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Abstract. This paper addresses the joint operation of wind plants with energy storage systems 

in multiple markets to increase the value of wind energy from an economic and technical point 

of view. The development of an optimized energy management allows scheduling the wind 

generation in energy markets, as well as contributing to the system stability through the joint 

participation in frequency ancillary services. The market optimization maximizes market 

revenues considering overall storage costs, while avoiding energy imbalances and market 

penalties. Moreover, wind power fluctuations, forecast errors and real-time reserve 

requirements are controlled by the energy storage system and managed afterward through the 

participation in continuous intraday market. Furthermore, model predictive control approach 

enables a high compliance of reserve requirements and a huge reduction of energy imbalances 

in real-time operation. Different energy storage capacities are selected in order to evaluate their 

cost-effectiveness enhancing the wind plant operation under the considered study case.  

1. Introduction 

As a result of increasing penetration of wind energy in the electric power system, the uncertainty in 

wind energy forecast and the intermittency of power generation [1] could affect the grid stability.  

Moreover, due to their power variability, wind plants (WP) have difficulties in participating and 

operating suitably under current electricity markets from a technical and economic point of view 

compared to traditional generators. However, Energy Storage Systems (ESS) are considered one of the 

key technologies [2], which enable more flexibility and controllability to their market operation [3], as 

well as the opportunity of providing ancillary services (e.g. frequency control). As a result, WP+ESS 

plants will participate in a more reliable and profitable way in electricity markets. 

Until now, renewable energy sources (RES) participate mostly in energy markets. Firstly, ESS 

helps WP to deliver a steady output generation [4-5] for the Day-Ahead Market (DM), in which a 

certain hourly amount of energy is bidden beforehand and delivered later. In order to accommodate the 

wind production and their inherent forecast uncertainty, Intraday Market (IM) allows them to correct 

the DM scheduling, reduce large energy imbalances, and thus, maximize their market revenues [5-9]. 

The growth of variable renewable sources has increased the importance of efficient markets. For 

that reason, Continuous Intraday Market (CIM) was included in Spain since June 2018 through XBID 

project [11], which enables RES to manage and reschedule their generation each hour. While the 

Spanish IMs through six daily auctions is widely known and analyzed [8,10], recent studies take 
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advantage of CIM in order to schedule industrial processes [12], make arbitrage [13], or operate a 

wind farm but incurring deliberately in energy imbalances when it is profitable [14]. Although some 

researches analyze the impact of the low liquidity in Nord Pool CIM [9,14,15], the current Spanish 

intraday trading volume through auction is relevant, around 20% of the total generation. Thus, the 

WP+ESS plant is supposed to participate in CIM with enough liquidity over time. 

Furthermore, researches that are only limited to accommodate renewable energy or make arbitrage 

do not reflect the potential value of ESS with WP. With increasing renewable generation, large-scale 

wind farms and ESS could contribute to provide frequency ancillary services in the same way as 

conventional generators. In the case of Spain, the participation of RES in balancing services is allowed 

since 2017 [16]. In frequency ancillary markets, generators offer a power availability band the 

previous day in Spanish Secondary Reserve Market, known also as Frequency Restoration Reserve 

(FRR). In contrast to energy markets, FRR energy delivery requirements (known as, AGC dispatch 

signal) are uncertain until real-time operation. This issue has huge implications in their joint operation. 

Control techniques developed for energy markets or for conventional generation are not directly 

applicable for WP+ESS under ancillary market participation. Thus, the development of advanced 

Energy Management Strategies (EMS) is needed for their joint participation in multiple markets.   

From the point of view of the system operator, the grid stability and reliability is improved by 

providing regulation control, while from the WP owner point of view, overall market profits increase. 

However, some authors do not consider the joint WP+ESS operation for FRR market [10], and thus, 

the WP do not participate actually in this ancillary service. Other authors show that the wind energy 

imbalances increase in case of FRR participation [10][17], which is contradictory with the objective of 

providing FRR. Regarding FRR capacity reservation, some strategies give priority of downward 

reserve bids (more advantageous for WP) [17], offer a small FRR band compared to the WP capacity 

[18], assure a low percentage of FRR compliance [19] or operate under the maximum available power 

[20]. After the operation, while some researches do not analyze clearly the level of FRR compliance 

[21], other analyses result in high reserve penalties [17-19], or otherwise, achieve a high technical 

FRR reliability because wind forecast errors are not really considered in the case study [18,20]. 

In order to fulfill the identified gaps from a global perspective, this paper presents a joint optimal 

scheduling and operation of DM, CIM and FRR markets in the Spanish market for a wind plant with 

ESS, similarly as the previous study carried out by the same research group for a solar plant with ESS 

[22]. Although the main objective of the proposed EMS is to maximize benefits while reducing overall 

system costs, energy imbalances and reserve penalties are almost reduced to zero, in order to 

guarantee high technical reliability regarding market scheduling and reserve requirements. 

As well as the uncertainty in renewable generation forecast, the AGC dispatch signal at real-time is 

so variable and uncertain to be predicted that important implications arise for the optimization 

technique and, even more, on the real-time operation strategy that should be applied. While most 

researches address this problem from a non-deterministic approach, this paper proposes a mixed 

integer linear programming to calculate optimal market bids (energy schedule and reserve capacity 

bids in both directions according to the TSO requirements). Moreover, a model predictive approach 

enables making decisions closer to the real-time plant operation in order to accommodate wind 

forecast errors. Furthermore, there are other aspects that are hardly analyzed, such as ESS acquisition, 

degradation and replacement costs [17-21]. These costs should be analyzed together with market 

revenues in order to justify economically the installation of ESS with WPs.  

This paper addresses the joint operation of WP+ESS in multiple markets to increase the value of 

wind energy from an economic and technical point of view. On the one hand, the market optimization 

maximizes WP+ESS market revenues while reduces energy imbalances and considers overall ESS 

costs. On the other hand, a high compliance of FRR is achieved thanks to the CIM participation and 

real-time operation based on a Model Predictive Control (MPC) approach in order to calculate the 

final grid output at each time step by following the AGC dispatch signal; and being aware of the 

current State Of Charge (SOC) of the ESS, the most recent wind forecast, and real generation. 
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2. Energy Management Strategy 

In this section the proposed EMS to participate in the market is described. This strategy is divided into 

several blocks, as can be observed in Figure 1: scenario and market definition, optimization process, 

ESS degradation analysis, real-time operation and techno-economic analysis.  

In the scenario definition, main design and operation variables are defined, such as: wind 

generation profile, energy storage capacity, market prices data, investment, operation and maintenance 

costs of wind plant and storage system, several operating conditions and other design parameters.  

The electricity market design for this study is based on the Iberian electricity market, composed by: 

 Day-ahead Market (DM): This market is the main energy trading market to meet demand of the 

following day. In Iberian Market, the gate closure is at 12:00 of the day before and hourly energy 

products are remunerated at marginal price (€/MWh) through an auction.  

 Continuous Intraday Market (CIM): This market allows updating the scheduling generation in 

DM with a closer closure time. In this study, CIM market will be modeled because hourly re-

scheduling greatly improves forecast accuracy and reduces energy deviations. CIM energy bids at 

pay-as-bid price should be matched at least one hour before the delivery hour. 

 Imbalance settlement (IB): In Spanish framework, two-price system is established for imbalance 

settlement. This financial settlement mechanism, calculated after the operation, aims to charge 

and/or pay power plants for the energy imbalances from DM+CIM schedule.  

 Frequency Restoration Reserve (FRR): The auction, at 17:30 of the day before, consists of a price 

for capacity reservation (€/MW) and two prices for energy product in real-time operation (known 

as AGC signal) (€/MWh), concerning to upward and downward energy products respectively.  

MPC is applied for the analysed horizon, with a time step of 15 minutes (   = 0.25). Each sample 

corresponds with the subscripts k. In this study, the simulation period is one year, although the 

optimization only covers is carried out independently for each day.  
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Figure 1. Proposed Energy Management Strategy. 
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After that, a market evaluation decides whether optimal market bids to DM, FRR or CIM can be 

calculated, or otherwise, real-time operation for next time step should be directly calculated. 

Matlab software was used to model the entire EMS and carry out the simulation. In particular, 

linprog and intlinprog functions have been applied to calculate the optimal market operation. For DM 

optimization, a simplified linear model (LP) is applied, as described in [21], focused on DM profit 

maximization, including day-ahead generation forecast and hourly mean prices. By the time of FRR 

auction, the generation forecast improves and real daily DM prices are published. Taking advantage of 

this current information, a more complex objective function is maximized, through a Mix-Integer 

Linear Programming (MILP) optimization, described in (1). The first term considers converter and 

other installation costs (   ), battery system costs (    ), converter power (     ), nominal ESS 

capacity (    ) and their expected lifetime (                ). The second term controls the final 

daily energy value (     
   ) at the middle of the ESS capacity, increasing their weight in the objective 

function by the multiplier M. The third term calculates the hourly DM+CIM schedule (  
   ) 

including estimated CIM prices (hourly prices to be highly matched under the pay-as-bid market 

process). The fourth and fifth terms minimize positive and negative energy imbalances (  
       

    ) 

as much as possible, and only incurring them if the ESS is not able to operate and control the wind 

generation. The last three terms are related to the profits for hourly FRR capacity reservation band 

(  
    ) and average upward/downward energy products, with their associated market prices ( ). 

Apart from optimal market schedule, optimal daily ESS power and energy profiles (  
   ,   

   ) are 

calculated according to the operating limits and technical constraints including in the model.  

 

    

                                                       
   

        
      

               
       

       
       

     

      
       

       
      

     
      

   

        (1) 

 

In real-time operation, ESS energy profile (  
   ) varies from the optimal value, in order to fulfill 

the most recent market schedule and AGC power signal (  
   ), taking into account real wind 

generation (   
    ). Due to these unpredictable changes, optimal WP+ESS plant operation is 

recalculated in each successive CIM taking into account previous energy deviations thanks to MPC 

approach, in order to maintain the state of charge (    
   ) within the operating limits (5-95%) as well 

as reducing energy imbalances and FRR penalties almost to zero, as discussed in Section 3.  

Due to MPC approach, the first values of the market optimization are applied to calculate the final 

grid output (  
    

), the charge and discharge power (  
   ) and the current state of charge (    

   ) at 

each sample k, according to (2)-(3). The ESS operation differs from the optimal calculated one, 

because real wind generation (   
    ) and real-time AGC power signal (  

   ) are finally applied. 

 

  
       

       
    

      
         

      
       

       
            (2) 

    
         

          
                                                  (3) 

 

After each market optimization and at the end of each day, an ESS degradation analysis is carried 

out. In regard to cycling degradation, Wöhler curve-based ageing models are applied to evaluate the 

degradation of the ESS regarding to the number of cycles at a certain Depth of Discharge (DOD). 

Secondly, a theoretical calendar ageing is added. And finally, the lifetime of the ESS (       ) is 

calculated based on both aging models and this term is updated in the objective function. 

Finally, an annual ESS degradation analysis is conducted. Moreover, annual market profits are 

calculated, and annualized WP+ESS costs are calculated in order to assess the profitability of the 

proposed WP+ESS plant. Furthermore, other technical aspects are analyzed, such as, the traded 

energy, the level of FRR compliance by following   
    and the Full Equivalent Cycles (FECs). 
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3. Techno-economic results 

The proposed EMS of the WP+ESS plant was validated for one year in different cost scenarios 

shown in Table 1. This EMS is applied for an annual wind generation profile based on [23], with 

available day-ahead and intraday updated forecasts. This profile was scaled for a WP of 30 MW 

resulting in 2230 Equivalent Full-Load Hours which match properly with a great location in Spain. An 

ESS capacity between 0.21 and 0.54 MWhESS / MWWP is considered for the sensitivity analysis. 

Spanish market prices for 2017 were used for this study case, downloaded from the Spanish system 

operator website [24]. Investment costs of WP are considered in €/MW [25]. Investment costs of the 

ESS [26-28] are considered based in energy and power terms: investment energy-related term (in 

€/MWh), investment power-related term (€/MW) and replacement energy term according to the 

number of replacements needed (n) during the lifetime of the WP, whose value will be reduced. 

The joint operation of a single day is shown in Figure 2. As can be observed, DM schedule is 

calculated considering the DM forecast. During the day, an evaluation of the current SOC, AGC signal 

required up to that time, most recent updated forecast and expected CIM prices is made. Based on this 

real-time information, the MILP optimization recalculates the optimal DM+CIM schedule for current 

conditions according to the objective function in eq. (1). For this particular day, the ESS is not fully 

charged and discharged and it is able to control the grid output at all times. Therefore, output power 

(  
    

  is equal to DM+CIM scheduling plus the AGC signal required for FRR markets. The power 

difference between   
    

 and    
     is provided by the ESS, according to eq. (2)-(3). 

In order to evaluate the profitability of the WP+ESS, different energy storage capacities have been 

selected to compare their annual market benefits and annualized net profits (market benefits minus the 

annualized WP+ESS costs according to Table 1). Figure 3 summarizes all these economic results, in 

which the BC corresponds to annualized net profits of a WP without ESS participating in DM+CIM 

market under WP costs (1.25 mill.€/MW) reported in [25].  

 

Table 1. WP+ESS costs for different cost scenarios. 

WP+ESS costs Base Case (BC) CS1 CS2 

WP investment costs (mill. €/MW) 1.25  1  0.75  

ESS inv. energy costs (mill. €/MWh) 0.4  0.3  0.2  
ESS inv. power costs (mill. €/MW) 0.5  0.4  0.3  

ESS replacement costs (mill.€/MWh)     
                                                     

 

 

Figure 2. WP+ESS operation of a single day (30 MW and 0.54 MWh/MW). 
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Figure 3. Annualized market profits and net profits (%) for a WP of 30 MW, considering 

different energy storage capacities (without ESS and 0.21-0.54 MWh/MW), considering 

two market participations (DM+CIM and DM+CIM+FRR) and three cost scenarios (CS). 

 

On the one hand, the profitability of the WP+ESS under current cost scenario will be analyzed. 

Based on a 100% of net profits for the BC, additional costs of ESS for the DM+CIM participation are 

higher than annual market benefits obtained from the reduction of annual energy imbalances costs. For 

the optimal ESS sizing (0.32 MWh/MW, 9.75 MWh), net profits for this market participation (black 

dotted curve) are reduced 8% respect to the BC without ESS. In case of FRR participation, the optimal 

ESS capacity increases up to 0.54 MWh/MW (16.25 MWh). Net profits with this ESS sizing (99.6%) 

reach nearly the BC without ESS (100%), because annual market profits increase by 12% thanks to the 

proportional increment of capacity reservation in the FRR auction. 

However, the Spanish WPs nowadays participate mainly in IM auctions every 4/6 hours, and 

therefore, their energy imbalances costs are quite higher than the ones obtained in this analysis. Thus, 

their current net profits could be less than the obtained ones with a DM+CIM+FRR participation. 

On the other hand, if a reduction of considered WP and ESS costs (green curves), the economic 

results show that the joint operation of a WP+ESS will be more profitable than a WP without ESS 

when FRR is contemplated. In order to assure a more valuable option than without ESS, the minimum 

ESS capacity that should be installed will be 10 MWh in case of CR1 scenario and 7.5 MWh in case 

of CR2 scenario. The trends reveal that the best ESS capacity would be 16.25 MWh. 

Focusing on all terms that composed net profits, they could be divided into benefits and/or costs 

related to: DM, CIM, imbalances, FRR band availability, upward AGC signal, downward AGC signal, 

AGC penalty, WP investment, ESS energy term (investment and replacements) and ESS power term. 

The three optimal choices drawn from Figure 3 are compared below. As can be concluded from 

Figure 4, the usage of CIM increases when ESS is installed, because wind forecast errors are absorbed 

by the ESS, and then, this energy is shifted in the coming hours through higher CIM bids. Moreover, 

positive and negative imbalances terms are reduced hugely. Especially, energy imbalances are 

practically zero for DM+CIM+FRR participation with an ESS of 16.25 MWh.  

Moreover, the FRR participation increases benefits by 10.65% for band availability, 5.22% for 

upward AGC signal, -2.66% for downward AGC signal and -0.006% for AGC penalty. On the 

contrary, ESS investment and replacement costs increase annualized costs by 7.57% for energy terms 

plus 4.88% for power terms, according to the third WP+ESS plant (darker bar) in Figure 4.  

Annual traded energy with respect to the annual wind generation is analyzed in Figure 5, with 

similar conclusions drawn from Figure 4. As can be observed, the energy traded in DM corresponds 

mostly to the DM forecast, and the SOC initial values. Regarding energy imbalances, they are reduced 

significantly as the ESS sizing increases. Furthermore, the CIM participation increases in order to  
 

 



WindEurope

IOP Conf. Series: Journal of Physics: Conf. Series 1222 (2019) 012039

IOP Publishing

doi:10.1088/1742-6596/1222/1/012039

7

 
 
 
 
 
 

 

Figure 4. Annual benefits and costs of the three optimal plants under 

the Base Case cost scenario: 1) DM+CIM without ESS, 2) DM+CIM 

with 0.32 MWh/MW, 3) DM+CIM+FRR with 0.54 MWh/MW. 

 

 

Figure 5. Annual traded energy with respect to the annual wind generation (%) 

 

manage hourly net imbalances from forecast errors, and real-time AGC power signal. Concerning 

FRR service, the hourly available FRR band and the energy delivered through the AGC signal increase 

proportionally to the ESS capacity, because the maximum hourly band is limited up to 20% of the 

    . As can be observed, AGC penalties are also reduced in energy terms when more ESS capacity is 

installed. Finally, ESS losses are calculated based on the ESS power profile applying the ESS 

efficiency considering all the conversion stages related to the energy storage system. 

Other technical aspects that should be discussed are related to the ESS operation and the level of 

compliance of FRR service. Regarding annual Full Equivalent Cycles, FECs are reduced when ESS 

size is larger. In case of FRR participation, annual FECs increase due to a more demanding operation 

in order to follow AGC signal in real-time operation. Thus, annual FECs result from 501 FECs (0.21 

MWh/MW) to 281 FECs (0.54 MWh/MW). According to these annual FECs, the lifetime of the ESS 

could be estimated between 8.6 years -181 FECs- and 13.3 years -501 FECs-, by applying Wöhler 

curve method and limiting the calendar lifetime up to 15 years. This means that one or two ESS 

replacements will be made during the WP lifetime depending of the ESS sizing. 

Finally, the technical reliability of FRR participation is worth analyzing. Other studies are not 

focused on this parameter, while other ones address it [17-19] but not to the point that the power 

quality standards need. The developed EMS enables a huge reduction of energy imbalances and  
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Figure 6. Annual Full Equivalent Cycles for 

each market participation and ESS capacity. 

 Figure 7. Level of compliance of AGC signal 

and annual hours of FRR participation. 

 

achieves a high technical reliability of upward and downward FRR needs (from 97.9 % up to 99.9%).  

Moreover, the daily number of hours of FRR participation increase with the ESS size, taking into 

account that an hourly minimum band must be 1 MW and a maximum band is limited up to 20% of 

the ESS capacity. Moreover, the WP+ESS plant participates daily a maximum of 23 hours, because 

the last hour is destined by design to manage the final daily SOC at the middle value. Thus, the mean 

daily hours increase from 17.2 h (with 6.5 MWh) to 22.6 h (with 13.25 MWh).  

4. Conclusion 

As can be concluded from the above results, this optimal EMS addresses the wind integration 

challenge to a great extent in the grid and in the electricity market. Through a MILP optimization, the 

daily DM+CIM schedule and hourly bands for FRR service are calculated in order to maximize the 

overall market benefits, taking into account the lifetime of the ESS and their associated costs. 

Moreover, the implementation of MPC approach enables the avoidance of annual energy imbalances 

and achieves a high technical reliability of FRR needs (up to 99.9%) with an ESS sizing of 0.54MWh 

per MW of wind power capacity installed for the study case. This analysis calculates the ESS 

degradation according to the annual resultant operation of the ESS.  

This fact results in less annual Full Equivalent Cycles for higher ESS sizing and only one ESS 

replacement in the twelfth year. Therefore, the additional increase in market benefits due to the FRR 

participation results in more annualized net profits, compensating the incremental ESS costs. In the 

considered scenarios, under a light reduction of these ESS costs (corresponding to the CR1 or CR2), 

the joint operation of a WP+ESS plant could be more profitable than a WP without ESS. These 

obtained economic results are simulated and validated based on Spanish market framework and 

market prices of 2017, and under no feed-in-tariff scheme. Therefore, this EMS enables a high 

replicability to evaluate the WP+ESS cost-effectiveness under other markets, prices and wind profiles. 
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