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Abstract

Behavioral adaptations during performance rely on predicting and evaluating the consequences of

our  actions  through  action  monitoring.  Previous  studies  revealed  that  proprioceptive  and

exteroceptive  signals  contribute  to  error-monitoring  processes,  which  are  implemented  in  the

posterior  medial  frontal  cortex.  Interestingly,  errors  also  trigger  changes  in  autonomic  nervous

system activity such as pupil  dilation or heartbeat deceleration.  Yet,  the contribution of implicit

interoceptive signals  of  bodily states to error-monitoring during ongoing performance has been

overlooked.  

This study investigated whether cardiovascular interoceptive signals influence the neural correlates

of error processing during performance, with an emphasis on the early stages of error processing.

We  recorded  musicians’  electroencephalography  and  electrocardiogram  signals  during  the

performance  of  highly-trained  music  pieces.  Previous  event-related  potential  (ERP)  studies

revealed that pitch errors during skilled musical performance are preceded by an error detection

signal, the pre-error-negativity (preERN), and followed by a later error positivity (PE). In this study,

by combining ERP, source localization and multivariate pattern classification analysis, we found

that the error-minus-correct ERP waveform had an enhanced amplitude within 40-100 ms following
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errors in the systolic period of the cardiac cycle.  This component could be decoded from single-

trials, was dissociated from the preERN and PE, and stemmed from the inferior parietal cortex,

which is a region implicated in cardiac autonomic regulation. In addition, the phase of the cardiac

cycle influenced behavioral alterations resulting from errors, with a smaller post-error slowing and

less perturbed velocity in keystrokes following pitch errors in the systole relative to the diastole

phase of the cardiac cycle. Lastly, changes in the heart rate anticipated the upcoming occurrence

of errors.  This study provides the first evidence of preconscious visceral information modulating

neural and behavioral responses related to early error monitoring during skilled performance.

Introduction

Detection and evaluation of errors is central to the acquisition of complex motor skills, such as

those needed in dance or music performance (Wolpert and Kawato, 1998; Palmer, 2006). Over the

last  decades,  error-monitoring  processes  have  received  broad  attention  in  the  neuroscientific

community  (Gehring  et  al,  1993;  Falkenstein  et  al,  2000;  Ullsperger  et  al.,  2014).

Electroencephalography (EEG) has been the most widely used method to  investigate the neural

correlates of error-monitoring processes, as its high-temporal resolution in the order of milliseconds

makes it particularly suitable for tracking the fast brain dynamics associated with error processing

(Delorme et al., 2002). Changes in neural activity around error commission have been traditionally

assessed by averaging the EEG signals time-locked to errors, thus rendering the classical event-

related  potential  (ERP)  responses,  the  early  (80-100  ms  after  error  commission)  error-related

negativity (ERN, Gehring et al, 1993), and a later error positivity (PE, Falkenstein et al, 2000).

The ERN is  generated in  the posterior  medial  frontal  cortex (pMFC),  anterior  cingulate cortex

(ACC), and pre/suplementary motor area (pre-/SMA) (Kiehl et al., 2000; Miltner et al. 2003; Bonini

et  al.,  2014). This  ERP component  is  considered  to  reflect  a  mismatch between the ongoing

expectation of action outcomes and the actual outcomes (Hyman et al., 2017; Fu et al., 2019), a

process which has been shown to involve the pMFC and ACC (Rushworth and Behrens, 2008; Fu

et al., 2019).  Following extensive training, for instance during skilled musical performance, early

error detection in the pMFC/ACC precedes error commission by 50-100ms (pre-error-negativity,

preERN; Maidhof et al., 2009, Ruiz et al., 2009; Strübing et al., 2012). 
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Oscillatory analysis of the preERN suggests that the theta (4-7 Hz) and beta (13-30 Hz) oscillations

in the pMFC primarily contribute to the ERP modulation, and connectivity analyses have shown an

increase in  beta  band coupling  between the pMFC and the lateral  prefrontal  cortex  (lPFC) in

anticipation of an error  (Ruiz et al., 2011). Further, in that study, this enhanced connectivity was

associated with larger corrective behavioral adjustments. 

Whereas  early  error  detection  occurs  in  the  pMFC,  later  error  evaluation  –  linked  to  the  PE

component – also extends to subcortical regions. The PE consists of an earlier frontocentral and a

later centroparietal deflection, which peak at 200 and 300 ms following errors, respectively. The

later deflection, in particular, reflects an accumulation of evidence or decision confidence that an

error  has occurred (Orr  and Carrasco,  2010;  Boldt  and Yeung,  2015).  Interestingly,  the PE is

generated in the rostral ACC and the insular cortex (Herrmann et al., 2004; Dhar et al., 2011).

Thus,  the  neural  signatures  of  error  detection  and  evaluation  rely  on  an  extended  cortico-

subcortical network beyond the pMFC (Ullsperger et al., 2014).

The anterior insular cortex is a key region for interoception, defined as the sense of the internal

physiological  state  of  the  body  (Craig,  2009;  Barrett  and  Simmons,  2015). Accordingly,  the

involvement of this brain region during error processing aligns well with the reported changes in the

ongoing autonomic nervous system, such as heartbeat deceleration and enhanced pupil dilation,

following errors (Hajcak et al., 2003; Wessel et al., 2011, Bastin et al., 2017). Further, the ventral

part of the ACC is a key recipient of visceral information from the internal organs (Stevens et al.,

2011; Critchley and Harrison, 2013). Overall, these findings suggest that error commission may be

associated with interoceptive processing,  yet  we do not  fully  understand how the interoceptive

signals  of  bodily  states  contribute  to  error-monitoring  during  ongoing  performance.  This  is

surprising  given  the  relevance  of  interoceptive  information  for  the  modulation  of  perceptual,

affective and cognitive processes (Critchey and Harrison, 2013; Park et al., 2014).  Recent work

has further shown that changes in interoceptive states (heart rate deceleration) following incorrect

responses might provide internal feedback about performance accuracy (Lukowska et al., 2018).

Also  following  errors,  the  skin-conductance  response  –  a  measure  of  the  autonomic  nervous

system – correlates with the PE amplitude and the degree of post-error slowing (Hacjak et al.,

2003). What remains unclear is whether interoceptive cues influence error-monitoring processes
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during earlier stages. New theoretical accounts suggest that interoceptive processing is not limited

to monitoring the physiological state of the body but is also crucially involved in generating future

predictions (expectations) about bodily states (Seth, 2013; Barrett and Simons, 2015). Accordingly,

early  interoceptive cues could shape ongoing error-monitoring to influence the predicted future

bodily states associated with error commission.

The present study tested the general hypothesis that early detection of errors during skilled motor

performance is influenced by implicit cardiovascular interoceptive information. Skilled performance

of motor  tasks,  such as music performance,  sports,  or  dance demands extensive training and

perfect  tuning  of  the  action-monitoring  system to  the  extent  that  potential  errors,  which  might

otherwise interact with the goals, must be anticipated (predicted; Bernstein, 1967; Wolpert et al.,

1995). A highly-trained music performance presents thus a suitable paradigm for the study of the

brain’s predictive mechanisms of error detection. We predicted that cardiovascular interoceptive

information  could  shape  error  processing  during  skilled  music  performance,  given  the  recent

evidence  that  interoceptive  processing  can  modulate  error  responses  (Bastin  et  al.,  2018;

Lukowska et  al.,  2018),  and the studies  revealing  that  expert  musicians  (singers)  have higher

interoceptive accuracy likely due to the intensive training (Schirmer-Mokwa et al., 2015), 

Here, we recorded EEG and electrocardiogram (ECG) of skilled pianists during performance of

highly-trained musical excerpts.  There are two dominant approaches to studying the relationship

between neural and cardiovascular responses during cognition. First, analysis of the heartbeat-

evoked potential (HEP) – neural responses locked to heartbeats – has been used to demonstrate a

role  of  visceral  information  in  bodily  consciousness,  conscious  perception  and  emotional

processing (Pollatos and Schandry 2004; Luft and Bhattacharya, 2015; Babo-Rebelo et al., 2016a

and 2016b; Park et al., 2016). This approach is typically followed in studies that do not measure

concurrent motor responses, which could overlap with the HEP modulation. A second  approach

consists  of  measuring ongoing  fluctuations  of  the  cardiac  cycle;  these  fluctuations  have  been

shown to influence perceptual and sensory processing (Garfinkel et al., 2014; Azevedo et al., 2017;

Al  et  al.,  2018).  The cardiac cycle extends from the  contraction of  the  atria  to  the ventricular

relaxation (Lacey and Lacey, 1978: Gray et al., 2009). It can be characterized by two phases: the
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systole, when the ventricles contract and blood is pumped into the arteries, and the diastole, when

the ventricles relax and are filled with blood. Numerous studies have explored the effect of stimuli

presented during the different phases of the cardiac cycle on neurophysiological and psychological

processes, demonstrating that processing of fearful or painful stimuli, i.e.,  stimuli associated with

enhanced  emotional  arousal,  is  more  efficient  during  cardiac  systole  (Edwards  et  al.,  2001;

Garfinkel et al., 2014; Azevedo et al., 2017). Notably, this second approach has been preferred in

studies  measuring  the  effect  of  cardiac  activity  on  motor  behavior.  These  studies  have

demonstrated that the cardiac phase can have an effect on motor task performance, either through

a modulation of motor preparation or sensory processing (in stimulus-response paradigms; Weisz

and Adam, 1996; Edwards et al., 2007). For example, response to a stimulus presented during the

cardiac systole can be slower, possibly due to an increase in blood pressure when the arterial

baroreceptors are naturally stimulated by the arrival  of  the pulse pressure wave during systole

(Edwards et al., 2007).

In this  study,  we adopted this  second approach as  it  is  well-suited to capturing cardiovascular

effects  on  motor  behavior,  such  as  during  music  performance.  Accordingly,  we undertook  a

cardiac-cycle fluctuation-based analysis to assess whether the alignment of performance errors to

different  phases  of  the  cardiac  cycle  biases  neural  and  behavioral  responses  during  error

processing.  Rhythmic  feedback  of  cardiac  and  baroreceptor  activity  constitutes  one  important

channel of  brain-body communication (Gray et  al.,  2009),  with baroreceptors showing maximal

phasic  activity during the systolic  period,  thereby enabling the representation of  cardiovascular

arousal  within  viscerosensory  brain  regions  (Azevedo  et  al.,  2017).  Accordingly,  our  specific

hypotheses  were  as  follows:  (I)  ERP responses  to  errors  were  expected  to  be  modulated  in

amplitude depending on the latency of the error key presses within the cardiac cycle. (II) Behavioral

alterations to errors were predicted to be enhanced during the cardiac systole, corresponding with

the more salient processing of negative arousal (painful, fearful) stimuli during systole (Edwards et

al., 2001;  Garfinkel et al., 2014;  Azevedo et al., 2017). (III) The ERP modulation by the cardiac

cycle  should  stem  from brain  regions  previously  associated  with  processing  of  cardiovascular

afferent signals, such as the ACC, somatosensory cortex or the inferior parietal cortex (Lutz et al.,

2009; Park et al., 2014; Barrett and Simons, 2015). Finally, (IV) ongoing changes in the autonomic

5



nervous system, such as heart-rate acceleration or deceleration, were expected to be precursors of

the  early  error  components.  To  test  these  hypotheses  and  dissociate  between  the  neural

responses to pitch errors during the different phases (systole, diastole) of the cardiac cycle, we

used  different methods, including ERP, source localization and  multivariate pattern classification

techniques.

In  addition  to  the  cardiac-cycle  fluctuation-based  analysis,  we  further  aimed  to  replicate  the

previous  results  of  the  preERN and  PE preceding  and  following  pitch  errors,  as  well  as  the

behavioral effects surrounding errors (pre- and post-error slowing and reduced keystroke velocity in

pitch errors, Ruiz et al., 2009; Maidhof et al., 2009; Palmer et al., 2012). This additional goal was

motivated by the recent call for replication of small scale neuroimaging studies (Button et al., 2013;

Open Science Collaboration, 2015).

Materials and Methods

Participants

Sample size considerations were based on prior data from our study using this paradigm (Ruiz et

al., 2009), which we used to estimate the minimum sample size for a statistical power of 0.95, with

an  alpha  of  0.05,  using  the  MATLAB  function  sampsizepwr

(https://de.mathworks.com/help/stats/sampsizepwr.html). Using the preERN and PE data from the

19 pianists that participated in that study, we obtained a minimum sample size of 17. In addition,

the non-parametric effect sizes of the previously reported preERN and PE were 0.875 and 0.812,

respectively (non-parametric effect size estimator, Grissom and Kim; 2012).

Eighteen  right-handed  healthy  pianists  (10  females;  mean  age  =  26.6,  s.d.  =  2.7  years;

Handedness assessed with the Edinburgh inventory, Oldfield, 1971)  participated in the present

study. They were professional pianists or  current students at a London music conservatoire, and

had self-reported normal hearing.  They were all practicing musicians and had accumulated more

than  10,000  hours  of  practice.  All  participants  gave  written  informed  consent,  and  the  study

protocol was approved by the local ethics committee at the Department of Psychology, Goldsmiths,

University of London. Participants received a monetary remuneration for participating in the study
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and memorising the musical material prior to their participation. One participant was excluded from

the analysis due to poor quality of the raw EEG signal, leaving 17 participants for the analysis. 

Stimulus Materials

Stimuli were four musical sequences selected from the material used in Ruiz et al, (2009). In brief,

the sequences were right-hand excerpts of Preludes V and VI of the Well-Tempered Clavier by J. S.

Bach. These pieces were chosen because of their homogeneity in terms of the duration of notes

(sixteenth notes) and regular (isochronous) time interval between consecutive notes. The length of

these excerpts was 200, 201, 202 and  185  notes,  respectively.  As  in  Ruiz  et  al.  (2009),

participants were instructed to perform at a fast tempo (metronome 120 bpm for quarter note in

excerpts from prelude V and 160 bpm for triplet of sixteenth notes in excerpts from prelude VI) to

induce errors.  The tempo indications thus required a target  inter-onset-interval,  IOI,  of  125ms,

between sixteenth notes. The duration of each piece was around 25 s. Participants were instructed

to rehearse and memorize the pieces at the correct tempo  while not looking at their hand and

finger  movements  before  coming  to  the  experimental  session.  Prior  to  EEG and performance

recording, we verified that pianists managed to play all pieces from memory without looking at their

hands.

Experimental Design

Participants  were  seated  comfortably  on  an  adjustable  piano  stool  in  front  of  a  digital  piano

(Yamaha Digital Piano P-255, London, United Kingdom) in a dimly lit room. They were instructed,

via a PC monitor, to perform each piece from beginning to end at the instructed tempo and without

stopping  to  correct  errors.  They  were  also  instructed  to  avoid  visually  tracking  their  finger

movements by fixating on a central cross displayed on the PC monitor. The emphasis was placed

on maintaining accurate timing  (see below)  and playing the correct notes. All  participants were

naïve to the purpose of the study.

The experiment consisted of 60 trials, separated into two 30-trial blocks of approximately 20 min

each. There were two practice trials at the beginning of each block for familiarization. We used a

synchronization-continuation paradigm with the following timeline for each trial.  First, participants
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pressed a designated key with their left-hand index finger when ready to begin a trial, which was

followed by a silent time-interval between 0-1000ms (jitter). Next, an image with the first two bars of

the  music  score  was  displayed  for  4000  ms,  indicating  which  of  the  four  excerpts,  randomly

selected, had to be played. While the visual cue (score) was shown, a metronome started pacing

the tempo corresponding to the piece: four metronome beats for scores at 120 bpm (at regular

intervals of 500 ms), five metronome beats for ones at 160 bpm (at 375ms-intervals). Participants

had to internally entrain their timing to the metronome clicks and get ready to start playing after the

last  metronome beat.  In  every  trial,  the  last  metronome beat  fell  at  4050  ms  after  the  initial

presentation of the music score, and 50 ms after a green ellipse was shown on the monitor to

indicate that performance was being recorded. Participants were instructed to play while the green

ellipse was on display and to stop playing when the ellipse turned red (approximately after 27 s).

EEG, ECG and MIDI recording

EEG and ECG signals were recorded using a 64-channel (extended international 10–20 system)

EEG system (ActiveTwo, BioSemi Inc.) placed in an electromagnetically shielded room. During the

recording, the data was high-pass filtered at 0.16 Hz. The vertical and horizontal eye-movements

(EOG) were monitored by electrodes placed above and below the right eye and from the outer

canthi of both eyes, respectively. Additional external electrodes were placed on both left and right

mastoids to use as initial references upon importing the data in the analysis software (data were

subsequently re-referenced to common average reference, see below).  The ECG was recorded

using two external channels with a bipolar ECG lead II configuration (the negative electrode was

placed on the chest bellow the right collar bone, and the positive electrode was placed on the left

leg  above the hip  bone).  The sampling frequency was  512  Hz.  Performance was  additionally

recorded as MIDI (Musical Instrument Digital Interface) files using the software Visual Basic and a

standard MIDI sequencer program on a PC  with Windows XP software (compatible with Visual

Basic and the MIDI sequencer libraries we used). The MIDI controller was set to the default linear

velocity mapping (range of keystroke velocity 0-127). To run the behavioral paradigm and record

the MIDI data, we used a modified version of the custom-written code for Visual Basic that was

used in similar paradigms in our previous studies (e.g. Herrojo Ruiz et al., 2009). This program was

also used to send synchronization signals in the form of transistor–transistor logic (TTL) pulses –

8



corresponding with onsets of visual stimuli, key presses and metronome beats – to the EEG/ECG

acquisition PC.

EEG Data Preprocessing

We used MATLAB (The MathWorks, Inc., MA, USA) and the FieldTrip toolbox (Oostenveld et al.

2011) for visualization, filtering and independent component analysis (ICA; runica). The EEG data

were highpass-filtered at 0.5 Hz (Hamming windowed sinc FIR filter, 3380 points) and notch-filtered

at  50  Hz  (847  point).  ICA was  used  to  identify  artifact  componets  related  to  eye  blinks,  eye

movements and, crucially, the cardiac-field artifact (CFA). Inspection of the IC components to find

the  CFA  was  performed  using  the  procedure  suggested  in  the  Fieldtrip  toolbox

(http://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_remove_ec

g_artifacts). 

Following this approach, the time and the frequency data of the ECG signal were used to first

detect the QRS-complex, which is the main spike seen on the ECG signal corresponding with the

depolarization of the heart ventricles, corresponding with the cardiac systole. The largest peak in

the complex is the R wave peak. Fieldtrip uses an efficient peak detection algorithm  based on

thresholding the z-transformed values of the preprocessed raw data (ECG signals for detection of

the R-wave peak). Next,  the time course of  the QRS-complex was correlated  with the IC time

series.  We typically found one or two ICs related to the CFA, which were subsequently removed.

After  IC inspection,  we  used the EEGLAB toolbox (Delorme and Makeig,  2004)  to  interpolate

missing or noisy channels using  spherical interpolation. Next, the data were re-referenced to  a

common average reference. 

In the analysis of epoched data, we performed a final inspection of the epoched data with the

EEGLAB  toolbox  and  applied  an  automated  rejection  of  noisy  epochs  exceeding  a  voltage

threshold of ±100 μV.

ECG data Preprocessing

The analysis  of  the  ECG signal  with  Fieldtrip  rendered  the  time course of  the  heartbeat  and

associated QRS complex. We then dissociated between different types of R-peaks, depending on

the temporal difference between the R-peak and the subsequent keystroke (pitch error or correct
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note). Specifically, we selected R-peaks which were followed by a keystroke either (i) within 50-350

ms, corresponding to the systolic period of the cardiac cycle and the T waveform (peaking at 233

[standard error of the mean or s.e.m. 8] ms after the R-peak on average); or (ii) between 400 ms

and the beginning of the next R-peak (693 [15] ms on average), corresponding to the diastole

phase of the cardiac cycle (Figure 1). The systolic period, in which the blood is pumped out of the

heart, is the window of maximal representation of baroreceptor afferent activity (Fadel et al., 2003)

and when cardiac cycles effects on perception and cognition are typically observed (Motyka et al.,

2007; Gray et al., 2012; Garfinkel et al., 2014). The diastole is the remaining period of the cardiac

cycle during which afferent activity is quiet.  From hereafter, events (e.g. keystrokes) in each of

these periods of the cardiac cycle will be labelled as pertaining to bin1 (systole) or bin2 (diastole),

respectively.

Performance analysis and performance-related modulation of the heartbeat

Consistent with Ruiz et al., (2009), we analyzed the MIDI files to detect pitch errors during piano

performance. In addition, we extracted information corresponding to the timing of note onsets, the

inter-onset-interval  (IOI,  ms),  i.e.  the  time between consecutive  keystrokes,  and  the  keystroke

velocity, related to the loudness. As in our previous studies (Ruiz et al. 2009, 2011), we exclusively

selected “isolated” pitch errors and correct notes as events for the EEG analysis. Isolated pitch

errors and correct notes refer to events surrounded by correct pitch notes for at least two preceding

and following keystrokes. We also constrained the minimal and maximal IOI prior  to and post-

keystroke  to  100  and  300  ms,  respectively.  General  performance  was  assessed  in  terms  of

average timing (mean IOI, mIOI, in ms), temporal variability (coefficient of variation of IOI, cvIOI),

average MIDI keystroke velocity (mKvel, related to loudness), and error rates.

To assess changes in the heart rate (HR) preceding and following error commission (e.g. Bastin et

al., 2017), relative to performance of correct note onsets, we used the time series of R-peaks and

inter-beat intervals (termed RR-interval hereafter, ms). 

 

Event-related potentials: Keystroke-locked preERN and PE analysis

Before analysing the influence of cardiac interoceptive signals on error-processing, we first tried to

replicate previous results reporting the emergence of a preERN ([-80, -30] ms) and PE ([150, 250]
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ms)  ERP components  triggered  by  pitch  errors  during  piano  performance  (Ruiz  et  al.,  2009;

Maidhof et al., 2009). To that aim, analysis of keystroke-locked data focused on isolated pitch error

and correct note events (see previous section). Epochs were extracted within [-1000, 1000] ms

around the keystroke. After EEG preprocessing and artifact removal, the average number of trials

available for this analysis was 170 (s.e.m.15) errors and 1600 (200) correct notes. Because pitch

errors are typically slower than correct key presses, and the difference in latencies could lead to a

modulation of the ERP waveforms (see Maidhof et al. 2013), we performed a control analysis by

selecting  a subset  of  the pitch error  events with  comparable  timing to  that  of  isolated correct

events. Specifically, for each subject, we selected pitch error events with an IOI falling within the

subject-specific range of IOIs for isolated correct events. This resulted in a group-average of 73 (9)

pitch error trials available (no difference in IOI between this subset of error trials and correct events,

126 (1) ms and 125 (0.1) ms, respectively, p = 0.3250). After we controlled for temporal differences

between  types  of  events,  this  analysis  replicated  the  previous  ERP  findings  (see  below).

Accordingly, the main analyses throughout the manuscript focused on the total set of pitch error

trials as a larger number of trials was thought to improve the signal-to-noise ratio.

The  analysis  (see  Statistical  Analysis)  was  carried  out  within  [-200,  300]  ms  as  this  interval

contains the previously  reported preERN ([-80,  -30]  ms) and PE ([150,  250]  ms) as well  as a

potential  effect  preceding  the  pre-error  keystroke  (Maidhof  et  al.,  2013).  The  ERP data  were

corrected with a baseline reference level from -300 to -150 ms prior to the keystroke (Ruiz et al.,

2009).

The  ERP  waveforms  were  additionally  assessed  by  comparing  trials  in  which  the  keystroke

coincided with the systolic (bin1) or diastolic (bin2) phase of the cardiac cycle. The number of

available epochs of each type for this analysis were: 74 (6) errors in bin1 and 69 (7) in bin2; 629

(70) correct events in bin1 and 580 (70) in bin2. There were no significant differences between bins

in the number of available epochs (p > 0.05 for error and correct events).

Source Reconstruction

Between-conditions differences at the source level were assessed using L2-norm minimum-norm

estimates (MNEs, Hämäläinen and Ilmoniemi, 1994; Dale et al., 2000) and a standard brain T1-
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weighted MRI template (Colin27 brain in MNI152 space). MRI segmentation was performed with a

FieldTrip  pipeline  (http://www.fieldtriptoolbox.org/workshop/ohbm2018) to  generate  a  volumetric

mesh as a head model with five compartments: scalp, skull,  cerebrospinal fluid (csf),  gray and

white matter. Co-registration of the MRI and EEG coordinate system was then carried out using the

anterior  and  posterior  commissure  as  the  anatomical  landmarks.  Next,  the  FieldTrip-SimBio

pipeline  was implemented to  calculate  EEG forward solutions  using the finite element  method

(FEM;  Vorwerk  et  al.,  2018).  Next,  inverse solutions  were computed using the L2-norm MNE

method, as implemented in the “FieldTrip” software (minimum-norm estimate, based on Dale et al.,

2000; Lin et  al.,  2004). MNE sources were estimated for each grid point in the window of the

significant ERP effect, the individual source solutions were interpolated to a template MNI mesh.

The noise-covariance matrix was estimated for each participant using a time window preceding the

error and correct events, within [-0.7, -0.3] s. Scaling of the noise-covariance matrix was performed

with regularization parameter λ = 0.1.

Multivariate Pattern Classification Analysis (MVPA)

We first used MVPA (Duda et al., 2000; Haxby et al., 2001) to assess whether error and correct

trials could be classified using the heart rate (HR) information from the three preceding interbeat

intervals (three features). 

In addition, for the EEG analysis, MVPA was used to determine whether the phase of the cardiac

cycle (systole vs diastole) could be decoded from the neural responses to errors on a trial-by-trial

basis (Duda et al., 2000; Haxby et al., 2001). In this analysis we used a subset of the data from

each  participant,  to  match  the  number  of  error  trials  from systolic  and  diastolic  phases.  The

features selected for MVPA were the ERP amplitude values in the set of 64 electrodes. MVPA was

performed in the range [-150, 300] ms – similar to the interval used for the standard ERP analysis.

Each data epoch was normalized using this interval (full-epoch-length normalization: The mean

from the full epoch is subtracted, instead of removing the pre-event baseline, a method widely used

when normalizing single trials;  see Grandchamp and Delorme, 2011). The range -150 to 300ms

was divided into 50 adjacent windows of 10-ms width. 
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For the HR-MVPA, a support vector machine (SVM, a MATLAB library by Chang and Lin, 2011)

with a radial basis kernel function was trained to distinguish between error and correct trials. For

the EEG-MVPA, however, a SVM with a radial basis kernel function was trained separately in each

time window to distinguish between trial classes (keystroke in the systolic or diastolic period).

In all MVPA cases, we used 10-fold leave-one-out cross-validation to estimate the validity of the

SVM model. A participant-based classification was performed first, and subsequently, we estimated

the population decoding accuracy by averaging across participants. 

Statistical Analysis

Statistical analysis of group-level behavioral data was performed using pair-wise permutation tests

(Good,  2005),  using  the  difference  between  condition  means  as  the  test  statistic.  Whenever

multiple comparisons were performed, we applied an adaptive two-stage linear step-up procedure

to control the false discovery rate (FDR) at level q = 0.05 (Benjamini et al., 2006; termed p < 0.05,

FDR-corrected hereafter). 

The group-level statistical inference on the difference between error and correct trials in keystroke-

locked ERPs was conducted using permutation tests with a cluster-based threshold correction to

control the family-wise error (FWE) at level 0.05 (dependent samples t-test, 1000 iterations; Maris

and Oostenveld,  2007).  Experimental  cluster-based test  statistics  being in  the 2.5 th and 97.5th

percentiles of the permutation distribution were considered significant (two-tailed test,  p < 0.025).

Using this procedure, the assessment of statistical differences in the keystroke-locked ERP was

performed within [-100 ms, 300 ms].  To assess the influence of  cardiac information on neural

responses we compared the keystroke-locked  error-minus-correct ERPs between bin1 (systole)

and bin2 (diastole) epochs. Statistical analysis for this comparison was also performed within [-100,

300] ms. 

The  statistical  analysis  was  complemented  with  a  nonparametric  effect  size  estimator,  the

probability of superiority for dependent samples or  PSdep (Grissom and Kim; 2012). PSdep is an

estimation of the probability (maximum 1) that in a randomly sampled pair of matched values  i

(from same individual), the value from Condition B will be greater than the value from Condition A:
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PSdep = Pr (XBi > XAi). Throughout the paper, this index will be provided in association with each

pairwise permutation test (excluding the cluster-permutation test  on spatiotemporal features, for

which PSdep is not defined).

Differences between conditions in source reconstruction were also assessed at the group level

using the cluster-based permutation test (Maris and Oostenveld, 2007)  As in the case of statistics

at the channel level,  correction for multiple comparisons at the source level was performed by

controlling the FWE at level 0.05 ( and alpha level 0.025, two-tailed test).

Finally, for the MVPA, we first tested whether the classification accuracy in each participant was

significant at the participant level. To that aim, the null distribution of accuracy in each participant

was estimated by performing the MVPA 500 times after randomly shuffling the class labels in the

data. At each time window (EEG-MVPA) or at once (HR-MVPA) we calculated the p-values as the

frequencies of permutation accuracies that are greater than or equal to the experimental decoding

accuracy. Note that this approach to assessing statistical significance on the subject level (see also

Ruiz  et  al.,  2014)  is  preferred  than  comparing  empirical  classification  accuracies  against  a

theoretical chance level of 50% for two-class classification. The reason is that the empirical chance

level in two-class classification problems prominently deviates from 50% for small sample sizes

(small number of trials; Combrisson and Jerbi, 2015). 

For the EEG-MVPA, the single-subject MVPA thus aimed to complement the cardiac cycle-based

ERP group results by revealing in individual participants the effect of the phase of the cardiac cycle

on the modulation of neural responses to errors. Next, statistical assessment with a permutation

test was performed on the group level to localize the time windows showing an effect of above-

chance decoding accuracy across the pianist population. The population chance level used in this

analysis was the mean across individual permutation-based chance levels, extracted as the mean

of the null  distribution of  decoding accuracies in each participant.  Of note,  however,  for  MVPA

single-subject statistical assessment might be preferred over group-level statistical analysis when

using the mean accuracy as test statistic, as statistical inference on the group level using this test

statistic is not optimal to describe whether effects related to information content are how “typical” in
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the population (that is, whether they are present in the majority of the population; Allefeld et al.,

2016).

 

Results

Behavioral Results

The details of the behavioral data are shown in Table 1. All data are provided as mean and s.e.m.

Our  participants  played  the  musical  excerpts  at  the  instructed  tempo  (average  time  between

consecutive notes, or IOI, was 125 [s.e.m. 0.1] ms), when excluding pitch errors in the analysis.

The percentage of isolated pitch errors was 1.4% (0.2%), and the percentage of total pitch errors

was 3.7% (1%). Pitch errors were distributed across all positions of each excerpt, indicating that

they  were  not  linked  to  an  isolated  part  of  the  sequence. Isolated  pitch  errors  fell  into  two

categories,  with  pitch  replacement  being the most  frequent  type of  error  (rate  of  0.68 [0.05]),

followed by pitch omission (one tone was skipped, 0.32 [0.05]). This distribution of larger rate of

isolated pitch errors of the pitch replacement type was consistent across 11 participants, whereas

in only two participants there were more omissions than pitch replacements. A similar rate of both

types of isolated pitch errors was found in four participants. 

In  terms  of  timing,  isolated  pitch  errors  had  a  slower  tempo  (larger  IOI  relative  to  previous

keystroke) than correct key presses (p = 0.002, p < 0.05, FDR-corrected, PSdep = 1; Table 1). With

regard to MIDI velocity, pitch errors had a significantly smaller value than correct key presses (64

[1] and 66 [1], respectively, p = 0.006, p < 0.05, FDR-corrected, PSdep = 0.76). Timing and keystroke

velocity changes at the error were consistent across the two types of isolated pitch errors (pitch

replacement: IOI = 185 [30] ms, Kvel = 64 [1]; omissions: IOI = 174 [20] ms, Kvel = 63 [3]; no

significant differences between types, p > 0.05).

Timing and keystroke velocity data at  keystrokes surrounding pitch errors were consistent  with

post-error adaptation effects but also with pre-error alterations in performance. Specifically, pitch

errors were followed by significantly slower (delayed) keystrokes in the subsequent +K, +2K, +3K,

+4K, +5K and +6K events and preceded by a slower keystroke at -K relative to correct events at
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those same positions (p < 0.05, FDR-corrected in all  cases;  PSdep  in the range 0.73-0.94;  non-

significant difference at -2K and +7K, p > 0.05; Figure 2). The slowing of IOI following pitch errors

relative to correct key presses was, however, less pronounced than the slowing of IOI at the errors

(p < 0.05, FDR-corrected in all  cases +K to +6K;  PSdep  in the range 0.71-0.87). A significantly

reduced MIDI velocity was also observed at the previous and subsequent keystrokes relative to the

correct notes in those positions (65 [1] at -K and +K relative to errors; 66 [1] at events surrounding

correct note onsets, p < 0.05, FDR-corrected,  PSdep  0.94 and 0.59, respectively). Consequently,

behavioral alterations in performance were most pronounced at pitch errors, yet extended to the

keystroke preceding as well as several keystrokes following pitch errors. 

The subset of pitch errors selected to match correct events in timing (IOI, ms; see Methods), which

were subsequently used in a control ERP analysis, exhibited significant post-error slowing effects.

Specifically, the mean IOI of the keystrokes following the pitch error at +K, +2K and +3K positions

was 136 (4) ms, 137 (5) ms, and 137 (4) ms, respectively, thus being larger than the average IOI,

126 (1) ms, of the subset of pitch errors (p < 0.05, FDR-corrected). The keystroke velocity was also

reduced at position +K following the pitch error (65 [1], which was smaller than in correct events: p

< 0.05, FDR-corrected). Therefore, the general effects of post-error slowing in tempo and reduced

loudness were maintained after we controlled for the timing of the pitch errors to match the values

of the correct events.

Effects of behavioral performance on the heart rate

On average, the cardiac interbeat interval during performance was 693 (15) ms. Using as reference

R-peak the one immediately preceding the wrong keystroke (R0),  we assessed changes in the

heart rate at preceding (R-3, R-2, R-1) and following (R1, R2) R-peak positions. A similar analysis was

performed for R-peaks surrounding correct keystrokes (Figure 1C). Before and after correct events,

there was a general linear increase (slowing) of the RR both before and following the keystroke (p

< 0.05, FDR-corrected, PSdep  in range 0.76 – 0.88). For pitch errors, we found that the interbeat

interval immediately preceding errors was larger than the previous RR-interval (RR0 = 0.691 [0.008]

ms, RR-1 = 0.689 [0.009] ms, p < 0.05, FDR-corrected, PSdep  = 0.76) but not significantly different
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from the post-error interbeat intervals. A comparison between the RR-interval of error and correct

events demonstrated larger  values following correct  keystrokes at  position +2 (p < 0.05,  FDR-

corrected, PSdep in range 0.92). Additionally, we assessed the relative change between consecutive

RR-intervals (RR-interval at n position relative to RR-interval at the preceding n-1 position), to test

for error-minus-correct  differences  in  interbeat  changes  independently  of  the  general  linear

increase of RR-intervals found for correct trials (Figure 1D). This representation demonstrated a

relatively small RR-interval change at -2 and -1 RR positions in error trials, as compared to the

larger  changes  found  in  correct  trials  (p  <  0.05,  FDR-corrected,  PSdep  in  range  0.64  –  0.82).

Immediately  before error  keystrokes,  however,  this  pattern was altered as there was a sudden

increase in the RR-interval relative to the earlier RR-intervals (significant change increase in error

trials at position 0, just before the error keystroke: p < 0.05, FDR-corrected, PSdep  in range 0.84).

Following correct and error key presses, there was a reduction in the RR-interval change relative to

the change found at position 0, which can be observed as a negative change in Figure 1F (p <

0.05, FDR-corrected, PSdep in range 0.76 – 0.85). 

Thus, we found that pitch errors were associated with a generally faster HR, yet were preceded by

a slowing down of the RR-interval immediately preceding the key press. Pitch errors were then

followed by a larger heart rate (HR) acceleration relative to correct keystrokes.

MVPA  performed  using  trial-based  patterns  containing  the  three  RR-intervals  preceding  the

keystroke  (error,  correct)  demonstrated  a  significant  classification  accuracy  on  the  single-

participant level in 13/17 participants (p < 0.05 in those individual subjects) and a significant group-

level population accuracy of 57% (p = 0.004). A similar analysis including additionally the RR-

interval following the error and correct key presses demonstrated a drop in the prevalence of the

effect, as the classification accuracy on the single-participant level was significant in only in six

pianists (p < 0.05).

Thus, information about an upcoming error or correct key press was more consistently decoded

from the HR patterns preceding the keystroke.

Effects of the cardiac cycle on behavioral performance
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The same percentage of keystrokes fell into bin1 and bin2, 45 (1) % and 41(2) %, respectively, and

these percentages were not significantly different (p = 0.212, similar rates for error and correct

events), demonstrating that key presses were not aligned with a specific phase of the cardiac cycle

(see also Figure S1).

Pitch errors during the diastolic phase (bin2) as compared to those in the systolic phase (bin1) led

to a significantly larger post-error slowing and reduced keystroke velocity at +2K (p < 0.05, FDR-

corrected; Post-error slowing, mean IOI at +2K: 137 (6) ms in bin1 and 144 (9) ms in bin2, PSdep =

0.69; Keystroke velocity: 66 (1) in bin1 and 65(1) in bin 2,  PSdep  = 0.71). These effects were not

found in the immediate keystroke following pitch errors (+K) or at +3K (p > 0.05). Further, when

assessing correct note events, we found no significant dissociation between the performance data

in bin1 and bin2.  These  findings support  that  the  effect  of  the phase of  the  cardiac  cycle  on

performance was limited to timing and loudness properties of error processing in the subsequent

keystroke at position +2K.

Changes in the RR-interval following errors did not  differ when separately assessing error  key

presses in the cardiac systole or diastole (p > 0.05).

Keystroke-locked ERP Analysis

The difference between the ERP waveforms for error and correct trials was statistically assessed

with cluster-based permutation tests within [-100, 300] ms. We found a significant negative cluster

preceding and a positive cluster following pitch errors (p = 0.0159 and 0.0199, respectively, p <

0.025, two-sided test). The negative cluster was due to a less positive pre-keystroke waveform in

error trials than in correct trials within [-70, -30] ms (Figure 3A) with a frontal topography (Figure

3B;  see also Figure S2, which includes the full baseline period in the visualization). The positive

cluster had a frontocentral topography and was related to a positive post-keystroke deflection within

[80, 300] ms in error trials (Figure 3C), which was not observed in correct trials (Figure 3D). 

Figure 3E displays the significant source localization outputs using  minimum-norm estimates. In

the time window of  the preERN, there was a significantly  smaller  activation (p < 0.025,  FWE-

corrected) in a set of regions of the pMFC, such as the SMA (Brodmann area, BA 6, peak MNI

coordinate at [X,Y,Z] = [9, 17, 68] mm), the ACC (BA 32 at [-4, 17, 38] mm), but also in the mPFC
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(BA 9  at  [-12,  37,  23]  mm).  In  the  PE time window,  significant  differences  in  minimum-norm

estimates were found in the ACC (BA 24 at [-7, 29, 18] mm) and the mPFC (BA 9 at [-10, 50, 48]

mm; p < 0.025, FWE-corrected).

To  exclude  the  potential  confounding  factor  of  different  latencies  in  error  trials  driving  the

modulation of the preERN, as a control analysis we contrasted correct trials to a subset of error

trials with matched latencies to the correct trials (see behavioral results: matched IOI with respect

to the preceding keystroke). A cluster-based permutation test demonstrated a significant negative

ERP deflection at -180 ms and a significant PE following errors around 150-350ms (Figure S3). A

second frontocentral negative cluster was found, corresponding to the preERN, but showed a trend

toward significance (p = 0.035, trend at the FWE-corrected level of 0.025). Thus, when differences

in latencies preceding the error and correct keystrokes were controlled for, early error detection was

associated with a negative deflection already 180 ms before the wrong keystroke and the preERN

(trend) around [-80,-50] ms. As suggested by the main analysis,  the PE was elicited following

errors..

ERP analysis locked to keystrokes in different phases of the cardiac cycle

We evaluated the keystroke-locked  error-minus-correct  difference ERP waveform separately  for

trials corresponding to bin1, 2 (systole, diastole). This analysis is similar to the one performed in

the keystroked-locked ERP section (and Figure 3),  but  with a split  of  epochs according to the

temporal interval (systole, diastole) in which the key following the R-peak was struck. A cluster-

based permutation test performed within [-100, 300] ms revealed a significant negative difference

between the error-minus-correct ERP waveform in systolic and diastolic phases of the cardiac cycle

(p < 0.025, Figure 4). The effect reflected a more positive error-minus-correct ERP modulation for

systole trials around 40-100 ms in a cluster of left centro-posterior electrodes. Based on the latency

and  topography,  this  effect  seems  to  be  dissociated  from  the  error-related  ERP  components

preERN and PE (Figure 3).  
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Of  note  was  also  that  the  time interval  preceding  the  error  events  in  bin1  and  bin2  was  not

significantly different (the IOI relative to the previous keystroke was 147 [9] ms and 148 [7] ms in

bins 1 and 2, respectively: p > 0.05). Thus, errors in the systolic or diastolic cardiac phase had

similar temporal properties with respect to the previous keystroke, and they led to differences in the

subsequent behavioral alterations later at +2K, that is, around 280 (10) ms following key presses

(See  Effects of  the cardiac cycle on behavioral  performance).  Accordingly,  the significant  ERP

effect  within  40-100ms  cannot  be  accounted  for  by  a  cardiac  phase  effect  on  the  temporal

properties of key presses within that temporal interval.

Source  localization  analysis  demonstrated  a  significant  difference  between  the  systolic  and

diastolic modulation of the error-minus-correct  ERP, with significantly increased cortical activation

in the left inferior parietal cortex for systole trials (left BA 39 at [-30, -75, 40] mm).

Multivariate Pattern Classification Analysis of ERP waveforms

Next, we used MVPA to assess whether the difference between the two phases of the cardiac cycle

could be decoded from the patterns of single-trial ERP waveforms locked to pitch errors. For this

analysis single epochs were locked to pitch error keystrokes falling either within the systolic (bin1)

or diastolic (bin2) phase of  the cardiac cycle.  MVPA was evaluated at each time bin using as

features the ERP amplitude values in the set of 64 channels. 

Significant above-chance classification accuracy was found on the participant level preceding and

following the pitch error in 15/17 participants (p < 0.05, FDR-corrected in all cases after control of

FDR.  Figure  5).  On  the  group  level,  MVPA revealed  a  significant  above-chance  classification

accuracy within [-86, -66] ms, [53, 73] ms and later within [173, 213] ms (p < 0.05, FDR-corrected,

PSdep = 0.970). Note that the second window converges with the cardiac cycle-based ERP effect

reported in  the previous section (ERP analysis  locked to keystrokes in  different  phases of  the

cardiac cycle). These results indicate that the patterns of EEG activity across the cluster-related

electrodes  encoded  class-related  information,  i.e.  distinguishing between erroneous keystrokes

coinciding with the systolic or diastolic phase of the cardiac cycle. A similar analysis performed with
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correct  trials  rendered  no  significant  decoding  accuracy  at  the  group  level  (p  >  0.05,  mean

accuracy 50%), but a significant single-participant decoding accuracy in 12 /17 subjects around

-100 ms prior to the keystroke and after 200 ms (p < 0.05, FDR-corrected in all cases after control

of FDR). Thus, the multivariate patterns of ERP waveforms were discriminative of the phase of the

cardiac cycle more consistently for error trials. Moreover, primarily in error trials was there a result

of significant decoding accuracy after 0 ms and before 100 ms, a time window that encompasses

the early  error-minus-correct ERP modulation for systole versus diastole. Errors in the systolic or

diastolic phase had similar temporal properties with respect to the previous keystroke and at the

following event at +K, yet they differed at +2K. Accordingly, the MVPA results obtained in the time

windows preceding ([-86, -66] ms) and following ([53, 73] ms) the keystroke cannot be accounted

for by timing differences in the two classes of error events.

Additional Control Analyses

To control for the possibility that differences in the ERP waveforms in each cardiac phase bin were

accounted  for  by  differences  in  the  concurrent  ECG  modulations,  we  tested  for  statistical

differences between the ECG signal locked to keystroke events in bin1 and bin2 (Figure 1D-E). In

correct trials, the keystroke-locked ECG differed significantly between bin1 and bin2 within [-53, -8]

ms preceding the key press (p < 0.05, FDR-corrected;  PSdep = 0.875). In error trials, the shifted

ECG waveforms also differed significantly between bin1 and bin2 trials in the pre-keystroke interval

within [-74, -18] ms (p < 0.05, FDR-corrected; PSdep = 0.818). Thus, differences between the ECG

signals in bin1 and bin2 conditions cannot account for the post-keystroke effects found with the

cluster-based permutation test around 40-100ms. Neither can these differences be the source of

the post-keystroke MVPA results at  [53, 73] ms. However the MVPA effects found preceding the

keystroke could be influenced by the ECG differences and should be taken with care.

In sum, the different behavioral and ECG control analyses support that the results from the ERP

and MVPA analysis for bin1 and bin2 events found in the post-keystroke interval within 40-100 ms

(ERP)  and  53-73ms  (MVPA)  primarily  reflect  a  cardiac-cycle-related  influence  on  early  error-

monitoring processes.

Discussion
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This study sought to determine the role of cardiac afferent information in modulating early stages of

error-monitoring  during  highly  trained  performance.  In  addition,  we  aimed  to  replicate  the

emergence  of  an  anticipatory  error  detection  ERP,  the  preERN,  and  a  later  PE  during  error

commission in this setting, as reported in previous studies (Maidhof et al., 2009; Ruiz et al., 2009).

Our results revealed that fluctuations in the cardiac cycle influence neural responses related to an

early stage of error processing during action monitoring. Precisely, we found that the error-minus-

correct ERP waveform had a more pronounced positive deflection within 40-100 ms for keystrokes

that coincide with the systolic period of the cardiac cycle when compared with the cardiac diastole.

This  effect  was dissociated in  both  time and topography from the specific error  detection  and

evaluation components, the preERN and PE, respectively (Maidhof et al., 2009; Ruiz et al., 2009).

Moreover, we revealed that the information about the systolic and diastolic phase of the cardiac

cycle could be decoded from patterns of error-related neural activity on the single-trial and subject

levels.  In addition,  we found that  pitch errors in  the systolic  phase led to a smaller  post-error

slowing (PES) and less pronounced keystroke velocity reduction at position +2K. These findings

support that during systole, when baroreceptor afferent activity is maximal, the neural responses to

error  processing are more pronounced,  whereas the behavioral  alterations following errors are

attenuated. 

The finding of an enhanced modulation of error-related neural responses during the cardiac systole

is comparable to the previously reported effect of this cardiac phase on amplifying fear, pain and

threat-related  processing  (Gray  et  al.,  2012;  Garfinkel  et  al.,  2014).  Several  studies  have

investigated  the  impact  of  the  dynamics  of  baroreceptor  afferent  activity  on  neural  and

psychological processes (Motyka et al., 2007; Gray et al., 2011; Garfinkel et al., 2014; Fiacconi et

al., 2016; Azevedo et al., 2017). Baroreceptors are mechanoreceptors located in the heart and

major  blood  vessels,  which  encode  fluctuations  in  the  cardiac  cycle,  such  as  the  timing  and

amplitude  of  each  heartbeat  (Fadel  et  al.,  2003).  At  the  cortical  level,  visceral  afferent

representations  –  including  those  derived  from baroreceptor  activity  –  converge  in  the  insular

cortex,  where  they  are  integrated  with  pain  and  temperature  sensations  to  guide  behavior

(Bennarroch, 1997; Critchley and Garfinkel, 2018). Previous studies have shown that during the

cardiac systolic phase, there is a more pronounced processing of painful and fearful stimuli, threat
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appraisal, and expression of racial stereotypes (Gray et al., 2012; Garfinkel et al., 2014; Azevedo et

al.,  2017).  By  contrast,  during  the  cardiac  diastole,  in  which  baroreceptor  activity  is  minimal,

detection of somatosensory stimuli is facilitated (Motyka et al., 2007; Al et al.  2018), and pre-motor

responses to sensory stimulation are faster (Edwards et al.,  2007). Thus, baroreceptor afferent

activity modulates brain-body interactions during processing of sensory and painful stimuli, with a

facilitatory role of maximum baroreceptor activity on threat-related processing.

In light of these findings, our results support that errors are salient events whose processing relies

not only on proprioceptive and exteroceptive information, as shown previously (Ruiz et al., 2009;

Orr  and  Carrasco,  2010;  Boldt  and  Yeung,  2015;  Ullsperger  et  al  2014),  but  also  on  implicit

interoceptive cues, such as enhanced cardiovascular afferent signals. Ullsperger and colleagues

(2010) have proposed that, following initial error detection by the pMFC, the conscious awareness

of an error – as signalled by the PE component – engages the saliency network in addition to the

executive network. Interestingly, the anterior insula (AI) and ACC are part of both networks (Seeley

et  al.,  2007;  Menon and Uddin,  2010).  Moreover,  the AI  and ventral  ACC are key centres for

processing visceral information (Park et al., 2014; Barrett and Simons, 2015; Hassanpour et al.,

2018). The AI has been linked to the generation of the PE and modulation of error awareness

(Dhar et al., 2011). Additional correlational evidence coming from reaction-time tasks has shown

that the PE is modulated by explicit interoception (heartbeat counting task, Sueyoshi et al., 2014).

These  studies  thus  favour  the  interpretation  that  interoceptive  processing  interacts  with  error

monitoring mainly during the later stages, contributing to the conscious awareness of an error.

Crucially, we found that the  error-minus-correct ERP modulation by cardiovascular interoceptive

signals occurred within 40-100ms, and thus preceded the PE component, which peaked around

150-250ms. This novel finding expands previous results (Dhar et al., 2011; Sueyoshi et al., 2014),

by suggesting an earlier  window in which visceral  interoceptive information can modulate error

processing, before conscious experience of the sensory consequences of an action. This finding

converges with the recent data on an earlier involvement of the AI – and potentially interoceptive

processing  –  in  error  detection  (Bastin  et  al.,  2017).  Thus  early  changes  in  cardiovascular

information during error-monitoring processes could shape subsequent conscious evaluation of the
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error, thereby modifying ongoing performance. This interpretation is in agreement with a predictive

account  of  interoception,  whereby  predictions  about  upcoming  visceral  sensations  can  drive

behavioral and physiological responses to maintain homeostasis (Barrett and Simons, 2015; Seth

and  Friston,  2016;  Tsakiris  and  De  Preester,  2019).  Predictive  interoceptive  processes  are

modulated by activity in the anterior insula (Barrett and Simons, 2015), and can shape ongoing

behavior  and (neuro)  physiological  states (Hassanpour  et  al.,  2018),  including error-monitoring

processes (Bastin et al., 2018).

More  generally,  the  predictive  account  of  interoception  can  be  framed  within  the  context  of

predictive coding and its formulation in terms of Bayesian active inference principles (Seth, 2013;

Barret  &  Simmons,  2015).  According  to  the  influential  active  inference  account,  the  brain

continually generates predictions about sensory inputs based on prior experience (Friston, 2010;

Friston et al., 2018; Tsakiris and De Preester, 2019). These predictions are based on probabilistic

models that map (hidden) causes of sensory inputs and observed data (Friston, 2010; Clark et al.,

2013). Active inference and predictive coding models are defined in hierarchical brain networks in

which top-down signals  carry predictions and bottom-up signals  pass on prediction errors (the

mismatch between expected and actual outcomes). Long-term experience, as in the case of skilled

music performance or vocal production, can shape these predictions (Shum et al., 2011; Koelsch

et  al.,  2019),  thereby  modulating  neuronal  activity  in  anticipation  of  the  unwanted  sensory

consequences of ongoing movements associated with errors (Ruiz et al.,  2009; Maidhof et al.,

2009, 2013; Shum et al., 2011). Anticipatory changes in neuronal activity would aim to  minimize

the  error  between  the  predicted  and  the  actual  sensation,  which  would  trigger  anticipatory

corrective adjustments  (Ruiz et al., 2011; Palmer et al., 2012; Shum et al., 2011;  Behroozmand

and Sangtian, 2018), as reflected here in the reduced loudness and slower tempo at the error and

preceding keystrokes. 

The effect of the cardiac cycle on the  error-minus-correct  ERP was linked to activity in the left

inferior parietal lobe (IPL), a region implicated in human cardiac autonomic regulation and visceral

processing (Lutz et al., 2009; Park et al., 2014). By contrast, source localization of the preERN and

PE components  revealed  regions  of  the  pMFC,  such  as  the  SMA,  ACC and  BA 9,  which  is

consistent with the well-documented involvement of the pMFC in general error-monitoring (Dhar et

al., 2011; Ullsperger et al., 2014). The IPL, along with the ventral ACC, AI and somatosensory
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areas, is part of the visceroneural network, which receives visceral information about bodily states

(Lutz et al., 2009; Kleckner et al., 2017). Activity in this network might trigger changes in heart rate,

such as HR deceleration following perceptual misses or response errors (Park et al., 2014; Bastin

et al., 2017). Here, we found a HR acceleration following pitch errors relative to correct keystrokes,

which seems to stand in contrast with the post-error HR deceleration reported in previous studies

(Hajcak et al., 2003; Wessel et al., 2011, Bastin et al., 2017).  Significantly, however, a slowing

down  of  the  interbeat  interval  was  found  in  error  trials  immediately  preceding  the  key  press.

Moreover,  the  pattern  of  preceding  HR changes  at  the  single-trial  level  contained  information

predictive of whether an upcoming key press was an error or a correct event. The HR deceleration

and acceleration effects before and after error commission, respectively, were independent of the

cardiac phase with which errors coincided. Behaviorally, however, we found that following errors in

the cardiac systole there was a significantly reduced slowing of tempo and keystroke velocity at

+2K post-error.  These results,  therefore,  suggest that  the modulation of  IPL activity by cardiac

interoceptive signals  during error  processing might  be associated with a tuning of  the gain on

anticipatory HR changes driving subsequent behavioral alterations following pitch errors.

The  early  involvement  of  the  IPL  in  our  study  also  aligns  well  with  its  role  in  multisensory

integration,  including  proprioceptive  and  interoceptive  signals,  in  anticipation  of  errors  during

sensorimotor adaptation for speech and motor tasks (Ghilardi et al., 2000;  Luauté, et al., 2009;

Shum et al., 2011). The IPL is reciprocally connected with the primary somatosensory cortex (S1,

Borich  et  al.  2015)  and S1 in  turn  with  the somatotopically  similar  primary  motor  cortex,  M1,

integrating motor commands with proprioceptive and tactile information even before motor initiation

begins  (Bouchard et  al.  2013).  This  evidence supports  our  conclusion that  during the cardiac

systole, an IPL-driven mechanism may enhance neuronal processes engaged in error-monitoring.

In  the  context  of  self-generated  errors,  but  also  for  feedback-based  errors  (such  as  auditory

feedback  alterations  for  speech),  a  higher  activation  of  the  IPL  could  indicate  a  more active

salience network that aids the detection of inconsistencies related to processes occurring prior to

the perception of unwanted sensory consequences. 
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Overall, we propose that a larger anterior IPL-dependent neural response during cardiac systole

might  reflect  enhanced  processing  of  interoceptive  cues  contributing  to  error  processing.  The

anticipatory changes in cardiovascular information (sudden HR increase in error trials before the

key press) could provide a form of feedback in addition to the early error-detection signatures to

influence ongoing performance, and adapt subsequent behavior. The cardiac systole may amplify

processing of these early interoceptive cues, thus facilitating error detection, thereby diminishing

the window of integration over which evidence for an error could be accumulated. Consequently,

the slowing of responses following the error in the systolic phase is less pronounced. Note that in

our  study,  PES  effects  extended  for  six  successive  keystrokes  –  or  three  keystrokes  when

assessing pitch errors of  similar  pre-error  temporal  properties than correct  key presses – until

timing performance progressively  returned to  baseline  levels,  converging with  previous studies

(Ruiz  et  al.,  2009;  Maidhof  et  al.,  2009;  Palmer  et  al.,  2012).  In  this  context,  re-establishing

accurate timing following error commission might be crucial for skilled performance (Goebl and

Palmer, 2013), which here was facilitated during systole. Our interpretation is consistent with new

evidence supporting that post-error adjustments can be considered as a manifestation of a general

orienting reflex rather than goal-directed adaptation (Notebaert et al., 2009; Wessell et al., 2017).

As  such,  facilitation  of  error  processing  during  maximal  baroreceptor  activity  might  ameliorate

orienting responses and post-error slowing. 

In  conclusion,  this  study offers  a  novel  account  of  implicit  cardiovascular  interoceptive  signals

modulating  neural  and  behavioral  responses  related  with  early  error  monitoring  during  skilled

performance. It also provides the first evidence that prediction of upcoming errors triggers not only

anticipatory error-detection ERP components, such as the preERN (Ruiz et al., 2009, Maidhof et

al., 2009), but also anticipatory changes in interoceptive states. HR changes triggered by errors

have been taken as evidence for an influence of error-related interoceptive signals on subsequent

perceptual  processing  (Lukowska  et  al.,  2018).  Phasic  activity  in  the  locus  coeruleus–

norepinephrine system could drive these cardiovascular changes in response to errors (Ullsperger

et al., 2010; Lukowska et al., 2018). Our study extends the findings of Lukowska and colleagues

(2018)  to  the  anticipatory  period,  when  predictive  error-detection  components  can  shape

anticipatory HR responses, thereby influencing subsequent performance. Thus, the data suggest

26



that  prediction  of  the  upcoming  consequences  of  our  actions  relies  on  the  integration  of

exteroceptive  and  interoceptive  information,  a  process  likely  shaped  by  long-term  training

(Schirmer-Mokwa et  al.,  2015;  Kleber  et  al.,  2013), and involving higher  order  somatosensory

regions and multisensory integration regions in the IPL.

Some aspects of the present study should be carefully considered when interpreting the results.

First, the fast performance rate (125 ms between consecutive notes) imposed on the pianists to

elicit pitch errors – which is realistic in highly skilled music performance – can lead to overlapping

ERP components of neighbor events (Woldorff 1993). This limitation was addressed by Herrojo

Ruiz  et  al.  (2009)  by  complementing  the  ERP  analysis  with  a  second  method  aimed  at

disentangling  possible  overlapping  brain  responses,  the  symbolic  resonance  analysis  (Beim

Graben and Kurths 2003). A possible improvement on the current paradigm that would allow for the

disentanglement of ERPs to different types of events with similar latencies is a longer recording

session. A larger sample of error events of different latencies would allow for a detailed match of

latency between error and correct events, while allowing for larger epoch numbers and therefore

higher signal-to-noise ratio in this analysis.  A second effect of the fast performance rate was the

emergence of a cyclic pattern of ongoing changes in the ERP responses, corresponding to the

preparation, execution, and evaluation of individual key presses. This should be taken into account

when interpreting  the differences between baseline-corrected ERP waveforms,  as  the baseline

period in all conditions was affected by the modulation of ongoing motor responses.

An  additional  limitation  of  our  study  is  that  EEG  and  source  localization  do  not  allow  the

investigation of insular activity during the anticipation and processing of errors, which would be

crucial to understand the mechanisms by which anticipatory interoceptive states drive early error

processes. These are likely mediated by insular activity. In addition, we did not use individual MRI

scans to inform source modelling, but a standard template anatomy, as validated elsewhere (Haufe

et al., 2016). Accordingly the source localisation results should be interpreted with care and need to

be  replicated  in  future  studies.  Follow-up  studies  using  combined  MRI  and  EEG  or

magnetoencephalography to assess cardiovascular influences on error processing across different

stages of training will be central to further our understanding of the impact of interoception in expert

performance.
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Figure 1.  Electrocardiogram (ECG).  Grand-average across subjects.  Shaded areas show  ± 1

s.e.m. around the mean. (A) Scheme representing the systolic and diastolic phases of the cardiac

cycle in the ECG used for the analyses in our experiment. The R-wave peak, as well as the T-wave

peak are also highlighted by letters R and T, respectively. (B) Analysis of ECG locked to the R-peak

for correct notes falling within the systolic (light blue) or diastolic (dark blue) phase of the cardiac

cycle  revealed  no  significant  differences  (p  >  0.05).  The  blue  horizontal  likes  denoted  by  “K”

highlight the temporal interval in which the keystroke fell for each phase of the cardiac cycle. The

interval was 50-350 ms for the systolic and from 400 ms until the next R-peak (693 ms on average,

standard error of the mean or s.e.m. 15 ms) for the diastolic phase. The vertical line denoted by 'R'

indicates the onset of the R peak.  (C) Same as (A) but in error trials. No significant differences

between the R-peak-locked ECG in bin1 (systole, light orange) and bin2 (diastole, dark orange)

trials was found (p > 0.05).  (D) Heart-rate changes around pitch errors (in orange) compared to

correct key presses (in blue) measured as RR-interval (ms) and shown as mean (in seconds) and

s.e.m. bars. The thicker line segments from RR-interval position 0 to 1 highlight the time interval in

which  the error  or  correct  keys  were  pressed  (also  denoted  by  “K”).  The  RR-interval  differed

significantly between error and correct key presses exclusively at position +2K following keystrokes,

due to a relative faster heart rate following errors (p < 0.05, FDR-corrected, PSdep = 0.94). (E) ECG

locked to the keystroke following R-peaks and separately for bins 1 and 2 in correct trials. Time 0

ms marks  the correct  note  onset,  denoted by  the vertical  line  (labeled “K”).  The shifted  ECG

waveforms in bin1 and bin2 were significantly different within [-53, -8] ms (black bottom line; p <

0.05, FDR-corrected;  PSdep = 0.875). The horizontal lines in light and dark blue denoted by 'R'

indicate the temporal intervals of the R-peak preceding the keystrokes in each bin. (F) Same as (E)

but for error trials. The shifted ECG waveforms locked to pitch errors differed significantly between

bin1 and bin2 trials also in the pre-keystroke interval, similarly to the results in correct trials, within

[-74,  -18]  ms (p <  0.05,  FDR-corrected;  PSdep   = 0.818).  (G) Same as (D)  but  for  differences

between consecutive RR-intervals (e.g. RR-interval at position 0, before the keystroke, relative to

the previous RR-interval). The RR-interval change prior to error keystrokes was smaller than in
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error trials (-2, -1, positions) as well as following the keystrokes at the +2 RR-interval position (p <

0.05, FDR-corrected;  PSdep in range 0.76 – 0.85). The pronounced drop in RR-interval change

following errors relative to correct notes indicated that pianists’ heart rate speeded up after a pitch

error,  yet  slowed down prior  to  error  commision  (positive  change  at  position  0  relative  to  the

previous one -1  in  the RR-interval; p < 0.05, FDR-corrected; PSdep  = 0.84). 

Figure 2.  Behavioral data.  Data are presented as mean and s.e.m. bars. (A) Mean inter-onset-

interval, IOI (ms), across different keystroke positions relative to the target keystroke (pitch errors,

in orange; correct note, in blue), denoted by “K”. The mean timing of keystrokes before and after
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pitch errors was significantly slower than the average tempo of keystrokes surrounding correct key

presses at the same position (positions -1, +1, +2, +3, +4, +5, +6; p < 0.05, FDR-corrected; PSdep in

range 0.73-0.94;  significant  differences denoted by the horizontal  black lines with an asterisk).

Pitch errors were also slower than correct keystrokes (p < 0.05, FDR-corrected; PSdep = 1).  (B) The

mean keystroke velocity, associated with the loudness, at pitch errors as well as preceding and

following errors was significantly reduced compared to the keystroke velocity of correct notes at the

same position (positions -1, target keystroke, +1; p < 0.05, FDR-corrected;  Psdep  was 0.94, 0.76,

0.59, respectively).  (C)  The slowing of performance timing at pitch errors and at +2K following

errors was significantly smaller when the pitch errors coincided with the systolic (light orange),

relative to the diastole (dark orange), period of the cardiac cycle (p < 0.05, FDR-corrected; PSdep =

0.77 and 0.69, respectively). 
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Figure 3. Neural signatures of error detection locked to keystrokes. (A). Note-onset event-

related potentials (ERP) depicted at frontal electrodes for pitch errors (orange line), correct notes

(blue line) and for the difference (errors minus correct notes, black line). The keystroke at time 0ms

is denoted by the dashed line. Shaded areas show ± 1 s.e.m. around the mean. The electrodes

selected for this representation belonged to the significant negative cluster depicted in panel (B).

Note the negative deflection preceding error  commission (pre-error-related negativity,  preERN).

Black bars at the bottom indicate time windows of significant differences in this cluster (p = 0.0159,

cluster-based permutation test). (B) Scalp topography for the preERN component, corresponding to

the significant negative cluster obtained within -70 to -30 ms prior to keystrokes (p = 0.0159, cluster

permutation test, p < 0.025, two-sided test) for the error-minus-correct note difference comparison.

The white stars denote the electrodes belonging to the significant cluster.

(C) ERP waveforms locked to keystrokes as in (A), but here averaged across significant electrodes

that were part of the significant positive cluster represented in (D). The black bar at the bottom

denotes the significant slower positive modulation following errors relative to correct key presses

(error positivity, PE).  (D)  Scalp topography for the PE component, associated with the significant

positive cluster obtained within 80 to 300ms following erroneous relative to correct keystrokes (p =

0.0199, p <  0.025). The black stars denote the electrodes belonging to the significant cluster. (E)

Significant  neural  sources of  the preERN (similar  results  for  the PE:  minimum norm estimate,

regularization parameter  = 0.1). MNI coordinates for sources at SMA, BA 6 (left panel), ACC and

BA 9 in the medial prefrontal cortex (middle and right panels) are provided below.
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Figure 4. Influence of the cardiac cycle on the neural signatures of error detection locked to 

keystrokes. (A) Difference (error minus correct) event-related potentials (ERP) locked to 

keystrokes at time 0 ms (denoted by the vertical dashed line). The error-minus-correct difference 

ERP is plotted separately for bin1 and bin2 trials, in which the keystroke coincided with the systolic 

(light orange) or diastolic (dark orange) period of the cardiac cycle, respectively.  The black bar at 

the bottom indicates the window of significant difference between the ERPs in the cardiac systolic 

and diastole periods (p = 0.021, two-sided cluster-based permutation test). The waveforms are 

averaged across electrodes pertaining to the significant cluster shown in panel (B). (B) Scalp 
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topography for the significant cluster corresponding with the effect of the period of the cardiac cycle

on the error-minus-correct ERP waveforms locked to keystrokes. Keystrokes coinciding with the 

systolic relative to the diastolic period elicited a larger positive deflection in the error-minus-correct 

ERP waveforms (p = 0.021, two-sided cluster-based permutation test). The black stars denote the 

electrodes belonging to the significant cluster. (C) ERP waveforms locked to correct keystrokes at 

systolic (light blue) and diastolic (dark blue) phases of the cardiac cycle. No significant difference 

was found between these two waveforms (p = 0.192). (D) Same as (C) but for pitch errors. No 

significant difference was found either (p = 0.281).  (E) Significant neural source (minimum norm 

estimate, regularization parameter l = 0.1) for the difference between the error-minus-correct ERP 

waveform in the cardiac systole and diastole. Standard MNI coordinates of the anatomical location 

in the left inferior parietal cortex (Brodmann area 39) is shown below.
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Figure 5. Multivariate pattern classification analysis (MVPA). MVPA for two classes of events:

EEG trials locked to keystrokes in the cardiac systole and diastole. (A) Bottom: Time windows of

significant above-chance decoding accuracy in error trials for single-subject MVPA analysis are

denoted by horizontal bars (permutation tests, p < 0.05, FDR-corrected after control of FDR at level

q = 0.05). Top:  Density function representing the normalized total  number of subjects showing

significant classification accuracy in a time bin.  (B) Population decoding accuracy for error trials

plotted as the mean across participants (red line) and s.e.m. (red shade).  Gray solid line indicates

the chance level (s.e.m. as shaded gray area) on the group level estimated with permutation tests.

Significant windows of above-chance decoding accuracy are denoted by the bottom vertical lines (p

< 0.05,  FDR-corrected,  PSdep = 0.970).  The keystroke at  time 0ms is indicated by the vertical

dashed line. (C) Same as (A) but in correct trials. Significant above-chance decoding accuracy on

the single-subject level is denoted by the horizontal black likes (permutation tests, p < 0.05, FDR-

corrected).  (D)  Population  decoding  accuracy  for  correct  trials  plotted  as  the  mean  across

participants (purple line) and s.e.m. (purple shade). There was no significant decoding accuracy

above chance level in error trials (p > 0.05). The chance level (gray line; s.e.m shaded gray area)

was estimated using permutation tests.

Table 1.  Performance data expressed as mean (s.e.m. ). IOI (ms) across different keystroke 

positions relative to the target keystroke is denoted by “K” (positions +1, +2, +3, -1, -2, -3). 

Percentage of total pitch errors 3.7% (1%)

Percentage of isolated pitch errors 1.4% (0.2%)

Percentage of isolated pitch errors: pitch replacement 0.95% (0.09%)

Percentage of isolated pitch errors: omission 0.45% (0.09%)

Number of total pitch errors 400 (90)

Number of isolated errors 153 (16)

Number of isolated pitch errors: pitch replacement 104 (11)

Number of isolated pitch errors: omission  49 (11)

Number of total notes played 10600 (380)

Mean IOI of correct pitch keystrokes (ms) 125 (0.1)
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Mean IOI of isolated pitch errors (ms) 169 (8)

Overall loudness: Correct pitch 66 (1)

Overall loudness: Pitch errors 64 (1)

Mean IOI at +K following  isolated pitch errors (ms) 149 (8) 

Mean IOI at +2K following isolated pitch errors (ms) 147 (7)

Mean IOI at +3K following isolated pitch errors (ms) 143 (6)

Mean IOI  at -K preceding isolated pitch errors (ms) 134 (6)

Mean IOI  at -2K preceding isolated pitch errors (ms) 131 (6)

Supplementary Figures

Figure S1.

46



Figure S2.

47



Figure S3.
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