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La enfermedad renal crónica (ERC) se define como una condición en la cual los riñones 

están dañados debido a anomalías funcionales o estructurales y no son capaces de filtrar 

la sangre adecuadamente, causando la acumulación de desechos en la sangre y en el 

organismo, lo que puede originar serios problemas de salud.  

 

La ERC en niños se asocia a severas complicaciones de desarrollo, metabólicas o 

cardiovasculares, que pueden derivar en la necesidad de medidas terapéuticas sustitutivas 

como la diálisis o el trasplante. A pesar de que los últimos avances en nuevas terapias 

médicas han permitido un mejor control y pronóstico de estos pacientes, aún no se logra 

prevenir efectivamente el retraso del crecimiento, la anemia, las alteraciones del 

metabolismo mineral y otras consecuencias de la enfermedad, alcanzando altas tasas de 

morbimortalidad cardiovascular en este grupo de población.  

 

El establecimiento de un diagnóstico precoz posibilitaría una intervención terapéutica 

efectiva para el retardo de su progresión y la aparición de complicaciones. Cabe destacar 

que a pesar de que la mayoría de los pacientes se encuentran en etapas poco avanzadas 

de la enfermedad en las que todavía pueden aplicarse medidas terapéuticas efectivas que 

cambien el curso de la enfermedad, un número reducido de pacientes evoluciona cada año 

hacia la enfermedad renal crónica terminal (ERCT), en la que se hace necesaria la 

aplicación de tratamiento de terapia sustitutiva renal (diálisis o trasplante) para la 

supervivencia. 

 

En la práctica clínica se utiliza la creatinina endógena como biomarcador clásico para 

evaluar la función renal. Sin embargo, la creatinina se encuentra lejos de ser el 

biomarcador ideal, ya que su sensibilidad es bastante limitada y revela el daño renal 

cuando ya se ha producido una importante pérdida de nefronas. Además, existen multitud 

de inconvenientes como la posibilidad de que se vea afectada por la secreción tubular y 

por multitud de factores que influyen sobre los niveles de creatinina, como la masa 

muscular, la dieta, el estado de hidratación o la edad. La búsqueda de nuevos 

biomarcadores de diagnóstico o evolutivos de la patología y su aplicación en la ERC 
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pediátrica podría contribuir a anticipar su diagnóstico, mejorar su seguimiento, así como 

a progresar en la comprensión de los trastornos fisiopatológicos subyacentes.  

 

La metabolómica es una herramienta que tiene como finalidad principal la búsqueda e 

identificación de biomarcadores mediante el estudio sistemático de perfiles metabólicos 

en un conjunto de muestras biológicas (fluidos, tejidos, cultivos celulares, etc.), que se 

centra en el estudio de moléculas pequeñas, típicamente por debajo de los 1500 Da en un 

sistema biológico. La comparación de los metabolomas entre un grupo control y un grupo 

testado podría arrojar diferencias en sus perfiles que, asociados a una condición biológica 

concreta, podría determinar el incremento o disminución de qué metabolitos se asocian a 

dicha condición. Estos compuestos podrían actuar como biomarcadores de diagnóstico o 

evolutivos de la enfermedad objeto de estudio.  

 

Se puede diferenciar entre métodos de metabolómica dirigidos y no dirigidos. La 

metabolómica dirigida o targeted se centra en la determinación y cuantificación de 

metabolitos conocidos, que se sospecha puedan hallarse alterados en una determinada 

enfermedad, mientras que la metabolómica no dirigida o untargeted posibilita analizar y 

comparar tantos metabolitos como sea posible sin ningún tipo de sesgo e identificar estas 

entidades a posteriori. Dado que ambas propuestas podrían resultar de utilidad a la hora 

de buscar nuevos biomarcadores, se ha trabajado en ambos planteamientos.  

 

Para ello se han utilizado muestras de plasma de pacientes pediátricos con ERC y controles 

del País Vasco, recogidos por el Servicio de Nefrología Pediátrica del Hospital de Cruces 

(Barakaldo, España), que han sido alicuotadas para permitir su utilización en los distintos 

planteamientos.  

 

Con el objetivo de encontrar nuevos biomarcadores de esta enfermedad, el presente 

estudio se ha estructurado alrededor de tres objetivos operacionales: 

 

En primer lugar, se ha desarrollado y validado un método de metabolómica dirigido por 

cromatografía de líquidos acoplada a espectrometría de masas con analizador de tipo 
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cuadrupolo tiempo de vuelo (LC-QTOF) basado en el estudio de 16 aminoácidos, derivados 

aminoacídicos y compuestos relacionados pertenecientes a las rutas metabólicas arginina-

creatina, metilación de la arginina y ciclo de la urea, que se sospechaba podían verse 

alterados en pacientes pediátricos con ERC. Teniendo en cuenta que los aminoácidos y 

derivados aminoacídicos son compuestos pequeños y polares, ha sido necesario el uso de 

ácido perfluoroheptanoico como par iónico para mejorar su retención en cromatografía 

líquida. Además, debido a la naturaleza de algunos de estos compuestos, se ha utilizado 

dithiothreitol como agente reductor, a fin de permitir la reducción de los aminothioles para 

su cuantificación total. 

 

Tras llevar a cabo el análisis de las muestras de plasma pertenecientes a pacientes 

pediátricos controles y enfermos con ERC, se han realizado tanto un análisis estadístico 

univariante como multivariante a fin de interpretar los resultados obtenidos.  

 

El análisis univariante permitió encontrar diferencias significativas entre ambos grupos 

para los siguientes compuestos: glicina, citrulina, creatinina, dimetilarginina asimétrica, 

dimetilarginina simétrica y dimetilglicina.  

 

Por su parte, el análisis multivariante mostraba un incremento en los niveles plasmáticos 

de los pacientes con ERC para los siguientes metabolitos: dimetilarginina simétrica, S-

adenosilhomocisteína, creatinina, S-adenosilmetionina, citrulina, dimetilarginina 

asimétrica, glutatión, dimetilglicina y glicina. Tras llevar a cabo una reducción de variables, 

se proponen citrulina, S-adenosilmetionina y dimetilarginina simétrica como 

biomarcadores potenciales que, junto a la creatinina (cuya capacidad de clasificación 

correcta de las muestras es del 71 %), podrían ser utilizadas como biomarcadores 

potenciales para mejorar el diagnóstico de los estadios primarios de la enfermedad, hasta 

alcanzar el 89 % de clasificación acertada. Señalar también que estos cuatro metabolitos 

permiten incremento en la predicción del grupo al que pertenecen en un 10 % en 

comparación con el uso exclusivo de la creatinina para el diagnóstico de la ERC sin tener 

en cuenta el grado de enfermedad que padecen. Además, se ha hallado una gradación en 

la concentración de estos compuestos que se corresponde con el grado de la enfermedad. 
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Por todo ello, se considera razonable incluir estos 3 metabolitos en una nueva ecuación 

que pueda ser utilizada en las pruebas de cribado llevadas a cabo por médicos de familia, 

a fin de aproximar el diagnóstico de la enfermedad que habitualmente llevan a cabo los 

profesionales de la nefrología, permitiendo prever el grado de ERC que sufre antes de 

derivarlo al especialista.  

 

En segundo lugar, se ha desarrollado un método de metabolómica no dirigida en LC-QTOF, 

con el objetivo de comparar los perfiles metabolómicos sin ningún tipo de sesgo y hallar 

aquellos metabolitos que pudieran hallarse alterados en los niños con ERC. En este caso, 

el flujo de trabajo ha consistido en la adquisición de los datos, el preprocesamiento de la 

señal mediante la eliminación del ruido, detección y alineamiento de picos y 

deconvolución, seguido de un análisis estadístico y quimiométrico de los datos. 

Finalmente, las entidades obtenidas fueron identificadas utilizando distintas bases de 

datos y su identidad fue confirmada mediante la comparación de los tiempos de retención, 

espectro de masas y espectro de MS/MS de las entidades obtenidas en el plasma con 

estándares analíticos.  

 

Teniendo en cuenta que las distintas estrategias quimiométricas pueden afectar al número 

de entidades obtenidas, se emplearon dos flujos de trabajo diferentes utilizando como 

herramientas Matlab (Mathworks) y Mass Profiler Professional (Agilent Technologies), y se 

consideraron únicamente aquellas entidades coincidentes en ambas estrategias. De este 

modo, se obtuvieron 5 entidades que se encontraban significativamente elevadas o 

disminuidas en los pacientes con ERC. La utilización de estas entidades permitiría la 

discriminación de los pacientes con ERC y controles en un 96 %, mientras que la 

clasificación de pacientes en estadios tempranos de la enfermedad se produce 

correctamente en el 97 % de los casos.  

 

Dado que estas 5 entidades resultaban prometedoras de cara a mejorar la clasificación de 

las muestras con ERC y controles, se procedió a su identificación mediante el uso de bases 

de datos de espectrometría de masas, la adquisición de espectros MS/MS de estas 

entidades y el uso de estándares analíticos. Cuatro de estas cinco entidades fueron 
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identificadas con el máximo nivel de confianza, de acuerdo a los niveles establecidos por 

la Metabolomics Standards Initiative, como: n-butirilcarnitina, cis-4-decenoilcarnitina, 

bilirrubina y esfingosina-1-fosfato.  

 

Para finalizar el presente estudio, se ha desarrollado un método de cuantificación por 

cromatografía de líquidos acoplada a espectrometría de masas con analizador de tipo triple 

cuadrupolo (LC-QQQ), a fin de reunir las entidades más relevantes obtenidas tanto 

mediante el estudio de metabolómica dirigida como en el de metabolómica no dirigida. 

Tras optimizar y validar el método LC-QQQ para la cuantificación de citrulina, creatinina, 

dimetilarginina simétrica, S-adenosilmetionina, n-butirilcarnitina, cis-4-decenoilcarnitina, 

esfingosina-1-fosfato y bilirrubina, éste se aplicó a muestras reales de pacientes 

pediátricos con ERC y controles. 

 

Por un lado, los resultados obtenidos para los aminoácidos y compuestos relacionados se 

correspondían con los obtenidos en el primer método dirigido desarrollado, hallándose los 

niveles de concentración de citrulina, creatinina, dimetilarginina simétrica y S-

adenosilmetionina significativamente aumentados en los niños con ERC. Por otro lado, en 

lo que a la validación de los resultados de metabolómica no dirigida se refiere, n-

butirilcarnitina, cis-4-decenoilcarnitina y esfingosina-1-fosfato presentaban niveles de 

concentración significativamente superiores en los pacientes pediátricos con ERC. Sin 

embargo, a pesar de que los niveles de bilirrubina se encontraban disminuidos 

significativamente en el estudio no dirigido llevado a cabo previamente, este último 

método LC-QQQ no demostró una disminución significativa para la bilirrubina.  

 

Finalmente, en lo que concierne a la separación de las muestras en función de las 

concentraciones obtenidas para los distintos metabolitos, es posible diferenciar los grupos 

de paciente control y enfermo en las representaciones obtenidas a partir de la realización 

de análisis de componentes principales. Es por ello que se considera recomendable el 

estudio de una población más amplia de cara a obtener la significación de la bilirrubina 

como biomarcador potencial y evaluar la capacidad de clasificación de las muestras en 
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controles y enfermos de este nuevo método, a fin de que pueda utilizarse en la práctica 

clínica.  
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Chronic kidney disease (CKD) is defined as a condition in which kidneys are damaged due 

to functional or structural abnormalities and are not capable of filtering blood adequately, 

causing the accumulation of waste products in blood and in the organism, originating 

serious health problems.  

 

Paediatric CKD is associated to severe development, metabolic or cardiovascular 

complications that may lead to the need for renal replacement therapeutic measures, such 

as dialysis or transplant. Although the latest therapeutic breakthroughs have allowed a 

better control and prognosis of these patients, it is not yet possible to effectively prevent 

growth retardation, anaemia, alterations in mineral metabolism and other consequences 

of the disease, reaching high rates of cardiovascular morbimortality in this population 

group. 

 

The establishment of an early diagnosis would allow an efficient therapeutic intervention 

to delay the progression of CKD and the occurrence of complications. Indeed, even though 

the majority of the patients are in early stages of the disease in which effective therapeutic 

measures might be adopted to be able to change the course of the disease, a reduced 

number of patients evolve every year toward end-stage renal disease (ESRD), in which 

renal replacement therapy becomes essential (either dialysis or transplant) for survival.  

 

In clinical practice, endogenous creatinine is the classical biomarker used to assess renal 

function. However, creatinine is far from being the ideal biomarker, since its sensitivity is 

limited and reveals renal damage when an important loss of nephrons have already 

occurred. Moreover, numerous drawbacks have been identified, such as the possibility of 

being affected by tubular secretion or multiple factors that influence creatinine levels like 

muscular mass, diet, hydration status or age.  

 

The discovery of new diagnostic biomarkers or markers of evolution of the pathology and 

their application to paediatric CKD could contribute to foresee its diagnosis, make better 

follow-up as well as to improve the understanding of underlying pathophysiological 

disorders.  
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Metabolomics is a powerful tool focused on identifying metabolite biomarkers through a 

systematic study of metabolic profiles in a set of biological samples (biofluids, tissues, cell 

cultures, etc.), aimed at small molecules, typically under 1500 Da in a biological system. 

Comparison of metabolomes of control and test groups could show differences in their 

profiles related to a specific biological condition, and the increased or decreased 

metabolites associated to that condition could be determined. These compounds could act 

as diagnostic or evolutionary biomarkers of the disease under study.  

 

Metabolomics methods might be targeted or untargeted. Targeted metabolomics focuses 

on the determination and quantification of known metabolites, which are suspicious of 

being altered in a specific disease, whereas untargeted metabolomics makes possible the 

analysis and comparison of as many metabolites as possible without any bias, followed by 

subsequent identification of the entities. Regarding that both methodologies could be of 

interest aimed at finding new biomarkers, working in targeted and untargeted 

metabolomic approaches was decided.  

 

For that purpose, plasma samples from paediatric patients with CKD and controls from the 

Basque Country have been used, collected by the Paediatric Nephrology Service at Cruces 

University Hospital (Barakaldo, Spain), which had being aliquoted to enable their 

utilization in different approaches.  

 

With the aim of obtaining new biomarkers for CKD, this study has been structured around 

three operational objectives:  

 

First of all, a targeted metabolomics method has been developed and validated using liquid 

chromatography coupled to mass spectrometry with quadrupole-time-of-flight (LC-QTOF) 

analyzer based on the study of 16 amino acids, amino acid derivative and related 

compounds belonging to arginine-creatine, arginine methylation and urea cycle metabolic 

pathways, which were suspicious of being altered in pediatrics suffering from CKD. 

Regarding that amino acids and amino acid derivatives are small and polar compounds, 

the use of perfluoroheptanoic acid as an ion-pairing reagent has been necessary to 

improve their retention in liquid chromatography. In addition, concerning the nature of 
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some of these compounds, dithiothreitol has been used as reducing agent, aimed at 

enabling the reduction of aminothiols for their total quantification.  

 

Analysis of plasma samples corresponding to control and CKD paediatrics was carried out 

with this targeted method and univariate and multivariate statistical analyses were 

performed in order to interpret the results obtained.  

 

Univariate analysis enabled discovering significant differences between groups for the 

following compounds: glycine, citrulline, creatinine, asymmetric dimethylarginine, 

symmetric dimethylarginine and dimethylglycine.  

 

As for multivariate analysis, it showed an increase of plasmatic levels of the following 

metabolites in patients with CKD: symmetric dimethylarginine, S-adenosylhomocysteine, 

creatinine, S-adenosylmethionine, citrulline, asymmetric dimetylarginine, glutathione, 

dimethylglycine and glycine. After variable reduction, citrulline, S-adenosylmethionine and 

symmetric dimethylarginine were proposed as potential biomarkers that together with 

creatinine (with a capacity for correct sample classification rate of 71 %), could be used 

as potential biomarkers to improve the diagnosis of primary stages of the disease, 

reaching 89 % of right classification. It should be noted that these 4 metabolites also 

enable increasing 10 % the prediction of their membership in comparison with the 

exclusive use of creatinine for CKD diagnosis, regardless of the degree of CKD suffered.  

 

Besides, a gradation in the concentration of these compounds have been found which 

corresponds to the degree of the disease. For all these reasons, it would be reasonable 

including these 3 metabolites in a new equation which could be used in the screening tests 

carried out by general practitioners, with the aim of approximating the diagnosis of the 

disease, which is usually carried out by nephrologists, to foresee the CKD degree suffered 

before referring patients to specialist.  

 

Secondly, an untargeted metabolomics method has been developed in LC-QTOF 

equipment with the objective of comparing metabolomic profiles without any bias and 

finding metabolites that might be altered in paediatrics with CKD. In this case, workflow 
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consisted in data acquisition, signal preprocessing by means of background elimination, 

detection and alignment, followed by statistical and chemometrical analyses of data. 

Finally, features obtained were identified using different databases and their identity was 

confirmed by means of comparison of retention time, exact mass and MS/MS spectra of 

the entities obtained in plasma with analytical standards.  

 

Concerning that different chemometric approaches used could affect the number of 

entities obtained, two different workflows were adopted using Matlab (Mathworks) and 

Mass Profiler Professional (Agilent Technologies) tools, and only the entities found to be 

coincident in both strategies were considered. This way, 5 entities were found to be 

significantly increased or decreased in patients with CKD. The use of these entities would 

enable discrimination of patients with CKD and controls with a performance of 96 %, 

whereas classification of patients suffering from early CKD would be successful in 97 % of 

the cases.  

 

Regarding that these 5 entities would be promising to improve classification of CKD and 

control samples, we proceeded to their identification by means of mass spectrometry 

databases, MS/MS spectra acquisition and the use of analytical standards. Four out of five 

of these entities were identified with the maximum confidence level, according to the 

standards set by Metabolomics Standards Initiative, as: n-butyrylcarnitine, cis-4-

decenoylcarnitine, bilirubin and sphingosine-1-phosphate.  

 

Finally, a quantification method has been developed by means of liquid chromatography 

coupled to mass spectrometry with triple-quadrupole (LC-QQQ) mass spectrometer, aimed 

at gathering the most relevant metabolites obtained from previous targeted and 

untargeted metabolomics studies. After optimizing and validating LC-QQQ method for 

citrulline, creatinine, symmetric dimethylarginine, S-adenosylmethionine, n-

butyrylcarnitine, cis-4-decenoylcarnitine, sphingosine-1-phosphate and bilirubin, it was 

applied to real samples of paediatrics with CKD and controls.  

 

On the one hand, the results obtained for the amino acids and related compounds were in 

accordance to those obtained in the first targeted method developed, being revealed 
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citrulline, creatinine, symmetric dimethylarginine and S-adenoyslmethionine 

concentration levels increased in paediatrics with CKD. On the other hand, regarding 

validation of the biomarkers obtained from untargeted metabolomics, n-butyrylcarnitine, 

cis-4-decenoylcarnitine and sphingosine-1-phosphate showed to be significantly increased 

in paediatrics with CKD in comparison with control patients. However, although bilirubin 

levels were decreased in the untargeted metabolomics study carried out previously, this 

LC-QQQ method did not show a significant decrease for bilirubin.  

 

Finally, concerning separation of samples according to the metabolite concentrations, it is 

possible to differentiate control and CKD patient groups in the representations obtained 

from principal component analysis algorithm. For all these reasons, it is considered 

advisable studying a larger population aimed at verifying the significance of bilirubin as 

potential biomarker, as well as evaluating the classification capacity of samples into control 

and ill patients with this new method in order to be usable in the clinical practice.  
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1.1. CHRONIC KIDNEY DISEASE. DEFINITION 

Chronic kidney disease (CKD) is increasingly recognized as a global public health problem 

and even World Kidney Day was declared in 2006. Moreover, the acceptance of CKD as a 

public health pathological condition has evolved more homogeneous definitions and 

classifications of CKD1. 

 

The Centers for Disease, Control and Prevention (CDC) describes CKD as a condition in 

which the kidneys are damaged and are not able to filter the blood as healthy kidneys 

would do, causing waste accumulation in blood and in the organism, thus potentially 

originating health problems2. 

 

In addition, the National Kidney Foundation, through the Dialysis Outcomes Quality 

Initiative (DOQI), publishes guidelines about CKD, which have had a significant impact in 

the care and evolution of patients undergoing dialysis. These guidelines itemize the two 

criteria from which at least one must be met to consider that a renal affection must be 

defined as CKD (see Table 1.1).  

Table 1.1. Criteria to consider that a patient suffers from CKD. Extracted from K/DOQI Clinical 
Practice Guidelines For Chronic Kidney Disease: Evaluation, Classification and Stratification3. 

 
 

 

1.2. ETIOPATHOLOGY OF CKD 

The etiopathology of the disease can be better understood with some basic knowledge 

about the renal system. 

 

The renal system, also known as urinary system, consists of two kidneys, two ureters, 

bladder and urethra. Kidneys are two bean-shaped reddish-brownish organs located in 

retroperitoneal conjunctive tissue, in the rear of the abdomen (see Fig. 1.1). Kidney size 

is usually about 10 cm long, 5 cm wide and 2.5 cm deep for adults. Despite having a 
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similar size and shape, left kidney is slightly longer and thinner than the right one and is 

situated closer from the midline4,5.  

 
Fig. 1.1. Kidney location and anatomy, adapted from Blaus et al6. 

Kidneys are responsible for almost all the activity in the urinary system, but also regulate 

many other important body functions. Some of the core functions of the kidneys include7,8: 

 Regulation of ionic composition of blood 

 Blood pH adjustment  

 Blood pressure regulation  

 Preservation of osmolarity  

 Hormone production 

 Regulation of blood glucose levels  

 Excretion of waste products from metabolic reactions in the organism  

 

Most of these kidney functions are managed by nephrons, the functional units of kidneys. 

Nephrons consist of a renal corpuscle, made of glomerulus and Bowman capsule, and a 

renal tubule, comprising a proximal tubule, Henle’s loop and a distal tubule7, as showed 

in Fig. 1.2. 

 
Fig. 1.2. Graphic representation of a nephron. 
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Blood is filtered through each nephrone’s Bowman’s capsule and then, the filtrated liquid 

is conducted to renal tubules. Tubular reabsorption mechanisms in the tubules return the 

majority of water and some solutes back to the circulatory system. In addition, secretion 

processes allow the excretion of unwanted substances from the bloodstream. Finally, the 

filtrate is drained into a collector tubule, and the collector tubules join together into new 

conducts7,8.  

 

Glomerular filtration (GF) is the quantity of filtrate formed in all the renal corpuscles from 

both kidneys per minute. Preserving a constant GF is essential to keep homeostasis. If GF 

is too high, necessary substances will go through renal tubules too fast to be reabsorbed 

and therefore they could be lost in urine, whereas if GF is too low, almost all the filtrate 

will be absorbed back and some waste products could not be excreted adequately. For 

that reason, kidneys themselves help keeping kidney blood flow and GF constant by means 

of myogenic and feedback mechanisms. More than the 99 % of the glomerular filtrate is 

returned to the bloodstream and therefore, only 1-2 L of urine are excreted per day7. 

 

CKD can begin indiscriminately in glomeruli, tubuli or renal vessels. In accordance with 

the affected area of the kidneys, different causes for CKD are reported in Table 1.2.  

Table 1.2. Etiopathogenesis of CKD9. 
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Glomerulopathies, alterations and diseases affecting glomerular structure, could cause 

CKD9. Glomerulonephritis, a type of primary glomerulopathy with an inflammatory 

component, is in addition to diabetes and hypertension one of the most common causes 

for CKD related to glomerular diseases10,11. 

 

On the other hand, renal function could also be damaged due to dysfunctional tubular 

reabsorption and secretion processes, activation of tubular cells by means of inflammatory 

mediators, progressive tubular loss and the healing process of the tissue. Moreover, other 

renal structures such as glomeruli could be damaged afterwards3. 

 

Finally, renovascular alterations cover the damage originated from atherosclerosis, 

hypertension, hypoperfusion and ischaemia. For instance, atherosclerosis leads to an 

oxidative stress process, which is accompanied by endothelial dysfunction and 

inflammation, thus conducting to fibrosis and glomerular filtration reduction9. 

 

Whatever the origin of the damage, the progression to CKD presents histological and 

functional changes affecting all renal structures. These changes lead to progressive and 

generalized fibrosis, nephron loss and its replacement with scar tissue. As the disease 

progresses, structural damage affects the function of a larger number of nephrons. At 

first, less injured nephrons adapt themselves to balance dysfunctional nephrons. That is 

the reason why glomerular filtration does not decrease until approximately 60% of the 

nephrons are affected and functionality is compromised. At this point, functional nephrons 

are not able to clear blood waste products by filtration and elimination, and uraemia 

occurs9,12. 

 

 

1.3. CKD IN ADULTS AND IN PAEDIATRICS 

The basic physiopathologic mechanisms of CKD are shared in adults and in paediatrics. 

However, the etiopathology or the primary causes of CKD differs between adults and 

paediatrics, as showed in Fig. 1.3. For instance, in adults the most prevalent primary 

causes (72 %) of CKD are hypertension and diabetes, whereas in paediatrics congenital 

anomalies of the kidney and the urinary tract (CAKUT) and primary and secondary 

glomerular diseases (e.g. lupus nephritis, glomerulonephritis, atypical haemolytic uremic 

syndrome, Alport syndrome) account for approximately 56 %12.  
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Fig. 1.3. Primary cause of ESRD differs between adults and children, as showed in this graph obtained 
from the 2016 USRDS report12.  

Moreover, congenital anomalies are the most common underlying etiology of paediatric 

End-Stage Renal Disease (ESRD) population, those suffering from the most severe stage 

of CKD. As a consequence, paediatrics face unique problems in preparation for 

transplant13. In addition, paediatrics suffer from specific complications not present in 

adults, such as growth retardation14,15. 

 

For all these reasons, CKD in paediatrics has sometimes been recognized as an 

independent nosologic entity16. 

 

 

1.4.  CKD DEGREE 

CKD can be classified according to severity, diagnosis, treatment and prognosis both in 

adults and in paediatrics. However, the most accepted classification worldwide is the one 

shown in Table 1.3, which considers not only severity but also some other markers of 

kidney damage.  

 

In clinical practice, glomerular filtration rate (GFR), glomerular filtration (GF) given as a 

relation to body surface area (BSA) by scaling the value to 1.73 m2, is more commonly 

used than GF. GFR is on average 100-130 mL/min/1.73 m2 in normal children and young 

adults aged 2 to 16 years old. Despite the global implementation of this CKD classification 

criterium, it has to be noted that it is not used on children under 2-year age, as GFR 

increases from birth and steady values are not reached until that age17. 
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Table 1.3. Classification of CKD. Adapted from Levey et al. and based on the K/DOQI Clinical Practice 
Guidelines For Chronic Kidney Disease classification3,18. 

 

CKD stage 1 is often considered a silent stage as in most cases it is characterized by the 

absence of any syptoms. On the contrary, CKD stage 2 may show an increase of 

parathiroid hormone and a decrease of renal calcium reabsorption, in addition to a 

decrease of GFR. Similarly, left ventricular hypertrophy and anaemia secondary to 

erythropoietin deficiency have been observed in patients in CKD stage 3. Finally, patients 

with CKD stage 4 often show increased serum triglycerides, hyperphosphatemia, 

hyperkalemia, metabolic acidosis, fatigue, nause, anorexia and bone pain, which are 

subsequently followed by renal failure and severe symptoms of uraemia in CKD stage 59. 

During CKD stage 5, End-Stage Renal Disease (ESRD) occurs. ESRD is the last and most 

severe stage of CKD, defined by the presence of uraemia and the need for chronic renal 

replacement therapy (renal transplantation, peritoneal dialysis or haemodialysis) to 

reverse the symptoms of uraemia and prolong life19. 

 

 

1.5. EPIDEMIOLOGY OF CKD 

Epidemiology in adults show that in North America, up to 11% of the population (19 million 

people) may suffer from CKD20. Similarly, data from Europe, Japan and Australia depict a 

prevalence of CKD of 6-16 %21,22. In addition, incidence rate for patients with CKD 

receiving renal replacement therapy is estimated to be between 92 and 185 per million 

population (pmp) depending on the European country23. Besides, the last epidemiology 

report published by the Basque Health System (Osakidetza) reveals that incidence of CKD 
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patients within the Autonomous Community of the Basque Country (CAPV, Spain) keeps 

stable around 100 pmp, whereas the total amount of patients with CKD is growing and 

reached in 2011 a prevalence of 1071 pmp24.  

 

Regarding epidemiology of the disease in paediatric population, information is limited as 

CKD is frequently asymptomatic and therefore under-diagnosed and underreported25. 

Moreover, there is still insufficient information on the early stages of paediatric CKD and 

the available epidemiological data is generally related to ESRD registries26.  

 

The ItalKid Project is a prospective, population-based registry for assessing the 

epidemiology of paediatric CKD. The registry started in 1990 and its inclusion criteria are 

the following: a creatinine clearance <75 mL/min/1.73m2, and an age limit of 20 years at 

the time of registration. According to Italkid Project, between 1995 and 2000 the average 

incidence was 12.1 cases per million age-related population (pmarp) and at 1st January   

2001 prevalence was 74.7 pmarp27. 

 

In addition, according to the registries collected by the European Society for Paediatric 

Nephrology (ESPN) and the European Renal Association and European Dialysis and 

Transplantation Association (ERA-EDTA) between 2009 and 2011, prevalence of children 

receiving renal replacement therapy (RRT) was 27.9 pmarp in patients aged 0–14 years, 

taking into account 37 European countries, whereas the incidence of children in RRT was 

5.5 pmarp. Furthermore, mortality in paediatric patients being treated with RRT was 55-

fold higher than in general paediatric population28. Prevalence and incidence data of CKD 

in Europe and in the Autonomous Region of the Basque Country for adults and paediatrics 

is similar according to ERA-EDTA registries29, as showed in Table 1.4. Data of cases pmarp 

is facilitated for both adults and paediatrics. In addition, the proportion of CKD patients 

according to the age range is expressed as a percentage (%) and for paediatrics total 

amount of cases is also showed (n). 
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Table 1.4. Incidence and prevalence data of RRT in children and in adult population with CKD by 
ages in Europe and in Basque Country in 201129.  

 
†It has to be noted that the availability of data is limited and does not cover all the European Countries. 

Similarly, according to the last epidemiology report from the Basque Health System 

(Osakidetza), during 2011 fifty paediatric patients followed RRT in Paediatric Nephrology 

Service at Cruces Hospital, being 5 of them incident on dialysis that year. In addition, in 

the Autonomous Region of the Basque Country (CAPV), 115 renal transplants were carried 

out in paediatric patients from 1993 to the end of 2011. Moreover, 50 % of the 

transplanted patients received their first transplant after a period of 8.5 months24.  

 

 

1.6.  RISK FACTORS FOR CKD PROGRESSION AND COMPLICATIONS OF CKD  

A number of factors are related to increased risk of CKD both in adults and in paediatrics. 

Some of these risk factors have also been considered complications of CKD, because they 

worsen with the progression of the disease. As the line between risk factors and 

complications of CKD is still too subtle and the role of some of these manifestations is still 

unclear, both risk factors and complications of CKD are summarized together in Table 1.5.  
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Table 1.5. Risk factors and complications of CKD. 

RISK FACTORS AND COMPLICATIONS 

Non‐modifiable risk factors: 

 Low birth weight30 

 African American ethnicity30‐32 

 Puberty age33 

 Genetic  factors  (polymorphisms  in  the 
angiotensin  converting  enzyme  gene, 
angiotensinogen,  pro‐inflammatory 
molecules,  pro‐fibrotic  molecules  or 
angiogenic factors)33  

Modifiable risk factors: 

 Hypertension  (prevalent  in  paediatrics  with 
CKD  and  extremely  uncommon  in  healthy 
paediatrics)34 

 Cardiovascular disease15,35 

 Proteinuria33,36,37 

 Anaemia33 

 Morbid obesity38,39 

 Hyperphosphatemia40 

 Smoking33 

Complications: 

 Increased cardiovascular risk15,35,41 

 Anaemia15 

 Proteinuria33,36,37 

 Lipoprotein abnormalities15,33,42 

 Growth retardation in paediatrics14,15,43,44 

 Malnutrition45 

 Limitations  in  the  emotional,  social  and 
functional domains of adult life13 

 Vitamin D deficiency46,47 

Unknown whether  it  is a primary or  secondary 
event: 

 Elevated levels of uric acid33 

 Elevated markers of  inflammation (IL‐1,  IL‐6, 

TNF‐, IFN‐γ and C‐reactive protein)48,49 

All these complications lead to a 30 times higher mortality rate in paediatrics suffering 

from ESRD in comparison with healthy children25. For that reason, a multidisciplinary 

approach is required to assess CKD related risk factors and complications in paediatrics 

suffering from this disease, and reduce their morbidity and mortality. 

 

 

1.7.  CKD TREATMENT 

Prior to the 1950’s patients with failing renal function were doomed to death and research 

and technology developed for renal replacement therapy (RRT) involved a medical 

breakthrough for patients’ prospective. In 1933, the first human kidney allotransplant was 

achieved by Yurii Voronoy using an anoxic cadaver kidney50. Soon after, in 1960, due to 

the invention of the Scribner-Quinton Shunt by Dr. Belding Scribner, long-term 

haemodialysis was made possible for patients suffering from CKD at the University of 

Washington Hospital in Seattle (USA)51. Likewise, in 1959, Richard Ruben used peritoneal 
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dialysis (PD) successfully on a patient with CKD52. Later, automated PD equipment and a 

prototype for home PD equipment were developed by Henry Tenckhoff and his team53.  

 

Currently there are no specific cures for CKD and renal transplantation is limited by organ 

scarcity. Therefore, present efforts are focused on the prevention of the progression of 

CKD54. CKD treatment needs for a multidisciplinary approach, based on nutrition, 

pharmaceutical therapy and depending on the degree of CKD, renal replacement therapy. 

 

Concerning pharmacotherapy, decreasing blood pressure alone has proved to be effective 

reducing proteinuria to some extent55,56 and for that reason, antihypertensive agents may 

have significant abilities to reduce proteinuria56,57. Renin-angiotensin aldosterone system 

(RAAS) inhibition by means of angiotensin-converting enzyme inhibitors (ACEI) and 

angiotensin receptor antagonists (ARA) is considered the most effective therapy to slow 

CKD progression and reduce proteinuria in adults54,58,59. However, there is limited data on 

the effects of ACEI and ARA in paediatric patients and the results are not conclusive60-62. 

In addition, calcium channel antagonists (CCA) are a family of compounds which are used 

as part of multiple drug therapies with the aim of normalizing blood pressure in patients 

with CKD in which one drug is not enough to achieve normotension63,64. 

 

Lipid-lowering therapy is another frequent approach for the prevention of cardiovascular 

morbidity and mortality in adults with CKD. Besides, statin therapy may slow renal disease 

progression, decrease anti-inflammatory properties and oxidative stress and limit 

proteinuria in adults65,66.  

 
Fig. 1.4. Overview of the multidisciplinary treatment of CKD.  
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Furthermore, erythropoietin therapy used to treat mild to moderate anaemia in adults 

with CKD may slow the progression of kidney disease8. However, for the moment there is 

no data available regarding the effectiveness of erythropoietin therapy to slow the GFR 

decrease in children with CKD67. 

 

Concerning the nutritional approach, for decades dietary protein restriction has been 

hypothesized to diminish renal injury. However, nowadays there is no evidence of any 

correlation between low-protein diet and progression of CKD in children68. Identifying 

children with inadequate calorie, protein and trace element intake can be challenging but 

it is necessary for an early nutritional intervention by means of supplementation69. 

 

The progressive and irreversible deterioration of the renal function in CKD often results in 

the implementation of artificial support of the functions of impaired kidneys. This artificial 

support is known as renal replacement therapy (RRT). Different modalities of RRT are 

available and recommended to CKD patients depending upon their own characteristics: 

dialysis and renal transplantation70. 

 

Dialysis is based on the use of a semi-permeable membrane that allows diffusive clearance 

of blood. Blood may be passed through artificial membranes or tubing (haemofiltration or 

haemodialysis) or dialysate may be instilled contiguous to the peritoneal membrane 

(peritoneal dialysis). Either peritoneal dialysis or haemodialysis may be used in 

intermittent or continuous therapies. Despite the fact that there is not any definite level 

of serum creatinine concentration that mandates starting with dialysis, it is generally 

accepted that RRT should be considered when GFR declines to a value between 9 and 14 

mL/min/1.73m2 body surface area71,72. 

 

Regarding renal transplantation, it replaces native renal function completely, although the 

availability of organs is the main limitation for the widespread use of this technique69. 

Even though renal transplantation is widely recognized as the RRT of choice for paediatrics 

with ESRD, allograft rejection may occur, which is an inflammatory reaction associated 

with immune response on the graft. For that reason, transplantation tolerance needs to 

be carefully considered and a complementary immunosuppressive pharmacotherapeutic 

approach needs to be fulfilled73. 
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1.8.  DIAGNOSIS AND EVALUATION OF CKD 

Traces of the interest for medical conditions related to kidneys have been found since 

ancient times, for instance, in some cuneiform clay tablets from Mesopotamia74. In 

addition, a few causes of CKD have been familiar for more than 500 years, such as 

nephrotic syndrome, described by Cornelius Roelans in De aegri tudinibus infantium          

(1484). During the 19th century, even though pathology was restricted to macroscopy, 

the German pathologist Friedrich Theodor von Frerichs (1819-1885) correlated clinical 

symptoms of kidney diseases and chemical disorders in blood and urine75. Later, during 

the same century, the use of autopsies as well as the discovery of microscopy and its 

application into medical field enabled a more in-depth description of renal vein thrombosis, 

renal anaemia, acute nephritis, nephrotic syndrome and pyelonephritis for the first time76.  

 

However, it has to be taken into account that during the first half of the 20th century the 

study of impaired human kidneys was reduced to post-mortem autopsy examination of 

the histology. Moreover, light microscopic findings were often subjected to autolysis, 

passive ingestion and thick sectioning of the tissue. For that reason, most of kidney 

affections were advanced and even chronic at the time of the autopsy, so that little to 

nothing could be elucidated about the early stages and evolution of disease77. Afterwards, 

in the 1940’s serum creatinine was advocated as the clinical indicator of renal function by 

Thomas Addis, using alkaline picrate reaction with plasma samples and matching them by 

naked eye with a series of standards78. This method has evolved a lot due to new 

technological improvements, though creatinine is the biomarker that eventually prevailed 

in nephrology practice.  

 

Nowadays, glomerular filtration rate (GFR) is considered the most important 

measurement of renal function for the assessment of CKD degree79. There is not any 

simple and practical way to measure GFR directly, thus it is an estimated measurement80.  

As kidneys undergo glomerular filtration, tubule reabsorption, tubule secretion and 

intrarenal metabolism, there is a need for an “ideal GFR marker”79. Inulin, iothamalate, 

radioactively tagged diethylene-triamine penta-acetic acid (99Tc-DTPA), radioactively 

tagged ethylene-diamine tetra-acetic acid (51Cr-EDTA) or iohexol administrations and 

urine collections are considered “gold standards” for measuring GFR. However, these 

exogenous markers are impractical, expensive, time consuming and invasive in the clinical 

setting, so they are seldom used81,82. In addition, DTPA and EDTA are inefficient in 

neonates83. Thus, efforts are being made towards the use of endogenous markers in 

clinical practice. 
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Serum and/or urine creatinine concentration are currently measured to calculate the 

clearance of endogenously produced creatinine to be able to estimate GFR79. Creatinine, 

which comes from the catabolism of phosphocreatine in skeletal muscle, is filtered through 

glomerular capillaries and is secreted by tubular cells7,84. 

Table 1.6. Glomerular filtration rate (GFR) and plasma creatinine in healthy children and young 
adults84,85. 

 

The estimation of GFR by means of creatinine clearance involves the need for an accurately 

timed collection of urine over a long period and is not possible in children who are not 

toilet trained. For an easier GFR determination, different equations have been created to 

estimate creatinine clearance from serum creatinine concentration (SCr), including 

information regarding age, race, gender and anthropometric measurements such as 

height, weight or body surface area (BSA)79,80 (see Table 1.7).  

Table 1.7. Different equations to estimate glomerular filtration rate (expressed as mL/min/1.73 m2) 
and glomerular filtration (mL/min) using serum creatinine84,86-88.  
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Despite the fact that several equations have been developed and adjusted using large 

populations, equations based on serum creatinine alone are not accurate enough for GFR 

estimation. Indeed, serum creatinine is affected by several factors like age, sex, overall 

body weight and muscular mass, muscular metabolism, nutrition and hydration status89, 

which is the reason why there is a need for including some of these parameters to correct 

GFR equations. In addition, creatinine lacks sensitivity since serum creatinine levels may 

keep unaltered until 50 % of the renal function is already lost due to an important 

nephronic loss21,22. Besides, acute changes in GFR are not represented by SCr until a 

steady state is achieved and tubular secretion of creatinine may result in overestimation 

of renal function at low GFR90.  

 

For all these reasons, there is a need for new biomarkers to be able to obtain more 

information about the pathogenesis and evolution of the disease as well as to build new 

equations useful to diagnose and follow the progression of paediatrics suffering from CKD. 

 

 

1.9.  BIOMARKERS. COMPOUNDS OF INTEREST FOR THE EARLY DETECTION 

AND INTERVENTION ON THE DISEASE 

Biological markers or biomarkers have been defined as cellular, biochemical or molecular 

alterations that are measurable in biological media such as human tissues, cells or fluids91. 

Biomarkers disclosing prodromal or initial signs of a disease enable an earlier diagnosis as 

well as a better outcome because diagnosis is usually carried out in a more primitive stage 

of disease92. In this sense, creatinine is currently the classic biomarker for CKD both in 

paediatrics and in adults. However, as previously mentioned in section 1.8, several factors 

limit the accuracy of creatinine as a GFR marker. For that reason, a vast amount of 

research is being conducted with the aim of finding new biomarkers for CKD.  

 
Fig. 1.5. Representation of the structures of creatinine and cystatin C biomarkers of CKD. 

Recent investigation in proteomics found that cystatin C is an interesting protein for the 

diagnosis of CKD, as it is less dependent than creatinine upon patients’ body composition, 

it is not affected by gender and its production rate is usually constant93,94. Accordingly, it 
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has recently been included in different equations for the calculation of GFR in children 

aged 1-16 years and GFR ranging from 15 to 75 mL/min/1.73m2, together with height, 

plasma creatinine, blood urea nitrogen (BUN) and gender95. However, cystatin C has also 

some limitations like higher serum levels in elderly, greater weight or height patients, 

cigarette smoking patients, patients following corticosteroid treatment, hyperthyroidism 

and malignancy, and lower levels in hypothyroidism93. Therefore, there is a need for 

finding new compounds to diagnose and follow the progression of CKD.  

 

Another issue to be considered is that, even if biomarkers discovered for adults have 

commonly been used in clinical practice for both paediatrics and adults, there is little 

information about the effect of using adult biomarkers in paediatrics96. Indeed, human 

development is known to be a complex process, as ontogeny influences organ function, 

drug disposition and clinical response to therapy97. For example, despite the fact that 

nephrogenesis is completed by 36 weeks gestational age, during postnatal period renal 

development continues and several physiological changes occur weeks to months after 

birth98. Hence, creatinine plasma concentration changes with time and follows different 

patterns in prematures, neonates, children and adults99. Thus, it is necessary to address 

the gap in paediatric biomarkers, taking into account well-recognized developmental 

changes in children100.  

 

An ideal paediatric biomarker should comply with the following requirements100:  

1. To be non-invasive 

2. To be applicable to specific paediatric diseases 

3. To be cost-effective 

4. To have well-established paediatric normative values  

5. To show a correspondence between results and age-dependent physiologic 

changes 

 

The use of paediatric CKD-specific biomarkers at an early disease stage would enable 

prompt diagnosis of specific renal diseases, improving therapeutic treatment and reducing 

both personal and financial burdens89.  
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The prospects for the clinical management of CKD should be analyzed from different 

perspectives. First, diagnosis improvement is necessary by means of an earlier detection 

of the disease as well as by the identification of progression and prognostic markers to be 

able to determine which patients will progress faster than others will. In addition, new 

therapies or treatments are needed to be able to improve the existing capacity to slow or 

even stop the progression of CKD and both reverse the damage and regenerate impaired 

renal tissues.  

 

As mentioned in the first chapter of this work, there is a need for new biomarkers capable 

of complying with an earlier diagnosis of CKD and following the progression of the disease. 

Moreover, this requirement is even more necessary in paediatrics, as the etiopathology of 

the disease differs between adults and paediatrics and both the lack of information and 

research in paediatric population are even more noteworthy.  

 

In order to achieve this goal, the present study is clearly structured around three 

operational objectives: 

 

1. Targeted metabolomic study focused on amino acids, amino acid derivatives and 

related compounds from arginine-creatine, arginine methylation and urea cycle 

suspicious of being altered in paediatrics with CKD. 

2. Untargeted metabolomic study for unbiased biomarker discovery. 

3. A study based on the significant biomarkers found in the previous two sections to 

validate the potential biomarkers from the untargeted research as well as to be 

able to quantify all of these biomarkers together. 

 

Plasma samples from paediatric CKD patients and controls from the Basque Country, 

collected by Paediatric Nephrology Service at Cruces Hospital (Barakaldo, Spain) will be 

used to comply with all these scopes.  

 

Concerning the first operational objective, due to the nature of some amino acids, it deals 

with a specific sample treatment method development including the use of reducing agents 

to be able to quantify them. In addition, amino acids and amino acid derivatives are small 

and polar metabolites. Therefore, an ion-pairing reversed-phase liquid chromatography 

coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) method must be 

stablished in plasma samples from both control and CKD paediatrics for 16 metabolites.  
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As far as the second operational objective is concerned, the extraction of plasma samples 

by means of protein precipitation with different solvent combinations is required in order 

to obtain as many entities as possible without any bias. In addition, a LC-QTOF-MS method 

has to be developed to perform the untargeted metabolomics approach. Then, in-depth 

univariate and multivariate data analysis will be highly necessary to deal with the complex 

data set expected from the untargeted metabolomics analysis in order to obtain the 

significant features, which may enable differentiating between CKD and control patients.  

 

Finally, the last operational objective deals with the development of both specific plasma 

extraction procedure and liquid chromatography coupled to triple quadrupole mass 

spectrometry (LC-QQQ-MS) method to quantify the significant analytes obtained from the 

first and second scopes. The aim of this method is the validation of the results from the 

untargeted metabolomics method and, at the same time, the quantification of these 

metabolites together to get a new analytical method that may result in better diagnosis 

and monitoring of CKD patients in comparison with traditional methods. 
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3.1.  INTRODUCTION 

The advent of high-throughput technologies has revolutionized biomedical research by 

means of “omics” technologies, including genomics, transcriptomics, proteomics and 

metabolomics, which are speeding up the discovery of new biomarkers for different 

diseases2. 

 

Over the years both biomedical research and the progress of technology have been 

directly correlated with improvements in comprehension, diagnosis, follow-up and 

treatment of chronic kidney disease (CKD). Moreover, life quality and expectancy of 

patients suffering from CKD have improved due to all these advances. This chapter intends 

to explain the methodological and technological novelties that have been considered in 

this work with the aim of finding new biomarkers for paediatric CKD diagnosis and 

monitoring in plasma.  

 

 

3.2. METABOLOMICS 

“Omic” sciences are primarily aimed at the universal detection and characterization of 

genes (genomics), mRMA (transcriptomics), proteins (proteomics) and metabolites 

(metabolomics) in a specific biological sample and at the adoption of a holistic view of the 

molecules that make up a cell, tissue or organism3. 

 

Fig. 3.1. Schematic representation of “omic” sciences. 

Metabolomics is the systematic study of small molecules (typically below 1500 Da) or 

metabolites, in a biological system. Metabolites, defined as the end products of cellular 

regulatory processes, are considered the latest response of biological systems to genetic 

or environmental changes4. These compounds include amino acids and biogenic amines, 

small peptides, carbohydrates, lipids, nucleic acids, vitamins, organic acids and 

intermediary energy metabolites, for instance5.  
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The feasibility of metabolomics for biomarker discovery is sustained by the premise that 

metabolites have an important role in biological systems and that diseases originate 

disruption of metabolic pathways6. It is considered that metabolomics is more 

advantageous over other “omic” approaches, as metabolites are the latest downstream 

outputs of gene transcription. Accordingly, metabolites act as direct signatures of 

biochemical activity, changes in the metabolome are amplified comparing with the 

transcriptome and the proteome and therefore, the correlation with phenotype is more 

straightforward3,7. In addition, the number of metabolites is lower than the number of 

genes and proteins in a cell, so sample complexity is reduced. Although the concentration 

of enzymes and metabolic flux may not significantly change during a biochemical reaction, 

the concentration of the metabolites can significantly fluctuate8. A great variety of 

metabolites, such as blood cholesterol, glucose or triglycerides have been successfully 

applied as measured biomarkers of different pathologies for decades9.  

 

Metabonomics is a related term to define changes in metabolic activities occurred as a 

response of living systems to pathophysiological stimuli or genetic modifications10. There 

are also some other useful working definitions, such as, metabolic profiling, metabolic 

fingerprinting or metabolic footprinting. The first one refers to the identification and 

quantification of a number of metabolites generally related to specific metabolic pathways 

or to specific classes of compounds8,11. Metabolic fingerprinting is a high-throughput, 

rapid, global analysis of samples to provide sample classification, with no need for either 

quantification or metabolite identification8,12. On the contrary, metabolic footprinting 

refers to the measurement of metabolites secreted by a cell or a tissue, rather than 

intracellular metabolites13,14.  

 

Some other subdisciplines have emerged due to the complexity of the metabolism, such 

as, lipidomics or nutrimetabolomics. Lipidomics, refers to the study of the lipid fraction of 

the metabolome using metabolomic approaches9. Nutrimetabolomics aims to identify 

biomarkers that allow the monitorization of dietary components that play a role in health 

maintenance15.  

 

According to the strategy followed, metabolomic analyses are generally classified into two 

complementary approaches: targeted or untargeted metabolomics. Both approaches can 

provide new clinically useful indicators or biomarkers to diagnose health status, disease 

or the possible outcomes of a defined treatment. 
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On the one hand, targeted metabolomics refers to an strategy in which a previously 

defined list of metabolites is measured motivated by a specific biochemical question or 

hypothesis7,16. These pre-defined metabolites can be associated with specific pathways, 

enzyme systems or a complete metabolite class5. Particularities of targeted metabolomics 

are explained in detail in Chapter 4.  

 

On the other hand, untargeted metabolomics consists of an unbiased holistic approach 

towards simultaneously analyzing as many features as possible after minimal sample 

pretreatment, without any prior knowledge of the identity of these features and any bias 
5,7,17. Chapter 5 provides more information about the characteristics of untargeted 

metabolomics studies. 

 

 

3.3. ANALYTICAL INSTRUMENTATION 

Metabolomics has become possible through the arrival of recent technological 

breakthroughs in small-molecule separation and identification18. Nuclear magnetic 

resonance (NMR) is a well-established powerful analytical technique for metabolomics19. 

However, the trend is towards the use of mass spectrometry (MS).  

 

3.3.1. NUCLEAR MAGNETIC RESONANCE (NMR) 

NMR is a reproducible and fast spectroscopic technique based on the absorption of energy 

and re-emission of the atom nuclei due to variations in an external magnetic field20. 1H 

(proton), 13C, 15N and 31P are the most widely used nuclei in biomolecular NMR, being 

one-dimensional (1D) 1H NMR the most frequently used in metabolomics due to its natural 

abundance in biological samples21,22. Applications of NMR are exponentially growing with 

the refinement of measurement methods, analysis and interpretation of complex data 

sets23. NMR is appropriate for molecules with poor ionization properties, such as glucose17. 

Sample preparation is less time-consuming in NMR in comparison with gas 

chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography 

coupled to mass spectrometry (LC-MS). However, GC-MS and LC-MS achieve higher 

sensitivity than NMR, so that metabolites present in a concentration below the detection 

limit of NMR may be detected using these techniques19,24.  
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3.3.2. MASS SPECTROMETRY (MS) 

Mass spectrometry (MS) is a well-established detection method, which allows the 

simultaneous detection of multiple analytes with high sensitivity. This instrumental 

technique has raised to an outstanding position among analytical methods, also in the 

field of metabolomics, due to its unequalled sensitivity allowing unequivocal identification 

of a substance, detection limits, speed, universality and diversity of its applications25,26. 

 

Mass spectrometry is based on the following assumptions: atoms or molecules from a 

sample are ionized, separated according to its mass-to-charge relation (m/z) through a 

magnetic or electrical field and are subsequently detected and registered in mass spectra. 

The mass spectrum is a graphical display representing the relative abundance of ion 

signals against the m/z ratios27. To comply with its function, mass spectrometers consist 

of an ionization source, a mass analyzer and a detector.  

 

From an analytical point of view, metabolomics involves a challenge, due to the complexity 

of biological samples. For that reason, both in targeted and untargeted metabolomics, 

when using mass spectrometry for detection, this is generally preceded by a separation 

step, which reduces the high complexity of biological samples, allows MS analysis of 

different sets of molecules at different times and increases the quality of the raw data 

obtained22,25. Mass spectrometry is usually coupled to gas chromatography (GC), liquid 

chromatography (LC) or capillary electrophoresis (CE) techniques. LC-MS is the most 

commonly used separation analytical technique, because of its sensitivity, adaptability for 

exact quantitative determinations, suitability for the automatization of the processes, 

capability to separate nonvolatile or thermolabile species, and especially, its applicability 

to a wide variety of substances important for the industry, science and society28. Due to 

its high throughput and the good coverage of metabolites in different bio fluids, the 

popularity of LC-MS platform for metabolomic studies is growing29. GC-MS and CE-MS 

have been considered complementary to LC-MS in terms of increasing the metabolome 

coverage and to verify the identification of potential biomarkers found by LC-MS30,31.  

 

The main obstacle for LC-MS-based techniques has been the incompatibility of the liquid 

eluent coming from the column and the vacuum of the mass spectrometer. Indeed, one 

of the prerequisites for mass spectrometric analysis is the formation of volatilized ions, so 

that there is a need for elimination of the mobile phase. With the aim of solving these 

problems, several ion-source coupling methods have been developed32. Regarding mass 

analyzer, it deals with ion separation according to their mass-to-charge ratio (m/z). 
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Finally, the detector is the source responsible for transforming each ion m/z relation into 

an electrical signal (see Fig. 3.2).  

 

Fig. 3.2. Schematic diagram of a mass spectrometer. 

The following sections will focus especially on the most relevant aspects of LC-MS, selected 

for the development of the different analytical methods in this work.  

 

3.3.2.1. Ion sources 

Molecules coming from liquid chromatography system must be in a gaseous form and 

ionized to be analyzed in a mass spectrometer. Indeed, ion production by different ion 

sources often implies gas-phase ion-molecule reactions26.  

 

Vacuum inside the instrument must remain unchanged when sample is introduced into 

the ionization source. Depending on the sample type and the ionization source, samples 

can be introduced by direct infusion or by direct insertion into the mass spectrometer, 

and when these sources work at atmospheric pressure, they are known as atmospheric 

pressure ionization sources (API)26. Theoretically, the selection of the ionization source 

relies on the chemical properties of the targeted analyte. However, when untargeted 

metabolomics experiments are carried out, as the metabolites of interest are unknown, 

the use of different interfaces is recommended. Figure 3.3 schematizes the applicability 

of LC-MS ionization techniques according to the polarity and molecular weight of the 

analytes of interest. 
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Fig. 3.3. Applicability of different ionization sources in LC-MS. 

The most commonly used ion sources are detailed in the following subsections:  

 

 Electrospray interface (ESI) 

Electrospray ionization or ESI is the most universally known ionization method with 

very low chemical specificity and therefore, it is the most widely used ionization 

technique in biochemical field for the analysis of samples in liquid form33. Moreover, 

ESI coupled to liquid chromatography and together with mass spectrometry has 

become a very powerful technique even in complex biological samples27.  

 

ESI works by applying a strong electric field to a previously ionized liquid passing 

through a capillary tube with a low flux (1-10 µL/min). This electric field is achieved 

by handling a potential difference between the capillary and the skimmer, and as a 

result, highly charged droplets with the same polarity as the capillary voltage are 

generated at the end of the capillary27,33. In addition, a gas is injected coaxially at 

a low flow rate and afterwards, these droplets pass either through a curtain of 

heated inert gas (usually nitrogen) or through a heated capillary to remove the last 

solvent molecules34. Charged droplets are continuously reduced in size due to the 

evaporation of the solvent, so that there is an increase of surface charge density 

and a decrease of the droplet radius. Finally, electrostatic repulsion becomes 

stronger than the surface tension and when Rayleigh instability limit is exceeded a 

small electrically charged droplet leaves the surface and is ejected into the gaseous 

phase27.  
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Fig. 3.4. Electrospray ionization source (ESI). 

Analyses can be performed in ESI positive and ESI negative modes, thus obtaining 

characteristic [M+H]+ and [M-H]- ions, respectively. The adjustment of pH of the 

mobile phase is essential when ESI is interfaced to LC, as the liquid needs to be 

previously ionized. Positive and negative ion modes require different solvent 

characteristics and the response of a given analyte can be enhanced or suppressed 

using different solvent systems. Volatile weak acid and base buffers are preferred, 

being the most common choices formic acid, ammonium acetate and ammonium 

formate35.  

 

ESI is a soft ionization technique in the sense that a very little residual energy is 

retained by the analyte and generally no fragmentation occurs upon ionization32,36. 

In addition, it allows very high sensitivity, it is robust and a reliable tool for studying 

non-volatile and thermally labile biomolecules that cannot be analyzed by other 

conventional techniques and is easy to couple to LC34.  

 

 

 Atmospheric Pressure Chemical Ionization interface (APCI) 

Atmospheric Pressure Chemical Ionization or APCI is an ionization technique based 

on the use of gas-phase ion-molecule reactions at atmospheric pressure and is mainly 

used for polar and relatively nonpolar compounds with moderate molecular weight 

up to 1500 Da, and giving generally monocharged ions34.  

 

The performance of APCI is optimal at high flow-rates (1 mL/min and higher)32. The 

solution coming from the column is nebulized by a heated nitrogen flow coaxial to 

the capillary and the solvent is evaporated rapidly with the help of the heated 

vaporizer tube. In addition, the gas-vapour mixture contacts a corona discharge 
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needle, which is held at a voltage of 2.5 to 3 kV, causing around the needle plasma 

containing charged particles and free electrons37,38. APCI is intended for analyzing 

weakly polar or neutral analytes39. 

 

Fig. 3.5. Atmospheric Pressure Chemical Ionization source (APCI). 

 

 Atmospheric pressure photoionization (APPI) 

Atmospheric pressure photoionization or APPI is becoming popular as it is able to 

ionize compounds that are often missed or not sufficiently ionized by ESI and APCI40. 

APPI requires less heat for desolvation than APCI, thus, it is useful for the analysis of 

thermally labile compounds, increasing the range of compounds susceptible to 

ionization41.  

 

APPI is based on the use of photons from a light source, typically a krypton lamp, to 

ionize analyte molecules. Analyte molecules might be ionized by two mechanisms 

with APPI: direct photoionization and photo-induced chemical ionization. A dopant or 

a photoionizable reagent (usually acetone or toluene) is added to the mobile phase 

to favour the ionization by transferring a charge to the analyte41.  

 
Fig. 3.6. Atmospheric Pressure Photoionization Ionization source (APPI). 
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 Matrix-Assisted Laser Desorption Ionization interface (MALDI) 

Matrix-Assisted Laser Desorption Ionization or MALDI is a powerful source for the 

production of intact gas-phase ions for mass spectrometry analysis from large, 

nonvolatile and thermally labile compounds such as proteins, oligonucleotides, 

synthetic polymers and large inorganic compounds34.  

 

MALDI involves the use of a suitable solvent where the analyte and the matrix are 

dissolved, the probe surface and a laser, for which laser wavelength and fluence 

(energy per area) are adjusted42. Laser irradiation heats the crystals rapidly by 

accumulating a large amount of energy through excitation of the matrix molecules 

and causes localized sublimation of matrix crystals, ablation of a portion of the crystal 

surface and the expansion of the matrix into the gas phase, catching intact analyte 

in the expanding matrix plume43.  

 
Fig. 3.7. Diagram of the principles of MALDI. 

 

 Multimode interface 

About 80% of all analytes are estimated to respond by ESI ionization and APCI is one 

of the best-known alternatives to detect analytes that do not ionize by ESI. As a 

consequence, novel ion sources have been developed combining these two ionization 

techniques into one source, known as “dual-mode” or “multimode” sources44.  

 
Fig. 3.8. Multimode ion source. 
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3.3.2.2. Mass analyzers 

Mass analyzers work under high vacuum conditions to separate gas-phase ions produced 

according to their mass-to-charge ratio (m/z). This separation is based on different 

principles, such as static or dynamic electric and magnetic fields alone or combined. The 

main characteristics for evaluating the performance of a mass analyzer are the following: 

resolution, mass accuracy, mass range, analysis speed and lineal dynamic range45.  

 

Resolving power (RP) is an essential parameter to characterize the ability of a particular 

mass analyzer to resolve peaks in mass spectra, defined as the m/z value of a defined 

peak divided by the peak full width at half maximum (FWHM), as showed in Equation 

3.146. FWHM is defined as the peak width of a certain m/z measured at 50 % peak 

height47. 

RP ൌ 	
m/z
∆m/z

 

Eq. 3.1. Resolving power for a particular m/z value. 

It has to be noted that RP must be determined for a particular m/z value, as RP grows 

when increasing m/z value under identical peak width condition.  

 
Fig. 3.9. Definition of resolving power according to FWHM.  

Mass accuracy or mass measurement error is calculated by subtracting exact mass 

(calculated mass) to the accurate mass (experimental mass), dividing this result with the 

exact mass and multiplying it with a million to express it as parts per million48, as showed 

in Equation 3.2.  

Mass	accuracy	ሺppmሻ ൌ 	
mୟୡୡ୳୰ െ mୣ୶ୟୡ୲

mୣ୶ୟୡ୲
x	10଺ 

Eq. 3.2. Mass accuracy expressed as parts per million.  
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The acquisition speed is the time needed to acquire one spectrum or one data point in a 

chromatogram and is typically expressed in Da/s for low-resolution and in Hz for high-

resolution mass analyzers46,49. Even though mass accuracy is often wanted, it is usually 

achieved at the expense of lower sensitivity or slower data acquisition speed per ion50. 

 

Regarding linear dynamic range, the range over which the relation between ion signal and 

analyte concentration is linear, it depends not only on the particular instrument but also 

in the application46.  

 

The election of the mass analyzer is fundamentally defined by the working parameters, 

as showed in Table 3.1.  

Table 3.1. Common parameters quadrupole (Q), ion trap (IT), time-of-flight (TOF), Orbitrap and ion 
cyclotron resonance (ICR) mass analyzers used in LC-MS46. 

 
 

The following mass analyzers have been used during the course of this work: 

 

 Quadrupole Analyzer (Q) 

Quadrupole analyzer is the simplest device, which uses the stability of the trajectories 

in oscillating electric fields to separate ions according to their m/z ratios. Quadrupoles 

are low-resolution instruments, as they are operated at unit resolution, that is, a 

resolution that is sufficient to separate two peaks one mass unit apart45. For that 

purpose, four perfectly parallel rods of circular or hyperbolic section are used45. These 

rods are placed few centimetres apart and if radio frequency (RF) is applied to 

adjacent rods, an ion injected along the axis will start spinning in an imaginary 

cylinder, and depending on the voltage and frequency, the ion will pass through the 

quadrupole. If direct current voltage (DC) is applied on top of the RF voltage, mass 
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separation is obtained due to the narrowing down of the transmitted m/z range51. 

The diameter of the imaginary cylinder of each ion depends on the mass-to-charge 

ratio and only ions within a certain m/z range will keep all the way through the 

quadrupole45,51.  

 

The quadrupole (or hexapole or octapole, depending on the number of rods) may 

work in Scan mode as a wide pass filter when only RF voltage is applied to the 

quadrupole, due to a high transmission of ions within a wide m/z range. In addition, 

quadrupole is used for focusing selected ion beams in Selected Ion Monitoring (SIM) 

mode, by only filtering ions with defined m/z relations, providing a high sensitivity. 

Furthermore, quadrupoles are frequently used in combination with other mass 

analyzers in tandem mass spectrometry (MS/MS) to focus the ion beams as well as 

in collision cells51. 

 

Fig. 3.10. Schematic diagram of a quadrupole mass spectrometer. 

 

 Time-of-flight Analyzer (TOF) 

Time-of-flight (TOF) analyzers work on the basis of determining ion’s mass-to-charge 

ratio via a time measurement. TOF was first described by Stephens in 1946 during the 

Spring Meeting of the American Physical Society52 and a commercial TOF based on 

Wiley and McLaren design53 was launched onto the market for the first time in 1956 

by Bendix Corporation (USA). Afterwards, in the late 80s and early 90s the groups of 

Guilhaus and Dodonov introduced the concept of the “orthogonal acceleration” TOF 

concept, thus improving resolving power, repeatability, linearity and sensitivity54.  

 

The operation of TOF is based on the acceleration of ions using an electric field of 

known strength. As a result, all the ions have the same kinetic energy and the velocity 

of the ion will depend on the m/z ratio. Therefore, the time needed by an ion to reach 

the detector at a known distance is measured, which is directly proportional to m/z 

ratio55. As velocity (v) is dependent upon the kinetic energy (E) and mass (m), lighter 

ions will travel faster and will arrive earlier to the detector55. 
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E ൌ
1
2
m	vଶ 

Eq. 3.3.  

From Equation 3.3 the mass of a molecule can be calculated by measuring the time 

a molecule requires to fly a known distance. The velocity of the ion leaving the source 

is given by rearranging the same equation to give the velocity of an ion (v) as a 

function of acceleration voltage (V) and m/z value (see Eq. 3.4). 

v ൌ √ሺ
ଶ୚	୶	ୣ

m/z
)  

Eq. 3.4. 

It has to be taken into account that the time delay (t) from ion formation to the time 

the detector is reached depends on the length of the drift region (L), m/z ratio of the 

ion and the acceleration voltage in the source.  

ݐ ൌ
L
V
ൌ L/ඨሺ

2Vxe
ሺ݉/ݖሻ

ሻ 

Eq. 3.5. 

In practice, this process starts with a so-called pusher or ion pulser, where ions enter 

and a short electric pulse is used to accelerate them to the same kinetic energy and 

at the same time to start a timer. Then, the ions drift through a flying tube. This flying 

tube contains an electric mirror or reflectron, which reverses the ion beam elongating 

the flying path and correcting the residual differences in kinetic energy. Finally, after 

going through the flying tube, which is usually 1 to 2 meter long, the ions reach the 

detector. Due to the length of the flying tube, a significant increase in mass resolution 

and mass accuracy is achieved. 

 

In general, TOF analyzers are very fast and up to 20000 push events can be done per 

second, even if spectra from many push events are then summarized into one mass 

spectrum to improve ion statistics and reduce noise51,55. In addition to this high 

acquisition speed, it provides accurate mass measurement with an adequate 

calibration range as well as full scan spectral sensitivity56. Another strength of TOF 

instruments is their high resolution. Indeed, they generally have 10000 or more 

resolving power, expressed in terms of full peak width at one-half maximum (FWHM)47.  
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Fig. 3.11. Schematic overview of TOF analyzer. 

To ensure the mass accuracy of this equipment both external and internal calibration 

are important. External calibration is carried out prior to analysis by recording the 

spectra of known reference compounds and assigning them to their exact masses by 

instrument data system to produce the correct calibration. On the other hand, internal 

calibration enables recalibration of the m/z scale using a single ion or a series of ions 

of known m/z from a reference compound that is introduced into the ion source at 

the same time as the analytes, while the analysis is being carried out47.  

 

 Tandem and hybrid mass analyzers 

Combining different analyzers in sequence is another trend in mass analyzer 

development, as versatility is increased and it allows performing multiple 

experiments. Tandem and hybrid mass analyzers are commonly used for tandem 

mass spectrometry (MS/MS) applications, where two analyzers are combined in 

series with a reaction chamber in between and the m/z of defined ions are measured 

before and after the reaction49. Triple-quadrupole (QQQ) or quadrupole-time-of-flight 

(Q-TOF) are some examples in which the combination of different analyzers make 

possible collecting mass spectra of the decomposition of an ion selected in the first 

analyzer45. 

 

QQQ is a tandem mass analyzer in which precursor ion selection, collision induced 

dissociation and mass analysis of the product ions take place in one type of mass 

analyzer, a quadrupole, in triplicate as showed in Fig. 3.12.  
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Fig. 3.12. Diagram of a triple quadrupole mass spectrometer. 

On the contrary, in hybrid instruments, the stages of mass analysis are carried out 

in two different types of mass analyzers, like Q-TOF (Fig. 3.13). Q-TOF instrument 

works as a modified QQQ instrument, where the Q3 quadrupole has been replaced 

by a TOF mass analyzer. Consequently, when measuring in MS mode, the Q1 

quadrupole is operated in radio frequency (RF) only mode and collision cell with low 

collision energy, whereas in MS/MS mode the Q1 quadrupole selects the precursor 

ion with unit-mass resolution and is fragmented in the collision cell. Q-TOF 

analyzers are widely used in structure elucidation, with the advantage over QQQ of 

performing accurate mass determination (< 5 ppm)49.  

 
Fig. 3.13. Diagram of a QTOF mass spectrometer. 

MS/MS instruments are able to operate in different analysis modes, such as product 

ion scan, precursor ion scan, neutral-loss scan or multiple reaction monitoring mode 

(see Fig. 3.14). 

 

In product ion scan Q1 is set to allow the transmission of a unique m/z (parent ion), 

which collides in Q2 to create fragments or product ions, which are scanned in Q3. 

Product ion scan is used in screening experiments to obtain the fragmentation 

patterns of particular compounds. 
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Precursor ion scan mode consists in letting precursor ions pass through Q1, all the 

precursor ions collide in Q2 to create product ions, from which only a fragment ion 

with a defined m/z is allowed to pass through Q3. Precursor ion scans are used in 

screening experiments where the same fragment ion is expected from a group of 

compounds.  

 

Regarding multiple reaction monitoring (MRM) mode, a precursor ion is selected in 

Q1, collides in Q2, and from all the products ion created, only defined m/z passes 

through Q3. MRM mode is commonly used for analytical methods aimed at 

quantification in MS/MS.  

 

Finally, in neutral loss scan, precursor ions scanned in Q1 collide in Q2 and Q3 is 

offset only for those compounds that give a fragment having an specific neutral 

loss. Neutral loss scans are used for screening experiments with a group of 

compounds giving the same loss49. 

 

Fig. 3.14. Analysis modes of a MS/MS instrument.  

 

 

3.3.2.3. Detectors 

The ions coming from the mass analyzer are then detected and transformed into a usable 

signal, that is, an electric current proportional to their abundance57. There are different 

types of ion detection devices, which are backed by fast electronics to enable the high-

speed data acquisition required in MS. Electron multipliers are based on the repeated 

emissions of secondary electrons resulting from the repeated collisions of energetic 

particles at a convenient surface and is the most widely used detection system. The 

electron multiplier is used in combination with quadrupole, ion-trap and sector instrument, 
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whereas TOF instruments usually work with microchannel plate (MCP) detectors instead. 

MCP detectors are arrays of miniature electron multipliers oriented parallel to one another. 

In addition, TOF instruments contain an analog-to-digital converters (ADC) or a time-to-

digital converter (TDC), in order to generate spectra from ion arrival events49.  

 

 

3.4.  STATISTICAL AND CHEMOMETRICAL APPROACH 

Metabolomic studies generate high-dimensional and complex datasets that remain 

challenging to handle and fully exploit58. Chemometric tools allow extracting the 

statistically relevant information, which might remain unseen with the naked eye, to 

differentiate between control individuals and patients suffering from a disease. Both 

univariate analysis and multivariate analysis techniques are routinely used to provide 

biological knowledge on the problem studied59. 

 

Univariate methods analyze only one variable at a time and include tests to compare 

different sets of samples, such as Student’s t-test or Analysis of Variance (ANOVA)59. 

Targeted and untargeted metabolomics data sets include tenths to hundreds of 

metabolites, which makes necessary to perform multiple test correcting to protect against 

the increasing probability of having false positives59. 

 

On the contrary, multivariate methods handle more than one variable at a time and 

check for the relations of two to hundreds or thousands of variables simultaneously. The 

possibility that one metabolite from a biological system contains the maximum information 

to distinguish between different conditions is limited, and a combination of changes in 

several metabolites, the so-called metabolite pattern, is more prone to store maximum 

information. Principal component analysis (PCA), an unsupervised method, and partial 

least squares discriminant analysis (PLS-DA), a supervised method, are the key methods 

in metabolomics59. In addition, some other more new methods, such as, sparse partial 

least squares discriminant analysis (SPLS-DA) are being used in metabolomics for variable 

selection and classification in one step60,61. Besides, hierarchical clustering, an 

unsupervised method have also been used in metabolomics for unsupervised analysis and 

outlier detection62. 

 

When comparing the results obtained from univariate and multivariate analysis methods, 

it is often thought that if relevant information is found in a set of metabolites, each of the 
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individual metabolites also contains information. However, this is not necessarily true, as 

often information is only present in the relations between metabolites, as a pattern59. 

 

Multivariate methods require the use of data pretreatment methods (see Table 3.2), like 

scaling and/or normalization. For instance, PCA or PLS are maximum variance projection 

methods and the use of non-normalized variables would provide stronger weights to 

variables with large variance and would be more likely to be addressed in the constructed 

model63. There are several scaling and normalization methods which stress different 

aspects of the experimental data and have both advantages and disadvantages64.  
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3.4.1. HIERARCHICAL CLUSTERING 

Natural pattern identification in data is one of the most important goals of chemometrics65. 

Hierarchical clustering is an unsupervised method that makes groups of samples according 

to the structure of high dimensional data sets, based on object-wise similarities or 

distances. Indeed, data often contains a hierarchical structure in which groups or clusters 

contain mutually exclusive sub-groups66.  

 

Hierarchical clustering is carried out by means of different algorithms. Single-linkage 

algorithm is based on taking the shortest distance between clusters. On the contrary, 

complete linkage clustering is performed using largest distances between clusters, that 

is, the distances of members of the same cluster must be small. Besides, average linkage 

clustering is an intermediate approach in which average distance between cluster 

members is used. Typically, single linkage algorithm leads to large clusters with a few 

small groups, or even individual samples, whereas complete and average linkage are more 

prone to provide more compact and rounded groups of samples66. Hierarchical clustering 

is used to find natural groupings of data as well as to identify outliers, data points very 

different from the rest of the data based on a set of measures67. 

 

Dendrograms are graphical representations to visualize the results from hierarchical 

clustering, which indicate the “distance” between different groups in the y-axis, whereas 

the connections show the joins found.  

 

 

3.4.2. PRINCIPAL COMPONENT ANALYSIS (PCA) 

PCA searches for common patterns in a dataset by establishing new directions and 

compressing the dataset into a lower number of variables, also known as principal 

components (PC) that maximize the variance. Using PCs a new coordinate system can be 

constructed where the data space is projected so that a new coordinate axis is built in the 

direction of the largest variance. Scores are the projection of the data onto this new 

coordinate system and loadings define the contribution of each original variable or 

metabolite to the components. Even if PCA is an unsupervised analysis method, the a 

priori knowledge can be used to colour objects in the scoreplot emphasizing potential 

patterns and/or quantitative gradients found in data64. 

 



METHODOLOGY	

 

 51	

Singular Value Decomposition (SVD) is a fast and numerically stable algorithm used to 

calculate principal components (see Equation 3.6). It works decomposing original data 

matrix (X) into three parts: an orthonormal matrix containing left singular vectors (U), a 

diagonal matrix containing singular values (D) and an orthonormal matrix containing right 

singular vectors (P). Superscript T means the transposition of a matrix68.  

X ൌ 	 ሺUDሻP୘ ൌ TP୘ 

Eq. 3.6.  

Score matrix (T) is obtained from the multiplication of U and D matrices and constitutes 

the coordinates in the space of the PC, whereas columns in P matrix represents loadings. 

The variance in X is the sum of the squared singular values, which represent the variance 

explained by each PC. PCs are ordered by explained variation, i.e. the first PC explains 

highest variation, followed by the second, the third, etc. No relevant information is found 

from a certain PC upwards and once selected the appropriate number of PCs, it is possible 

to build a reconstruction (X෩ሻof the original data matrix (X) up to the selected number of 

PCs, being T and P score and loading matrices and matrix E the residuals, as showed in 

Equation 3.7. 

X ൌ TP୘ ൌ X෩ ൅ E 

Eq. 3.7.  

Different strategies can be followed in order to assess the appropriateness of the chosen 

number of PCs. On the one hand, it is possible to plot the cumulative fraction of variance 

explained and set an arbitrary cut-off value, such as 80 or 90 % of variance. Variance 

calculation is showed in Equation 3.8. On the other hand, a Scree plot might be 

represented, which depicts the logarithm of variance explained versus PC number. The 

number of PCs for matrix reconstruction in Scree plots is selected according to a 

characteristic elbow or slope change showed graphically. 

VarሺPC୧ሻ ൌ 	
d୧
ଶ

∑ d୨
ଶ

୨ୀଵ
 

Eq. 3.8.  
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3.4.3. CLASSIFICATION METHODS 

Despite the fact that PCA is a very powerful explorative method, supervised classification 

methods, such as PLS-DA, are preferred. It is necessary to split the data randomly into 

training and test sets for classification error estimation. Indeed, if any information from 

test set is included into the model, error estimation would be biased and the results would 

be too optimistic. In addition, any scaling method must be performed after splitting data 

into training and test sets, and the test set needs to be scaled based on means and 

standard deviations from the training set.  

 

Expected classification performance or error of prediction should be obtained using cross 

validation or similar techniques. Cross validation deals with the idea of dividing data into 

different training and test sets, to avoid a performance dependent only in the random 

division of data. Cross validation works leaving out a certain part of data to be used as 

test set and the rest of data is used to build the model as a training set. After estimating 

the performance of the model, data set is again divided into new training and test set, 

leaving out a different part of data. This process is repeated once and again until all 

samples have been left out once and average performances are obtained (see Fig. 3.15). 

Different cross validation strategies can be followed. When size of the test set is one, this 

procedure is known as Leave-one-out (LOO) cross-validation. It is also possible to leave 

a larger fraction of data, by using a percentage of total data.  

 

 

Fig. 3.15. Division of data set into training sets and test sets for cross validation.  
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3.4.3.1. Traditional discrimination analysis methods 

A set of techniques are recognized under the header traditional discrimination analysis 

methods: maximum likelihood linear discriminant analysis (ML-LDA), Fisher linear 

discriminant analysis (Fisher-LDA), quadratic discriminant analysis (QDA) and k-nearest 

neighbours (kNN)69.  

 

ML-LDA consists on finding the cluster centres of each class and according to these 

midpoints, drawing separating hyperplanes between these centres. Samples are assigned 

to the class which contains the closest midpoint. The distance between samples and 

midpoints is measured according to the squared Mahalanobis distance. In this case, 

covariances (∑) needed for Mahalanobis are calculated using a pooled covariance matrix 

estimated from data by pooling the individual sample covariance matrices (Si). 

 
Fig. 3.16. An example of the calculation of a new sample according to its Mahalanobis distance to 
the centres of three different classes using ML-LDA.  
 

Regarding Fisher-LDA, it is similar to ML-LDA with the difference of finding linear 

combination of variables that maximizes the ratio of within-group sums of squares and 

between-group sum of squares. That is, this classification method finds a linear 

combination that leads to small distances within a class and large distances between 

classes. It should be noted that for two-group cases the same solution as for ML-LDA is 

achieved, whereas for more than two groups, the results will differ unless sample means 

are collinear.  
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Fig. 3.17. Summary of the algorithm used for Fisher-LDA classification. 

 

On the other hand, QDA works similar to ML-LDA with the difference that instead of a 

pooled covariance matrix, each class is described by its own covariance matrix.  

 

Fig. 3.18. Calculation of the classification of a new sample according to its Mahalanobis distance to 
the centres of three different classes using QDA.  

 

Concerning kNN, this technique is based on a completely different approach; samples are 

classified according to the class of the closest k number of samples following the majority 

vote. However, its main disadvantage is that in principle the whole training set comprises 

the model and should be saved for the predictions for new objects. This can be slow and 

may present memory problems, unless objects are removed to simplify the model. 
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Fig. 3.19. An example of the classification of a new sample according to k=1 and k=2 nearest 
neighbours.  

 

 

3.4.3.2. Partial least squares discriminant analysis (PLS-DA) 

PLS-DA method uses a classifier variable (typically 0 and 1, or -1 and 1 values) to describe 

the condition of subjects and predict it using the information found in the metabolite data 

set. PLS-DA classification method is based on partial least-squares regression (PLS). PLS 

does regression using latent variables (LV), which means that the number of LV to be 

used in a PLS-DA model should be optimized on the basis of classification performance, 

that is, the rate of correctly classified samples64.  

 

PLS-DA classification is based on PLS regression algorithm (see Eq. 3.9) and needs for at 

least meancentering data. X is used to define scaled data matrix, whereas Y is the matrix 

with the values to be predicted. Both, X and Y matrices contain score (T for X-scores and 

U for Y-scores) and loading matrices (P for X-loadings and Q for Y-loadings). The 

regression model is built using the reconstructed matrix (see Eq. 3.7) and during each 

iteration the variation associated with the estimated component is removed from data and 

the remainder (E for the deflated X matrix and F for the deflated Y matrix) is used to 

estimate the next latent variable68.  
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* Note that capital letters refer to the whole matrix and lower‐case letters to the part of 

the matrix corresponding to a defined latent variable. 

Eq. 3.9.  

Once predicted Y matrix, discriminant analysis is performed and samples are classified to 

a defined group according to the established threshold. For instance, if -1 value has been 

used for group A and 1 value for group B, the threshold to classify the samples would be 

0, and all the samples below 0 would be classified in group A, whereas samples above 0 

would correspond to group B.  

 

 

3.4.4. SPARSE PARTIAL LEAST SQUARES DISCRIMINANT ANALYSIS      

(SPLS-DA) 

SPLS-DA performs variable selection in the X data set with Lasso penalization and 

classification based on supervised framework in one step, i.e. the selection of a defined 

number of variables is performed according to the different classes of the samples70.  

 

SPLS-DA is used after optimizing two parameters: the number of latent variables (H) and 

the number of selected variables for each latent variables61. The number of latent 

variables  H=K–1 is usually advised in multiclass problems with K classes to obtain the 

most stable models70. Regarding the number of selected variables, it depends on the 
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complexity of data and it should be optimized taking into account model performance and 

stability61. 

 

To sum up, the improvement of technology has enabled the development of metabolomics 

as an analytical tool, which is an important source of new biomarkers for a variety of 

diseases. However, to be successful at biomarker discovery, careful planning of 

experiments, use of analytical instruments and statistical and chemometric analyses are 

essential71. 
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4.1. INTRODUCTION 

CKD is characterized by a progressive loss of renal function over a period of months or 

years that causes the accumulation of potentially toxic compounds. These compounds, 

also called uremic toxins, adversely affect biological functions and were collected by the 

European Uremic Toxin Work Group (EUTox) of the European Society for Artificial Organs 

in 2003 for the first time1,2 and updated last in 20123. The accumulation of uremic toxins 

is in relation with the alteration of different metabolic pathways, which may lead to an 

increase or decrease in concentration of some compounds4-6. 

 

Amino acids are known to participate in several metabolic pathways (e.g.: urea cycle7, 

arginine methylation8, citric acid cycle9, arginine-creatine10, amino acid biosynthesis11 or 

carbon metabolism12). Prior knowledge from literature shows that some amino acids, 

amino acid derivatives and related compounds from different metabolic pathways could 

be potential targets for CKD diagnosis in paediatrics8. 

 

There are 21 proteinogenic amino acids in eukaryotes, also called standard or classical 

amino acids, which are genetically encoded and are incorporated into proteins. Arginine, 

cysteine, glycine and methionine are some of these amino acids. Nonstandard amino acids 

are produced by metabolic conversions of free amino acids (e.g., citrulline), or by post-

translational modification (hydroxylation, methylation or carboxylation) of amino acids 

present in proteins13. Amino acids might also include new functional groups to become 

amino acid derivatives, such as, dimethylglycine, betaine, homocysteine, homoarginine, 

symmetric dimethylarginine, asymmetric dimethylarginine, S-adenosylmethionine and S-

adenosylhomocysteine.  

 

Fig. 4.1. Typical structure of -amino acids.  
 

Amino acids present in proteins contain one carboxyl group, one amino group, one 

hydrogen and a variable side chain (R) at a single -carbon atom. Therefore, C-atom is 

asymmetric in all these amino acids except for glycine, where the side chain is an 

hydrogen. Even if both L- and D-configurations are possible, almost all of the proteinogenic 

amino acids in nature have the L-configuration, with the exception of D-amino acids found 

in bacterial envelopes and in some antibiotics13,14.  
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4.2. METABOLIC PATHWAYS SUSPICIOUS OF BEING AFFECTED IN 

PAEDIATRICS WITH CKD: LITERATURE REVIEW 

Urea cycle, arginine methylation and arginine-creatine metabolic pathways are 

interconnected by arginine amino acid. A vast amount of amino acids and amino acid 

derivatives take part in these metabolic routes (see Fig. 4.2). 

 

Fig. 4.2. Arginine-creatine metabolic pathway, urea cycle and arginine methylation. AGAT: arginine-
glycine amidinotransferase, NOS: nitric oxide sintase, MAT: methionine adenosyltransferase, SAHH: 
SAH hydrolase, BHMT: betaine-homocysteine S-methyltransferase, PLP: pyridoxal phosphate, CBS: 
cystathionine beta synthase, γ-GT: gamma glutamil transpeptidase.  
 

When amino groups are not reused for the synthesis of new amino acids or other 

nitrogenous products, they are channeled into an excretory end product by means of urea 

cycle. Humans are ureotelic organisms, i.e. ammonia deposited in the mitochondria of 

hepatocytes is converted into urea, a less toxic substance, within the urea cycle. 

Afterwards, urea is conduced to the bloodstream and is finally excreted into urine by the 

kidneys15.  

 

On the other hand, even though the primary sequence of proteins is given by the genetic 

code, functional diversity of proteins is achieved by means of different post-translational 
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modifications, such a phosphorylation or methylation. The nitrogen of arginine within 

polypeptides can receive methyl groups in a process termed arginine methylation, acting 

as protein regulators16.  

 

Regarding arginine-creatine metabolic pathway, it aims at the synthesis of creatine, 

having the creatine/creatine-phosphate system an important role in the transmission and 

storage of phosphate-bound energy17. 

 

An in-depth study on the literature of the most meaningful metabolites of these metabolic 

routes has been carried out to evaluate the hypothesis that these interconnected 

metabolic pathways might be affected in paediatrics with CKD. Relevant research shows 

that several compounds from these interconnected pathways, including creatinine, may 

be up- or down-regulated. Evidences for increased or decreased levels of the following 

compounds in addition to creatinine (CNN) are listed in Table 4.2: Asymmetric 

dimethylarginine (ADMA), arginine (ARG), betaine (BET), citrulline (CIT), creatine (CTN), 

cysteine (CYS), dimethylglycine (DMG), glutathione (GSH), glycine (GLY), homoarginine 

(HARG), homocysteine (HCYS), methionine (MET), S-adenosyl homocysteine (SAH), S-

adenosyl methionine (SAM) and symmetric dimethylarginine (SDMA). 
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Table 4.1. Evidences of increased or decreased plasmatic levels of the compounds taking part in 
the arginine-creatine pathway, arginine methylation and urea cycle. 

  Population  Blood concentrations in CKD  Author  Year 

ADMA 

Paediatrics  Increased in transplanted patients  Andrade8  2011 

Adults  Increased, being correlated with serum creatinine and GFR  Fliser18  2005 

Adults 
Significantly elevated in all patients comparing to healthy 

controls 
Fleck19  2003 

Adults  Increased (doubled levels in ESRD)  Marescau20  1997 

ARG 

Paediatrics  Low ARG/ADMA coefficients  Andrade8  2011 

Sprague‐
Dawley 

Synthesis decreased in kidney (could be compensated in 
other organs) 

Chen21  2010 

Adults  Decreased in dependence on the degree of kidney disease  Fleck19  2003 

BET 
Adults  Increased in uremic patients  Mutsaers22  2013 

Adults  Decreased in renal disease  Lever23  1994 

CIT 
Sprague‐

Dawley rats 
Moderately increased  Chen21  2010 

CTN  Adults  Increased in uremic patients in treatment with dialysis  De Deyn24  1986 

CYS  Adults 
Both total and free cysteine increased in both CKD patients 

receiving and not receiving RRT 
Suliman25  1997 

DMG 
Adults  Increased in 3‐4 CKD stage in comparison with controls  Mutsaers22  2013 

Adults 
Increased as renal function declined. 2‐fold to 3‐fold 

elevated in dialysis patients 
McGregor26  2001 

GSH  Paediatrics 
Decreased in children on peritoneal dialysis in comparison 

with a control children group 
Zwolinska27  2009 

GLY 

Paediatrics  Increased in transplanted children  Andrade8  2011 

Adults 
Increased in pre‐hemodialysis and in those patients treated 

with CAPD 
Chuang28  2006 

Male 
Wistar rats 

Slightly increased in CKD with and without acidosis  Holecek29  2001 

HARG 

Adults 
Low HARG concentration might be an early indicator of 

CKD 
Drechsler30  2013 

Adults  HARG declines with advancing renal disease  Ravani31  2013 

Adults  Decreased  Marescau20  1997 

HCYS 

Paediatrics 
HCYS was increased in transplanted children and in children 

underlying CKD 
Andrade8 
Andrade2 

2011 
2008 

Paediatrics  Total plasma HCYS was increased  Merouani32  2001 

Paediatrics 
Both total and free HCYS increased in both CKD receiving 

and not receiving RRT 
Suliman25  1997 

MET 

Paediatrics 
Decreased in haemodialyzed patients in comparison with a 

control group 
El Sawy33  2012 

Male 
Wistar rats 

Decreased in those suffering from acidosis and not 
suffering from acidosis in comparison with controls 

Holecek29  2001 

Adults 
Decreased in the CAPD and haemodialyzed patients and 

tended to be low in nondialyzed uremic patients 
Suliman25  1997 

SAH 

Paediatrics  Increased in transplanted children  Andrade8  2011 

Adults  Increased  Loehrer34  1998 

Adults  Increased  Perna35  1996 

SAM  Adults 
SAM increased and SAM/SAH methylation index decreased 

in ESRD patients 
Loehrer34  1998 

SDMA 
Adults  Increased, correlates well with serum CNN and GFR  Fliser18  2005 

Adults 
Significantly elevated in all patients (receiving and not 
receiving RRT) in comparison with healthy controls 

Fleck19  2003 

 



Targeted	metabolomics	analysis	of	amino	acids	and	related	compounds	using	LC‐QTOF‐MS	

 

 69	

4.3. TARGETED METABOLOMICS WORKFLOW 

Targeted metabolomics refers to a strategy in which a previously defined list of metabolites 

is measured motivated by specific biochemical questions or hypotheses36,37. These pre-

defined metabolites can be associated with specific pathways, enzyme systems or a 

complete metabolite class38. As the chemical properties of the selected targeted 

compounds are previously known, specific analytical methods and sample clean-up 

processes are focused on these properties. This often allows a significant reduction of 

matrix effects and interferences from accompanying compounds, thus calling for extreme 

sensitivity39,40.  

 

Analytical strategies for targeted metabolomics include the quantitative analysis of defined 

metabolites both in controls and in patients, being triple quadrupole mass spectrometry 

(QQQ) mainly applied for this purpose. Hybrid instruments, in which the third quadrupole 

is replaced by a time-of-flight (QTOF) or linear ion trap (QTRAP) are also used to perform 

structural elucidation as well as for quantification purposes41,42. In addition, a liquid 

chromatography (LC) or gas chromatography (GC) separation step prior to the mass 

spectrometry detection is highly recommended in order to reduce matrix related ion 

suppression and to be able to quantify separately isobaric and isomeric compounds38.  

 

Targeted metabolomics workflow usually requires the following steps: analytical method 

development using standards, sample preparation, validation of the analytical method, 

real sample treatment and analysis, quantification of the analytes, data analysis and 

interpretation of the results. Instrumental analysis, sample preparation and data analysis 

should be optimized calling for extreme sensitivity in the quantification of the targeted 

metabolites and for a proper biological interpretation of the results. 

 

An example of a targeted metabolomics workflow is showed in Figure 4.3. 



CHAPTER	IV	

 

 70	

 
Fig. 4.3. Targeted metabolomics workflow. 

 

 

4.4. STUDY’S GOAL 

The main objective of this study deals with finding amino acids, amino acid derivatives 

and related compounds suspicious of being altered in paediatrics with CKD and that might 

be used as effective biomarkers for the early diagnosis. To accomplish this goal, a targeted 

metabolomics analytical method needs to be developed using LC-MS equipment. 

Afterwards, this method will be applied to plasma samples from paediatrics suffering from 

CKD and controls, and data analysis will be necessary to evaluate the results and identify 

potential biomarkers.  

 

This targeted metabolomics method will focus on the determination and quantification of 

16 metabolites: ADMA, ARG, BET, CIT, CTN, CNN, CYS, DMG, GSH, GLY, HARG, HCYS, 

MET, SAH, SAM and SDMA. All of these compounds are involved in the arginine-creatine 

metabolic pathway or to related metabolic pathways, such as the urea cycle or methylation 

of arginine (see Fig. 4.2). L-configuration amino acids will be selected for method 

development, so unless explicitly stating the opposite, when omitting the information 

about configuration, L-configuration is implied in this manuscript. 

 

For the development of an analytical method for quantification of these metabolites in 

plasma, different analytical techniques have been considered: GC-MS, HILIC-MS and ion-

pairing-reverse-phase LC-MS. GC-MS was discarded as there is a need for derivatization, 

reagent elimination and solvent interchange being plasma an aqueous matrix43. In 
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addition, using HILIC-MS the simultaneous analysis of polar and non-polar compounds is 

sometimes difficult, and limited stability and column bleeding have been reported44-46. On 

the contrary, the use of an ion pairing reagent is advantageous as it allows simultaneous 

determination of polar and non-polar compounds. Besides, using ion pairing reagent 

instead of derivatization, errors introduced by derivative instability, side reactions and 

interferences caused by the presence of degradation products and chromatography 

resolution loss are reduced47,48. The main drawback of using ion-pairing LC-MS is that it 

may cause ion suppression or contamination of ion source49. Taking into account the 

benefits and handicaps of these analytical methods, the use of ion pairing RPLC-MS was 

selected to develop a targeted metabolomics method that aims at these amino acids and 

amino acid derivatives. 

 

 

4.5. DESCRIPTION OF TARGETED METABOLITES 

According to the literature review from section 4.2, 16 metabolites including CNN have 

been selected for further study. The characteristics of each of the selected analytes are 

detailed below to understand the background and the biochemical properties of each of 

them: 

 

 ARGININE (ARG):  

ARG is a non-essential amino acid that fulfills many functions such as protein biosynthesis, 

being an intermediate in the urea cycle and being the precursor of some compounds such 

as nitric oxide, ADMA and SDMA dimethylarginines, CTN, agmatine and other 

polyamides50. In addition, ARG is present in blood, saliva, sweat and urine, as well as in 

many other organs and tissues including kidney51.  

 
Fig. 4.4. Molecular structure and molecular weight (MW) of ARG. 
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 ASYMMETRIC DIMETHYLARGININE (ADMA): 

ADMA is derived from ARG and present in blood and urine. ADMA is produced during 

protein methylation, a post-translational mechanism in which protein modification in 

performed. More specifically, methyl groups are transferred from some other compounds 

like SAH52, which is also another analyte of interest in this study. ADMA is eliminated in 

its unaltered form as well as after being metabolized by the action of dimethylarginine 

dimethylaminohydrolase (DDAH) enzyme in the kidneys53-56.  

 
Fig. 4.5. Molecular structure and molecular weight of ADMA. 

 

 BETAINE (BET): 

Betaine, also known as glycine betaine or N,N,N-trimethylglycine, is a small trimethylated 

amino acid, which is found in blood, urine, breast milk and in several tissues including 

kidney57. BET is present in the organism by the food intake or by oxidation of endogenous 

choline58 and has two key functions in mammals. On the one hand, it works as an osmolite 

that is accumulated in almost all of the tissues to help in cell volume regulation and 

protects the kidneys from possible cellular damage that might occur by hypertonicity58,59. 

On the other hand, BET is a methyl donor, guaranteeing a proper hepatic function, cellular 

replication and detoxification reactions58,60.  

 
Fig. 4.6. Molecular structure and molecular weight of BET. 

 

 CITRULLINE (CIT): 

CIT is a derivative amino acid, that is, it is produced by metabolic conversions of free 

amino acids13. CIT can be found in plasma, urine, sweat and saliva, as well as in different 

tissues and organs like the kidney61. It is originated from ornithine and carbamoyl 

phosphate, in one of the central reactions of the urea cycle (see Fig. 4.2) as well as from 

ARG in a different reaction62.  
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Fig. 4.7. Structure and molecular weight of CIT.  

 

 CREATINE (CTN): 

CTN is a nitrogenous organic acid derived from guanidinoacetate and SAM. In humans 

CTN can be found in blood, urine, sweat, saliva, breast milk and in many tissues including 

the kidneys63. It is involved in creatine-creatine phosphate energy transfer as a regulator 

of ATP/ADP cytosolic ratio in tissues with high or variable use of ATP, such as cardiac and 

skeletal muscle64. CTN is metabolized to CNN, which is excreted by the kidneys65.  

 
Fig. 4.8. Structure and molecular weight of CTN. 

 

 CREATININE (CNN): 

CNN is the product of decomposition of creatine phosphate in muscle, catalyzed by 

creatinine amidohydrolase2. CNN is usually produced in a constant rate and depends on 

the muscle mass. It is estimated that 50 mg are generated per kg of muscle daily. Then, 

this compound is transferred through plasma to the kidneys where it is eliminated by 

glomerular filtration and partial tubular excretion66. CNN can be found in almost all the 

body fluids, such as blood, urine, sweat, saliva and breast milk, and in many tissues and 

organs like kidney67. If kidneys are impaired, CNN filtering is deficient and thus, serum 

creatinine levels (SCr) increase66,67. 

 
Fig. 4.9. Structure and molecular weight of CNN. 
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 CYSTEINE (CYS): 

CYS is a sulfur containing amino acid or aminothiol, which can be found in blood, urine, 

saliva, sweat and some other tissues, such as kidney68,69. Regarding the biochemical 

properties of CYS, its thiol group undergoes oxidation/reduction reactions, so that if CYS 

is oxidized cystine originates, a compound formed by two CYS residues gathered together 

through a disulfide bond. This reaction is reversible and cystine reduction can regenerate 

two CYS molecules69. CYS oxidyzes to cystine easily in extracelular oxigenated solution, 

due to the fact that cysteine sulfhydryl radicals are deprotonated in physiologic pH, thus 

increasing its reactivity70. CYS transport in the organism is carried out mainly by GSH, 

which will also be studied in current targeted metabolomics method71,72.  

 
Fig. 4.10. Structure of CYS and cysteine-cystine reaction. 

 

 DIMETHYLGLYCINE (DMG): 

DMG is an amino acid derivative present in blood, urine, saliva and tissues like liver or 

kidneys73. It is produced from betaine and homocysteine as a consequence of a methyl 

group transference58. Accumulation of DMG, could inhibit the activity of betaine-

homocysteine S-methyltransferase enzyme, leading to hyperhomocysteinemia in some 

cases26. DMG degradation occurs in the mitochondria, being GLY the ultimate metabolite58.  

 
Fig. 4.11. Molecular structure of DMG and its molecular weight.  

 

 GLYCINE (GLY): 

GLY is a non-essential amino acid, located in biofluids like blood, sweat, saliva, urine, bile 

and feces, in addition to different organs and tissues, such as kidneys74. As showed in 

Figure 4.2, GLY is actively involved in various reactions in the arginine-creatine metabolic 

pathway, such as the synthesis of GSH or the reaction of GLY and ARG leading to ornithine 

and guanidinoacetate, catalized by AGAT enzyme8,68.  
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Fig. 4.12. Structure and molecular weight of GLY.  

 

 GLUTATHIONE (GSH): 

Glutathione or γ-glutamyl-cysteinyl-glycine is a water-soluble tripeptide composed of 

glutamic acid, GLY and CYS, which can be found in blood, urine and saliva75. GSH 

represents the greatest active non-enzymatic intracellular antioxidant defense, acting as 

a scavenger of reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl 

radical, providing them reducing equivalents76,77. GSH might be oxidized combining two 

reduced GSH molecules by means of a disulfide bond, thus obtaining one oxidized 

glutathione homodimer (GSSG). This reaction is reversible and GSSG molecule might be 

reduced to GSH in a reaction mediated by glutathione reductase76. In addition, GSH can 

bind to proteins, resulting in the formation of glutathionylated proteins78. A transpeptidase 

located in the kidneys, γ-glutamyl-transpeptidase (γ-GT), is the major responsible for GSH 

elimination from plasma79. 

 
Fig. 4.13. Molecular structure of GSH where the molecular weight of this tripeptide and its three 
residues are indicated.  

 

 HOMOARGININE (HARG):  

HARG is an amino acid derivative with endogenous origin, that can be found in blood and 

urine80. This compound is excreted through the kidney, where transamination from lysine 

to HARG occurs81. It has to be noted that HARG protects against cardiovascular disorders 

working as a precursor of nitric oxide, a substance related to reduction of endothelial 

dysfunction82-84. 

 
Fig. 4.14. Molecular structure of HARG and its molecular weight. 
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 HOMOCYSTEINE (HCYS): 

Homocysteine is a sulfur containing amino acid, originated from dietary MET 

demethylation85,86. This analyte is present in blood, urine and saliva. Besides, multiple 

tissues like the adipose, brain, fibroblasts, intestine, kidney, liver, muscle tissue, nervous 

tissue, pancreas and placenta among others also contain homocysteine87. Approximately 

1 % of homocysteine is estimated to be in plasma in its reduced form (HCYS), whereas 

the rest is expected in its oxidized form. From oxidized homocysteine, approximately 5 % 

is present as a homocysteine dimer, homocystine, another 5-10 % as HCYS-CYS dimmers 

and the remaining 80-90 % would be bound to proteins by disulfide bonds88. Total fasting 

plasma levels reflect intracellular metabolism and cellular export of HCYS89. Intracellular 

HCYS can be degraded into CYS, through the transulfuration metabolic pathway, which 

takes place in liver and kidney cells86.  

 
Fig. 4.15. Structure and molecular weight of HCYS.  

 

 METHIONINE (MET): 

MET is an essential amino acid, obtained from diet and required for normal growth and 

development of the organism. Regarding its location, this analyte can be found in the 

following biofluids: blood, urine, saliva and sweat90. The most important functions of MET 

include being a substract for protein synthesis and an intermediate compound in 

transmethylation reactions, where it works as a methyl donor91. Finally, MET is 

metabolized into SAM by methionine adenosyl transferase enzyme (MAT).  

 
Fig. 4.16. Structure and molecular weight of MET.  

 

 S-ADENOSYLHOMOCYSTEINE (SAH): 

SAH is a potent inhibitor of methylation reactions and could also be indirectly responsible 

for transmetilation reactions in tissues92,93. SAH may be detected and quantified in blood 

and urine93. It has to be highlighted that this metabolite is also present in several tissues, 

such as kidney and liver. Indeed, kidneys play an important role in SAH level regulations, 
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as they are responsible for its elimination from circulation. SAH is metabolized into HCYS 

and adenosine94. 

 
Fig. 4.17. Formula and molecular weight for SAH. 

 

 S-ADENOSYLMETHIONINE (SAM): 

SAM is the product of metabolization of MET and can be found in biofluids like urine and 

blood, in addition to different organs such as kidneys95. SAM is actively involved in 

transmethylation reactions, where a methyl group is transferred from SAM methyl donnor 

to an acceptor compound and SAH demethylated compound is obtained96,97. SAM/SAH 

ratio is called methylation index and can be altered by SAM decrease, SAH increase or 

both8,98.  

 

Fig. 4.18. Structure and molecular weight of SAM. 

 

 SYMMETRIC DIMETHYLARGININE (SDMA): 

SDMA is the biologically inactive stereoisomer of ADMA18, which can be found in blood, 

urine, saliva and kidneys99. SDMA acts as an endogenous inhibitor of arginine-nitric oxide 

pathway, competing with ARG to introduce into cells56. SDMA synthesis is a two-step 

methylation process starting from ARG, in which SAM acts as a methyl donor100-102. 

 
Fig. 4.19. Molecular structure of SDMA and its molecular weight. 
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4.6. MATERIALS AND EQUIPMENT 

4.6.1. STANDARDS AND REAGENTS 

All the solvents used for the mobile phase had spectral purity for LC-MS and reagents had 

analysis quality. For mobile phase and standard preparation acetonitrile from Scharlau 

(Sentmenat, Spain), methanol from Scharlau (Sentmenat, Spain), ammonium formate 

from Fluka Analytical, Sigma-Aldrich (Steinheim, Germany), perfluoroheptanoic acid 96 % 

from Across Organics (New Jersey, USA) and hydrochloric acid from Merck 25 % 

(Darmstadt, Germany) were acquired. Ultra-high purity water was obtained from tap 

water pre-treated by Elix reverse osmosis, and subsequent filtration by a Milli-Q system 

from Millipore (Bedford, MA, USA). 

 

The analytical standards used were obtained from different manufacturers. L-methionine, 

glycine, L-arginine, L-homocysteine, NG,NG′-dimethyl-L-arginine di(p-

hydroxyazobenzene-p′-sulfonate) (SDMA), NG,NG-dimethylarginine dihydroclorhide 

(ADMA), S-adenosyl-L-methionine (SAM), S-adenosyl-L-homocysteine (SAH) and 

citrulline from Sigma-Aldrich (Steinheim, Alemania). Betaine, reduced glutathione, L-

cysteine and creatine were supplied by TCI (Tokyo, Japan). On the other hand, N,N-

dimethylarginine and homoarginine were purchased from Fluorochem (Hatfield, United 

Kingdom). Creatinine was obtained from Alfa Aesar (Karlsruhe, Germany) manufacturer. 

Regarding isotopically labelled compounds creatine-d3 H2O was obtained from CDN 

Isotopes (Quebec, Canada), NG,NG’-dimethyl-L-arginine-d6 and creatinine-d3 were both 

supplied by Toronto Research Chemicals, TRC-Canada (North York, Canada) and 

glutathione-13C215N obtained from Cambridge Isotope Laboratories (Andover, MA, USA).  

 

In addition, dithiothreitol and 2-mercaptoethanol thiol reducing agents were obtained from 

Fisher Scientific (Pittsburgh, PA, USA) and Sigma-Aldrich (Steinheim, Germany), 

respectively. Synthetic Serasub® serum from CST Technologies (Great Neck, NY, USA) 

was also purchased to be used as a surrogate matrix.  

 

Concerning different solid phase extraction cartridges used, Oasis MCX 3 cc, 60 mg 

supplied by Waters (Milford, MA, USA) and Hybrid SPE Phospholipid Ultra 30 mg/1 mL 

from Supelco (Bellefonte, PA, USA) were assayed.  
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4.6.2. INSTRUMENTAL ANALYSIS 

The development of the LC-MS based targeted metabolomics analytical method has been 

carried out in a HPLC Agilent 1200 Series system coupled to a hybrid quadrupole-time of 

flight (LC-QTOF) mass spectrometer Agilent 6520 from Agilent Technologies (Santa Clara, 

CA, USA). This MS detector operated in low mass range (1700m/z), at 2 GHz extended 

dynamic range, and centroid mode was used for data collection and storage. LC-QTOF 

instrument gave a resolution greater than 10000 full widths at half maximum (FWHM) at 

118 m/z and greater than 20000 FWHM at 1522 m/z. MS spectra were acquired with a 

scan rate of 2.2 spectra/s in MS mode and with a scan rate of 3 spectra/s in MS/MS mode.  

 
Fig. 4.20. LC-QTOF equipment used in this study. 

Mass accuracy in LC-QTOF is guaranteed by means of direct infusion into the source of 

purine (121.0509 m/z) and HP-921 (922.0098 m/z), enabling continuous internal 

calibration during analysis and ensuring accuracy and reproducibility.  

 

During method optimization 3 different chromatographic columns were assayed: Gemini-

NX 110A C18 (4.6 x 150 mm, 5 µm) from Phenomenex (Torrance, CA, USA), Poroshell 

120 EC-C18 (4.6 x 100 mm, 2.7 µm) from Agilent (PA, USA) and Zorbax Eclipse plus C8 

(2.1 x 150 mm, 5 µm) from Agilent (PA, USA). 

 

Mobile phases were filtered through de Millipore Omnipore (Watford, Ireland) 0.1 μm 

filters and degassed with a Digital Ultrasonic Cleaner CD-4820 (Medellín, Colombia) 

ultrasonic system. The pH from the mobile phase was measured with a GLP 21 Crison pH-

meter (Alella, Spain). 
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4.6.3. PREPARATION OF STANDARD SOLUTIONS 

First of all, stock standard solutions containing around 1000 mg/L were prepared and from 

these solutions individual standard solutions of 1 mg/L, 2 mg/L and 5 mg/L were made 

for precursor ion identification. Stock solutions of MET, GLY, ARG, CYS and GSH stock 

standard solutions were dissolved in water. In order to contribute to their stability, BET, 

CTN, CIT, DMG, HARG, CNN, SAH, HCYS, SAM and ADMA were prepared in 0.01 N of HCl. 

Finally, SDMA was dissolved in methanol. Concerning internal standards, creatinine-d3 and 

SDMA-d6 were prepared in methanol, whereas creatine-d3 and glutathione-13C215N were 

dissolved in water. These solutions were stored frozen at -40ºC.  

 

Intermediate mixed solutions were prepared weekly in ammonium formate 5 mM and 

stored frozen in aliquots. Working solutions were obtained from intermediate mixed 

solutions for analytical methodology and sample treatment optimization. Due to the 

observed degradation of working solutions at room temperature, there was a need for 

replacing them daily with frozen intermediate solution.  

 

Calibration standards were prepared in pooled plasma made of CKD and control samples, 

which had been previously quantified by standard addition and contained: 159 ng/mL 

ADMA, 14.3 µg/mL ARG, 3.1 µg/mL BET, 2.8 µg/mL CIT, 9.7 µg/mL CTN, 15.2 µg/mL 

CNN, 13.6 µg/mL CYS, 1.0 µg/mL DMG, 3.2 µg/mL GSH, 1.8 µg/mL GLY, 0.4 µg/mL  

HARG, 0.5 µg/mL HCYS, 2.7 µg/mL MET, 36 ng/mL SAH, 55 ng/mL SAM and 291 ng/mL 

SDMA. Pooled plasma was doped to yield concentrations at different ranges depending on 

the compound (see section 4.8.1).  

 

Similarly, quality control samples (QC) consisted in a pooled plasma quantified 

beforehand, unspiked and spiked at low, medium and high levels. Unspiked plasma 

contained: 95 ng/mL ADMA, 10.6 µg/mL ARG, 1.2 µg/mL BET, 1.7 µg/mL CIT, 4.4 µg/mL 

CTN, 5.2 µg/mL CNN, 7.9 µg/mL CYS, 0.8 µg/mL DMG, 1.6 µg/mL GSH, 1.3 µg/mL GLY, 

0.6 µg/mL HARG, 0.4 µg/mL HCYS, 1.3 µg/mL MET, 17 ng/mL SAH, 16 ng/mL SAM and 

98 ng/mL SDMA. High QC consisted in the addition of 12.5 µg/mL of GSH, GLY, DMG, BET, 

CTN, MET and CNN, 75 µg/mL of CYS, 25 µg/mL of ARG and CIT, 2.5 µg/mL of HARG and 

HCYS, 0.4 µg/mL of ADMA and SDMA, and 0.25 µg/mL of SAH and SAM. Regarding low 

and medium QC, same pooled plasma was used but spiked with the 10 % and the 50 % 

of the concentration added for each analyte in high QC level. 
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4.6.4. SUBJECTS AND SAMPLING 

Thirty-two patients suffering from CKD, aged 3-18 years, and twenty-four control patients, 

aged 6-19 years were recruited for the study. Paediatrics suffering from CKD were at 

different degrees of the disease, as showed in Table 4.2. All paediatric CKD patients were 

followed up in Cruces University Hospital (Bilbao, Spain) and were clinically stable at the 

time of study. The exclusion criteria for this study included patients with anuria, 

hepatopathy and/or insulin-dependent diabetes mellitus. Regarding control patients, they 

met the following inclusion criteria: healthy children who had a minor surgery in Cruces 

University Hospital. 

Table 4.2. Characteristics of the population subjected to study.  

 

Blood samples were collected in the morning after an overnight fasting. Samples were 

cooled immediately after blood collection in an ice-water bath and centrifuged at 1000 g 

for 5 min at 4ºC. Finally, samples were stored at -80ºC until sample treatment and 

analysis. 

Ethics Committee of Clinic Research of Cruces Hospital approved the study protocol and 

patients’ parents gave written informed consent. 

 

 
4.7 OPTIMIZATION OF THE ANALYTICAL METHOD 

In general, amino acids, amino acid derivatives and related compounds mentioned above 

are characterized for being small compounds with polar nature, even though there are 

some exceptions in size, e.g. amino acids bounded to nucleosides. 

 

Traditionally, the most popular techniques for the analysis of amino acids and amino acid 

derivatives have been the following ones:  
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 Cation-exchange chromatography with ultraviolet detector (IEC-UV), recently 

replaced by automatic analyzers 

 Reverse-phase liquid chromatography coupled to fluorescence (LC-FLD), 

ultraviolet (LC-UV), diode array (LC-DAD) or mass spectrometry detectors (LC-

MS) 

 Hydrophilic interaction liquid chromatography coupled to mass spectrometry 

(HILIC-MS) 

 Ion-pairing-reverse phase liquid chromatography coupled to mass spectrometry 

(IP-LC-MS) 

 Gas chromatography coupled to mass spectrometry (GC-MS) 

 

The most relevant research studies published over the last 15 years about amino acid and 

amino acid derivative determination are gathered in Table 4.3. 

According to literature, a decade ago GC-MS using different derivatizers103-106, ion-pairing 

LC-MS techniques47,107,108 and automatic analyzers based on classical cation-exchange 

chromatography with ultraviolet detection109,110 were the most frequently used analytical 

techniques for amino acid determination. However, recent research studies show that 

trend during the last years goes towards using LC-MS techniques, either HILIC111-114 or 

ion-pairing RPLC115,116.  
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Table 4.3. Literature review on analytical methods used for the analysis of amino acids, amino acid 
derivatives and related compounds.  

Analytes  Reagent  Analytical technique  Author  Year 
CYS and GSH  ‐  HILIC‐ LC‐ESI‐QQQ  Cao111  2015 

CNN  Ethylcloroformate  RP‐LC‐UV  Leung117  2014 

CIT and ARG  PFHA  UHPLC‐ESI‐LTQ  Oosterink115  2014 

HCYS, SAH and SAM  ‐  HILIC‐LC‐Q‐Orbitrap  Ngo112  2014 

ARG  MSTFA/MBTFA  GC‐MS  Yoon118  2013 

ARG, ADMA, SDMA, HARG  ‐  HILIC‐LC‐ESI‐QQQ 
Martens‐

Lobenhoffer113,119,120 

2013, 
2012, 
2007 

GLY  ‐  HILIC‐LC‐ESI‐QQQ  Tang121  2012 

ADMA and SDMA  PFPA and methanol  GC‐MS  Tsikas122  2011 

HARG  1‐butanol  RP‐LC‐MS  Atzler,123  2011 

CTN, CNN, CIT, BET  ‐  HILIC‐UPLC‐TOF‐MS  Spagou114  2011 

ARG, ADMA, SDMA and CIT  ‐  HILIC‐LC‐ESI‐QQQ  Brown124  2011 

ARG, CYS, HCYS, CNN, MET, 
GLY and CIT 

Ninhydrin, OPA, 
MTBSTFA 

Biochrom 30 (IEC‐UV), 
RP‐LC‐MS and GC‐MS 

Andrade8  2011 

ARG, CIT, GLY, MET and CYS  HFBA  UHPLC‐APCI‐QQQ  Harder116  2011 
BET, DMG  ‐  HILIC‐UPLC‐ESI‐QQQ  Kirsch125  2010 

ARG, GLY and MET  FMOC  RP‐LC‐DAD/FLD  Jámbor126  2009 

ARG  Ninhydrin  Biochrom 30 (IEC‐UV)  Loscos110  2008 

ARG, CYS, CIT, GLY, HCYS and 
MET 

Ninhydrin  Beckman 7300 (IEC‐UV)  Dietzen109  2008 

GLY and MET  HFBCF y PFPCF  GC‐MS  Husek106  2008 

SAM  ‐  HILIC‐LC‐QTRAP  Wang127  2008 

GLY, ARG and MET  OPA  RP‐LC‐FLD  Yokoyama128  2008 

ADMA  PFPA  GC‐MS  Beckmann105  2008 

CIT  HFBA and propanol  GC‐MS  Rougé104  2008 

GLY and MET  MSTFA  GC‐MS  Kaspar103  2008 

CTN and CNN  ‐ 
HILIC‐LC‐UV/ ESI‐ 

MicroTOF 
Godejohann129  2007 

GLY, CYS, MET, ARG and CIT  PFHA  LC‐ESI‐TOF  Armstrong107  2007 

GLY, DMG, CYS, HCYS, MET, 
ARG, CIT, GSH, SAM and SAH 

PFHA  LC‐ESI‐QQQ  Piraud47  2003 

GLY, CYS, MET, ARG and CIT  PFHA and TCA 
LC‐turboionspray (TIS)‐

QQQ 
Qu108  2002 

PFHA = perfluoroheptanoic acid, MSTFA = N‐Trimethylsilyl‐N‐methyl trifluoroacetamide,  
MBTFA = N‐Methyl‐bis(trifluoroacetamide), OPA = o‐phthaldialdehyde, HFBA = Heptafluorobutyric acid,     
MTBSTFA = N‐Methyl‐N‐tert‐butyldimethylsilyltrifluoroacetamide, HFBCF = Heptafluorobutyl chloroformate,  
PFPCF = 2,2,3,3,3‐pentafluoropropyl chloroformate, FMOC = Fluorenylmethyloxycarbonyl 

 

Taking into account the advantages and inconveniences of each of these techniques 

(described in section 4.4) in addition to the trend towards using LC-MS techniques, ion 

pairing RPLC-MS has been selected to develop a new targeted metabolomics method by 

means of LC-QTOF equipment. This development includes the optimization of the 

chromatographic variables, selection of mass spectrometry variables as well as the 

optimization of sample treatment.  
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4.7.1. SELECTION OF THE CHROMATOGRAPHIC VARIABLES 

The first step consisted in the analysis and characterization of the sixteen analytes under 

study, one by one, obtaining their retention times and their characteristic m/z. The 

preliminary assays were carried out using 5 mM ammonium formate and 0.5 mM PFHA in 

aqueous phase (A) and acetonitrile in organic phase (B) for chromatographic separation. 

In addition, ESI interface in positive ion mode and the following mass spectrometry 

conditions were set: capillary voltage, 3000 V; drying gas temperature, 325 ºC; drying 

gas flow 10 L/min; nebulizer pressure, 40 psig; and fragmentor voltage, 125 V. In all 

cases, the protonated form of each metabolite, [M+H]+, was obtained and exact masses 

for the analytes of interest are showed in Table 4.4.  

Table 4.4. Molecular formulas, molecular exact masses, ionization and accurate m/z ratios in MS for 
analytes of interest.  

 

 

4.7.1.1. Column 

Regarding that these analytes are characterized for being in general small polar 

compounds and some of them hardly retain, according to preliminary experiments carried 

out, three different chromatographic columns were assayed: Gemini-NX 110Å C18 (4.6 x 

150 mm, 5 µm) from Phenomenex (Torrance, CA, USA), Poroshell 120 EC-C18 (4.6 x 100 

mm, 2.7 µm) and Zorbax Eclipse Plus C8 (2.1 x 150 mm, 5 µm). First step consisted in 

analyzing individually all the analytes using these columns to get their retention times. 
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First of all, Gemini-NX 110Å C18 was experimented and a number of different mobile 

phase gradient programs were studied. However, as a consequence of the similarity of 

some of the analytes of interest, multiple amino acids coeluted. In addition, peak 

resolution was not good and wide peaks were obtained. For that reason, different column 

temperatures were assayed to check whether peak shape could be improved using higher 

temperatures: 30ºC, 35ºC and 40ºC. Nevertheless, due to the impossibility to enhance 

the resolution of the peaks to an acceptable level, testing a different chromatographic 

column was decided. 

 

Zorbax Eclipse Plus C8 (2.1 x 150 mm, 5 µm) was assayed next. Results for this column 

were better than for Gemini-NX as it allowed a better separation. However, peak resolution 

was still insufficient and therefore, experimenting with a different column was decided.  

 

Finally, Poroshell 120 EC-C18 column (4.6 x 100 mm, 2.7 µm) was tested. From the first 

moment, this column thermostatized at 30 ºC proportioned a higher resolution and at the 

same time improved the retention of different compounds taking into account their 

similarity and their trend to coelute or to elute at similar retention times. For all these 

reasons, Poroshell 120 EC-C18 column was selected and different gradients and flow rates 

were assayed, as detailed in the following section.  

 

4.7.1.2. Composition of mobile phase 

Due to the fact that amino acids and amino acid derivatives are polar compounds that in 

general hardly retain, the use of ion-pairing liquid chromatography was selected for 

separation purposes. Ion pairing reagents are large ionic molecules containing an alkyl 

chain, which provide certain hydrophobicity allowing the retention of the ion pair on a 

reversed-phase column. The addition of ion pairing reagents to liquid chromatography 

mobile phases in reverse-phase mode can increase selectively the retention of charged 

analytes130.  

 

Perfluorocarboxilic acids are the most frequent ion-pairing reagents used to enhance the 

retention as they are compatible with electrospray ion source in mass spectrometry131. 

Different perfluorinated carboxylic acids have been used in literature for amino acid or 

related compounds analysis like trifluoroacetic acid (TFA, C2), heptafluorobutyric acid 

(HFBA, C4), nonafluoropentanoic acid (NFPA, C5), perfluoroheptanoic acid (PFHA, C7) and 

pentadecafluorooctanoic acid (PDFOA, C8)132.  
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Fig. 4.21. Examples of perfluorinated ion-pairing agents.  

In this case, perfluoroheptanoic acid (PFHA) ion pairing reagent was added at a 

concentration of 0.5 mM in the aqueous phase. This concentration was chosen according 

to literature in which 0.5 mM was used for different amino acid related applications49,107,133. 

 

Regarding that the analytes of interest are very polar compounds, ESI was selected. It 

has to be noted that when using ESI interface, appropriate pH adjustment is critical in 

order that compounds are ionized in the mobile phase. At neutral pH, amino acids behave 

as “zwitterion” dipoles with charged carboxylate and amino groups. The dissociation 

constant for the charged carboxylate is pK1 = 1.82 to 2.35 depending on the amino acid, 

and for the amino groups is pK2 = 8.70 to 10.70. Moreover, some amino acids, like ARG, 

contain charged groups in the side chains R13. Taking this into consideration, ammonium 

formate 5 mM was chosen to be added to the aqueous phase, thus obtaining pH 4.2, which 

enhances the ionization of most of these compounds.  

 

On the other hand, the possibility of adding PFHA ion-pairing reagent to the organic phase 

was considered as well, in order to avoid retention time shift within a batch. However, this 

idea was discarded, since once conditioned the column doing some previous injections, 

the retention times remain stable regardless using or not using the ion-pairing reagent 

also in the organic phase. In addition, ammonium formate was not included in the organic 

phase, as ammonium formate is sparingly soluble in acetonitrile.  

 

Therefore, a mobile phase consisting of ammonium formate 5 mM and 0.5 mM PFHA in 

the aqueous phase (A) and acetonitrile in the organic phase (B) was selected.  

 

Taking into account the high polarity and the similar physicochemical properties of the 

majority of the analytes, there was a need for the optimization of a gradient program for 

chromatographic separation. A large number of gradients were assayed modifying the 

organic phase percentage. The effect of the flow was also analyzed by comparing 3 

different gradients: 0.3, 0.4 and 0.5 mL/min (Fig. 4.22). These flows are within the range 
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of flows recommended by the commercial brand of the equipment for ESI ionization 

interface.  

 
Fig. 4.22. Separation of the analytes according to the flow used for the same gradient.  

Despite the fact that in reverse-phase liquid chromatography lower flows generally show 

the better separations and higher flows better resolution, in this case, similar resolution 

of the peaks was obtained for all the flows assayed and the best separation was achieved 

with flows of 0.4 mL/min and 0.5 mL/min (Fig. 4.22). This could be in relation with the 

use of an ion-pairing reagent. Finally, 0.4 mL/min flow was selected, as proportioned the 

best separation and, in addition, constitutes an intermediate flow that may favour better 

ionization in ESI and consumes less solvent. 

 

After assaying a number of gradients, the chromatographic conditions and the gradient 

program showed in Table 4.5 allowed to get the best separation and resolution.  

Table 4.5. Chromatographic conditions selected for this method.  

 

Even though a high number of gradients were experimented, all of them showed some 

defined compounds that were retained around minute 2.5 in the chromatogram: CYS, 

DMG, BET, CTN, HCYS, GSH and GLY. It has to be noted that despite this not being the 

ideal, it is not a problem at all when working with mass spectrometry, as each analyte has 
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a defined m/z. The problem comes up when isomers with same m/z need to be measured. 

This is the case of the isomers ADMA and SDMA, both ionizing in their protonated form 

and leading to the same ion: 203.1503 m/z. None of the gradients tested enabled a proper 

separation of these isomers. However, different authors pointed out that despite ADMA 

and SDMA having identical ionization in MS mode and eluting at the same retention time, 

their MS/MS fragmentation provides unique and specific ion products119,134,135. Therefore, 

it was decided that these two coeluting analytes would be analyzed and quantified in 

MS/MS mode.  

 

A chromatogram obtained from the analysis of the analytes of interest with the selected 

conditions in MS mode is showed in Fig. 4.23.  

 
Fig. 4.23. EIC chromatogram corresponding to analytical standard solution in MS mode: 1. CIT 1.5 
μg/mL; 2. BET 0.75 μg/mL; 3. CTN 1.5 μg/mL; 4: CTN-d3 0.75 μg/mL; 5. GSH 9 μg/mL; 6. GSH-
13C2

15N 7.5 μg/mL; 7. ARG 1.5 μg/mL; 8. MET 9 μg/mL; 9. CNN 0.75 μg/mL; 10. CNN-d3 0.75 μg/mL; 
11: HARG 3 μg/mL; 12. ADMA 0.2 μg/mL; 13. SDMA 0.2 μg/ mL; 14. SDMA-d6 0.2 μg/mL; 15. GLY 
9 μg/mL; 16. DMG 9 μg/mL; 17. CYS 12 μg/mL; 18. HCYS 3 μg/mL; 19. SAH 0.2 μg/mL; 20. SAM 
0.2 μg/mL. 

 
 

4.7.2.  SELECTION OF THE MASS SPECTROMETRY VARIABLES.  

Once the separation of the analytes was assayed, different variables from the mass 

spectrometer were optimized for MS spectra and MS/MS spectra analysis.  
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4.7.2.1. MS spectra 

First of all, different interfaces were experimented with the selected chromatographic 

conditions from Table 4.5. A comparison between Agilent Jet Stream® ESI (AJS ESI) and 

conventional ESI was carried out using the following preliminary MS conditions for both 

interfaces: capillary voltage, 3000 V; fragmentor voltage, 125 V; nebulizer pressure, 40 

psig; drying gas temperature, 300ºC; drying gas flow, 10 L/min; mass range, 50-1000 

m/z; MS scan rate, 2.2 spectra/s.  

AJS ESI is based on thermal gradient technology, which theoretically enhances the signal 

of analytes with the help of an auxiliary nitrogen gas with concentric orientation towards 

the nebulizer spray (sheath gas), reducing ion dispersion at normal flow rate and 

decreasing the amount of neutral solvent clusters. For AJS ESI interface, sheath gas 

temperature of 325 ºC, a sheath gas flow of 11 L/min and a nozzle voltage of 0 V were 

also set. Fig. 4.24 shows the chromatograms resulting from the analysis of the standard 

solutions in AJS ESI and ESI interfaces.  

 
Fig 4.24. Comparison of the signals obtained for each analyte using AJS ESI (pink) or conventional 
ESI (blue).  
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All the metabolites except for GLY have higher signals using AJS ESI in comparison with 

conventional ESI, and regarding GLY, the difference was not significant. Therefore, using 

AJS ESI interface was selected. 

 

Then, working conditions were optimized for AJS ESI to maximize the intensity of the 

signals. Sheath gas temperatures of 300 ºC, 325 ºC and 350 ºC were studied, as well as 

sheath gas flows of 10 L/min and 11 L/min. Similarly, drying gas temperatures of 300 ºC, 

325 ºC and 350 ºC and flows of 10 L/min and 11 L/min were also tested. In addition, the 

effect of nozzle voltages of 0 V, 500 V and 1000 V in analyte signals was studied. Reaching 

a compromise, the following conditions were set as they favour less sensitive analytes: 

dry gas temperature, 300ºC; dry gas temperature, 10 L/min; sheath gas temperature, 

325 ºC; and sheath gas flow, 11 L/min.  

 

In addition, fragmentor voltages were optimized, being tested voltages ranging from 75 V 

to 125 V. Finally, a fragmentor voltage of 75 V was selected, as it was adequate for all the 

compounds and increased especially the signal of DMG, which decreased substantially 

using stock solutions with voltages higher than 100 V (see Fig. 4.25) and would be hardly 

detected in plasma.  

 
Fig 4.25. Comparison of EIC of dimethylglycine with different fragmentor voltages. 

These MS conditions resulted in the following MS spectra for stock solutions containing 5 

and 10 µg/mL of the analytes: 
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 ADMA: 

 
 ARG: 

  
 BET: 

    
Fig. 4.26. MS spectra of the analytes of interest.  
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 CIT: 

 
 CTN: 

  
 CNN: 

  
Fig. 4.26 (cont.). MS spectra of the analytes of interest.  
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 CYS: 

   
 DMG: 

  
 GSH: 

 
Fig. 4.26 (cont.). MS spectra of the analytes of interest. 
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 GLY: 

  
 HARG: 

  
 HCYS: 

   

Fig. 4.26 (cont.). MS spectra of the analytes of interest. 
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 MET: 

  
 SAH: 

  
 SAM: 

  
Fig. 4.26 (cont.). MS spectra of the analytes of interest. 
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 SDMA: 

 
Fig. 4.26 (cont.). MS spectra of the analytes of interest. 

 

4.7.2.2. MS/MS spectra 

As it can be observed from MS spectra in Fig. 4.26, ADMA and SDMA have the same MS 

spectra, in addition to eluting at the same time. Therefore, there is a need for MS/MS 

spectra fragmentation, to obtain unique and specific ion products for ADMA and SDMA, as 

explained in section 4.7.1.2.  

The same conditions from MS mode were used, in 30-1000 m/z mass range and aimed at 

distinguishing ADMA and SDMA, ramping collision energies from 10 V to 35 V were assayed 

to obtain characteristic and abundant product ions in MS/MS spectra. The monitorization 

of unique and specific transitions for ADMA and SDMA was achieved with a collision energy 

of 10 V: 203.1503>46.0657 for ADMA and 203.1503>172.1086 for SDMA (see Fig. 4.27).  
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Fig. 4.27. EIC MS/MS spectra showing characteristic transitions for ADMA and SDMA. 

In addition, regarding that this instrument when operating in targeted MS/MS mode also 

analyzes sequentially in MS mode, the number of acquired spectra is reduced in each 

mode. Therefore, for quantification purpose it is necessary to reach a compromise between 

the number of acquired spectra and the sensitivity obtained by adjusting the acquisition 

rate. For that reason, regarding that MS/MS signals are less abundant than MS signals 

and contain limited number of acquired spectra, MS/MS acquisition rates of 2 spectra/s, 3 

spectra/s and 4 spectra/s were assayed to improve the relation between sensitivity and 

number of acquired spectra. Finally, using 3 spectra/s resulted optimal for MS/MS 

acquisition and was selected. 

 

To sum up, all the metabolites were analyzed in MS mode, except for ADMA and SDMA, 

which were acquired in MS/MS mode. Mass spectrometry conditions selected are 

summarized in Table 4.6. The retention time of each analyte in plasma and accurate mass 

measurement of the precursor ion with an error less than 5 ppm (MS spectra) or accurate 

mass measurement of the selected product ion (MS/MS spectra) for the analytes 

measured in MS/MS mode were the necessary mainstays for the positive identification of 

the target compounds. According to the EU’s decision 2002/657/CE proposed for the 

collection of identification points, confirmation of the presence of the analytes in samples 

is possible using the developed methodology136. 
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Table 4.6. MS and MS/MS spectrometry conditions selected for the analysis method. 

 
 

 

4.7.3. OPTIMIZATION OF SAMPLE TREATMENT CONDITIONS 

The optimization of specific sample treatment procedure in targeted metabolomics 

methodologies is of great interest for the extraction of analytes as well as for decreasing 

any matrix effect in order to obtain low limits of quantification.  

 

4.7.3.1. Aminothiol reduction  

Sample preparation step should consider the particularities and needs of the analytes of 

interest. Some amino acids contain thiol groups (aminothiols) and are critical intracellular 

and extracellular redox buffers that may oxidate forming disulfides (-S-S-), thus binding 

to proteins or to other aminothiols137. Therefore, when measuring aminothiols, it should 

be taken into account that oxidation and reduction reactions may occur after blood 

extraction, unless thiol compounds are blocked by derivatization138. Besides, it is possible 

to measure total aminothiol concentration using different reducing agents instead139.  

 

Regarding that CYS, GSH and HCYS are aminothiols, there is a need for a reduction step 

during sample treatment to be able to measure total aminothiols. Otherwise, 

interconversions between oxidized and reduced species may occur in addition to protein 

binding by means of disulfide bonds. Moreover, literature showed that the use of reducing 

agents provides better stability to the sample140. 

 

For all these reasons, the use of two different reducing reagents was assayed in this study: 

2-mercaptoethanol (2-ME) and dithiothreitol (DTT). On the one hand, 5 μL of 2-ME 15 % 
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was added to 50 μL of plasma and the mixture was incubated for 30 min at 37 °C141. Then, 

protein precipitation was performed with 150 µL of acetonitrile and subsequent 

evaporation and reconstitution in 200 µL of ammonium formate 5 mM was carried out. On 

the other hand, the addition of 50 μL of DTT 77 g/L to 50 μL of plasma and incubation of 

15 min at room temperature followed by the same sample treatment steps was 

performed142. 

 

Preliminary studies did not show relevant differences between both aminothiol reduction 

methods. Therefore, DTT was chosen as it is a simpler procedure, it avoids heating the 

sample and in comparison with 2-mercaptoethanol, it barely has any odor and the toxicity 

is lower143,144. 

 

The use of DTT had different effects on the aminothiols. For GSH and CYS, the signal of 

their protonated ions in untreated plasma was minimal compared to the signal obtained 

in plasma aliquots treated with DTT. In fact, when using no reducing agents CYS’s oxidized 

form, cystine dimer, was the predominant specie in his protonated form (241.0311 m/z), 

being CYS signal minimal (122.0270 m/z). In contrast, when treating plasma samples with 

DTT cystine dimer disappeared completely, thus showing that the reduction process had 

been completed (see Fig. 4.28).  

 
Fig. 4.28. Chromatograms corresponding to two different aliquotes from the same plasma. Plasma 
sample on the left was not treated with DTT, whereas right chromatogram shows plasma treated with 
DTT. Cystine homodimer signal is represented in pink colour and CYS signal is coloured blue.   

Concerning GSH, no signal of the protonated specie (613.1592 m/z) of the homodimer 

glutathione disulfide molecule (GSSG) was observed. This might be in relation with poor 

ionization of this molecule in the selected conditions, taking into account that this molecule 

is bigger than the analytes of interest and different MS conditions might be necessary to 

favour its ionization. 
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Regarding HCYS, no significant differences were found between adding and not adding 

DTT. In this case, it is suggested that this is related to the fact that around 80-90 % of 

HCYS in plasma is coupled to proteins88, and protein precipitation by itself breaks the 

bonds between homocysteine and proteins140. 

 

Furthermore, taking into account that the majority of the metabolites of interest are not 

aminothiols, we wanted to know the effect that DTT might have on the rest of the analytes. 

Signals obtained from the same plasma treated with and without DTT were compared and 

HARG resulted the only analyte for which the signal decreased when using DTT. 

Nevertheless, the resulting area after sample pretreatment with DTT was still enough to 

be able to quantify HARG in plasma, as signals in the range of µg/mL were expected (see 

Fig. 4.29).  

 
Fig. 4.29. EIC chromatograms of HARG corresponding to two aliquotes from the same plasma in 
which DTT was added (pink) and not added during sample treatment (black). 

 

4.7.3.2. Sample cleaning and metabolite extraction step 

Efficient sample cleaning and metabolite extraction steps are indispensable for reducing 

matrix effects and guaranteeing the extraction of the metabolites of interest. Two different 

sample pretreatment approaches were evaluated to achieve a good clean-up of the sample 

and extraction of the analytes: protein precipitation (PPT) and solid-phase extraction 

(SPE).  

 

Different solvents were assayed for PPT as precipitation reagents in plasma/precipitant 

reagent ratios 1:3 to 1:4 based on previous literature works: 1 % formic acid in 

acetonitrile145, 0.5 % formic acid in methanol108, 0.1 N HCl in methanol116 and 

acetonitrile146.  

 

The results obtained for each analyte were evaluated as a function of the precipitation 

reagent used. When using methanol as a precipitation agent, after PPT and extract 
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evaporation steps a gelatinous residue remained in the bottom of the chromatographic 

vial, whereas acetonitrile provided cleaner samples. For that reason, the use of methanol 

was discarded. Regarding the use of acetonitrile alone or containing 1% formic acid, more 

reproducible results were obtained with acetonitrile alone. Therefore, the use of 

acetonitrile was selected as precipitation reagent and this solvent was kept at –40ºC until 

PPT in order to favour stability of the analytes.  

 

In addition, after PPT, different SPE cartridges were assayed with the aim of getting 

cleaner plasma extracts and removing interferences: Oasis MCX 3 cc (60 mg) and Hybrid 

SPE Phospholipid Ultra 30 mg/1 mL cartridges.  

 

Oasis MCX cartridges contain a mix mode polymeric sorbent, optimized to extract basic 

compounds with functional groups enabling strong cation exchange with high sensitivity 

and selectivity. This cartridge was assayed using the following procedure, based on 

Armstrong et al107:  

1. Sorbent activation was carried out adding 1 mL of methanol. 

2. SPE was conditioned using 1 mL of HCl 0.1 N. 

3. Plasma extract was loaded. 

4. The addition of 1 mL of methanol was performed, as a cleaning step. 

5. Elution was carried out by means of 1 mL of methanol solution containing 5 % of 

ammonia. 

Finally, the eluate was evaporated in N2 stream and reconstituted in 5 mM ammonium 

formate.  

 

Plasma extracts obtained from PPT alone and from PPT followed by the procedure 

described above for SPE Oasis MCX cartridge were analyzed and compared. According to 

these results, this cartridge does not perform appropriately for GSH, HCYS and SAH, for 

which the recuperation is not enough to allow their quantification in plasma. 

 

Secondly, Hybrid SPE Phospholipid Ultra cartridge was tested, which contains zirconium-

coated silica that interacts with phospholipids as an electron acceptor. This results in 

phospholipid binding to the surface of the cartridge, reducing matrix effect associated to 

these compounds. After the corresponding protein precipitation step, plasma extract was 

passed through the cartridge with the aim of verifying whether phospholipid elimination 

could decrease the observed matrix effect.  
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However, after comparing the use of PPT alone with the addition of Hybrid SPE clean-up 

step, results showed that this SPE procedure was not appropriate for GSH, CYS, MET, 

ADMA, SDMA, HCYS, SAH and SAM, which kept retained in the cartridge.  

 

Therefore, regarding that the recovery was not good enough using neither of the 

cartridges, SPE was discarded, and PPT was selected as the unique technique for 

extraction. 

 

Since some of the analytes were in concentrations above the linearity range, the election 

of a dilution factor of the sample is indispensable. Indeed, it has to be noted that for some 

analytes, such as, CNN, CTN, ARG and CYS, concentrations in the range of 10-30 µg/mL 

were expected in plasma according to preliminary studies. However, some other analytes 

like SAH and SAM were expected in the range of a few ng/mL, which means that the 

dilution factor should allow the detection and quantification in plasma of these metabolites.  

 

Three different dilution factors were assayed, 1:2, 1:4 and 1:10. For that purpose, the 

following procedure was adopted: 50 µL of plasma sample followed PPT, evaporation in 

nitrogen stream and the reconstitution of the sample in the correspondent 5 mM 

ammonium formate volume (100 µL, 200 µL or 500 µL).  

 

Finally, reaching a compromise between obtaining the major reduction of matrix effect 

and at the same time allowing the detection of minority analytes, 1:4 dilution factor was 

selected. Thus, 50 µL of plasma were used for sample treatment and after protein 

precipitation, samples were evaporated and subsequently reconstituted in 200 µL of 

ammonium formate 5 mM.  

 

4.7.3.3. Addition of isotopically labeled compounds 

Quantification of analytes must be performed with the guarantee that the steps followed 

during sample treatment do not affect the final result as a consequence of differences in 

metabolite extraction. For that reason, isotopically labeled compounds were added as 

internal standards to correct for those minor differences suffered by the samples. Despite 

the fact that correcting the signal of each analyte with its corresponding isotopically 

labeled analogue would be the ideal, it is economically unfeasible.  

 

For that reason, in this case, four different isotopically labeled compounds were used: 

glutathione-13C215N (GSH-13C215N), creatine-d3 (CTN-d3), creatinine-d3 (CNN-d3) and 
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symmetric dimethylarginine-d6 (SDMA-d6). These isotopically labeled compounds were 

selected because they covered different retention times in the chromatogram, thus 

enabling better signal correction. In addition, GSH-13C215N is an aminothiol and would be 

useful to check the performance of these sulfur containing amino acids, and SDMA-d6 

allows its MS and MS/MS analysis for monitorization of the structural isomers quantified 

in MS/MS mode.  

 

Accordingly, CTN-d3 corrected the signal of GLY, CIT, DMG, BET, CYS and CTN, whereas 

GSH-13C215N was used to adjust GSH signal. Similarly, CNN-d3 was used to correct for the 

concentration of HCYS, ARG, MET, CNN and HARG, and SDMA-d6 for ADMA, SDMA, SAM 

and SAH adjustment. SDMA-d6 was analyzed both in MS and in MS/MS modes and signal 

from MS mode was used to correct SAM and SAH signal, whereas MS/MS adjusted for 

ADMA and SDMA. 10 µL of a mix solution containing 75 µg/mL of CNN-d3, CTN-d3 and 

GSH-13C215N and 25 ng/mL of SDMA-d6 were added to 50 µL of plasma, to reach 

concentrations of 15 µg/mL and 5 ng/mL respectively.  

.  

Fig. 4.30. Chemical structure of isotopically labeled compounds used for signal correction.  

Protonated species of these isotopically labeled compounds were used for signal correction 

in MS mode: 135.0956 m/z for CTN-d3, 311.0955 m/z for GSH-13C215N, 117.0850 m/z for 

CNN-d3 and 209.1879 m/z for SDMA-d6. For SDMA-d6, MS/MS transition 

209.1879>175.1274 m/z, corresponding to [M+H]+>[M-CHD3N], was used for SDMA and 

ADMA corrections. MS spectra of 5 µg/mL of these four isotopically labeled compounds as 

well as MS/MS spectra of SDMA-d6 are showed in Fig. 4.31. 
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 GSH-13C215N (MS) 

 
 CNN-d3 (MS) 

 
 

 CTN-d3 (MS) 

 

Fig. 4.31. MS and MS/MS spectra of the isotopically labelled compounds. 
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 SDMA-d6 (MS) 

 
 SDMA-d6 (MS/MS) 

 
Fig. 4.31 (cont.). MS and MS/MS spectra of the isotopically labelled compounds. 

Taking into account all of these concerns, sample treatment consisted on the following 

procedure. First, plasma samples were thawed and 50 µL of plasma were placed in an 

Eppendorf tube. Then, internal standard addition was performed by spiking 10 µL of a mix 

solution to reach concentrations of 15 µg/mL creatinine-d3, creatine-d3 and glutathione-
13C215N, and 5 µg/mL of SDMA-d6. Afterwards, 50 µL of dithiothreitol (77 g/L) were added 

and incubated for 15 min at room temperature for the reduction of aminothiol compounds. 

150 µL of cold acetonitrile were added and vortexed to perform plasma protein 

precipitation. Then, samples were centrifuged at 13000 rpm for 10 min at 4ºC and the 

supernatants were transferred to chromatography vials. These supernatants were 

evaporated in nitrogen stream and finally reconstituted in 200 µL of ammonium formate 

5 mM. It has to be noted that each sample was extracted in triplicate.  
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Fig. 4.32. Summary of the sample treatment procedure carried out for plasma samples. 

 

 

4.8. ANALYTICAL METHOD EVALUATION 

4.8.1. CALIBRATION OF THE METHOD AND MATRIX EFFECT 

Quantification of analytes in a matrix is ideally performed by means of an analyte-free 

matrix spiked with known quantities of the analytes of interest. Then, a calibration curve 

is built and signals obtained for real samples are interpolated using the equation of the 

curve. However, in quantification of endogenous compounds it is really difficult to obtain 

analyte-free matrices.  

 

In this case, there is not any plasma commercialized that does not contain any of the 

analytes of interest, thus making impossible the quantification by means of the addition 

of analytical standards to a blank matrix at known quantities. Different alternatives may 

be considered: matrices with depreciable levels of analytes (e.g. quantification of female 

hormones using male plasma), in vivo or in vitro methods to reduce their concentration in 

biological matrix or surrogate matrices147. Once considered the advantages and 

inconveniences of these options and regarding that the analytes of interest had a varied 

nature, the use of a surrogate matrix was considered the best possibility to obtain a matrix 

free of analytes. 

 

First of all, the feasibility of preparing analytical standards in 5 mM ammonium formate 

was considered. Comparison of the matrix effect of ammonium formate and plasma was 

performed using the four isotopically labeled compounds described in section 4.7.3.3 at 

two concentration levels and areas obtained were compared. Low concentration level 

contained 1.5 µg/mL CNN-d3, CTN-d3 and GSH-13C215N and 50 ng/mL of SDMA-d6, whereas 
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high concentration level contained 3 µg/mL CNN-d3, CTN-d3 and GSH-13C215N and 100 

ng/mL of SDMA-d6. Matrix factor (MF) was calculated dividing the result of the spiked 

analyte in plasma with the result of the analyte spiked in ammonium formate.  

Table 4.7. Plasma vs. ammonium formate 5 mM matrix factor calculation.  

 

Even though for GSH-13C215N and SDMA-d6 similar areas were obtained in plasma and 5 

mM ammonium formate, different matrix effects were found CTN-d3 and CNN-d3. Indeed, 

CTN-d3 area was more than 4 times higher in ammonium formate 5 mM in comparison 

with plasma at the same concentration. Similarly, CNN-d3 area in ammonium formate 

doubled its area in plasma.  

 

Regarding that calibration curve could not be prepared in ammonium formate 5 mM 

because of the matrix effects, alternatively, Serasub® serum surrogate matrix was 

assayed. Serasub® is characterized for being a protein free liquid in a buffered solution 

(pH 7.4), equivalent to serum and plasma in terms of specific gravimetry, viscosity and 

osmolality. As in previous case, the same two concentration levels were used to obtain 

the results of plasma/Serasub® ratio expressed as a percentage (Table 4.8).  

Table 4.8. Plasma vs. Serasub® matrix factor calculation. 

 

Again, significant differences were found for areas of different analytes at the same 

concentration in plasma and Serasub®. Indeed, except for SDMA-d6, for which areas are 

quite similar for these three matrices, the rest of the analytes had differing areas and 

showed to be affected by the nature of the matrices. Moreover, GSH-13C215N presented a 

higher area in plasma, whereas CNN-d3 and CTN-d3 showed lower area in plasma in 
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comparison with Serasub®. From these results it can be inferred that their correspondent 

non-isotopically modified analogs will present different areas in Serasub® synthetic serum 

in comparison with plasma matrix as well.  

 

Consequently, ammonium formate and Serasub® were discarded for quantification and 

standard addition quantification in plasma matrix was considered the best alternative. 

However, sample volume was not enough to carry out as many additions as necessary per 

plasma sample for a good quantification. Therefore, a plasma pool was made prepared 

from patients suffering from CKD and control samples. This pool was quantified by 

standard addition and was used as the first level of the calibration curve. In addition, it 

was spiked with known concentrations of the analytes of interest to obtain the rest of the 

calibration levels. All the calibration levels were subjected to the same sample treatment 

process developed for individual plasma samples and analyzed in duplicate. Signals of the 

analytes were corrected with their corresponding internal standards for each calibration 

level, as showed in section 4.7.3.3. Linear regression equations of the analytes of interest 

were obtained facing the relation between analytes and internal standard signal versus 

analyte concentration (see Table 4.9). In this case, correlation coefficients of at least 

0.9936 were achieved.  

Table 4.9. Calibration curves and statistical analysis on the randome distribution of the residues for 
each analyte of interest in pooled plasma. 
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It is essential to verify that the linear regressions are adequately adjusted to data obtained 

by means of an statistical analysis on the random distribution of the residues. To comply 

with this assumption, it was verified that standard deviation of the residues, σ(r), was 

equal to or less than global standard deviation, σTOT, and average residue, |ṝ |, was equal 

to or lower than σ(r). In addition, if data distribution is normal, the arithmetic mean of the 

residues, ṝ, is expected to be close to 0. 

 

The results of the statistical analysis on the random distribution of the residues are showed 

in Table 4.9. As it can be observed, all the assumptions explained are fulfilled. Thus, it is 

concluded that the equations of linear regression are adequate to quantify plasma 

samples. 

 

Taking into account that concentrations below the first calibration level were expected for 

some real samples, it was considered necessary to verify the extent of the linearity of the 

calibration curve obtained, to consider whether it might be possible the extrapolation of 

lower concentrations with some degree of confidence. Isotopically labeled compounds 

were used to check the linearity of the method in a defined calibration range and lower 

concentration levels were introduced until reaching the lower limit of quantification 

(LLOQ), the lowest concentration of analyte in a sample that can be determined or 

quantitated with acceptable relative standard deviation.  

 

The method was linear between 100 ng/mL and 50 µg/mL for GSH-13C215N, 5 ng/mL to 20 

µg/mL for CNN-d3, 5 ng/mL to 50 µg/mL for CTN-d3 and 2 ng/mL to 50 µg/mL for SDMA-

d6 in MS mode. Regarding calibration curves and correlation coefficients obtained for 

isotopically labeled compounds, these are showed in Fig. 4.33. As it can be observed, 

correlation coefficient is above 0.9969 in all cases.  
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Fig. 4.33. Calibration curves of isotopically labeled compounds in MS mode. 
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4.8.2. LIMITS OF QUANTIFICATION, ACCURACY AND PRECISION 

The sensitivity of this LC-QTOF-MS method in plasma is defined by the lower limit of 

quantification (LLOQ). Regarding that there was not any commercialized plasma free of 

the analytes of interest, decreasing concentrations of isotopically labeled compounds were 

added and included in a calibration curve, being the first concentration level of the 

calibration curves set as LLOQ. Based on this, LLOQ were determined as follows: 100 

ng/mL for GSH in MS mode, 5 ng/mL for CTN and CNN in MS mode, 2 ng/mL for SDMA in 

MS mode and 5 ng/mL for SDMA in MS/MS mode. These LLOQ were compared with those 

from recent analytical methods from literature in order to evaluate the contribution of the 

method. The LLOQ for CTN and GSH were found to be similar to those from recent works 

dealing with LC-MS in plasma matrix148,149, while the LLOQ for CNN and SDMA were 5 and 

2-fold lower, respectively150,151.   

 

Both accuracy and precision of the developed method were calculated for unspiked, low, 

medium and high QC samples (described in section 4.6.3), performing five determinations 

per level and repeating them for 3 days.  

 

As it can be observed in Table 4.10, both accuracy and precision fell within the acceptable 

range in this study. Indeed, accuracy was between 83.2 % and 116.3 % in all cases, 

whereas, the relative standard deviation (RSD) of repeated individual measures was below 

13.7 % for all the analytes. Likewise, intermediate precision was below 16.7 % for all the 

compounds.  
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4.8.3. RECOVERY FROM THE EXTRACTION PROCESS 

The efficiency of sample preparation procedure is usually evaluated by means of recovery 

assessment. Regarding that, analyte-free matrix was not available, addition of isotopically 

labeled compounds before and after the extraction process at two concentration levels in 

unspiked QC samples was used to evaluate the recovery of the extraction process. First 

level consisted in the addition of isotopically labeled compounds to obtain concentrations 

of 1.5 µg/mL of CNN-d3, CTN-d3 and SDMA-d6, and 100 ng/mL of GSH-13C215N, whereas 

second level corresponded exactly to the double of first level.  

Table 4.11. Recovery and standard deviation of isotopically labeled analytes in two concentration 
levels.  

 

Taking into account the recoveries observed in Table 4.11, which are within 82.1-107.4 

% range, it can be concluded that the developed sample treatment procedure provides a 

good recovery for the analytes studied.  

 

 

4.8.4. STABILITY 

Stability of analytes needs to be assessed in order to obtain high quality data from plasma 

sample analysis, that is, data not affected by any degradation process that might occur in 

analytical standards or in plasma. For that purpose, areas of the analytes analyzed before 

and after subjecting analyte containing matrices to different conditions, such as, room 

temperature, freezing, and freezing and thawing cycles, were compared. Table 4.12 shows 

detailed data of stability studies carried out.  
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Regarding individual stock solutions, they proved to be stable frozen for more than a 

month. However, combined stock solutions were less stable. Indeed, these solutions were 

stable for at least 48 h at room temperature (89–101 %) and frozen for at least 1 week 

(82-114 %), but less than a month (54–121 %). For that reason, combined stock solutions 

were weekly prepared from individual stock solutions.  

 

In addition, plasma extracts showed to be stable at room temperature for 24 h (89–       

115 %), except for CYS, which was stable for 12 h. Nevertheless, plasma extracts proved 

to be more stable frozen, as they were stable for more than 1 week frozen (86–122 %), 

even though multiple freeze and thaw cycles affects their stability. Besides, the effect of 

freezing and thawing plasma samples before sample treatment was also assayed, being 

observed stability (89-105 %) for all the metabolites except for CYS. 

 

 

4.9. SAMPLE ANALYSIS 

Once the analytical method was validated, the analysis of real plasma samples was 

performed. Calibration standards made by spiking plasma, as previously explained in 

section 4.8.1, were analyzed twice, in addition to CKD and control extracts which were 

randomly analyzed. Besides, during the batch QC samples were used to verify the correct 

performance of the analysis.  

An example chromatogram of a plasma sample from a CKD patient is showed in Fig. 4.34. 

 
Fig. 4.34. Chromatogram of a plasma sample containing extracted ion chromatograms in MS/MS 
mode for ADMA and SDMA, and in MS mode for the rest of the analytes. 
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Quantification of each analyte in plasma was carried out dividing the area of analytes with 

the area of internal standards and introducing that ratio into the equation of their 

corresponding calibration curve. An image showing the results of quantification according 

to a color scale for each analyte and each sample has been made (Fig. 4.35).  

  
Fig. 4.35. Image graph showing concentration of different analytes versus real control and plasma 
samples in a colour scale.  

 

Concentration ranges vary quite a lot between different analytes as well as between 

different samples, as it can be observed in this figure. For instance, for CNN, samples in 

the range of 80-90 µg/mL are found in contrast to other samples below 10 µg/mL. Due to 

the fact that analytes are also in different concentration ranges, this image graph was 

rescaled from 0 to 90 µg/mL to 10-50 µg/mL (Fig. 4.36). 

 
Fig. 4.36. Image graph rescaled to 10-50 µg/mL showing concentration of different analytes versus 
real control and plasma samples in a colour scale.  
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This rescaled image graph evidences that ARG, CTN, CNN and CYS are in a concentration 

range from approximately 10-50 µg/mL, and that between sample differences are noticed 

as they show different colours in the colour scale. This image was again rescaled to 

examine the concentrations of metabolites in a lower concentration range, 0-10 µg/mL 

(see Fig. 4.37). 

 
Fig. 4.37. Image graph rescaled to 0-10 µg/mL showing concentration of different analytes versus 
real control and plasma samples in a colour scale.  

Having a detailed look at Fig. 4.37, another group with intermediate levels of 

concentrations is found: BET, CIT, DMG, GLY, GSH, HARG, HCYS and MET. In addition, 

there are still other metabolites like ADMA, SAH, SAM and SDMA which are found in a 

lower concentration range, as showed in the image graph rescaled to 0-1 µg/mL (Fig. 

4.38). 

 
Fig. 4.38. Image graph rescaled to 0-1 µg/mL showing concentration of different analytes against 
real control and plasma samples in a colour scale.  
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4.10. DATA ANALYSIS  

Once samples are pretreated, analyzed by means of the developed LC-QTOF method and 

quantified with the calibration curves obtained, there is a need for data analysis. Data 

analysis makes use of statistics and chemometrics to display significant differences 

between sample groups and intends to find patterns on data that allow an interpretation 

of the results from a biological point of view. Data analysis is usually carried out by means 

of two approaches in targeted metabolomics studies: univariate methods and multivariate 

methods.  

 

Univariate methods compare different group of samples taking into account a single 

analyte at a time. Targeted metabolomics studies generally deal with the comparison of 

median or mean values between different sample groupings. For that purpose, verifying 

the normality is usually necessary by means of different tests, such as Kolmogorov-

Smirnov test. Then, diverse tests might be used in accordance to the characteristics of 

data, such as: One-way Anova, Student’s t-test, U test in accordance to Mann and Whitney 

or Kruskal Wallis. 

 

Regarding multivariate methods, they include a variety of approaches, like unsupervised 

methods (for instance, Principal Component Analysis –PCA- and clustering), supervised 

techniques (such as Partial Least Square Discrimination Analysis , PLS-DA) and variable 

selection and classification methods (e.g. Sparse Partial Least Square Discrimination 

Analysis, SPLS-DA). These methods are useful for data mining, interpretation of complex 

data matrices and comparison of different data sets.  

 

With that aim, first of all descriptive statistics were used to have a general idea of data. 

Then, PCA was carried out on logarithm transformed, autoscaled data by means of Matlab 

R2015a (Mathworks, Natick, Massachusetts, United States) software. In addition, several 

multivariate classification methods were compared in their predictive ability for CKD, being 

Maximum Likelihood – Linear Discriminant Analysis (ML-LDA)152, Fisher-Linear 

Discriminant Analysis (Fisher-LDA)153, Quadratic Discriminant Analysis (QDA)154 and k 

Nearest Neighbours (kNN)155. The accuracy of each classification method was achieved by 

means of a random division of samples to obtain 80 % of samples in a training set and 20 

% of the samples in a test set, and optimization of the parameters that influence the 

model was performed by means of leave-one-out approach (LOO) application in the 

training set. For kNN, the optimization of the number of neighbours to be used was 

necessary, which was done by testing different k numbers of neighbours from 1 to 10 



Targeted	metabolomics	analysis	of	amino	acids	and	related	compounds	using	LC‐QTOF‐MS	

 

 119	

using LOO on the training set. Random division of the samples was repeated 50 times and 

the mean performances were obtained for parameters to be optimized to select the most 

appropriate. Accordingly, to compare the results from different methods, test set 

classification based on models built in the training sets were repeated 50 times and mean 

performances were achieved as well. 

Besides, PLS-DA156 was applied after optimizing the number of latent variables (LV), and 

SPLS-DA157 after selecting the number of metabolites to be included. In the case of SPLS-

DA the number of latent variables was selected according to the number of groups minus 

one, as it is advised for generating the most stable models and variable selection was 

carried out for the election of the most meaningful metabolites158. 

Finally, to judge whether the 15 metabolites measured improve the performance and add 

to the CNN-based diagnosis, the optimized outcomes of the classifiers were compared to 

the diagnostic performance by CNN alone, the classical biomarker for CKD. 

 

4.10.1. DESCRIPTIVE STATISTICS 

Data analysis of the results obtained from CKD and control patients’ plasma started with 

descriptive statistics, with the aim of having a general idea of the data. First of all, results 

from quantification of the metabolites were summarized in Table 4.13 showing median 

and interquartile range (IQR).  

 

Distributions of analyte concentrations in control and CKD sample groups were studied by 

means of Kolmogorov-Smirnov test, a non-parametric test of the equality of continuous 

one-dimensional probability distributions used to compare the distribution of a sample 

group with a reference theoretical distribution or distribution between two sample groups. 

This test is used to assess which variables are under normal distribution for later 

application of other parametric or non-parametric tests. DMG, BET and ADMA presented 

a parametric distribution, whereas GSH, GLY, CYS, CIT, CTN, MET, ARG, CNN, HARG, 

HCYS, SDMA, SAH and SAM showed non-parametric distribution.  
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Table 4.13. Results obtained for the analytes of interest using the developed method in plasma 
expressed as median (3rd–97th interquartile range). 

 

 

4.10.2. UNIVARIATE ANALYSIS 

Univariate statistics deals with observations of a single analyte in data, without taking into 

account its potential relation with other variables. With the aim of stating whether 

concentration difference between groups was significant or not, after testing for normality 

using Kolmogorov-Smirnov test, Student’s t-test was applied for parametric variables, 

whereas U test in accordance to Mann and Whitney was applied to non-parametric 

variables using SPSS version 23 (IBM) software. 

 

Despite the varying nature of CKD paediatrics involved in this study, significant differences 

(p<0.001) were found in plasma concentrations of GLY, CIT, CNN, SDMA and ADMA when 

comparing paediatrics suffering from CKD and control patients, being p-value higher than 

0.05 for the rest of the analytes.  

 

It should be noted that plasma CNN concentration, used currently as a biomarker of renal 

function, differed quite a lot in paediatrics suffering from CKD due to differences in CKD 

stage as well as different renal replacement treatments received. Moreover, some of these 

CKD patients did not show increased CNN levels as a consequence of renal replacement 

therapy received. For that reason, with the aim of finding a relation between high 

concentrations of CNN and down-regulation or up-regulation of different metabolites, CKD 

paediatrics with CNN plasma concentrations higher than 12 µg/mL159 were considered (a 
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total of 21 patients) and compared with control population. As a result, significant 

differences were found for DMG in addition to all of the previously reported analytes 

(p<0.001 for all of them). 

Table 4.14. Analytes showing significant differences between control and CKD. † Considering only 
CKD patients with increased plasma creatinine concentrations (>12 µg/mL), differences in DMG 
concentration were found (p<0.001). 

 
 

Having a look at Table 4.13, SAH and SAM seem to be slightly increased in CKD population 

according to median values and IQR, despite this difference not being significant according 

to univariate analysis. For that reason, the possibility that SAM/SAH ratio, also called 

methylation index98, could be affected was considered. SAM/SAH relation was calculated 

for the samples to verify whether methylation power might be affected in paediatrics 

suffering from CKD. However, no significant difference was found between both groups 

(p>0.05). Thus, the use of a higher population might be suggested for future research to 

reach normal distribution of population and be able to clarify whether there might be any 

significant difference between both populations regarding SAM and SAH.   

 

 

4.10.3. MULTIVARIATE ANALYSIS 

4.10.3.1. Determination of outlying samples 

Multivariate analysis approach is based on the observation and analysis of more than one 

statistical variable at a time. Due to the fact that outlying samples could affect multivariate 

models built, first of all, outlying samples were defined according to Hierarchical Clustering 

with single, complete and average linkage. Clustering deals with grouping samples 

according to object-wise similarities or distances and representing these distances in 

dendrograms. In general, single linkage clustering is more prone to provide individual 

groupings, whereas complete and average linkage clustering lead to more compact 
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clusters. Therefore, two big clusters could be expected for average and complete clustering 

methods: control and CKD groups. However, sample 11 clustered apart in all the clustering 

methods and diverse aspects of this sample were tracked since plasma treatment to data 

analysis. According to annotations taken prior to sample treatment, differences in plasma 

sample colour had been reported (a redish-pink colour) for this sample. Therefore, sample 

11 was considered an outlying sample.  

 
Fig. 4.39. Dendrograms obtained from different hierarchical clustering methods showing that sample 
11 could correspond to an outlying sample. 

 

4.10.3.2. Cross-correlations between metabolites 

With the aim of evaluating possible relations between concentrations of different 

metabolites, cross-correlations of these analytes with CNN, current biomarker for CKD, 

were studied in the whole population. As observed in Table 4.15, the highest correlation 

was found for CNN-SDMA (r=0.908, p<0.01), CNN-CIT (r=0.839, p<0.01) and CNN-SAM 

(r=0.773, p<0.05). Regarding the interrelations between analytes that showed correlation 

with CNN, a high correlation was found between SDMA and SAM (r=0.924, p<0.05). In 

addition, CIT correlated well with SDMA (r=0.837, p<0.01) and SAM (r=0.739, p<0.01). 



Targeted	metabolomics	analysis	of	amino	acids	and	related	compounds	using	LC‐QTOF‐MS	

 

 123	

Good correlations were obtained for SAH-SAM (r=0.872) and SAH-SDMA (r=0.938) as 

well, but according to significance analysis, none of these regressions were significant 

(p>0.05).  

 

Besides, even though some analytes like DMG and ADMA were found to be increased in 

CKD paediatrics according to univariate statistics, the correlation between DMG and ADMA 

with CNN was quite low, r=0.493 (p<0.01) and r=0.438 (p<0.01) respectively. Thus, any 

relation of dependence between these variables and CNN cannot be stated. The cross-

correlations for all the analytes are charted in Table 4.15. 

Table 4.15. Cross-correlations of different metabolites. 

 

An example scatterplot showing the correlation between CNN and CIT concentration in 

plasma from both control and CKD paediatrics is showed in Fig. 4.40. 
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Fig. 4.40. Correlation between CNN and CIT concentrations (μg/mL) in the analyzed CKD and control 
plasma samples. 

 

4.10.3.3. Scaling and construction of PCA model 

Multivariate data analysis takes into consideration the intrinsic interdependency of 

metabolite concentrations. Regarding that concentrations of multiple analytes were non-

normally distributed across samples, logarithm transformation was performed. 

Afterwards, autoscaling was carried out, i.e. the concentration of each metabolite in each 

sample was normalized by means of subtracting mean metabolite concentration and 

dividing it by their standard deviation. Autoscaling assumes that all metabolites are equally 

eligible to be important biomarkers, despite presenting higher or lower concentrations in 

plasma.  

 

This log-transformed and autoscaled data set was subsequently subjected to PCA and the 

resulting biplot is represented in Fig. 4.41. The first three principal components accounted 

for 58 % of variance. 



Targeted	metabolomics	analysis	of	amino	acids	and	related	compounds	using	LC‐QTOF‐MS	

 

 125	

 
Fig. 4.41. PCA biplot containing the score plot for control and CKD samples and the loading plot with 
the 16 amino acids. 

The PCA biplot obtained shows a good separation between control and CKD sample groups 

when colouring the samples according to their membership. In addition, the relation 

between metabolite concentrations and sample groups can be obtained from this 

representation. SDMA, SAH, CNN, SAM, CIT, ADMA, GSH, DMG and GLY were found to be 

increased in CKD patients comparing with control samples.  

 

4.10.3.4. Classification between early CKD and control samples  

As there is some interest in finding biomarkers to improve the early diagnosis of CKD, a 

PCA model was constructed and a classification method was selected considering only 

early disease samples (those at CKD2 stage) and control samples (see Fig. 4.42). 

 
Fig. 4.42. PCA biplot containing control and CKD stage 2 samples with the 16 amino acids. 
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As it can be observed in Fig. 4.42, separation between groups was complete except for 

one CKD sample, which was placed with control samples. Regarding the relation between 

sample groups and metabolites, a similar distribution of the loadings was obtained for PCA 

containing all CKD samples and PCA containing only early CKD samples in addition to 

control samples.  

 

Moreover, classification of the samples according to a model including only CNN and using 

all the metabolites were compared (Table 4.16). The best classification method for CNN 

was QDA with a performance of 71 %, whereas, after the optimization of the classifiers, 

using all the metabolites with PLS-DA with 2 LV the percentage of success was 76 % and 

with SPLS-DA with 1 LV and 4 metabolites was 67 %. CIT, CNN, SAM and SDMA were the 

output metabolites for SPLS-DA variable reduction and classification method. In addition, 

with the aim of having an idea of the weight of CNN on the model, performance was also 

calculated using all the metabolites except for CNN (15 analytes). PLS-DA implementation 

with 2 LV returned a performance of 59 %. Thus, it can be concluded that despite being 

CNN alone better than other 15 metabolites for prediction purposes, these metabolites 

together with CNN could be useful biomarkers. 

Table 4.16. Summary of performance using optimized classification methods. 

 

The most practical approach and the most convenient for later clinical applicability relies 

on selecting the minimum number of metabolites capable of increasing prediction accuracy 

compared to CNN alone, and if possible also an increased one in comparison with using all 

the 16 metabolites. As showed previously, CNN, CIT, SAM and SDMA metabolites showed 

a similar efficiency for the early diagnosis of CKD as SPLS-DA method output in comparison 

with the prediction achieved with CNN alone. Therefore, it would be of special interest 

obtaining the classification performance of the model using only these four analytes in the 

input dataset. 

PCA model was built including only these 4 metabolites (Fig. 4.43). As it can be observed 

in this figure, separation in the PCA model of CKD and control groups was almost complete 

and variance of the model increases to 92 % for 3 PC. In addition, the possibility of using 
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these metabolites as an input was evaluated with the aim of improving classification 

accuracy. Once again, the different classifiers were optimized for CNN, CIT, SAM and SDMA 

metabolites and a performance of 89 % was achieved using PLS-DA (LV=1) for the 

classification of early CKD and control samples. This means an increase in performance of 

18 % when using CIT, SAM and SDMA in addition to CNN in comparison with using CNN 

only. 

 
Fig. 4.43. PCA biplot containing control and early CKD samples with CIT, CNN, SDMA and SAM. 

Regarding that CNN is the classical biomarker used for CKD diagnosis, the effect of using 

CIT, SDMA and SAM alone was also evaluated, in order to assess the contribution of these 

new metabolites (see Fig. 4.44).  

 
Fig. 4.44. PCA biplot containing control and early CKD samples with CIT, SDMA and SAM. 

According to the PCA biplot showed in Fig. 4.44, CIT, SDMA and SAM alone enabled 

separation of early CKD and control groups, even though separation was slightly better 

using CIT, SDMA and SAM in addition to CNN. From the comparison of both PCA biplots it 
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can be concluded that CIT, SDMA and SAM metabolites could be contribute to CKD 

diagnosis usually performed using CNN alone.  

 
4.10.3.5. Stage-independent CKD diagnosis  

Even though the main goal of this work deals with finding a few potential biomarkers for 

early diagnosis, it would be interesting to check whether these 16 metabolites could be 

valuable regardless of the stage of CKD to be applicable in the clinical setting. For that 

reason, the same procedure was repeated using the 16 metabolites for all CKD samples, 

regardless of the CKD stage. 

 

In this case, PLS-DA (LV=1) of the 16 analytes of interest resulted in a classification 

accuracy of 84 %. Using CNN alone to classify the samples as control or CKD gave a 

performance of 81 %, being QDA again the best classification method. From these results 

it can be inferred that, as in both cases classification performance was similar, using all 

metabolites would neither improve nor jeopardize the accuracy in the diagnosis.  

 

Concerning that CIT, SAM, SDMA and CNN provided the best results for early CKD 

diagnosis, PCA and classification was repeated using as an input the concentration in 

plasma of these analytes in all patients, regardless of the CKD stage (Fig. 4.45). Once 

applied PLS-DA (LV=1) to the total amount of samples a performance of 91 % was 

achieved, thus enabling an improvement of 10 % in comparison with CNN alone. In 

addition, PCA was also obtained for all the metabolites except for CNN to evaluate the 

contribution of SAM, CIT and SDMA in group differentiation, which showed to be important 

(see Fig. 4.45).  

 
Fig. 4.45. PCA biplot containing control and all CKD samples with CIT, CNN, SDMA and SAM (left) 
and the same metabolites except for CNN (right). 
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From these results, it could be stated that metabolites CIT, SAM and SDMA improve the 

accuracy of CNN diagnosis not only for early disease samples but also when using all the 

samples, regardless of the CKD stage. Accordingly, the use of CIT, SAM and SDMA might 

be of special interest to add to CNN, as they improve the accuracy of CNN diagnosis alone.  

 

4.10.3.6. Classification performance for CKD stages 

Different equations have been developed over the years with the aim of diagnosing those 

patients suffering from CKD and classifying them into different stages according to the 

GFR calculated from the equation, such as: Schwartz160, Bedside Schwartz equation161, 

Modification of Diet in Renal Disease (MDRD)162,163, Counahan-Barratt164 and Cockroft-

Gault165. 

 

“Gold standards” like iohexol, iothalamate, inuline, 51Cr-EDTA or 99mTc-DTPA are generally 

used to get real GFR value and adjust the equations to approximate estimated GFR value 

based on the measurement of endogenous metabolites. Despite this procedure being the 

ideal, metabolites were evaluated using PCA and different classification methods were 

used to determine the stage of the disease as a preliminary study prior to the development 

of any new equation. 

 

PCA model was built both for the 16 metabolites as well as for the selected 4 metabolites, 

and coloured according to the different CKD stages. 

 
Fig. 4.46. Convex hull representation of PCA using the 16 metabolites.  

PCA model obtained using all the metabolites (see Fig. 4.46) showed that complete 

separation was achieved between the groups made of CTRL-CKD2 and CKD3 to CKD5 
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groups. In addition, taking into account the loadings, concentrations of some metabolites 

increased with disease severity, such as SAH, SAM, SDMA, ADMA, CNN, CIT, GSH, GLY 

and DMG.  

 
Fig. 4.47. PCA biplot showing the separation of control and different CKD stage patients. 

Likewise, as showed in the PCA biplot from Fig.4.47, CIT, SAM, SDMA and CNN allowed a 

good separation of the groups and a gradation in accordance with the severity of CKD. 

Moreover, even in the case in which CNN was not included, clear groups and a gradation 

could be observed in samples according to CKD stage (see Fig. 4.48).  

  
Fig. 4.48. PCA showing control and CKD sample distribution according to SAM, CIT and SDMA plasma 
concentrations.  

These results show that the inclusion of SAM, CIT and SDMA in addition to CNN in 

equations for GFR determination and estimation of CKD might be promising.  

 

Besides, to check whether these metabolites add, the accuracy of classification using the 

plasma concentrations of the proposed metabolites was compared with the use of CNN 
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concentration only. When using all the 16 metabolites (including CNN) with PLS-DA and 2 

LV (66 %) some increase in performance was found and this increase was even higher 

using CIT, SAM, SDMA and CNN instead with PLS-DA and 3 LV (74 %), in comparison with 

using only CNN with QDA classification (52 %). 

 

Despite the fact that these accuracies do not seem to be high, closer inspection of the 

confusion matrices shows that the majority of the misclassifications occur one level above 

or below in comparison with the CKD stage assessed by the nephrologist. Moreover, less 

than 3 % of the samples are misclassified 2 stages or more above or below. An average 

confusion matrix of classifications obtained with CIT, SAM, SDMA and CNN concentrations 

is showed in Table 4.17. 

Table 4.17. Confusion matrix showing an average classification obtained after repeating 50 different 
divisions of the samples, building PLS-DA model with CIT, SAM, SDMA and CNN concentration, and 
calculating the classification for test samples.  

 

In the clinical setting, misclassification of the samples into different stages would affect 

the selected treatment for the patient. Nevertheless, the action plans recommended for 

each stage are general and do not change substantially from one stage to the level below 

or above. Therefore, these results are positive towards further study of SDMA, CNN, SAM 

and CIT as new biomarkers of CKD. 

 

It has to be noted that classification performance for CNN alone might appear low in our 

predictions due to the fact that age, sex, height and/or weight are usually included in 

different equations to correct for some factor affecting serum CNN concentration. For 

instance, Schwartz equation uses height to correct for CNN production, as it is related with 

body mass and among the variables of body size tested by them, body length divided by 

CNN concentration provided the best correlation with GFR160. 
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4.10.3.7. Age-, sex- and renal replacement therapy-related effects 

The repercussion of different factors on metabolite concentrations, such as sex, age or 

treatment, need to be studied, in case any of these effects are present to be able to correct 

them in future equations.  

 

With that aim, first of all, the effect of age was studied. PCA using CIT, CNN, SAM and 

SDMA as input variables was applied on the samples using two age groups ranging from 

2 to 12 years old and from 13 to 18 years old. These groups of ages were selected in 

accordance with the division made by Way et al., according to the normal GFR values in 

paediatrics166. 

 
Fig. 4.49. PCA displaying children and adolescent patient distribution according to SAM, CNN, CIT 
and SDMA plasma concentrations. 

As it can be observed in Fig. 4.49, although there is not any clear separation between 

children and adolescents, some trend could be observed. For that reason, with the aim of 

finding any relation between metabolite levels and age, Partial Least Squares (PLS) 

regression method was carried out to predict age according to plasma metabolite 

concentration (see Fig. 4.50). This regression was performed taking into account all 

samples together as well as CKD and control samples separately.  
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Fig. 4.50. PLS regression with optimized LV for all samples and for CKD and control samples 
separately.  

When considering all samples or only CKD samples no good prediction was obtained, 

whereas when taking into account only control samples the prediction improved. Thus, it 

could be stated that there is some positive correlation between age and metabolite 

concentration in healthy paediatrics. These predictions were similar either using all the 

metabolites or using only CNN, SDMA, SAM and CIT as input variables. 

 

In addition, the effect of sex, was studied by means of another PCA (Fig. 4.51). In this 

case, samples from both male and female groups were overlapped, being concluded that 

there is not any difference in metabolite concentrations regarding sex. This is not 

unexpected at all, since the patients were paediatrics, and minor differences concerning 

sex are presumed at these ages.  

 
Fig. 4.51. PCA biplot coloured by sex using CIT, CNN, SDMA and SAM concentrations. 

Besides, the distribution of males and females was also studied considering only patients 

aged 13-18 years old. However, sample distribution showed a similar pattern and no clear 

separation was observed neither using all nor the 4 selected metabolites.  
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Finally, the relation between metabolite concentration and renal replacement therapy 

(RRT) received by CKD patients was assayed. PCA was performed for CKD patients 

transplanted, dialyzed and not receiving RRT (see Fig. 4.52).  

 
Fig. 4.52. Convex hull showing distribution of CKD patients according to the RRT received. 

According to the obtained PCA representation, there is no separation between groups. 

However, the amino acid profile from transplanted patients showed to be more 

homogeneous in comparison with patients not receiving RRT and dialyzed patients. This 

could mean that amino acid profile tends to equalize after receiving a transplant. Indeed, 

even if control and transplanted groups keep separated in PCA, the distribution of the 

samples is similar, as showed in Fig. 4.53. This means that there are still some differences 

between both amino acid profiles.  

 
Fig. 4.53. Convex hull representation showing similar scattering of control and transplanted patients 
in PCA. 

Patients eligible for the transplant where those for which other renal replacement therapy 

had failed. This homogenization in the metabolite profile after transplant could be expected 
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due to the fact that samples were collected at least a year after having received the 

transplant.  

 

 

4.11. BIOLOGICAL INTERPRETATION OF THE RESULTS 

The information obtained from data analysis was compared with the literature to verify if 

these up- or down-regulations could be explained by any known mechanism in arginine-

creatine pathway, arginine methylation or urea cycle. 

 

Different biological interpretations were found for increased plasma levels of CIT, SDMA 

and SAM, the potential metabolites found to be especially interesting for CKD and control 

group differentiation, in addition to the classical biomarker CNN.  

 

CIT increase could be explained by low activities of arginine/glycine amidinotransferase 

(AGAT) enzymes2. In addition, SDMA isomer is mainly excreted in urine and thus, plasma 

SDMA rise could be a consequence of poor excretion due to renal impairment167. Regarding 

SAM, its plasma levels might be increased because of renal injury. Indeed, kidney play a 

major role in aminothiol metabolism, and SAM levels depend largely on HCYS levels. Even 

though, it has to be noted that despite an association has been found between GFR and 

SAM, literature shows that HCYS may not correlated with GFR168.  

 

According to the univariate data analysis carried out, GLY, CIT, CNN, SDMA, ADMA and 

DMG would be increased in CKD patients. The explanation for GLY rise could be the same 

as for CIT, as both take part in a biochemical reaction regularized by AGAT enzyme, which 

could be affected in renal patients2. Concerning ADMA, 80 % is eliminated through 

metabolization by means of the enzyme dimethylargine dimethylaminohydrolase (DDAH) 

and 20 % by renal excretion, and impaired excretion may cause ADMA increase167. 

Additionally, an exaggerated endogenous synthesis of ADMA has also been suggested, 

which could act as a contributing factor for CKD progression167. Regarding DMG, this 

feedback inhibitor of betaine-homocysteine methyltransferase enzyme is normally 

excreted in urine or metabolized to sarcosine26. Thus, it is suggested that it might be 

accumulated due to impaired urinary excretion in addition to any unknown factor that may 

also be involved.  

 

Finally, from multivariate analysis SAH and GSH have also been found to be affected in 

paediatrics with CKD, in addition to previously described increases of SDMA, GLY, CNN, 
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CIT, ADMA, SAM and DMG. Regarding SAH, as explained before, kidney is involved in 

aminothiol metabolism and similarly to SAM, SAH levels also depend largely on HCYS 

levels, which might be affected if kidney is impaired. Moreover, a reduction in 

metabolization and/or excretion ability of SAH has been suggested to be a primary event 

in CKD169. Several biomarkers of oxidative stress like GSH might be increased in patients 

suffering from CKD170. The nature of the oxidative stress in CKD patients could be related 

to increased reactive oxygen species (ROS) production and reduced clearance, or even a 

consequence of ineffective antioxidant defense mechanism. Nevertheless, it should be 

noted that even if some previous studies had showed increased total GSH levels in adults 

suffering from CKD171, some other stated the opposite172 or did not find any significant 

difference between healthy and CKD patients68.  

 

 

4.12. CONCLUSIONS 

Taking into consideration the proposed objectives and the results obtained in this targeted 

metabolomics study, it can be concluded that:  

 A new LC-QTOF-MS analytical methodology has been optimized for the analysis of 

amino acids, amino acid derivatives, and related compounds from the arginine-creatine 

pathway, the arginine methylation, and the urea cycle which could be of interest for 

the diagnosis of CKD in paediatric patients. This new method enables the identification 

and quantification of 16 compounds in a single run in MS and MS/MS mode in less than 

19 min.  

 Plasma sample treatment requires a low sample volume and involves the addition of 

dithiothreitol to obtain total aminothiol concentration, which avoids under- or 

overestimation in the quantification of these compounds. This step is followed by a 

simple plasma protein precipitation process and avoids the need for derivatization. 

 After optimization and validation, this method was successfully applied to the analysis 

of both a heterogeneous group of CKD paediatric patients and a control population, 

being significant differences found for GLY, CIT, CNN, ADMA, SDMA and DMG according 

to univariate data analysis. 

 Three new metabolites, CIT, SAM and SDMA, have been proposed as potential 

biomarkers in addition to the commonly used CNN to be implemented since they enable 

a better diagnosis of early stages of CKD in paediatrics. Besides, CIT, SAM, SDMA and 
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CNN showed greater improvement of the diagnosis of all the stages of CKD, and some 

gradation in concentration was found in accordance with the CKD stage.  

 It is reasonable to think of including these 3 metabolites in a new equation to be used 

in the screening tests carried out by general practitioners to approximate the prediction 

of the disease made by nephrologists and foresee the stage of CKD, before referring 

them to the specialist.  

 The collection of a higher number of samples is suggested to obtain GFR by means of 

some contrast agent like iohexol, used as “gold standard”, to adjust a new equation 

for GFR calculation including CIT, SDMA and SAM and compare the performances 

obtained from this equation with other commonly used equations in paediatrics like 

Schwartz.  

 This work resulted in the following publications in peer-reviewed scientific journals, 

which are annexed at the end of this manuscript:  

“Benito S, Sánchez A, Unceta N, Andrade F, Aldámiz-Echevarria L, Goicolea MA, 

Barrio RJ. LC-QTOF-MS-based targeted metabolomics of arginine-creatine metabolic 

pathway-related compounds in plasma: application to identify potential biomarkers 

in pediatric chronic kidney disease. Anal Bioanal Chem. 2016; 408(3):747-60. doi: 

10.1007/s00216-015-9153-9.“ 

“Benito S, Sanchez-Ortega A, Unceta N, Jansen JJ, Postma G, Andrade F, Aldámiz-

Echevarria L, Buydens LMC, Goicolea MA, Barrio RJ. Plasma biomarker discovery for 

early chronic kidney disease diagnosis based on chemometric approaches using LC-

QTOF targeted metabolomics data. J Pharm Biomed Anal. [In press] doi: 

10.1016/j.jpba.2017.10.036. “ 
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5.1. INTRODUCTION 

CKD is known to be a heterogeneous disease with multiple etiology and complex 

pathogenesis. This makes difficult to find new sensitive biomarkers that might improve 

the ability of traditional markers of renal function to detect renal failure regardless of the 

cause of the disease.  

 

In addition, targeted metabolomics of previously selected metabolites or metabolite 

groups from a defined metabolic pathway suspicious of being altered was one of the most 

frequent approaches to find new biomarkers up to the start of the 21st century.  

 

Nowadays, the application of untargeted metabolomics in CKD provides the opportunity 

to reveal new insights into metabolic profiling and pathophysiological processes1. 

Moreover, kidney function has a broad impact on circulating metabolite levels and at the 

same time, metabolites themselves play functional roles in CKD pathogenesis and in 

complications. Consequently, untargeted metabolomics approaches have been recognized 

as particularly promising in nephrology2. 

 

 

5.2. UNTARGETED METABOLOMICS WORKFLOW 

Untargeted metabolomics consists of an unbiased holistic approach towards 

simultaneously analyzing as many features as possible after minimal sample 

pretreatment, without any prior knowledge of the identity of these features and any    

bias3-5. These features include small peptides, amino acids, nucleic acids, carbohydrates, 

organic acids, vitamins, polyphenols, alkaloids and inorganic species6. Analyses are 

usually carried out semi-qualitatively by determining a subset of the whole metabolite 

profile5. Multivariate statistical analysis becomes indispensable to deal with a much more 

complex data set in comparison with data from targeted approaches. Moreover, it is 

essential to find the metabolites that contribute to the differentiation of each particular 

group of samples. Thereafter, effort is put towards identifying these discriminating 

molecules4. 

 

Untargeted metabolomics are carried out by using either nuclear magnetic resonance 

(NMR) or mass spectrometry (MS) technologies coupled to chromatographic separation. 

The combination of mass spectrometry with a separation technique has several 

advantages, because it reduces the complexity of mass spectra and gives additional 
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information regarding the physicochemical properties of the analytes, and at the same 

time, offers high selectivity, sensitivity and improves the potential to identify metabolites7.  

 

Regardless the technique of choice, studies following untargeted metabolomics require 

several well-differentiated steps: sampling, storage of samples, sample pretreatment, 

system conditioning, sample injection, data pre-processing of the resulting features, data 

analysis, compound identification and results interpretation8. A careful forward planning 

of all of these steps becomes essential for untargeted metabolomics. Figure 5.1 shows an 

example of a LC-MS based untargeted metabolomics workflow.  

 
Fig. 5.1. Typical LC-MS untargeted metabolomics workflow. 

Complex multivariate data sets are obtained from untargeted metabolomics studies, thus 

chemometric tools play a key role for data analysis and interpretation. In addition, omics 

databases contain up-to-date information about physical and chemical properties of a high 

amount of molecules, data about their function, localization and expression, information 

regarding similar experiments already carried out and experimental data, such as spectra. 

For that reason, omics databases are invaluable instruments for the identification of 

significant entities obtained from chemometric approaches in untargeted metabolomics 

analyses and have already been remarked as inestimable tools in nephrology research9.  
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5.2.1. SAMPLING 

Operations involved in both sampling and sample preparation procedures might affect and 

even modify the composition of the measured metabolome, leading to differences between 

displayed metabolome and real metabolome composition at the time of sampling10. 

Therefore, sampling procedures must be carefully studied and carried out. 

 

Traditionally, blood sampling has prevailed rather than collection of urine or other body 

fluids for metabolomics studies due to its clinical importance and practical reasons. Indeed, 

the chemical composition of blood reflects tissue lesions, organ dysfunctions and 

pathological states, and the collection and storage of blood samples is usual both in 

biobanks and for clinical test purposes11,12. However, it is also possible to use other body 

fluids including urine, saliva, cerebrospinal fluid, feces or follicular fluid11. 

 

Regarding blood sampling, it has to be noted that there are differences in composition of 

plasma and serum. The protein content in serum is lower because the proteins involved 

in coagulation are removed. However, the blood clotting process performed to obtain 

serum generally takes place at room temperature during 30-60 minutes, which might 

increase metabolite degradation processes, might increment the enzyme conversion rates 

and some metabolites could be lost during clot precipitation10. One of the advantages of 

plasma is that during plasma formation the problem of keeping blood samples at room 

temperature is avoided, due to the fact that this process is carried out using a centrifuge 

at 4ºC. Nevertheless, blood to plasma transformation requires the use of anticoagulant 

containing sample tubes. This means that the effect on the metabolomics profile of the 

anticoagulants used in the tubes for blood collection to obtain plasma (such as, EDTA, 

lithium heparin, sodium citrate or sodium fluoride) needs to be studied13.  

 

Recent research shows that the metabolite profiles from plasma and serum might not be 

so different. The main differences found for some features are related to retention time 

shift (which makes difficult to assure whether they correspond to the same metabolite or 

not), differences in multiple-charge ions corresponding to peptides and differences in the 

adducts formed during ionization14,15. Metabolite concentration in plasma and serum 

usually keeps a good correlation, even though direct extrapolation of the results of plasma 

to serum and vice versa is not advisable16,17. 

 

The election of plasma or serum is a pragmatic choice that depends on personal 

preferences and on the available equipment. In any case, it is of great importance the use 



CHAPTER	V	

 

 156	

of only one sample type for each particular untargeted metabolomics study17. Despite the 

fact that some noteworthy studies, such as Human Metabolome Project and HUSERMET 

have been carried out in serum, plasma accounts for the most prevalent biofluid used in 

LC-MS untargeted metabolomics. Indeed, plasma is used in the 65 % of studies, whereas 

20 % of the researches are done with serum10,18. 

 

 

5.2.2. SAMPLE PREPARATION  

It is estimated that the most frequently used biofluids, blood and urine, may contain 

almost 5000 metabolites across different chemical families in a large range of 

concentrations. Therefore, sample preparation methods should be simple, nonselective, 

fast and reproducible12,19. The typical main steps for sample preparation in metabolomics 

include: quenching and deproteinization or “dilute-and-shoot” step (depending upon the 

biofluid)19.  

 

Blood collection in the context of omic studies needs for a safety margin definition for 

sample handling after blood drawing as well as the establishment of a procedure to ensure 

sample quality11. Indeed, there is increased interest in the shortening of the time window 

between sampling and analysis, as the turnover kinetics of some metabolites is known to 

be particularly fast20. For that reason, with the aim of avoiding the effect of enzymatic 

action, rapid inactivation of metabolism or quenching is the first step immediately after 

sampling21.  

 

Quenching step becomes indispensable in metabolomics to ensure that the sample 

represents the true composition of the metabolome at the time of sampling10. The most 

frequent strategies consist in the rapid modification of sample conditions, usually pH or 

temperature22. The modification of pH is achieved through the addition of basic solutions 

(e.g. KOH or NaOH) or extremely acid ones (e.g. perchloric acid, HCl or trichloroacetic 

acid)13, 15. However, the use of extreme pH is not frequent as it may result in a severe 

reduction of the number of metabolites detected as well as in degradation of unstable 

metabolites affected by pH22. The modification of temperature is more common for 

quenching purposes, because it is generally assumed that the shock caused by sample 

cooling under -20 ºC does not affect the integrity of the sample13, 15. Moreover, if samples 

are immediately frozen under -80ºC, the majority of the metabolites are preserved20. 

The next step after quenching depends on the biofluid used for untargeted metabolomics. 

When working with urine it is common to dilute the samples with an aquous solution using 
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a dilution factor between 1:1 and 1:10 to decrease potential problems of ion suppresion 

(known as “dilute-and-shoot” step)23. On the other hand, blood contains around 6-8 g/dL 

of proteins, which makes necessary protein removal when working with serum or plasma 

and also with tissues24. Protein removal is usually carried out by means of protein 

precipitation methods (PPT), adding different solvents in plasma:precipitant agent ratios 

between 1:2 and 1:425-27 (see Fig. 5.2). Acetonitrile, methanol, ethanol and acetone alone 

or in combination are some of the most frequently used solvents for this purpose25,28,29. 

It has to be considered that the addition of organic solvent to biofluids also works as 

disruptor of the linkages between metabolites and proteins present in the solution10. 

Moreover, these solvents operate not only as protein precipitation agents, but also as 

metabolite extractors27. 

 

Fig. 5.2. Plasma sample before and after protein precipitation by means of the addition of 
precipitation agent and centrifugation. 
 

 

5.2.3. INSTRUMENTAL ANALYSIS 

A wide range of analytical instruments might be applied in untargeted metabolomics 

research. Nuclear magnetic resonance (NMR) or mass spectrometry (MS) technologies 

coupled to chromatographic separation techniques, such as liquid chromatography (LC) 

and gas chromatography (GC), are the most usual analytical techniques for untargeted 

metabolomics.  

 

There is not any universal analytical technique for untargeted metabolomics; all of them 

have their advantages and drawbacks, as previously explained in Chapter 3. Due to the 

diversity and broad dynamic range of metabolites in body fluids, for a more global 

approach, the use of multi-analysis techniques is recommended to overcome the 

shortcomings of different single analysis techniques5,6. 

 

Even though NMR and GC were pioneering techniques for metabolomics, the use of LC-

MS for global metabolite profiling is increasing30. Regarding the use of different mass 
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analyzers in LC-MS untargeted metabolomics, time-of-flight (TOF), Orbitrap and Fourier-

transform ion cyclotron resonance (FT-ICR) are the most popular instruments.  

 

 

5.2.4. DATA PROCESSING 

Untargeted metabolomics studies generate complex multivariate data sets, which need 

for data processing steps prior to data analysis. These data sets generally contain complex 

three-dimensional information: retention time, mass-to-charge ratio and intensities of the 

features. For that reason, data processing workflow is complex and needs for different 

software to comply with the following steps: 

1. Raw signal filtering to remove noise and baseline correction 

2. Feature detection 

3. Chromatographic and spectral data alignment to correct differences in retention 

times and exact mass between runs 

4. Normalization steps for systematic variation between samples in terms of 

abundance prior to data analysis.  

 

These steps involve several parameters that can be optimized, being the quality of the 

processed data and the number of peaks obtained dependant on these settings.  

 

Fig. 5.3. Data processing workflow in untargeted metabolomics. 

Data processing might be carried out by means of several commercial and open source 

software containing routines for automatic alignment, denoising, deconvolution and 

extraction of peaks31. Different possibilities exist for data processing:  
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 Using vendor’s commercial software (such as, MarkerLynx, Markerview, Profiler, 

MassHunter Qualitative, Genespring, etc.) 

 Using software from independent developers able to work with all type of MS 

data files (e.g. GeneData) 

 Working with open access programs (for instance, XCMS, MZmine, Metalign, 

etc.)  

 Developing an own script in computing language (typically in Matlab or R) 

 

The used peak picking software itself can have a significant effect on the result of a study. 

The most practiced option by laboratories is the use of vendor’s commercial software. In 

fact, these software are usually integrated with the MS instrument operating system and 

often incorporate documentation or tutorials with a wealth of detail and basic to more 

advanced utilities for data mining32.  

 

 

5.2.5. DATA ANALYSIS 

Data analysis makes use of statistics and chemometrics to get a reasonable number of 

relevant features from the obtained complex data set that might improve the 

differentiation between control and CKD samples.  

 

Different chemometric tools are likely to be applied to untargeted metabolomics studies 

such as the following:  

 Principal Component Analysis (PCA) 

 Partial Least Square Discrimination Analysis (PLS-DA) 

 Sparse Partial Least Square Discrimination Analysis (SPLS-DA) 

 

The first informative look at the data structure and its relationship between groups is given 

by application of PCA. The ideal would be that the results from PCA analysis would lead to 

an initial biological conclusion, which would be afterwards tested by means of PLS-DA. 

Indeed, being PLS-DA a supervised multivariate method, it is more prone to produce 

biologically relevant results. PLS-DA is used to get the resulting performance from the 

classification of samples into control or disease groups according to the models built with 

the selected features with prior knowledge of sample classification. In addition, SPLS-DA 

is an advantageous and relatively new tool especially useful in untargeted metabolomics 

for variable selection, and thus for data mining33,34.  
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5.2.6. COMPOUND IDENTIFICATION 

Metabolite identification in untargeted metabolomics is based in the first instance on the 

comparison of experimental data of the significant entities with lab-built or web-based 

spectral databases. However, it has to be noted that identification in LC-MS based 

metabolomics depicts more complexity in comparison to GC-MS. Indeed, the available 

information in LC-MS libraries is limited to exact mass values, whereas in GC-MS libraries 

spectra comparison is performed. LC-MS databases usually generate lists of known 

compounds with their exact mass for the experimental accurate mass values obtained. 

Some libraries also contain additional information or tools for further biological 

interpretation. Some of the databases used for compound identification and biological 

meaning in untargeted metabolomics are listed below35: 

 General chemistry databases including natural and synthetic chemical products, 

like Scifinder Schoolar (https://scifinder.cas.org/scifinder) or ChemSpider 

(http://www.chemspider.com) 

 Human metabolome databases, such as, Human Metabolome database (HMDB, 

www.hmdb.ca) or Metlin (https://metlin.scripps.edu) 

 Databases for specific subsections of the metabolome like Lipid Maps Structure 

Database (http://www.lipidmaps.org/resources/resources.html). 

 Mass spectral databases like NIST (https://www.nist.gov), mzCloud Advanced 

Spectral Database (https://www.mzcloud.org) or MassBank 

(http://www.massbank.jp) 

 Databases on metabolic pathways, e.g. Kyoto Encyclopedia of Genes and Genomes 

(KEGG, http://www.genome.jp/kegg)  

 

Once the list of potential candidates for each entity is generated, MS/MS analysis provides 

extra information that may help elucidating the identity of the feature by comparison of 

reference MS/MS spectra of the metabolites and experimental spectra obtained from the 

analysis of samples. Finally, unequivocal identification is achieved by means of the 

comparison of retention time, MS and MS/MS spectra of commercial standards with the 

experimental data collected. 

 

Chemical Analysis Working Group (CAWG) from the Metabolomics Standards Initiative 

(MSI) has already established compound identification confidence by classifying the 

identified compounds in 4 different levels36:  
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1. Identified compounds (with reference analytical standards) 

2.  Putatively annotated compounds (based on spectral or physicochemical similarity 

but without chemical reference standards) 

3.  Putatively characterized compound classes (based on spectral or physicochemical 

similarity to known chemical classes)  

4.  Unknown compounds 

 

 

5.3. UNTARGETED METABOLOMICS IN NEPHROLOGY: LITERATURE REVIEW 

Different studies have been performed to find new biomarkers in nephrology field using 

an untargeted metabolomics approach, as showed in Table 5.1.  

 

Various untargeted metabolomics experiments have been carried out in adults with CKD37-

42. Regarding paediatric population, an experimental model using newborn rats in acute 

kidney injury (AKI)43 and two more studies in human paediatrics suffering from 

nephrouropathies44 and AKI45 have been found in literature. These untargeted 

metabolomics studies performed in paediatrics used urine matrix, even though in the 

experiments carried out in adults both plasma38,39,42,46,47 and urine40,41,48 matrices are used 

in a similar proportion. In addition to these matrices, serum37 and hemodialysate sample49 

have been utilized in untargeted metabolomic approaches as well.  

 

Concerning the analytical technique used, the most commonly used equipment include: 
1H-NMR 39,41,44,48,50, LC-MS 38,43,45-47,49 and GC-MS equipment37,38,40,43. Besides, CE-TOF-

MS42 was also used in another experiment. 

 

To sum up, as far as we know, only a few of the untargeted metabolomics approaches 

were carried out in paediatrics, and none of them were focused on paediatrics with CKD, 

where there is a research gap.  
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5.4. STUDY’S GOAL 

The main goal of the present work deals with the interest of finding potential biomarkers 

that could help differentiating between control and CKD paediatric patients without any 

prior information of which metabolic pathways may be affected and any clue of the 

metabolites that may be up- or down-regulated.  

 

To accomplish this purpose, an untargeted metabolomics study needs to be carried out 

using LC-QTOF-MS analytical technique in order to find significant differences between two 

populations: paediatrics suffering from CKD and control paediatrics. 

 

Both extraction method and analysis method optimization are required to obtain as many 

entities as possible introducing the least possible uncertainty to the measure. Then, the 

use of different commercially available software for automatic data processing, as well as 

for multivariate statistical analysis are needed. Finally, the identification of significant 

entities using different available tools is required.  

 

 

5.5. MATERIALS AND EQUIPMENT 

5.5.1. STANDARDS AND REAGENTS 

Methanol, ethanol and acetonitrile used in the plasma extraction study were acquired from 

Scharlab (Barcelona, Spain) and dry acetone was pursached from Panreac (Barcelona, 

Spain). In addition, LC-MS grade formic acid used for mobile phase was obtained from 

Fisher Scientific (Ghent, Belgium). Ultra-high purity water achieved from tap water 

pretreated by Elix reverse osmosis and a Milli-Q system from Millipore (Bedford, MA, USA) 

was used. Moreover, mobile phases were filtered through 0.1 μm filters from Millipore 

Omnipore (Watford, Ireland) prior to use.  

 

Becton Dickinson EDTA tubes (Plymouth, UK) were used to collect blood samples from 

both paediatric CKD patients and controls. 

 

After prior identification of the significant features, the following analytical standards were 

used for identity confirmation purposes: D-erytro-sphingosine-1-phosphate from Larodan 

AB (Limhamn, Sweden), cis-4-decenoylcarnitine synthesized by Lumila Research group at 

Universidad Autónoma de Madrid (Madrid, Spain), bilirubin from TCI (Tokyo, Japan), and 
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DL-2-aminoadipic acid, iso-butyryl-L-carnitine and n-butyryl-L-carnitine from Sigma-

Aldrich (Steinheim, Germany). 

 

 

5.5.2. INSTRUMENTATION 

Similar instrumentation to that described in Chapter 4 was used for this untargeted 

metabolomics study. The analysis was accomplished injecting 5 µL of sample in a 1200 

series HPLC system coupled to a 6530 Series hybrid quadrupole time-of-flight mass 

spectrometer (QTOF) from Agilent Technologies (Santa Clara, CA, USA), equipped with 

Agilent Jet Stream electrospray source. Chromatographic separation was carried out using 

the reversed phase column Zorbax SB-C18 (2.1x100 mm, 3.5 μm) and C8 guard column 

(2.1x12 mm, 5 μm), both from Agilent Technologies, which were kept at 35 ºC during the 

analysis.  

 

Data acquisition was carried out using Agilent MassHunter Workstation Data Acquisition 

version B.05.01 software and afterwards, raw data was processed using MassHunter 

Qualitative Analysis version B.07.00 software and Profinder version B.06.00 software 

(from Agilent Technologies). Finally, data analysis was performed using Mass Profiler 

Professional software (MPP) version B.13.00 (Agilent Technologies, Santa Clara, CA, USA) 

and Matlab R2015a (Mathworks, Natick, Massachusetts, USA). 

 

Samples were centrifuged with a 5415 R Eppendorf (Madrid, Spain) centrifuge, and 

supernatant evaporation was carried out in a Techne, Dri-Block® DB-3D (Staffordshire, 

UK) evaporator system.  

 

 

5.5.3. SUBJECTS AND SAMPLING 

Thirty-two patients suffering from CKD, aged 3-18 years, and twenty-six control patients, 

aged 6-19 years were recruited for the study. Paediatrics suffering from CKD were at 

different degrees of the disease and some of them received renal replacement therapy 

(RRT). Characteristics of the patients are showed in Table 5.2. 
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Table 5.2. Characteristics of the paediatric population subjected to study.  

 

All paediatric CKD patients were followed up in Cruces University Hospital (Bilbao, Spain) 

and were clinically stable at the time of study. CKD samples were the same used in Chapter 

4, whereas some control samples differed from one study to another. Patients with anuria, 

hepatopathy and/or insulin-dependent diabetes mellitus were discarded, as previously 

described in Chapter 4. In addition, control patients met the following inclusion criteria: 

healthy children who had a minor surgery in Cruces University Hospital. 

 

Blood samples were collected in EDTA tubes in the morning after an overnight fasting. 

Immediately after blood collection, samples were cooled in an ice-water bath and 

centrifuged at 1000 g for 5 min at 4ºC. Finally, samples were stored at -80ºC until sample 

treatment and analysis. 

 

Ethics Committee of Clinic Research of Cruces Hospital approved the study protocol and 

patients’ parents gave written informed consent. 

 

 

5.6. LC-QTOF-MS ANALYTICAL METHOD 

5.6.1. OPTIMIZATION OF PROTEIN PRECIPITATION 

Minimal sample treatment is recommended in untargeted metabolomics to perform the 

extraction of as many metabolites as possible without any bias. The use of different 

extractant combinations for plasma protein precipitation and metabolite extraction has 

been investigated in order to get features with different polarities: acetonitrile, methanol, 

ethanol, acetonitrile:methanol (1:1, v/v), methanol:ethanol (1:1, v/v) and 

acetone:methanol (1:1, v/v). Plasma and precipitation solvent ratio of 1:3 (v/v) was 

selected according to our previous experience and literature available about plasma 

protein precipitation29,51-54. Plasma precipitation consisted in taking 50 μL plasma and 

adding 150 μL of the selected extractant (n=5). Then, samples were vortexed, stored at 
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-40 ºC for 5 min and subsequently centrifuged at 13000 rpm for 10 min at 4 ºC. Finally, 

the supernatant was injected in the LC-QTOF system. 

These experiments were carried out with the following preliminary chromatographic 

conditions. A binary solvent system consisting of 0.1 % formic acid with 3 % acetonitrile 

(A) and acetonitrile with 0.1 % formic acid and 5 % water (B), at a flow rate of 300 μL/min, 

with the following gradient program: 20 % B was kept for 2 minutes, a linear increase of 

organic phase was performed to reach 100 % B in 22 minutes, 100 % B was kept for 2 

minutes, gradient returned to 20 % B in 2 minutes and finally, 20 % B was kept for 5 

minutes.  

 

First of all, chromatographic profile obtained from the analysis of the selected solvents 

was assessed. Acetone:methanol solvent combination was discarded for protein 

precipitation, due to the fact that the TIC of blank acetone:methanol analysis contained a 

high number of ups and downs or small peaks (see Fig. 5.4) and this might introduce 

considerable uncertainty in the analysis.  

 
Fig. 5.4. Example of acetone:methanol blank sample TIC chromatogram. In red, details of the 
uncertainty introduced.  

After discarding the use of acetone:methanol as precipitation solvent, acetonitrile, 

methanol, ethanol, acetonitrile:methanol (1:1, v/v) and methanol:ethanol (1:1, v/v) were 

considered as precipitation reagents and plasma protein precipitation and extraction of 

the metabolites was carried out as stated before in pooled plasma.  

 

Data processing for feature extraction of different plasma extracts was performed using 

preliminary not very restrictive conditions for MFE using MassHunter Qualitative software 

(minimum peak abundance ≥ 1800 counts, absolute height ≥ 5000 counts, quality score 

≥ 70 and the following charge states: H+, Na+, K+ and neutral loss of H2O). Then, PCA of 

the features achieved for the different aliquots of pooled plasma was obtained and pooled 

plasma samples extracted with different solvent combinations were coloured accordingly. 
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The results reveal that there is a clear separation between extracts using different solvents 

and some degree of separation is found between solvent mixtures, as showed in Fig. 5.5. 

This means that the extracted entities depend to a great extent on the solvent or solvent 

mixture used for protein precipitation.  

 
Fig. 5.5. PCA of plasma sample extracts depending on the solvent used for protein precipitation: 
acetonitrile (ACN), acetonitrile:methanol (ACN:MEOH), ethanol (ETOH), methanol (MEOH) and 
methanol:ethanol (MEOH:ETOH).  
 
Once checked that the extraction solvent lead to different results in feature extraction, 

some other concerns were taken into account to select the optimum solvent for protein 

precipitation. With the aim of defining the ideal extractant to maximize feature extraction 

from plasma, the number of entities obtained for each solvent was assessed. Table 5.3 

shows that the amount of extracted entities were in the same range, except for 

acetonitrile, which had a lower number of features extracted.  

Table 5.3. Mean number of features obtained from plasma extraction using different solvents and 
standard deviation (n=5).  

 

In addition, visual inspection showed that pellets obtained from protein precipitation with 

ethanol were not as consistent as the pellets achieved with the rest of protein 

precipitations. Therefore, ethanol was ruled out because this could be in relation with a 

lower rate of protein removal and could be a cause of protein accumulation in the 

chromatographic column reducing its useful life.  

The effect of injecting consecutive extracts obtained from protein precipitation of pooled 

plasma with these solvents was evaluated as well. Regarding the use of acetonitrile for 
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protein precipitation, the analysis of subsequent plasma quality control (QC) samples 

extracted with this solvent reveals an increase in TIC chromatogram (see Fig. 5.6).  

 
Fig. 5.6. Subsequent TIC chromatograms of a QC plasma extract using acetonitrile as protein 
precipitation solvent. Blue shading shows the increase of TIC.  

The study of the increased ions from consecutive acetonitrile extract analysis showed that 

there was a phospholipid accumulation, as identified by comparing the experimental 

spectra obtained with spectra from Postle et al55. The correspondence of the m/z values 

with their respective lipids is showed in Figure 5.7. A higher extraction of phospholipids 

from plasma was suggested for acetonitrile in comparison with other extractants, which 

tend to accumulate in the chromatographic column. Consequently, the use of acetonitrile 

as extractant solvent, alone or in a mixture, was discarded. 

 
Fig. 5.7. Subsequent TIC chromatograms of a QC plasma extract using acetonitrile as protein 
precipitation solvent.  

 

After discarding acetonitrile, acetonitrile:methanol (1:1, v/v), ethanol and 

acetone:methanol (1:1, v/v), being the number of entities alike for methanol and 

methanol:ethanol, the shape of the chromatographic peaks was also considered to choose 

one of them. Finally, due to the fact that no significant difference was found between 

different extracts, in accordance with previous experience in untargeted 
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metabolomics51,53,56 and being methanol:ethanol an intermediate mixture, 

methanol:ethanol (1:1, v/v) was selected. 

 

Therefore, sample preparation consisted in the following procedure. Plasma was thawed 

at room temperature and 50 μL of each sample were placed in Eppendorf tubes. In 

addition, 150 μL of frozen methanol:ethanol (50:50) were added for protein precipitation. 

Then, samples were vortexed, stored at -40 ºC for 5 min and centrifuged at 13000 rpm 

for 10 min at 4 ºC, as showed in Fig. 5.8.  

 
Fig. 5.8. Sample treatment for plasma protein precipitation and metabolite extraction. 

 

 

5.6.2. QUALITY CONTROL SAMPLE PREPARATION 

Pooled plasma was prepared to be used as quality control samples (QC). 50 μL of each 

control sample were pooled in a Falcon tube. The same operation was carried out with all 

the CKD samples in a different Falcon tube. Finally, equal quantities of both pooled plasma 

were mixed, as showed in Figure 5.9.  

 

Fig. 5.9. QC preparation pooling plasma from CKD and control samples. 

QC samples received the same sample treatment as the samples (see Fig. 5.8) and were 

injected at the beginning of the run and randomly between samples during sequence 

analysis.  
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5.6.3. INSTRUMENTAL ANALYSIS 

Chromatographic separation was performed under gradient mode. It is desirable that the 

chromatogram covers the maximum polarity range, by starting in a low percentage of 

organic phase and ending with a high percentage. Gradients starting from 5 %, 10 %, 15 

% and 20 % of organic phase (B) were assayed. Total ion current (TIC) chromatograms 

of gradients starting from 5 % to 15 % B presented uncertainty from minutes 7 to 10 of 

the chromatogram, which was reduced as the percentage of organic phase increased. 

However, when reaching 20 % B at the start of the gradient, the uncertainty disappeared. 

Thus, a gradient covering 20 % B to 100 % B was preferred for the untargeted 

metabolomics study.  

 

Once selected the initial proportion of the binary solvent system, the gradient was adapted 

to plasma extract analysis, by elongating the time in which 100 % of organic phase was 

supplied from 2 to 4 minutes, in order to avoid the accumulation of apolar compounds 

(see Table 5.4).  

Table 5.4. Gradient analysis used previously for blank solvent samples (left) and adaptation of the 
gradient for plasma extracts (right). 

 

Between different analytical runs sample wash was performed rinsing the needle for 30 s 

using a flushport with acetonitrile:isopropanol (60:40, v/v) and 0.2 % formic acid. 

 

The LC system was coupled to the mass spectrometer with an ESI ionization source in 

positive mode. The mass spectrometer worked in MS positive mode and mass spectra 

were acquired scanning over 100-1000 m/z range with an acquisition rate of 1 spectra/s. 

Preliminary studies showed that it was feasible not cleaning the ion source during the 

analysis as system conditions kept constant. Indeed, the number of samples was not too 

large to dirty the interface and disturb the ionization. 
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Both the definitive conditions for chromatographic separation and mass spectrometry 

analysis are summarized in Table 5.5. 

Table 5.5. LC-QTOF-MS conditions for the metabolomic study. 

 

An example of TIC chromatogram of a QC and a blank sample (methanol:ethanol 1:1, 

v/v) acquired under these conditions is showed in Fig. 5.10. 

 
Fig. 5.10. Example TIC chromatograms of QC and blank (methanol:ethanol 1:1, v/v) samples. 

A relevant aspect to be considered in instrumental analysis of untargeted metabolomics 

studies is that there is a need for assuring the mass accuracy of the recorded ions and 

mass drift compensation by continuous internal mass calibration during the analyses. For 

that purpose, reference ions 121.0509 m/z (purine) and 922.0098 m/z (HP-921) were 

monitored. In addition, during the analysis, every 12 hours external calibration was also 

performed and before following with plasma sample analysis, two no injection and two QC 

samples were analyzed.  
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In addition, all samples were randomly injected along the sequence and immediately after 

the analysis, samples were kept frozen to carry out MS/MS analysis after the chemometric 

analysis. 

 

 

5.6.4. DATA PROCESSING 

The first procedure after analyzing plasma extracts by LC-QTOF-MS consisted in checking 

the obtained raw chromatographic and spectral data using MassHunter Qualitative 

Analysis version B.07.00 software. After this initial step, data was processed using 

Profinder version B.06.00 software (both from Agilent Technologies). 

 

First of all, pressure variability, baseline drift, reference mass infusion and retention time 

shift were monitored and verified by means of MassHunter Qualitative Analysis software, 

in order to control the inherent variation usually related to chromatographic process.  

 

It has to be noted that between-sample pressure variability could mean that some 

uncertainty has been produced during the analysis. For that reason, pressure 

superposition of different plasma samples was performed to check that the 

chromatographic system did not suffer from alterations. Figure 5.11 shows that no 

variation of pressure was observed for plasma sample analysis.  

 
Fig. 5.11. Pressure superposition of different plasma samples.  

In addition, the accumulation of compounds present in plasma extract would lead to TIC 

baseline increase. Similarly, the dirty status of the interface could contribute to signal 

suppression thus causing baseline decrease. The stability of the baseline was checked by 

superimposing different CKD and control plasma samples. Plasma samples showed a 

stable baseline, despite containing, as expected, different peaks along the TIC (see Fig. 

5.12).  
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Fig. 5.12. TIC chromatogram superposition of different samples, with matching baselines. 

 

Moreover, to assure that reference mass correction by means of reference standard 

infusion had performed correctly, the sufficient abundances of 121.0509 m/z and 

922.0098 m/z ions used for mass correction were checked by monitoring extracted ion 

chromatograms (EIC). EIC chromatograms extracted with an error of 30 ppm showed 

constant signal for both reference standard ions.  

 

Once checked the apparent quality of the data acquired, Recursive Feature Extraction 

(RFE) algorithm was performed using Profinder software. This algorithm includes Molecular 

Feature Extraction (MFE), which intends to remove chemical background and rapidly find 

feature peaks in TIC chromatogram taking into account isotope distribution. Then, MFE is 

followed by retention time and mass alignment across sample data and integration of the 

corresponding chromatographic peaks. In addition, RFE algorithm creates a small list of 

unique features after time and mass alignment in addition to further filters used. 

 

The filters selected in Profinder define to a large extent the number of features extracted. 

First of all, less restrictive filters were used and once studied the background, peak shape, 

number of ion species defining each peak and abundance, the definitive filters were 

selected. Ultimate filters were set as follows: m/z range (100-1000 m/z), peak height 

(>1500 counts), absolute peak height (>10000 counts), ion species (protonated ion, 

sodium adduct, potassium adduct and neutral loss of water), charge state (set to a 

maximum of 2, thus allowing the inclusion of small molecules and lipids), maximum exact 

mass (>1000 Da), peak spacing tolerance (0.0025 m/z, plus 7 ppm), MFE score (70 %), 

RT alignment (0.1 %, plus 0.3 min), mass alignment (5 ppm, plus 2 mDa) and minimum 

filter matches (features must be present in 66 % of the samples in at least one sample 

group). At the end, manual cleanup was performed by means of Find by Ion filters, which 

enabled keeping only features present in 25 % across all sample files.  
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In addition, features containing abnormal peak shapes or unusual isotopic distributions 

were discarded after checking all the features one by one again. 232 entities resulted from 

this data pretreatment process distributed through all retention times in the 

chromatogram (see Fig. 5.13). 

 
Fig. 5.13. An example of Extracted Compound Chromatogram (ECC) of the molecular features found 
in a plasma sample from a paediatric CKD patient. 
 

Finally, the abundances of all the features obtained for each data file were summed and 

represented as a function of time (see Fig. 5.14). This could be considered somehow a 

data quality assessment to be carried out before great efforts are put on data analysis. 

Neither increase of the signal, that could be indicative of carry over or accumulation of 

metabolites in the system, nor decrease, that could be related with a loss of sensitivity 

due to signal suppression, were observed. Therefore, data were considered a priori 

suitable for data analysis. 

 

 
Fig. 5.14. Data files in the order followed by the batch represented opposite the sum of the 
abundances of the features obtained for each data file. A trend line is represented in pink colour. 
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5.6.5. DATA ANALYSIS 

Data mining and data analysis are known to be time-consuming steps in untargeted 

metabolomics studies. For that reason, preliminary data analysis for data quality 

assessment is interesting to avoid laborious work and get unexpected results. Accordingly, 

PCA was used to check that all the QC samples analyzed during sample analyses gathered 

and did not present any particular trend. QC samples clustered together and are placed 

between control and CKD samples, which means that the system kept stable during the 

analysis and sample pretreatment performed alike, as it can be observed in Fig. 5.15.  

 
Fig. 5.15. PCA representation of control, CKD and QC samples. 

 

5.6.5.1 Determination of statistically significant entities 

It is common knowledge that the data analysis method used could affect the entities found 

to be relevant to discriminate between groups. Accordingly, two different chemometric 

methods and software were used and significantly up- or down-regulated entities matching 

in both chemometric approaches were considered exclusively, in order to assure with a 

high degree of confidence that the relevant features identified are not only a consequence 

of the data analysis method followed. 

 

For that purpose, two different software were used: Mass Profiler Professional software 

(MPP) version B.13.00 (Agilent Technologies, Santa Clara, CA, USA) and Matlab R2015a 

(Mathworks, Natick, Massachusetts, USA). The data generated in Profinder software was 

exported to suitable format for each software. Comma-separated values files (.CSV file) 

containing detailed area were exported for later use in Matlab and compound exchange 

format files (.CEF file) for using them in MPP. 

Data analysis was first carried out using MPP software following the workflow suggested 

by the software. It is of interest to note that MPP automatically performs logarithm 
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transformation with the purpose of complying with heteroscedasticity reduction. The 

conditions set for MPP software consisted on data scaling (Z-transform), filtering by flags 

(to find features present with acceptable values in the 33 % of the samples), filtering by 

frequency (entities that appear in at least 90 % of all samples in CKD or control group) 

and finally, a significance analysis (unpaired T test with asymptotic p-value computation, 

Benjamini-Hochberg multiple testing correction and p-value ≤ 0.05, with a fold-change 

cut-off value ≥ 2). After applying this data analysis to data from CKD and control plasma 

sample analysis, the process returned 7 significant entities, as showed in Table 5.6. The 

notation used to represent the entities is the following: M (estimated with Profinder 

algorithm from experimental m/z) @ retention time (expressed in minutes). 

Table 5.6. Summary of the results obtained from data analysis carried out in MPP software. 

 

Besides, another data treatment procedure was followed using Matlab software, with 

the aim of comparing results from Matlab with the significant entities obtained with MPP 

software, to select only features matching in both data analysis methodologies. Logarithm 

transformation of data was carried out in order to obtain a more symmetric distribution. 

Afterwards, data was autoscaled in order to give the same statistical weight to all 

metabolites, regardless of their abundance in plasma. Then, Sparse Partial Least Squares 

Discriminant Analysis (SPLS-DA) was applied to reduce the high number of features.  

 

SPLS-DA needs for optimization of the minimum number of entities to be selected. For 

that purpose, raw data was log transformed and divided into training (80 % if the data 

set) and test sets (20 % of the data set). Thereafter, autoscaling was performed and 

SPLS-DA was used to get sample group classification performance in the training set using 

leave-one-out (LOO) cross-validation with 10, 15, 20, 25, 30, 35, 40, 45 and 50 entities: 
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Fig. 5.16. Optimization of the number of entities to be selected by means of SPLS-DA using 10, 15, 
20, 25, 30, 35, 40, 45 and 50 entities. 

It has to be noted that the interest is towards finding the smallest amount of entities that 

returns maximum performance. The highest performance was obtained with 10-15 

entities. Taking into account these results and with the aim of selecting the most 

appropriate number of entities during variable selection step, again the number of entities 

was optimized using SPLS-DA with entitites ranging from 5 to 15 (see Fig. 5.17). Again, 

the objective was to find the minimum number of entities for which a significantly high 

performance was acquired. Figure 5.17 shows increasing performance when adding 

features until model built with 8 entities, where an elbow in the graph is observed. From 

8 entities onwards performance is similar, thus the addition of new features does not 

contribute significantly to the model. Moreover, even though the highest performance is 

obtained for 13 entities, only 1.5% better performance is obtained with the addition of 5 

entities. Besides, PCA analysis and subsequent representation showed that with entities 

from 8 entities upwards there was a considerable separation between CKD and control 

groups, and this separation did not improve when adding new features to the model. 

Finally, Student's t-test was used to check whether all the selected entities were 

statistically significant when comparing disease and control groups. 

 
Fig. 5.17. Optimization of the number of entities by means of SPLS-DA using 5 to 15 entities. 
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After the optimization of the ideal number of entities, SPLS-DA model was built for 8 

entities and the following features were found to be significantly altered according to 

the data analysis procedure carried out in Matlab.  

Table 5.7. Summary of the results obtained from data analysis carried out in Matlab software. 

 

Due to the fact that data analysis method used is known to affect the significant entities 

found, it was decided to select only the features concurring in both chemometric 

approaches. Five out of the ten entities obtained from MPP and Matlab procedures matched 

in both approaches, as it can be observed in the Venn diagram from Fig. 5.18. Therefore, 

only these five features were studied as potential biomarkers.  

 
Fig. 5.18. Venn diagram showing the significant features obtained with MPP and Matlab.  

Regarding that the goal of this study is to find compounds able to improve differentiation 

between control and CKD groups, it was consider important to verify that both peak shape 

and spectra of these five entities correspond to potential compounds, not to artifacts. For 

that purpose, EIC chromatograms for these five entities that are going to be studied as 

potential biomarkers in a random plasma sample were obtained and an example 

chromatogram can be observed in Fig. 5.19. 
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Fig. 5.19. EIC chromatogram of matching significant entities. 

 

Once selected these significant features to discriminate between disease and control 

groups, PCA was carried out and samples were represented according to the new derived 

variables or principal components (PC), showing good separation between groups in 

addition to an accumulated variance of 82 % using 3 principal components. Besides, taking 

into account the loadings, PCA provides more information regarding relative concentration 

of these features in CKD and control groups. Feature 584.2613@12.16 is the only one out 

of the five entities decreased in CKD paediatrics, whereas the rest of the entities were 

found to be increased.  

 

Fig. 5.20. PCA obtained using the five matching significant analytes showing differentiation between 
control and CKD sample groups. 

Even though PCA is a very powerful explorative unsupervised method, the use of 

supervised classification methods, such as PLS-DA, is preferred. PLS-DA was used to 

obtain the resulting performance from the classification of samples into control or CKD 

groups according to the models built with these features with prior knowledge of sample 

grouping. Data set was divided into training (80 %) and test (20 %) sets and the 

optimization of the latent variables (LV) was carried out doing LOO cross-validation in the 

training set. In this case, the use of 1 LV provided the best result. Once selected the 

optimal number of latent variables, model was built using the training set and it was 

applied to the test set to obtain the performance of the model. The operation of dividing 
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data into training and test sets was repeated 50 times and the average performance was 

achieved. PLS-DA (LV=1) for the classification of control and CKD samples showed an 

overall performance of 96 %.  

 

Similarly, PCA using only the five concurring entities was carried out and represented 

considering only early CKD patients, those at CKD 2nd stage, against controls. There is a 

separation between these groups, as it can be observed from Fig. 5.21. Besides, the 

distribution of the loading vectors is quite similar to the one using all the CKD patients 

regardless of the degree of the disease.  

 
Fig. 5.21. PCA obtained using the five matching significant analytes showing the differentiation 
between control and early CKD patients. 

In addition, when considering only early CKD patients (those at CKD 2 stage) against 

controls using PLS-DA (LV=1), a performance of 97 % was achieved.  

 

Consequently, it could be affirmed that these matching relevant features could be 

interesting potential biomarkers for both general and early CKD.  

 

5.6.5.2. Further data analysis on the significant entities 

The relationship between the significant features and different conditions, such as, sex, 

age, treatment and CKD stage of the patients was also studied, as this information is 

frequently included in the equations used for CKD diagnosis and evaluation. For that 

purpose, PCA was performed with the abundance of these 5 entities and samples were 

represented coloured by the selected condition.  
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PCA coloured by sex showed that male and female samples were intermingled and no 

clear separation, relation or specific distribution between male and female paediatrics was 

found regarding these 5 features (see Fig. 5.22). 

 
Fig. 5.22. PCA of significant entities coloured by sex. 

Similarly, two different age groups were made to differentiate between children and 

adolescents, one with patients ranging from 2 to 12 year old and another one from 13 to 

18 year old. PCA coloured according to these two groups did not show any clear 

distribution or separation between groups, as it can be interpreted from Fig. 5.23.  

 
Fig. 5.23. PCA of significant features coloured by age groups. 

Even though no clear separation between the two age groups was found, it was considered 

that some linear relation could exist between age and concentration of these entities. This 

was evaluated by means of patient age prediction with PLS regression, using LOO 

approach. This operation was performed for all samples together as well as differencing 

between control and for CKD samples. Having a look at the graphs in Figure 5.24, X-axis 

represents the true age of each patient, whereas Y-axis refers to the predicted age 

according to the PLS regression model built using the abundances of the 5 selected 

features. In case there was any linear correlation between feature concentration and age, 
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the prediction of the age would approximate to the real age. Nevertheless, the prediction 

was not good neither using all the samples together nor CKD samples alone, even though 

a slight trend could be perceived in control samples.  

 
Fig. 5.24. Linear regression using the selected 5 entities for differentiated groups of samples. 

To sum up, taking into account these two different multivariate approaches, no relation 

between age and feature concentration can be stated. 

 

The effect of receiving or not renal replacement therapy (RRT), either dialysis or 

transplant, was evaluated by means of performing PCA on samples from paediatrics with 

CKD and colouring the graphical representation depending on the treatment received (see 

Fig. 5.25). Neither different distribution of the samples nor specific groupings were found 

in relation with the treatment received. Therefore, any defined trend on feature 

concentration according to the RRT received is not expected.  
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Fig. 5.25. PCA of CKD patients coloured according to the RRT received. 

Furthermore, PCA was coloured according to the CKD stage or degree with the aim of 

finding any possible gradation according to feature concentration. Even though no clear 

separation of different CKD stages was found according to the abundance of these 

features, some trend was observed regarding the distance in the PCA of the control 

patients with the mildest CKD and the most severely ill patients, as showed in Fig. 5.26. 

For that reason, performing a PLS-DA sample classification was considered reasonable, 

following the previously explained sample division procedure for latent variable 

optimization and overall performance obtaining. PLS-DA sample classification (LV=1) lead 

to an overall performance of 47 % on average, which was considered low. 

 

Fig. 5.26. PCA of control and CKD patients coloured according to the degree of the disease. 

However, example cross-tables based on PLS-DA model obtained were represented to 

evaluate its performance and the results were better than expected, as it can be concluded 

from Table 5.8. Indeed, almost all the samples were correctly or one level above or below 

classified.  
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Table 5.8. An example of prediction of the degree of samples by means of PLS-DA (LV=1) model. 

 

Therefore, it could be concluded that feature concentration might somehow be affected by 

the CKD degree of the patients. It has to be noted that a relation between CKD degree 

and feature concentration is desired when looking for potential biomarkers. 

To sum up, plasma levels of these 5 features do not seem to be affected by sex, age and 

treatment received, whereas their concentration varies to some extent in accordance with 

the seriousness of the disease. 

 

 

5.6.6. METABOLITE IDENTIFICATION 

Metabolite identification aims at the determination of the chemical structure of the 5 

statistically significant concurrent metabolites that have showed to be interesting to 

differentiate between control and CKD paediatrics. The first level at metabolite 

identification is based on the comparison of experimental accurate mass acquired in MS 

mode and theoretical exact mass in several databases. Once putative compounds have 

been stablished, MS/MS spectra of these features are obtained and compared with 

reference MS/MS spectra. Finally, the use of analytical standards enables identity 

confirmation of the metabolites by means of retention time, MS and MS/MS spectra 

comparison. 

 

5.6.6.1 MS libraries 

The use of the different databases such as METLIN, HMDB, LIPID MAPS and mzCloud 

allowed the putative identification of 3 out of 5 features (see table 5.9). It has to be noted 

that when comparing experimental and theoretical masses, a mass tolerance below 5 ppm 

was accepted.  

 

The quality of compound identification is assessed using overall identification scores or ID 

scores57. ID scores consider the confidence of compound identification according to the 
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accurate mass, isotope patterns, relative abundances, m/z distances and the error of the 

accurate mass measurement (expressed as parts per million). In this case, these values 

have been obtained from the Molecular Feature Extraction algorithm provided by 

MassHunter Qualitative Analysis software. ID scores are known to be affected by both 

signal intensity and matrix effect. For the putative identification of these features the 

overall ID scores were above 95 % in all the cases and the error of the accurate mass 

measurement below 3.87 ppm. 

Table 5.9. Putative compound identification using the aforementioned libraries. 

 

Profinder software estimates that these m/z are the protonated species of the metabolites, 

except for 264.2685 m/z for which [M+NH4]+ adduct formation was suggested by the 

algorithm. However, taking into account that neither the mobile phase nor the reagents 

used for sample treatment contained ammonia, it was considered odd that an adduct with 

NH4 could be formed. For that reason, the possibility that 264.2685 m/z could correspond 

to [M+H]+ adduct like the previous metabolites was studied, but this search did not return 

any candidate. Therefore, 264.2685 m/z was examined as a fragment ion in mzCloud 

library, which contains a tool to search MSn ion products, just in case the significant entity 

was the product of fragmentation of another molecule. According to this search, 264.2685 

m/z entity could correspond to a [M]+ fragment of sphigosine-1-phosphate (C18H34N). This 

metabolite could be involved in renal diseases according to previous research58,59. With 

the aim of checking whether the entity could be fragmenting in the ionization source, 

plasma sample analysis was repeated under the same conditions of Table 5.5 but with a 

lower fragmentor voltage (Frg=100 V). This analysis confirmed that the fragment could 

correspond to sphingosine-1-phosphate, as the m/z matching with the protonated specie 

of this metabolite, 380.2560 m/z, appears at the same retention time and increases using 

a Frg=100 V instead of 175 V (see fig. 5.27).  
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Fig. 5.27. EIC chromatograms for 264.2685 m/z and 380.2560 m/z obtained with a 
fragmentor voltage of 100 V and 175V. 

 

Consequently, it was concluded that 264.2685 m/z could correspond to a product of 

fragmentation in the ionization source of sphingosine-1-phosphate when a fragmentor 

voltage of 175 V is used.  

Table 5.10. Putative compound identification for 264.2685@15.61 min entity. 

 

 

5.6.6.2. MS/MS fragmentation experiments 

Putative identification of the features found to be significant in CKD and control paediatric 

class discrimination needs to be confirmed by means of characteristic MS/MS spectra. 

MS/MS fragmentation and isotopic distributions of precursor and product ions were studied 

and compared with MS/MS spectral data from the libraries listed in section 5.2.6. For that 

purpose, experiments were repeated in targeted MS/MS mode, in 30-1000 m/z mass 

range, with an acquisition rate of 1 spectra/s (in MS/MS mode), collision energies ranging 

from 10 V to 40 V and the analysis conditions showed in Table 5.5. Mass accuracy of the 

recorded ions was assured by means of continuous internal calibration with 121.0509 m/z 

and 922.0098 m/z. 

 

Due to the fact that no candidates were found for 126.0930@1.32, MS/MS fragmentation 

was performed with the aim of obtaining more information about this entity. MS/MS 

spectra with a collision energy of 30 V of 126.0930 m/z showed 4 characteristic fragments: 

41.0395 m/z, 69.0306 m/z, 70.0666 m/z and 98.0597 m/z. These fragments were 

searched in mzCloud library and the peaks 41.0375 m/z, 70.0633 m/z and 98.0580 m/z 

were found in reference MS/MS spectra of 2-aminoadipic acid.  
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However, 126.0930 m/z did not match with the [M+H]+ of 2-aminoadipic acid (162.0761 

m/z). For that reason, the use of a lower fragmentor (Frg=100 V) was assayed to verify 

that no in-source fragmentation was occurring at that voltage. Nevertheless, [M+H]+ 

corresponding to 2-aminoadipic acid was not found either using Frg=100 V or Frg=175 V, 

so that the analysis of an analytical standard was required in order to verify if 

126.0930@1.32 could correspond to 2-aminoadipic acid.  

 
Fig. 5.28. Experimental spectrum of 126.0930@1.32 entity in comparison with MS/MS reference 
spectrum of 2-aminoadipic acid.  

Regarding 232.1552@1.32 feature, MS/MS analysis was carried out in order to verify if 

this entity could correspond to a carnitine and, if possible, to discern between the two 

carnitine candidates: i-butyrylcarnitine and n-butyrylcarnitine. MS/MS analysis of 

232.1552 m/z with a collision energy of 30 V showed a base peak close to 85.0295 m/z 

(see Fig. 5.29), which corresponds to the fragment C4H5O2, a characteristic peak in MS/MS 

spectra of all carnitines60. In addition, some other minor peaks were found in MS/MS 

spectrum but were not conclusive for identification purpose. Thus, this MS/MS spectrum 

might correspond to a carnitine and is compatible either with i-butyrylcarnitine or n-

butyrylcarnitine, even though it is not possible to differentiate between them. Analytical 

standard analysis of both candidates is necessary to establish the identity of 

232.1552@1.32.  



CHAPTER	V	

 

 188	

 
Fig. 5.29. Experimental MS/MS spectrum of 232.1552@1.32 compared to reference MS/MS spectra 
of i-butyrylcarnitine and n-butyrylcarnitine. 

Similar to the previous entity, 314.2322@12.15 was suspicious of being a carnitine, so 

that a characteristic base peak close to 85.0295 m/z was expected. MS/MS spectra from 

plasma samples with a collision energy of 30 V showed that there was an indicative base 

peak around 85.0295 m/z, thus confirming that the feature may correspond to a carnitine. 

According to different libraries, the two candidates proposed for this m/z were carnitines, 

so this spectrum could correspond to either of them: cis-4-decenoylcarnitine and 9-

decenoylcarnitine. The comparison of MS/MS spectra of both candidates could clarify the 

identity of the feature. Nevertheless, no reference spectra was found for cis-4-

decenoylcarnitine and 9-decenoylcarnitine. A study from Giesbertz et al. showed that the 

MRM transition used to monitor decenoylcarnitine, without distinction of the isomer, was 

370.2>85.1. Therefore, in this case the use of analytical standards is indispensable to 

identify correctly this feature.  
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Fig. 5.30. Experimental MS/MS spectrum of 314.2322@12.15. 

The fragmentation pattern of 585.2722@12.46 was studied using a collision energy of 

30 V. A characteristic fragment close to 299.1396 m/z was found, which according to 

reference MS/MS spectra from METLIN library, could correspond to a cleavage of the 

central C-C of bilirubin. As a consequence, the analysis of bilirubin analytical standard may 

confirm the identification of this feature as bilirubin. 

 
Fig. 5.31. Experimental MS/MS spectrum of the feature 585.2722@12.46 and a reference MS/MS 
spectrum of bilirubin extracted from METLIN database. 

Finally, MS/MS fragmentation patterns of both 264.2685@15.61, the hypothetical 

fragment of sphingosine-1-phosphate with a fragmentor voltage of 175 V (collision energy 

30 V) and 380.2560@15.61, the theoretically entire molecule of the same metabolite with 

a fragmentor voltage of 100 V (collision energy 40V) were examined. As it can be observed 

in Fig. 5.32, MS/MS spectra of 380.2560 m/z contained the peak 264.2685 m/z, which 

could correspond to the tail of the sphingosine-1-phosphate (C18H34N), matching with 
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reference MS/MS spectra from HMDB. Regarding MS/MS spectra obtained from 264.2685 

m/z fragmentation, the major peaks obtained, 55.0549 m/z (C4H7) and 82.0658 m/z 

(C5H8N), could also be found in MS/MS spectra of 380.2560 m/z. Therefore, MS/MS 

fragmentation patterns obtained matched with the hypothesis that both 264.2685 m/z 

and 380.2560 m/z correspond to sphingosine-1-phosphate, even though this assumption 

needs to be verified by means of an analytical standard. 

 
Fig. 5.32. Experimental MS/MS spectrum of 264.2685@15.61 and 380.2560@15.61 compared to 
reference MS/MS spectrum of sphingosine-1-phosphate. 
 

5.6.6.3. Analytical standards 

The tentatively identified features need to be confirmed by means of both MS and MS/MS 

analyses of each analytical standard, with the conditions specified in Table 5.5. These 

standards were analyzed together with plasma samples, in case there was any shift in 

retention time. In addition, when retention times matched, plasma samples were spiked 

with the analytical standard of interest to check that an increase in EIC chromatogram 

was observed. 
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The analysis of 2-DL-aminoadipic acid analytical standard in MS mode showed a peak at 

retention time 0.92 min, which did not match with the retention time of the feature of 

interest in plasma, 126.0930@1.32 (Fig. 5.33). Moreover, 116.1072 m/z and 144.0658 

m/z were the two major ions in the spectrum of the analytical standard, in addition to less 

abundant signal 162.0761 m/z ([M+H+]), and did not contain the 126.0930 m/z of the 

feature. Besides, EIC chromatograms of 126.0930 m/z were compared in plasma samples 

before and after spiking 2-DL-aminoadipic acid, just in case this metabolite may ionize 

differently in plasma matrix. However, the addition of the analytical standard did not show 

any increase of this m/z, so that this possibility was discarded. 

 

To sum up, it could be stated that 126.0930 m/z does not correspond to a fragment of 

the aforementioned metabolite as 2-DL-aminoadipic acid eluted 0.4 min before the feature 

of interest and MS spectra did not matched. In addition, MS/MS fragments from the 

feature in plasma matching with reference spectra might correspond to common and 

inespecific fragmentations. Therefore, it could be concluded that 126.0930 m/z may 

correspond to a metabolite with some physicochemical properties similar to 2-DL-

aminoadipic acid, but not exactly to that compound. 

 
Fig. 5.33. TIC scan and MS spectrum of 2-DL-aminoadipic acid standard in comparison with EIC of 
the 126.0930@1.32 feature in plasma.  
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Concerning the identification of 232.1552@1.32 feature, both i-butyrylcarnitine and n-

butyrylcarnitine analytical standards were analyzed in MS mode. Even though the same 

MS spectra was obtained for these analytical standards, the retention times were different. 

The retention time of n-butyrylcarnitine matched with the retention time of 

232.1552@1.32 entity in plasma (see Fig. 5.34). Besides, MS/MS spectra of n-

butyrylcarnitine was studied and the profile coincided with the MS/MS fragmentation 

pattern of this feature in plasma. Consequently, the potential biomarker was identified as 

n-butyrylcarnitine.  

 
Fig. 5.34. EIC of the analytical standards n-butyrylcarnitine and i-butyrylcarnitine are compared with 
232.1552@1.32 feature, showing matching retention times between the feature and n-
butyrylcarnitine. The addition of n-butyrylcarnitine standard to plasma sample is observed as well. 
Below, MS and MS/MS spectra of n-butyrylcarnitine are showed. 
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Regarding 314.2322@12.15 feature, the availability of analytical standards cis-4-

decenoylcarnitine and 9-decenoylcarnitine to verify its identity was more limited and none 

of the two candidates were commercialized. Therefore, cis-4-decenoylcarnitine was 

synthetized on-demand by an organic chemistry research group at Universidad Autónoma 

de Madrid (Madrid, Spain). This experiment lead to the same retention time and MS 

spectra for cis-4-decenoylcarnitine and 314.2322@12.15 feature. Moreover, when spiking 

plasma samples with this analytical standard, there was a significant increase of the 

chromatographic peak. Taking into account that both retention time and MS spectra 

matched, MS/MS analysis of cis-4-decenoylcarnitine standard was performed. MS/MS 

spectra of the analytical standard also coincided with the fragmentation pattern of this 

feature in plasma. Therefore, 314.2322@12.15 feature was identified as cis-4-

decenoylcarnitine.  

 
Fig. 5.35. EIC chromatograms of cis-4-decenoylcarnitine standard in comparison with EIC of 
314.2327@12.15 in plasma. MS and MS/MS spectra are also showed for cis-4-decenoylcarnitine.  
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Besides, 585.2722@12.46 feature was compared with its candidate bilirubin analytical 

standard. For that purpose, bilirubin analytical standard and plasma were analyzed, 

obtaining a minimal shift in retention times. In addition, MS spectra from bilirubin matched 

perfectly with the m/z of the feature of interest in plasma. Moreover, when spiking plasma 

samples with bilirubin, an increase in EIC of the feature was observed (Fig. 5.36). Finally, 

MS/MS spectra of bilirubin standard was obtained and it was verified that both plasma 

sample and bilirubin had the same fragmentation pattern.  

 
Fig. 5.36. EIC chromatograms of the analytical standard bilirubin in comparison with 
585.2722@12.46 in plasma sample, before and after spiking it. In addition, an increase in the signal 
is observed when spiking plasma with bilirubin. MS and MS/MS spectra for bilirubin are also showed. 
 

Regarding 264.2685@15.61 feature, sphingosine-1-phosphate analytical standard and 

plasma samples were analyzed in MS mode using 100 V fragmentor voltage and 380.2560 

m/z was monitored. Retention time matched in plasma sample and analytical standard. 
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Moreover, the addition of this analytical standard to plasma samples leads to an increase 

of the EIC peak corresponding to the feature. Finally, MS/MS fragmentation pattern of 

380.2560 m/z precursor ion of the analytical standard sphingosine-1-phosphate was 

obtained. A fragment of 264.2713 m/z was achieved from sphingosine-1-phosphate 

standard analysis, close to the 264.2685 m/z found to be significant in plasma when using 

175 V fragmentor voltage, instead of 100 V. 

 
Fig. 5.37. EIC chromatograms of the analytical standard sphingosine-1-phosphate in comparison 
with EIC of 380.2560@15.61 in unspiked and spiked plasma sample. In addition, MS and MS/MS 
spectra of sphingosine-1-phosphate are showed. 
 

The results of the identification and confidence levels of the significant entities to 

differentiate between control and CKD paediatrics, according to Metabolomics Standard 

Initiative36 explained in section 5.2.6, are showed in Table 5.11. Four out of five 

compounds were successfully identified with the maximum confidence as n-

butyrylcarnitine, sphigosine-1-phosphate, cis-4-decenoylcarnitine and bilirubin. However, 
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one feature was not successfully identified even though its retention time, MS and MS/MS 

spectra were obtained for future characterization.  

Table 5.11. Identification of the significant features and identification confidence level, according 
to the Metabolomics Standards Initiative (MSI)36. 

 
 

 

5.7. BIOLOGICAL INTERPRETATIONS OF THE RESULTS 

The establishment of a relationship of these up- or down-regulated metabolites (see Fig. 

5.38) with the disturbed metabolic pathways is of great interest to understand the causes 

and effects of impaired kidneys, as well as to find new potential therapeutic targets. 

 

Fig. 5.38. Identified up- or down-regulated metabolites. 
 

Regarding, n-butyrylcarnitine and cis-4-decenoylcarnitine, adult patients with ESRD on 

long-term hemodialysis are known to have free carnitine deficiency in addition to elevated 

acylcarnitine concentrations in plasma61. In fact, carnitine acts as an essential 

intermediary metabolite in lipid metabolism and complies with several functions, such as, 

shuttling acylcarnitines into mitochondria for beta-oxidation and energy production in fatty 

acid oxidation dependent tissues (e.g. cardiac and skeletal muscle)62. Moreover, the 

accumulation of acylcarnitines in plasma is known to be a consequence of decreased renal 
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clearance of the esterified carnitine fraction in patients not yet undergoing 

haemodialysis63. Furthermore, increased butyrylcarnitine levels in plasma (with no 

distinction of the isomer) had already been found to be increased in adults with ESRD61. 

However, it is the first time, as far as we know, that n-butyrylcarnitine has been relationed 

with paediatrics with CKD. Cis-4-decenoyl carnitine has accordingly been proposed as 

potential biomarker of CKD in paediatrics for the first time. This metabolite had already 

been related to newborns having suffered from hypoxic ischemic encephalopathy, which 

presented altered levels in umbilical cord blood64. 

 

This untargeted metabolomics study would demonstrate that in addition to the lipids of 

the carnitine family, sphingolipids are also affected in paediatrics suffering from CKD. 

Sphingosine-1-phosphate is a signaling sphingolipid recognized as a decisive regulator of 

several metabolic pathways and has a role in several pathophysiological processes, like 

atherosclerosis, cancer, diabetes and osteoporosis65. According to recent research, 

sphingosine-1-phosphate 1 receptor (S1P1R) activation blocks kidney inflammation and 

thus could relieve renal injury in rats with early-stage diabetic nephropathy. For that 

reason, targeting S1P1R has been suggested as an interesting therapeutic measure in 

diabetic nephropathy66. In addition, some other studies have proven the expression of 

sphingosine kinases and S1P receptors in the kidney58. Furthermore, sphingosine-1-

phosphate formation is known to be stimulated by TGF-β1 release, a protein which has 

also been suggested as a biomarker for CKD67, thus leading to S1P1R activation68.  

 

Concerning the up-regulated feature with a mass-to-charge ratio of 126.0930 m/z, it could 

not be identified. However, considering its high polarity and MS/MS spectra,it is suspected 

that this feature could be some kind of amino acid derivative similar to aminoadipic acid, 

which has been related to protein carbonyl oxidation in adults suffering from renal 

failure69. Indeed, some amino acids and amino acid derivatives have been found to be 

increased in paediatrics with CKD70-72. 

 

Generally, an accumulation of metabolites is expected in CKD because of the nature of the 

disease. Nevertheless, according to these results paediatrics with CKD would show 

decreased bilirubin levels in plasma. These results match with recent studies performed 

in adults in which lower serum bilirubin concentration had already been associated with 

adverse renal outcomes73. Moreover, serum total bilirubin concentration has been 

proposed as a novel risk factor for CKD progression in general population74 and could help 

predicting progression of the disease in patients with moderate to severe CKD73. Indeed, 

moderately elevated bilirubin levels could act as a protecting factor by lowering 
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progression of chronic kidney disease and related mortality in rats in connection with its 

antioxidant properties, protecting kidneys from circulating oxidative stress75.  

 

5.8. CONCLUSIONS 

Taking into account the proposed objectives and the results obtained in this untargeted 

metabolomics study, it can be concluded that:  

 A new LC-QTOF-MS analytical methodology has been optimized to extract as many 

features as possible and obtain the most relevant metabolites to differentiate 

between control and CKD paediatrics.  

 The use of two different chemometric approaches showed that a high percentage of 

the significant features matched, showing 5 features that were significantly up- or 

down-regulated and enabled discrimination between groups.  

 An overall accuracy of 96 % has been achieved for the classification of control and 

CKD samples using these 5 features (PLS-DA, LV=1), whereas considering only 

early CKD patients against controls a performance of 97 % was obtained (PLS-DA, 

LV =1). Consequently, it could be affirmed that these features could be interesting 

potential biomarkers for general and early CKD.  

 The concentrations of the metabolites found to be significant are unlikely to be 

affected by age, sex or treatment received. On the contrary, some correlation have 

been found between metabolite concentration and CKD degree. 

 The identification of the entities has been quite successful as 4 of these entities were 

fully identified as n-butyrylcarnitine, cis-4-decenoylcarnitine, bilirubin and 

sphingosine-1-phosphate, with 1st level compound identification confidence 

according to the Metabolomics Standards Initiative. Furthermore, the only 

unidentified feature (and thus complying with 4th level from the MSI scale) was at 

least characterized by MS/MS spectra. 

 Future development of a quantification methodology is needed for method 

validation, to check whether these promising metabolites might be suitable 

biomarkers, and for routine analysis of these metabolites in plasma. This will be 

covered in Chapter 6. 
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6.1. INTRODUCTION  

There is an increasing interest in the development of simple methodologies that enable 

routine analysis for the diagnosis of different diseases in the clinical practice by means of 

a variety of endogenous biomarkers1. 

 

Regarding CKD and control paediatric differentiation, the untargeted metabolomics 

approach carried out in Chapter 5 showed increased n-butyrylcarnitine, cis-4-

decenoylcarnitine and sphingosine-1-phosphate plasma levels, and decreased 

bilirubin plasma levels, which could be potential biomarkers.  

 

However, scientists and clinicians concluded that untargeted metabolomics approaches 

are better suited for a discovery phase and should not be treated as a diagnostic tool in 

routine analysis to differentiate between healthy and disease conditions of different 

populations. Indeed, the end result of untargeted metabolomics studies are statistically 

significant up- or down-regulated compounds that can give an insight of the progress or 

pathogenesis of specific conditions. However, to find out which of the identified significant 

metabolites might act as biomarkers, there is a need for analytical method validation2. 

Analytical method validation aims at confirming that an analytical procedure used for a 

specific test is suitable for its intended use. For that purpose, analytical requirements are 

defined to assure that the method under consideration has performance capabilities 

consistent with the requirement of the application.  

 

The reliability of the results obtained by means of multi-instrument inter-laboratory 

untargeted metabolomics studies has being recently assessed3. According to this research 

work, there is a high level of analytical convergence regarding the use of multiple 

instruments in different locations, but there is still a need to validate the biological 

outcomes arising from untargeted metabolomics analyses. The validation of the biological 

results obtained from untargeted metabolomics studies needs to be carried out developing 

and validating targeted specific analytical methods for the specific significant metabolites 

obtained2. Additionally, the use of multisite clinical trials is becoming increasingly 

important in the validation process, due to the fact that some factors, such as diet, 

environment, race or socioeconomic factors may have a geographic origin4.  

 

Despite the fact that multiple parameters were controlled during untargeted metabolomics 

study carried out aimed at paediatric CKD to assure the stability of the system, there is a 
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need for validating these metabolites as potential biomarkers by means of a quantitative 

analytical method.  

 

Apart from the metabolites obtained from untargeted metabolomics assay, citrulline, S-

dimethylarginine, S-adenosylmethionine and creatinine were found to be significant 

in the targeted metabolomics study performed to find up- or down-regulated metabolites 

in arginine-creatine, urea cycle and arginine methylation metabolic pathways (Chapter 

4)5,6.  

 

Combination of the potential biomarkers in one common routine analysis method could be 

of interest to assess the metabolite pattern in both control and CKD paediatrics and could 

be of application in screening routine analyses carried out by general practitioners. Indeed, 

it is estimated that the majority of the population visits their general practitioner at least 

once within a 3-year period and can be subjected to screening7. 

 
Fig. 6.1. Potential biomarkers according to targeted and untargeted metabolomics studies carried 
out and showed in Chapters 4 and 5.  
 

 

6.2. STUDY’S GOAL 

The main objective of this study deals with developing and validating a routine quantitative 

analytical method, which gathers the analytes found to be significant in both targeted 

metabolomics study described in Chapter 4 and untargeted metabolomics study from 

Chapter 5. This new analytical method will accomplish different goals: 
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 Validation of the biological results obtained from the untargeted metabolomics 

study from Chapter 5. 

 Obtaining a new LC-MS method that collects significant metabolites for CKD and 

control population discrimination from the targeted and untargeted metabolomics 

studies aimed at quantification. 

 Being simple for its potential application in clinical practice.  

 

To accomplish these purposes, a routine analysis method needs to be carried out using 

LC-QQQ equipment. This method will aim at the quantification of the following analytes: 

citrulline (CIT), symmetric dimethylarginine (SDMA), S-adenosylmethionine (SAM), 

creatinine (CNN), n-butyrylcarnitine (nC4), cis-4-decenoylcarnitine (CIS4DEC), 

sphingosine-1-phosphate (S1P) and bilirubin (BIL). Both extraction method and analysis 

method optimization will be required to obtain the highest sensitivity, followed by the 

validation of the method, aimed at assuring the quality of data obtained.  

 

 

6.3. MATERIALS AND EQUIPMENT 

6.3.1. STANDARDS AND REAGENTS 

Methanol and acetonitrile used in the plasma extraction study were acquired from Scharlab 

(Barcelona, Spain). Besides, LC-MS grade formic acid used for mobile phase was obtained 

from Fisher Scientific (Ghent, Belgium), ammonium formate from Fluka Analytical, Sigma-

Aldrich (Steinheim, Germany) and perfluoroheptanoic acid 96 % from Across Organics 

(New Jersey, USA). Ultra-high purity water achieved from tap water pretreated by Elix 

reverse osmosis and a Milli-Q system from Millipore (Bedford, MA, USA) was used. 

Moreover, mobile phases were filtered through 0.1 μm filters from Millipore Omnipore 

(Watford, Ireland) prior to use.  

 

The analytical standards used were acquired from different manufacturers. NG,NG′-

dimethyl-L-arginine di(p-hydroxyazobenzene-p′-sulfonate) (SDMA), S-adenosyl-L-

methionine (SAM), n-butyryl-L-carnitine (nC4), iso-butyryl-L-carnitine (iC4) and citrulline 

(CIT) were acquired from Sigma-Aldrich (Steinheim, Alemania). In addition, creatinine 

(CNN) was obtained from Alfa Aesar (Karlsruhe, Germany) manufacturer, D-erytro-

sphingosine-1-phosphate (S1P) was pursached from Larodan AB (Limhamn, Sweden),  

cis-4-decenoylcarnitine synthesized by Lumila Research group at The Autonomous 

University of Madrid (Madrid, Spain) and bilirubin was obtained from TCI (Tokyo, Japan).  
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Regarding isotopically labeled compounds, NG,NG’-dimethyl-L-arginine-d6 (SDMA-d6) and 

creatinine-d3 (CNN-d3) were both supplied by Toronto Research Chemicals, TRC-Canada 

(North York, Canada).  

 
In addition, blood sample collection was carried out using Becton Dickinson EDTA tubes 

(Plymouth, UK).  

 

6.3.2. INSTRUMENTATION 

The analysis method gathering the eight metabolites of interest was accomplished 

injecting 2 μL of sample in a 1200 series HPLC system coupled to a 6410 series triple 

quadrupole mass spectrometer (LC-QQQ) from Agilent Technologies (Santa Clara, CA, 

USA), equipped with Agilent Jet Stream electrospray source. Chromatographic separation 

was carried out using the reversed phase column Zorbax Eclipse Plus C18 (3.0 x 50 mm, 

1.8 μm) and C8 guard column (2.1 x 12 mm, 5 μm), both from Agilent Technologies, 

which were kept at 40 ºC during the analysis. In addition, another two columns were also 

assayed, but were discarded because of their bad performance: Kinetex C18 100 Å (2.1 x 

30 mm, 1.7 µm) and Zorbax Extend-C18 Rapid resolution HT (2.1 x 50 mm, 1.8 µm). 

 

Data acquisition was carried out using Agilent MassHunter Workstation Data Acquisition 

version B.08.00 software and afterwards, raw data was processed using MassHunter 

Qualitative Analysis version B.07.00 (both from Agilent Technologies). Finally, data 

analysis was performed using Matlab R2015a (Mathworks) and SPSS Statistics 23 (IBM).  

 

Samples were centrifuged with a 5415 R Eppendorf (Madrid, Spain) centrifuge, and 

supernatant evaporation was carried out in a Techne, Dri-Block® DB-3D (Staffordshire, 

UK) evaporator system. 

 
Fig. 6.2. LC-QQQ instrument used in this study.   
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6.3.3. PREPARATION OF STANDARD SOLUTIONS 

First of all, stock standard solutions containing around 1000 mg/L were prepared and from 

these solutions individual standard solutions of 1 mg/L, 2 mg/L and 5 mg/L were made 

for precursor ion identification. Stock solution of CNN was prepared in water, whereas CIT 

and SAM were dissolved in 0.01 N of HCl, to contribute to their stability. Besides, SDMA, 

CIS4DEC, iC4, nC4 and S1P were prepared in methanol and BIL in acetonitrile. Concerning 

internal standards, creatinine-d3 and SDMA-d6 were dissolved in methanol. These solutions 

were stored frozen at -40ºC.  

 

Intermediate mixed solutions containing BIL and SAM were prepared in acetonitrile and 

were replaced twice a week, whereas the rest of the analytes were made weekly in 

methanol. Working solutions were obtained from intermediate mixed solutions for 

analytical methodology and sample treatment optimization. Due to the observed 

degradation of working solutions at room temperature, there was a need for replacing 

them daily with frozen intermediate solution.  

 

Calibration standards were prepared spiking pooled plasma made of control samples, 

which had been previously quantified by standard addition and contained: 5.9 µg/mL CIT, 

9.4 µg/mL CNN, 145 ng/mL SDMA, 19 ng/mL nC4, 40 ng/mL SAM, 75 ng/mL CIS4DEC, 

40 ng/mL S1P and 7.5 µg/mL BIL.  After being doped, both calibration standards and real 

samples underwent the same sample treatment.  

 

Quality control samples were prepared using a pooled plasma previously quantified by 

means of standard addition. This pooled plasma contained 5.3 µg/mL CIT, 7.1 µg/mL CNN, 

132 ng/mL SDMA, 18 ng/mL nC4, 61 ng/mL SAM, 71 ng/mL CIS4DEC, 210 ng/mL S1P 

and 8.5 µg/mL BIL. Low, medium and high QC samples were obtained spiking this pool. 

High QC consisted in the addition of 9 μg/mL of CIT, 22.5 μg/mL of CNN, 90 ng/mL of 

SDMA, 22.5 ng/mL nC4, 600 ng/mL of SAM, 225 ng/mL CIS4DEC, 4.5 µg/mL of S1P and 

11.25 µg/mL of BIL. Regarding low and medium QC, same pooled plasma was used but 

spiked with the 20 % and the 50 % of the concentration added for each analyte in high 

QC level. These QC samples underwent the same sample treatment as calibration 

standards and samples, and were analyzed during the batch to check the correct 

performance of the analytical method and the accuracy of the quantifications carried out.  
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6.3.4. SUBJECTS AND SAMPLING 

The routine analytical method developed was applied to plasma samples from thirty-two 

patients suffering from CKD, aged 3-18 years, and thirteen control patients, aged 6-16 

years. Samples from CKD patients were the same previously used in Chapter 4 and 5, 

whereas, control samples differed in some cases, but followed the same inclusion criteria: 

healthy children who had a minor surgery in Cruces University Hospital. Paediatrics 

suffering from CKD were followed up in Cruces University Hospital (Bilbao, Spain) and had 

been classified into different degrees of the disease, as showed in Table 6.1.  

Table 6.1. Characteristics of the plasma samples quantified with this routine method.  

 

Blood samples were collected in the morning after an overnight fasting. Samples were 

immediately cooled in an ice-water bath and centrifuged at 1000 g for 5 min at 4ºC. 

Finally, they were stored at -80ºC until sample treatment and analysis.  

 

Ethics Committee of Clinic Research of Cruces Hospital approved the study protocol and 

patients’ parents gave written informed consent. 

 

 

6.4. LC-QQQ-MS METHOD DEVELOPMENT 

 

6.4.1. SELECTION OF THE CHROMATOGRAPHIC VARIABLES  

First attempts in analytical method optimization were carried out in MS2 Scan mode. 

Due to the nature of all of these analytes ESI interface was used and first attempts were 

made using 0.1 % formic acid and 0.5 mM PFHA aqueous phase (A) and acetonitrile 

organic phase (B). 

The eight analytes under study as well as the two internal standards used (CNN-d3 and 

SDMA-d6) were analysed and characterized, one by one, obtaining their retention times 
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and their characteristic m/z. For all the metabolites, the protonated form of each of them, 

[M+H]+, was obtained, as showed in Table 6.2. 

Table 6.2. Molecular formulas, molecular masses, ionization and experimental m/z ratios in MS for 
analytes of interest. 

 

As showed in Chapter 5, in addition to n-butyrylcarnitine (nC4), its structural isomer i-

butyrylcarnitine (iC4) is also expected in plasma. Due to the fact that both ionize equally 

in MS and MS/MS mode, for method optimization both nC4 and iC4 will be monitored, to 

assure that these metabolites are separated in the chromatogram. However, once 

developed the method, only nC4 will be included on it, because iC4 did not showed to be 

significant according to the study carried out in Chapter 5. 

 

 

6.4.1.1. Column 

S1P sphingolipid is a particular analyte, which contains a long hydrocarbon chain in 

addition to hydroxyl, amino and phosphate groups, and a pKa value of 1.768. Preliminary 

studies carried out using 0.1 % formic acid in the aqueous phase (A) and acetonitrile in 

the organic phase (B) showed that this compound may present problems to elute from 

column. Aimed at verifying that the problem did not come from the analytical standard or 

from poor ionization, direct injection was experimented using 0.1 % formic acid (A) and 

acetonitrile (B), in isocratic mode, with different proportions of solvents: 80 % B, 50 % B 

and 20 % B. In all the different isocratic methods performed by direct infusion of stock 

solutions, S1P provided a signal. Therefore, problems with the analytical standard solution 

or with poor ionization were discarded.  
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Different C18 chromatographic columns were assayed in order to find one that achieves 

S1P elution in addition to obtaining a good relation relation between separation of the 

analytical compounds and peak resolution: Kinetex C18 100 Å (2.1 x 30 mm, 1.7 µm), 

Zorbax Extend-C18 Rapid resolution HT (2.1 x 50 mm, 1.8 µm) and Zorbax Eclipse Plus 

C18 Rapid resolution (3 x 50 mm, 1.8 µm).  

 

First of all, multiple gradients and mobile phases were experimented with Kinetex C18 

column. However, none of the conditions assayed enabled S1P elution.  

Thereafter, Zorbax Extend-C18 column, which aims at separating basic compounds 

above their pKa in their free base form, was experimented. In this case, mobile phase flow 

was reduced from 0.3 mL/min to 0.25 mL/min, as it is the maximum recommended flow 

for that column. Nevertheless, again no signal was observed for S1P.  

 

Finally, Zorbax Eclipse Plus C18, which is intended for the separation of acidic, basic 

and other highly polar compounds by reverse-phase liquid chromatography was assayed 

with the same mobile phase with a flow rate of 0.3 mL/min. In this case, signal was 

obtained for all the analytes and peaks showed an acceptable resolution.  

 

 

6.4.1.2. Composition of the mobile phase 

Once selected Zorbax Eclipse Plus C18 column, composition of the mobile phase was 

optimized. With this column at 30 ºC, different gradients using 0.1 % formic acid (A) and 

acetonitrile (B) were assayed to check whether a good separation of the analytes could be 

achieved.  

Even when the organic phase proportion was minimal (2 % B) and regardless of the 

gradients assayed, CIT, CNN, SDMA, iC4, nC4 and SAM elute together at the start of the 

chromatogram (around 0.7 minutes). Regarding that in Chapter 4, PFHA ion-pairing 

reagent was added in the aqueous phase providing better retention to charged polar 

compounds, the use of this reagent was considered (see Fig. 6.3). Again a concentration 

of 0.5 mM was used matching with previous literature9-11 and experience from Chapter 4.  
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Fig. 6.3. Differences in analyte separation using gradient on the left with a mobile phase containing 
and not containing PFHA ion pairing reagent.  

The addition of PFHA to the aqueous phase provided a significant improvement in the 

separation of the analytes, as it can be inferred from Fig. 6.3. Therefore, using PFHA to 

improve the retention was decided. 

 

Provided that this method gathers analytes with different nature, the effect of using 

different mobile phase modifiers was studied. The addition of either 5 mM ammonium 

formate or 0.1 % formic acid to 0.5 mM PFHA containing aqueous phase was 

experimented, obtaining better results with formic acid modifier. Besides, 0.5 mM of PFHA 

and 0.1 % formic acid were added to the organic phase, due to the fact that this mobile 

phase provided better results in terms of between sample retention time repetitivity and 

ionization of S1P and SAM. Thus, the selected mobile phase contained 0.1 % formic acid 

and 0.5 mM PFHA (A) and 0.1 % formic acid and 0.5 mM PFHA in acetonitrile (B).  

 

Next step consisted in improving the separation of the analytes. Aimed at obtaining a 

better separation of the metabolites, initial percentages of organic phase to 2 %, 5 %,   

10 %, 15 % and 20 % B were assayed. Differences found after testing these gradients 

are showed in Fig. 6.4. 

 
Fig. 6.4. Comparison of starting percentages of organic phase for the same gradient. 
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Gradient starting from 15 % B seems to provide the best separation for all the metabolites. 

However, as it has been previously stated, it is necessary to assess the separation between 

iC4 and nC4 as well. Separation of these analytes with previous gradients was compared 

and is showed in Fig. 6.5. Taking into account the separation of the isomers and their peak 

shape, the best separation was achieved using gradients starting from 20 %B.  

 
Fig. 6.5. Scan EIC (232.2 m/z) chromatograms of iC4 and nC4 superimposed showing the effect of 
starting with different organic percentages on butyrylcarnitine isomer separation.  

At this point column temperature was optimized experimenting with 30, 35 and 40 ºC. At 

a temperature of 40 ºC, better signals were obtained for SDMA, SAM, nC4, iC4, S1P and 

BIL, whereas similar peaks were obtained in all the temperature range for CIT, CNN and 

CIS4DEC. Moreover, in case of BIL, peak was more symmetric with 40 ºC and less tailing 

effect was observed. For all these reasons, a column temperature of 40 ºC was selected.  

 

Finally, with the aim of obtaining a better separation, the gradual increase of the organic 

phase was slowed down and at the time iC4 and nC4 eluted, flow was suddenly decreased. 

Definitive chromatographic conditions, including gradient program are showed in Table 

6.3.  
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Table 6.3. Definitive chromatographic conditions selected for this LC-QQQ-MS method. 

 

Once the definitive composition of the mobile phase was set, analytical standards were 

analyzed with the m/z values selected for each analyte (see Table 6.2) in MS2 selected 

ion monitoring (SIM) mode for further sensitivity, and the chromatogram showed in 

Fig. 6.6 was obtained.  

 
Fig. 6.6. Normalized SIM chromatogram obtained from the analysis of 2 µg/mL of each of the analytes 

of interest.  
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6.4.2. SELECTION OF THE MASS SPECTROMETRY DETECTION VARIABLES  

 
Once the separation conditions of the analytes had been defined, different variables from 

the mass spectrometer were optimized to increase the sensitivity of the analytes of 

interest.  

 

6.4.2.1. MS spectra 

Taking into account that all of these analytes ionized in electrospray (ESI) according to 

previous experiments (see Chapter 4 and Chapter 5), ESI positive mode was used for the 

analysis of these metabolites.  

 

First of all, different mass spectrometry conditions were assayed and optimized for the 

analytes of interest: capillary voltages (Vcap) of 3000 V, 3500 V and 4000 V; fragmentor 

voltages (Frg) of 75 V, 100 V, 125 V and 150 V; drying gas temperatures of 200 ºC, 250 

ºC, 300 ºC and 325 ºC; and drying gas flows of 9 L/min, 10 L/min, 11 L/min, 12 L/min. A 

compromise was reached to select the conditions that improve those analytes with less 

signal, affecting as less as possible to the rest of the metabolites. Optimized mass 

spectrometry conditions are summarized in Table 6.4. 

Table 6.4. Optimized MS spectrometry conditions for LC-QQQ-MS method.  

 

 

6.4.2.2. MS/MS spectra 

Once selected MS conditions, product ion scan analysis was carried out to obtain 

characteristic transitions to be used for quantification and qualification. Different collision 

energies were experimented (10 V, 20 V, 30 V and 40 V), being selected those with the 

most significant spectra. Fig. 6.7 shows the product ion scans obtained from all the 

analytes, including the isotopically labelled compounds.  
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Fig. 6.7. Product ion spectra of the targeted analytes. 

As it can be observed from this figure, for CNN, CNN-d3, SDMA and SDMA-d6 precursor 

ion was still abundant with the collision energies selected. The reason why a collision 

energy of 20V is used for CNN and CNN-d3 instead of a higher voltage, regarding that 

precursor ion was still abundant, is that collision energies of 25 V and 30 V were assayed 

and the fragmentation was too high to obtain any significant product ion. On the other 

hand, SDMA has a structural isomer, ADMA, which elutes at the same retention time and 

has the same MS spectra. However, according to literature12-14 and to our previous 

experience (see Chapter 4) their MS/MS fragmentation at low collision energies provides 

unique and specific ion products. After assaying different energies, 10 V provided a unique 

product ion, 172.1 m/z, for SDMA. Accordingly, SDMA-d6 was analyzed with 10 V as well, 

with the aim of obtaining an analogous behaviour.  
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EU’s decision 2002/657/CE states the minimum requirements for the collection of 

identification points for different analytical methodologies15. For LC-MS/MS methodologies 

a minimum of 4 identification points are needed. This criterion is fulfilled using 1 precursor 

ion and 2 product ions at a defined retention time. Following this statement, two different 

transitions were selected, one for quantification (Q) and the other one for qualification (q) 

as showed in Table 6.5.  

 

According to the selected quantification and qualification transitions dynamic multiple 

reaction monitoring (dMRM) mode was set.  

Table 6.5. MRM transitions selected for quantification and qualification. 

 

The analysis of a stock solution containing the metabolites of interest using MRM 

transitions showed in Table 6.5 lead to the following chromatograms: 
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Fig. 6.8. MRM transitions of stock solution prepared in acetonitrile:water (50:50, v/v) containing 12 
µg/mL CIT, 30 µg/mL CNN, 15 µg/mL CNN-d3, 120 ng/mL SDMA, 100 ng/mL SDMA-d6, 30 ng/mL 
iC4, 30 ng/mL nC4, 200 ng/mL SAM, 300 ng/mL CIS4DEC, 1.5 µg/mL S1P and 15 µg/mL BIL.  
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6.4.3. OPTIMIZATION OF SAMPLE TREATMENT CONDITIONS  

The optimization of sample treatment procedures enables both extracting targeted 

analytes and decreasing any matrix effect in order to obtain low limits of quantification. 

 

6.4.3.1. Addition of isotopically labelled compounds 

The use of isotopically labelled compounds is useful to correct for differences suffered by 

samples during sample treatment. In this case, two different isotopically labeled 

compounds were used. Creatinine-d3 (CNN-d3) was used to correct for the concentrations 

of CIT and CNN, whereas SDMA-d6 corrected the signals of SDMA, nC4, SAM, CIS4DEC, 

S1P and BIL. 10 µL of a mix solution containing 100 µg/mL of CNN-d3 and 1 µg/mL of 

SDMA-d6 was added to 50 µL of plasma, to reach concentrations of 20 µg/mL of CNN-d3 

and 200 ng/mL of SDMA-d6.  

 

6.4.3.2. Protein precipitation reagent 

Protein precipitation (PPT) is the simplest approach and performed well for the analytes 

of interest as seen in Chapters 4 and 5. For that reason, PPT was carried out. Regarding 

that in the untargeted metabolomics method developed methanol:ethanol (50:50, v/v) 

was used for PPT, this solvent was first experimented. However, even if this solvent 

enabled the extraction of all the analytes of interest, and that BIL was also extracted with 

this solvent mixture, when increasing BIL concentration to build calibration curves in 

plasma, no linearity was found. According to literature BIL is soluble in apolar solvents, 

such as chloroform (10 g/L), practically insoluble in water and soluble in aqueous solutions 

at high pH (300 g/L)8,16. However, it has to be noted that alkaline solutions rapidly oxidize 

BIL17. Therefore, the hypothesis that BIL extraction would be dependent on its solubility 

in the precipitation reagent was proposed to explain that lack of linearity. Consequently, 

the use of other solvents with different polarities was studied.  

 

The following solvents were experimented for PPT as precipitation reagents by adding to 

50 µL of pooled plasma 150 µL of the following frozen solvents and were compared with 

results from methanol:ethanol (50:50, v/v) extraction: acetonitrile, 1 % formic acid in 

acetonitrile, methanol and 1 % formic acid in methanol. Afterwards, all the extracts were 

evaporated and reconstituted in methanol. Regarding that recoveries for each analyte 

cannot be calculated as there is not any analyte-free matrix available, the relation between 

areas of the analytes of interest normalized with the signal of internal standards for 
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different precipitation reagents on average were compared. Results from this study have 

been summarized in Fig. 6.9. 

 
Fig 6.9. Analyte/internal standard (IS) ratios and standard deviations obtained from plasma 
extraction with acetonitrile, 1 % formic acid in acetonitrile, methanol, 1 % formic acid in methanol 
and methanol:ethanol (50:50, v/v).  

In general, the extraction was similar for all the metabolites using any of the precipitation 

reagents. However, for BIL significant differences were found. Indeed, plasma 

precipitation and extraction of BIL with acetonitrile provided 10 times higher extraction in 

comparison with the use of methanol, 1% formic acid in methanol and methanol:ethanol 

(50:50, v/v), and 100 times higher extraction in comparison with 1 % formic acid in 

acetonitrile. Moreover, plasma extracts obtained from acetonitrile showed a yellowish 

colour, whereas the rest of the extracts were almost transparent, which may give us a 

clue about the recovery of the extraction, taking into account that bilirubin solutions in 

acetonitrile are yellow. The poor extraction using 1 % formic acid in acetonitrile could be 

related to the acidity of the solution, since evidences have been found of its slight solubility 

in extremely acid aqueous solutions8. 

 

Regarding all these concerns, even though acetonitrile was discarded for PPT in the 

untargeted study in Chapter 5, because it increases phospholipid extraction, acetonitrile 

was selected for plasma protein precipitation in this LC-QQQ-MS method. Indeed, in this 

case a targeted methodology is being developed, which means that each analyte is 

individually monitored according to specific transitions, and a potential increase of total 

ion current chromatogram as a consequence of phospholipid accumulation would not affect 

the quantification in MRM.  
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Due to the fact that metabolites of interest are expected in different concentration ranges 

and regarding that the polarity of these analytes differs, sample evaporation and 

reconstitution of plasma extracts need to be optimized.  

 

PPT was assayed using acetonitrile, evaporating the extracts in nitrogen stream and 

reconstituting them in 100 µL of the following solvents: acetonitrile, 1 % formic acid in 

acetonitrile, methanol, initial conditions of the mobile phase, acetonitrile:acetic acid 0.5 M 

(75:25, v/v) and acetonitrile:acetic acid 0.1 M (75:25, v/v). In addition, the effect of 

avoiding any evaporation and reconstitution, by analysing sample extract obtained from 

acetonitrile PPT directly was also experimented.  

 

When using either acetonitrile or 1 % formic acid in acetonitrile some metabolites, such 

as, CIT, CNN and SDMA, were not detected in control plasma. Therefore, the use of 

acetonitrile or 1 % formic acid in acetonitrile was discarded. The results for the rest of the 

conditions studied are showed in Fig. 6.10.  

 
Fig. 6.10. Analyte/IS ratios and standard deviations obtained from plasma extraction with acetonitrile 
and reconstitution in methanol, initial mobile phase conditions, acetonitrile:acetic acid 0.1 M (75:25, 
v/v),  acetonitrile:acetic acid 0.5 M (75:25, v/v) and without any evaporation and reconstitution 
process.  
 

Best recoveries of the analytes were obtained using methanol and initial conditions of the 

mobile phase. However, as time goes by BIL and SAM signal decreased. In contrast, 

despite obtaining worse recoveries with acetonitrile:acetic acid 0.5 M, the stability of all 

the compounds was better. This would match with literature advising the use of acetic acid 

to acidify plasma for a better stability of SAM18. Regarding that the stability was improved 

and that the extracted amount of analyte was considered enough for quantification of 

these analyte in plasma, acetonitrile:acetic acid 0.5 M (75:25, v/v) was selected for 

reconstitution.  



LC‐QQQ‐MS	method	for	potential	biomarkers	

 

 225	

Taking into account that on the one hand, some analytes like CNN or BIL might be present 

in plasma above the linearity range and on the other hand, other analytes like SAM, nC4, 

SDMA and CIS4DEC were expected within ng/mL concentration range, it was considered 

necessary the optimization of reconstitution volume. Different reconstitution volumes of 

acetonitrile:acetic acid 0.5 M (75:25, v/v) were assayed: 50 µL, 75 µL, 100 µL and          

200 µL. Finally, reaching a compromise, a volume of 100 µL was selected.  

 

After optimizing all the steps of sample preparation, plasma pretreatment method was set 

as follows: 

1. Plasma was thawed at room temperature  

2. 50 μL of each plasma sample were placed in Eppendorf tubes 

3. 10 μL of internal standard mixture containing 100 µg/mL of creatinine-d3 and 1 

µg/mL of SDMA-d6 were included 

4. Protein precipitation was carried out by means of the addition of 150 µL of frozen 

acetonitrile 

5. Samples were vortexed and subsequently centrifuged at 13000 rpm for 10 min at 

4ºC 

6. The supernatant obtained was evaporated in nitrogen stream and reconstituted in 

100 µL of solution containing 75 % acetonitrile and 25 % acetic acid 0.5 M 

 

 

6.5. ANALYTICAL EVALUATION OF THE METHOD 

6.5.1. CALIBRATION OF THE METHOD  

Calibration curve is ideally obtained spiking analyte-free matrix with known quantities of 

the analytes of interest. However, as previously explained in Chapter 4, there is not any 

commercially available plasma matrix free of all of these analytes. Moreover, diverse 

surrogates were tested for some of the metabolites of interest and resulted into a different 

matrix effect. Therefore, regarding that the available plasma volume did not allow 

quantification of individual samples using standard addition method, calibration curves 

were prepared in pooled plasma previously quantified by standard addition and spiked 

with known concentrations of the analytes. It has to be noted that according to the results 

obtained from targeted and untargeted metabolomics methods developed in Chapters 4 

and 5, for all the metabolites except for BIL increased concentrations were expected in 

CKD paediatrics. Therefore, calibration curves were built in pooled plasma containing only 
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control samples, since lower concentrations of these compounds were expected in these 

samples. 

 

Regression equations of these 8 analytes are summarized in Table 6.6. These equations 

were obtained normalizing analyte signal with internal standards and facing this ratio with 

abundances from areas of MRM chromatograms. In this case, correlation coefficients 

above 0.9979 were achieved.  

Table 6.6. Equations used for quantification of the metabolites in plasma and statistical analysis on 
the random distribution of residues. 

 

The adequate adjustment of linear regression equations obtained to data needs to be 

verified by means of a statistical analysis on the random distribution of the residues. As 

previously explained in Chapter 4, to comply with the assumption that linear regression 

adjusts to data contained, standard deviation of the residues (σ(r)) needs to be equal to 

or less than global standard deviation (σTOT) and average residue (|ṝ|) equal to or lower 

than σ(r). Besides, if data distribution is normal, the arithmetic mean of the residues (ṝ) is 

expected to be close to 0. As it can be observed from Table 6.6, all the assumptions 

explained above are fulfilled. Thus, it is concluded that the equations of linear regression 

are adequate to quantify plasma samples. 

 

 

6.5.2. ACCURACY AND PRECISION 

Both accuracy and precision of this method were calculated for unspiked, low, medium 

and high QC samples, performing five determinations per level and repeating them for 3 

days (Table 6.7).  
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Accuracy and precision fell within the acceptable range in this study, as observed in Table 

6.7. Indeed, accuracy was between 88.1 % and 115.0 % in all cases, whereas, the relative 

standard deviation (RSD) of repeated individual measures was below 12.5 % for all the 

analytes. Likewise, intermediate precision was below 17.7 % for all the compounds. 

 

 
6.5.3. STABILITY 

With the aim of verifying that the quantification is not conditioned by any degradation 

process that may be suffered by the metabolites either in standard solutions or in plasma, 

stability of the analytes was assessed. Stability study consisted in the analysis of stock 

solutions, plasma samples and plasma extracts before and after subjecting them to room 

temperature, freeze and thaw cycles and freezing them for a defined period of time. Table 

6.8 summarizes the results obtained from different stability experiments. 

 

Individual stock solutions proved to be stable frozen for more than a month. Nevertheless, 

combined stock solutions were less stable. Indeed, these solutions were stable for at least 

24 h at room temperature (85–106 %), except for BIL, which rapidly degradates (14 %). 

In addition, they were stable frozen for 1 month, except for BIL that was stable less than 

a week (74 %). For that reason, BIL was stored frozen apart from the rest of combined 

stock solutions and was prepared once a week.  

 

Regarding plasma extracts, they were stable at room temperature for 24 h (85-106 %), 

and frozen a week (85-112 %), except for CIT (71 %). Besides, no degradation effect was 

observed neither on plasma extracts after 1 freeze and thaw cycle (94-109 %) nor in 

plasma samples stored frozen prior to sample treatment (90-107 %). 
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6.6. SAMPLE ANALYSIS  

After validating the analytical method, the analysis of real plasma samples was performed. 

Calibration standards, prepared as explained in section 6.5.1, were analyzed twice, in 

addition to triplicates of CKD and control extracts which were randomly analyzed. QC 

samples were analyzed during the batch and quantified to verify the correct performance 

of the calibration curves obtained.  

 

An example chromatogram of a plasma sample from a CKD patient is showed in Fig. 

6.11. 

 
Fig. 6.11. Chromatogram of a plasma sample from a CKD patient. 

Samples were quantified dividing the area of the metabolites with the area of internal 

standards and introducing that ratio into equations of the calibration curve. The following 

figure shows the results of quantification according to a colour scale for each metabolite 

and each sample (Fig. 6.12). 
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Fig. 6.12. Image graph showing the results of quantification of CKD and control plasma samples. 

This figure shows how concentration ranges vary quite a lot between different analytes as 

well as between samples. For example, between sample CNN concentration differs from 

around 10 µg/mL to 70 µg/mL. Regarding that SDMA, nC4, SAM, CIS4DEC and S1P 

showed to be in a lower concentration range, this image was rescaled from 0-70 µg/mL 

to 0-10 µg/mL (Fig. 6.13).  

 
Fig. 6.13. Image graph showing the results of sample analysis rescaled to 0-10 µg/mL. 

Between sample concentration differences become patently clear especially for CIT, CNN 

and BIL. Due to the fact that some other metabolites showed to be in lower concentration 

ranges, this image was again rescaled from 0-10 µg/mL to 0-1 µg/mL. 
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Fig. 6.14. Image graph showing the results of sample analysis rescaled to 0-1 µg/mL. 

Having a look at all of these figures, it is possible to state three different metabolite groups 

according to their concentrations: CIT, CNN and BIL containing concentrations from 5 to 

70 µg/mL, SDMA and S1P containing concentrations from 100 ng/mL to 1 µg/mL and nC4, 

SAM and CIS4DEC containing lower concentrations. 

 

 

6.7. DATA ANALYSIS 

This newly developed and validated LC-QQQ-MS method is intended for routine analysis 

in clinical practice. Thus, in principle once established the thresholds for each analyte or 

the equation in which analyte concentrations will be substituted, there is no need for data 

analysis. However, regarding that the results obtained from the untargeted metabolomics 

method in Chapter 5 need to be validated, data analysis of the results obtained from the 

samples listed in section 6.3.4 has been carried out using Matlab software (Mathworks).  

 

 

6.7.1. DESCRIPTIVE STATISTICS 

With the purpose of having a general idea of the nature of data, data analysis started with 

descriptive statistics. First, results from quantification of these 8 metabolites were 

summarized in Table 6.9, where median values for each group and 3rd-97th interquartile 

range (IQR) are showed.  
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Table 6.9. Median and IQR obtained from analyte quantification expressed in µg/mL. 

 

According to this table, CIT, CNN, SDMA, nC4, SAM, CIS4DEC and S1P would be up-

regulated for CKD patients, whereas BIL would be down-regulated. The results for amino 

acids and related compounds match with those obtained in Chapters 4, and the up- and 

down-regulations of the rest of the compounds with findings from Chapter 5.  

 

Kolmogorov-Smirnov test was used to study distributions of analyte concentrations in 

control and CKD sample groups. According to this test all the metabolites were under 

parametric distribution except for BIL.  

 

 

6.7.2. UNIVARIATE ANALYSIS 

The relation between individual analyte concentrations in both sample groups was studied 

to verify whether this up- and down-regulations observed were significant. Student’s t-

test was applied for parametric variables, whereas U test in accordance to Mann Whitney 

was used to evaluate BIL, the only non-parametric variable.  

 

According to these tests, CIT, CNN, SDMA, nC4, SAM, CIS4DEC and S1P were found to be 

significantly increased (p<0.001), as expected regarding the results obtained from 

previous targeted and untargeted studies.  

 

However, for BIL this difference was not found to be significant (p>0.05). Different factors 

could explain that. On the one hand, the untargeted study was carried out using 24 control 

samples, whereas for this study only 13 control samples were available and distribution 

within these samples was wide. On the other hand, the protein precipitation method used 

for untargeted metabolomics method involved the use of methanol:ethanol (50:50, v/v), 

which showed to be less appropriate than acetonitrile alone for quantification purposes, 
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used in this targeted method. Indeed, acetonitrile extraction provided 10 times higher 

signal of BIL in comparison with the signal obtained from methanol:ethanol extraction, 

which may imply incomplete extraction of BIL using methanol:ethanol.  

 

This LC-QQQ-MS method validates nC4, CIS4DEC, S1P and BIL, the metabolites found to 

be significantly altered in CKD patients according to the untargeted metabolomics method, 

as significant biomarkers. However, regarding that the significance of BIL cannot be 

corroborated, its use as a potential biomarker should be carefully considered in future 

analyses.  

 

 

6.7.3. MULTIVARIATE ANALYSIS 

6.7.3.1. Determination of the outlying samples 

Regarding that the presence of outlying samples could affect multivariate models built, 

discarding outliers was considered essential. Determination of outlying samples was 

performed according to Hierarchical Clustering with single, complete and average linkage 

(see Fig. 6.15).  

 
Fig. 6.15. Dendrograms showing Hierarchical clustering according to single, complete and average 
linkages showing one outlying sample. 
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As it can be observed from this figure, sample numbered as 18 in this sequence always 

clustered apart. This sample was tracked and corresponded to the same sample clustered 

apart in Chapter 4, which also showed a different colour. As a consequence, it was 

considered an outlier again and discarded from future data analysis.   

 
 

6.7.3.2. Cross-correlations between metabolites 

Potential relations between concentrations of different metabolites were assessed by 

means of cross-correlations of these analytes by means of SPSS Statistics 23 software 

(IBM). Table 6.10 summarizes the correlations found between different analytes.  

Table. 6.10. Cross-correlations found for between metabolites. 

 

The highest correlations were found for CNN-SDMA (r=0.900, p<0.001), CNN-CIT (0.886, 

p<0.001) and CNN-SAM (0.858, p<0.001), matching with the correlations obtained in 

Chapter 4. Besides, taking into account the interrelations between analytes correlated with 

CNN, a high correlation was found between SAM-SDMA (r=0.807, p<0.001). In addition, 

CIT-SDMA (r=0.774, p<0.001) and CIT-SAM (r=0.739, p<0.001) concentrations were 

somehow related. 

 

However, the analytes added from the untargeted metabolomics discovery (nC4, 

CIS4DEC, S1P and BIL) did not show high correlations neither with CNN nor with other 

metabolites from the method. This implies that concentrations of these metabolites are 

not proportional to those from other analytes, and thus, this could mean that different and 

independent metabolic pathways might be affected. 
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6.7.3.3. Scaling and construction of the PCA model 

Multivariate data analysis need for scaling and normalization steps to provide meaningful 

results.  

 

The results obtained in sections 6.6 and 6.7.1 showed that some analytes did not have 

normal distribution and differences were expected regarding the concentration range of 

the metabolites. Therefore, logarithm transformation and autoscaling were applied to data 

matrix to correct for these differences, assuming that all the metabolites are equally 

eligible to be biomarkers, regardless of their concentration range in plasma. 

 

This scaled and normalized data matrix was used to perform PCA and the resulting biplot, 

coloured according to CKD and control populations, is showed in Fig. 6.16. Regarding that 

BIL could not be validated by means of this method, both PCA considering and not 

considering BIL are showed.  

 
Fig. 6.16. PCA biplot showing separation of CKD and control groups and distribution and distribution 
of metabolite concentrations, considering (left) and not considering BIL (right). 

A separation between groups according to metabolite concentrations is observed in these 

PCA representations. In addition, it should be noted that the first three principal 

components accounted for 86 % of variance when leaving out BIL. Moreover, PCA 

including BIL shows that this metabolite is perpendicular to sample group distribution, 

which means that probably there is not any relation between BIL concentration and sample 

distribution.  

 

Besides, regarding that one of the goals of this study is assessing whether these 

biomarkers would be useful for early diagnosis of CKD, a PCA model has been constructed 

considering only early CKD samples (those at CKD2 stage) and control samples. 
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Fig. 6.17. PCA biplot showing separation of early CKD and control patient distribution and of 
metabolite concentrations, considering all the metabolites except for BIL. 

Again, this PCA shows that all the metabolites found to be significant are increased 

according to the loadings, matching with previous results, and enable a separation of CKD 

and control paediatrics.  

 

To sum up, this LC-QQQ-MS method developed for routine analysis seems to be able to 

differentiate between control and CKD paediatrics. Moreover, good separation of control 

and early CKD samples has been obtained as well. All of the metabolites from targeted 

and untargeted methods showed to be significant both in univariate and multivariate 

analysis except for BIL. Besides, BIL did not showed to be significant neither in univariate 

nor in multivariate analysis and thus future studies in a wider population are needed to 

study the significance of BIL as a biomarker of CKD in paediatrics.   

 

 

6.8. CONCLUSIONS  

Taking into consideration the proposed goals and the results obtained in this targeted 

metabolomics study, it can be concluded that:  

A new ion pairing LC-QQQ-MS analytical methodology has been optimized and 

validated to analyze significant metabolites found in previous targeted and untargeted 

metabolomics studies.  

 This method is useful for the validation of the metabolites found to be significant in 

the untargeted metabolomics study, in addition to including other analytes of interest 

from the targeted metabolomics study for quantification purposes.  

Plasma sample treatment was optimized for the analytes of interest and requires a 

low sample volume and consists in a simple plasma protein precipitation procedure.  
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After optimization and validation, this method was successfully applied to the analysis 

of both a heterogeneous group of CKD paediatric patients and a control population.  

The results obtained for the amino acids and related compounds matched well with 

the results achieved in Chapter 4.  

 Regarding the validation of the results of the metabolites from the untargeted 

metabolomics method, all the metabolites except for BIL showed to be significant in 

both univariate and multivariate data analysis, and thus, might be considered 

potential biomarkers.  

 This method containing heterogeneous analytes enables separation of the samples in 

CKD-control and early CKD-control groups according to metabolite concentration. 

 Future studies in a wider population would be advisable to study the significance of 

BIL and the classification performance of this new method.  
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Taking into account the main objective of the present study about new biomarker 

discovery for the early diagnosis and progression monitoring of CKD in paediatrics using 

different metabolomics approaches, it could be concluded that:  

As far as targeted metabolomics approach, a new LC-QTOF-MS analytical 

methodology has been optimized for the analysis of 16 amino acids, amino acid 

derivatives, and related compounds from the arginine-creatine pathway, the arginine 

methylation, and the urea cycle in a single run, in MS and MS/MS mode in less than 19 

min.  

 

This validated method was successfully applied to the analysis of a heterogeneous 

group of CKD pediatric patients and an age-related control population. Univariate 

analysis of these results found significant differences for glycine, citrulline, creatinine, 

asymmetric dimethylarginine, symmetric dimethylarginine and dimethylglycine. 

 

Moreover, three new metabolites, citrulline, S-adenosylmethionine and symmetric 

dimethylarginine, have been proposed as potential biomarkers in addition to the 

commonly used creatinine to be implemented since they enable a better diagnosis of 

early stages of CKD in pediatrics. Furthermore, these 4 analytes showed greater 

improvement of the diagnosis regardless of the stage of CKD, and a relation between 

concentration and CKD stage was found. 

 

Regarding untargeted metabolomics approach, a LC-QTOF-MS analytical method 

has been optimized with the aim of extracting as many features as possible and to 

obtain significant features to differentiate between control and CKD pediatrics.  

 

Five features were found to be significantly up- or down-regulated with high confidence 

in CKD pediatrics, as they matched in the two different chemometric approaches carried 

out. Moreover, classification of control and early CKD samples using these features 

showed an overall accuracy of 97 %.  

 

Identification of these 4 out of 5 entities was fully achieved, with 1st level compound 

identification confidence according to Metabolomics Standards Initiative as: n-

butyrylcarnitine, cis-4-decenoylcarnitine, bilirubin and sphingosine-1-phosphate. 
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Finally, a LC-QQQ-MS analytical method has been developed and validated for the

biomarkers discovered within the previous two approaches: citrulline, S-

adenosylmethionine, symmetric dimethylarginine, creatinine, n-butyrylcarnitine, cis-4-

decenoylcarnitine, bilirubin and sphingosine-1-phosphate. Therefore, this method 

enables simultaneous quantification of all of these metabolites in routine analysis.  

This LC-QQQ-MS method complies with the requirement of untargeted metabolomics 

studies for biomarker validation by means of analytical method development aimed at 

targeting the metabolites of interest. After univariate and multivariate analyses, all the 

metabolites except for bilirubin showed to be significant and thus, could be considered 

potential biomarkers.  

Future studies using a wider population would be of interest to be able to study the 

significance of bilirubin, as well as the classification performance of this new analytical 

method.  
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