of PUUs based on S2(Ph(CH2)3OH)2 versus C2(Ph(CH2)6OH)2 

obtained at 23ºC using a crosshead velocity of 25mm.min
-1
. 

Table V.3. Tensile testing results of PUUs based on S2(Ph(CH2)3OH)2 versus C2(Ph(CH2)3OH)2. 
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Sample E (MPa) σy (MPa) σf (MPa) εf (%) 

L-S 207.2   6.8 7.2   0.2 11.6   0.3 295   10 

L-C 264.6   18.4 8.6  0.1 24.5   2.6 360   25 

X-S 278.5   7.2 9.3   0.1 16.3   0.3 315  35 
X-C 259.2   14.5 8.1  0.4 28.8   2.8 395   40 
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V.3.3.  Rheological behaviour of the PUUs 

In order to analyze the mobility of the PUUs on the molecular level, master curves of the 

storage modulus G’ and loss modulus G’’ were constructed, by applying the time-temperature 

superposition (TTS) principle. The van-Gurp-Palmen-plots were constructed in order to check 

the applicability of the TTS principle to construct the master curves of G’ and G’’ (Figures A III.7 

in Appendix III). These plots showed that, similarly as what was described in the previous 

chapters, the isothermal frequency curves do not completely merge in a common line which 

indicates that the TTS principle does not hold equally well for all these polymers.
8
 

Nevertheless, using both horizontal (aT) and vertical shift factors (bT), an acceptable 

superposition of G’ and G’’ could be achieved for all PUUs to obtain the master curves that are 

presented in Figure V.6 for a reference temperature of 80ºC. This temperature was chosen 

because it is above the Tg of all polymers and comfortably away from temperatures where 

cleavage of urethane/urea groups could also take place (Figure V.4).
7
 In this way, it is possible 

to distinguish the influence of the presence of the dynamic disulfide bonds in the S-based 

PUUs compared to the C-bonds in L-C and X-C on the mobility of the material without the 

interference of any effects of the degradation of urethane/urea moieties.  

Figure V.6 shows that in the high frequency region, the linear polymers (L-S and L-C) display 

an almost identical rheological behaviour. However, at lower frequencies, both PUUs show a 

transition where the material goes from exhibiting an elastic behaviour (G’>G’’) to a region 

where the viscous response is dominating (G’<G’’). The crossover frequency ωd defines the 

characteristic relaxation time d of the material, which gives an indication of the time needed for 

the material to flow.
5,9,10

 As can be seen in Figure V.6 A, the G’-G’’ crossover point (marked 
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with arrows) for L-S takes place at a higher crossover frequency than for L-C, i.e. in a shorter 

relaxation time (about 13 min for L-S versus more or less 2 h for L-C) which indicates that at 80 

ºC the disulfide bonds undergo some exchange enhancing the mobility of the system.  

Alternatively, cross-linked materials show a fundamental difference in behaviour compared to 

linear polymers. In general, no G’-G’’ crossover point is expected for completely cross-linked 

polymers as the network prevents the material from flowing. However, both X-S and X-C 

contained some linear chains that may provide some mobility. Figure V.6 B shows that X-S 

presented a crossover point at around 10
-6

 rad.s
-1

, while X-C lacks a similar crossover point for 

even lower frequencies. The crossover point for X-S could be explained by the presence of 

disulfide bonds inserted in the chains between cross-linking points although some help of the 

linear chains cannot be excluded. These disulfide bonds are able to undergo exchange 

inducing dynamic reorganization of the network and thus flow of the cross-linked material at 

elevated temperature. Although this dynamic process was very slow (relaxation time d of 

roughly 36 d for X-S). This crossover point and thus rearrangement could not be observed for 

X-C showing that the permanent network which lacks these dynamic bonds determined its 

rheological behaviour.  
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Figure V.6. Master curves (Tref=80ºC) for the linear (A) and cross-linked (B) PUUs. 
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The cross-linked polymers were further analyzed by means of the stress relaxation and creep 

experiments. In the stress-relaxation experiment, a strain is applied and the variation of the 

stress with time is monitored (Figure V.7 A). On the other hand, in the creep experiment, a 

constant stress is applied for a certain time (30 min in Figure V.7 B) and the evolution of the 

strain is measured both during the application of the stress and afterwards. The experiments 

were carried out at 120 ºC in order to have an acceptable time frame for the measurement. The 

relaxation time d for X-S decreases from roughly 36 d at 80 ºC to more or less 10 min at 120 

ºC (Figure A III.8, Appendix III). This temperature is below the degradation temperature (Td) of 

the materials (Td = 265 5ºC at 5 wt% weight loss) as depicted in the TGA curves in Figure A 

III.6 in Appendix III.  

  
Figure V.7. Stress-relaxation (A) and creep (B) experiments at 120ºC for X-S and X-C. 

Figure V.7 A shows that up to 10 s, X-C and X-L behave equally, but for later X-S showed a 

significant decrease in the shear modulus G(t) when compared to X-C. This indicates that, due 

to network reoganization, X-S behaves more as a viscoelastic liquid, while X-C shows the 

behaviour of a viscoelastic solid. Similar conclusions could be drawn from creep experiments 
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(Figure V.7 B). It can be seen that, under stress, X-S deformed to a greater extent and faster 

than X-C. When the stress was removed after 30 min of measurement, X-S maintained a high 

strain level which shows that X-S could withhold the deformation. This strongly indicates that 

the structure of the network changed during the experiment adapting itself to the form that 

resulted from the strain of the sample. This was possible because the disulfide bonds were 

located in the chains connecting the cross-linking points. On the other hand, X-C showed the 

typical response of a viscoelastic solid and recovered most of the original form, which is a clear 

indication that the network was not modified during the creep experiment and that it was the 

network and not the fraction of polymer with lower molecular weight which controlled the 

response of the material to creep. It is noteworthy to mention that the creep observed at 120ºC 

would be negligible at the service temperature of the material, as even at 80ºC the mobility of 

X-C is very small.  

V.3.4.  Healing behaviour after scratch and fracture damage 

When a coating is damaged, complete healing involves scratch closure and the restoration of 

the polymer strength, so that the closed scratch does not represent a weak point in the 

material. Scratch closure is mainly a rheological problem, as described already in the previous 

chapters, which will be followed optically. However, in order to obtain a quantitative measure of 

the restoration of the polymer which involves formation of new bonds, the investigation of the 

interfacial healing is required which will be measured using fracture mechanics tests. 
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V.3.4.1. Scratch closure 

The closure of scratches, made with a razor blade, was optically monitored at 80 ºC (Figure 

V.8). This temperature was selected to allow a direct comparison with relaxation times obtained 

from the master curves (Figure V.6). For the linear PUUs, after 2 h almost complete closure 

could be observed for L-S, while the scratch of L-C was still visible to a larger extent.  

L-S L-C X-S X-C 

    
  1 h   1 h   1 d   1 d 

    
  2 h   2 h   5 d   5 d 

    
  4 h   4 h   20 d   20 d 

    

Figure V.8. Scratch closure at 80°C of PUUs based on S2(Ph(CH2)3OH)2 versus S2(Ph(CH2)3OH)2. 

Regarding the cross-linked materials, scratch closure for X-S was almost complete after 20 d, 

while still a part of the scratch was visible for X-C. The fact that the time necessary for scratch 
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closure is shorter than the relaxation time d might be due to the higher cross-linking degree 

inducing a delayed elastic recovery at higher temperatures, as explained in Chapter IV, leading 

to a strong scratch closing behaviour after already 1 d for both cross-linked materials and 

supposedly promoting shorter healing times.
11–13

 These experiments support the idea that the 

disulfide bonds are important for the rheological behaviour of the polymers allowing faster flow 

at the healing temperature. However, they do not demonstrate to what extent the mechanical 

strength of the material could be recovered, hence, this will be the focus in the next section. 

V.3.4.2. Fracture mechanics 

In order to investigate if new bonds are created at the fractured interface after the scratch 

closure and therefore the closed scratch does not represent a weak region in the material, 

fracture mechanics experiments on Single Edge Notch Tensile (SENT) samples were 

performed as depicted in Figure V.3 in the experimental part. In these experiments, the pre-

notched geometry ensures stress localization at the crack tip zone, contrary to the widely used 

tensile tests, where samples are loaded with a quasi-homogeneous stress distribution.
10

 In this 

way, fracture mechanics have shown to provide more reliable measurements of the real degree 

of healing, i.e. the recovery of the original polymer network, when comparing the results of the 

healing efficiencies to those obtained by tensile testing.
14

 Since short relaxation times were 

predicted in the rheological measurements and short scratch closure times were measured for 

the linear PUUs, these polymers were healed at 80 ºC with a varying healing time up to 7 d to 

ensure complete recovery. The cross-linked materials that showed an almost complete scratch 

closure in 20 d were exposed to 80ºC during longer healing times up to 24 d. 
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The load-displacement curves (corrected for the thickness of the materials) are depicted in 

Figure V.9 (repeated measurements in Figure A III.10-11, Appendix III). First of all, it is worth 

emphasizing that the PUUs synthesized here were significantly stronger (loads up to 100-150 

N/mm thickness) than the elastomers already discussed in literature using fracture 

mechanics.
5,10,14

 In addition, remarkable recovery levels for the load-displacements curves 

after healing could be obtained. Furthermore, it can be noticed that the S-based materials 

reached lower values for load and completely fractured at lower displacement compared to the 

C-based PUUs. This is related to what was observed in the tensile test results (Figure V.5) and 

could also be explained by the presence of the weaker disulfide bonds in both L-S and X-S.  

From the data obtained by fracture mechanics, it is also possible to quantify the recovery by 

calculating the healing efficiency based on the fracture energy value (J). Applying the J-integral 

analysis method, the J-integral values for each sample could be obtained from the 

load/thickness-displacement curves in Figure V.9 according to the following equation V.1:  

J (kJ/m
2
)=  

       

     
 
 

     (V.1) 

where U is the energy per unit length of thickness (N) calculated as the area under the curves 

in Figure V.9 at different levels of displacement u, η is the proportionality factor related to 

sample geometry (0.9 used for this SENT geometry), w is the sample width (0.020 m) and a is 

the pre-notch length (0.010 m).
5,10,14–17

 Based on these values, the healing efficiency (HE) can 

then be calculated as the ratio of the fracture energy after healing (J
healed

) and the fracture 

energy of the pristine material (J
pristine

) as represented by equation V.2.
5,10,14

  

Healing efficiency HE (%) = 
       

          . 100      (V.2) 
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Figure V.9. Load/Thickness-displacement curves (A: L-S, B: L-C, C: X-S and D: X-C) and the healing 

efficiencies of L-S and L-C (E) and X-S and X-C (F) in function of healing time at 80ºC. 
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As the three different J-integrals calculated in this chapter, based on crack initiation (Jci), crack 

propagation (Jprop) and complete fracture (Jtot), gave a similar trend in healing efficiencies over 

time (as described in the fracture mechanics section in Appendix III), only the healing 

efficiencies obtained from the simplified calculations of J-integral values that are based on 

complete fracture (Jtot) were depicted in Figure V.9 for the linear (E) and cross-linked (F) PUUs.  

Based on the load/thickness-displacement plots of the linear PUUs, it is clear that L-S shows 

almost complete recovery of the strength of the pristine material after 12 h, showing that after 

scratch closure complete interfacial healing could take place (Figure V.9 A). On the other hand, 

L-C showed a substantial recovery, but it required longer times than for L-S and even after long 

healing times fracture propagated at lower loads than the pristine material (Figure V.9 B). At 

first sight, in line with the reports in literature for elastomers,
4,5

 the higher recovery of the L-S 

could be attributed to the formation of disulfide bonds at the healing zone. However, it is worth 

pointing out that the total energy for fracture propagation, that per unit of thickness is the area 

under the curves in Figure V.9, was greater for L-C than for L-S. This means that although the 

recovery of L-C was not complete, the material was mechanically stronger than L-S.  

Specifically quantifying these results, by calculating the healing efficiencies of L-S and L-C 

using Jtot in equation V.2, demonstrates that the linear materials can obtain recoveries up to 80-

100% (Figure V.9 E). Moreover, the trends observed for the healing efficiency confirm the 

aforementioned faster kinetics for the L-S compared to L-C on short term. However, it is 

noteworthy to mention that L-C could show healing efficiencies up to 100% after 2 d and 7 d of 

healing according to calculations based on complete facture. This can be explained by the fact 

that, although the crack initiated at the edge of the fractured interface and thus lower recovery 
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in the load-displacement curves was obtained (Figure V.9 B), the crack did not propagate 

entirely through the fractured interface, but slightly below in the pristine material (Figure V.10). 

This fracture propagation behaviour has not been described in literature before when using 

fracture mechanics for self-healing materials. However, theoretically, this can eventually be 

expected for all linear materials which are sufficiently mobile and are given enough time to 

interdiffuse, so that due to randomization full restoration of polymer properties can be achieved 

as already explained in Chapter I (Section I.1).  

          

Figure V.10. Crack propagation in fracture test of L-C after 2d (A) and 7d (B) healing at 80ºC. 

The results obtained for the linear PUUs indicate that the mechanical strength of the healed 

region at the service temperature (room temperature) was not determined by the reformation of 

disulfide covalent bonds, but by the H-bonds, as L-C appeared to be mechanically stronger 

than L-S upon recovery. Therefore, the main role of the disulfide groups seems to be the 

enhancement of the mobility of the polymer chains when the material is brought to the healing 

temperature. 

5 mm 5 mm 
A B 
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The load/thickness-displacement curves of the cross-linked materials are presented in Figures 

V.9 C and D. First of all, it can be noticed that a significantly lower recovery of the mechanical 

strength was obtained compared to the linear materials, because the networks are less mobile 

as already shown in the rheological data (Figure V.6). For a healing time of 7 d, only very low 

recovery levels could be obtained for X-S and X-C as these materials were unable to undergo 

any significant flow during the limited healing time. At longer healing times (14 and 24 d) a 

clear differentiation between the materials can be observed. In the latter case, X-S shows a 

continuous increase of the recovery, while X-C did not recover further after the extent of 

recovery observed for the first 14 d of healing. It is possible that the linear polymer chains in X-

C might contribute to the recovery observed in the first 14 d. However, here again, the total 

energy for fracture after 24 d was higher for the polymer lacking the disulfide groups (X-C).  

The same trends can again be observed when considering the healing efficiency values 

obtained for X-S, showing a maximum of 40-50% after 24d, and those for X-C, already 

reaching a maximum of 20-30% after 14 d (Figure V.9 F). It is clear that this is considerably 

lower than the ones obtained for the linear counterpart, however, these healing efficiencies are  

high considering the high toughness of these materials when comparing these values with 

those of soft elastomeric PU(U)s already discussed in literature using fracture mechanics.
5,10,14

 

Finally, also the trends observed for cross-linked materials further support the idea that for 

strong coatings the dynamic disulfide groups enhance the mobility of the polymer chains during 

healing, but the mechanical strength at service temperature is mainly due to the H-bonds. 
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V.4. Conclusions 

In this chapter, the role of the dynamic disulfide covalent bonds in the self-healing of PUU 

coatings, namely polymers that are strong at room temperature but can flow at a moderate 

healing temperature, was investigated. For this, linear and cross-linked waterborne PUU 

dispersions containing either aromatic disulfide groups or C-C bonds were synthesized. These 

materials were compared by means of thermal, mechanical, rheological and fracture 

mechanical analysis.  

In this way, we were able to demonstrate that in the case of linear materials, dynamic disulfides 

induce faster healing kinetics and make the reorganization of the polymer possible giving rise 

to complete recovery of the original polymer network. However, for the same healing 

conditions, the linear polymers lacking disulfide groups showed to be mechanically stronger 

upon recovery than the materials with S-S bonds. On the one hand, this means that for the 

coating the mechanical strength of the healed region was not determined by the reformation of 

disulfide covalent bonds, but by the H-bonds. On the other hand, it is noteworthy to mention 

that although dynamic bonds can significantly contribute to reducing the time scale of healing, 

they are not a necessary precondition to achieve self-healing in linear materials as sufficient 

mobility enables complete randomization and eventually strength recovery.  

For cross-linked PUUs the disulfide bonds provide mobility to the network, through 

reorganization via disulfide exchange, which facilitates healing. The cross-linked PUUs lacking 

these disulfide groups (X-C) behave as an elastic solid showing a limited capability for self-

healing, which in part could be due to the fraction of linear chains. However, even under these 
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conditions X-C presented a total energy of fracture greater than that of the cross-linked 

polymer with disulfide group.  

Therefore, in this chapter it could be demonstrated that, for the strong PUU developed in this 

thesis, the main role of the dynamic disulfide bonds is to enhance the mobility of the polymer 

chains and networks allowing interpenetration of polymer through the interface and the 

formation of H-bonds, while the latter provide the mechanical strength to the coating. It is thus 

worth emphasizing that the limited mechanical strength that can be obtained for these self-

healing materials based on reversible covalent bonds is a factor that has to be taken into 

account when aiming at coating applications. 
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VI.1. Introduction 

In this thesis, waterborne PU(U) dispersions containing disulfide bonds were developed aiming 

at their use as healable protective coatings. As commented in the previous chapters, several 

attempts to prepare this type of materials have been reported.
1–7

 An important application of 

coatings is the use of these thin layers as protection of metals against corrosion.
8–12

 Generally, 

electrochemical characterization methods are used to evaluate the protective performance of 

the coating, due to the electrochemical nature of corrosion processes. Recently, an AC/DC/AC 

accelerated electrochemical procedure has been used to evaluate the protective performance 

of cross-linked coatings after healing of scratches.
13

  

AC/DC/AC consists of a first application of an alternating current (AC) (Figure VI.1, Phase I), 

i.e. an electrochemical impedance spectroscopy (EIS) step, for the evaluation of the initial state 

of the coating system. In this stage, the impedance (Z) of a system, i.e. the resistance of a 

circuit to the flow of an AC when it is immersed in an electrolyte, is measured over a desired 

frequency range.
14  Afterwards, a constant potential, i.e. direct current (DC), is applied in order 

to cathodically polarize the sample, so that local cathodic reactions can possibly be stimulated 

at the metal-coating interface leading to the formation of blisters, coating delamination and 

further corrosion processes around existing deffects (Figure VI.1, Phase II). Afterwards, the 

open circuit potential (OCP) of the coating is monitored during a specified relaxation period 

(Figure VI.1, Phase III). Finally, an alternating current is applied again to measure the new 

state of the coating (Figure VI.1, Phase IV). This procedure was repeated for 6 cycles, so that 

an accelerated aging of the coating was promoted and information on the persistence or failure 

of the coating could be obtained in the restricted time of the 24 h test, avoiding long-term 
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experiments such as EIS measurements.
13–17

 An additional advantage for using this procedure 

instead of non-destructive methods like EIS is because AC/DC/AC facilitates coating failure at 

its weakest point, i.e. the healed interface, by applying an additional cathodic polarization 

step.
13

 In this way, the method enables the analysis of the ability of coatings to restore their 

protective function after healing the scratch damage, even detecting the slightest failure points 

in a (partially) healed interface, which would not be detected optically or by EIS.  

In this chapter, the application of the AC/DC/AC procedure will be described as an efficient 

electrochemical technique for the evaluation of the passive corrosion protection of the cross-

linked PUUs developed in Chapter V. 

 

 

 

Figure VI.1 Schematic representation of an AC/DC/AC cycle (A) and the associated failure 
mechanism (B) of the coating due to the AC/DC/AC test procedure.  

Reprinted from Abdolah Zadeh et al.,
13

 Copyright (2016), with permission from Elsevier.
  

A B 
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VI.2. Experimental 

VI.2.1. Materials 

The cross-linked dispersions, X-S and X-C, synthesized in Chapter V were used. Clad 

AA2024-T3 with a thickness of 1 mm was received at the TU Delft from Salomon’s Metalen and 

used as a metallic substrate.  

VI.2.2. Coating preparation 

Prior to application of the coating, the AA2024-T3 panels were degreased with ethanol and 

rinsed with acetone. Afterwards, the metallic substrates were dried and coated with the 

dispersions using a calibrated aluminum single doctor blade. The coated samples were dried at 

room temperature for at least 1 h and afterwards for 12 h at 60ºC to assure that no residual 

water was trapped in the coating. Transparent, homogeneous and colorless coatings with an 

average dry thickness of 60 5 or 150 5 μm were obtained. To evaluate the sealing and 

healing efficiency of the cross-linked coatings, 5 mm long scratches were created at a rate of 

10 mm.min
-1

, using a sharp razor blade, so that an average scratch width of roughly 100 μm 

was obtained. In order to make sure that the coating was scratched across the complete 

thickness, the penetration depth of the razor blade was adapted so that the metallic substrate 

was reached. The scratched coatings were examined after damage and healing using a 

Keyence VHX-2000 series digital microscope in reflection mode with a 500x objective. 
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VI.2.3. Coating characterization via AC/DC/AC 

The intact, scratched and healed coating systems were electrochemically characterized via 

AC/DC/AC measurements at room temperature following the reported procedures.
13,17,18

 The 

measurements were performed in a conventional three-electrode cell configuration consisting 

of a saturated Ag/AgCl reference electrode, a carbon black rod of 5 mm diameter as the 

counter-electrode and the coated AA2024-T3 metallic samples as the working electrode. The 

samples were placed horizontally in the electrochemical cell with an area of 0.8 cm
2
 exposed to 

the stagnant 0.5 M NaCl aqueous solution in equilibrium with air as testing electrolyte. This set-

up was placed in a Faraday cage in order to avoid any interference of external electromagnetic 

fields with the tests.  

The tests were carried out using an Autolab PGSTAT 302 N potentiostat which was coupled to 

a frequency analyser (FRA). For the first AC measurement (Figure VI.1, Phase I), 10 data 

points were acquired per frequency decade in the frequency range of 10
-1

 – 10
5
 Hz, with a 10 

mV root mean square (RMS) sinusoidal perturbation with respect to the open circuit potential 

OCP. After the first AC run was completed, the samples were cathodically polarized for 20 min 

at a constant potential of -4.0 V versus the Ag/AgCl reference electrode (Figure VI.1, Phase II). 

Subsequently, the variation in OCP versus time was monitored during a potential relaxation 

period of 3 h (Figure VI.1, Phase III). Finally, the cycle was completed with a new AC run 

(Figure VI.1, Phase IV). This AC/DC/AC cycle was repeated 6 times in order to observe 

accelerated aging of the coating in a total testing time of 24 h. 
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VI.3. Results and discussion 

VI.3.1. Intact coating performance 

First of all, the pristine samples of metal covered by a X-S or X-C coating with a thickness of 60 

μm were tested. The results for the pristine samples are depicted in Figure VI.2, which shows 

that after 6 consecutive AC/DC/AC cycles there were no visible signs of delamination or 

corrosion (A).  

Furthermore, Figure VI.2 B presents the Bode plots of the pristine coatings, in which both the 

total impedance |Z| and the phase angle are plotted on the Y-axes in function of the frequency 

on the X-axis. It can be observed that high impedance values were obtained at low frequencies 

for the initial cycle, which indicates both the X-S and X-C offer a good passive barrier.
13,16,18

 In 

addition, it is clear that over the course of the 6 cycles the impedance remains high and no 

significant changes in the behaviour of the phase could be observed.  

The evolution of the  OCP in function of time (Figure VI.2 C) shows that the OCP value 

gradually goes back to the original OCP of the Clad AA2024-T3 metallic surface (-0.5 V) during 

the relaxation period of 3 h for all cycles. These results confirm the absence of any corrosion or 

delamination processes taking place after exposure to destructive conditions (NaCl-solution 

and repeated cathodic polarization). This demonstrates the good adhesion and passive 

protective barrier properties of both X-S and X-C coatings which are comparable to other 

healable PU coatings,
19–21

 emphasizing that the present coatings are waterborne and provide a 

considerably high strength.  
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Figure VI.2. Results of AC/DC/AC testing for pristine coatings (60 μm) (X-S and X-C) showing 

sample (A), Bode plots (B) and evolution of open circuit potential (OCP) vs. time (C) for 6 cycles. 

VI.3.2. Damaged and healed coating performance 

However, when the 60 μm X-S and X-C coatings were damaged by an artificial scratch of a 

width of 100 μm penetrating the complete coating thickness and making contact with the 

metallic substrate, major defects could be observed macroscopically after 6 cycles of the 

AC/DC/AC procedure. It is clear in Figure VI.3 A that delamination of the coating took place 

and even corrosion products could be detected in and around the scratch. The Bode plots 

(Figure VI.3 B) show that the coatings failed in their function of providing a protective barrier in 
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the presence of a scratch as the impedance decreased during the subsequent cycles. In 

addition, a fluctuating OCP (Figure VI.3 C) indicates that massive corrosion processes and 

delamination took place during the AC/DC/AC measurement. It is noteworthy to mention that 

some cycles were removed in the representations of the results, because extreme fluctuations 

in values for the impedance and phase shift were obtained due to intense corrosion activities.  
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Figure VI.3. Results of AC/DC/AC testing for scratched coatings (60 μm) (X-S and X-C) tested just 

after damage showing sample (A), Bode plots (B) and evolution of OCP vs. time (C) for 6 cycles. 
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Alternatively, the scratched 60 μm thick coatings were healed at 80 ºC for 14 d and subjected 

to the AC/DC/AC test. Figure VI.4 A shows that delamination and corrosion could be observed 

visually. This was confirmed by the loss of impedance in the Bode plots and the fluctuations of 

OCP in time in Figures VI.4 B and C, which demonstrates that the damaged coatings were 

unable to recover the protective performance of the pristine coating. 
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Figure VI.4. Results of AC/DC/AC testing for coatings (60 μm) (X-S and X-C) healed for 14d at 80ºC 

showing sample (A), Bode plots (B) and evolution of the OCP vs. time (C) for 6 cycles of AC/DC/AC. 
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As fracture mechanics experiments presented in Chapter V showed an increased healing 

efficiency of 40-50% for X-S and 20-30% for X-C after 24 d of healing at 80ºC, the scratched 

coatings were also healed for 24d at 80ºC and analyzed by AC/DC/AC. However, even after 24 

d, no significant scratch closure could be observed and additionally again corrosion and 

delamination took place (Figure VI.5). 
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Figure VI.5. Results of AC/DC/AC testing for coatings (60 μm) (X-S and X-C) healed for 24 d at 80ºC 
showing sample (A), Bode plots (B) and evolution of the OCP vs. time (C) for 6 cycles. 
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This lack of healing in the 60 μm coatings compared to some degree of self-healing 

demonstrated for thick fracture specimens could be due to the fact that there was not enough 

material in the thin film to fill a scratch gap of 100 μm that was larger than the coating thickness 

of 60 μm. This effect has already been described for other healable cross-linked protective 

coatings by Abdolah Zadeh et al., who stated that the healed (under slight pressure) coating 

exhibited long-term corrosion protection if the scratch width was smaller than the coating 

thickness, while only short-term closure of the scratch-induced interface could be obtained 

when the coating thickness was larger than the scratch width.
22

 In this way, they confirmed that 

the metallic substrate had a restrictive effect on the polymer’s macroscopic flow and healing 

ability, especially when the created gap is bigger than the coating thickness. Finally, it is 

important to mention that, as described by Rey et al., not only the thickness plays a role in the 

scratch closure, as factors such as the elasticity of the material also affect the mobility of the 

coating.
23

  

VI.3.3. Effect of the film thickness on coating performance 

In order to check the effect of the coating thickness on the healing ability of the thin layers, the 

metals were coated with 150 μm thick films that were subjected to the same test as the 60 μm 

(100 μm wide scratch and AC/DC/AC applied just after scratching the film). Additionally, in a 

second sample of X-C, two perpendicular scratches were made in order to increase the 

possibility for the electrolyte to reach the metal-coating interface.  
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Figure VI.6. Results of AC/DC/AC testing for scratched (but not healed) coatings (150 μm) of X-S 

(linear) and X-C (linear and perpendicular) showing sample (A), Bode plots (B) and evolution of the 

OCP vs. time (C) for 6 cycles of the AC/DC/AC procedure. 
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Figure VI.6 shows that in all cases, neither delamination nor corrosion could be detected 

visually or by analyzing the AC/DC/AC results obtained after 6 consecutive cycles, as the high 

impedance values could be retained and the OCP gradually went back to the initial OCP (-0.5 

V) during the relaxation period for all cycles. This shows that when the cross-linked coating 

was thicker than the scratch width, it had sufficient elastic recovery to close the scratch 

immediately after damage. In this way, the coating could behave as a pristine coating during 

the AC/DC/AC experiments and could recover its protective function. Contrary to the example 

of Abdolah Zadeh et al.,
22

 sufficient sealing performance could be obtained without the need of 

applying pressure or increasing temperature. 

VI.4. Conclusions 

In conclusion, from the analysis of the aforementioned AC/DC/AC results, it could be stated 

that the pristine coatings of X-S or X-C with a thickness of only 60 μm show good adhesion and 

barrier properties. However, when a scratch with a width greater than the thickness of the 

coating was created, the barrier was lost and delamination and corrosion could be observed 

even after 24 d of healing at 80ºC.  On the other hand, when the thickness of the coating was 

greater than the width of the scratch, the elastic recovery of the cross-linked PUUs immediately 

closed the scratch leading to efficient protection the metallic substrate. These results highlight 

the challenge of achieving self-healing in thin hard coatings.   
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In this thesis, we aimed at closing the gap between academic and industrial research so that 

strong self-healing materials could be developed which would be attractive for coating 

applications. We desired to do this by incorporating the rapidly exchanging aromatic disulfide 

bonds into poly(urethane-urea) backbones, as this combination would allow us to achieve 

healing through supramolecular interactions as well as dynamic covalent bond exchange, while 

maintaining enough mechanical strength for further application as described in Chapter I. 

However, due to the ambiguity regarding the disulfide exchange found in literature, we first 

needed to clarify the underlying mechanisms for this exchange, so that we could incorporate 

these disulfide bonds into the PU materials with complete understanding of the self-healing 

event that they would induce. Using spectroscopic techniques, it was possible to demonstrate 

that the general exchange mechanism was radical mediated rather than occurring via 

metathesis as described in Chapter II. In this mechanism, cleavage of disulfide bonds leads to 

the formation of two sulfur-based radicals which can recombine or induce exchange by 

undergoing a chain transfer reaction as depicted in Figure VII.1. However, in the presence of 

nucleophiles, such as TEA and TBP, this exchange can be enhanced as the disulfides yield 

thiolate anions which can similarly undergo a series of transfer reactions (Figure VII.1).  

 

Figure VII.1. Disulfide exchange through the formation of S-based radicals and S-based anions. 
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After obtaining better insight in the underlying mechanism of disulfide exchange, in Chapter III, 

we could start to incorporate aromatic disulfides into PU backbones so that a series of 

waterborne PU(U) dispersions was obtained for which the mechanical strength could be 

increased by playing with the hard building blocks, namely DMPA and aromatic disulfide 

compounds. More specifically, by increasing the DMPA content, ultimate tensile strengths 

(UTS) of up to 17 MPa could be obtained. However, scratch closure tests and rheological 

measurements showed that this limited the mobility of the polymer which would not be 

advantageous for healing.  

Alternatively, also different aromatic disulfide building blocks were introduced (Figure VII.2), 

which demonstrated the restrictions of the commercial bis(4-aminophenyl)- and bis(4-

hydroxyphenyl)disulfide towards solubility, reactivity and especially mobility, as an increasing 

amount of the self-healing moiety did not offer a higher material mobility which is crucial for 

self-healing. Therefore, the more flexible bis[4-(3'-hydroxypropoxy)phenyl]disulfide 

S2(Ph(CH2)3OH)2 was synthesized, so that the amount of the self-healing moiety incorporated 

in the PU backbone could be increased without compromising the mechanical properties of the 

materials. The successful implementation of this newly modified aromatic disulfide led to PU 

materials with an increased mechanical strength (UTS=10-23 MPa) at the service temperature, 

while a good mobility could be observed at the healing temperature of 80ºC.  

 

Figure VII.2. Chemical structure of the different aromatic disulfides incorporated into the PU. 
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This proved the fact that, next to the reversible chemistries incorporated, also the structure of 

the building blocks, i.e. the polymer architecture, greatly affects the mobility and healing ability 

of the material. Therefore, Chapter IV mainly focused on this topic in order to further optimize 

the developed waterborne PU materials of Chapter III. More specifically, amine-terminated 

chain extenders were introduced after the synthesis of the waterborne PU prepolymer in order 

to incorporate urea units which give rise to additional H-bonding so that the mechanical 

strength, water resistance and healing ability of the PUUs could be increase. Additionally, by 

varying the chain extender from difunctional (HDA) to trifunctional (DETA), the polymer 

structure could be altered from linear to a network. Although the introduction of cross-linking 

points strongly decreased the mobility of the polymer, reorganization of the network was still 

possible due to the presence of dynamic disulfide bonds. Alternatively replacing the disulfide 

S2(Ph(CH2)3OH)2 (S3) by its more flexible alternative S2(Ph(CH2)6OH)2 (S6) increased the 

mobility of the material to an even higher extent than could already be obtained, so that 

possibly by incorporating more self-healing moiety even stronger and simultaneously more 

mobile materials could be developed.  

Thus, by varying and optimizing the various building blocks, a polymer architecture could be 

developed so that self-healing materials are obtained which present high mechanical properties 

(UTS up to 20 MPa), while showing an increased mobility at moderate temperatures. 

Interestingly, these developed PUUs were described to be especially attractive to be applied in 

coating applications as they tend to overcome the gap that currently exists between industrial 

PU(U) dispersions for coatings and academic self-healing PU(U)s based on disulfide bonds 

regarding the tensile strength that can be achieved as depicted in green in Figure VII.3.  
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Figure VII.3. The results obtained in Chapter IV (green) compared to the gap existing between other 
academic self-healable PU(U)s and industrial examples of PU(U) materials. 

Subsequently, in Chapter V, we focused on the effect of the dynamic covalent bonds in both 

linear and cross-linked PUUs, by comparing materials containing dynamic disulfide bonds 

through incorporation of  the aromatic S2(Ph(CH2)3OH)2 moiety, with C-based materials which 

could be obtained by incorporating the counterpart 1,2-[4-(3-hydroxypropoxy)phenyl]ethane 

(C2(Ph(CH2)3OH)2) compounds that lacks these dynamic bonds. This was carried out via 

thermal, mechanical, rheological and scratch closure analysis of the PUU systems and 

additionally by quantitative determination of the recovery of their fracture mechanical properties 

upon healing after damage. In this way, it could be demonstrated that, for the strong PUU 

developed in this thesis, the main role of the dynamic disulfide bonds is to enhance the mobility 

of the polymer chains and networks allowing interpenetration of the polymer through the 

interface and formation of H-bonds, while the latter H-bonds provide the mechanical strength to 

the coating as was shown for the C-based PUU counterparts.  
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Finally, in Chapter VI, the ability of two (partially) healable cross-linked PUUs to provide 

passive corrosion protection to a metal substrate was characterized by means of AC/DC/AC 

measurements. From these results, it could be observed that the intact coatings showed good 

adhesion and barrier properties. When the coating was damaged and a scratch width (100 μm) 

greater than the thickness of the coating (60 μm) was created, the barrier was lost and 

delamination and corrosion processes were observed, even after 24 d of healing at 80ºC.  

However, when the thickness of the coating (150 μm) was greater than the scratch width (100 

μm), elastic recovery of the cross-linked PUUs immediately closed the scratch leading to 

effective protection of the metallic substrate. The aforementioned results obtained from the 

fracture mechanical analysis and the accelerated electrochemical method therefore highlight 

the challenge of achieving self-healing in cross-linked materials which would be of interest for 

thin hard coatings, where the thickness of the protective layer seemingly plays a crucial role.   

In conclusion, new self-healing waterborne PU(U) dispersions were synthesized by 

incorporating dynamic aromatic disulfide moieties. The microstructure of these PU(U)s was 

optimized by systematically playing with the building blocks incorporated into the backbone. 

This eventually improved the mechanical properties of the PU(U)s at room temperature, while 

achieving sufficient mobility for scratch closure at moderate temperatures. In this way, we 

showed that the gap which exist between academic research on self-healing PU(U)s and 

industrial PU(U) coating applications could be overcome. Moreover, it became clear that for 

such strong coatings the main role of the dynamic disulfide bonds is to enhance the mobility, 

while H-bonds provide mechanical strength to the coating. Nevertheless, further research is 

encouraged as still challenges exist in applying strong PUUs as healable protective coatings. 



 

191 

 

 

Appendix I. Supporting Information   

   Chapter III 

 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix I                  

192 

 
 

  
Figure A I.1. 

1
H-NMR of bis[4-(3'-hydroxypropoxy)phenyl]disulfide S2(Ph(CH2)3OH)2. 

 

Figure A I.2. 
13

C{H}-NMR of bis[4-(3'-hydroxypropoxy)phenyl]disulfide S2(Ph(CH2)3OH)2. 
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Figure A I.3. g-COSY (correlation spectroscopy) of compound S2(Ph(CH2)3OH)2. 

 

Figure A I.4. g-HSQC (Heteronuclear Single-Quantum Correlation spectroscopy) of compound  
          S2(Ph(CH2)3OH)2. 
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Figure A I.5. van-Gurp-Palmen-plots, depicting phase angle δ vs. absolute value of the complex    

          shear modulus     , of PUUs based on S2(PhNH2)2 with varying DMPA content. 
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Figure A I.6. van-Gurp-Palmen-plots, depicting phase angle δ versus the absolute value of the  
          complex shear modulus     , of PUUs based on a varying amount of S2(PhNH2)2. 

 
Figure A I.7. MWD obtained by GPC (UV) of PU based on S2(PhOH)2 after 60h of reaction. 

0

10

20

30

40

50

60

70

80

90

10
3

10
4

10
5

10
6

10
7

10
8

PUU-3D-0.33S

T=40ºC

T=50ºC

T=60ºC

T=70ºC

T=80ºC

T=90ºC

T=100ºC

T=110ºC

T=120ºC


(

º)

|G*| (Pa)

0

10

20

30

40

50

60

70

80

90

10
4

10
5

10
6

10
7

10
8

PUU-3D-0.44S

T=40ºC

T=50ºC

T=60ºC

T=70ºC

T=80ºC

T=90ºC

T=100ºC

T=110ºC

T=120ºC


(

º)

|G*| (Pa)

Title

0

10

20

30

40

50

60

70

80

90

10
4

10
5

10
6

10
7

10
8

PUU-3D-0.53S

T=40ºC

T=50ºC

T=60ºC

T=70ºC

T=80ºC

T=90ºC

T=100ºC

T=110ºC

T=120ºC


(

º)

|G*| (Pa)

Title

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.522.533.544.555.5

d
w

t/
d

(l
o

g
M

)

Log MW

Bis(4-hydroxyphenyl) 
-disulfide 



Appendix I                  

196 

  
 

  
 
Figure A I.8. van-Gurp-Palmen-plots, depicting phase angle δ versus the absolute value of the     

          complex shear modulus     , of PU(U)s with varying amount of S2(Ph(CH2)3OH)2. 
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Figure A II.1. 

1
H-NMR of bis[4-(6'-hydroxyhexoxy)phenyl]disulfide S2(Ph(CH2)6OH)2. 

 

 

Figure A II.2. 
13

C{H}-NMR of bis[4-(6'-hydroxyhexoxy)phenyl]disulfide S2(Ph(CH2)6OH)2. 
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Figure A II.3. g-COSY of bis[4-(6'-hydroxyhexoxy)phenyl]disulfide S2(Ph(CH2)6OH)2. 

 

Figure A II.4. g-HSQC of bis[4-(6'-hydroxyhexoxy)phenyl]disulfide S2(Ph(CH2)6OH)2. 
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Figure A II.5. Chromatograms obtained by GPC (RI) for a set of dissolution times of 1.8L-0.56S3 in 
           THF (A) and MEK (B). 
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Figure A II.6. Partice size distribution graphs obtained by HDC for the linear PUUs. 
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Figure A II.7. Partice size distribution graphs obtained by HDC for the cross-linked PUUs. 

 
Figure A II.8. Water uptake measurements of both the linear and the cross-linked PUUs. 
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Figure A II.9. van-Gurp-Palmen-plots of PUUs based on S2(Ph(CH2)3OH)2 (S3). 
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Figure A II.10. van-Gurp-Palmen-plots of PUUs based on S2(Ph(CH2)6OH)2 (S6). 
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Figure A II.11. Scratch closure at 80°C and 100ºC for the soft 2.5L-0.44S3 and hard 2.5L-0.59S3. 
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Figure A II.1. 

1
H-NMR of 1,2-[4-(3-hydroxypropoxy)phenyl]ethane C2(Ph(CH2)6OH)2. 

 

 

Figure A III.2. 
13

C{H}-NMR of 1,2-[4-(3-hydroxypropoxy)phenyl]ethane C2(Ph(CH2)6OH)2. 
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Figure A III.3. g-COSY of 1,2-[4-(3-hydroxypropoxy)phenyl]ethane C2(Ph(CH2)6OH)2. 

 

Figure A III.4. g-HSQC of 1,2-[4-(3-hydroxypropoxy)phenyl]ethane C2(Ph(CH2)6OH)2. 
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Thermal data 

 

 

Figure A III.5. DSC results of the series of PUUs showing the heat flow in function of temperature. 

 

 

Figure A III.6. TGA curves of the series of PUUs and the degradation temperature (Td) at 5 wt%  
            weight loss. 
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Rheological data 

  

  

Figure A III.7. van-Gurp-Palmen-plots of the PUUs, depicting phase angle δ versus the absolute    

            value of the complex shear modulus     . 
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Figure A III.8. Master curves for the cross-linked PUUs at reference temperature of 80ºC and 120ºC.   

 

Fracture mechanics 

Three different J values were determined in Chapter V. First, the J-integral based on crack 

initiation Jci was determined using Uci as the area under the load-displacement curve before 

crack initiation, depicted as red in Figure A III.9. By combining the load-displacement results 

with the measured crack tip opening displacement (CTOD) evolution during the fracture tests, 

the J-integral at crack initiation (Jci), calculated at CTOD=0 mm, could be derived by linear 

intrapolation of the J-resistance curves functions of the CTOD in the same way as described by 

van der Zwaag and co-workers.
1
 Although the J-integral based on the crack initiation is a 

common term in fracture mechanics and has been used so far in self-healing properties to 

determine the healing efficiency, obtaining the value for Jci demands elaborate calculations.
1–3
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the healing efficiencies as this term does not need any additional calculations and can be 

easily obtained using the equation (1) by introducing Utot as the total area under the load-

displacement curve before complete fracture (depicted as the shaded area in Figure A.III.10). It 

is noteworthy to mention that this is the first time that this can be described using fracture 

mechanics for healing experiments, as here we can follow the complete crack propagation and 

fracture of the specimen during the measurement which was not the case for soft elastomers 

measured with fracture mechanics as they fractured shortly after crack initiation and did not 

propagate through the complete specimen.
1–3

 As a third J-integral, also Jprop which is linked to 

the crack propagation could be calculated as the difference between Jtot and Jic and is 

represented in blue in Figure A III.11. Finally, Jic, Jprop and Jtot were applied to calculate the 

healing efficiency (HE) as represented by equation V.2 described in Chapter V..  

 

Figure A III.9. Schematic representation of crack initiation (ci), Uci, Uprop and Utot. 
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The healing efficiencies for the PUUs which were obtained using equation V.2 are depicted in 

function of the healing time for J-integrals based on crack initiation (Jic), crack propagation 

(Jprop) and complete fracture (Jtot) are depicted in Figures A III.10 and 11 for the linear and 

cross-linked PUUs respectively. For these latter results, it is obvious that the healing 

efficiencies based on Jprop and Jtot are almost identical, demonstrating that no additional 

information on the recovery of the materials can be obtained by calculating the healing 

efficiencies based on the crack propagation. Furthermore, comparing the trends of the healing 

efficiencies as a function of the healing times obtained from the calculated crack initiation (Jci) 

and complete fracture (Jtot), it can be concluded that although different values were obtained for 

the healing efficiencies, similar trends are visible for both the linear and cross-linked materials. 

This demonstrates that the calculation of the J-integral solely based on the readily obtained 

complete fracture can possibly replace the elaborate calculation of the crack initiation. 

However, this latter hypothesis would need to be tested for other strong self-healing materials 

analyzed with fracture mechanics to test the reproducibility and reliability of these statements. 

For simplification, during further discussion of the results of the healing efficiencies in Chapter 

V, only those based on complete fracture (Jtot) will be considered.  
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Figure A III.10. Load/Thickness-displacement curves (A: L-S, B: L-C) where crack initiation points 
  for different samples are highlighted; and their healing efficiencies HE based on Jci 
  (C) and Jprop and Jtot-integrals (D) in function of healing time at 80ºC. 
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Figure A III.11. Load/Thickness-displacement curves (A: X-S, B: X-C) where crack initiation points 
  for different samples are highlighted; and their healing efficiencies HE based on Jci 
  (C) and Jprop and Jtot-integrals (D) in function of healing time at 80ºC. 
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AC/DC/AC Alternating Current / Direct Current / Alternating Current 

aT Horizontal shift factor 

bT Vertical shift factor 

C2(Ph(CH2)3OH)2 1,2-[4-(3-Hydroxypropoxy)phenyl]ethane 

CTOD Crack Tip Opening Displacement 

DA Diels-Alder 

DBA Dibutylamine 

DBTL Dibutyltin dilaurate 

DEA Diethylamine 

DETA Diethylene triamine 

DLS Dynamic Light Scattering 

DMA Dynamic Mechanical Analysis 

DMPA 2,2-Bis(hydroxymethyl)propionic acid 

DMSO Dimethyl sulfoxide 

dp Particle size 

DSC Differential Scanning Calorimetry 

D(t) Creep compliance function  

DTNB 5,5'-Dithiobis-(2-nitrobenzoic acid) 

ε(f) Strain (at fracture) 

E Young’s modulus 

E’ Tensile storage modulus  

E’’ Tensile loss modulus  

EHA  2-Ethylhexyl acrylate 
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EIS Electrochemical Impedance Spectroscopy 

EPR/ESR Electron Paramagnetic/Spin Resonance spectroscopy 

ESI Electrospray Ionization 

EtOAc Ethyl acetate 

FTIR Fourier Transform Infrared spectroscopy 

FRA Frequency analyzer 

G’ Shear storage modulus 

G’’ Shear loss modulus 

     Complex shear modulus 

GPC Gel Permission Chromatography 

HCl Hydrochloric acid 

HDA Hexane-1,6-diamine 

HDC Hydrodynamic chromatography 

HE Healing efficiency 

HRMS High-Resolution Mass Spectroscopy 

IPDI Isophorone diisocyanate 

Jci / prop / tot Fracture energy based on crack initiation / propagation / total fracture 

K2CO3 Potassium carbonate 

LC/Q-TOF Liquid Chromatography – Quadrupole Time-Of-Flight 

NaCl Sodium chloride 

Na2SO4 Sodium sulfate 

N2 Nitrogen 

NMP N-Methylpyrrolidone 
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NMR Nuclear Magnetic Resonance spectroscopy 

MEK Methyl ethyl ketone 

MGP Methyl α-D-glucopyranoside 

MMA Methyl methacrylate 

Mn Number average molecular weight 

Mw Weight average molecular weight 

MWD Molecular Weight Distribution 

OCP Open Circuit Potential 

PEG Polyethylene glycol 

PMMA Polymethyl methacrylate 

PolyTHF Polytetrahydrofuran 

PP Prepolymer 

PS Polystyrene 

pSA Polystearyl acrylate 

PSD Particle Size Distribution 

PU Polyurethane 

PUD Polyurethane dispersion 

PUU Poly(urethane-urea) 

RAFT Reversible addition-fragmentation chain transfer 

RH Relative Humidity 

RI Refractive Index 

RT Room temperature 
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 (y/f) Stress (at yield/fracture) 

SA Stearyl acrylate 

SC Solids Content 

SEC Size Exclusion Chromatography 

SENT Single-edged Notch Tension specimen 

S2(Ph(CH2)3OH)2  Bis[4-(3’-hydroxypropyloxy)phenyl]disulfide 

S2(Ph(CH2)6OH)2 Bis[4-(3’-hydroxypropyloxy)phenyl]disulfide 

S2(PhNH2)2 Bis(4-aminophenyl)disulfide 

S2(PhOH)2 Bis(4-hydroxyphenyl)disulfide 

  Phase angle 

T Temperature 

Tan   Tan delta (storage/loss modulus) 

TBP Tri-n-butylphosphine 

 d Relaxation time 

Td Thermal degradation temperature 

TEA Triethylamine 

TEMPO 2,2,6,6-Tetramethylpiperidine-1-oxyl 

Tex Texanol 

Tg Glass transition temperature 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

TNB 2-Nitro-5-thiobenzoate 
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Tm Melting temperature 

Tref Reference temperature 

tscratch Time needed for scratch closure 

TTS Time Temperature Superposition 

UPy Ureidopyrimidone 

UTS Ultimate Tensile Strength 

UV(-vis) Ultraviolet(-visible) 

V70 2,2'-Azobis(4-methoxy-2,4-dimethyl valeronitrile) 

vGP van-Gurp-Palmen 

VOC Volatile Organic Compound 

d Crossover frequency 

Z Impedance 
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