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Abstract

Most words are ambiguous, with interpretation dependent on context. Advancing theories of

ambiguity resolution is important for any general theory of language processing, and for resolving

inconsistencies in observed ambiguity effects across experimental tasks. Focusing on homonyms

(words such as bank with unrelated meanings EDGE OF A RIVER vs. FINANCIAL

INSTITUTION), the present work advances theories and methods for estimating the relative

frequency of their meanings, a factor that shapes observed ambiguity effects. We develop a new

method for estimating meaning frequency based on the meaning of a homonym evoked in lines of

movie and television subtitles according to human raters. We also replicate and extend a measure

of meaning frequency derived from the classification of free associates. We evaluate the internal

consistency of these measures, compare them to published estimates based on explicit ratings of

each meaning’s frequency, and compare each set of norms in predicting performance in lexical

and semantic decision mega-studies. All measures have high internal consistency and show

agreement, but each is also associated with unique variance, which may be explained by

integrating cognitive theories of memory with the demands of different experimental

methodologies. To derive frequency estimates, we collected manual classifications of 533

homonyms over 50 000 lines of subtitles, and of 357 homonyms across over 5000

homonym–associate pairs. This database—publicly available at:

www.blairarmstrong.net/homonymnorms/—constitutes a novel resource for

computational cognitive modeling and computational linguistics, and we offer suggestions around

good practices for its use in training and testing models on labeled data.

Keywords: Semantic ambiguity; homonyms; meaning frequency; homonym norming

methods and data; movie subtitles; free association; homonym meaning annotations
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A Comparison of Homonym Meaning Frequency Estimates Derived from Movie and Television
Subtitles, Free Association, and Explicit Ratings

Introduction

One striking property of natural language is that the same word is typically associated with

different interpretations in different contexts. The ability to disambiguate a word’s interpretation

based on context is therefore an essential component of any theory of language comprehension.

The importance of developing an account of how the various interpretations of a word are

represented, as well as how different interpretations can be selectively activated, is highlighted by

the extensive empirical and computational literatures devoted to these interrelated issues over the

past several decades (Armstrong, Tokowicz, & Plaut, 2012; Armstrong, Zugarramurdi, Cabana,

Valle Lisboa, & Plaut, 2015; Armstrong & Plaut, 2016; Gernsbacher, 1984; Hino, Pexman, &

Lupker, 2006; Hino, Kusunose, & Lupker, 2010; Kawamoto, 1993; Klepousniotou, 2002;

Klepousniotou, Titone, & Romero, 2008; Klepousniotou, Pike, Steinhauer, & Gracco, 2012;

Piercey & Joordens, 2000; Rodd, Gaskell, & Marslen-Wilson, 2002, 2004; Swinney & Hakes,

1976; Swinney, 1979; Tabossi, 1988; Twilley, Dixon, Taylor, & Clark, 1994; Williams, 1992).

Collectively, these studies have revealed a range of complex and sometimes apparently

contradictory effects of ambiguity, making great strides towards understanding the critical facets

of word representation that shape performance.

One factor that was under-appreciated in much prior work is not only how many

interpretations a word is associated with, but whether those interpretations are related to one

another or not (Rodd et al., 2002). By taking relatedness of interpretation into account, a number

of studies have revealed different empirical effects for words that are homonymous, and are

associated with multiple unrelated meanings (e.g., bank refers to the EDGE OF A RIVER and to

a FINANCIAL INSTITUTION), versus words that are polysemous, and are associated with

multiple related senses (e.g., paper refers to an ACADEMIC ARTICLE and a WHITE SHEET)

(Armstrong & Plaut, 2016; Rodd et al., 2002; Hino et al., 2006, 2010; Klepousniotou et al.,
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2008). For example, a common pattern is that homonyms tend, at least numerically, to incur a

processing disadvantage when compared to (relatively) unambiguous control words (e.g., chalk),

while in contrast, polysemes tend to show a processing advantage relative to unambiguous words.

The particular patterns of statistical significance related to this homonymy disadvantage and

polysemy advantage do, however, vary considerably across tasks, and there are theoretically

important exceptions, for example, showing a processing advantage for homonyms (e.g., Hino et

al., 2006, 2010).

What might explain the variability in these results? One apparently contributing factor

(among many, such as the decision system, Hino et al., 2006) is the relative frequencies of the

different interpretations of a word. This influence was mentioned in some of the early semantic

ambiguity literature (e.g., Swinney, 1979; Swinney & Hakes, 1976), but has received only

moderate attention in mainstream semantic ambiguity research, particularly in tasks that probe the

processing of ambiguous words in the absence of biasing context (for discussion, see Armstrong

& Plaut, 2016). For example, it may take more time to strongly activate one meaning of a

homonym that has meanings of approximately equal frequency (e.g., compound, which refers to a

MIXTURE and an ENCLOSURE) because the meanings compete with one another, initially

inhibiting either from becoming strongly activated. In contrast, it may take less time to activate

the meaning of a less balanced homonym (such as bank) because its dominant meaning (in this

case, FINANCIAL INSTITUTION) can rapidly inhibit the subordinate meaning. Indeed, these

effects bear a close resemblance to the classic “rich get richer” effects which are a hallmark of

many general information processing frameworks (e.g., McClelland & Rumelhart, 1981).

Moreover, these competitive dynamics should be more pronounced for homonyms relative to

polysemes: In contrast to the unrelated meanings of homonyms, the overlapping interpretations of

a polyseme would all contribute to the activation of shared meaning features, engendering less

competition. According to this view, taking into account the relative frequency of homonym

meanings should be of particular importance to understanding different patterns of effects
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associated with those items, a proposal that has garnered at least some empirical support (e.g.,

Armstrong & Plaut, 2016; Frazier & Rayner, 1990; Klepousniotou & Baum, 2007; Williams,

1992).

Deriving good estimates of the relative meaning frequencies of a homonym is therefore a

critical question from both theoretical and methodological perspectives, and understanding how

different methods yield similar (or dissimilar) results is the primary focus of this article. Past

research has pursued various methods for deriving estimates of meaning frequency from

experimental tasks such as sentence generation and free association (for norms and a review, see

Twilley et al., 1994), and recent work has also explored the efficacy of collecting explicit meaning

frequency ratings (Armstrong, Tokowicz, & Plaut, 2012). At face value, if each of these tasks

were tapping into the same underlying representation of meaning frequency in a similar fashion,

the derived measures should all converge on similar results. Yet, this research has revealed just

how challenging it is to determine robust and predictive estimates of meaning frequencies. For

example, measures of relative meaning frequency derived from explicit ratings and from a free

association task have been found to correlate only weakly (for the Twilley et al. and Armstrong et

al. data, r = .27; Armstrong, Tokowicz, & Plaut, 2012). Similarly, these different predictors vary

considerably in their external validity – that is, in terms of their ability to predict performance in

tasks such as lexical decision (cf. the findings in Armstrong, Tokowicz, & Plaut, 2012).

Furthermore, although the collection of all such empirical measures entails a relatively high cost

in terms of time and laboratory resources, the different methods also vary in the amount of data

needed to elicit reliable estimates of meaning frequency, with tasks based on free association

requiring one or two orders of magnitude more participants to achieve stable norms than explicit

ratings of meaning frequency. Understanding how these different measures align therefore

remains an important and pressing issue for further progress in semantic ambiguity research.

Advancing methods for the norming of relative meaning frequency also offers an excellent

opportunity for synergy between the psycholinguistic and computational linguistic communities.
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With the exception of explicit meaning frequency estimates, the other tasks used to measure

semantic ambiguity involve the rating of some experimentally generated data such as a free

association or a sentence completion to see which meaning of a homonym was evoked in that

context. In computational linguistics, the similar task of word sense1 disambiguation —

automatically identifying which meaning of an ambiguous word has been evoked in a particular

context — has been an important and long-studied theme (Word Sense Disambiguation:

Algorithms and Applications, n.d.; Bartunov, Kondrashkin, Osokin, & Vetrov, n.d.; Lefever &

Hoste, 2010; Li & Jurafsky, 2015). Recent work in this field has also focused on developing

unsupervised methods for determining relative meaning frequencies, or sense distributions for

ambiguous words, including but not limited to homonyms (e.g., Bennett, Baldwin, Lau,

McCarthy, & Bond, 2016; Lau, Cook, McCarthy, Gella, & Baldwin, 2014). Bringing these

psycholinguistic and computational linguistic strands of work together, it may be possible to

partially or fully automate the estimation of homonym meaning frequencies both in natural

language and in the behavioural responses derived from empirical studies of semantic ambiguity.

This aim should be facilitated by the availability of our new set of labeled data, in which

multiple human raters have indicated the correct meaning for hundreds of homonyms in context.

Although, as we discuss in detail in the discussion, we are far from the first to generate this

general type of “annotated” dataset, we view our work as offering complementary coverage to

many prior efforts in computational linguistics for several reasons: (1) We focus on

conversational natural language corpora (our norms based on movie and television subtitles) and

experimental data (our norms based on a free association task) that are well-established in the

psycholinguistic literature and well suited for merging cognitive theory with computational

linguistic theory. This is important given that past research has shown that the genre of a text is

relevant to disambiguating words (Gale, Church, & Yarowsky, 1992). (2) Our classifications are

1 In the computational linguistics literature, the term “sense” in “word sense disambiguation” is used differently than
in the psycholinguistic literature where “sense” is typically used to refer to a related interpretation of a polyseme. In
computational linguistics, this term would also cover the disambiguation of homonyms.
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based on the definitions offered in the Wordsmyth dictionary, which also has a long history of use

for deriving measures of homonymy and polysemy in the psycholinguistic literature. (Cf. many

other efforts based on WordNet, which does not delineate between unrelated meanings and related

senses; for an overview of work based on WordNet, see Petrolito & Bond, 2014.) (3) By

collecting confidence of ratings on a broad selection of homonyms in natural contexts, the

annotations should also be informative on which contexts are more or less helpful for people in

the disambiguation task, which is relevant for developing models that process language the same

way that humans do. We return to this issue in the discussion.

With the set of goals outlined in the previous paragraphs in mind, we embarked upon the

empirical studies of relative meaning frequency that we describe next. As a guiding assumption,

we reasoned that there should be a broad alignment between how often people encounter a

homonym in each of its meanings in their linguistic experience, and how these meanings are

relatively activated in an experimental task (whether an indirect experimental assessment such as

a free association norming task, or an explicit meaning frequency rating task). We therefore

collected two extensive sets of ratings, one of the meanings a given homonym elicits in the natural

language context of lines of movie and television subtitles, and another of the meanings that

appear to have been activated to generate particular associates in a free association task. These

two datasets were then subject to analyses that evaluated the reliability of the ratings, and, after

converting the rated data into estimates of meaning frequency, were compared to existing

meaning frequency estimates (Armstrong, Tokowicz, & Plaut, 2012; Twilley et al., 1994).

To preview our results, there was general agreement but also a number of important and

potentially theoretically informative differences between the norms collected using each method.

These results therefore have both practical implications for how to measure and evaluate

estimates of meaning frequency, as well as theoretical implications regarding how knowledge of

meaning frequency is stored and retrieved in different contexts. In service of facilitating related

and complementary research into these issues, we have made all of our rated data and meaning
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frequency estimates available for download at:

www.blairarmstrong.net/homonymnorms/.

Estimating homonym meaning frequency from free association norms

The first set of meaning frequency estimates that we created were derived from the Nelson,

McEvoy, and Schreiber (2004) free association norms. Our motivation to estimate homonym

meaning frequencies from free association norms was twofold. First, this is one of the most

popular and long-standing methods for assessing homonym meaning frequency (Nelson,

McEvoy, Walling, & Wheeler, 1980; Twilley et al., 1994). Following the standard practice for

collecting free associates, participants are presented with a word (the cue) and respond to the cue

with the first word that comes to mind (the associate). When homonyms are used as cues, raters

can classify which meaning of the homonym is most closely related to the associate. The total

number of associates linked with each meaning can be used to derive estimates of relative

meaning frequency, based on the assumption that participants generate associates related to each

meaning as a function of the meaning’s frequency. Our norming process here similarly began

with classifying each associate based on the original normed data in Nelson et al. (2004).

Second, as noted earlier, previous work has found a surprisingly low correlation between

one set of meaning frequencies estimated from free association norms (Twilley et al., 1994) and

explicit ratings of meaning frequency (Armstrong, Tokowicz, & Plaut, 2012). Here, we evaluate

the robustness of this finding in a dataset that contains approximately 50% more homonyms.

Moreover, in contrast to the free association task of Twilley et al. (1994), the Nelson et al. (2004)

data also includes non-homonyms as cues; this enables us to evaluate if the previous findings

were particular to that set of homonyms and specific set of methods. Proceeding from our simple

assumption regarding how meanings are represented and how these representations are tapped in

either indirect tasks (e.g., classification of free associates) or direct tasks (e.g., explicit meaning

frequency estimates), we predict a higher correlation between explicit ratings and the subtitles
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measure than between explicit ratings and the free association norms. This is because explicit

ratings and free association both aim to hone in on frequency effects, whereas indirect measures

based on free association may be less sensitive to meaning frequency because they are influenced

by other cue-associate relationships. For example, these relationships include whether two words

rhyme, can combine to make a new word (e.g., wrist-watch), are category coordinates (e.g.,

robin-sparrow), and so on (Armstrong, Tokowicz, & Plaut, 2012).

Estimating homonym meaning frequency from movie and television subtitles

How do individuals learn the frequency with which a homonym is used to denote a particular

meaning? According to recent empirical work, much in the same way that they learn that some

words are more frequent than other words: through exposure to natural language contexts (Rodd

et al., 2016). Previous work has shown that movie and television subtitle corpora can be used to

derive measures of word frequency in natural language contexts that are excellent predictors of

performance in a range of psycholinguistic tasks (Brysbaert & New, 2009). We reasoned that a

similar approach could be used to derive estimates of meaning frequency (for an earlier related

effort, see Lorge, 1937). To this end, we extracted random samples of text that included our target

homonyms, and raters then indicated which meaning of the homonym was evoked in each sample.

Again, if our simple assumption is correct regarding how meaning frequencies are learned,

internally represented, and retrieved in different tasks, we expect this new measure to correlate

well with our other estimates, and particularly the explicit meaning frequency norms (given that a

free associate may have been generated for reasons other than meaning frequency alone). The

classified text generated as an intermediate step in calculating meaning frequencies is also likely

to be of particular interest to computational linguists that require large labeled natural language

datasets to train and test models of meaning disambiguation.
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Comparison to existing meaning frequency norms

We compare our two new measures of meaning frequency with two previously established

sets of meaning frequency estimates. The first are the original eDom explicit estimates of

homonym relative meaning frequency by Armstrong, Tokowicz, and Plaut (2012). There,

participants were presented with each dictionary definition of a homonym and asked to estimate

the frequency with which they thought the word was used to denote each of those meanings in

everyday use. (Participants could also add a definition they thought was missing.) Critical for our

purposes, participants very rarely generated such additional definitions although they did so

reliably when there was a high frequency interpretation not listed in the dictionary. This suggests

that dictionary definitions—although not perfect in their coverage of word meanings—provide

more than sufficient coverage of the meanings of the vast majority of words to serve as the basis

for classification in the present experimental tasks.

The second comparison set are estimates of meaning uncertainty derived from the

classification of free associates reported by Twilley et al. (1994), which we refer to as Twilley U.

Twilley and colleagues’ procedure for deriving a measure of meaning uncertainty began as

outlined above, with classifying associates according to the related meaning of the homonym cue.

They then used these meaning frequencies to derive a measure of uncertainty, U (based on

Shannon Entropy), which the authors proposed as the relevant measure to capture meaning

distribution. Comparisons to these two additional sets of norms – eDom biggest and Twilley U –

are particularly interesting because they will allow us to evaluate the robustness of the

surprisingly weak relationship between explicit meaning frequency estimates and indirect

estimates based on the classification of free associates.

Methods

Because the methods were very similar for the classification of free associates and for the

film and television subtitles, we report all of the methods for both tasks before proceeding to the
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results from both datasets. We begin by describing the methods for the free associate

classification task; for the subtitles classification task, we only report the ways in which that task

differed from the first task.

Deriving Homonym Meaning Frequencies from Free Association Norms (FAN)

Raters. Raters consisted of nine undergraduate students from the University of Toronto

who were provided with training on how to classify associates according to the meanings listed in

the dictionary, and who rated the first several word associates together under the supervision of

one of the authors. After that point, they rated all words independently of one another. All raters

were either enrolled as undergraduate students at the University of Toronto Scarborough or had

recently graduated from an undergraduate program and were highly proficient speakers of English

(mean age = 21, range = 18–24; 8 Female; 7 Native English speakers).

Stimuli. The free association stimuli examined by the raters were sampled from the South

Florida Free Association Norms (Nelson et al., 2004), downloaded from

http://w3.usf.edu/FreeAssociation/Intro.html. The use of this

well-established set of norms was particularly appealing for our purposes both because of its large

size and because many of the cue words were selected from prior free association studies and

were also homonyms (Nelson et al., 1980).

To enable comparisons between identical homonyms across multiple datasets, we attempted

to extract data from the free association norms for all homonyms that were also reported in the

eDom meaning frequency norms (Armstrong, Tokowicz, & Plaut, 2012). The original eDom

norms contained 544 homonyms, selected to satisfy standard criteria for use in psycholinguistic

experiments, such as falling within typical ranges in terms of length and frequency (for a full

description and rationale, see Armstrong, Tokowicz, & Plaut, 2012). In total, 364 of these 544

eDom homonyms were also present in the South Florida Norms. For reference, this was over 150

more overlapping homonyms than were found between eDom and the meaning frequency norms
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based on free association reported by Twilley et al. (1994). For these 364 homonyms, we

extracted all unique associates produced for each homonym, as well as the number of participants

that produced each associate in the original study. To improve the reliability of the original

norms, the data published by Nelson et al. (2004) only include associates produced by two or

more participants. A total of 5176 associates were extracted from the database, with a mean of 14

associates for each homonym (SD = 5, range = 2–29).

Procedure. In preparation for the rating task, the definitions for each homonym were

retrieved from the Wordsmyth Dictionary (Parks, Ray, & Bland, 1998), using the same parse as in

the creation of the eDom norms. The Wordsmyth dictionary has been used in a number of prior

studies of semantic ambiguity, and meaning and sense estimates derived from this dictionary have

been used to estimate the number and relatedness of a word’s interpretations (e.g., Armstrong &

Plaut, 2016; Armstrong, Tokowicz, & Plaut, 2012; Rodd et al., 2002). In this dictionary, separate

entries are used for each unrelated meaning of a word, whereas sub-entries within each entry are

used to denote related senses. The raters were then given these definitions to guide their

classification of homonym free associates according to the different entries. Because the focus of

this project is on homonymy, as opposed to polysemy, no attempt was made to distinguish among

sub-entries (which list related senses of a word). However, to gain some preliminary insights

related to polysemy, we do include number of senses as a covariate in some of the analyses

reported in the results section.

It is worth noting that although past literature clearly supports dictionary definitions as a

valid basis for identifying and classifying word meanings, it is not the only method that has been

explored to this end. For example, considerable work has used subjective ratings to identify word

meanings by asking different groups of participants generate and rate the relative frequency of

word meanings (e.g., Hino et al., 2006; Pexman, Lupker, & Hino, 2002). Other work has

examined the utility of delineating word meanings based on classification schemes outlined in the

theoretical linguistics literature (Klepousniotou & Baum, 2007; Klepousniotou et al., 2012). Each
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of these approaches has its own strengths and a full discussion and determination of which

approach is “best” is outside the scope of the present work. For our purposes, we opted to use the

dictionary definition approach for two reasons. First, because it has been documented as able to

successfully tap into human representations of word meaning (regardless of whether it is the best

method to do so), Second, the availability of dictionaries in diverse languages makes this approach

less costly in terms of collection time and/or the need for experts in linguistic classification.

Similar to past norming procedures (e.g., Twilley et al., 1994), for each associate, the raters

had to determine which of the definitions of the homonym (if any) best fit with the associate.

They entered their responses as a numerical value based on the ranked order in which that

definition appeared in the dictionary (e.g., entry 1, entry 2, etc.), or if none of the meanings fit,

flagged that associate with a dash (-). Supplementing standard classification methods, the raters

also provided a coarse coding for the confidence of their responses: either they were certain that

their classification was correct (in which case, they simply entered a “1” for entry 1, a “2” for

entry 2, and so on), or they were uncertain but thought their classification was the best guess

given the available options (in which case they prefaced their numerical value with a “?”, e.g.,

“?1”, “?2”). Raters could also provide a comment related to their classification when appropriate.

As discussed in the results section, these comments often help explain the link between the cue

and the associate when a dictionary definition does not fit. As a couple of examples, some

cue-associate relationships were attributable to a colloquial meaning of the cue not included in the

dictionary (such as the case of rip referring to an insult), or to the cue and associate rhyming with

one another.

To obtain a measure of interrater reliability, three independent ratings were collected from

different raters for each associate. A rater classified all of the associates for a given homonym

before moving on to another randomly selected homonym. The task was completed in a large

number of small batches, with raters typically working on the task for a half hour several times

per week, with the only restriction being that the full set of associates for a given homonym
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should always be classified within the same rating session. Typically, raters completed

approximately 300 ratings per hour. In total, this entailed over 15 000 separate classifications and

over 50 hours of rater time. On average, each rater completed 1941 classifications (SD = 1758,

range = 104–4955, inter-quartile range = 487–2988).

Deriving Homonym Meaning Frequencies from Video Subtitles (SUBTL)

The second norming task was analogous to the first, except that instead of classifying which

homonym meaning was evoked by a particular free associate, raters classified which homonym

meaning was evoked by a line of dialog extracted from a corpus of movie and television subtitles.

Except as described below, all methods for the second task were identical to those used in the first

task.

Raters. The set of raters was expanded to include 18 raters, 7 of whom had previously

contributed to the classification of free associates. All but two of the new raters were University

of Toronto Scarborough undergraduate students; the remaining raters were an undergraduate at

the University of Pittsburgh, and the first author, who only contributed to the re-rating of 413

cases for which one rater appears to have flipped the code for dictionary entry 1 and 2 (raters’

mean age = 21, range = 18–29; 14 Female; 15 Native English speakers).

Stimuli. Stimuli consisted of individual lines of subtitles extracted from the same corpus

of movie and television subtitles used to derive the SUBTL word frequency estimates (Brysbaert

& New, 2009), downloaded from

http://subtlexus.lexique.org/corpus/Subtlex%20US.rar. For copyright

reasons, each line appears in a random order in the corpus. Therefore, participants are effectively

rating each subtitle line without access to broader information about the context in which the line

occurs.

Similar to the procedure used for the free association norms, we extracted all lines in which

the lower case form of one of the 544 homonyms in the eDom norms appeared (we focused on the
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lower case condition to avoid cases where a word was used in a proper noun form). Each

homonym occurred on average 641 times in the SUBTL corpus (SD = 907, min = 1, max = 4695;

IQR = 103–690; all values are for lower-case use). To keep the rating task tractable, we then

extracted a random sample of 100 lines of subtitles for each homonym. For the few homonyms

where there were less than 100 lines, we included all available lines in the rating task. This

yielded a total of 49 156 lines to rate across 544 homonyms, for a mean of 91 lines per homonym

(range: 1–100; however, samples at the low end of this range were very rare; IQR = 100—100,

only 24% of the homonyms had less than 100 lines, only 6% had less than 50 lines, and <1% had

less than 10 lines).

One potential concern with the use of this database, particularly for homonyms with a low

frequency, is that these homonyms may appear in one or only a small number of different films or

television programs and the themes of those programs could bias the meaning frequency

estimates. Further inspection of the distribution of homonyms across the different movie and

television programs (hereafter, contexts) alleviated this concern, as is illustrated in Figure 1. This

figure plots the log transformed number of unique contexts as a function of log-transformed word

frequency for all of the homonyms (context counts were also taken from Brysbaert & New, 2009).

It shows a very strong positive relationship (r = .97) between word frequency and number of

contexts, and that the vast majority of homonyms are occurring in hundreds of contexts (mean =

414, SD = 522).
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Figure 1. Scatterplot of number of unique contexts in which the word occurred in the SUBTL
corpus as a function of word frequency.

Procedure. The rating task was identical to that used for the free associates, except that

due to the large size of the dataset, it was not feasible to have three raters classify every line of

subtitles. Instead, we collected two independent ratings for every subtitle line in the dataset,

totalling just under 100000 ratings. Although the task was to read lines of subtitles instead of

single associates, we found that raters continued to complete approximately 300 ratings per hour.

Thus, collecting these new norms required approximately 335 hours of work. The mean number

of classifications completed by each rater was 5464 (SD = 7929, range = 68–26895, IQR =

1048–5464).

Data Cleaning

While completing the norming task, we discovered that eight of the original Wordsmyth

definitions had not been extracted from the dictionary correctly, and so we removed the affected

homonyms (not all of which were present in every corpus) from all datasets and analyses

(corrupt, costume, cottage, cotton, couch, cough, counsel, and rack). Similarly, the definitions for

the meanings of two words (lit, rung) were extremely impoverished and focused on how one
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definition related to a past participle whose root form was defined under the main dictionary

entry, and were removed from all subsequent analyses. Finally, ten of the original eDom words

were homographs (bow, bowman, colon, content, lead, mare, present, wind, and wound), and so

were removed from all datasets and analyses. After these exclusions, 534 homonyms remained in

the eDom dataset, 357 homonyms remained in the FAN dataset, 533 homonyms remained in the

SUBTL dataset, and 205 homonyms remained in the Twilley dataset.

FAN. Before analyzing the FAN data, we first inspected all of the data for which

participants either could not link an associate with any of a homonym’s definitions and/or for

which they had made a comment that flagged a particular associate as unusual in some respect.

The comments revealed that many of these associations could readily be explained either by

meanings of words not included in the dictionary (e.g., proper nouns, as in dove–soap; slang

meanings as in hip–in), or by associations that are shaped by phonological, as opposed to purely

semantic, relationships (e.g., sage–rage). The presence of such data was to be expected in a

completely free association task, and has been one of the reasons that meaning frequencies based

on free association norms have been criticized in the past (Armstrong, Tokowicz, & Plaut, 2012).

However, to date, the number of associates linked to representations other than those of the

dictionary meanings of a homonym had not been quantified, so it was somewhat surprising to us

that such cases represented less than 2% of the data (93 associates). This suggests that free

association norm tasks are almost exclusively driven by semantic associations related to the

meanings of each word and that dictionary definitions come close to providing exhaustive

coverage of the meanings of words evoked in this context. So as to avoid additional noise or

influence from this small number of unusual cases, they were removed from all computations of

relative meaning frequency, although these data were left in for our initial plot of internal validity

reported in the next section to illustrate the small size of this subset.

SUBTL. As before, following completion of the ratings, one of the authors manually

inspected cases for which raters listed a comment and found that a large number of these
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comments related to slang interpretations of a homonym not covered in the dictionary (e.g., the

JAIL meaning of slam: “The reason he got locked in the slam in the first place ... was for sticking

up a gas station to cover you guys”). The SUBTL database was intentionally used because it

reflects the more naturalistic use of word meanings beyond how those meanings are defined by

lexicographers, so the presence of such colloquial uses is to be expected. Raters left comments for

2% of the lines of subtitles (1037 lines) and 45% of the commented lines indicated that the

homonym referred to a meaning other than one present in the dictionary definitions. As for the

FAN data, cases for which one or both raters indicated a line of dialog captured a meaning that

was not captured by Wordsmyth were removed from all computations of meaning frequency but

were left in for our initial plot of internal validity.

Results

In the following section, we perform analyses over our two new datasets of FAN and

SUBTL, comparing them to eDom and Twilley U. Note that whereas the eDom data and SUBTL

data both contain data from over 500 homonyms, data from fewer homonyms were available for

the FAN and U datasets (n = 357 and 205, respectively). Because of these substantial differences

in sample size and potential generalizability of the results, in the main text we report the results of

analyses using the full set of data available for each individual measure, but in addition to these

results we also offer, in the Appendix, parallel analyses using only the intersecting data available

for multiple measures.
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Internal validity

FAN. Previous studies of free association norms have reported that human raters have

some difficulty classifying associates as belonging to particular dictionary definitions. For

example, in the original Twilley norms (Twilley et al., 1994), raters agreed on how to match an

associate with a definition only 65% to 75% of the time. However, for reasons that are not readily

apparent, our data paint a much different picture of the reliability of free associate classifications.

Specifically, when we examined inter-rater agreement in the FAN norms, we found that rater

agreement was high, with 91% of the associates being given the same classification by all raters

and all raters expressing high confidence in their classifications. Hereafter, we refer to this highly

confident and consistent agreement as “certain agreement”. This agreement level increases to 93%

if we also include cases where raters agreed but expressed reduced confidence in their ratings.

Figure 2 provides additional insight into the distribution of classifications and amount of

(dis)agreement across raters. The first two bars of this plot (labeled CA1 and CA2) represent the

percentage of responses that correspond to certain agreement that an associate is linked to the first

or second definition, respectively, in the Wordsmyth dictionary. These bars indicate that 76% of

the time, all raters confidently agreed that the first meaning was the basis for generating the

associate, and 14% of the time, the second meaning was the basis for generating an associate

(90% of the data). The third bar (labeled CD) plots the percentage of cases for which at least two

of the three raters were confident of their ratings but disagreed on which meaning of a homonym

was used; it shows that such cases were rare (5% of the data). Manual inspection indicated that

for some of these responses, there are potential links from both meanings to the associate (e.g.,

the associate match produced for the cue box could denote a box of FLAMMABLE MATERIAL

or an ATHLETIC COMPETITION). The final bar (labeled Other) represents the sum of all other

cases. These cases broke down into those in which raters agreed on the meaning evoked for a

particular associate but expressed low confidence in their rating (2% of the data); cases where

multiple raters disagreed but expressed low confidence in their judgments, (< 1% of the data);
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cases where all raters agreed that no definition in Wordsmyth captured the represented meaning

(2% of the data); and cases where raters classified an associate as linked to a third meaning of a

homonym (< 1% of data).
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Figure 2. Distribution of ratings as a function of rater agreement in the FAN data. CA1, CA2:
Certain Agreement that the associate was linked to meaning 1 or meaning 2, respectively. CD:
Raters were certain about their classifications but their classifications disagreed. Other: All other
cases.

Given the high amount of “certain agreement” among the raters, the CA1 and CA2 bars in

Figure 2 can be interpreted as plotting the frequency with which the dominant and subordinate

meanings of a homonym were evoked in the free association task. To make a strong claim in this

regard, however, we needed to also rule out a simple and less interesting explanation for our

results: raters simply have a bias to indicate that the first dictionary meaning underlies the

association, for instance, because this is the first definition that they saw. If this were the case,

such a bias to choose the first rating might artificially inflate the levels of agreement such that
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what appears to be high agreement may actually be due to chance once bias was factored out.

To evaluate this possibility, we conducted a Monte Carlo (MC) simulation to assess the

likelihood that the observed level of agreement would be expected due to chance while

controlling for rater bias. (See the Appendix for motivation for this approach over standard

parametric tests of inter-rater reliability, as well as additional details regarding the method and

results.) We found the actual level of agreement was vastly higher than that of the chance

distribution, and none of the simulations generated a level of agreement larger than that observed

empirically (i.e., the probability that we would have observed our level of agreement by chance is

zero in the simulations). We conclude that our high levels of inter-rater agreement are clearly not

attributable to a simple bias for raters to produce classifications that favour the first meaning, or

due to chance alone.

Taken together, these data indicate that, by and large, raters were highly confident in their

responses, in contrast to the previous report by Twilley et al. (1994). Most associates were also

linked with one of the first two dictionary definitions of a homonym and rarely to a third meaning

if a homonym had one. This finding replicates a similar observation from the original eDom

norms and indicates that the dictionary provides relatively exhaustive coverage of the meanings of

words, even if some of those meanings are used very infrequently. For this reason, all subsequent

results only plot data related either to only meaning 1 or to meaning 1 and meaning 2, which

represent the vast majority of both the FAN data, as well as the SUBTL data, which are described

next.

SUBTL. Inter-rater reliability was assessed in a similar manner for the SUBTL data. The

overall pattern of agreement was extremely similar to that observed for the FAN norms, as

illustrated in Figure 3. Of particular note was that the two raters produced the same highly

confident classifications linking the meaning of a homonym in a line of subtitles to the first and

second definitions of a homonym, which represented 73% and 17% of the data, respectively, thus

covering 90% of cases (if both uncertain and certain agreement between raters were counted, this
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total rises to 92%; cf. 76%, 14%, 90%, and 92% for the analogous measures derived from the

FAN data). Similar low rates of confident, disagreeing classifications between the two raters were

also observed (e.g., raters confidently disagreed about whether “I’m going to cuff you” should be

classified as an example of the HANDCUFF or the HIT meaning of cuff ), as well as of “other”

types of responses (a subset of the “other” data represents classifications pertaining to an

additional dictionary definition other than the first two definitions, which occurred less than 2% of

the time, e.g., “You have to buck up and do it”). Once again, we conducted an MC simulation to

evaluate the likelihood that the level of observed agreement between our two raters was likely to

occur by chance while controlling for rater bias. As before, the probability that our data were

observed by chance according to this Monte Carlo simulation was exactly zero.
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Figure 3. Distribution of ratings as a function of rater agreement in the SUBTL data. CA1, CA2:
Certain Agreement that the line of dialog was linked to meaning 1 or meaning 2, respectively.
CD: Raters were certain about their classifications but their classifications disagreed with one
another. Other: all other cases.
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As an interim summary, the broad similarity and high reliability of the FAN data and

SUBTL data provides some initial evidence that the frequency of associates related to that

homonym produced in a free association task, and the frequency of a particular meaning of a

homonym used in natural language, have a similar distribution. Additionally, it suggests that the

“local” context, be it either a single associate or a single line of subtitles, contains sufficient

disambiguating information to lead to confident agreement among raters in their classification of

the evoked meaning in the vast majority of cases.

Calculating estimates of meaning frequency from meaning classifications

We converted the rater classifications into estimates of the largest relative meaning

frequency for each homonym, which we refer to as biggest, and which we use as our primary

measure of meaning dominance throughout all of the subsequent analyses. In prior explicit

meaning frequency rating tasks (Armstrong, Tokowicz, & Plaut, 2012; Armstrong et al., 2015),

this approach has been shown to be both a simple and reliable means of probing the relative

dominance of a homonym’s meanings. In part, such a simple method is useful because virtually

all homonyms are associated with only two meanings that are used with even a modest base

frequency. Thus, measuring the largest relative meaning frequency (which typically ranges

between 51% and 100%) also implicitly provides information on the frequency of the subordinate

meaning, because in total these values usually sum to 100% (except for a few cases where the

homonym had more than two meanings, or some classifications are not associated with any

dictionary meaning). The steps in calculating biggest were similar but not identical for the

datasets.

FAN. To compute biggest for the FAN data, we focused only on cases for which there was

agreement on a particular dictionary definition across all raters regardless of the confidence of

each classification. We first separated the associates based on the meaning classification. Next,

we replaced the associates themselves with their production frequencies (e.g., the associate money
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was produced by 115 participants for the probe bank). Summing these production frequencies

across associates with the same meaning classification produced an estimate of the raw frequency

with which each meaning was evoked in the FAN task. Finally, we selected the meaning with the

largest raw frequency and computed the percentage of the total raw frequencies covered by that

meaning.

SUBTL. Recall that in the SUBTL data, we extracted for rating a sample of 100 lines of

subtitles for almost all homonyms, or all available lines for a few homonyms that were part of

fewer than 100 lines. As for the FAN data, to compute biggest for the subtitles data, we included

all lines which showed agreement regardless of confidence level across the two raters. We

grouped these rated lines for each homonym into subgroups according to the meaning

classification offered by the raters. The estimate of biggest for each homonym was then simply

the percentage of the lines in the meaning subgroup with the most lines.

Comparison of different meaning frequency estimates

Comparison of the distribution of meaning frequency across norms. Having

established that our norms have a high degree of internal validity and reliability across raters, we

turn next to a comparison of our estimates of meaning dominance, as operationalized by the

biggest measure against two other measures: the original eDom biggest norms derived from

explicit meaning frequency estimation, and Twilley’s U, derived from free associate classification

and a slightly different operationalization of dominance.2 The comparison between our

2 In essence, the Twilley U measure reflects how confident an individual would be, on average, if they had to guess
which meaning a homonym would evoke in a given context before they had actually seen the context. For homonyms
with one clearly dominant meaning, that meaning would be highly likely to be evoked in any given context, so
uncertainty would be low. In contrast, a homonym with two meanings of equal frequency would be associated with
high uncertainty because either meaning would be equally likely to be evoked in a given context. Note that this
implies a negative relationship between U and biggest estimates. For ease of comparison across different plots and
datasets, we have multiplied all of the U values by -1 so that the relationship is positive. Note that although the two
sets of computations used to derive biggest and U measures of domaince differ in the details, for words which have
only two meanings, these values correlate extremely highly, r ≥ .90, as reported in Armstrong, Tokowicz, and Plaut
(2012). Thus, we interpret major differences between biggest and U as arising primarily from differences in the
distribution of meaning frequencies, not to discrepancies between the mathematical formalisms underlying each

26



biggest estimates from the FAN data and of the Twilley et al. U estimates may provide

particularly useful insight into the stability of measures derived from free association norms.

For our first comparison, we plotted the distribution of largest relative meaning frequencies

for the intersection of the eDom, FAN, and SUBTL data. The results are presented in Figure 4.

(Because the U dataset is so much smaller, we include the comparison of the intersection of the

four datasets in our supplementary analyses in the Appendix; see Figure A3.) This figure shows a

high level of similarity between the FAN and SUBTL data across the entire distribution. Like

FAN and SUBTL, the eDom data also show that there are more homonyms with moderately

dominant meanings (biggest values near 80%) than with relatively balanced meanings

(biggest values near 50%). However, unlike FAN and SUBTL, there are very few homonyms with

eDom biggest values of close to 100%. At first blush, these results suggest that our new FAN- and

SUBTL-derived estimates are quite similar, suggesting that participants learn the frequencies of

homonym meanings from exposure to natural language and then generate associates in proportion

to their exposure to each meaning. However, such broad similarity at the distributional level does

not necessarily reflect good agreement at the item level (see, e.g., the difference in distributional

similarity vs. similarity in individual items across two dialects of Spanish; Armstrong et al.,

2015). To preview some of our follow-up analyses, this initial impression does indeed appear to

be an oversimplification of the data. Additionally, the presence of “homonyms” with

biggest values at or very near 100% also suggests that identifying homonyms based on the

number of entries in the dictionary may also lead to the inclusion of some words that effectively

only have one meaning according to the FAN and SUBTL data. This issue is discussed in

additional detail in the Appendix.

measure.
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Figure 4. Density plot of the distribution of largest relative meaning frequencies for the
intersection of the eDom, FAN, and SUBTL norms (n = 357). A small amount of smoothing was
applied to avoid jageddness due to not having data for every x-value.

To gain finer-grained insight into the similarities and differences between the different

estimates of relative meaning frequency, we next examined the scatterplots and correlations for all

pairs of measures, using the intersecting items in each pair of measures; see Figure 5 (for the

analogous comparisons of the intersection of the datasets, see Figure A4 in the Appendix). The

figure shows that although all of the correlations were significant, their strength varied

considerably, from .26 to .57. All correlations between eDom, FAN, and SUBTL were strong

(between .55 and .57), which could suggest that each of these variables is tapping into the

underlying “meaning frequence” construct to an equal degree, and that each measure is also

tapping into a unique portion of the representation of meaning frequency. These strong

relationships also highly contrast with those observed between eDom and U, and SUBTL and U,

where the correlations were halved (.26 in both cases), and were very similar to the weak

relationship observed between eDom and U in the original eDom article (r = .27 Armstrong,
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Tokowicz, & Plaut, 2012).

Interestingly, the correlation between FAN and U (.45) was more similar to that between

eDom and U and SUBTL and U, but nevertheless was weaker than the correlations between

eDom, FAN, and SUBTL. This result is surprising given the overall similarity of the methods to

produce our FAN data and those used by Twilley et al. (1994). It suggests that the U dataset may

not be tapping into the same construct in a similar degree to the other measures. As a final

observation, there was evidence in all of the plots involving our FAN and SUBTL data that those

measures were generating many more datapoints at or near biggest values of 100, whereas the

eDom biggest and U data were not strongly clustered at the upper end of the range in the

scatterplots. In the discussion, we outline several possible explanations for these observations.
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Figure 5. Combined scatterplots and correlograms (r-values) depicting the relationships between
the four measures. The full set of available data for each pair of measures was included, so
different numbers of observations are included in each cell. Larger and darker red (vs. black)
numbers indicate larger correlations. All correlations were significant, p < .05, two-tailed.
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Correlations with other psycholinguistic variables. The previous set of analyses

indicate that despite some general agreement among the different estimates of relative meaning

frequency, the correlations are still far from perfect—even the strongest correlations failed to

account for more than 33% of the variance. Yet, for our new estimates and the original eDom

estimates, the inter-rater reliability was always quite high. These differences must therefore

reflect something systematic about how each measure taps into mental representations. One

possibility is that other psycholinguistic properties of the words are influencing the rate with

which different meanings are evoked. In support of this possibility, in the prior eDom studies,

some weak but statistically significant relationships have been detected, typically involving

variables that relate to the lexical or semantic properties of a word. Here we replicate and extend

these analyses, testing the relationship between the same psycholinguistic variables and the

different measures of dominance.

Figure 6 presents the results using the intersecting items in each pair of measures.

(Figure A5 is the corresponding figure in the Appendix.) Several interesting observations can be

drawn from Figure 6. First, all of the measures of meaning frequency are significantly correlated

with other measures that relate to the representation of a word’s meanings. In all cases, there is a

negative relationship between meaning frequency and the number of meanings associated with a

word in the Wordsmyth dictionary, indicating that words with fewer meanings tend to have a more

dominant meaning relative to words with many meanings. A similar pattern, although slightly less

systematic across all of our measures of meaning frequency, emerges between meaning frequency

and number of senses (i.e., sub-entries in the dictionary), number of noun interpretations, and

number of verb interpretations. This last case is of particular interest because of debates

surrounding the separate or integrated representation of noun and verb knowledge in the mental

lexicon, and we return to this point in the discussion (Mirman, Strauss, Dixon, & Magnuson,

2010). These results clearly point to the importance of controlling for these other lexico-semantic

factors in studying homonymy effects, although more research will be needed to determine how
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and why meaning frequencies spread out across more meanings, senses, and parts of speech.

Moving further right in the table, the similarities between the measures largely end. Only the

eDom measure shows modest significant relationships between meaning frequency and most

other measures, including the number of noun and adjective interpretations and imageability, a

semantic property that is potentially distinct from the representation of different numbers of

interpretations. The only non-significant correlations related to eDom were for variables that are

sublexical in nature (number of phonemes and bigram frequency). The presence of a number of

significant relationships in eDom but not in SUBTL is also particularly noteworthy because of the

high number of observations in both of those cases, so those different patterns are not attributable

to differences in power. The comparison of the relationship between the different psycholinguistic

variables thus suggests at least modest differences between how the different meaning frequency

estimates covary with estimates of other psycholinguistic properties. This, in turn, could help

explain at least part of the differences observed between the different measures of meaning

frequency, potentially because different tasks engage the representations of these covarying

psycholinguistic properties to varying degrees. We return to this point in the discussion.
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Figure 6. Pairwise correlations of the meaning frequency estimates and common psycholinguistic
variables, including all available data for each measure.
(NeDom = 533, NF AN = 357, NSUBT L = 533, NT willey = 205). Colour shading is only included
for correlations that reached significance at p < .05, one-tailed. Number of meanings, number of
senses, and the number of verb, noun, and adjective interpretations were derived from Wordsmyth
(Parks et al., 1998). The Wordnet Interpretations column denotes the total number of
interpretations in Wordnet for each homonym (Fellbaum, 1998). Word frequency, and its
log-transformed variant, were derived from Brysbaert and New (2009). Coltheart’s N, a measure
of orthographic neighbourhood size (Coltheart, Davelaar, Jonasson, & Besner, 1977), as well as
the counts of number of phonemes, number of syllables, and letter bigram frequency were taken
from the eDom norms (Armstrong, Tokowicz, & Plaut, 2012). Orthographic Levenshtein distance
(OLD) is essentially a generalization of Coltheart’s N, and counts the number of other words that
can be created by letter substitution, to also include neighbours created via addition and deletion
of letters; taken from Yarkoni, Balota, and Yap (2008). Note that the scales are reversed for OLD
and Coltheart’s N such that larger OLD scores correspond to lower Coltheart’s N.

Predictive validity of measures. The previous sections established that despite the high

reliability of the underlying data, the different methods for estimating relative meaning frequency

yield datasets that only show moderate correlations between one another, pointing to important

and systematic differences between the various measures. In the next set of analyses, we
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investigated whether these systematic differences help or hurt a regression model’s ability to

predict performance in a few experimental tasks, which may shed some additional light on which

measure(s) might align best with human mental representations of homonym meanings.

Three target datasets were identified for these analyses. The first two were the lexical

decision data from the English Lexicon Project (ELP; Balota et al., 2007), which focuses on

American English, and from the British Lexicon Project (BLP; Keuleers, Lacey, Rastle, &

Brysbaert, 2012). The third dataset was the performance data from the Calgary semantic decision

project (Pexman, Heard, Lloyd, & Yap, 2017), in which participants decided whether a word

refers to something concrete or abstract.

The advantage of using data from the ELP and BLP mega-studies is that their broad

coverage of the English language makes it likely that a large proportion of our homonyms will

have been included in each study. In some respects, the ELP data are the optimal set to use in the

present context — both the raw data that was normed in our studies as well as our raters

themselves are all based in North America. This should minimize potential dialect differences

(which have previously been shown to be non-trivial at least in some dialects of Spanish;

Armstrong et al., 2015) and maximize the degree to which the same population was involved in

both the derivation of our measures and the performance in an external task. However, the

original eDom study found that the effects of relative meaning frequency in explaining the ELP

lexical decision data were typically weak and often not significant. As Armstrong and Plaut

(2016) discuss, ELP used nonwords with sublexical properties that may have biased participants

to rely on lower level visual/orthographic information rather than semantic information.

To address the potential issue with ELP, we also opted to analyze data from BLP. On the one

hand, these data are sampled from a different dialect of English, and therefore the variance

explained by some psycholinguistic variables extracted from the American dialect of English may

explain less in the British dialect of English. In particular, these psycholinguistic variables

include relative meaning frequency collected across British and American dialects of English
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using the eDom explicit rating method, as recently documented by Maciejewski and

Klepousniotou (2016) (for additional evidence from dialects of Spanish, see Armstrong et al.,

2015). On the other hand, the BLP nonwords were much more wordlike in a number of respects

compared to ELP. Thus, we considered it to be an empirical question whether BLP or ELP would

provide a more sensitive setting for exploring meaning frequency effects using our measures.

Using the third dataset, the Calgary semantic decision project (Pexman et al., 2017), came

with both advantages and disadvantages: although this task should, in many ways, be more

amenable to studying the effects of meaning frequency because it explicitly involves activating

and making decisions based on the meanings of words, many fewer homonyms were available in

this dataset (range: 30—91 homonyms available in a given correlation; see the table captions for

details). Thus, conclusions based on this dataset must be drawn cautiously. Nevertheless, we view

our explorations with this dataset as being important because they can help provide at least an

initial evaluation of the viability of this type of task for the study of ambiguity effects. Moreover,

convergent evidence from mega-studies other than of lexical decision are critical for making

general claims regarding the mental representations of ambiguous words.

Figure 7 shows the simple correlations between the various meaning frequency estimates

and the dependent measures (accuracy and reaction time) in each of the three mega-studies.

(Figure A6 is the corresponding figure in the Appendix.) The most striking initial observation

from the results of these comparisons is that eDom, SUBTL, and FAN all predict significant

variance in ELP and BLP, whereas U does not; FAN and SUBTL furthermore predict significant

effects in the Calgary norms. In more detail, the FAN and SUBTL measures show the highest

similarity in that they were negatively correlated with RT in both BLP and ELP, such that more

balanced homonyms were associated with slower RTs, and vice versa. This relationship is more

consistent with typical findings in lexical decision (for discussion, see Armstrong & Plaut, 2016;

Armstrong, Tokowicz, & Plaut, 2012) than the relationships observed between eDom and the

lexical decision data. In a related vein, both FAN and SUBTL predict significant increases in
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accuracy for homonyms with more dominant meanings in the Calgary data. In contrast, the

correlations with eDom indicate that accuracy decreases in the lexical decision data. These results

parallel the results obtained using simple regression reported by Armstrong, Tokowicz, and Plaut

(2012). However, in that prior work the authors also found that these effects were no longer

significant and were (numerically at least) typically in the opposite direction once other

psycholinguistic properties were controlled for. This suggests that these simple correlations must

be interpreted cautiously until the effects of other psycholinguistic covariates have been controlled

for. We examine this issue in additional regression analyses reported in the following section.
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Figure 7. Correlation of meaning frequency scores and measures of human performance
(accuracy [ACC] and reaction time [RT] in each of BLP, ELP, and Calgary), for all pairwise
observations. Cells are shaded for significance when p < .05, one-tailed. The number of
observations per cell were as follows: eDom and BLP = 518, eDom and ELP = 529, eDom and
Calgary = 98, SUBTL and BLP = 517, SUBTL and ELP = 528, SUBTL and Calgary = 98, FAN
and BLP = 350, FAN and ELP = 357, FAN and Calgary = 60, Twilley and BLP = 202, Twilley
and ELP = 205, Twilley and Calgary = 31.

Next, we explored the unique variance explained by measures of relative meaning frequency

after controlling for the effects of other psycholinguistic variables. To do so, we first computed

the residuals from multiple regressions that used the results from each mega-study as the

dependent variable (ACC or RT) and included log10 word frequency (Brysbaert & New, 2009),

orthographic Levenshtein distance (OLD; Yarkoni et al., 2008), number of phonemes, number of
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letters, number of syllables, number of senses, verb interpretations, noun interpretations, and

letter bigram frequency as predictors. Except as cited above, all of these data were taken from the

covariate data provided as part of the eDom norms (Armstrong, Tokowicz, & Plaut, 2012). We

then created simple regression models that used the different measures of relative meaning

frequency to predict the residuals. In essence, this corresponds to a stepwise regression wherein

the meaning frequency estimate is added last. The results are presented in Table 2 for all available

data for each meaning frequency estimate (Table A1 in the Appendix includes the analyses of the

intersection data).

There were a number of consistent findings between the simple correlations and the

regression models – namely, in both types of analyses the FAN and SUBTL measures

significantly predicted both BLP RT and ELP RT. However, the remainder of the results differ

somewhat from those observed in the simple correlations, primarily because fewer effects reached

significance. For example, in the regression models, none of the eDom or U measures predicted a

significant amount of variance, although there were a number of marginally significant effects.

The eDom data now show several marginal effects, although the sign of these effects varies

somewhat so there is no clear trend for a processing advantage or disadvantage for more balanced

homonyms. Another notable difference from the simple correlations is that U has a number of

marginally significant predictions for BLP RT, ELP RT, and Calgary RT. This pattern is surprising

because U never predicted any significant variance in the simple correlations. No effects were

significant involving the Calgary norms, which is not entirely surprising given the reduced

number of observations available in that dataset.

Collectively, these results further support the notion that homonymy effects in tasks using

isolated words are relatively weak and potentially subject to change as a function of the particular

homonyms that enter into an analysis and how psycholinguistic covariates are controlled for. As

such, it is critical that experimental work not focus only on replicating effects with small numbers

of homonyms that have been used in previous studies, but rather test homonymy effects with
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larger sets of randomly sampled homonyms (cf. Armstrong & Plaut, 2016). We expect that the

availability of our new sets of norms, which represent a large set of homonyms selected to be

suitable for psycholinguistic research, should facilitate future studies of homonymy that avoid this

issue, particularly if they are coupled with methods for generating large sets of experimental

items that are also matched on other potentially confounding psycholinguistic properties (cf.

Armstrong, Watson, & Plaut, 2012).

Our results also suggest that, despite the task and dialectal differences in BLP and ELP, each

of the four measures shows a very similar pattern of correlation across the two mega-studies.

Further, the relative weakness of the correlations between the large sets of homonyms in the

lexical decision tasks and the couple of strong correlations detected with the smaller set of

homonyms in the Calgary norms also suggests that additional studies that emphasize the semantic

aspects of processing may be needed over and above the standard lexical decision mega-studies.

These types of studies may better tap orthographic and other sub-lexical and lexical aspects of

word representation. For example, expanding the Calgary norms to include additional homonyms

may provide a more powerful assay of the influence of semantics. More broadly, larger-scale tests

of homonymy effects in tasks that have been reported to show strong homonymy effects (e.g.,

naturalistic reading tasks, e.g., Frazier & Rayner, 1990), although more labour intensive than

isolated word studies such as lexical decision and semantic categorization and potentially tapping

different aspects of meaning activation dynamics (Armstrong & Plaut, 2016), could be a further

avenue for evaluating the representation of homonym meanings.
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Discussion

The ability to derive “good” estimates of the relative meaning frequencies of homonyms is a

major theoretical and methodological issue for advancing accounts of semantic ambiguity

resolution, including explicit computational models of ambiguity resolution. In particular, good

estimates would, ideally, show a high degree of inter-rater reliability, rapidly converge on stable

norms without requiring excessive laboratory resources, for example, in terms of participant or

rater time. They would also agree with other methods of deriving relative meaning frequency and

significantly predict performance in other tasks, thereby demonstrating the external validity

(generalizability) and robustness of each methodological approach. Although our results fall

somewhat short of this ideal scenario, they nevertheless offer a number of important insights for

theories and methods of probing the use of different meanings of a homonym. They also provide

critically-lacking large-scale datasets for future empirical comparisons and computational work.

We expand upon these points below.

First, our results show that each individual measure of relative meaning frequency is highly

reliable when considered in isolation—both the FAN norms and SUBTL norms showed inter-rater

agreement in excess of 90%, which is similar to the levels observed in the original eDom explicit

meaning frequency norming study (Armstrong, Tokowicz, & Plaut, 2012; Armstrong et al., 2015).

The high inter-rater reliability of these results was particularly surprising for our FAN data given

the much lower inter-rater reliability reported in the related study by Twilley et al. (1994), a point

which we return to momentarily. Our high reliability in the SUBTL dataset also contrasts with the

lower agreement (65%) reported by Koeling, McCarthy, and Carroll (2005), who had raters label

word meanings in sentences sampled from sub-sections of the Reuters corpus (Rose, Stevenson,

& Whitehead, 2002). However, in that case, the authors argue that at least part of this poor

disagreement is due to the high degree of polysemy in their word set, whereas we have focused on

homonyms whose meanings may be more distinct and therefore easier to classify.

With such high inter-rater reliability, one might expect the various sets of norms to show a
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high level of agreement. However, although there was some broad agreement among the different

norms, there was also a surprising level of disagreement between the norms. This was true first in

our examination of the distribution of relative meaning frequencies across the norms (see

Figure 4), as well as in the scatterplots (see Figure 5). Here, even the strongest r2 value failed to

explain more than one third of the variability between measures. Perhaps even more striking, the

strongest correlation was between two different methods of estimating relative meaning

frequency, not between our FAN data and the norms reported by Twilley et al. (1994), despite

both of those last two estimates being derived from the classification of free associates.

Making sense of why two similar measures derived from free association do not show

extremely high similarity, as well as why our measure derived from free association shows much

higher inter-rater reliability, has proven particularly challenging and we do not have a definitive

explanation to offer. With only two datasets to contrast, it is difficult to identify which of several

potential sources of variation explain these differences. One possibility is that these two sets of

norms differ because of changes in how words are used to denote different meanings over time

(Rodd et al., 2016; Swinney & Hakes, 1976). However, our FAN estimates were derived from the

free association norms collected over a decade ago by Nelson et al. (2004), yet our raters

displayed high levels of inter-rater agreement not displayed in the Twilley et al. (1994) study.

Another potential source of variation is the exact set of participants that produced and rated the

associates. Although we cannot make a definitive statement related to such population

differences, both studies employed similar groups of university students so this source of variation

seems unlikely to be responsible for the substantial differences across the datasets. A potentially

more promising source of variation may be differences in the task context. For example, by

focusing on norming homonyms and homographs, Twilley and colleagues’ participants may have

realized that most words have multiple meanings and that all meanings of the homonyms occur

with a reasonable frequency. This may have been further exacerbated by the study of a particular

set of homonyms that have relatively balanced meaning frequencies as compared to a broader
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sample of homonyms (for details, see Figure 4 and Figure A3). Perhaps the awareness that the

words have multiple meanings encouraged participants to generate classifications related to the

subordinate meaning more often than in a free association task like that of Nelson et al. (2004)

wherein homonyms form only a subset of all tested items. Such an explanation, although clearly

speculative, would be consistent with work studying how recent experience shapes the activation

of specific meanings, provided that awareness of the probe words having multiple meanings can

prime all word meanings much as natural language context can prime specific word meanings (for

a demonstration of meaning-specific priming, see Rodd et al., 2016). Evaluating these (and other)

possibilities would necessitate additional intensive investigation, but these comparisons have at

least made clear that the broader population of homonyms in natural language are more likely to

have strongly dominant meanings than as suggested by the study by Twilley and colleagues and

higher reliability can be achieved in some circumstances.

When comparing our new FAN and SUBTL norms to the original eDom explicit meaning

frequency norms, it was also surprising to note that both new measures yielded much more

left-skewed distributions and meaning frequencies near or at 100% of all cases. In line with basic

views of statistical learning that describe how learners encode and internally represent the

statistics of the linguistic environment (for discussion, see Frost, 2012; Frost, Armstrong,

Siegelman, & Christiansen, 2015), our initial prediction was that SUBTL meaning frequencies

would closely agree with the explicit meaning frequencies. Similarly, in classifying free

associates, the basic assumption has been that the generation of associates should show a strong

and proportional relationship with the underlying meaning frequencies. Although we did indeed

find statistically significant relationships between our various estimates, at best each measure

explains only about a third of the variance in one of the other measures. Clearly then, our

assumptions about how these different tasks tap into the representation of meaning frequency

requires some reconsideration, which could have profound implications both for theories and

methods of studying meaning frequency.
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Although we cannot claim to have a definitive explanation for these mismatches, in our view,

three main avenues derived from theories of decision making and language representation are

likely suspects and worthy of additional investigation. One avenue is concerned with how the

decision system interacts with the underlying evidence to generate a particular response such as a

numerical estimate of meaning frequency in a rating task. Extensive theoretical, computational,

and empirical evidence has documented clear non-linearities in how representations of the actual

probability distributions used as evidence to generate a response map onto the generated response

(Luce, 2005; Tversky, 1967; Ungemach, Chater, & Stewart, 2009). A full review of the relevant

decision making literature is beyond the present scope, but in brief the reduced number of

homonyms with extremely dominant meanings in the explicit rating task of eDom versus the FAN

and SUBTL norms would be consistent with an over-estimation of a low frequency event. This

over-estimation may be further exacerbated by participants having some knowledge that a given

homonym has two meanings (even if one of those meanings is hardly, if ever, used in natural

language) and wanting their responses to reflect that knowledge. Such a strategic effect could also

help explain why in a free association task only involving homonyms, Twilley et al. (1994)

reported far fewer homonyms with strongly dominant meanings than we observed in our FAN

norms.

A second possibility, which is not mutually exclusive with the first, is that different types of

language knowledge are not represented in complete isolation to one another, so that other types

of knowledge are influencing estimates, such as eDom, that are, purportedly, about meaning

frequency only. For example, a classic assumption in many theories of language knowledge

representation is that information about grammatical class is encoded distinctly from purely

semantic information (Caramazza & Hillis, 1991). However, more recent neurocomputational

models of intact and impaired language abilities have suggested that semantic information may be

deeply intertwined with representations of a word’s grammatical class, phonology, and other

types of representations (Watson, Armstrong, & Plaut, n.d.). Interestingly, and potentially in line
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with the latter claims, the explicit meaning frequency ratings in the eDom norms correlated, albeit

weakly, with many more different psycholinguistic covariates—and particularly, covariates that

relate primarily to semantic and/or grammatical structure, not lexical or sublexical

properties—than either of our estimates derived from the classification of FAN or SUBTL data.

Given the high degree of collinearity between these measures, it is not particularly

straightforward to tease apart the exact contributions of these other psycholinguistic variables to

each of our estimates of meaning frequency with a strong degree of statistical precision. However,

the general qualitative pattern suggests that either explicit estimates of meaning frequency are

spuriously influenced by these other psycholinguistic covariates, which are co-activated when

completing the rating task, or these correlations are present because these different types of

psycholinguistic information are not represented distinctly, but rather in a partially intertwined

manner (see also similar discussion on meaning familiarity in Armstrong & Plaut, 2016).

Third, computational models of word learning have sometimes found that the fit between

simulation and human performance can be improved by training items not on raw frequency, but

on a log-transformed measure of frequency (e.g., Seidenberg & McClelland, 1989, though cf.

Barak, Goldberg, & Stevenson, 2016). This type of improvement in data fit suggests that some

scaling factor may need to be applied to raw estimates of meaning frequency, such as those from

SUBTL, to better align these estimates of exposure to meaning with other estimates of the

internal representations of these meanings. Our initial attempts to effect such a transformation

and reconcile these data sources have yielded only limited success, however, suggesting that this

avenue, while perhaps part of the overall picture, represents only a partial solution to the data

mismatch issue. More broadly, this last avenue points to a more general direction for future

investigation that considers the complex mechanisms that are involved in the encoding, long-term

storage, and retrieval of knowledge in different contexts and experimental settings. The simplicity

of our assumptions has clear advantages as a starting point, but similar assumptions in the study

of related domains such as free recall suggest that our data may be shaped, to some extent at least,
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by much more complex mechanisms (e.g., Tulving, 1967).

Taken together then, which of the different measures that we have discussed should,

therefore, be preferred? To this question, we answer that there does not appear to be a single

“best” dataset and the preferred dataset will depend upon the intended usage. If a researcher is

focused first and foremost on meaning frequency per se, the SUBTL dataset would appear to have

the best surface validity and parsimony with the literature on word frequency effects in

recognition (e.g., Brysbaert & New, 2009). If a researcher is focused not on what meaning

frequency information exists in the environment but on how meaning frequency information is

internally represented and wants to avoid the complications of explicit responding and collinearity

with many psycholinguistic covariates, the FAN data may be more appropriate. If a researcher is

interested in the intertwined nature of meaning frequency and other psycholinguistic factors, the

eDom dataset may be preferable because it may better reflect how the meaning frequency

information in the environment interacts with memory systems that ensure the learning and

representation of low frequency information, and how the representation of meaning frequency is

intertwined with the representation of other psycholinguistic properties. If a researcher cares most

about external validity and explaining variance related to meaning frequency, then the results of

our tests of external validity using the BLP, ELP, and Calgary datasets might be the best basis of

inferring the applicability of different measures to predicting performance in different tasks.

However, even within this narrower context the results are mixed: there were no significant

effects that were systematic across all tasks for any one measure, and there were trade-offs across

measures in terms of showing more marginal effects (eDom, U ) or fewer significant effects (FAN,

SUBTL) and how well results generalized across lexical decision and semantic decision. Thus,

there is no dataset that appears to be clearly superior to the others for generalizing to other tasks

not studied here.

Summing up, selecting the “best” meaning frequency measure of those we have studied will

require a careful consideration of how each of these measures relates to a researcher’s particular

45



interests. Or, for the moment, a researcher who wants to hedge their bets might be best served by

trying to select homonyms that have similar relative meaning frequencies across all of our norms.

Utility of norms for the development of computational models of ambiguity resolution and

natural language processing

Our discussion thus far has focused on a number of insights that analyses of our new data

can offer for theories and methods of semantic ambiguity resolution. However, we view those

insights as value added over and above our initial goals when we started this project, when we

simply aimed to amass a large amount of labeled (classified) data regarding the use of homonyms

in natural language contexts (SUBTL) and in popular laboratory tasks (FAN) for use in historical

and cross-linguistic/cross-dialectal comparisons of meaning ambiguity, and in computational

modeling. Here, we focus on the latter application.

To date, the main computational models of semantic ambiguity in the cognitive psychology

literature have focused on using artificially constructed semantic representations, often with

balanced meaning frequencies for homonyms (e.g., Armstrong & Plaut, 2008, 2016; Kawamoto,

Farrar, & Kello, 1994; Piercey & Joordens, 2000; Rodd et al., 2004). This has a clear advantage in

offering simple, intuitive, and transparent insight into the operation of what are often already quite

complex computational models. However, it also has the disadvantage of not demonstrating how

these models scale to realistic representations that capture the diversity of contexts, complexity of

meaning representations, and random noise encountered in behavioural data or natural language.

Before embarking on our own norming project, we also examined whether alternative sets of

more realistic labeled (classified) data may have been developed in the domain of computational

linguistics, which has been somewhat divorced from the cognitive psychology literature on this

topic. There, we did discover data that was somewhat in line with our aims, but which we still felt

was lacking in some respects if the aim is to build a tight link between human representations of

word meaning and computational models. For example, several computational linguistic
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resources have been developed which consist of interpretation-tagged annotations of natural text

(e.g., Passonneau, Baker, Fellbaum, & Ide, 2012; Taghipour & Ng, 2015). Our main issue with

using these corpora to estimate meaning frequency, however, was that they typically forfeit

significant depth and amount (if any) of human annotations in order to gain breadth of coverage

and total number of annotations (e.g. Taghipour & Ng, 2015). At the opposite end of the

spectrum, trading forgoing breadth for depth, several corpora have been developed that provide

very extensive sets of annotated data but for far fewer words. For example, corpora exist that

provide 4000+ sentences for each of the words line, hard, and serve annotated with the

appropriate interpretation (Leacock, Towell, & Voorhees, 1993; Leacock, Miller, & Chodorow,

1998). Closer to our own work, which strikes a balance between breadth and depth, the DSO

corpus (Ng & Lee, n.d.) has almost 200, 000 sentences for 191 words. That corpus, however,

focused on annotating text taken from the Wall Street Journal and Brown Corpus, which may not

be as representative of natural language usage as our SUBTL data derived from film and

television subtitles. In addition, the DSO annotations were derived from WordNet (Fellbaum,

1998), which does not delineate between unrelated meanings and related senses in the same way

that Wordsmyth does, which makes the structure of the latter particularly useful for the study of

homonymy. (For additional discussion of the difficulties of sense tagging with WordNet senses,

see Palmer, Babko-Malaya, & Dang, 2004.) As another example, Taghipour and Ng (2015) used

WordNet senses to label the MultiUN corpus (Eisele & Chen, 2010), an assembly of United

Nations Documents, which are not the primary reading material of participants who complete

psycholinguistic experiments.

Relatedly, and more closely related to the present work because it also includes an

examination of interpretation frequencies, several projects have developed datasets with the

specific aim of studying meaning frequency distributions, but in addition to often being of a

smaller scale (~50 words), these corpora also may be less representative of typical human

language exposure, usage, and mental representation of meaning compared to our data. For
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example, Koeling et al. (2005) developed a human-annotated corpus using up to 125 sentence

usages for each of 40 words in the Reuters corpus (Rose et al., 2002). However, because one of

their primary aims was to examine domain-specific distributions of meanings, they focused on

strongly contrasting domains (FINANCE and SPORTS in the Reuters corpora) that cover only a

portion of typical language exposure. Furthermore, they also based their classifications on

Wordnet classifications (for a similar effort, see Bennett et al., 2016).

As such, although our data are certainly complementary in many respects to what has

already been created in computational linguistics, we view our datasets as achieving a valuable

trade-off of breadth versus depth given the current state of the literature. Our norms should also

be particularly useful for facilitating the development of models that can be evaluated against

large numbers of homonyms in typical language contexts (facilitated via our SUBTL data) and

that can relate to experimental paradigms (facilitated via our FAN data). Our coarse measure of

rater confidence and our data from multiple raters should also prove relevant for evaluating

models with respect to human behavior. Already from our analyses, it is clear that models should

not be considered to have “failed” in some respects if they do not achieve 100% classification

accuracy. Our human raters agreed with full confidence for over 90% of the ratings. This shows a

high level of reliability for our task, but also indicates that successful cognitive models would best

simulate human disambiguation abilities by demonstrating similar patterns of mostly agreeing

and disagreeing relative to human raters. Presumably, broader contextual information and/or

sensorimotor information is used to resolve many of these ambiguities in more natural settings,

which may suggest further directions for the use of models that are sensitive to word

co-occurrence patterns across broad sections of text, e.g., as in LSA (Landauer & Dumais, 1997)

or topic models (Griffiths, Steyvers, & Tenenbaum, 2007), and/or the development of more

“embodied” semantic models (e.g., Johns & Jones, 2012). At a finer grain, our simple measure of

rater confidence may also offer an additional means of assessing model classification certainty in

a more continuous as opposed to binary level of analysis. For example, if a model’s certainty that
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a particular classification is correct covaries with a human rater’s certainty on that item, this could

provide an additional indication that a model represents and resolves ambiguity in a similar way

to humans.

Taken together, the public availability of all of our labeled data, as well as our summary

meaning frequency estimates for each homonym, all of which took several hundred rater-hours to

collect before even beginning the analyses, should benefit researchers in two main ways. First, it

should clearly facilitate developing better computational models from a cognitive perspective.

Second, these norms should also help facilitate additional interdisciplinary interplay with other

domains, such as computational linguistics, which have remained somewhat distinct from the

cognitive literature on these topics and which certainly have much to offer both theoretically and

methodologically. Interested readers can access all of these materials from

www.blairarmstrong.net/homonymnorms/.

Use of the datasets. As a final methodological point, we offer some suggestions for how

our datasets might be most fully leveraged for the development of models that both generate

highly similar classifications (both accurate and inaccurate) to human raters, and that can

generalize appropriately to a range of novel contexts. These insights derive from our examination

of the computational linguistics literature, and serve to highlight the value of additional

interdisciplinary research into the study of semantic ambiguity, and the fitting of human

behaviour more generally.

One common approach to developing computational models of language, decision making,

or other cognitive processes that can provide a quantitative fit to empirical data (e.g., Coltheart,

Rastle, Perry, Langdon, & Ziegler, 2000; Ratcliff, 1978; Usher & McClelland, 2001) is to attempt

to identify an optimal set of parameters that maximize the similarity between the empirical and

simulation data. This then serves as an “existence proof” that the model could explain the

observed phenomena. However, such an approach contrasts with typical practice in computational

linguistics, where the primary goal in parameter optimization is to maximize generalizability to
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other, unseen data, which also tends to reduce the bias to overfit the model to a given dataset. Two

approaches are used to estimate model error when applied to new data.

The first method is to denote fixed subsets of a dataset as training, validation, and test sets.

For example, a typical split uses 80% of the data as training for the learning algorithm, 10% for

validating feature and parameter setting selections (which can be done repeatedly), and 10% for

final testing on unseen data. This approach is popular for benchmark competitions, where the

participants do not have access to the test data until their models are “frozen” based on the training

and validation data. However, whereas this approach in principle ensures that the trained system

is tested on unseen data (providing an accurate estimate of the true error, if the test set is large

enough), once results on the test data have been examined, it cannot be considered as “unseen”.

The second method is to use cross-validation, splitting the full dataset of N items into k

parts, and running k instances of training on k − 1 parts and testing on the held-out kth part

(where each part serves once as the held-out test set). Leave-one-out (LOO) cross-validation

refers to the special case where k = N – i.e., each item in the dataset serves once as the test point,

when the model is trained on the other N − 1 data items. When using cross-validation to estimate

the true error of the model on unseen data, there is a bias-variance trade-off that must be

considered (Hastie, Tibshirani, & Friedman, 2001; James, Witten, Hastie, & Tibshirani, 2013):

Bias results when the model is trained on less data, which can lead to overestimates of the test

error of a model that has access to all the data. Variance results from overlap in the training sets,

such that the estimate of the test error as their mean error has high variance to the extent that the

training sets are correlated. While LOO cross-validation has the advantage of having the tested

models be as close as possible to the model trained on the full dataset (lowering the bias), it also

has the disadvantage of maximal overlap between the training sets (raising the variance). In

practice, using k = 5 or k = 10 generally provides a good balance of the bias-variance trade-off.

In addition, researchers should consider stratified random sampling of the k parts, so as to balance

the number of words with various properties known to impact language processing (e.g., number
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of meanings, number of senses, word frequency, neighbourhood size, etc.). This method has also

been shown to reduce both bias and variance (Kohavi, 1995). Stochastic optimization of stimuli

offers one method of deriving such stratified samples (Armstrong, Watson, & Plaut, 2012).

Based on these considerations, for our labeled data, whenever a model does not require

training on a near-exhaustive set of stimuli following LOO procedures, we suggest that

researchers follow the standard practice in computational linguistics of using cross-validation to

train and test models, rather than fitting parameters to the full dataset. Using cross-validation will

provide the community a better sense of how well the resulting computational models would

generalize to new data on words not included here, which is a necessary property of a

comprehensive model of language.

Conclusion and Future Directions

Understanding how the meanings of ambiguous words are resolved is a critical component

of any theory of word comprehension, and reliable and externally valid methods of estimating the

relative meaning frequency of homonyms is a critical step in developing such a theory. The

present work reports new relative meaning frequency estimates derived from movie subtitles and

free association norms, and compares these two datasets with data from an explicit meaning

frequency rating task and a previous free association study (Armstrong, Tokowicz, & Plaut, 2012;

Twilley et al., 1994). All measures were highly reliable across multiple raters and showed some

moderate agreement with one another, but each set of norms was also associated with unique

variance. This variance potentially reflects more complex interactions between how the statistical

regularities of meaning distributions are encoded, stored, and retrieved in different task settings,

as well as how representations of meaning and other grammatical and semantic knowledge are

stored in an intertwined fashion.

Further work teasing apart these various dimensions is clearly needed, and we expect this

work and related projects studying ambiguous meaning representations over historical time and
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across languages and dialects, as well as the development of computational models of ambiguity,

will be facilitated by the public availability of our norms and classified data. The general success

of our norming enterprise based on the use of dictionary definitions of unrelated meanings also

suggests that a similar enterprise, focused on the related senses of polysemes, may also bear fruit

and further help identify and characterize these finer-grained types of ambiguity. Given the even

higher prevalence of polysemes in natural language relative to homonyms, and questions

regarding how polyseme interpretations are represented (for a few possibilities, see Armstrong &

Plaut, 2016; Col, Aptekman, Girault, & Poibeau, 2012; Hino et al., 2006, 2010; Klein & Murphy,

2001, 2002; Rodd et al., 2002, 2004; Zlatev, 2003), the present work should therefore offer a solid

foundation for advancing the understanding of many aspects of semantic ambiguity.
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Appendix

Supplementary Methods and Results

Assessing Internal Validity via Monte Carlo Simulations. Given the high amount of

“certain agreement” among the raters, the CA1 and CA2 bars in Figure 2 and Figure 3 can be

interpreted as plotting the frequency with which the dominant and subordinate meanings of a

homonym were evoked in the free association task or subtitles rating task. However, before

drawing a strong conclusion in this regard we needed to rule out a simple and less interesting

explanation for our present results: raters simply have a bias to indicate that the first dictionary

meaning, for instance, because this is the first definition that they saw. (We did not counterbalance

order of reading the definitions as in the eDom norms; for additional discussion of this potential

bias, see Langone, Haskell, & Miller, 2014.) This bias to choose the first rating might artificially

inflate the levels of agreement such that what appears to be high agreement may actually be due to

chance. To evaluate this possibility, we conducted a Monte Carlo (MC) simulation to assess the

likelihood that the observed level of agreement would be expected due to chance while controlling

for rater bias. We elected to use this approach to estimating inter-rater reliability rather than a

more commonly known parametric approach (e.g., Cohen’s kappa) because our data did not meet

a number of typical assumptions for this test (e.g., we had more than two raters, our data were

expected to be skewed to over-represent the first dictionary definition, given that dictionary

definitions are ordered according to lexicographer estimations of relative usage frequency, our

data were expected to be near ceiling). Our Monte Carlo simulation is thus a non-parametric

generalization of popular parametric approaches to assessing inter-rater reliability cast as a

variation of a classic MC approach. Specifically, simulated datasets are constructed to match the

parameters of a larger dataset, and through calculation of a test statistic for each of a large number

of simulated datasets, the probability distribution of a given outcome can be estimated.

The results of our MC simulation, repeated 1000 times, are presented in Figure A1 for the

free association norms data. This figure plots the observed level of agreement (red line) as well as
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the chance distribution of agreement across all three raters (data = dashed blue line, fitted normal

distribution = orange line), which was generated by randomly re-ordering the ratings of each rater

across the homonyms (thus maintaining the overall level of bias to meaning 1 for each

rater/column of ratings), and recomputing the observed level of agreement. Ratings were

considered to “agree” for the purpose of this analysis if the same meaning was indicated for a

given associate, ignoring whether there was high or low confidence in assigning this meaning. We

also excluded the small percentage of cases in which raters “agreed” that none of the dictionary

definitions were applicable because we do not know if the raters would have agreed on a specific

alternative definition not listed in the dictionary. For both of these reasons, the observed

agreement here is 2-3% higher than that reported in the main text, although this has no impact on

our core claims. As this figure shows, the actual level of agreement was vastly higher than that of

the chance distribution, and in all 10 000 simulations, none generated a level of agreement larger

than that observed empirically (i.e., the p-value that we would have observed our level of

agreement by chance is 0). Thus, our high levels of inter-rater agreement are clearly not

attributable to a simple bias for raters to produce classifications that favour the first meaning, or

due to chance alone.
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Figure A1. Distribution of agreement across all three raters in the Monte Carlo Simulations
conducted on the FAN data. Red line = observed agreement. Blue dashed line = distribution of
chance agreement in the simulations. Orange line = Normal distribution fit to the distribution of
chance agreement.

The results of a near-identical MC simulation for the SUBTL data are presented in

Figure A2. The only difference between this simulation and the previous simulation was that

because there were only two ratings per line of subtitles (vsṫhree in the FAN data) the level of

agreement produced by chance did increase somewhat. However, it still remained far below the

observed level of agreement—as before, the probability that our data were observed by chance

according to this Monte Carlo simulation was exactly zero.
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Figure A2. Distribution of agreement across the two raters in the Monte Carlo Simulations
conducted on the subset of the SUBTL data having two classifications. Red line = observed
agreement. Blue dashed line = distribution of chance agreement in the simulations. Orange line =
Normal distribution fit to the distribution of chance agreement.

Comparison of different dominance estimates. Here we present supplementary

analyses using a smaller subset of homonyms than used in the main analyses. For clarity, we call

this the intersect, by which we mean only homonyms that were common to all measures included

in a given analysis – a subset of 202 items. Although this set is preferable in some respects

because every comparison contains exactly the same items, it should nevertheless be interpreted

cautiously for two reasons. First, its size is primarily constrained by the relatively small number

of items that overlap with the Twilley et al. (1994) norms. Second, as we elaborate in the

subsequent sections of the appendix, the subset of homonyms in that dataset appears to not be

representative of homonyms in a broader sample of the language, so the results of these

comparisons may not generalize as well. (for similar findings of ambiguity effects observed only

when analyzing the U subset, see Armstrong, Tokowicz, & Plaut, 2012).

To assist the reader in understanding where these supplementary analyses fit into the main

text, we have included section headings identical to those found within the Results.
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Comparison of meaning dominance across norms. We investigated whether the pattern

of results reported in the main text regarding the distribution of eDom, SUBTL, and FAN data

relative meaning frequencies would hold if the Twilley data were included. These data appear

here in Figure A3, which presents a density plot of the distribution of the eDom, FAN, SUBTL,

and U measures for the intersection of the datasets (see the corresponding Figure 4 in the main

text.) Because U values are calculated on a different scale than all of our other measures, we

computed a linear transform on these U values to enable comparisons in overall distributional

trends (i.e., we scaled U so that it spanned the same range as the other sets and so that larger

values correspond to homonyms with more dominant meanings). Two main observations are

worth noting. First, in taking a subset of the data, there were far fewer cases of homonyms with

meaning frequencies close to 100%; this decrease was particularly apparent in the FAN and

SUBTL data, but also manifested itself to a lesser degree in the eDom data. This result suggests

that the smaller subset of homonyms normed by Twilley et al. (1994) consist of homonyms with

relatively more balanced meaning frequencies. This makes sense given that the homonyms used

by Twilley et al. were primarily sampled from stimuli used in prior studies, and experimenters

may have either an intentional and explicit bias or an implicit bias to use at least some homonyms

with relatively balanced frequencies in their experiments because they may generate stronger

effects of homonymy (as noted in the introduction; see also Forster, 2000, for discussion of

implicit experimenter bias). In contrast, the larger set of homonyms normed in the eDom study

and sampled to the largest possible extent in the new FAN and SUBTL norms comprised all

homonyms in the English language that satisfied some basic length and frequency constraints

relevant for psycholinguistic experimentation. In a sense then, this discrepancy suggests that the

larger sets may be better at capturing the broader distributional trends in natural language and

human memory representation as they relate to homonymy. This may be particularly useful with

respect to developing computational models of natural language, a point which we consider in the

discussion in the main text. At the same time, however, these findings, and particularly the largest

66



meaning frequency values of exactly 100%, suggest that some of the homonyms according to the

dictionary are not actually homonyms for our participants. Thus, the use of a dictionary

definitions in selecting homonyms has the advantage of being a relatively resource-efficient

method for revealing how most homonyms in a language have a clearly dominant meaning, but

also the disadvantage of including some items that are effectively unambiguous words at the

extreme.
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Figure A3. Density plot of the distribution of largest relative meaning frequencies for the
intersection of the eDom, FAN, SUBTL, and linearly transformed Twilley U norms (n = 202). A
small amount of smoothing was applied to remove jaggedness due to not having data for every
point on the meaning frequency continuum.

Figure A4 describes correlations between the different measures on the intersection set of

homonyms. Interestingly,the correlation values shown here vary to a modest degree (the largest

change in the r-values is .10 from those shown in the corresponding analyses in the main text (see

Figure 5). The most notable difference was simply a reduction in the number of extreme

biggest values near 100. This was to be expected given our previous examination of the density

plots showing that the subset of homonyms examined by Twilley et al. (1994) had fewer
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homonyms with strongly dominant meanings according to all measures of meaning frequency.
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Figure A4. Combined scatterplot and correlogram (r-values) depicting the relationship between
the different estimates of relative meaning frequency, as well as between relative meaning
frequency and Twilley’s U. Only homonyms for which meaning frequency information was
available across all measures were included (i.e., it depicts the intersection of the datasets). Larger
and darker red (vs. black) numbers indicate larger correlations. All correlations were significant,
p < .05, two-tailed.

Correlations with other psycholinguistic variables. Figure A5 reports the correlations of

the psycholinguistic covariates with the intersection set of homonyms. The main difference with

the analyses in the main text (see Figure 6) is that a large number of previously observed effects

no longer reach statistical significance, although one previously not significant effect from the

main analysis does exceed the significance threshold in this case (FAN biggest and SUBTL log10

word frequency, difference in r-value between analyses = .11). This overall pattern of results is

not entirely surprising given that for some of the measures the number of observations has been

reduced by more than half in these analyses and most of the effects were weak even when all of

the data were analyzed. However, the greater number of significant effects for U compared to
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FAN – on the very same homonyms – further suggests that these two measures have not engaged

human meaning representations in the same way despite being derived from the same kind of

task, although why this would be the case is not clear.
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Figure A5. Correlations of dominance scores and common psycholinguistic variables, including
only the homonyms that were common to all datasets (all N = 202). Cells are shaded for
significance when p < .05, one-tailed. Number of meanings, number of senses, and the number of
verb, noun, and adjective interpretations were derived from Wordsmyth (Parks et al., 1998). The
Wordnet interpretations column denotes the total number of interpretations in Wordnet for each
homonym (Fellbaum, 1998). Word frequency, and its log-transformed variant, were derived from
Brysbaert and New (2009). Coltheart’s N, a measure of orthographic neighbourhood size
(Coltheart et al., 1977), as well as the counts of number of phonemes, number of syllables, and
letter bigram frequency were taken from the eDom norms (Armstrong, Tokowicz, & Plaut, 2012).
Orthographic Levenshtein distance (OLD) is essentially a generalization of Coltheart’s N, and
counts the number of other words that can be created by letter substitution, to also include
neighbours created via addition and deletion of letters; taken from Yarkoni et al. (2008). Note that
the scales are reversed for OLD and Coltheart’s N such that larger OLD scores correspond to
lower Coltheart’s N.
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Predictive validity of measures. Figure A6 presents the simple correlations between the

various meaning frequency estimates and dependent measures from the three mega-studies, on

only the intersecting subset of data. As discussed previously, this leads to a substantial reduction

in the total number of homonyms, and as expected, reducing the number of homonyms in each

analysis compared to our earlier analyses eliminated a number of significant effects (as compared

to Figure 7). One new significant effect emerged, between SUBTL and ELP accuracy, and this

effect followed the same counter-intuitive pattern of accuracy decreasing for more balanced

homonyms observed only for eDom in the analysis of the full dataset. This difference between the

full and intersecting datasets indicates that this finding is not robust, and might reflect a bias in the

sample of overlapping homonyms. A number of previously significant effects noted in the

previous figure simply show non-significant numerical trends in this figure, suggesting these

effects remain consistent but are generally weak so as to not survive when smaller datasets are

analyzed. This last point is important because it suggests that testing theoretically informative

ambiguity effects like those of homonymy may require researchers to develop experiments with

more observations than are often included in typical psycholinguistic studies of ambiguity to

achieve a reasonable statistical power. For example, as reviewed in Armstrong and Plaut (2016),

most studies of homonymy include fewer than 35 homonyms. The present analyses suggest that

some effects, assuming they are real and reliable, would require substantially more observations

to be detected.
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Figure A6. Correlation of dominance scores and measures of human performance (BLP, ELP, and
Calgary) for the subset of homonyms present in all sets of norms. Cells are shaded for
significance when p < .05, one-tailed. The number of observations per cell were as follows: all
columns covering BLP data: 202, all columns covering ELP data: 205, all columns covering
Calgary data: 31.

Next, as described in detail in the main text, we explored the unique variance explained by

measures of relative meaning frequency after controlling for the effects of other psycholinguistic

variables. Here, Table A1 shows the results for the intersection set, which allows us to evaluate

whether any of the differences between the measures observed earlier (cf. Table 2) could have

been due to differentially higher power across the measures (due to differences in number of

observations) and/or effects of analyzing particular subsets of homonyms. The key difference
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between the two variants of this analysis is that the effects are much weaker overall. Only one

significant effect remains and except for a new marginal effect for eDom predicting ELP RT, the

marginal effects either disappear or remain the same as in the main analysis.

72



eD
om

FA
N

SU
B

T
L

Tw
ill

ey
E

st
im

at
e

SE
t-

va
lu

e
p-

va
lu

e
df

E
st

im
at

e
SE

t-
va

lu
e

p-
va

lu
e

df
E

st
im

at
e

SE
t-

va
lu

e
p-

va
lu

e
df

E
st

im
at

e
SE

t-
va

lu
e

p-
va

lu
e

df

B
L

P
R

T
0.

16
0.

20
0.

81
0.

21
19

7
-0

.1
8

0.
15

-1
.2

3
0.

11
19

7
0.

07
0.

17
0.

40
0.

35
19

7
-8

.5
3

5.
14

-1
.6

6
0.

05
19

7
B

L
P

A
C

C
0.

00
0.

00
-0

.6
9

0.
24

19
7

0.
00

01
0.

00
02

0.
59

0.
28

19
7

0.
00

0.
00

-0
.4

6
0.

32
19

7
0.

01
0.

01
1.

10
0.

14
19

7

E
L

P
R

T
0.

44
0.

27
1.

63
0.

05
20

0
-0

.0
6

0.
20

-0
.3

1
0.

38
20

0
-0

.0
9

0.
23

-0
.4

0
0.

34
20

0
-1

0.
43

6.
99

-1
.4

9
0.

07
20

0
E

L
P

A
C

C
-0

.0
00

3
0.

00
02

-1
.2

9
0.

10
20

0
-0

.0
00

1
0.

00
02

-0
.4

2
0.

34
20

0
-0

.0
00

5
0.

00
02

-2
.5

1
<

.0
1

20
0

0.
00

0.
01

-0
.5

5
0.

29
20

0

C
al

ga
ry

R
T

1.
79

1.
52

1.
18

0.
13

28
-0

.0
7

0.
96

-0
.0

7
0.

47
28

0.
67

1.
16

0.
57

0.
29

28
-3

0.
30

33
.4

6
-0

.9
1

0.
19

28
C

al
ga

ry
A

C
C

-0
.2

1
0.

22
-0

.9
4

0.
18

28
0.

04
0.

14
0.

31
0.

38
28

0.
02

0.
17

0.
11

0.
46

28
0.

42
4.

86
0.

09
0.

47
28

Ta
bl

e
A

1
R

eg
re

ss
io

n
co

ef
fic

ie
nt

s
fo

r
ea

ch
m

ea
su

re
of

re
la

tiv
e

m
ea

ni
ng

fr
eq

ue
nc

y
w

he
n

us
ed

to
pr

ed
ic

tt
he

re
si

du
al

s
de

sc
ri

be
d

in
th

e
te

xt
.

Si
gn

ifi
ca

nt
p-

va
lu

es
(p

<
.0

5)
ar

e
hi

gh
lig

ht
ed

in
gr

ee
n,

an
d

m
ar

gi
na

lp
va

lu
es

(p
<

.1
)a

re
hi

gh
lig

ht
ed

in
ye

llo
w.

A
ll

te
st

s
w

er
e

on
e-

ta
ile

d.
O

nl
y

ho
m

on
ym

s
co

m
m

on
to

al
lm

ea
ni

ng
fr

eq
ue

nc
y

es
tim

at
es

w
er

e
en

te
re

d
in

to
th

e
an

al
ys

es
of

ea
ch

se
to

fb
eh

av
io

ur
al

da
ta

.

73



Response Letter

Dear Dr. Yap,

Thank you for your helpful comments on our manuscript entitled "A comparison of

homonym meaning frequency estimates derived from movie and television subtitles, free

association, and explicit ratings", submitted for inclusion in the Society for Computers in

Psychology (SCiP) special edition of Behavior Research Methods. We have revised the

manuscript to address the comments you shared regarding our initial submission. Below, we list

each of these comments from your original letter, as well as our response to each comment.

Before turning to those individual comments, we also wish to note three changes that were

made to the manuscript. The first change is that we took your and the reviewers’ comments

regarding length to heart and have now reduced the length of the main text by 20%. This was

accomplished primarily by moving some similar sets of analyses and some supplemental analyses

to an appendix for the interested reader, although we did also tighten up a few sections of the text

(now flagged as revisions although their core points did not change). The second minor change is

that we discovered a set of up to 10 homographs that had not always been deleted from our

different datasets, which we now remove. The third minor change is that in the time between the

initial submission and submitting this revision we left our norming experiment for the movie

subtitles running and completed a second full sweep through those ratings (as opposed to having

two ratings for only 54% of the original subtitles data). These last two changes in no way alter

any of our theoretical conclusions or the main patterns of the data but they do lead to many of our

statistics changing very slightly (almost always between .01 and .02; only one peripheral statistic

for the psycholinguistic covariates changed by more than .05). We mention these changes here

simply for reasons of transparency.

In our view, these revisions have helped us make substantial improvements to the

manuscript and we look forward to your comments on the revised version.
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Editor Comments:

As you will see, both reviewers are positive about your paper, and I agree that this work

(which should be published) is likely to yield an important methodological resource for future

semantic ambiguity research. However, both reviewers provide constructive and detailed

suggestions that will help make this paper even stronger and more accessible. I will not reiterate

the more specific issues raised by the reviewers but I do agree that the paper is unnecessarily long

now and should be made more compact (Reviewer 2). Less central analyses can be shifted to an

Appendix. Reviewer 1 also makes a number of suggestions about being more nuanced in some of

the claims/assertions made. I am also sympathetic to Reviewer 1’s suggestion about being a little

more "prescriptive" in your recommendations.

As noted above, we have made the main text more compact and moved supplemental

analyses to the appendix. We provide a detailed response to the two editor comments that

resonate with the specific comments of R1 and R2 below.

Reviewer 1 comments:

1. Supplementary Materials seem to be missing a sheet explaining the different variables,

making the data unusable. It would also be useful to have one file with each of the norms in

separate sheets.

We have adopted these suggestions and now include a variable key along with the

Supplementary Materials. The data have all been combined in one file.

2. The section on inter-rater reliability is detailed and convincing, but I suggest that the

authors also report a formal measure - Cohen’s kappa coefficients.

We had originally considered reporting Cohen’s kappa, however, we found that because we

had many different raters contributing to each column of ratings, the rating agreement level was
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quite high and approching the ceiling levels, and the ratings and clearly showed a bias to the first

dictionary definition, we did not satisfy all of the assumptions of this parametric test. For this

reason, we developed the non-parametric Monte Carlo simulation method for quantifying

inter-rater reliability which is not dependent on any of those assumptions. We now explain this

logic as part of the Monte Carlo section of the manuscript, which has been moved to the appendix

(see page 62).

3. Page 46 - the authors argue that homonymy effects are small, such that previous studies

which used a few items may have been underpowered to find such effects. The authors

recommend that future studies use more items, and this is justified based on their analyses of RT

data from mega studies. However, I suggest that the authors point out that this recommendation is

mainly aimed at lexical decision studies. The homonymy disadvantage effect in these studies is

indeed very weak and showed up only in a handful of studies that either used a highly specific set

of words (Rodd’s stimuli) or increased the reliance on semantics by manipulating nonword

properties (Armstrong’s work). Note that the effects of homonymy and relative meaning

frequency are actually strong in semantically-based tasks such as semantic relatedness judgement

or sentence reading. For example, Rayner’s eye-tracking studies found such effects using as few

as 15 items per cell. While having more items is normally a good idea, I would like the authors to

recognise the limitations of their work and its implications.

We have now revised the text noted by the reviewer in two ways to address this comment.

First, we note that our original comments apply to tasks studying isolated words like the lexical

decision and semantic categorization mega-study data that we analyzed. Second, we acknowledge

the reviewer’s point that other tasks, as exemplified by some of Rayner’s work, show stronger

semantic effects. We avoided going too deeply into this point because of the competing pressure to

reduce overall length, but the current revision should make the reader aware of the considerations

that the reviewer noted (see page 38).
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4. I suggest that the authors mention that their selection of homonyms has its limitations as

well. While I understand that the selection, made using the Wordsmyth dictionary, was largely

dictated by having collected the eDom ratings in the past, it is important to mention that there are

other methods for deciding on whether a word is a homonym or not. While Rodd popularised the

use of the Wordsmyth dictionary, the debate as to how to derive the homonymous status of a word

is certainly not over. After all, there are people who continue to select their stimuli based on

theoretical linguistics (e.g., Klepousniotou’s work) or subjective ratings (e.g., Pexman’s work).

We now make explicit note of the other alternative approaches to identifying and classifying

word meanings listed by the reviewer on page 13 in the methods section. We also make explicit

that an in-depth evaluation of which of the various methods is most appropriate was beyond the

scope of the present work and that the dictionary method was chosen simply because it appears to

work (regardless of whether it works “best”) and is less resource intensive in terms of time or

reliance on linguistic experts.

5. Likewise, the authors point out that Twilley et al.’s norms, which include a large number

of balanced homonyms, are somewhat biased with respect to their stimulus selection. It would be

fair to mention bias in the current study as well. Some of the words in the original eDom norms

do not strike me as true homonyms. These include words whose subordinate meaning is archaic,

highly infrequent, or refers to a highly specific scientific term. Having exclusively relied on

dictionary entries, the eDom, SUBTL, and FAN norms include words that are homonymous to

lexicographers but not to participants. In fact, most native English speakers would consider and

process these words as unambiguous, and this needs to be spelled out to readers. Item ratings in

Figures 6 and 7 clearly show that the eDom, SUBTL, and FAN norms include many

“pseudo-homonyms” that should not be used in actual studies. While I do not think this

undermines the findings of the current study, the authors should make it clear that just like with

different methods of estimating meaning frequency, there are different methods of deciding on
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what constitutes a homonym.

We have revised the main text on page 27 and the appendix text on page 65 in light of the

reviewer’s comment. We now point out how using the number of entries in a dictionary has the

advantage of identifying a broader set of homonyms and reveals more homonyms have a clearly

dominant meaning than is suggested by the subset of homonyms studied by Twilley and

colleagues. However, we also note that at the limit (biggest values of 100%, or very close to that

level) this method has the disadvantage of identifying words that are homonyms according to the

dictionary but not according to actual language usage as probed in SUBTL and FAN data.

6. The authors imply that there might be differences in the estimates of meaning-frequency

ratings between American and British English (page 40). I suggest that the authors read and

include Maciejewski and Klepousniotou’s paper that showed such differences in eDom-based

ratings.

We now cite the aforementioned paper as evidence that meaning frequency estimates vary

across the American and British dialects of English.

7. Finally, the authors are a bit on the fence with respect to their answer on which of the

norming methods should be used. This is somewhat understandable, but readers will want a

clearer statement. To me, the findings suggest that the association-based norms (FAN, Twilley et

al.) seem to be the best candidate. While these two norms are not perfect and may slightly fall

behind with regards to reliability, they did outperform the other norms with regards to predictive

validity (esp. Twilley et al.’s ratings), and it is this property that matters the most. In

word-association tasks, participants’ interpretation of a probe word is biased by the dominant

meaning just like it would be during on-line processing of the word. In contrast, the eDom

procedure seems to overestimate the frequency of the subordinate meaning due to presentation of
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the definitions (as the authors note), such that a homonym might be classed as slightly unbalanced

or balanced in the norms but processed as highly unbalanced in actual word-processing tasks. The

authors need to expand their discussion and make it clear that although neither method is perfect,

association-based ratings might better capture bias in meaning retrieval during word processing.

We have revised our “recommendations” section of the manuscript (mainly on page 45) to

try to be clearer in our recommendations. We do not repeat that entire discussion here, but in a

nutshell our point is now that the “best” dataset will depend on the intended usage and

theoretical assumptions of the user. If the aim is to test effects of meaning frequency per se in a

way analogous to word frequency, the SUBTL data may be the best dataset. If the aim is to test

how meaning frequency is encoded as an internal representation with reduced contamination

from other psycholinguistic covariates, the FAN data may be best, and so on. This revised

discussion should help the reader make an informed decision about which dataset is most

appropriate for them to use given their aims. The revision should also help clarify our views

regarding the value of association-based ratings, as noted by the reviewer and explain the

circumstances under which free association norms are best but also why we decided to not make a

blanket statement that they are ‘best’ in all circumstances.

Reviewer 2 comments:

This paper addresses an important methodological issue of how best to estimate the

frequency of the meanings of ambiguous words. I found the paper interesting and informative and

am certain it will be a valuable resource to researchers in this field. However, I feel the current

paper is far too long and could be easily condensed. This is most clearly the case in the data

sections. In addition, some of the less critical analyses/comparisons could be moved to

appendices to improve readability and emphasize the most important aspects of the data.

As noted earlier in the response letter, we have taken the comments related to reducing
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length to heart and have moved less critical analyses/comparisons to the appendix.

Some very minor comments:

1. Pg 10 line 21.. "we predict a higher correlation" - I wasn’t sure what this correlation was

being compared to. Higher than what?

We have revised the text for clarity. It now reads ‘we predict a higher correlation between

explicit ratings and the subtitles measure than between explicit ratings and the free association

norms’

2. Pg 10 final paragraph, Experiments 3 and 4 in Rodd et al., 2016 (JML) seem relevant to

this discussion of how meaning frequencies are learned.

We have revised our original text as follows to point to this research: ‘According to recent

empirical work, [individuals learn word frequencies] much in the same way that they learn that

some words are more frequent than other words: through exposure to natural language contexts

(Rodd et al., 2016).’

3. Pg 11 line 34, I think the rarity of additional definitions is not good evidence that

dictionaries provide "near-exhaustive" coverage. Seems quite likely that the definitions given

interfere with any lower-freq meanings making these harder to retrieve during this task.

We have revised the text in light of the reviewer’s comments (see page 11). Critically, we

now emphasize that is the combination of the rarity of participants offering new definitions and

the fact that they do so reliably when a high frequency definition interpretation is not listed in the

dictionary that is important for present purposes. Collectively, those findings from the original

eDom study show that for the vast majority of words, the most frequent meanings of the word

appear in the dictionary and if a high frequency interpretation is missing participants will provide
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it. As such, the dictionary can be used as a reasonable basis for classification although it is not

perfect.

4. Pg 21. I did not understand the Monte Carlo simulations described here. More

explanation is needed. Likewise I found Figure 3 hard to understand. (Similar issues arise on

page 24). Also I wasn’t convinced these were central - could they be moved to an appendix?

We have now moved the Monte Carlo simulations to an appendix and revised the text

reporting the methods and describing the figure for clarity (see page 62).

5. I would have found a summary table very useful (ie for each method summarise number

of raters, reliability, time taken, etc.) to help compare the different approaches more directly.

(More generally this approach could help greatly reduce the overall length.)

We have included a summary table on page 20 that includes several important

characteristics of the tasks. We did not delve into too many detailed numerical comparisons in the

table because for some tasks we do not have all of the data (e.g., Twilley and colleagues did not

report the time it took their raters to rate each item) or we thought it was important to

contextualize some of the numbers which was more readily accomplished in the main text.

6. Pg 25. I found the label "biggest" unhelpful. I think all you are doing is calculating the

dominance of the dominant meaning. Using this more conventional terminology would be clearer

in my view.

We have tried to tread cautiously on this point because it touches on a subtle but important

theoretical distinction. In our view, the theoretical construct of interest is “meaning dominance”

and our operationalization of meaning dominance is through the “biggest” measure. Other

researchers, such as Twilley et al. also study “meaning dominance” but operationalize their
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measure slightly differently in the U measure (we elaborate on this in response to a subsequent

reviewer point). Additionally, the biggest label is consistent with other related articles that we

have published (Armstrong, Tokowicz, & Plaut, 2012; Armstrong et al., 2015). As such, we view

biggest as one of several (closely related) ways of operationalizing the dominance construct and

have opted to maintain the distinction, although it might slightly complicate the reading, to

emphasize this distinction. To clarify this point to the readers, we have added some text to stress

the different ways of operationalizing the dominance construct on page 26.

7. Pg 27 I didn’t understand why for the Twilley data the ’U’ value was used rather than the

equivalent dominance value that is more akin to the scores from the new data. I acknowledge that

these are very highly correlated for most items (as you state the in the footnote) and that do

appropriate transformations, but it still seems odd not to use the equivalent data which is available

in the Twilley paper.

We were of mixed opinion on whether to report analyses using the U data or the equivalent

biggest data from the appendix in Twilley et al. As the reviewer notes, it would be more of an

apples-to-apples comparison if we used the biggest data; however, Twilley et al. also were of the

opinion that their nonlinear transform into U was warranted based on theoretical grounds

(although Armstrong et al., 2012 raise some questions on this front). In the end, we opted to

report the U data because we did not want to be viewed as putting free association data at a

disadvantage in some of our comparisons (e.g., the tests of external validity) by choosing a

different and potentially less optimal measure. As we noted in our original footnote, there turns

out to be a very high correlation between U and biggest , (r > .9), and to ensure that we were not

missing a major discrepancy we re-ran all of our analyses using the Twilley biggest measure

instead of U . As expected, the same patterns were detected in both analyses. We expanded our

footnote on page 26 to communicate this point in more detail, but given the pressure to reduce

manuscript length we decided not to report both Twilley biggest and U throughout the entire
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paper.

8. Pg 51 the discussion of the idea that free association norms are not as stable as

previously thought should include discussion of evidence showing that performance on this task

is strongly influenced by an individual’s recent experience with the words (see the Rodd paper

mentioned above and several others). I’d also like to see clearer distinctions between different

types of variation, eg variation over time due to changes in vocab use, within-subject variation (eg

due to recent experience) and between subject variation (due to differences in individuals’

idiosyncratic linguistic environments).

We have revised and added to our discussion on page 41 of some of the different sources of

variation that could explain why there is less agreement with the free association norms and the

Twilley and colleagues norms in particular. As the reviewer notes, there are clearly many possible

sources of variation that could underlie our results. However, with only two datasets to contrast

that differ in several respects, it is not possible to draw a strong inference in this regard so we

aimed to strike a balance here between raising awareness of these sources of variability and the

more likely sources for explaining our effects and avoiding too much speculation that would also

add to the overall length.
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