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Abstract   

The idea of designing multioperation mechanisms capable of performing different tasks has gained prominence in 

the last years. These mechanisms, commonly called reconfigurable mechanisms, have the ability to change their 

configuration. At present, this type of mechanisms is capturing the attention of design engineers because of their 

great potential in many industrial applications. In this paper, the basis for the development of a methodology 

intended for the analysis and design of multioperational parallel manipulators is presented. First, the structural 

synthesis of 6 degree-of-freedom (dof) kinematic chains that can form a 6 dof manipulator is established. Next, a 

general purpose approach for non-redundant parallel manipulators (PM) will be presented. This procedure enables 

obtaining the Jacobian matrices of any 6 dof or low-mobility PM whose kinematic chains belong to the library of 

chains derived from the structural synthesis. To demonstrate the versatility of the procedure, it will be applied to 

three PM: the first one, a 6 dof PM, the second one, a reconfigurable 6 dof PM, and finally, a low-mobility PM. 

Keywords: Multioperation, Parallel manipulator, Generic kinematic chain, Reconfigurable 

 

1. Introduction 

Traditionally, in mechanism and machine design, one of the main targets was to create a robust and reliable 

mechanical system intended for efficiently carrying out a certain particular task. Later on, the need of more 

adaptableness of the system was materialized into adjustable mechanisms, in which a greater flexibility was 

demanded. This requirement of higher compliance capacity was achieved by adjusting one or more dimensions 

using fixing or liberating elements such as screws and extensible bars. In the last 20 years, this initial idea has 

progressed into a new design concept based on mechanisms capable of performing different operation modes so 

that they can execute different tasks [1]. These mechanisms with the ability to change their configuration are 

typically called reconfigurable mechanisms [2-5]. Nowadays, the study of these mechanisms is becoming a 

relevant field of investigation in specific forums such as [6, 7] because they are demonstrating their potential in a 

great variety of industrial applications such as packing and folding, structures and deployable antennas, biomedical 

applications, and so on [8]. 

At the present time, there exist various studies related to parallel manipulators (PMs) with six degree-of-freedom 

(dof) kinematic chains in which it is possible to obtain low-mobility PMs by constraining some of the inputs of 

the manipulator. Subsequently, the investigations that share a common research line with the present paper will be 

cited. Y. Jin et al. [9, 10] propose several 6 dof PMs with three kinematic chains in which by means of a selective 

actuation different motions are achieved: spherical (3R), translational (3T), mixed motions (2T1R and 1T2R) or 

the complete motion of 6 dof. For that, a 2 dof actuator, having one rotation and a translation in the same axis, is 

installed in each kinematic chain. The same authors present a methodology in [11] for the synthesis of PMs with 

three kinematic chains having partially decoupled 6 dof. 
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P. Fanghella et al. [12] describe a methodology to synthetize PMs by using kinematotropic chains that allow 

changing the number of dof, their nature or both effects at the same time. Even maintaining the motion pattern of 

the platform, their geometric characteristics can change. As an example, they show a PM with a Schönflies motion 

in the end-effector which can change the direction of the rotation axis between two established orientations. X. 

Kong et al. [13] propose an approach for the synthesis of PMs with multiple operation modes. In particular, they 

develop several 3 dof PMs that can perform both spherical motion and spatial translational motion. 

A. D. Finistauri et al. define a procedure in [14, 15] to generate reconfigurable PMs. The proposed PMs consist of 

two modules, each of them having three 6 dof kinematic chains, both connected to the fixed and moving platform. 

Whereas the first module has its three chains permanently linked to the moving platform, the kinematic chains of 

the second module can be disconnected from the moving platform. While some dof of the first module are being 

restricted (by blocking one rotation or one translation of the kinematic chains), the chains belonging to the second 

module are being accordingly disconnected.  

Certainly, using a 6 dof manipulator it is possible, theoretically, to perform any type of spatial motion. 

Nevertheless, for that, the required motion has to be programmed according to the kinematic structure of the chains 

of the manipulator, and not all the kinematic chains adapt with the same facility to the tracing of a defined motion. 

For example, a simple translational motion can be easily achieved with a manipulator formed by a certain cartesian 

structure in its kinematic chains. In fact, a motion as simple and so typical as this one, using partially cartesian 

kinematic machines, very common in machine-tool applications, is achieved by blocking the unnecessary 

actuators. However, if we try to get this same motion with a manipulator in which its chains yield a more coupled 

kinematics, as for example the Gough platform, it will not be that simple. To get that purpose the controlling of 

all of the degrees of freedom is required, resulting in a much more complex task. As a consequence, to get a similar 

precision, the number of interpolation points in the trajectory has to be increased. On the other hand, some other 

aspects that have a greater impact in this case have to be considered, such as calibration, workspace singularities 

or the interferences among the legs of the manipulator. All of this results in the necessity of studying the functional 

operation of specific designs of the manipulator.  

To do so, the concept of displacements of group structure type will be considered. The set of displacements of a 

solid in space can be arranged in 12 algebraic entities having group structure [16, 17]. Each of these groups has a 

specific pure motion pattern. A manipulator in which its moving platform owns a motion pattern of group structure 

type, has the great advantage that this pattern remains invariable for any posture of the workspace. Under these 

circumstances, the approach of any type of path planning is more simple. Therefore, the hypothesis of this work 

is that the greater the quantity of group structure type displacements the moving platform can achieved, the higher 

the practical effectiveness of the corresponding PM will be. The way of obtaining the set of displacement groups 

of the platform consists in fixing conveniently the different actuators of the mechanism. Then, the kinematics of 

the resulting PM is simplified thanks to two causes: the blocking of some dof and the capability to generate 

permanent motion patterns along the workspace. Consequently, the control of the machine will be faster and more 

efficient. 

To get the set of all possible 12 motion patterns a manipulator with at least 6 dof is required. Hence, in the next 

section the structural synthesis of 6 dof kinematic chains that can form the manipulator is established. Next, a 

general purpose approach for non-redundant PM will be developed, subjected to some geometric conditions that 

will be later on explained, but that they do not imply any limitation to the multioperation capacity (variety of 

motions) of the platform. This procedure enables obtaining the Jacobian matrices of any 6 dof or low-mobility PM 

whose kinematic chains belong to the library of chains derived from the previously cited structural synthesis. 

2. Structural synthesis of 6 dof kinematic chains 

Prior to initiating the structural synthesis, the characteristics of the PM will be defined. The legs of the PM will be 

non-redundant kinematic chains. Thus, the maximum number of first class kinematic pairs in each chain will be 

six, knowing that by conveniently orienting them the required 6 dof can be achieved. Similarly, the maximum 

number of translational joints in each chain will be three, so that positioning them along the three directions in 

space the 3 translational dof can be obtained. 

Initially, only first class kinematic pairs will be considered: prismatic joints (P) and revolute joints (R). Any pair 

of higher class, such as cylindrical joint (C), universal joint (U) or spherical joint (S) can be obtained by combining 

P and R pairs. 

Afterwards, a methodology for kinematic analysis will be developed, thus some geometrical constraints will be 

now established. These constraints have the only purpose of simplifying the obtained designs and also restricting 
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the many possible cases that can arise, knowing that this does not imply a loss of generality at the time of obtaining 

a certain motion pattern: 

1. The directions of two consecutive joints of the chain form 0° or 90°. The same occurs with the directions 

of the pairs that connect the chains with the moving platform. 

2. In the case of a P joint and a R joint being parallel and consecutive (or a R and a P), the distance between 

the axis of the revolute joint and the slider guide will be considered null. Then, this PR (or RP) results in 

a cylindrical joint.  

3. If the axes of two R joints are consecutive and non-parallel, then the distance must be null. For example, 

the sequence RR forms a universal joint and the sequence RRR a spherical joint. Particular exceptions 

such as the SS kinematic chain, with 5 dof in the end-effector and one idle dof, are solved by including a 

non-null distance resulting in chains SUR, URS, RUS, …, instead of SS chain.  

4. The following notation will be used to define the relative position of the different joints forming a chain. 

Those set of R joints, in which their axes are parallel, will be written with an underline, in italics or in 

bold. Let us use an example: the chain RRRRRR which generates the displacements 3T3R. The first three 

RRR pairs are parallel between them (they generate 2 translational dof and 1 rotation); the next two RR 

(in italics) are parallel between them and form 90° with the previous set (they generate 1 translational dof 

and 1 rotation); the last R pair forms 90° with respect to the previous set and defines the third rotational 

dof. In the case of having three groups of revolute joints (with parallel axes in each group), the third group 

will be written in bold, as for example the RRRRRR chain. Finally, the actuated joint will be underlined 

(in case of coinciding with the underline of the first group, then a double underline will be established in 

the corresponding pair, as for example RRRRRR). 

 

Taking into consideration the previous premises, there exist four assemblages of prismatic and rotational joints 

that enable obtaining all the possible 6 dof kinematic chains: PPPRRR, PPRRRR, PRRRRR y RRRRRR. In 

subsequent sections, these four chains and their permutations will be examined. 

2.1. PPPRRR chains and their permutations 

By permuting the relative positions of the prismatic and revolute pairs of the chain PPPRRR, the following 20 

chains are derived: PPPRRR, PPRPRR, PPRRPR, PPRRRP, PRPPRR, PRPRPR, PRPRRP, PRRPPR, PRRPRP, 

PRRRPP, RPPPRR, RPPRPR, RPPRRP, RPRPPR, RPRPRP, RPRRPP, RRPPPR, RRPPRP, RRPRPP y 

RRRPPP. 

To get three rotational dof in the chain, the axes of the three R pairs will form 90°. Taking into account the defined 

geometric constraints, additional combinations can be obtained. For example, the chain PPPRRR can result into a 

PPPS chain or a PPCU chain, according to the disposition of the PR central pairs (parallel or perpendicular). In 

Table 1, the possible 63 chains that can be obtained from the 20 permutations of PPPRRR are displayed. The 

resulting chains that have been previously obtained appear crossed out. This table, and subsequent ones, are 

included in the Appendix for the shake of clarity. 

2.2. PPRRRR chains and their permutations 

By permuting the relative positions of the prismatic and revolute pairs of the chain PPRRRR, the next 15 chains 

are obtained: PPRRRR, PRPRRR, PRRPRR, PRRRPR, PRRRRP, RPPRRR, RPRPRR, RPRRPR, RPRRRP, 

RRPPRR, RRPRPR, RRPRRP, RRRPPR, RRRPRP, RRRRPP. 

Considering the adopted geometric criteria, the following cases can arise:  

- Three consecutive R pairs, two of them being parallel (RRR): this combination results in one rotational 

pair and one universal joint (RU), where the axis of the R joint and the first axis of the U joint are parallel, 

which is indicated with the underline. 

- The sequence PRR, where the direction of the translational joint P is parallel to the direction of the two R 

joints, results in a cylindrical pair and a rotational pair with parallel axes, denoted as CR.  

- The sequence PRRP yields two possibilities: CRP or PRC, depending on existence of parallelism with 

any of the prismatic guides. Nonetheless, the chain CC cannot be obtained as the guides of the two 

prismatics have to be perpendicular among them.  

- The sequence RRRR yields two universal joints, UU or UU, as both cases have the same motion pattern 

1T3R. Note that the notation UU ≡ RRRR symbolizes that the parallel axes are the ones associated with 

the last R joint and the first R joint of the resulting universal joints.  
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In Table 2, the 151 possible chains obtained from the 15 permutations of PPRRRR are collected. Again, the chains 

that have been previously obtained are crossed out. 

2.3. PRRRRR chains and their permutations 

By permuting the relative positions of the pairs in the chain PRRRRR, the following 6 chains are obtained: 

PRRRRR, RPRRRR, RRPRRR, RRRPRR, RRRRPR y RRRRRP. 

Given the structure of these chains, 2 translational dof have to be achieved by combining the five rotational pairs. 

The two only options with a maximum number of parallel rotational axes are the following: 

- Three parallel revolute joints and the remaining two forming 90°. This is the case of the sequence 

PRRRRR. The combination of any of the parallel R pairs with the prismatic will always yield a cylindrical 

joint. Otherwise, the three translations would not be achieved. For example, the sequence PRRR will result 

in CRR. Because of this same reason, the combination of the prismatic with any of the remaining R cannot 

yield a cylindrical joint.   

- Two groups formed by two R joints: the joints in each group having parallel axes and those axes being 

perpendicular to the ones of the other group; the remaining R perpendicular to the previous group. This 

yields the sequence PRRRRR. 

Any other combination with less number of R joints with parallel axes is obtained by carrying out the permutations 

of the two cited sequences: PRRRRR y PRRRRR. Indeed, let us analyse the case RRR: it is obvious that the R 

joints will not maintain their parallelism when the intermediate R starts to rotate, thus RRR =RRR. In this way, 

realizing all the possible permutations of the group of rotational pairs RRRRR 8 possible permutations are 

achieved: RRRRR, RRRRR, RRRRR, RRRRR, RRRRR, RRRRR, RRRRR y RRRRR. By combining those 

permutations with a P joint, all of the possible variants of the six chains derived from the generic chain PRRRRR 

will be obtained. The sequence RRRRR will be analysed in the same way.  

The possible permutations of the chain PRRRRR are collected in Table 3 of the Appendix. In that table, the 69 

possible combinations of joints P, R, C, U and S are also displayed. Similarly, in the appendix, Table 4 shows all 

the possible permutations of the chain PRRRRR and the 40 possible combinations of joints P, R, C, U and S. 

2.4. RRRRRR chains 

In this case, only one possible permutation is possible. The 6 revolute joints must be combined in such a way that 

they generate 3 translational and 3 rotational dof. Bearing in mind the defined geometric criteria, different variants 

can be obtained. In particular, two options with maximum number of parallel axes arise: 

- Three groups of parallel joints, each group being connected to the previous one by axes forming 90° (for 

example: RRRRRR) 

- One group having three R joints with parallel axes, another group with two parallel R and perpendicular 

to the first group, and finally, the remaining R joint perpendicular to the previous group (for example: 

RRRRRR). 

Coming from these two chains and creating all possible permutations, the remaining variants of the 6R chain are 

obtained. In Table 5 all the variants of the chain RRRRRR are shown, which are obtained by permuting the groups 

of parallel R. The repeated cases are crossed out.  A total of 10 variants are obtained. In Table 6, all the variants 

of RRRRRR chain are displayed. The left column shows the 3 possible combinations of the two groups of pairs 

RRR. Those combinations are at the same time combined with the group RRR. Finally, after eliminating the 

repeated cases, a total of 16 different combinations are derived.  

In Tables 7 and 8, the permutations of the RRRRRR and RRRRRR chains previously displayed in Tables 5 and 6 

are collected, obtaining 24 possible combinations of joints P, R, C, U and S. The chains SS, SRRR and RRRS 

have been directly eliminated as they only define 3 rotational dof and 2 translations. 

In total, the number of obtained kinematic chains is 347. All these chains could be automatically analyzed (by 

software programming) according to the procedure that will be explained in the next section. 

3. Modelization of a generic kinematic chain  

In this section a general-purpose approach based on the characterisation and analysis of a generic kinematic chain 

will be developed. This generic chain can be afterwards configured or particularized so as to obtain the parallel 

manipulators commonly used in practice. It also enables to easily implement the reconfigurability option by 
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blocking some inputs and deriving the corresponding constraint equations. It probably exists more than one 

alternative to get this target, but the one proposed here has demonstrated to have a great potential to cover a broad 

range of possible chains. 

Basing on this generic chain, PMs with a maximum of six chains will be generated, as additional chains would 

only constitute passive legs that would not incorporate any practical utility. Besides, the minimum number of 

chains will be three, being distributed in different planes in such a way that the rigidity is ensured in the three 

directions. A common case would be a 6 dof PM formed by three chains, with the actuators located on the fixed 

platform so as to avoid floating weights. In a manipulator as this one the multioperation capability can be achieved 

by adequately blocking the actuators of each leg depending on the desired motion pattern the moving platform has 

to generate. 

This general-purpose methodology deals with those robots with a parallel kinematic structure whose kinematic 

chains (the ones linking the fixed and moving platform) are of serial type. These chains consist of several links 

connected among them, as well as joined with both platforms, by kinematic joints. The most habitual type of joints 

are: revolute joint (R), prismatic joint (P), cylindrical joint (C), spherical (S) and universal joint (U). 

The generic kinematic chain is defined in the simplest way because afterwards, to analyse the real legs of the PM, 

it is necessary to work with the equations derived from this chain. Bearing this in mind, some hypotheses have 

been assumed: 

• The generic chain is formed only by prismatic and revolute joints. In the case of the R joint, the associated 

unit vector defined the direction of the rotation axis, while for the P joint the corresponding unit vector 

defines the sliding direction. 

• These two types of kinematic joints are alternatively located along the serial chain. 

• The relative position between two consecutive joints is restricted to the two simplest options: either they 

have parallel axes or perpendicular axes. 

• To achieve the required generality, it is necessary to form the generic chain with six R and six P joints. 

• By restricting some of the position parameters of this generic chain, different configurations of 6 dof 

kinematic chains are obtained. 

 

Figure 1: Generic kinematic chain. Joints and parameters 

In Fig. 1, the generic serial kinematic chain, together with its variables and corresponding vectors, is shown. The 

first link is connected to the fixed base, while the last one is joined to the moving platform. A reference point P, 

considered as the terminal point, will be used to set the velocity equation of the leg. 

Initially, the loop equation must be defined. The vectors 𝒓𝑃 and 𝒓𝐴 being the position vectors of the two extreme 

points of the loop, then: 

 𝒓𝑃 = 𝒓𝐴 + 𝒂 + 𝒃 + 𝒄 + 𝒅 + 𝒆 + 𝒇 + 𝑮𝑷  (1) 
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Next, each vector associated with a variable-length link is expressed as the product of its module (length) times 

the unit vector of the corresponding P joints:   

 𝒓𝑃 = 𝒓𝐴 + 𝑎 · 𝒖𝑎 + 𝑏 · 𝒖𝑏 + 𝑐 · 𝒖𝑐 + 𝑑 · 𝒖𝑑 + 𝑒 · 𝒖𝑒 + 𝑓 · 𝒖𝑓 + 𝑮𝑷 (2) 

In Eq. (2), 𝒓𝐴 is the only magnitude that remains constant, thus by making the derivative with respect to time it 

yields:  

 
𝒗𝑃 = 𝑎̇ · 𝒖𝑎 + 𝑏̇ · 𝒖𝑏 + 𝑐̇ · 𝒖𝑐 + 𝑑̇ · 𝒖𝑑 + 𝑒̇ · 𝒖𝑒 + 𝑓̇ · 𝒖𝑓 +

+𝝎𝑏 × 𝒃 + 𝝎𝑐 × 𝒄 + 𝝎𝑑 × 𝒅 + 𝝎𝑒 × 𝒆 + 𝝎𝑓 × 𝒇 + 𝝎 × 𝑮𝑷
 (3) 

where 𝒗𝑃 is the linear velocity of the coupler point, and the angular velocities of the elements as well as that of the 

moving platform, are given by:  

 

𝝎𝑏 = 𝛼̇ · 𝒖𝛼

𝝎𝑐 = 𝝎𝑏 + 𝛽̇ · 𝒖𝛽

𝝎𝑑 = 𝝎𝑐 + 𝛾̇ · 𝒖𝛾

𝝎𝑒 = 𝝎𝑑 + 𝜑̇ · 𝒖𝜑

𝝎𝑓 = 𝝎𝑒 + 𝜃̇ · 𝒖𝜃

𝝎  = 𝝎𝑓 + 𝜓̇ · 𝒖𝜓

 (4) 

As it was pointed out at the initial part of Section 2, from this general configuration it is feasible to obtain several 

kinematic chains commonly used in practice which are formed by other typical types of joints, such as the U, S or 

C joints. The process is indeed very simple (see Fig. 2): 

• U joint: two consecutive R joints having perpendicular axes and with a null-length link between them. 

• S joint: three consecutive R joints with mutually perpendicular axes and having null distance. 

• C joint: formed by a P joint followed by a R joint whose axis is parallel to the sliding direction of the P. 

Taking into account these considerations, the process to get other more complex kinematic joints, such as the PR 

or the CS, is a straightforward matter. On the other hand, evidently, all the constant-length links of the chain (bars) 

are modelized by simply restricting the distance associated with the corresponding P joint to remain constant. 

 

 

 

Figure 2: Combinations of P and R joints. 

Nevertheless, note that not all the combinations are feasible. Additional constraints have to considered as not all 

the combinations make sense. As an example, all the possible combinations of three consecutive joints (bearing in 

mind that consecutive joints are parallel or perpendicular) are shown in Fig. 3. In Fig. 3 (a), the cases in which any 

of the unit vectors is parallel to another one are displayed. In Fig. 3 (b), two of the three unit vectors are parallel. 

All the cases in Figs. 3 (a) and 3 (b) have practical sense and, besides, the mathematical relations among the unit 

vectors can be easily devised. The most obvious cases without any practical sense are those in which the three 

consecutive unit vectors are parallel, as the ones shown in Fig. 3 (c). These cases have idle rotations or 

displacements.  
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Figure 3: Combinations of three consecutive joints. 

Subsequently, some illustrative examples will be shown to demonstrate how this generic chain can be 

particularized to obtain those commonly used kinematic chains. Additionally, it will be exposed the way the 

proposed approach enables incorporating the reconfiguration ability. 

4. Kinematic chain particularized to the 6-UPS parallel manipulator 

The first example will be one of the most well-known PMs, the Gough-Stewart platform. In this case, all the legs 

of the manipulator are of the same typology, UPS, as represented in Fig. 4. 

The UPS chain shown in Fig. 4 is easily derived from the proposed generic kinematic chain (Fig. 1) by 

particularizing the following parameters: 

 𝑎 = 𝑏 = 𝑑 = 𝑒 = 𝑓 = 0 𝜓 = 0  (5) 

 

 

          

(a)                       (b) 

Figure 4: Particularization of the generic kinematic chain to the 6-UPS manipulator. 
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Then, from the generic chain we get the UPS chain displayed in Fig. 4 (a), which can be modelized as the chains 

of the 6-UPS PM shown in Fig. 4 (b), by taking into account that the two first R joints form a U joint and, similarly, 

the last three joints form a spherical joint. 

To obtain the velocity equation, we establish the loop equation of the chain of Fig. 4 (a): 

 𝒓𝑃 = 𝒓𝐴 + 𝒄 + 𝑮𝑷  (6) 

And differentiating with respect to time, the velocity equation yields: 

 𝒗𝑃 = 𝑐̇ · 𝒖𝑐 + 𝝎𝑐 × 𝒄 + 𝝎 × 𝑮𝑷  (7) 

Where: 

 

𝒄 = 𝑐 · 𝒖𝑐

𝝎𝑐 = 𝛼̇ · 𝒖𝛼 + 𝛽̇ · 𝒖𝛽

𝝎 = 𝝎𝑐 + 𝛾̇ · 𝒖𝛾 + 𝜑̇ · 𝒖𝜑 + 𝜃̇ · 𝒖𝜃

  (8) 

This mechanism has 6 dof. The output variables of the velocity problem are the components of 𝒗𝑃 and 𝝎. The 

input variables correspond to the 𝑐̇𝑖 velocities of each leg 𝑖. To get a system of equations that establishes a direct 

relation between input and output variables, the passive variables 𝛼̇𝑖 and 𝛽̇𝑖 have to be eliminated from the final 

formulation of the velocity problem. The process to achieve this is indeed very systematic: multiplying the whole 

velocity equation by a unit vector in such a way that the passive terms are eliminated and only input and output 

velocities remain. In this case, the term 𝝎𝑐 × 𝒄 has to be eliminated, as it includes the passive velocity 𝝎𝑐, thus 

by multiplying Eq. (7) by the unit vector 𝒖𝑐 it yields: 

 𝒖𝑐 ∙ 𝒗𝑃 = 𝑐̇ · 𝒖𝑐 · 𝒖𝑐 + 𝒖𝑐 ∙ (𝝎𝑐 × 𝒄) + 𝒖𝑐 ∙ (𝝎 × 𝑮𝑷) (9) 

After carrying out the corresponding operations, we get: 

 𝒖𝑐 · 𝒗𝑃 + (𝒖𝑐 × 𝑮𝑷) · 𝝎 = 𝑐̇  (10) 

By posing the resulting scalar equation for each of the six legs, the final system of equations of the velocity problem 

is obtained. As this system is linear in the input and output velocities, it can be expressed in matrix form (Eq. (11)), 

obtaining thereby the well-known Jacobian matrices: 

 

[
 
 
 
 
 
 
 
 (𝒖𝑐1

)
𝑇

(𝒖𝑐1
× 𝑮1𝑷)

𝑇

(𝒖𝑐2
)
𝑇

(𝒖𝑐2
× 𝑮2𝑷)

𝑇

(𝒖𝑐3
)
𝑇

(𝒖𝑐3
× 𝑮3𝑷)

𝑇

(𝒖𝑐4
)
𝑇

(𝒖𝑐4
× 𝑮4𝑷)

𝑇

(𝒖𝑐5
)
𝑇

(𝒖𝑐5
× 𝑮5𝑷)

𝑇

(𝒖𝑐6
)
𝑇

(𝒖𝑐6
× 𝑮6𝑷)

𝑇
]
 
 
 
 
 
 
 
 

[
𝒗𝑃

𝝎
] = [𝐼]

[
 
 
 
 
 
𝑐̇1

𝑐̇2

𝑐̇3

𝑐̇4

𝑐̇5

𝑐̇6]
 
 
 
 
 

  (11) 

5. Reconfigurable and low-mobility parallel manipulators  

Taking advantage of the generic kinematic chain approach reconfigurable parallel manipulators can be obtained. 

Additionally, by blocking some of the actuators, low-mobility parallel manipulators can be achieved. As it will be 

demonstrated, the proposed methodology enables analysing this type of robots as well as obtaining the 

corresponding constraint equations. 

We illustrate the process making use of two manipulators: on the one hand, the 3-UPS parallel manipulator, which 

can be reconfigured to obtain manipulators of lower mobility. On the other hand, the low-mobility 3-RPS robot in 

which the moving platform yields only 3 dof [18]. As it will be exposed, once we get the velocity equations of the 

initial reconfigurable manipulator, by following a very simple process as the same one in previous Section 4, the 

velocity equations corresponding to the low-mobility robot are directly obtained together with the necessary 

constraint equations. 

The 3-UPS is a 6 dof parallel manipulator formed by three kinematic chains, as represented in Fig. 5 (a). Each 

kinematic chain incorporates two actuators in order to get the total dof. The first input corresponds to the rotational 

dof of the first axis of the universal joint (α angle) and the second actuation is applied in the prismatic joint of the 

leg (c length). Coming from this 6 dof robot, we can apply the reconfiguration option so as to get the low-mobility 

3-RPS robot, which is displayed in Fig. 5 (b). This is done by blocking one of the inputs of the initial robot. In this 
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case, blocking the first rotational joint so that α angle remains constant, the manipulator becomes the 3-RPS 

represented in Fig. 5 (b), in which only one actuator remains in each leg (the prismatic joint) and, accordingly, the 

robot has only three dof in its moving platform. 

The velocity problem of each robot is established in subsequent sections, making use of the generic kinematic 

chain approach. It is important to emphasize that if the aim would be analysing only the low-mobility manipulator 

(as for example, the aforementioned 3-RPS), this can be perfectly done by directly particularizating the generic 

chain into the RPS chain of the robot of interest. 

 

  

   (a)         (b) 

Figure 5: Manipulators (a)3-UPS and (b) 3-RPS 

 

5.1. Reconfigurable 3-UPS manipulator 

For the 3-UPS PM, the two inputs of each chain are: the prismatic input (defined by variable c) and the first 

revolute joint of the U joint (defined by the angular variable α). This manipulator can be reconfigured into a low-

mobility manipulator by blocking one of the inputs. As previously explained, to get later on the 3-RPS we will 

restrict the angular variable of the first R joint. Mathematically, this is done by simply including the condition 

𝛼̇ = 0 in the velocity equations. 

The chain UPS has been previously analysed in Section 4, obtaining the velocity expression given by Eq. (7). To 

eliminate the passive variables and get a direct relation between inputs (𝑐̇𝑖 and 𝛼̇𝑖) and outputs (components of 𝒗𝑃 

and 𝝎), we proceed as follows: 

First, as it was done in Section 4, apply the dot product to Eq. (7) multiplying by the unit vector 𝒖𝑐, obtaining for 

each leg the velocity equation (10), which in our case of three legs yields:  

 

[
 
 
 
 (𝒖𝑐1

)
𝑇

(𝒖𝑐1
× 𝑮1𝑷)

𝑇

(𝒖𝑐2
)
𝑇

(𝒖𝑐2
× 𝑮2𝑷)

𝑇

(𝒖𝑐3
)
𝑇

(𝒖𝑐3
× 𝑮3𝑷)

𝑇
]
 
 
 
 

[
𝒗𝑃

𝝎
] = [

𝑐̇1

𝑐̇2

𝑐̇3

]  (12) 

Second, multiplying by unit vector 𝒖𝛽: 

 𝒗𝑃 · 𝒖𝛽 = 𝑐̇ · 𝒖𝑐 · 𝒖𝛽 + (𝝎𝑐 × 𝒄) · 𝒖𝛽 + (𝝎 × 𝑮𝑷) · 𝒖𝛽  (13) 

And operating as follows: 

 (𝝎𝑐 × 𝒄) · 𝒖𝛽 = (𝒖𝛽 × (𝛼̇ · 𝒖𝛼 + 𝛽̇ · 𝒖𝛽)) · 𝒄 = 𝛼̇ · (𝒖𝛽 × 𝒖𝛼) · 𝒄 + 𝛽̇ · (𝒖𝛽 × 𝒖𝛽) · 𝒄  (14) 

 𝒖𝛽 · 𝒗𝑃 = 𝑐̇ · 0 + 𝛼̇ · (𝒖𝛽 × 𝒖𝛼) · 𝑐 · 𝒖𝑐 + 𝛽̇ · 0 − (𝒖𝛽 × 𝑮𝑷) · 𝝎  (15) 

 

Then, the three remaining equations of velocities are achieved: 

 𝑃 

 𝒖𝛽 
 𝒖𝛼 

 𝒖𝛾  𝒖𝜑 

 𝒖𝜃 

 𝑐 

 𝐴 

 𝐺  𝑃 

 𝒖𝛽 

 𝒖𝛾  𝒖𝜑 

 𝒖𝜃 

 𝑐 

 𝐴 

 𝐺 
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 𝒖𝛽 · 𝒗𝑃 + (𝒖𝛽 × 𝑮𝑷) · 𝝎 = 𝛼̇ · 𝑐 · (𝒖𝛽 × 𝒖𝛼) · 𝒖𝑐  (16) 

Again, expressed in a matrix form it yields: 

 

[
 
 
 
 
 (𝒖𝛽1

)
𝑇

(𝒖𝛽1
× 𝑮1𝑷)

𝑇

(𝒖𝛽2
)

𝑇

(𝒖𝛽2
× 𝑮2𝑷)

𝑇

(𝒖𝛽3
)

𝑇

(𝒖𝛽3
× 𝑮3𝑷)

𝑇

]
 
 
 
 
 

[
𝒗𝑃

𝝎
] =

[
 
 
 
 𝛼̇1 · 𝑐1 · (𝒖𝛽1

× 𝒖𝛼1
) · 𝒖𝑐1

𝛼̇2 · 𝑐2 · (𝒖𝛽2
× 𝒖𝛼2

) · 𝒖𝑐2

𝛼̇3 · 𝑐3 · (𝒖𝛽3
× 𝒖𝛼3

) · 𝒖𝑐3]
 
 
 
 

  (17) 

 

From equations (12) and (17), the Jacobians of the direct and inverse problems are clearly: 

 [𝐽𝐷] [
𝒗𝑃

𝝎
] = [𝐽𝐼][𝑐̇1 𝑐̇2 𝑐̇3 𝛼̇1 𝛼̇2 𝛼̇3]

𝑇  (18) 

The inverse Jacobian being: 

 [𝐽𝐼] =

[
 
 
 
 
 
 
 [

1 0 0
0 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]

[
0 0 0
0 0 0
0 0 0

]

[
 
 
 
 𝑐1 · (𝒖𝛽1

× 𝒖𝛼1
) · 𝒖𝑐1

0 0

0 𝑐2 · (𝒖𝛽2
× 𝒖𝛼2

) · 𝒖𝑐2
0

0 0 𝑐3 · (𝒖𝛽3
× 𝒖𝛼3

) · 𝒖𝑐3]
 
 
 
 

]
 
 
 
 
 
 
 

 (19) 

5.2. 3-RPS low-mobility manipulator 

As it has been explained, the way of obtaining the equations associated to the 3-RPS is almost direct. We include 

the constraint associated with the blocking of the rotational actuator, which implies 𝛼̇𝑖 = 0. Making these velocities 

null results in: 

 [𝐽𝐷] [
𝒗𝑃

𝝎
] = [𝐽𝐼] [

𝑐̇1

𝑐̇2

𝑐̇3

]  (20) 

Where the Jacobians are now: 

 [𝐽𝐷] =

[
 
 
 
 
 
 
 
 
 (𝒖𝑐1

)
𝑇

(𝒖𝑐1
× 𝑮1𝑷)

𝑇

(𝒖𝑐2
)
𝑇

(𝒖𝑐2
× 𝑮2𝑷)

𝑇

(𝒖𝑐3
)
𝑇

(𝒖𝑐3
× 𝑮3𝑷)

𝑇

(𝒖𝛽1
)

𝑇

(𝒖𝛽1
× 𝑮1𝑷)

𝑇

(𝒖𝛽2
)

𝑇

(𝒖𝛽2
× 𝑮2𝑷)

𝑇

(𝒖𝛽3
)

𝑇

(𝒖𝛽3
× 𝑮3𝑷)

𝑇

]
 
 
 
 
 
 
 
 
 

[𝐽𝐼] =

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0]

 
 
 
 
 

  (21) 

 

As it can be observed, the direct Jacobian is the same as that of the 3-UPS, while in the inverse Jacobian the last 

three rows are cancelled. Precisely, the nullity of these rows, due to the imposed constraint 𝛼̇𝑖 = 0, establishes the 

constraint equations that relate the output velocities of this low-mobility manipulator. Therefore, these constraint 

equations are: 

 𝒖𝛽𝑖
· 𝒗𝑃 + (𝒖𝛽𝑖

× 𝑮𝑖𝑷) · 𝝎 = 0 𝑖 = 1, 2, 3  (22) 
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6. Conclusions 

In this work, the basis of a methodology for the analysis and design of parallel manipulators capable of achieving 

multiple operation modes has been presented. To get the set of all possible 12 motion patterns in the end-effector, 

the structural synthesis of 6 dof kinematic chains that can form a 6 dof manipulator has been done. Then, a general-

purpose approach based on the characterisation and analysis of a generic kinematic chain is presented. This generic 

chain can be afterwards configured or particularized so as to obtain many parallel manipulators commonly used in 

practice. It also enables to easily implement the reconfigurability option by blocking some inputs and deriving the 

corresponding constraint equations. Basing on this generic chain, we illustrate the procedure for a 6 dof PM, a 

reconfigurable PM  and a low-mobility PM. The approach proposed in this paper has demonstrated to have a great 

potential to cover the analysis of a broad range of possible chains to be implemented in reconfigurable parallel 

manipulators. 
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Appendix 

 

Table 1: Possible chains obtained from the permutations of PPPRRR 

 

 

 

 

 

 

 

 

 

Permutation Kinematic chain Possible chains 

1 PPPRRR PPPS, PPCU 

2 PPRPRR PPRPU, PCPU, PCCR, PPCU, PPRCR 

3 PPRRPR PPUPR, PCRPR, PCCR, PCRC, PPRCR, PPUC 

4 PPRRRP PPSP, PCUP, PCRC, PPUC 

5 PRPPRR PRPPU, CPPU, CPCR, PCPU, PCCR, PRPCR 

6 PRPRPR PRPRPR, CPRPR, CPCR, CCPR, CPRC, CCC, PCRPR, 

PCCR, PCRC, PRCPR,PRCC, PRPCR, PRPRC 

7 PRPRRP PRPUP, CPUP, CCRP, CCC, CPRC, PCUP,  

PCRC, PRCRP, PRCC, PRPRC 

8 RPPPRR RPPPU, CPPU, CPCR, RPPCR 

9 RPPRPR RPPRPR, CPRPR, CPCR, CPRC, CCPR, CCC, RPCPR, 

RPCC, RPPRC 

10 RPPRRP RPPUP, CPUP, CCRP, CCC, CPRC, RPCRP, RPCC, 

RPPRC 

11 PRRPPR PUPPR, CRPPR, CRPC, PUPC, PRCPR, PRCC, CCC, 

CCPR 

12 PRRPRP PUPRP, CRPRP, PRCRP, PUPC, CCRP, CRPC, CRCP, 

PRCC, CCC 

13 PRRRPP PSPP, CUPP, PUCP, CRCP 

14 RPRPPR RPRPPR, CRPPR, RPCPR, RPRPC, CCPR, CRPC, RPCC, 

CCC, RCPPR, RCPC 

15 RPRPRP RPRPRP, CRPRP, RPCRP, RCPRP, RPRCP, RPRPC, 

CCRP, CRCP, CRPC, CCC, RPCC, RCCP, RCPC 

16 RPRRPP RPUPP, CUPP, RCRPP, RPRCP, CRCP, RCCP 

17 RRPPPR UPPPR, RCPPR, UPPC, RCPC 

18 RRPPRP UPPRP, RCPRP, UPCP, UPPC, RCCP, RCPC 

19 RRPRPP UPRPP, RCRPP, UCPP, UPCP, RCCP 

20 RRRPPP SPPP, UCPP 
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Permutation 
Kinematic 

chain 

Variants  

with pairs RR 
Possible chains 

1 PPRRRR 

PPRRRR PPRS,PCS 

PPRRRR PPUU,PCRU 

PPRRRR PPSR,PCUR 

PPRRRR PPRS,PPSR,PCS,PPUU 

2 PRPRRR 

PRPRRR CPS,PCS,PRCU 

PRPRRR PRPRU,CPRU,PRCU,CCU,PCRU 

PRPRRR PRPUR,CPUR,PRCRR,CCRR,PCUR 

PRPRRR CPS,PCS,PRPS,PRCU,CCU 

3 RPPRRR 

RPPRRR RPPS,CPS,RPCU 

RPPRRR RPPRU,CPRU,RPCU,CCU 

RPPRRR RPPUR,CPUR,RPCRR,CCRR 

RPPRRR CPS,RPCU,RPPS,CCU 

4 PRRPRR 

PRRPRR PRRPU,CRPU,PRCU,PRRCR,CRCR 

PRRPRR PUPU,CRPU,PRCU,PUCR,CCU,CRCR 

PRRPRR PUPRR,CRPRR,PRCRR,PUCR,CRCR,CCRR 

PRRPRR PUPU,PUCR,PRCU,CRPU,CCU,CRCR 

5 PRRRPR 

PRRRPR PRUPR,PRRCR,CRCR,CUPR,CUC,PRUC 

PRRRPR PURPR,PUCR,PURC,CRRPR,CRCR,CRRC 

PRRRPR PSPR,PSC,CUPR,CUC,CRCR,PUCR 

PRRRPR PSPR,PSC,CUPR,CUC,CRCR,PUCR 

6 PRRRRP 

PRRRRP PRSP,CSP,PRUC,CUC 

PRRRRP PUUP,PURC,CRUP,CRRC 

PRRRRP PSRP,PSC,CURP,CUC 

PRRRRP PSRP,PRSP,PSC,CSP,CUC,PUUP 

7 RPRRPR 

RPRRPR RPUPR,RPUC,CUPR,CUC,RCRPR,RCCR,RCRC 

RPRRPR RPRRPR,RPRRC,RPRCR,CRRPR,RCRPR,CRRC, 

CRCR,RCRC 

RPRRPR RPUPR,RPUC,RPRCR,CUPR,CUC,CRCR,RCCR, 

RCRC 

RPRRPR RPUPR,CUPR,RPUC,CUC,RCRPR,RCRC,RCCR, 

RPRCR 

8 RRPPRR 

RRPPRR RRPPU,RRPCR,RCPU,RCCR 

RRPPRR UPPU,UPCR,RCPRR,RCPU,RCCR 

RRPPRR UPPRR,UPCR,RCPRR,RCCR 

RRPPRR UPPU,UPCR,RCPU,RCCR 
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9 RPRPRR 

RPRPRR RPRPU,RPRCR,RCPU,RCCR,RPCU,CRPU, 

CRCR 

RPRPRR RPRPU,RPRCR,RPCU,RCPU,RCCR,CCU, 

CRPU,CRCR 

RPRPRR RPRPRR,RPRCR,RCPRR,RCCR,CRPRR,CRCR,CCRR,RP

CRR 

RPRPRR RPRPU,RPRCR,RPCU,RCPU,RCCR,CCU, 

CRCR,CRPU 

10 RRRRPP 

RRRRPP RSPP,RUCP 

RRRRPP UUPP,URCP 

RRRRPP SRPP,SCP 

RRRRPP SRPP,SCP,RSPP,UUPP 

11 RRRPRP 

RRRPRP RRCRP,RRCC,RUPRP,RUPC,RUCP 

RRRPRP URPRP,URPC,URCP,UCRP,UCC 

RRRPRP SPC,SCP,UCRP 

RRRPRP SPRP,SPC,SCP,UCRP,UCC 

12 RRRPPR 

RRRPPR RUPPR,RUPC,RRCPR,RRCC 

RRRPPR URPPR,URPC,UCPR,UCC 

RRRPPR SPPR,SPC,UCPR 

RRRPPR SPPR,SPC,UCPR,UCC 

13 RRPRRP 

RRPRRP RRPUP,RRPRC,RRCRP,RRCC,RCUP, RCRC 

RRPRRP UPUP,UPRC,RCUP,RCRC,UCC,UCRP 

RRPRRP UPRRP,UPRC,UCRP,RCRRP,RCRC 

RRPRRP UPUP,UPRC,RCUP,RCRC,UCC,UCRP 

14 RPRRRP 

RPRRRP RPUC,RPSP,RCRC,RCUP,CUC,CSP 

RPRRRP RPRUP,RPRRC,CRUP,CRRC,RCUP,RCRC 

RPRRRP RCRC,RPUC,RPURP,CUC,RCRRP,CURP 

RPRRRP RPSP,CSP,RCRC,RCUP,CUC,RPUC 

15 RRPRPR 

RRPRPR RRPRPR,RCRPR,RRCPR,RRPRC,RRCC,RCCR,RRPCR,R

CRC 

RRPRPR UPRPR,UPRC,UPCR,UCC,RCRPR,RCCR, 

RCRC,UCPR 

RRPRPR RCRC,RCRPR,UPRPR,UPRC,UCPR,RCCR, 

UPCR 

RRPRPR UPRPR,UCPR,UPRC,UPCR,UCC,RCRPR, 

RCRC,RCCR 

Table 2: Possible chains resulting from the permutations of PPRRRR 
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Permutation Chain Variants with RRR Possible chains 

1 PRRRRR 

PRRRRR CRS 

PRRRRR PURU,CRRU 

PRRRRR PSRR,CURR 

PRRRRR CUU,CSR,CRS,PRSR,PRRS,PRUU 

PRRRRR PUS,CRS 

PRRRRR PSU,CUU 

PRRRRR PSRR,CSR,PUUR,CURR,PRSR 

PRRRRR PSU,CUU,CSR,PUS,CRS 

2 RPRRRR 

RPRRRR CRS 

RPRRRR RCRU 

RPRRRR RPURR,CURR,RCRRR 

RPRRRR CRS,RCS,CUU,CSR 

RPRRRR RCS,CRS 

RPRRRR CUU,RCRU 

RPRRRR CSR,CURR,RCUR,RPSR 

RPRRRR CSR,RCS,CUU,CRS 

3 RRPRRR 

RRPRRR RCS,RRCU 

RRPRRR UCU,RCRU 

RRPRRR UCRR 

RRPRRR RCS,RRCU 

RRPRRR UPS,UCU,RCS 

RRPRRR UCU,RCRU 

RRPRRR UPUR,RCUR,UCRR 

RRPRRR UPS,UCU,RCS 

  RRRPRR RRCU 

  RRRPRR UCU,URCR 

  RRRPRR SCR,UCRR 

  RRRPRR RUPU,RRCU,RUCR 

4 RRRPRR RRRPRR UCU,URPU,URCR 

  RRRPRR SPU,UCU,SCR 

  RRRPRR SCR,UCRR 

  RRRPRR SPU,UCU,SCR 

5 RRRRPR 

RRRRPR RRUPR,RRRCR,RRUC 

RRRRPR URCR 

RRRRPR SCR,SRC 

RRRRPR RSC,RSPR,RUCR 

RRRRPR UUC,URCR 

RRRRPR SCR,SRC,SRPR 

RRRRPR UUC,SRC,SCR,UUPR,SRPR,RSC,RSPR 

RRRRPR SRC,UUC,RSC,SRPR,UUPR,RSPR 

6 RRRRRP 

RRRRRP RRSP,RRUC 

RRRRRP URUP,URRC 

RRRRRP SRC 

RRRRRP RSC,RRSP,RUUP,RRUC,RSRP 

RRRRRP UUC,USP 

RRRRRP SUP,RUUP,SRC 

RRRRRP SRC,UUC,RSC,SRRP,UURP,RSRP 

RRRRRP SUP,USP,UUC,SRC,RSC,RSRP 

Table 3: Possible chains obtained from permutations of PRRRRR 
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Permutation Kinematic chain 
Variants with joints 

RRRR 
Possible chains 

1 PRRRRR 

PRRRRR PRUU,CUU 

PRRRRR PRSR,CSR 

PRRRRR PUUR,CRUR 

PRRRRR PRRS,CRS,PRSR,CSR,PRUU,CUU 

PRRRRR PUUR,PUS,CRS 

PRRRRR PSU,CUU 

PRRRRR PSRR,PRSR,CSR 

PRRRRR PUS,PSU,CUU,CRS,CSR 

2 RPRRRR 

RPRRRR RPUU,CUU,RCRU 

RPRRRR RPSR,CSR,RCUR 

RPRRRR RPRUR,CRUR,RCUR 

RPRRRR RPRS,CRS,RCS,RPSR,CSR,RPUU,CU

U 

RPRRRR RPRS,RCS,CRS 

RPRRRR RPUU,CUU,RCRU 

RPRRRR RPSR,CSR,RPSR,RCUR 

RPRRRR RPUU,RPRS,RPSR,CUU,CRS,CSR,RC

S 

3 RRPRRR 

RRPRRR RRPRU,RCRU,RRCU 

RRPRRR RRPUR,RCUR,RRCRR 

RRPRRR UPUR,RCUR,UCRR 

RRPRRR RRPS,RRCU,RCS 

RRPRRR UPS,RCS,UCU 

RRPRRR UPRU,UCU,RCRU 

RRPRRR UPUR,UCRR,RCUR 

RRPRRR UPS,RCS,UCU 

4 RRRPRR 

RRRPRR RUPU,RUCR,RRCU 

RRRPRR RUPRR,RUCR,RRCRR 

RRRPRR URPRR,URCR,UCRR 

RRRPRR RUPU,RUCR,RRCU 

RRRPRR URPU,URCR,UCU 

RRRPRR SPU,SCR,UCU 

RRRPRR SPRR,SCR,UCRR 

RRRPRR SPU,SCR,UCU 
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5 RRRRPR 

RRRRPR RURPR,RURC,RUCR 

RRRRPR RSPR,RSC,RUCR 

RRRRPR UUPR,UUC,URCR 

RRRRPR RSPR,RSC,RUCR 

RRRRPR UUPR,UUC,URCR 

RRRRPR SRPR,SRC,SCR 

RRRRPR SRPR,RSPR,SRC,RSC,UUPR,UUC 

RRRRPR RSC,SRC,RSPR,SRPR,UUC,UUPR,SCR 

6 RRRRRP 

RRRRRP RUUP,RURC 

RRRRRP RURRP,RRURP,RURC,RRUC 

RRRRRP UURP,UUC 

RRRRRP RRSP,RSRP,RSC,RUUP 

RRRRRP USP,UUC,UURP 

RRRRRP SUP,SRC 

RRRRRP SRRP,SRC,RSRP,RSC 

RRRRRP USP,SUP,RSC,SRC,UUC 

Table 4: Possible chains resulting from the permutations of PRRRRR 
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 Permutations of chain RRRRRR and equivalences 

RRRR=RRRR 

RRRRRR 
RRRRRR=RRRRRR

=RRRRRR 
RRRRRR=RRRRRR 

RRRRRR=

RRRRRR 

RRRRRR=

RRRRRR 

RRRRRR

=RRRRR

R 

RRRRRR=RRRRRR 
RRRRRR=RRRRRR

=RRRRRR 

RRRRRR=

RRRRRR 
_____ 

RRRR=RRRR

=RRRR 

RRRRRR

=RRRRR

R 

_____ _____ _____ _____ 

RRRR=RRRR

=RRRR 
_____ _____ _____ _____ _____ 

Tabla 5: Variants of chain RRRRRR 

 
 Permutations of chain RRRRRR and equivalences 

RRR 
RRRRRR RRRRRR=RRRRRR 

RRRRRR=RRRRRR=

RRRRRR 

RRRRRR=

RRRRRR 
_____ 

RRRRRR=RRRRRR RRRRRR RRRRRR _____ _____ 

RRR=RRR RRRRRR RRRRRR RRRRRR _____ _____ 

RRR 
RRRRRR RRRRRR=RRRRRR RRRRRR=RRRRRR 

RRRRRR=

RRRRRR 
RRRRRR 

RRRRRR _____ _____ _____ _____ 

Table 6: Variants of chain RRRRRR 
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Permutation of RRRRRR Possible chains 

RRRRRR RUUR 

RRRRRR RSU 

RRRRRR USR 

RRRRRR UUU 

RRRRRR RSU,RUS,RRSR 

RRRRRR UUU,URS,USR 

RRRRRR SRU,UUU,RSU 

RRRRRR SUR,USR,RSRR 

RRRRRR UUU,SUR,SRU,RUS,URS,USR,RSU 

RRRRRR SUR,SRU,RUS,URS 

Table 7: Possible chains obtained from permutations of RRRRRR 

 

Permutations of RRRRRR Possible chains 

RRRRRR RRUU 

RRRRRR RURU 

RRRRRR RSRR 

RRRRRR URS 

RRRRRR RUUR 

RRRRRR UUU 

RRRRRR USR 

RRRRRR RRUU,RRSR 

RRRRRR SRU 

RRRRRR UURR,RSRR 

RRRRRR RRSR 

RRRRRR URUR 

RRRRRR UURR 

RRRRRR RSRR,RRSR 

RRRRRR RSU 

RRRRRR SUR 

Table 8: Possible chains obtained from permutations of RRRRRR 
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