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"You are going to die one day and none of this is going to matter. So, enjoy yourself. Do 

something positive. Project some love. Make someone happy. Laugh a little bit. 

Appreciate the moment. And do your work." 

Naval Ravikant 
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1 
ABSTRACT 

 

 

“The scientist is not a person who gives the right answers, he's 

one who asks the right questions.” 

Claude Lévi-Strauss  
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1. Abstract 

 

Background: Physiological and biomechanical factors are considered key to high-level 

athletic success. However, the relationships between physiological and biomechanical 

variables with race walking performance in world-class athletes are yet to be explored. 

Purpose: The core of this thesis aims to assess different factors related to elite 

performance, with special interest in anthropometric, physiological and biomechanical 

parameters. 

Methods: Twenty-nine world-class race walkers (21 men & 8 women) participated in 

the studies included in this thesis. Anthropometric characteristics, body composition 

and the somatotype were measured. Bone mineral density of the calcaneus was 

estimated using measures of speed of sound (SOS), broadband ultrasound attenuation 

(BUA), stiffness index (SI), Z- and T-scores. Additionally, participants completed an 

incremental race walking test where race walking economy (ml·kg-1·km-1) and 

spatiotemporal gait variables were analysed at different speeds. Moreover, kinematic, 

ground reaction forces and muscle activity data during the gait were collected during 

over ground walking trials at 12 and 14 km∙h-1. 

Results: (1) Mean height, body mass and body mass index were 177.1 ± 7.1 cm, 66.4 ± 

5.8 kg, and 21.2 ± 1.3 kg·m2 for men and 165.6 ± 4.5 cm, 53.6 ± 3.7 kg, and 19.6 ± 1.6 

kg· m2 for women, respectively. Women presented greater body fat content (6.7 ± 0.6 

vs. 12.2 ± 0.8%; very large effect), less muscle mass (65.6 ± 4.6 vs. 61.6 ± 2.6 kg; large 

effect) and were more endomorphic (large effect) than men. Men specialists in 20-km 

showed greater muscle mass (66.7 ± 4.9 vs. 64.4 ± 4.3 kg; moderate effect), and slightly 

higher skinfolds, girths, body fat content and were more mesomorphic than 50-km 

specialists (moderate effect).  

(2) The 20-km race walkers presented significantly higher SOS and SI (p<0.05) values 

than the 50-km male race walkers, who had lower mean T- and Z-scores (p<0.01). In 

addition, BUA differed between male and female 20-km race walkers (p=0.049). 

Greater training load and the initial loading rate were associated with BUA (p<0.05). 
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Greater time spent in ground contact and propulsive phase, were associated with higher 

SOS and SI (p<0.05). 

(3) 20-km race walking performance was related to race walking economy, being the 

fastest race walkers those displaying reduced oxygen cost at a given speed (r=0.760, 

p<0.001). Longer ground contact times, shorter flight times, longer midstance sub-phase 

and shorter propulsive sub-phase during stance were related to a better race walking 

economy (p<0.05; moderate effect). 

(4) When compared to runners running at similar speeds, race walkers exhibited longer 

contact and swing times, shorter strides and higher cadences (p<0.001). Race walkers 

also had lower hip flexion-extension (p=0.011), greater knee extension (p=0.001) and 

reduced peak dorsi-plantarflexion during stance (p=0.001). Smaller ranges of frontal 

plane motion were observed in race walkers in both the knee and ankle (p<0.01), and 

greater hip adduction-abduction (p=0.018) and ankle rotation (p=0.004) were found in 

race walkers. Runners exhibited greater hip and knee flexion moments, and lower ankle 

flexion during 24-40% of the gait cycle. 

(5) More economical race walkers exhibit greater activation of the gluteus maximus 

(r=0.716, p=0.022), biceps femoris (r=0.801, p=0.011) and medial gastrocnemius 

(r=0.662, p=0.041) prior to initial contact and the weight acceptance sub-phase. 

Additionally, during the propulsive phase and the early swing phase, race walkers with 

higher activation of the rectus femoris (r=0.798, p=0.021) showed better economy. 

Conclusions: The present study expands the limited knowledge on the anthropometric 

and bone characteristics of elite top-class race walkers, providing coaches a reference 

values to control the training development of the race walker. Due to the rules that 

governs the event, the gait pattern differences between running and race walking may be 

due to a specific motor control. Race walkers must optimise a peculiar gait pattern to 

excel, especially taking into account that the more economical race walkers are the 

fastest ones. Finally, race walkers have to optimise neuromuscular control and muscle 

action to achieve efficient energy transfer. These findings may give new insights for 

race walking coaching, with regards to the development of specific training strategies 

that take into account the special biomechanical and physiological demands of the sport.  
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2 
CONTRIBUTIONS 

 

 

“Life is like riding a bicycle. To keep your balance, you must keep 

moving.” 

Albert Einstein 
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3 
BACKGROUND 

 

 

“Today a reader, tomorrow a leader.” 

Margaret Fuller  
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3. Theoretical background 

 

Competitive race walking arose from the increased popularity of long-distance walking 

events during the 18th and 19th century England, also known as pedestrianism (Kozloff, 

2004). Interestingly, this was often as a result of a wager between individuals. This 

often attracted spectatorship and became a fixture at fairs and public gatherings. 

Towards the end of the 19th century certain vague rules were implemented that included 

a “straightened leg at least once in a stride” and “fair heel and toe rule” (the toe of one 

foot could not leave the ground before the heel of the following foot) (Walsh, 1856).  

Race walking rules further evolved over the years that culminated to its introduction to 

the Olympic Games of 1908 in London. Gradually, race walking was further defined 

with specific competitive distances and implementation of rules to maintain the essence 

of walking. At the first time, race walking looked like normal walking but in a faster 

pace. However, with the emerge of new technical features, performances and walking 

speed improved, replaced by the modern race walking style (Osterhoudt, 2000). To date, 

race walking is included at all major athletic championships, including the Olympic 

Games. Since 2016, the competitive distances are equal for both sexes, with the 

inclusion of the women’s 50 km event in addition to the 20-km men and women and 50-

km men events. 

Currently, according to the International Association of Athletics Federations (IAAF), 

racewalking is defined as (IAAF, 2016): 

“A progression of steps so taken that the walker makes contact with the ground, so that 

no visible (to the human eye) loss of contact occurs. The advancing leg must be 

straightened (i.e. not bent at the knee) from the moment of first contact with the ground 

until the vertical upright position”. 

Unlike running events, this definition regulates the race walking gait pattern with two 

specific rules. Firstly, race walkers should not exhibit any visible loss of contact with 

the ground. Secondly, race walkers must maintain a straightened knee from the initial 

contact with the ground until the body centre of mass (CM) passes over the foot 

(vertical upright position) (Hanley, Bissas, & Drake, 2013). 
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These restrictions in gait are monitored and enforced by official-accredited judges. 

Their purpose is to ensure that race walkers comply with the rules during competition 

and to warn or inform athletes when the rule is violated. Disqualifying warnings by 

three different judges, placed alongside the race course, are required to disqualify the 

athlete from the competition (IAAF, 2016). Thus, it is imperative that the athlete’s 

ability to maintain a gait pattern that adheres to the rules is essential to race walking 

success (Hanley, 2012).  

Despite the rules that restrict the athlete´s body to comply with the race walking event, 

race walkers are able to ambulate faster than the typical recreational runner (Lara et al., 

2016). In fact, the current world record of the senior men´s 20-km is 1 hour 16min 

36sec that equates to 15.66 km·h-1 (3:49 min·km-1). Whereas, the women’s record is 1 

hour 24min 38sec with an average speed of 14.18 km·h-1 (4:13 min·km-1). While 50-km 

racewalking world records are set at 3hour 32min 33sec for men (14.11 km·h-1; 4:15 

min·km-1) and 4hour 05min 56sec for women (12.19 km·h-1; 4.55 min·km-1) (as of the 

21/09/2018). These results are achieved through the ability to adapt and evolve the 

normal walking gait pattern to the current modern race walking style (Osterhoudt, 

2000). This gait pattern requires technical mastery to compete at the highest level 

(Cazzola, Pavei, & Preatoni, 2016). Thus, success in race walking will require a great 

physical endurance capacity (Hilliard, 1986), as well as a highly standard technical 

ability (Padulo et al., 2013). 

These great capacities are linked to specific factors that can affect race walking 

performance. However, thee question then arises as to which those factors are. 

Traditionally, these factors where based on physiological performance factors. 

However, at the last decade, the biomechanical factors, linked mainly to movement 

optimisation, have been attributed to a number of performance factors. Additionally, 

optimisation of the movement was also linked to anthropometrical factors. 

 

3.1 Physiological markers of performance 

Success in this kind of endurance event has traditionally been mostly been attributed to 

a number of physiological factors, including a 1) high cardiac output; 2) high capacity 

to uptake and delivery oxygen to active muscles; and 3) high lactate threshold 

(Nummela, Keränen, & Mikkelsson, 2007). 
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It is well known that the basic physiological attribute to perform in endurance events is 

the level of aerobic metabolism that the athlete can maintain during a race (Coyle et al., 

1991). The upper limit of this metabolism is called ‘maximal oxygen uptake’ or VO2max 

and constitutes one of the most used variables to evaluate the cardiorespiratory capacity 

of the athlete (Noakes, 2000). Bassett & Howley (2000) defined the VO2max as the 

highest rate at which oxygen can be absorbed and used by the muscles. The diffusion of 

the air oxygen to the mitochondria involves a series of steps: 1) the pulmonary 

diffusion, 2) the cardiac output, 3) the oxygen transport in the blood and 4) the oxygen 

consumption in the muscle. 

The cardiovascular demands of endurance events are usually very high, and several 

studies have reported VO2max than range from 75-80 ml·min-1·kg-1 in well-trained 

endurance athletes (Nevill et al., 2003). These high VO2max values can be attributed 

mostly to training and the genetic background of the athlete. Training can induce 

different adaptations, such as: increased cardiac stroke volume, increased blood volume, 

increased capillary density and mitochondrial density and efficiency (Saltin et al., 

1976). However, an exceptional genetic background can also be a critical factor, 

determining the initial VO2max value in the childhood, as well as the trainability of this 

variable for the athlete (Bouchard, 2012). 

Despite these maximal values, endurance events are performed at an average pace 

below the maximal oxygen consumption, failing to be the best endurance predictable 

attribute (Noakes, 2000). Despite maximal oxygen uptake values lower than 70 ml·min-

1·kg-1 have been documented in elite athletes (Boileau, Mayhew, Riner, & Lussier, 

1982), it would be unlikely to achieve world-class endurance performances with these 

low values (Foster & Lucia, 2007). 

Although the maximal aerobic capacity has been widely studied as a determinant of 

endurance performance, the importance of a new physiological attribute grew up in the 

last decade, the oxygen cost of transport. This oxygen cost of transport is defined as the 

steady-state oxygen consumption (VO2) at a given submaximal velocity and it referred 

to as economy or movement efficiency (Barnes & Kilding, 2015). The importance of 

the movement efficiency was strengthened when Foster and Lucia (Foster & Lucia, 

2007) found that in well-trained homogenous groups of athletes, the oxygen cost of 

transport was the most appropriate variable to discriminate between elite performers. 

This idea has lately been supported by several studies that identified the oxygen cost of 
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transport as a critical factor contributing to performance in endurance sports including 

running (Santos-Concejero et al., 2015), cycling (Faria, Parker, & Faria, 2005), 

swimming (Toussaint, Knops, De Groot, & Hollander, 1990) or cross-country skiing 

(Sandbakk & Holmberg, 2013). 

A favourable movement efficiency is the result of a complex interaction of various 

factors that lead to efficient muscle work and a fast and effective movement (Saunders, 

Pyne, Telford, & Hawley, 2004). However, the oxygen cost at a given distance can vary 

near 30-40% among individuals (Joyner, 1991). Inter-individual oxygen cost variations 

have been attributed to different metabolic and physiological factors (Barnes & Kilding, 

2015), neuromuscular factors (Tam, Tucker, Santos-Concejero, Prins, & Lamberts, 

2018), anthropometric factors (Bergh, Sjodin, Forsberg, & Svedenhag, 1991) and to 

biomechanical variables (Chapman et al., 2012). Although some athletes are 

predisposed to have a good oxygen cost of transport (Bouchard, 2012; Tucker, Santos-

Concejero, & Collins, 2013), positive response and adaptations can occur as a 

consequence of specific training and technical strategies (Balsalobre-Fernández, Santos-

Concejero, & Grivas, 2016; Beneke & Hutler, 2005; Kenneally, Casado, & Santos-

Concejero, 2017). 

 

3.2 Anthropometric factors 

Numerous studies have found relationships between endurance performance and 

anthropometrical parameters, based on the proportional relationships between metabolic 

cost and body mass (Kram & Taylor, 1990). The most important physiological metrics 

to excel in endurance events are dependent on body mass (i.e. VO2max in ml·min-1·kg-1, 

running economy in ml·min-1·km-1) (Stellingwerff, 2018). Thus, the body composition 

is known to influence an athlete’s potential within a sport such as running (Knechtle, 

2014), cycling (Basset, Billaut, & Joanisse, 2014) and skiing (Carlsson, Carlsson, 

Hammarström, Malm, & Tonkonogi, 2014). For instance, Teunissen et al. (2007) 

showed that the 74% of the total metabolic cost of running is generated by the support 

of the body weight. 
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As race walking is an endurance event based on the forward propulsion of the body, a 

reduced body mass might be a good strategy to improve performance (Stellingwerff, 

2018). However, too low body mass may be a consequence of muscle mass loss 

(Heydenreich, Kayser, Schutz, & Melzer, 2017), low bone mineral density (Tam, 

Santos-Concejero, Tucker, Lamberts, & Micklesfield, 2017), sickness (Gleeson, 2006) 

and injury (Tam et al., 2017), which would ultimately affect performance outcomes by 

decreasing the ability to enhance training adaptations and to generate optimal power and 

speed (Stellingwerff, 2018). 

Race walkers may improve their anthropometrical profile as a strategy to ensure health, 

generate positive training adaptations and perform in the best conditions, Many 

endurance athletes use different nutritional strategies to optimise their body composition 

(Martinsen, Bratland-Sanda, Eriksson, & Sundgot-Borgen, 2010) and specific training 

regimes have also been reported to induce specific functional and structural adaptations, 

including changes in anthropometrical variables such as body mass and the sum of 

skinfolds (Knechtle, 2014). Elite race walking training regimes are typically 

characterised by high training volumes at low and moderate intensities, which may 

result in certain specific functional and structural adaptations (Gomez-Ezeiza, 

Granados, & Santos-Concejero, 2016). Although some studies have previously reported 

that well-trained race walkers have similar anthropometric characteristics to other 

endurance athletes (Hagberg & Coyle, 1984), the anthropometrical profiles of elite race 

walkers of different distances are yet to be explored. 

 

Bone mineral density (BMD) 

While the body composition profile is, in fact, known to play an important role in 

determining an athlete's potential within a sport, the situation and evolution of elite race 

walkers’ bone mineral density is unknown. It has been reported that elite race walkers 

can walk up to 1000 minutes each week during the athletic season (Gomez-Ezeiza et al., 

2016), which may dramatically affect the skeletal system through repetitive loading 

(Hetland, Haarbo, & Christiansen, 1993). Bone stimulation derived from high muscular 

forces and high impact forces has been reported to promote osteogenesis (Schinkel-Ivy, 

Burkhart, & Andrews, 2013) and the greater the forces, the greater the osteogenesis 

effect (Lara et al., 2016). It is known that sports linked to direct actions of gravitational 
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forces, such as running, generate higher osteogenesis than sports like swimming or 

rowing (Tenforde & Fredericson, 2011). Similarly, animal studies using external loads 

have found higher bone osteogenesis by applying high magnitude strains at a high rate 

and relatively lower strain cycle (Rubin & Lanyon, 1984). However, there is no 

agreement linking bone mineral density (BMD) to training volume as some studies have 

found increased BMD in bones associated with impact loading (Tam et al., 2017), 

whereas other studies associated an increased training volume and running distances 

with lower bone densities (Hind, Truscott, & Evans, 2006).  

Thus, it appears that the site of loading will likely influence bone density most proximal 

to load application. Despite this, many factors also have the potential to negatively 

affect bone density in athletes with high training volumes: low calcium and D vitamin 

intake (Tenforde, Sayres, Sainani, & Fredericson, 2010), energy deficit (Lombardi, 

Sanchis-Gomar, Perego, Sansoni, & Banfi, 2015), low body fat (Hetland et al., 1993) 

and low testosterone levels (Bennell et al., 1997). In fact, even elite runners have been 

found to present with low lumbar spine bone density values due to low energy 

availability (Tam et al., 2017) and even stress fracture (Pollock & Hamilton, 2008). This 

suggests a risk in elite race walkers who are exposed to both high training loads and 

constrained gait patterns and loading.  

Bone health has been extensively assessed in sedentary populations determining bone 

formation and turnover (Babatunde & Forsyth, 2013). Similarly, a few studies on bone 

health in elite athletes have also been published across various sporting disciplines 

(Tenforde & Fredericson, 2011), including skiers (Pettersson, Alfredson, Nordström, 

Henriksson-Larsén, & Lorentzon, 2000), football players (Lozano-Berges et al., 2018) 

and endurance runners (Hind et al., 2006; Tam et al., 2017). These studies associated 

BMD with injuries (Khaw et al., 2004), training volumes (Hetland et al., 1993), sex or 

age (Wilks et al., 2009). To date, only two studies assessing bone characteristics in 

master race walkers have been conducted (Wilks et al., 2009), although bone 

characteristics in elite race walkers have yet to be explored. 

Recently, Lara et al. (2016) reported calcaneal bone stiffness, a cost effective and 

portable method of determining bone density, in a cohort of amateur recreational 

runners. They found that calcaneal stiffness was higher in the endurance runners than 

sedentary controls. In addition, greater bone stiffness values were observed in marathon 

runners than their half-marathon and shorter 10-km counterparts. On the contrary, Gast 
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et al. (2013) found an inverse association between competitive distance with BMD in 

short-, middle- and long-distance masters athletes. Whether or not this is exhibited in 

younger elite race walkers is of interest as their training volume and unique gait pattern 

may expose the body to different external and internal loads (Gomez-Ezeiza et al., 

2016) and subsequent influence on bone density than runners. Calcaneal bone stiffness 

is of interest as it is the first bone exposed to the external ground reaction force at 

ground contact, and is also influenced by internal loading produced by the contractions 

of the gastrocnemius and tibialis anterior (Stabley, Moningka, Behnke, & Delp, 2014). 

The question arises whether any relationship between bone density, competitive 

distance, training volume, sex and biomechanics exist in elite race walkers. 

Subsequently, assessing the bone density of elite race walkers will improve our 

understanding of race walking’s relationship with health, injury risk and performance. 

 

3.3 Biomechanical parameters of racewalking 

Race walking possesses a unique locomotor strategy different from running because of 

the limitations arising from Rule 230.2 set by the International Association of Athletic 

Federations (IAAF, 2016). Race walkers are restricted from exhibiting any visible loss 

of ground contact and are obliged to maintain a straightened knee from initial contact 

until the vertical upright position. By contrast, the absence of biomechanical restrictions 

on running gait allows runners to adopt their most efficient gait pattern. Despite this 

restriction, athletes participating in this athletic discipline reach high speeds (e.g., 15 

km∙h-1) through biomechanical modification of their gait (Preatoni, Ferrario, Donà, 

Hamill, & Rodano, 2010).  

A comprehensive understanding of gait waveforms, whether kinetic or kinematic, 

during running and race walking in elite athletes provide insight into the specific and 

well-defined demands of these different gait disciplines. Pavei, Cazzola, La Torre, & 

Minetti (2014) concluded in a review that race walking was more efficient than normal 

walking at fast speeds because of the use of hip extensor and ankle plantarflexor 

moments to accelerate the body centre of mass, adopted to enable high speed walking in 

response to the rules imposed. Similarly, some studies have analysed distance running 

and race walking technique to understand better kinematics, motor variability and 

learning (Cronin, Hanley, & Bissas, 2016; Marchetti, Cappozzo, Figura, & Felici, 1982; 
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Preatoni et al., 2013).  Nonetheless, race walking is more metabolically demanding than 

running as a result of the restrained biomechanics and neuromuscular coordination 

(Marchetti et al., 1982). Previous research suggested that race walkers enhance 

movement efficiency using specific gait pattern strategies (Hanley & Bissas, 2016). 

This was also confirmed by some researchers where shorter ground contact times, with 

shorter initial loading sub-phases, were associated with better oxygen cost of transport 

in elite race walkers (Gomez-Ezeiza et al., 2018). 

Previously, joint kinematics and kinetics of race walking have been described using 

two-dimensional videography (Hanley & Bissas, 2013; Hanley et al., 2013) and three-

dimensional motion capture (Pavei & La Torre, 2014).  To date, analysis of running and 

race walking gait patterns are often restricted to data extraction at discrete loci such as 

peaks, means and ranges of motion (Williams, Snow, & Agruss, 1991).  

Three-dimensional waveform comparisons of kinematics between athletic disciplines 

have not been conducted extensively. This has only been compared within race walking 

populations, whereas elite race walkers and runners have not been compared to 

understand and describe optimal gait patterns. Although race walking biomechanics has 

been explored with some degree of complex consideration such as motor variability 

(Preatoni et al., 2010) and functional data analysis (Cazzola et al., 2016; Donà, Preatoni, 

Cobelli, Rodano, & Harrison, 2009; Pavei & Torre, 2016), the full extent of gait 

waveform data of elite athletes has yet to be fully described in all three anatomical 

planes with a sufficient sample size. 

 

Muscle activation 

Although recent gait analyses in race walking have mostly assessed peaks, range of 

motion and other discrete parameters of the entire gait cycle (Gomez-Ezeiza et al., 

2018; Hanley et al., 2013; Hoga-Miura, Ae, Fujii, & Yokozawa, 2015), a 

comprehensive understanding of the role and activity of the major muscles used 

throughout specific gait phases have not be conducted and could provide useful 

information. In addition, older electromyography studies assessed race walking before 

the implementation of modern race walking rules in 1995 (Murray, Guten, Mollinger, & 

Gardner, 1983) and more recent studies have analysed muscle moments, power and 

work through inverse dynamics (Hanley & Bissas, 2013; Hoga, Ae, Enomoto, & Fujii, 
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2003; Hoga et al., 2006). These estimations established the role of particular muscle 

group contribution to the race walking movement, suggesting the importance of smaller 

deceleration phases during braking in early stance and subsequent smaller acceleration 

phases during late stance (Hanley & Bissas, 2016). Assessing joint kinetics in elite men 

and women race walkers have provided novel insight of the role of specific lower limb 

muscles (Hanley & Bissas, 2013). From a physiological perspective, assessing muscle 

activity may expand and improve the validity of modelled joint kinetic data, that may 

further reveal the role of neuromuscular factors on race walking locomotion. Previous 

measurements of muscle activity on race walking have been used to support kinematic 

findings (Hanley & Bissas, 2013), and determine muscle contributions race walking at 

different gradients (Padulo et al., 2013). However, the relationship between muscle 

activity and oxygen cost is required to fully understand the efficiency of the locomotion 

used in elite race walking. 

In running, imbalanced antagonist:agonist co-activation ratios have been linked with an 

increased energy cost of transport (Kyröläinen, Belli, & Komi, 2001), and previous 

research modelled lower limb muscle energy costs, using electromyography, were found 

to be higher in race walking than in running (Cronin, Hanley, & Bissas, 2016). 

However, the key factor that might facilitate a more efficient oxygen cost of transport is 

the timing of muscle activation during the gait cycle (Tam et al., 2016), as pre-

activation of lower limb posterior musculature has been found to relate to better running 

economy (Heise, Morgan, Hough, & Craib, 1996; Tam, Tucker, Santos-Concejero, 

Prins, & Lamberts, 2018). This implicates the lower limb musculature in ground 

reaction force attenuation during braking at initial ground contact, this is achieved 

through optimising joint stiffness for a more efficient transfer of energy (Boyer & Nigg, 

2004). Whether this neural preparation is also important in race walking has not been 

established, but is possibly crucial for athletes in this discipline given the high energy 

costs of race walking and restricted joint biomechanics compared with running (Cronin, 

Hanley, & Bissas, 2016). 

Understanding the influence of muscle activation on oxygen cost of transport in race 

walkers is of interest as it provides insight into regulation of race walking kinematics 

that are associated with metabolic efficiency a marker of performance (Gomez-Ezeiza et 

al., 2018). Additionally, this analysis may give new insights in coaching race walkers, 
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with regard to the development of specific training strategies that consider the specific 

biomechanical and physiological demands of race walking. 
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4 
PURPOSE 

 

 

“Somewhere, something incredible is waiting to be known.” 

Carl Sagan 
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4. Purpose and prospects of the research 

 

The main aim of this doctoral dissertation was to analyse and compare the key 

physiological and biomechanical determinants of performance in world-class race 

walkers. Due to the large technical and physiological variables related to performance in 

elite race walking, this thesis defined specific objectives for each variable: 

 

1. To analyse the anthropometrical characteristics of elite race walkers, comparing 

the values between men and women and according to the event in which they 

participate. We hypothesised that the anthropometrical values would differ 

between men and women and also according to their distance specialisation. 

 

2. To describe and compare bone ultrasonographic variables in elite male and 

female race walkers, to improve our understanding of race walking and its 

relationship with injury risk and performance. In addition, to assess the possible 

influence of spatiotemporal variables and GRF characteristics of the gait cycle 

on the calcaneus bone density. We hypothesised that elite race walkers as 

endurance event participants, would show low mineral bone densities due to the 

characteristics of their training regimes. 

 

3. To measure race walking economy and its relationships with performance. In 

addition to analyse whether spatiotemporal characteristics of the gait cycle are 

related to racewalking economy. We hypothesised that the best race walkers 

would show the best economy values, with specific spatiotemporal 

characteristics to enhance their racewalking efficiency, including shorter flight 

times. 

 

4. To analyse and compare the kinematics and kinetics of the gait cycle in world-

class runners and race walkers using three-dimensional motion capture and force 
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platform data. Subsequently, using 1DSPM, a thorough description and 

comparison of gait patterns was assessed building on research of previous 

studies. It was hypothesised that race walking kinetics and kinematics in all 

planes would differ from running at the same speed, because of the need to 

maintain visible contact with the ground and a straightened knee from initial 

contact until the vertical upright position. 

 

5. Understanding the influence of muscle activation on oxygen cost of transport in 

race walkers is of interest as it provides insight into regulation of race walking 

kinematics that are associated with metabolic efficiency a marker of 

performance. Thus, the aim of this study was to analyse the influence of muscle 

activation patterns on oxygen cost of transport in elite race walkers over the 

entire gait waveform. 
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5 
STUDIES 

 

 

“A thinker sees his own actions as experiments and questions, as 

attempts to find out something. Success and failure are for him 

answers above all” 

Friedrich Nietzsche  
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5. Studies 

 

The empirical work of this thesis aimed to analyse, compare and describe different 

aspects of elite race walking, structuring them in 5 studies. As a first approach to race 

walking, descriptive studies were conducted analysing the anthropometry (study 1) and 

bone density (study 2) of the race walkers, in order to describe the anthropometric and 

bone status of elite race walkers and to see whether the specific training regime may 

have a direct implication in their specific anthropometry and bone status. 

On the other hand, the core of this thesis started with the third study, aiming to stablish 

evidence between race walking performance and race walking economy. With the data 

collected, the fourth and the fifth studies were conducted. The fourth chapter compared 

the kinematics of elite race walkers’ and elite runners’ gait patterns at set speeds. Lastly, 

the fifth study analysed the kinetic characteristics that would help the best race walkers 

to be more efficient and better performers. 
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5.1 Study 1: Anthropometric characteristics of top-class 

Olympic racewalkers 

 

5.1.1 The aim of the study 

Typical training programmes in elite racewalkers involve high training volumes at low 

and moderate intensities, which have been reported to induce functional and structural 

adaptations at an anthropometric level. Since anthropometrical variables are closely 

related to movement efficiency and performance in endurance events, the aim of this 

study was to describe and compare the anthropometric profile of world-class female and 

male race walkers and their respective distance specialisation (20-km and 50-km). 

Secondly, this study aimed to establish reference values for athlete selection, talent 

identification and training programme development in race walking. 

 

5.1.2 Methods 

Participants 

Twenty-nine international elite race walkers from Spain, Canada, Australia, France, 

Mexico, Sweden, Ireland and England agreed to participate in this study. All race 

walkers met the Olympic Entry Standard for Games of the XXXI Olympiad taking 

place in Rio de Janeiro 2016 (1:24:00 for men & 1:30:00 for women in 20-km and 

4:06:00 in 50-km for men). Our sample also included the current World and Olympic 

champions for men over both 20-km and 50-km. Participants were tested during their 

training stages in Europe, in preparation for target International Amateur Athletics 

Federations’ (IAAF) Permitted Race walking meetings (i.e. XXX Gran Premio 

Cantones de La Coruña), were informed about all the tests and possible risks involved 

and provided written informed consent before testing. The Ethics Committee for 

Research on Human subjects of the University of the Basque Country (CEISH/GIEB) 

granted permission for this study (REF. 66/2015). 

 

Data collection 
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Anthropometric characteristics were measured in a resting state by an accredited 

anthropometrist following the standardised techniques adopted by the International 

Society for the Advancement of Kinanthropometry (ISAK). All variables, except body 

mass and height, were measured on the right side of the body. 

Height and body mass were measured in running shorts to the nearest 0.1 cm and 0.1 kg 

using a portable stadiometer (Seca, Hamburg, Germany) and digital scale (Tanita 

Corporation, Tokyo, Japan), respectively. Eight body skinfolds (triceps, subscapular, 

biceps, iliac crest, supraspinale, abdominal, front thigh and medial calf) were measured 

to the nearest 0.2 cm using a Harpenden skinfold caliper (British Indicators Ltd, St 

Albans, UK) and the sum of the eight skinfolds was calculated. Bone breadths and 

segmental girths were measured by a small bone sliding caliper (Rosscraft Innovations 

Inc, Vancouver, Canada) and a retractable measuring tape (Cooper Industries, Sparks, 

US), respectively. Girths were corrected at the sites where the skinfold and girth 

measurements coincided (upper arm, thigh and calf) using the formula proposed by 

Jelliffe & Jelliffe (1969). All anthropometric equipment was calibrated before the 

assessment period, with additional checks made against certified calibration weights and 

rods. Every measure was performed twice, and a third measure was taken when the 

difference was >5% for skinfolds or >1% for other anthropometric variables. 

Body fat content was calculated as proposed by Yuhasz (1974), whereas the muscle 

mass was calculated according to equation proposed by Matiegka (1921). Health-Carter 

(1990) equations were used to estimate the somatotype, determining the relative fatness 

(endomorphy), musculoskeletal robustness (mesomorphy) and linearity or slenderness 

(ectomorphy) using a score of 0.5–2.5 for low, 3.0–5.0 moderate, 5.5–7.0 high, and ≥7.5 

very high. 

 

Statistical analysis 

All values are expressed as mean ± standard deviation (SD). Statistical analyses of data 

were performed using the Statistical Package for the Social Sciences 21.0 software 

package (Armonk, NY: IBM Corp, USA). Data were screened for normality of 

distribution and homogeneity of variances using a Shapiro-Wilk Normality Test and a 

Levene’s test, respectively. One-way ANOVA was used to compare anthropometrical 

characteristics between race walkers of different sex and event. The magnitude of 
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differences or effect sizes (ES) were calculated according to Cohen’s d (1990) and 

interpreted as small (>0.2 and <0.6), moderate (≥0.6 and <1.2) and large (≥1.2 and <2) 

according to the scale proposed by Hopkins, Marshall, Tterham & Hanin (2009). 

Significance for all analyses was set at p<0.05. 

 

5.1.3 Results 

The average 20-km race walking time of the participants was 80.79 ± 2.11 min 

(CV=2.6%) and 90.93 ± 2.81 min (CV=3.1%) for men and women, respectively, 

indicating that the sample was homogenous from a performance point of view. 

All the absolute anthropometric characteristics are presented in Table 1. In men, we 

found no significant differences in height, body mass, fat percentage or muscle mass 

between 50-km and 20-km specialists. However, male 50-km race walkers were 

significantly older than those competing in 20-km (ES=0.86 moderate effect, p=0.01) 

and presented lower sum of skinfolds (ES=0.78 moderate, p=0.02). 

When comparing 20-km men and women specialists, we observed significant 

differences in height (ES=0.77 moderate, p<0.001), body mass (ES=0.83 moderate 

effect, p<0.001), sum of skinfold (ES=0.89 moderate effect, p<0.001), body fat content 

(ES=0.97 moderate, p<0.001) and muscle mass (ES=0.84 moderate effect, p<0.001). 

 

Table 1. Anthropometrical characteristics of elite racewalkers. 

Mean ± SD 
20-km Men 

(n=11) 

50-km Men 

(n=10) 

20-km Women 

(n=8) 

Age (years) 24.9 ± 3.2† 28.5 ± 4.9 22.5 ± 2.8 

Height (cm) 177.5 ± 5.4 176.6 ± 6.9 165.5 ± 4.4* 

Mass (kg) 67.8 ± 5.5 65.0 ± 3.2 53.6 ± 3.7* 

∑ 8 skinfold (mm) 49.9 ± 3.9† 45.6 ± 3.5 71.9 ± 6.9* 

Body fat (%) 6.8 ± 0.2 6.4 ± 0.3 12.2 ± 0.8* 

Muscle mass (kg) 38.0 ± 2.9 36.5 ± 3.3 30.8 ± 1.3* 

Skinfolds (mm)    

Biceps 2.8 ± 0.3 2.8 ± 0.5 5.1 ± 2.8 

Subscapular 7.2 ± 0.7 7.0 ± 1.3 7.2 ± 0.9 

Triceps 5.7 ± 1.5 6.0 ± 1.7 10.7 ± 1.2 

Iliac crest 7.6 ± 1.0 7.1 ± 1.0 10.8 ± 2.9 

Supraspinale 6.9 ± 0.82 6.1 ± 1.4 8.7 ± 2.3 

Abdominal 7.5 ± 0.9 7.0 ± 1.3 9.3 ± 2.0 

Front thigh 7.7 ± 1.0 7.5 ± 2.0 12.7 ± 4.1 
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Medial calf 4.35 ± 0.9 4.4 ± 0.9 7.2 ± 1.3 

Breadths (cm)    

Wrist 4.9 ± 0.7 4.8 ± 0.6 4.2 ± 0.6 

Humerus 6.1 ± 0.6 5.9 ± 0.4 5.3 ± 0.6 

Femur 8.9 ± 0.8 8.6 ± 0.9 8.0 ± 0.7 

Ankle 6.10 ± 0.6 6.0 ± 0.5 5.5 ± 0.7 

Girths (cm)    

Relaxed arm 28.0 ± 1.2 27.6 ± 1.8 24.5 ± 1.5 

Flexed arm 29.4 ± 1.3 28.7 ± 1.6 25.3 ± 1.4 

Waist 73.6 ± 2.4 73.7 ± 3.05 66.0 ± 2.7 

Hip 91.3 ± 2.3 90.0 ± 4.3 87.0 ± 8.1 

Mid-Thigh 48.9 ± 2.2 48.2 ± 2.3 47.4 ± 2.7 

Calf 36.1 ± 1.7 35.2 ± 1.3 34.1 ± 1.7 

n, number of participants; CV, coefficient of variation; ∑ 8 skinfolds: biceps, triceps, 

subscapular, supraspinale, abdominal, suprailiac, mid-thigh and medial calf. Values are 

mean ± SD. Denotes significant difference on main characteristics (p<0.05): *20-km 

women vs. 20-km men group and †20-km men vs. 50-km men group. 

 

Figure 1 depicts a graphical description of individual values and the mean of the sample 

of somatotype values for both male and female race walkers. Again, we found no 

significant differences between the somatotype classification of the three groups 

analysed. Even though all groups presented a balanced mesomorph-ectomorph 

somatotype, the figure exhibits a specific somatotype profile related to the position of 

the mean values for each event group. In men, 20-km race walkers presented higher 

mesomorphism values than 50-km race walkers, with a tendency towards more 

muscular physique when compared to the linearity presented by the 50-km race walkers. 

On the other hand, 20-km female race walkers scored higher endomorphic values than 

men. 
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Figure 1. Somatotype distribution of elite race walkers according to sex and 

competitive event. Squares: 20-km male race walkers. Triangles: 20-km women race 

walkers. Circles: 50km male race walkers. The biggest icons represent the mean value 

of each event participants. 
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5.2 Study 2: Calcaneal bone density in world-class race 

walkers: biomechanical and training distance considerations. 

 

5.2.1 The aim of the study 

Calcaneal bone stiffness is of interest as it is the first bone exposed to the external 

ground reaction force at ground contact, and is also influenced by internal loading 

produced by the contractions of the gastrocnemius and tibialis anterior (Stabley, 

Moningka, Behnke, & Delp, 2014). The question arises whether any relationship 

between bone density, competitive distance, training volume, sex and biomechanics 

exist in elite race walkers.   

Subsequently, assessing the bone density of elite race walkers will improve our 

understanding of race walking’s relationship with health, injury risk and performance. 

Thus, this study aimed to describe and compare markers of bone density in elite male 

and female race walkers. In addition, this study aimed to determine relationships 

between spatiotemporal and ground reaction variables characteristics of the gait cycle 

that may influence the bone density variables. 

 

5.2.2 Methods 

Participants 

Twenty-four world-class race walkers (16 males and 8 females) volunteered to 

participate in this study. All race walkers were of Olympic Entry Standard for Rio de 

Janeiro 2016 (1:24:00 for men & 1:34:00 for women in 20-km and 4:06:00 in 50-km for 

men). Additionally, a convenience sample of sixteen (8 males and 8 females) apparently 

healthy male and female active students were recruited as a comparative cohort for 

calcaneal stiffness measures. Participants were tested during training camps in Spain, 

whilst they were in Europe for target IAAF Permit Race Walking meetings (i.e. XXX 

Gran Premio Cantones de La Coruña) before to the Rio de Janeiro 2016. Participants 

provided written informed consent after they were informed about all tests and possible 

risks involved. The Ethics Committee for Research on Human subjects of the University 

of the Basque Country (CEISH/GIEB) granted permission for this study (Ref. 
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2015/053). 

 

Design and protocol 

The study was performed in a resting state without any training or physical activity 24 

hours before the measurement of the calcaneus stiffness. In addition, race walkers 

provided information regarding training habits and previous medical conditions and 

injuries. For descriptive purpose, anthropometrical characteristics were measured 

following the standardised techniques adopted by the International Society for the 

Advancement of Kinanthropometry (Stewart, Marfell-Jones, Olds, & Ridder, 2011). 

 

Calcaneal density assessment. An ultrasonographic bone scanner (Achilles, General 

Electric Healthcare-Lunar, WI, USA) was used to perform an assessment of the 

calcaneus of the right foot (Lara et al., 2016). This scanner consisted of a control box 

with a heel water bath and two transducers placed opposite each other on either side of 

the water bath. One of these transducers emitted ultrasound signals through the water 

bath with the heel in it. whilst the other received the signals emitted. All signal 

parameters were digitised and further analysed for biological interpretation. Recent 

investigations have shown that quantitative ultrasound can accurately determine the 

exercise induced changes in bone status (Babatunde & Forsyth, 2013). The bone 

scanner used as found to be both valid and reliable in prior studies, with a coefficient of 

variation of 0.47%, 2.6% and 1.6% for speed of sound (SOS), for the broadband 

ultrasound attenuation (BUA) and the calcaneal stiffness index (SI), respectively 

(Cepollaro et al., 2014). 

During this assessment race walkers were seated with their right bare foot placed in the 

water bath. Subsequently, expandable membranes were filled with warm water and 

isopropyl alcohol was used to assist coupling between the heel and the membranes, 

consequently eliminating air spaces. Signals recorded during each assessment by the 

bone scanner used to determine bone density were the speed of sound and the 

broadband ultrasound attenuation. While SOS assesses the elastic resistance of the bone, 

which is related to mineral and protein contents, the loss of ultrasound energy occurred 

by absorption or dispersion was assessed by the BUA, which is related to the bone 

density (Cepollaro et al., 2014). The calcaneal stiffness index (SI) was calculated by the 
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combination of SOS and BUA related to participant age as follows (Lara et al., 2016):  

SI = (0.67 · BUA + 0.28 · SOS) – 420 

T- and Z-scores for calcaneus stiffness were calculated for each ultrasonographic 

measurement using the predetermined reference values used by the manufacturer’s 

software. The individual T- and Z-score represents the difference between the 

participant’s value for calcaneus stiffness and the mean value for a population of young 

adults of the same sex with peak bone mass and the difference between the participant’s 

value for calcaneal stiffness and the value of a sex- and age-adjusted population, 

respectively (Gast et al., 2013). 

 

Spatiotemporal variables. The spatiotemporal assessment was conducted during a 

treadmill test using an optical measurement system (Optojump-next, Microgate, 

Bolzano, Italy). The values between the 2nd and 3rd min of the race walking stage 

corresponding to 12 km·h-1 were averaged to analyse a stable gait data. Gait cycle 

characteristics determined were ground contact time, swing time, step length, cadence 

and the percentage of the stance phase at which the different sub-phases occurs (initial 

contact, midstance and propulsion). During stance, the initial contact sub-phase 

corresponds to the time from initial ground contact to foot flat; the midstance sub-phase 

from foot flat to initial take off and the propulsive sub-phase from initial take off to toe 

off. 

Ground reaction forces. Ground reaction force (GRF) data were collected at 2000 Hz, 

using a 900 × 600 mm force platform (AMTI, Watertown, MA, USA). Race walkers 

completed four trials at the same speed (12 km·h-1) on a 30-m indoor laboratory track. 

Trials were accepted if the speed was within ± 4% of target speed and when there was 

no visual evidence of athletes targeting the force platform. Force platform data were 

filtered using a low-pass fourth-order Butterworth filter with a cut-off frequency at 100 

Hz. For each trial, the participants right limb was analysed. GRF data were normalized 

to bodyweight (BW). Peak vertical GRF as well as initial loading rate were determined 

as previously described by Williams, McClay, & Manal (1991). 

 

Statistical analysis 

All values are expressed as mean ± standard deviation (SD) and statistical analyses of 
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data were performed using IBM SPSS 21 (IBM Corporation, Armok, USA). Data were 

screened for normality of distribution and homogeneity of variances using a Shapiro-

Wilk normality test and a Levene’s test respectively. A one-way analysis of covariance 

(ANCOVA) was employed to compare differences in bone density ultrasonographic 

variables between competitive event-related groups (20-km men vs. 50-km men vs. 20-

km women) and control groups adjusting for age. Pearson’s correlation coefficient and 

regression analysis were performed to assess the relationships between calcaneus bone 

density related ultrasonographic variables and biomechanical factors in the race walking 

group only. Effect sizes (ES) were interpreted as small (>0.2 and <0.6). moderate (≥0.6 

and <1.2). large (≥1.2 and <2) and very large (≥2 and <4) (Hopkins, Marshall, Tterham, 

& Hanin, 2009). Significance was set at p<0.05. 

 

5.2.3 Results  

The descriptive characteristics of the race walkers and control group are listed in Table 

2. Participants are considered world-class as all possessed a personal best time faster 

than the entry standard required to participate in the Olympic Games of Rio de Janeiro 

2016 (84.0 min for men and 96.0 min for women for 20-km). The average 20-km race 

walking time was 81.9 ± 1.8 min, 79.8 ± 1.9 and 90.9 ± 2.8 min for 50- and 20-km male 

and female race walkers, respectively. Fifty-km race walkers performed higher weekly 

training volumes than 20-km male and female race walkers (p<0.001; ES=1.6, large 

effect & ES=2.4 very large effect, respectively). There were no significant 

anthropometrical differences between 50- and 20-km male race walkers, however 

female race walkers were shorter (p=0.001; ES=2.0, very large effect), lighter (p=0.003; 

ES=2.1, very large effect) and had greater sum of skinfolds (p=0.001; ES=4.5, very 

large effect) than the male race walkers. The control group were younger (p=0.001; 

ES=1.25, large effect) and had higher sum of skinfolds (p=0.001; ES=1.25, large 

effect). 
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Table 2. Physical and physiological characteristics of elite racewalkers (n=24) and the 

control group (n=24). 

 
50 km men 

(n=8) 

20 km men 

(n=8) 

20 km women 

(n=8) 

Control 

(n=24) 

Age (years) 27.4 ± 6.4 23.8 ± 3.1 22.5 ± 2.8 20.0 ± 0.2 

Height (cm) 177.1 ± 6.3* 177.9 ± 8.5* 165.5 ± 4.4 173.6 ± 9.7 

Mass (kg) 64.4 ± 6.1* 67.4 ± 6.2* 53.6 ± 3.7 65.8 ± 11.5 

∑ 8 skinfold (mm) 45.9 ± 4.1* 46.1 ± 3.9* 71.9 ± 6.9 99.2 ± 23.3 

20-km PB (min) 81.9 ± 1.8* 79.8 ± 1.9* 90.9 ± 2.8 - 

Weekly Training 

(km) 

197.5 ± 11.4*† 158.5 ± 16.5 146.8 ± 10.6 - 

n, number of participants; PB, personal best; ∑ 8 skinfolds: biceps, triceps, subscapular, 

supraspinale, abdominal, suprailiac, mid-thigh and medial calf. Values are presented as 

mean ± SD. * Significantly different to 20-km women (p < 0.05), # Significantly 

different to race walkers (p < 0.05), † Significantly different to 20-km men and women 

(p < 0.05). 

 

No differences in calcaneal ultrasonographic parameters were found between race 

walkers and controls regardless of adjusting for age. However, various differences were 

found between 50-km and 20-km men and 20-km women race walkers (Figure 2). The 

20-km race walkers presented higher SOS (p=0.032; ES=1.3, large effect) and SI 

(p=0.041; ES=1.3, large effect) values than the 50-km male race walkers. In contrast, 

BUA values differed only between male and female 20-km race walkers (p=0.049; 

ES=1.1, moderate effect). Mean T- and Z-score were higher in the 20-km male race 

walkers than the 50-km male race walkers (p=0.007; ES=2.4 and p=0.003; ES=3.0, very 

large effect, respectively). 
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Figure 2. Ultrasonographic variables of 50-km male, 20-km male and 20-km female 

racewalkers and the control group. *Significantly different to 20-km male race walkers. 

# Significantly different to 20-km female race walkers. (p < 0.05). 

 

In the race walking cohort, a greater weekly training load was associated with BUA 

values (r=-0.466, p=0.022).  As it is described on Table 3, only initial loading rate of the 

ground reaction force variables was found to positively correlate with greater BUA 

values (r=0.442, p=0.049).  Greater time spent in ground contact of the gait cycle was 
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associated with higher SOS, BUA and SI values (r=0.696, p=0.003; r=521, p=0.039; 

r=0.679, p=0.004 respectively). Specifically, longer propulsive sub-phase of ground 

contact was related to a higher SOS (r=0.561, p=0.004) and SI values (r=0.496, 

p=0.014). 

 

Table 3. Relationships between ultrasonographic variables and various biomechanical 

and training load variables. 

 
Training load 

(Km/week) 

Initial loading rate 

(BW/s) 

Ground contact 

(%) 

Propulsion 

sub-phase 

(ground 

contact %) 

 r p r p r p r p 

SOS (m·s-1)  NS  NS 0.696 0.003 0.561 0.004 

BUA (db mHz-1) -0.466 0.022 0.442 0.049 0.521 0.039  NS 

SI (u)  NS  NS 0.679 0.004 0.496 0.014 

SOS, speed of sound; BUA, broadband ultrasound attenuation; SI, calcaneus stiffness 

index. r, Pearson correlation coefficient; NS, no significant differences.  
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5.3 Study 3: Race walking gait and its influence on race 

walking economy in World-Class race walkers 

 

5.3.1 The aim of the study 

Despite all previous research analysing the influence of biomechanical factors in race 

walking performance and economy (Morgan & Martin, 1986), the relationships between 

biomechanical gait variables and race walking economy in world-class race walkers a 

yet to be explored. Thus, the aim of this study was to analyse whether spatiotemporal 

characteristics of the gait cycle, including ground contact and flight times, step length, 

cadence and the distribution of the different sub-phases during stance (initial contact, 

midstance and propulsion) are related to race walking economy in world-class Olympic 

race walkers. 

 

5.3.2 Methods 

Participants 

Twenty-one world-class Olympic male race walkers from Spain, Sweden, Ireland, 

Australia and Canada agreed to participate in this study. All race walkers possessed the 

Olympic Entry Standard for Rio de Janeiro 2016 (1:24:00 in 20 km and 4:06:00 in 50 

km for men) and the sample included current 20 km world champion and other World 

and Olympic medallists. Participants were tested during training camps in Spain, whilst 

they were in Europe for target IAAF Permit Race Walking meetings (i.e. Gran Premio 

Cantones de A Coruña). The race walkers were informed about all tests and possible 

risks involved and provided written informed consent before testing. The Ethics 

Committee for Research on Human subjects of the University of the Basque Country 

granted permission for this study (CEISH 66/2015). 

 

Design and protocols 

Twenty-four hours before testing, race walkers were required to abstain from a hard 

training session and competition to be well rested. They were also requested to maintain 
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their pre-competition diets throughout the test procedures and to abstain from caffeine 

and alcohol intake the day before testing. All testing sessions were performed under 

similar environmental conditions (20-23 ºC and at 09:00 - 13:00). 

 

Anthropometry.  

Anthropometrical characteristics were measured at rest by an accredited anthropometrist 

following the standardised techniques adopted by the International Society for the 

Advancement of Kinanthropometry (ISAK). Height and body mass were measured in 

running shorts to the nearest 0.1 cm and 0.1 kg using a portable stadiometer (Seca, 

Hamburg, Germany) and digital scale (Tanita Corporation, Tokyo, Japan), respectively. 

Eight body skinfolds (triceps, subscapular, biceps, iliac crest, supraspinale, abdominal, 

front thigh and medial calf) were measured to the nearest 0.2 cm using a Harpenden 

skinfold caliper (British Indicators Ltd, St Albans, UK). Bone breadths and segmental 

girths were measured by a small bone sliding caliper (Rosscraft Innovations Inc, 

Vancouver, Canada) and a retractable measuring tape (Cooper Industries, Sparks, US), 

respectively. 

 

Treadmill Incremental test.  

All race walkers completed an incremental test on a treadmill (3p pulsar, H/P/cosmos, 

Germany) set at a 1% gradient (Jones & Doust, 1996). The treadmill was calibrated 

using a measuring wheel (ERGelek, Vitoria-Gasteiz, Spain) with a measurement error 

<0.5 m per 100 m interval. The test started at 10 km·h-1 without previous warm up and 

the speed was increased by 1 km·h-1 every 3 min until volitional exhaustion, with 30 s 

of recovery between stages (Bär, 1990). The analysed speeds were selected based on 

intensities corresponding to typical warm-up pace (10 km ·h-1), long-walk training pace 

(12 km·h-1) and Tempo training pace (14 km·h-1). 

During the test, heart rate was recorded every 5 seconds continuously by a heart rate 

monitor (Polar RS800, Kempele, Finland) and respiratory variables were continuously 

measured using a gas analyser system (Ergostik, Geratherm, Germany) calibrated before 

each session. Volume calibration was performed at different flow rates with a 3 L 

calibration syringe (Ergostik, Geratherm, Germany) allowing an error ≤ 2%, and gas 
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calibration was performed automatically by the system using both ambient and 

reference gases (CO2 4.10%; O2 15.92%) (Linde Gas, Germany).  

In consideration of the slow component in oxygen uptake (VO2), a slow increase in VO2 

during a constant-work-rate exercise performed above the lactate threshold (Jones et al., 

2011), VO2 (ml·kg-1·min-1) values collected during the last 30 s of three different speeds 

under the lactate threshold for all race walkers were averaged and designated as steady-

state race walking economy (ml·kg-1·km-1). This was performed to ensure steady-state 

VO2 values and to avoid possible biomechanical differences as a consequence of 

differing race walking speeds.  

Immediately, after each exercise stage, capillary blood samples from the earlobe were 

obtained and analysed with a portable lactate analyser (Lactate Pro2, Arkray, KDK 

Corporation, Kyoto, Japan) to determinate the lactate concentrations ([La-]). The lactate 

threshold of each participant was determined using a third order polynomial regression 

equation calculated with the plasma [La-] versus speed (Santos-Concejero et al., 2014). 

The point on the polynomial regression curve that yielded the maximal distance to the 

straight line formed by the two end data points was identified as the lactate threshold 

(Cheng et al., 1992). 

 

Biomechanics. 

The spatiotemporal assessment was conducted during the treadmill test using an optical 

measurement system (Optojump-next, Microgate, Bolzano, Italy). The values of the 2nd 

and 3rd min of the race walking stages corresponding to 10, 12 and 14 km·h-1 were 

averaged and used for data analysis. 

Optojump-next system consists of two bars (size 100 × 3 × 4 cm), one containing the 

reception and control unit, the other embedding the transmission electronics. Each of 

these contains 32 light emitting diodes (LEDs), positioned 0.3 cm from ground level at 

3.125 cm intervals. The LEDs on the transmitting bar communicate continuously (1 

kHz) with those on the receiving bar and has been shown to accurately determine gait 

spatiotemporal variables (Alvarez, Sebastian, Pellitero, & Ferrer-Roca, 2017). Gait 

cycle characteristics determined were ground contact time, swing time, step length, 

cadence and the percentage of the stance phase at which the different sub-phases occurs 
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(initial contact, midstance and propulsion) (Padulo, Chamari, & Ardigò, 2014). During 

stance, the subphases were defined as: the initial contact sub-phase corresponds to the 

time from initial ground contact to foot flat; the midstance sub-phase from foot flat to 

initial take off and the propulsive sub-phase from initial take off to toe off.   

 

Statistical analysis 

All values are expressed as mean ± standard deviation (SD) and statistical analyses of 

data were performed using IBM SPSS 21 (IBM Corporation, Armok, USA). Data were 

screened for normality of distribution and homogeneity of variances using a Shapiro-

Wilk normality test and a Levene’s test respectively. The magnitude of differences or 

effect sizes (ES) were calculated according to Cohen’s d and interpreted as small (>0.2 

and <0.6), moderate (≥0.6 and <1.2) and large (≥1.2 and <2) according to the scale 

proposed by (Hopkins et al., 2009). Pearson's product-moment correlations were used to 

assess the relationships between spatiotemporal variables of the gait cycle and race 

walking economy and interpreted as small (>0.1 and <0.3), moderate (≥0.3 and <0.5), 

large (≥0.5 and <0.7) and very large (≥0.7 and <0.9). A linear regression was performed 

to analyse the relationships between race walking economy and performance and 95% 

confidence intervals were calculated. Linear regression assumptions were checked using 

residual versus fitted, normal QQ, and Cook’s distance plots. Significance for all 

analyses was set at p<0.05.  

 

5.3.3 Results  

Descriptive characteristics 

The physiological variables and descriptive characteristics of the race walkers 

participating in this study are listed in Table 4. All athletes possessed a personal best 

time faster than the entry standard needed to participate in the Olympic Games of Rio 

de Janeiro 2016 (1:24:00 for men), confirming that all participants were world-class 

elite race walkers. The homogeneity of the group was confirmed by a coefficient of 

variation < 10% for all anthropometrical (except the ∑ 8 skinfold), physiological and 

performance related variables, including their personal best 20-km race walking times. 
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Table 4. Physical and physiological characteristics of elite race walkers (n = 21). 

    Mean ± SD CV (%) 

Age (years) 26.6 ± 5.5 20.8 

VO2 at 14 km·h−1 (mL·kg-1·min-1) 56.3 ± 3.5 6.2 

20-km PB (min) 80.4 ± 2.1 2.7 

LT (km·h−1) 14.6 ± 0.5 3.4 

Race walking economy (mL·kg-1·km-1) 241.3 ± 14.9 6.2 

Height (cm) 177.1 ± 7.1 4 

Mass (kg) 66.4 ± 5.8 8.7 

∑ 8 skinfold (mm)   49.3 ± 6.8 13.7 

n, number of participants; CV, coefficient of variation; VO2 at 14 km·h−1, oxygen 

uptake at 14 km·h−1; PB, personal best; LT, lactate threshold; ∑ 8 skinfolds: biceps, 

triceps, subscapular, supraspinale, abdominal, suprailiac, mid-thigh, and medial calf. 

Values are means ± SD. 

 

 

Figure 3 illustrates the relationship between race walking performance according to 

their best 20-km race time and race walking economy. Race walking economy at 14 

km·h-1 was positively correlated with performance (R=0.760, p<0.001; very large 

effect). 

 

Figure 3. Relationship between race walking economy and 

participants' personal best performance in 20 km (n=21). 95% 

confidence intervals are shown. 
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Figure 4 and 5 depict changes in spatiotemporal parameters of the gait cycle as walking 

speeds increase. At increasing race walking speeds, step length and walking cadence 

increased by 24.8% and 12.2%, respectively. Ground contact time decreased from 0.34 

± 0.01 s at 10 km·h-1 to 0.28 ± 0.01 s at 14 km·h-1, whereas the flight time increased 

from a double support to a flight time of 0.026 ± 0.007 s at 14 km·h-1. Similarly, 

increasing race walking speeds were accompanied by a reduction of the initial contact 

sub-phase and propulsive sub-phase times in 19.1% and 29.7%, respectively. On the 

other hand, midstance sub-phase time increased in 101.1%. 

 

 

 

Figure 4. Step length (A), Step frequency (B), contact time (C) and flight time 

(D) at different speeds (n=21). 
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Correlations between spatiotemporal gait variables and race walking economy at 

different speeds are depicted in Table 5. Significant correlations between flight time (s) 

at 12 km·h-1 (moderate effect) and 14 km·h-1 (moderate effect) were observed. 

Similarly, the percentage of the gait cycle spent in the swing phase correlated positively 

with race walking economy at 12 km·h-1 (large effect) and at 14 km·h-1 (large effect), 

whereas ground contact time (s) at 12 km·h-1 and 14 km·h-1 was negatively associated 

with race walking economy (large effect and moderate effect). The percentage of the 

gait cycle spent in the stance phase also correlated significantly with race walking 

economy at both 12 and 14 km·h-1 (large effect). Lastly, the midstance sub-phase 

showed a significant correlation with race walking economy at 12 km·h-1 (moderate 

effect) and at 14 km·h-1 (moderate effect), whereas the propulsive sub-phase correlated 

only at 12 km·h-1 (moderate effect). 

  

Figure 5. Percentage of time spent in each sub-phase of the stance 

phase (initial contact, midstance and propulsive) at different speeds 

(n=21). 
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Table 5. Interrelationships between biomechanical variables and race walking economy 

at different speeds (n = 21). 

Race walking economy 
10 km·h-1 12 km·h-1 14 km·h-1 

r p r p r p 

Step length (cm) -0.327 NS -0.398 NS -0.116 NS 

Ratio height:step length -0.082 NS -0.193 NS 0.051 NS 

Cadence (step/s) 0.333 NS 0.397 NS 0.123 NS 

Contact time (s) -0.253 NS -0.524 0.015 -0.448 0.042 

Flight time (s)  NS 0.477 0.029 0.487 0.025 

Stance phase (%)  NS -0.543 0.011 -0.607 0.004 

Swing phase (%)  NS 0.543 0.011 0.607 0.004 

Initial contact sub-phase (%) 0.358 NS 0.318 NS 0.371 NS 

Midstance sub-phase (%) -0.386 NS -0.454 0.039 -0.460 0.036 

Propulsive sub-phase (%) 0.129 NS 0.470 0.032 0.382 NS 

r, Pearson correlation coefficient; p, significance; NS, no significant differences. 
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5.4 Study 4: Biomechanical analysis of gait waveform data in 

elite race walkers and runners. 

 

5.4.1 The aim of the study 

Either running and race walking have been studied independently. As most studies have 

rather observed gait differences between training populations (recreational, national, 

elite) in race walkers or runners but not between disciplines (Cronin, Hanley, & Bissas, 

2016; Rogers, Whatman, Pearson, & Kilding, 2017). A comprehensive understanding of 

gait waveforms, whether kinetic or kinematic, during running and race walking in elite 

athletes provide insight into the specific and well-defined demands of these different 

gait disciplines. The use of one-dimensional statistical parametric mapping (1DSPM) 

provides the temporal assessment of gait data, that allows a broader understanding of 

the modifications required throughout the gait cycle that enable race walkers to maintain 

velocities similar to those of runners, (Vanrenterghem, Venables, Pataky, & Robinson, 

2012). Thus, the aim of this study was to analyse and compare the kinematics and 

kinetics of the gait cycle in world-class runners and race walkers using three-

dimensional motion capture and force platform data. Additionally, these types of data 

analysis techniques can contribute to our better understanding of the gait sub phases. 

 

5.4.2 Methods 

Participants 

Twenty-one elite male race walkers (20 km: 80.8 ± 2.1 min) and 15 elite male 

endurance runners (21.1 km: 62.2 ± 1.0 min) agreed to participate in this study. All 

participants were informed about all tests and possible risks involved and provided 

written informed consent before testing. The Ethics Committee for Research on Human 

subjects of the University of the Basque Country (CEISH 66/2015) and the Research 

Ethics Committee of the University of Cape Town (HREC ref 151/2013) approved this 

study. 

 

Design and protocol 

Anthropometric characteristics of the participants, comprising height, mass and the sum 
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of eight skinfolds (∑ 8 skinfolds: biceps, triceps, subscapular, supraspinale, abdominal, 

suprailiac, mid-thigh and medial calf) were measured. The measurement of running and 

race walking economy was achieved by a constant running/race walking test (12 km·h-1) 

completed on a treadmill (3p pulsar, h/p/cosmos, Germany) (Gomez-Ezeiza et al., 

2018). The speed of 12 km·h-1 was chosen to allow the comparison between both 

running and race walking at a constant submaximal speed, avoiding any fatigue 

interference in the participants’ gait patterns. 

 

Participants completed race walking trials on a 30-m track in an indoor laboratory and 

were not provided with any technical instruction. During this time, three-dimensional 

marker trajectories were captured at 250 Hz, using a 10-camera Vicon Bonita motion 

capture system (Vicon, Oxford, UK). Synchronised collection of ground reaction force 

(GRF) data was sampled at 2000 Hz using a 900 × 600 mm force platform (AMTI, 

Watertown, MA, USA). Prior to testing, reflective markers were attached according to a 

modified Helen-Hayes Marker set (Tam, Tucker, Santos-Concejero, Prins, & Lamberts, 

2018). The speed of the trials was set at 12 km·h-1 and accepted if the speed was within 

± 4% of the target speed, when all markers were in view of the cameras and there was 

no visual evidence of athletes targeting the force platform. 

 

Data analysis 

For each trial, a complete gait of the participant`s right limb was analysed (ground 

contact-ground contact). Marker trajectory and force platform data were filtered using a 

low-pass fourth-order Butterworth filter with cut-off frequencies of 20 and 100 Hz 

respectively. Three-dimensional joint angles (ankle, knee and hip) were determined 

using the PlugInGait model and net resultant joint’s sagittal moments using a Newton-

Euler inverse dynamics approach (Winter, 1980). Joint moments were expressed as 

external moments normalised to body mass (Nm·kg−1). Additionally, GRF data were 

normalised to bodyweight (BW) and the initial rate of loading was calculated (Williams, 

Snow, & Agruss, 1991). Subsequently, joint kinematic and kinetic data are presented as 

waveforms that changed continuously throughout the entire gait cycle (101 data points), 

except for the vertical GRF waveform that is normalised to percentage of stance (101 

data points). 

 

Statistical analysis 
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Data were screened for normality of distribution using a Shapiro-Wilk’s Normality test. 

Differences in descriptive characteristics, initial loading rate and ground contact time 

were assessed using independent t-tests or non-parametric Wilcoxon sign rank test, 

where appropriate. To detect differences between the kinematic and kinetic waveforms, 

1DSPM was employed (Vanrenterghem, Venables, Pataky, & Robinson, 2012). The 

running and race walking gait waveforms were compared using a one-way analysis of 

variance (SPM{f}). All 1DSPM analyses were implemented using the open-source 

1DSPM code (v.M0.1, www.spm1d.org) in MATLAB (R2014a, 8.3.0.532, MathWorks 

Inc., Natick, MA, USA). 

 

5.4.3 Results 

The athletic discipline specificity between groups resulted in large differences, as the 

race walkers were taller (P=0.009), heavier (P=0.004), greater ∑ 8 skinfolds (P=0.006) 

and higher oxygen cost of transport at 12 km·h-1 (P=0.001) (Table 6). Race walking and 

running speeds were similar between groups, however, differences in discrete kinetic 

and spatiotemporal variables were found (Table 6). To maintain a similar speed, race 

walkers exhibited longer ground contact times (P=0.001) and shorter swing times 

(P=0.001) than the runners. Additionally, race walkers also presented shorter strides 

(P=0.001) and higher cadences (P=0.001). 

 

Table 6. Comparison of physical, physiological and gait characteristics (at 12 km· h−1) 

of elite long-distance runners and race walkers. 

 Race walkers (n=21) Runners (n=15) 

IAAF performance (u) 
1184 ± 44 

(20 km RW) 

1100 ± 37 

(21.097 km) 

Age (years) 26.6 ± 5.5 23.7 ± 4.1 

Height (m) 1.77 ± 0.07 1.71 ± 0.06** 

Mass (kg) 66.4 ± 5.8 54.8 ± 6.0** 

∑ 8 skinfold (mm) 49.3 ± 6.8 35.7 ± 8.6** 

Economy at 12 km·h-1 (mL·kg-

1·km-1) 
236.8 ± 16.2 192.6 ± 11.1** 

   

Initial loading rate (BW·s−1) 27.67 ± 5.90 84.63 ± 36.92** 

Ground contact time (s) 0.322 ± 0.011 0.237 ± 0.016** 

Swing time (s) 0.304 ± 0.010 0.498 ± 0.044** 

Step length (m) 1.08 ± 0.06 1.35 ± 0.10** 

Cadence (step·s−1) 3.09 ± 0.10 2.47 ± 0.18** 

Early stance (%) 0-16 0-13 
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Late stance (%) 17-46 14-36 

Swing phase (%) 47-100 37-100 

n: number of participants; ∑ 8 skinfolds: biceps, triceps, subscapular, supraspinale, 

abdominal, suprailiac, mid-thigh and medial calf. Values are mean ± SD. Statistically 

significant difference *p < 0.05, ** p < 0.01. 

 

 

Large kinematic waveform differences were found between running and race walking at 

the same speed (Table 7 and Figure 6). Especially, in the sagittal plane, hip flexion-

extension range of motion was more restricted in the race walkers than the runners 

between 0-81% of the gait cycle (F=7.935; P=0.011). In addition, greater knee 

extension was observed in the race walkers when compared with the runners throughout 

the gait cycle and an absent knee flexion peak during stance phase (F=8.142; P=0.001). 

Ankle dorsiflexion range of motion in the race walkers compared with runners was 

decreased with a later and smaller peak dorsi- and plantarflexion during stance at 0-47% 

of the gait cycle (F=8.271; P=0.001). In the frontal plane, decreased range of motion 

was found during stance in the race walkers in both the knee and ankle when compared 

with the runners at 20-48% and 0-46% of the gait cycle, respectively (F=8.142; 

P=0.008 and P=0.001, respectively). Greater ranges of motion in hip adduction-

abduction were found in the race walkers than runners between 0-16% and 36-100% of 

the gait cycle (F=7.935; P=0.018 and P=0.004). Moreover, only the ankle exhibited 

differences in the transverse plane, where race walkers remained in greater ankle 

external rotation during stance (0-40%), early mid-swing (48-80%) and terminal swing 

(96-100% of the gait cycle) when compared with the runners (F=8.271; P=0.001, 

P=0.002 and P=0.001, respectively). 
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Figure 6. Kinematic data over an entire gait cycle. Mean ± SD for race walkers 

(constant line) and runners (dashed line). GREY bars denote periods where there were 

differences between-group. 

 

With regard to joint kinetic waveforms, runners exhibited greater hip flexion moments 

between 0-14% and 20-42% of the gait cycle when compared with the runners (Table 

7). Runners presented with greater knee flexion moments at 1-5% and 7-38% of the gait 

cycle than the race walkers. Thereafter, knee flexion moments were greater in the race 

walkers over 28-38% of the gait cycle when compared with the runners. The ankle 

flexion moment was lower in the race walkers from 2-23%, and thereafter greater 

during 24-40% of the gait cycle when compared with the runners. Lastly, there was 

greater vertical GRF in the runners than the race walkers between 19-77% of the stance 

phase (Figure 7). Race walkers and runners showed similar GRF patterns during initial 

contact. However, the initial loading rate was higher in the runners (P=0.011) (Table 7). 
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Figure 7. Ground reaction forces data over the stance phase. Mean ± SD for race 

walkers (constant line) and runners (dashed line). GREY bars denote periods where 

there were differences between-group. 

 

Table 7. Summary table with respect to SPM analyses. 

Variables 
Critical threshold exceeded (% of 

gait cycle) 

Supra-

threshold p-

values 

Critical 

threshold (*f) 

Kinematics       

Hip       

Sagittal plane Stance and swing (0-81%) p = 0.011 F = 7.935 

Frontal plane Early stance (0-16%) 

End stance and swing (36-100%) 

p = 0.018 

p = 0.004  

  

Knee 
   

Sagittal plane  Entire cycle (0-100%) P = 0.001 F = 8.142 

Frontal plane Mid stance and early swing (20-48%) 

Swing (60-100%) 

P = 0.008 

P = 0.006 

  

Ankle 
 

  
 

Sagittal plane Stance and early swing (0-47%) 

Swing (53-100%) 

P = 0.001 

P = 0.013 

F = 8.271 

Frontal plane Stance (0-46%) 

Late swing (89-100%) 

P = 0.001 

P = 0.014 

  

Transverse plane Stance (0-40%) 

Swing (48-80%)   

P = 0.001 

P = 0.002 

  

  Late swing (96-100%) P = 0.001   

Moments       

Hip 
   

Sagittal plane  Early stance (0-14%) 

Late stance (20-42%) 

P = 0.001 

P = 0.002 

F = 11.943 
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Knee 
   

Sagittal plane  Early stance (1-5%) 

Early and Midstance (7-38%) 

P = 0.001 

P = 0.001 

F = 12.223 

Ankle 
   

Sagittal plane  Early stance and early swing (2-40%) P = 0.038 F = 12.182 

Ground Reaction 

Force 

      

Vertical Mid stance (19-77%) P = 0.001 F = 8.998 
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5.5 Study 5: “Muscle activation patterns correlate with race 

walking economy in elite race walkers: a waveform analysis” 

 

5.5.1 The aim of the study 

Understanding the influence of muscle activation on oxygen cost of transport in race 

walkers is of interest as it provides insight into regulation of race walking kinematics 

that are associated with metabolic efficiency a marker of performance. Additionally, 

this analysis may give new insights in coaching race walkers, with regard to the 

development of specific training strategies that consider the specific biomechanical and 

physiological demands of race walking. Thus, the aim of this study was to analyse the 

influence of muscle activation patterns on oxygen cost of transport in elite race walkers 

over the entire gait waveform. 

 

5.5.2 Methods 

Participants 

Twenty-one male Olympic race walkers agreed to participate in this study. All athletes 

possessed the 2016 Olympic Entry Standard for Rio de Janeiro (84 minutes for 20-km). 

All participants were informed about all tests and possible risks involved and provided 

written informed consent before testing. The Ethics Committee for Research on Human 

subjects of the University of the Basque Country (CEISH 66/2015) approved this study. 

 

Design and protocol 

Twenty-four hours before testing, the participants were required to abstain from a hard 

training session or competition to be well rested. They were also requested to maintain 

their pre-competition diets throughout the test procedures and to abstain from caffeine 

and alcohol intake the day before testing. All testing sessions were performed under 

similar environmental conditions (20 – 23ºC and between 09:00 – 13:00). 

Anthropometric characteristics of the participants, comprising height, mass and the sum 

of eight skinfolds (biceps, triceps, subscapular, supraspinale, abdominal, suprailiac, 
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mid-thigh and medial calf) were measured. 

Participants completed race walking trials on a 30-m track in an indoor laboratory and 

were not provided with any technical instruction. During this time, synchronized 

collection of three-dimensional markers trajectories using a 10-camera Vicon Bonita 10 

motion capture system (Vicon, Oxford, UK), ground reaction force data (AMTI, 

Watertown, MA, USA) and wireless surface electromyography (myON 320, 

Schwarzenberg, Switzerland) were recorded. The six muscles of interest for 

electromyography were gluteus maximus, adductor magnus, rectus femoris, biceps 

femoris, medial gastrocnemius and tibialis anterior. Before assessment, skin areas were 

prepared, and two surface electrodes placed according to established guidelines 

(Hermens, Freriks, Disselhorst-Klug, & Rau, 2000). Leads and pre-amplifiers connected 

to the electrodes were secured with medical grade tape to avoid artefacts from lower 

limb movement during gait. The speed of the trials was set at 14 km·h-1 and trials were 

accepted if the speed was within ± 4% of the target speed, the entire right-foot made 

contact with a force platform and an entire gait cycle was visible from there on (ground 

contact-ground contact of the right foot). Motion capture and ground reaction force data 

were used only for gait event detection in this study.  

Subsequently, race walking economy was determined by performing an incremental 

treadmill test (3p pulsar, h/p/cosmos, Germany). The slope was set at a 1% gradient 

(Jones & Doust, 1996) and the test started at 10 km·h-1; after 3 min, the speed was 

increased by 1 km·h-1 every 3 min until 14 km·h-1 was completed, the velocity used for 

analysis. A 30 s recovery was taken between stages. During the test, oxygen uptake 

(VO2) was continuously measured using a gas analyser system (Ergostik, Geratherm, 

Germany). To ensure VO2 steady-state measurements, the speed selected (14 km·h-1) 

was slower than the individual lactate threshold of each athlete (further confirmed 

during the test by respiratory exchange ratios below 1.0 during the whole running bout 

for all athletes at each speed). VO2 (mL·kg-1·min-1) values collected during the last 30 s 

of each stage were averaged and designated as steady-state race walking economy 

(mL·kg-1·km-1) to avoid the slow component in VO2 (Santos-Concejero et al., 2014). 

 

Data analysis 

The raw digital electromyography signal of sub-maximal trials were bandpass filtered 
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between 30-450 Hz, then rectified and smoothed using root mean square (RMS) 

analysis at a 50 ms moving window (Albertus-Kajee, Tucker, Derman, Lamberts, & 

Lambert, 2011). Additionally, the EMG signals were normalised to each muscle 

activation peak. Subsequently, electromyography data were reduced to 101 points and 

presented as waveforms that changed continuously throughout the race walking gait 

cycle (a point per percentage of the gait cycle). 

 

Statistical analysis 

Data were screened for normality of distribution using a Shapiro-Wilk’s Normality test. 

To detect relationships between muscle activity waveforms with race walking economy 

(at 14 km·h-1), one-dimensional statistical parametric mapping (1DSPM) regression was 

employed (Pataky, Vanrenterghem, & Robinson, 2015). The 1DSPM analyses were 

implemented using the open-source 1DSPM code (v.M0.4, www.spm1d.org) in Python 

(2.7, Python Foundation, USA). Significance for regressions were accepted at p<0.05. 

 

5.5.3 Results 

The descriptive characteristics and physiological variables of the race walkers 

participating in the study are presented in Table 8. Specifically, this cohort presented a 

mean 20-km race performance of 80.49 ± 2.12 min and a race walking economy of 

241.32 ± 14.91 mL·kg-1·km-1. 

 

Table 8. Physical and physiological characteristics of the race walkers (n=21). 

 Mean ± SD 

Age (years) 26.62 ± 5.53 

Height (cm) 177.11 ± 7.13 

Mass (kg) 66.41 ± 5.77 

∑ 8 skinfold (mm) 49.33 ± 6.78 

20-km race time (min) 80.49 ± 2.12 

Race walking economy (mL·kg-1·km-1)* 241.32 ± 14.91 

*: at 14 kmh-1  

 

Posterior muscle activity and race walking economy 



 

81 
 

Relationships between posterior muscle activation and race walking economy were 

found in elite race walkers are listed in Table 9. During terminal swing (biceps femoris: 

96-100% of the gait cycle, p=0.010, r=-0.801; gluteus maximus: 98-100%, p=0.022, r=-

0.716) and initial weight acceptance (biceps femoris: 0-4%, p=0.011, r=-0.809; gluteus 

maximus: 0-6%, p=0.011, r=-0.723), higher activation of biceps femoris and gluteus 

maximus were associated with better race walking economy (Figure 8). Additionally, a 

higher activation of the medial gastrocnemius during weight acceptance (5-8% of the 

gait cycle, p=0.041, r=-0.662) was found in more economical race walkers. During the 

propulsion phase a greater medial gastrocnemius activation was also associated with a 

lower oxygen cost of transport (20-27% of the gait cycle, p=0.039, r=-0.668). Lastly, a 

lower activation of the biceps femoris was associated with more economical race 

walkers at 36-43% of the gait cycle (late propulsive phase to toe-off, p=0.012, r=0.697). 

 

Table 9. Summary table with respect to SPM analyses. Presented outcomes for 

regression of race walking race walking economy and muscle activity. 

Muscles 
Critical threshold exceeded 

(% of gait cycle)* 

Supra-threshold 

p-values 
r-values 

Gluteus Maximus Weight acceptance (0-4%) 0.011 -0.723 

  Swing (98-100%) 0.022 -0.716 

Adductor Magnus Swing phase (43-50%) 0.041 0.690 

Biceps Femoris Weight acceptance (0-6%) 0.011 -0.809 

  Propulsive phase (38-43%) 0.012 0.697 

  Swing (96-100%) 0.010 -0.801 

Rectus Femoris Weight acceptance (8-11%) 0.016 -0.678 

  Weight acceptance (18-23%) 0.034 0.637 

  Propulsive phase (35-41%) 0.018 -0.798 

  Swing phase (42-53%) 0.018 -0.798 

  Swing phase (63-68%) 0.021 -0.813 

Gastrocnemius Weight acceptance (5-8%) 0.041 -0.662 

  Propulsive phase (20-27%) 0.039 -0.668 

Tibialis Anterior Weight acceptance (6-12%) 0.033 0.671 

SPM, Statistical parametric mapping; *Critical threshold (*f) was calculated at F=3.96. 

 

Anterior activity and race walking economy 

During weight acceptance of ground contact, greater rectus femoris activation was 

associated with the most economical race walkers (8-11% of the gait cycle, p=0.016, r=-

0.678). This coincided with a lower tibialis anterior activation at 6-12% of the gait cycle 
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was associated with efficient race walking economy (p=0.033, r=0.671) (Figure 8), 

whereas, during the propulsive phase (18-23% of the gait cycle) lower rectus femoris 

activation was associated better race walking economy (p=0.034, r=0.637). 

Subsequently, at the end of the propulsive phase (35-41% of the gait cycle), early- and 

mid-swing (42-53% and 63-68% of the gait cycle) greater rectus femoris activation was 

associated with lower oxygen cost of transport (p=0.018, r=-0.798; p=0.018, r=-0.798 

and p=0.021, r=-0.813). Lastly, lower adductor magnus activation during early swing 

(43-50% of the gait cycle) was associated with better race walking economy (p=0.041, 

r=0.690). 

 

 

Figure 8. Muscle activation data over an entire gait cycle. Mean ± SD for each muscle. 

GREEN bands, negative correlation between muscle activation and oxygen uptake; 

RED bands, positive correlation between muscle activation and oxygen uptake. 
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6 
DISCUSSION 

 

 

“The most exciting phrase to hear in science, the one that heralds 

the most discoveries, is not "Eureka!" but "that's funny...” 

Isaac Asimov  
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6. Discussion 

 

6.1 Anthropometric characteristics of top-class Olympic racewalkers 

The main finding of this study was that sex differences were found for all key 

anthropometrical characteristics required to excel in endurance events. In addition, 

males competing in the 50- and 20-km race walking events also presented differences in 

certain variables. These results suggest that unique anthropometric profiles are suited to 

each event. Previous research has shown the positive influence of certain 

anthropometrical characteristics on endurance performance (Basset et al., 2014; 

Carlsson et al., 2014; Knechtle, 2014; Stellingwerff, 2018). Of these, the most used 

anthropometrical parameter in endurance athletes is the sum of skinfolds, often reported 

as an important predictor of endurance performance (Legaz-Arrese, Kinfu, Munguía-

Izquierdo, Carranza-Garcia, & Calderón, 2009). Previous studies analysing elite 

endurance athletes have reported low skinfold thickness and body fat content, which is 

in agreement with the results of this study (Basset et al., 2014; Carlsson et al., 2014; 

Knechtle, 2014; Stellingwerff, 2018). For instance, a lower sum of skinfolds was found 

in the 50-km male racewalkers when compared to their 20-km male counterparts. 

Similarly, Legaz-Arrese, Badillo & Ostariz (2005) found lower skinfold thickness in 

marathon runners than athletes competing over shorter distances. This lower sum of 

skinfold is representative of a reduced subcutaneous fat and gross mass, which may 

consequently reduce the muscular effort required to maintain the same walking intensity 

(Teunissen, Grabowski, & Kram, 2007). Interestingly, a lower sum of skinfolds and 

body fat content was found in male race walkers when compared to female walkers. 

This is in agreement with other studies describing sex differences in multiple athletic 

disciplines (Knechtle, Knechtle, Barandun, Rosemann, & Lepers, 2011). 

It is known that endurance training regimes result in specific anthropometric adaptations 

(Knechtle, Knechtle, & Rosemann, 2010). To our best knowledge, there is a lack of 

longitudinal data describing anthropometrical changes associated with training regimes 

of elite race walkers. However, this can be inferred taking into account the seasonal 

training load of elite race walkers (Gomez-Ezeiza et al., 2016). It has been reported that 

the training regime of an elite race walker consists of very high training volumes at low 
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intensities, divided into phases where training load is variable (volume/intensity). 

Specifically, Knechtle et al. showed that weekly training volumes are associated to 

lower sum of skinfolds and body fat percentages (Knechtle et al., 2010). These changes, 

and other factors like injuries, illnesses, recovery phases, altitude training camps etc. 

may also contribute to changes in body composition during the season (Heydenreich et 

al., 2017). Considering the years of continuous training spent by athletes in a high-

performance environment, certain anthropometric adaptations during the whole period 

are expected.  

With the aim of reducing body fat mass, some endurance athletes use nutritional 

interventions (Martinsen et al., 2010). However, a reduction of energy availability may 

concomitantly be associated with a loss of muscle mass (Heydenreich et al., 2017), 

which may result in a reduced capacity to produce optimal muscle-power (Stellingwerff, 

2018). In this study, a greater muscle mass was found in both 20- and 50-km elite race 

walkers (38.0 ± 2.9 and 36.5 ± 3.3 kg) when compared to elite endurance athletes from 

other studies such as Kenyan runners (33.2 kg, ES=0.76, moderate effect) (Vernillo et 

al., 2013) or European runners (Santos-Concejero et al., 2013). Higher muscle mass in 

the race walkers may be explained by the greater muscle demand and effort needed to 

maintain the race walking gait patterns (Cronin et al., 2016). Unlike running, the rules 

that govern race walking force the race walker to limit the gait to a less efficient pattern. 

Specially, the lack of knee flexion that does occur during stance phase has been shown 

to result in a reduced energy-saving role of the Achilles tendon, in addition to higher 

muscle effort done by the use of a) longer propulsive phases, b) higher stride 

frequencies, c) greater action of the upper-body; making race walking mechanically 

more costly than running at the same speed (Hoga et al., 2015; Gomez-Ezeiza, 2018). 

In this study, the somatotype categorisation in male and female race walkers was 

compared to assess morphology according to the relative contribution of three 

fundamental elements: mesomorphy, ectomorphy and endomorphy. A study conducted 

by Vernillo (2013) reported the ectomorphic character that showed elite Kenyan 

marathon runners, related to a relative linearity and long-line body types. However, the 

results of this study show that elite race walkers exhibited a balanced mesomorph-

ectomorph somatotype dimension. This morphological body-type is characterised by an 

athletically balanced element of a longilinear athlete with well-developed muscles. 

Although all groups in this study presented a balanced mesomorph-ectomorph 
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somatotype, distance specialised group (20-km vs. 50-km) exhibited a specific 

somatotype-rating trend related to the values of each somatotype category. These 

anthropometrical and morphological differences may be a result of the different training 

approaches from the different competitive distances. The higher training volumes at low 

intensities employed by the 50-km race walkers may rely on the use of fat metabolism 

and imply a reduced energy availability (Tam et al., 2017). This may induce adaptations 

in lower sum of skinfolds, favouring a more ectomorphic somatotype profile. In 

contrast, race walkers competing over 20-km train at a higher intensity and speed 

(Drake, 2005), resulting in slightly greater muscle mass values and more mesomorphic 

profiles.  

This study faced several limitations. The first limitation of this study is the error in 

anthropometric manual measurement, the technique used, the equipment, the formula 

used, and the site location, as all these factors can affect the results. However, since the 

anthropometrical measurements were performed by an accredited anthropometrist 

following standardised techniques, we believe that the measurement error was 

negligible. In the future, the use of dual energy X-ray absorptiometry (DXA) could most 

appropriately assess the anthropometrical characteristics of elite race walkers (Ball, 

Altena, & Swan, 2004). 

 

6.2 The influence of race walking on the calcaneal bone density in 

world-class male and female race walkers 

The main goal of this study was to analyse and compare calcaneal stiffness, a marker of 

bone mineral density (BMD), in elite 20-km and 50-km male and 20-km female race 

walkers. It was hypothesized that, due to the specific gait pattern employed by race 

walkers and distance specific training, calcaneal stiffness may differ between these 

groups. Indeed, within the race walking group differences were found in various bone 

ultrasonographic parameters between sex and competitive distances, however, no 

differences were found between the race walkers and control group. 

The first notable finding was that the 50-km male race walkers presented lower SOS, 

SI, T- and Z-score values but not BUA values when compared to the 20-km male race 

walkers. The lower SOS values suggest the 50-km male race walkers possess lower soft 
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tissue and differing micro-architecture of cortical thickness/elasticity that comprises of 

the bone (Lara et al., 2016). This subsequently results in a lower SI, T- and Z-scores and 

these discrepancies maybe a related to differences found in training volume and 

intensity between these athletes of different distance specialization. Interestingly, a 

correlation between weekly training load and BUA values of the entire race walking 

group was found, where a greater training load was associated with a lower BUA, a 

marker of BMD (Cepollaro et al., 1995). Previous studies have found that recreational 

marathon runners possess greater calcaneal stiffness than half-marathon and 10-km 

runners (Lara et al., 2016). However, our current findings in race walker suggest that 

too high training volumes may expose one to lower bone quality, especially when 

comparing elite to recreational athletes. This and a previous study have described that 

elite race walkers’ training regimes consist of very high training volumes at low and 

moderate intensities (Gomez-Ezeiza et al., 2015). These demanding training regimes 

increase the risk of low energy availability (Mountjoy et al., 2018), usually associated 

with endurance athletes (Smathers, Been, & Been, 2009). Low energy availability alters 

the endocrine system (Lombardi, Sanchis-Gomar, Perego, Sansoni, & Banfi, 2015), 

with negative consequences on BMD (Papageorgiou et al., 2017).  Thus, the observed 

lower SOS, SI, T- and Z-score values found in the 50-km race walkers, suggest lower 

bone quality that appears to be related to possible energy availability from high training 

volumes and subsequent disruption in bone turnover and consolidation which may 

increase injury risk. 

Moreover, the 50-km race walkers exhibited below normal T- and Z-score values (-0.8 

± 1.3 & -0.8 ± 1.2, respectively). Indeed, five of the eight (62.5%) 50-km race walkers 

in this study presented values of T- and Z-scores below -1.0, classifying them as 

osteopenic according to the World Health Organization classification system (Pollock & 

Hamilton, 2008). Whereas, no male 20-km race walkers, three of the eight female 20-

km race walkers and one participant in the control group presented T- and Z-scores 

below -1.0. Collectively this finding suggests that ultra-endurance athletes maybe at a 

higher risk of bone injury possibly because of large training volumes, inadequate 

nutrition and subsequent low energy availability (Mountjoy et al., 2018). 

The following finding was that the 20-km male race walkers exhibited higher BUA 

values than the 20-km female race walkers but not SOS. This finding suggests the male 

20-km race walkers posses greater trabecular bone tissue (Cepollaro et al., 1995). 
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However, the difference between sexes in BUA appears to not influence the overall 

calcaneal SI and as previously mentioned three of the eight female race walkers 

presented with calcaneal stiffness T- and Z-scores below -1.0. Thus, the values observed 

in this cohort of female race walkers appear to be variable and make it difficult to make 

definitive interpretations from this finding. Sex differences in bone density have been 

previously documented, where low BMD in females have been influenced due to body 

size, dietary intake that influence energy availability and hormonal factors (Hind, 

Truscott, & Evans, 2006). Other factors that may also contribute to these differences 

such as training intensity and ground reaction forces may play an important role, 

although no differences were found between training volumes in these race walking 

groups. 

Lastly, some biomechanical values were associated with higher ultrasonographic values 

when assessing the race walkers as a population. All of these biomechanical variables 

were related to ground contact time related events and rate of loading. Greater time 

spent in ground contact of the gait cycle was associated with calcaneal stiffness 

variables whereas, greater time spent in the propulsion phase of ground contact was 

only associated with SOS and SI. These findings indicate that increased time in ground 

contact and more specifically during the propulsion sub-phase of ground contact are 

associated with greater calcaneal bone stiffness. Bone mineral density stimulation and 

bone strength are induced by mechanical forces produced by muscular and impact 

forces in runners (Schinkel-Ivy, Burkhart, & Andrews, 2013), as previously described in 

endurance runners (Hind et al., 2006). 

Unlike in running, race walking implies higher contact times and subsequently vertical 

ground reaction force is more sustained when trying to walk at the same velocity as 

running. This possibly places a greater reliance on the lower limb muscle contraction 

than in running (Smith & Hanley, 2013) and may influence the calcaneal stiffness 

values observed in the race walkers with longer contact times of the gait cycle. 

Furthermore, the correlations found between BMD and the propulsive sub-phase of 

ground contact, could be attributed to the force placed on the calcaneus from the 

gastrocnemius and soleus during toe-off propulsion phase of gait (Hanley & Bissas, 

2013). Moreover, the absence of knee flexion reduces ground reaction force attenuation 

through movement and increases muscles demand in facilitating it (Hanley & Bissas, 

2017). 
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Also associated with higher BUA values was a greater initial loading rate. It appears 

that the greater the loading rate the greater the marker of bone mineral density in race 

walkers. This may be an indication of bone adaptation to higher loads experience by 

some race walkers. A further interpretation of this correlation may also suggest that 

greater vertical force development upon initial ground contact, could indicate higher 

exercise intensity or mechanical stimuli (Gast et al., 2013; Magkos et al., 2007). This 

could contribute to the greater BMD values found in the 20-km male race walkers, who 

perform higher velocity and subsequent intensive training regimes than 50-km male and 

20-km female race walkers (Torre, Vernillo, Fiorella, Mauri, & Agnello, 2008). 

Lastly, the outcome measures related to gait characteristics were only spatiotemporal in 

nature, and it may be that other biomechanical factors not reported here may be 

important determinants of bone density, in addition to muscular activation in the 

gastrocnemius and the tibialis anterior. Similarly, we acknowledge that bone mineral 

density assessment should be opened to other body areas and assessed with the use of 

dual-energy x-ray absorptiometry or quantitative computed tomography to provide a 

comprehensive overview of bone density and body composition in race walkers. Future 

research studying the relationships between bone density and biomechanical, nutritional 

and hormonal factors are thus warranted.  

 

6.3 Race walking gait and its influence on race walking economy in 

World-Class race walkers 

This study investigated the influence of spatiotemporal gait characteristics of race 

walking economy in world-class race walkers with an average personal best of 80.42 ± 

2.13 min for 20 km (~ 4 minutes faster than the Olympic qualifying standard) and an 

average race walking economy of 241.30 ± 14.94 ml·kg-1·km-1. The first finding of this 

study was that race walking performance (according to their best 20-km race time), was 

positively associated with race walking economy at race pace, which implies that the 

fastest race walkers were more economical than the lesser performers. This association 

is in agreement with previous research in other endurance sports like distance running 

(Santos-Concejero et al., 2015), cycling (Faria et al., 2005) or cross-country skiing 

(Sandbakk & Holmberg, 2013) and further highlights the importance of movement 

efficiency in elite sport. 
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Previous research has hypothesised that certain biomechanical factors would be 

associated with greater movement efficiency in race walking, and that most economical 

race walkers may have distinct race walking patterns (Hanley & Bissas, 2017). In 

agreement with this hypothesis, we found significant relationships between race 

walking economy and ground contact characteristics (ground contact time, stance phase 

duration, midstance and propulsive sub-phases duration) as well as with flight time and 

swing phase duration. Specifically, in race walking step length is restricted because race 

walkers have to elude visible flight times to elude disqualification (IAAF, 2016). It has 

been reported that race walking judges cannot observe a loss of contact below the 

threshold of 0.040 s (Lee, Mellifont, Burkett, & James, 2013), although the real limit 

may be a bit higher as the fastest rate a human eye can retain an image is 16 Hz, or 0.06 

s (Winter, 2005). This implies that current rules of observation by the judges are flawed 

as race walkers are provided a ‘window’ of non-perceptible flight times without the risk 

of disqualification. Angelis & Menchinelli (1992) analysed the progression of flight 

times in international race walkers at different speeds, reporting values of 0.04 ± 0.007 s 

at 14 km·h-1 (just in the limit of what is perceptible for the human eye). Similarly, 

Hanley, Bissas, & Drake (2011) observed flight times of 0.03 ± 0.01 s in competition. 

These results are in line with the values observed in this study (0.026 ± 0.007 s), 

suggesting that world-class race walkers can compete at fast speeds without a visible 

loss of contact with the ground. Interestingly, we observed positive correlations between 

flight time and race walking economy at 12 km·h-1 and at 14 km·h-1 and found that 

flight times increased when the speed was increased. Although we acknowledge that 

correlation does not always implies causation, this finding suggests that the most 

economical race walkers are those exhibiting shorter flight times at a given speed, 

resulting in a safer race walking technique in terms of risk of disqualification.  

Previous studies on recreational and well-trained endurance runners (Paavolainen, 

Nummela, & Rusko, 1999; Santos-Concejero et al., 2014) have reported that shorter 

ground contact times are strongly associated with lower oxygen cost at speeds ranging 

from 12 km·h-1 to 23 km·h-1. Mechanistically, shorter ground contact times may reduce 

the duration of the braking phase during stance, which is usually associated with greater 

musculo-tendon stiffness and improved economy (Nummela et al., 2007; Paavolainen et 

al., 1999; Santos-Concejero et al., 2016). However, we found that longer ground contact 

times were related to a more efficient race walking economy at a given speed. Due to 
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the rules that govern the sport (i.e. a straightened knee from the first contact with the 

ground until the vertical upright position), race walkers may need a longer stance phase 

and longer contact times to apply force to ground and move forward without losing 

speed. As a result, to increase their walking speeds, race walkers would be required to 

maximise step length and step length:heigh ratio to an optimal value that does not 

increase the aerobic demands (Morgan & Martin, 1986), neither violate the rules of the 

sport. The step lengths observed in this study are in accordance with those reported by 

(Hanley et al., 2011) in an elite 20-km competition (68.0 ± 3.7% vs. 68.1 ± 2.0% and 

121 ± 0.7 cm vs. 120.5 ± 5.1 cm, respectively). Once the optimum step length is 

achieved, any speed increase would be dependent on increasing cadence (Cairns, 

Burdette, Pisciotta, & Simon, 1986). In this study, race walkers increased their cadence 

from 2.88 ± 0.1 steps·s-1 at 10 km·h-1 to 3.23 ± 0.14 steps·s-1 at a typical race-pace of 14 

km·h-1 (12.22% increase). However, neither step length nor cadence were correlated 

with race walking economy or performance in this study. 

It was observed that when race walking speed increased, the time spent in the initial 

contact sub-phase decreased by 19.1% (from 44.8 ± 6.1% at 10 km·h-1 to 36.2 ± 6.67% 

at 14 km·h-1). This reduction in the initial contact sub-phase has been attributed to an 

increase in hip extension velocity before contact (Lafortune, Cochrane, & Wright, 

1989). During the midstance sub-phase, race walkers must produce the energy to 

overcome the braking forces generated in the previous sub-phase and to prepare the 

body for acceleration during the propulsion sub-phase (Levine, Richards, & Whittle, 

2012). This may explain the correlation found between race walking economy and 

midstance sub-phase at both 12 km·h-1 and at 14 km·h-1. These findings agree with non 

peer-reviewed coaching opinion suggesting that the relation between gait sub-phases 

(initial contact, mid-stance and propulsive) may change the efficiency during race 

walking (Summers, 1991). Interestingly, although time spent in the propulsive sub-

phase maybe beneficial in terms of race walking economy at slower speeds, it appears 

to be just a mechanical necessity as speed increases. 

This is study was limited based on certain factors. These include a relatively small 

(n=21) and very specific and homogeneous sample, which makes generalisation of the 

obtained results to all race walkers difficult. Similarly, race walking economy was 

assessed on a motorised treadmill. It is known that the lack of air resistance results in a 

lower oxygen cost compared with exercising outdoors at the same speed (Mooses, 
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Tippi, Mooses, Durussel & Mäestu, 2015).  However, a 1% treadmill grade was chosen 

as previous research has reported that it accurately reflects the oxygen cost of exercising 

outdoors (Jones & Doust, 1996). In addition, spatiotemporal variables assessed in this 

study might vary from over-ground race walking when compared to treadmill race 

walking. Further, the outcome measures related to gait characteristics were only 

spatiotemporal in nature, and it may be that biomechanical factors related to stiffness 

and function of tendons, not reported here, are important determinants of race walking 

economy.  

Future research studying neuromuscular activation in conjunction with ground reaction 

forces and 3-dimensional biomechanical analyses during over-ground race walking are 

thus warranted. These clinical, ecologically valid and in-depth measures may reveal 

additional answers for exceptional race walking performance in world-class race 

walkers and provide practical information for clinicians and coaches for ongoing 

management of elite race walking training programmes. 

 

6.4 Biomechanical analysis of gait waveform data: differences between 

elite race walkers and runners 

The main goal of this study was to compare the joint kinematics and kinetics of the gait 

waveforms in world-class race walkers and runners. Because of the rules that limit race 

walking gait, it was hypothesised that race walkers’ kinetics and kinematics would 

differ from running at the same speed. Both spatiotemporal variables and analysis of 

waveform variables presented insightful results. The main finding was that differences 

were found in all three joints and planes throughout the gait cycle between the race 

walkers and runners. These differences are a consequence of the rules that race walkers 

are required to comply with (Rule 230.2) (IAAF, 2016) and are discussed in further 

detail below: 

 

Spatiotemporal variables 

Despite similar gait velocities, race walkers and runners exhibited contrasting values in 

spatiotemporal variables. Compared with runners, race walkers had higher ground 

contact times, in an attempt to avoid losing contact with the ground and to maintain a 

constant support leg on the ground. Whereas flight distances in elite race walkers have 
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been previously observed to contribute to 13% of total step length, this factor has to be 

limited to avoid any visible loss of contact (Hanley & Bissas, 2017). Thus, because 

flight times are restricted, stride length remains a key factor in race walking 

performance (Hanley & Bissas, 2013; Hanley et al., 2013). Other notable modifications 

include higher cadences (due to restricted flight times) to maintain the same speed as 

running, with an added consequence of shorter swing phases during which to straighten 

the knee (on average 10% less of the gait cycle than in running). Moreover, the 

distribution and effectiveness of the use of sub-phases during the stance phase plays an 

important role in the displacement of the centre of mass (Cazzola et al., 2016; Pavei & 

La Torre, 2016; Preatoni et al., 2013). This was noticeable during the late stance sub-

phase, which lasted longer in race walking than running, increasing the propulsion time 

required to maintain a similar velocity (Hanley et al., 2011). 

 

Knee joint 

The most distinct differences between running and race walking waveforms were 

observed in the sagittal plane of the hip, knee and ankle. In particular, reduced knee 

flexion was observed throughout stance in the race walkers when compared with the 

runners. Furthermore, the race walkers also exhibited knee hyperextension and delayed 

knee flexion during the propulsive phase of stance produced by the knee flexion-

extension moment. An overall observation of the race walkers’ knee flexion-extension 

gait cycle waveform illustrates a singular peak in knee flexion during the swing phase; 

notably, this is the absence of knee flexion during initial stance. The absence of this 

initial knee flexion peak in race walking has been suggested to be mechanically costlier 

than running at the same speed (Cronin et al., 2016; Marchetti et al., 1982). This 

phenomenon in running and normal walking during stance has been suggested to 

increase locomotion efficiency as a result of the energy-saving role of the Achilles 

tendon (Rogers, Whatman, Pearson, & Kilding, 2017). However, the flexion of the knee 

from the upright position to toe-off benefits the race walkers with a lower vertical 

oscillation of the body, consequently limiting flight time (Hanley & Bissas, 2017). This 

study clearly distinguishes for the first time the magnitude of difference in knee flexion 

during stance in elite race walkers and runners simultaneously. Furthermore, there is 

reduced knee flexion throughout swing during race walking compared with running. 

This might benefit race walkers in facilitating knee extension during late swing and help 

to reduce flight time, but with the subsequent disadvantage of increased energy cost 
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from an increased lower limb moment of inertia (Smith & Hanley, 2013). 

 

Hip Joint 

The effect of having to achieve a straightened knee by initial contact and maintain it 

through mid-stance restricts the whole lower limb to one rigid lever. In response to this, 

the race walker adopts an exaggerated movement of the hip, which is one of the peculiar 

aspects of race walking (Murray, Guten, Mollinger, & Gardner, 1983; Pavei & La 

Torre, 2016). Compared with runners, a reduced hip flexion at initial ground contact 

was observed in the race walkers to avoid exaggerated over-striding in preventing 

greater braking forces (Padulo et al., 2013). In addition, higher variability in the frontal 

plane was showed by race walkers to effectively increase step length. As the pelvis 

moves forwards (creating an abduction of the hip) in conjunction with the leg, it creates 

a forward momentum and longer step length with a decrease in stride width (Knicker & 

Loch, 1990). During the stance phase and in response to the need to straighten the knee, 

race walkers rotate the hip obliquely to avoid vertical displacement of the body’s centre 

of mass (Cairns et al., 1986; Pavei & La Torre, 2016). While the hip continues to extend 

until the first part of the swing phase in runners, race walkers begin flexing the hip 

before toe-off; this prevents the leg from falling behind and drives the leg forwards into 

swing (Hanley & Bissas, 2017). The larger hip abduction observed during swing 

appears to accommodate hip adduction during stance, as the stance leg is positioned 

below the body and the swing leg must move laterally outwards to pass it. The 

activation of the hip flexors and forward momentum created by pelvis rotation results in 

positive energy transfer, helping to the body to move over the straightened leg (Hoga et 

al., 2003). Subsequently, to ensure race walking gait is efficient and remains within the 

rules of competition, the hip has been suggested to be the predominant energy-

generating joint in race walking gait (Hanley & Bissas, 2017). 

 

Ankle Joint 

In concordance with the other joints, ankle sagittal and frontal plane angles were limited 

in the race walkers when compared with the runners. To maintain a straight and stiff 

knee during initial contact, race walkers land with pronounced ankle dorsiflexion 

(Padulo et al., 2013), which is exacerbated as a consequence of knee hyperextension. In 

this study, the runners exhibited a neutral ankle angle during stance at initial ground 
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contact that progressed into greater dorsiflexion at mid-stance and greater plantarflexion 

at toe-off. This allows runners to store and transfer energy using the Achilles tendon but 

the ankle position during race walking does not allow this. In this study there is a 

pronounced ankle dorsiflexion at initial ground contact that progresses directly into a 

neutral – plantarflexion and then a delayed and suppressed dorsiflexion before a reduced 

plantarflexion toe-off (Cronin et al., 2016). The possible absence of the elastic forces in 

the calf and Achilles tendon obliges the race walkers to generate a greater plantarflexion 

moment during late stance than running (Murray et al., 1983). Moreover, the reduced 

knee flexion that race walkers showed during the swing phase demands earlier and 

greater ankle dorsiflexion than in running. Whereas runners’ ankle adduction and 

rotation are nearly neutral avoiding any wasting movement, race walkers have to ensure 

that the foot clears the ground and aids in a heel strike, requiring adduction of the ankle 

with an external rotation during swing phase (Hanley & Bissas, 2013; Pavei & La 

Torre, 2016; Ziv & Rotstein, 2009). 

 

Vertical ground reaction forces 

As the restricted range of motion during race walking does not allow the body to store 

and transfer energy as effectively as during running, it is observed that the lower 

magnitude of the vertical GRF in the race walkers appears to be linked to the entire 

kinematic chain. A greater initial loading rate, in addition to greater vertical GRF 

observed during mid-stance, was observed in the runners. This might be perhaps 

because of the ability to store and transfer energy during ground contact more 

efficiently using the Achilles tendon and other energy transfer strategies based on a 

spring-mass model (Rogers et al., 2017). By contrast, race walkers exhibited lower 

GRFs during mid-stance. This reduced and delayed GRF peak might first be explained 

by avoidance of high GRFs due to the observed overall restricted range of motion of the 

lower limb joint angles during stance. In addition, this might be explained by the 

contrasting gait patterns used by both groups of elite athletes to propel against the 

ground. Whereas race walkers move the knee from a hyperextended position to a flexed 

one during late stance (Hanley & Bissas, 2017), runners use a flexion-extension pattern 

in the mid-stance phase. Thus, the technical restrictions oblige race walkers to transfer 

the energy using an extension-flexion pattern, causing the biggest differences in the 

joint flexion moments between both groups. 
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The last finding of this study was that the runners exhibited a better economy than the 

race walkers at the same sub-maximal speed. This was evident despite athletes being 

matched for athletic ability with regard to IAAF performance scores and both groups 

comprising endurance athletes who compete over similar distances. However, physical 

differences were also found between groups that might be relevant to the specific event 

that they participate in and also influence transport cost (Stellingwerff, 2017). 

Interestingly, as running economy was expressed relative to body mass, the runners 

benefitted as a result of a reduced body mass (runners were 17% lighter than the race 

walkers); however, their smaller physiques might not be suited to race walking, where a 

greater stature is associated with longer step lengths (Hanley et al., 2013), and where 

muscle activation is greater (Cronin et al., 2016). For both running and race walking, 

mechanical work and metabolic demand were suggested to be a principal factor 

affecting efficiency of locomotion (Cavagna & Franzetti, 1981; Gomez-Ezeiza et al., 

2018). Our results found significant differences between race walking and running gait 

patterns, suggesting that race walking is a less efficient movement as athletes are 

required to comply with IAAF Rule 230.2. Further research investigating the optimal 

biomechanics for efficient race walking economy is required to confirm this 

assumption.  

 

It is important to note that we did not test these elite athletes at a faster velocity as result 

of overground laboratory space restrictions. This speed is still relevant as numerous 

biomechanical differences were still observed and would most probably be emphasised 

at higher velocities as previously documented in Kenyan athletes (Tam et al., 2016). 

Lastly, the use of the standard PlugInGait model was used to determine joint kinematics 

and kinetics. This model is acknowledged to provide highly variable transverse planes 

and limits our ability to effectively critique this plane (Tam et al.,2017); the use of a 

different model might elucidate differences that this model cannot reveal for this study. 

However, the entire waveform data from this model remains relevant because it is 

useful for understanding the gait changes and further interpretation of the differences 

between elite runners’ and race walkers’ gait patterns. Supplementary assessments of 

joint powers and work might yield further insightful results. The assessment of 

electromyography concomitantly with motion capture might also provide further 

information on the neuromuscular contributions necessary during race walking and its 

comparisons with running gait. 
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6.5 Muscle activation patterns correlate with race walking economy in 

elite race walkers: a waveform analysis. 

The goal of this study was to explore muscle activation patterns over an entire gait cycle 

and its association with oxygen cost of race walking in elite race walkers. Interestingly, 

we have found some associations between oxygen cost of race walking and specific 

muscle group activation patterns at similar points of the gait cycle that may influence 

optimal race walking biomechanics. 

 

Terminal swing and initial ground contact 

Greater activation of gluteus maximus and biceps femoris at ground contact was 

associated with better race walking economy. Both posterior lower limb muscle 

relationships were found during late swing and continued into initial ground contact 

(96-100% and 0-6% of the gait cycle).  This finding highlights the importance of 

proximal posterior muscle activation in contributing to oxygen cost of transport 

optimization, especially prior to and at initial ground contact. Previous research and our 

findings suggest these relationships activate in synchrony during this part of the gait 

cycle to prepare for ground contact and assist with joint stabilization and stiffness to 

lower oxygen cost of transport (Boyer & Nigg, 2004; Tam et al., 2016).  Thus, these 

observed phenomena appear to be related to the management of ground reaction forces 

at ground contact. 

Large loading forces are experienced at initial ground contact, and the management of 

these forces is key to efficient energy transfer and reduced metabolic demand during 

ground contact (Hamner, Seth, & Delp, 2010). Mechanisms to facilitate these forces 

appear to be associated with pre-activation (Hermens et al., 2000) during terminal swing 

(Tam et al., 2016) and consequent joint biomechanics that enable efficient gait (Tam et 

al., 2018). Thus, during initial ground contact, the biarticular muscle, biceps femoris 

appears to behave as a joint stabiliser for both the knee and hip, as similar findings have 

been found previously during running by Moore et al. (2014) and Heise et al. (1996). 

While the gluteus maximus extends the hip (Hanley & Bissas, 2013). The greater 

activation of gluteus maximus might reduce metabolic cost by optimizing 
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neuromuscular control to assist efficient energy transfer (muscle tuning) (Boyer & 

Nigg, 2004) and joint movement (hip extension and stabilisation) (Heise et al., 1996). 

Understanding these specific neuromuscular profiles in relation to race walking 

economy may assist coaches to consider the importance of training motor control 

pathways when working with their athletes (Hanley & Bissas, 2016). By training these 

metabolic demands maybe be decreased by a reduction in co-activation through co-

ordinate and selective activation profiles of antagonist-agonist muscles.  

 

Midstance 

Continuing from initial ground contact, associations between shank musculature and 

oxygen cost of race walking were found. Specifically, greater medial gastrocnemius and 

lower tibialis anterior activation were associated with favourable race walking 

economy. A similar finding has been previously observed in runners at 12 km∙h-1 

although this was over the entire ground contact phase (Tam et al, 2018). This study 

further details the temporal nature of this relationship that was found between 5-8% of 

the gait cycle in the medial gastrocnemius and 6-12% of the gait cycle in the tibialis 

anterior. This overlap of associations illustrates the importance of the posterior chain 

and agonist-antagonist co-ordination during gait (Kyröläinen et al., 2001). Considering 

a lower tibialis anterior activity was associated with better race walking economy and 

may be a feature of better technique as the activation of this muscle influence the 

stability of the ankle joint to optimally transition from initial ground contact to 

propulsion. Interestingly, higher activity has been suggested as a source of the shin pain 

frequently reported by race walkers (Hanley & Bissas, 2013; Francis, Richman, & 

Patterson, 1998) and thus excessive activation appears to be both uneconomical and 

possibly implicated with increased injury risk. 

Further up the leg, greater rectus femoris activity was found to be favourable for 

metabolic cost before midstance (18-23% of the gait cycle). This finding, alongside 

previous other research could suggest that this biarticular muscle might act to mediate 

ground reaction forces through energy absorption through activation and simultaneous 

joint stabilisation of the knee and hip, allowing other structures of the lower limb to 

move in a way that improves energy transfer for locomotion (Heise et al., 1996; Hanley 

& Bissas, 2016). 
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However, during 35-41% of the gait cycle (post-midstance), lower rectus femoris 

activity was associated with better race walking economy. This is beneficial as 

increased activation of rectus femoris would possibly restrict gait kinematics, as this 

gait phase is associated with hip extension and knee flexion in order to shift the centre 

of mass. 

Propulsion and swing 

During terminal stance and early swing phases of race walking gait, a lower oxygen cost 

was associated with greater rectus femoris activation (Hanley & Bissas, 2016). The 

exertion of the hip flexor torques that are generated by a higher activation of the rectus 

femoris at this time might benefit the race walkers with more efficient energy usage 

(Hoga et al., 2003). Due to the dynamic coupling of the body, the greater activation of 

the rectus femoris during late stance may be more effective as it could influence both 

the trunk and support leg segments (Zajac & Gordon, 1989). This can be crucial given 

the contralateral stance leg’s role functioning predominantly as a lever during midstance 

(Hanley & Bissas, 2013). Additionally, this strategy could benefit race walkers via a 

better horizontal force production, and consequently a lower vertical oscillation of the 

body (Hanley & Bissas, 2016). Thus, this finding suggests that the hip flexors play a 

substantial role in economical race walking by stabilizing and accelerating the lower 

limb through its bi-articular composition and proximal position.  

Furthermore, the observation of a greater activation of the adductor magnus during early 

swing (43-50% of the gait cycle) is associated with higher race walking oxygen cost 

suggests that an excessive adduction of the hip is metabolically costly. Interestingly, 

this adduction of the hip is often observed in race walkers to increase step length and 

avoid visible loss of contact of the ground (Cairns et al., 1986), but these findings 

suggest that this might be counterproductive from a metabolic perspective. Notably, 

during this phase the role of posterior muscle activation shifts, and greater biceps 

femoris activity was found to be possibly detrimental to race walking economy. This is 

important as greater activation of the antagonist biceps femoris during this period of gait 

might obstruct forward propulsion during toe-off as it is predominantly performed by 

the hip flexors (Hoga et al., 2003). 

Although the trials were performed on a treadmill and over ground, spatiotemporal data 

and walking velocity were found to be similar between conditions. Therefore, the 
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comparisons can be made but one should not forget that differences between testing 

conditions do exist (surface, joint kinematics, belt vs. body speed etc.) but were 

minimized as much as possible. Further, understanding of the complex interaction 

between neuromuscular control and gait biomechanics could be further explored 

through analyses like functional data analysis or principal component analysis that 

could assist in collectively assessing features of such data on their impact on race 

walking economy. 
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7 
CONCLUSIONS 

 

 

“If I have seen further, it is by standing on the shoulders of 

Giants.” 

Isaac Newton 
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7. Conclusions 

 

Anthropometry 

The characterisation of the morphology of elite race walkers provides a reference values 

to assess an optimal body composition for an elite race walker, as well as providing 

reference values to improve talent identification. However, to ensure health, generate 

positive training adaptations and perform in the best conditions for each race walking 

event, coaches and nutritionists should control and manage body composition to 

complete the goals of each training phases during the season. 

 

Bone Density 

Race walkers exhibited differences in the ultrasonographic values at the calcaneus bone 

compared between sex and competitive specialization. These differences may be 

explained by the specificity of the training loads for the 50-km race walkers, resulting a 

negative relation between weekly training volume to BMD factors. Additionally, initial 

loading and greater contact time and propulsive energy production by the 

musculoskeletal system could make positive changes in BMD values in 20-km elite race 

walkers. Thus, it can be suggested that race walkers that endure very high training 

volumes are required to optimize their training load and energy availability to ensure 

healthy BMD values. 

 

Race Walking economy 

Race walking performance was positively associated with race walking economy, which 

implies that the fastest race walkers were more economical than the lesser performers. 

Interestingly, race walking economy was related to ground contact characteristics and 

swing time, which highlights the importance of race walking biomechanics for elite 

competitors in this sport. 

 

Running vs. Race walking 
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Race walkers modify their gait pattern to maintain a velocity similar to runners whilst 

exhibiting restricted ranges of motion in the knee and ankle sagittal plane. Subsequently 

this resulted in larger kinematic changes in the hip and increased cadence and ground 

contact to maintain the same gait velocities. Thus, race walkers optimise their gait 

pattern from imposed gait contractions, resulting in a very specific and complex motor 

control task. Interestingly, these findings indicate that race walkers may require tailored 

technical, strength and conditioning training programmes specific to their athletic 

discipline race walking is evidently not running. 

 

Neuromuscular patterns 

The most economical race walkers possess a refined neuromuscular system that is 

optimally co-ordinated to reduce the metabolic demand throughout race walking gait. It 

appears that this is achieved through the modulation of muscle activity to effect efficient 

joint biomechanics. Also, the importance of proximal posterior muscle activation at 

terminal swing and initial ground contact is noted in efficient energy transfer (ground 

reaction force facilitation) and consequent optimal joint biomechanics (hip extension 

and stabilisation). Lastly, the role of the hip flexors during the propulsive phase and the 

early swing phase was found to be associated with oxygen cost of race walking, that is 

suggested to assist in coordinating the acceleration of the lower limb. 
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9 
ADDENDUMS 

 

 

“I am a greater believer in luck, and I find the harder I work the 

more I have of it.” 

Thomas Jefferson 
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Different competition approaches in a world-class 

50-km racewalker during an Olympic year. 
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as the adjustment of the volume, intensity and specific-
ity of the training sessions.4 Interestingly, current race-
walking training guidelines recommend high training 
volumes at low intensities,3 which have been reported 
to influence negatively the evolution of some haema-
tological parameters with direct implications in perfor-
mance such as Hb and RBC.5 Similarly, current guide-
lines neglect the evidence in favour of the importance of 
high intensity training in endurance events.6 

The aim of this case study was to analyse the training 
programme and the effects of different competition ap-
proaches (high intensity training and low work volumes 
vs. low intensity training and high work volumes) of a 
world-class 50-km racewalker during his Beijing 2008 
Olympic campaign.

Men’s 50-km racewalking is the longest race in the 
athletics programme of the Olympic Games and 

other major athletics championships.1 This endurance 
event requires both the physical and technical ability to 
endure almost 4 hours of competition having a faster aver-
age racewalking speed than other racewalkers while main-
taining a gait pattern in accordance with the rules (no vis-
ible loss of contact with the ground and straightened knee 
from the first contact to the vertical upright position).2 

The annual plan of an elite racewalker is usually 
organised to excel in major Competitions such as the 
World Championships or the Olympic Games, with 
usually one or two major goals per season.3 The com-
petition dates and importance have direct implications 
for the periodisation of the annual training plan, as well 
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(1900 m, Benasque), where he did cross-country ski-
ing as a transition to racewalking. The season was then 
divided into two macrocycles, the first one of 19 weeks 
until the Race Walking World Cup in Chevoskary (May 
2008) and after two weeks rest, the second one of 14 
weeks until the Beijing 2008 Olympic Games (August 
2008). The competition approaches (last 12 weeks of 
each macrocycle: Approach 1 and Approach 2, respec-
tively) were used for data analysis. 

The racewalker completed a high-altitude training 
stage 6 weeks before each major competition. During the 
first competition approach, he spent a total of 4 consecu-
tive weeks (2 weeks at 2250 m in Sierra Nevada and 2 
weeks at 1900 m in Benasque), whereas during the sec-
ond one, the racewalker completed a total of 6 consecu-
tive weeks (2 weeks at 1800 m in Navacerrada, 2 weeks 
at 2250 m in Sierra Nevada and 2 weeks at 1800 m in 
Font Romeu). Apart from the Race Walking World Cup 
and the Olympic Games, the racewalker competed in 
other minor races, such as local and national champion-
ships, during the season. The priority of the races (from 1 
to 3) are presented in Figure 1, being local races of 5 km 
and 10 km categorized as 3, the ational 20-km racewalk-
ing championships as 2 and the Race Walking World Cup 
and the Olympic Games as 1.

Blood analyses

Just before and after each high-altitude training stage, 
blood analyses were undertaken under the same con-
ditions (i.e. hydration status) to track the changes in 
the racewalker’s haematological values (hemoglobin, 
hematocrit, ferritin and serum iron). During Approach 
2, two weeks before starting the high altitude training 
stage and two weeks before descending to sea level, the 
racewalker used iron supplementation for two weeks 
each time (42 mg/per day). 

Statistical analysis

The magnitude of differences or effect sizes (ES) and 
the 95% confidence intervals (95% CI) of the weekly 
work volume (min) and amount of training at differ-
ent training zones (%) before the Race Walking World 
Cup and the Olympic Games were calculated according 
to Cohen’s d 9 and interpreted as small (>0.2 and <0.6), 
moderate (≥0.6 and <1.2), or large (≥1.2 and <2). 

Case report
Methods

Participant

An elite racewalker (35 years old) with 10 years of 
training experience as a professional athlete (height: 
1.78 m, body mass: 64.9 kg) agreed to participate in 
this study. His best performance was 3h41’20” in 50-
km racewalking and he has placed TOP-10 in the last 
decade 5 times in European and World Championships. 
The Ethics Committee for Research on Human subjects 
of the University of the Basque Country (CEISH/GIEB) 
granted permission for this study. The featured race-
walker gave written consent to use his detailed training 
load and test results data for this case study. 

Training data

The detailed training load data used for this study 
were updated daily with the athlete’s feedback, who re-
corded the training and heart rate (HR) data personally 
in real-time using a heart rate monitor (Polar RS800, 
Kempele, Finland). Total training volumes are reported 
in terms of total work time (min), not reporting strength 
training as the racewalker just performed basic strength 
training sessions at the beginning of the season. Training 
loads are divided into five intensity zones to categorise 
the training load completed:7 K1=55-75% of maximum 
heart rate (HRmax), K2 75-80% HRmax, K3 81-90% 
HRmax, K4 91-95% HRmax and K5 96-100% HRmax. 
These training zones were adjusted twice during the 
season on the basis of blood lactate concentrations and 
HR values recorded during an incremental racewalking 
test, which was performed 4 weeks before each major 
competition (Race Walking World Cup and the Olympic 
Games). This test consisted of 5 repetitions of 2000-m on 
the track, starting at 11.0 km·h-1 and where the walking-
speed was increased by 1 km·h-1 with a minute recovery 
between each stage.8

Competition approaches

The racewalker started the Olympic campaign in Oc-
tober 2007 with a preparatory period of 8 weeks, which 
included running and general physical training. There-
after, the racewalker spent 2 weeks at high altitude 
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tion approach were 60.3±14.3% at K1-2, 18.0±9.6% at 
K3, 16.3±6.7% at K4 and 5.3±3.6% at K5 in the first com-
petitive approach and 75.1±8.5%, 16.4±5.6%, 6.5±3.5%, 
2.10±3.1%, in the second one (Figure 1). This implied a 
higher incidence of high intensity training (K4 and K5) 
(ES=1.84 & 1.84, respectively, large effect; 95% CI from 
0.83 to 2.71 and 0.08 to 1.76) and a lower incidence of 
low intensity training (K1-2, ES=1.26, large effect; 95% 
CI from 0.34 to 2.09) in the first when compared to the 
second competition approach. 

The incremental racewalking test results are present-
ed in Figure 2. Four weeks before the Race Walking 
World Cup, the blood lactate concentration values at set 
racewalking speeds were lower (i.e. 1.9 mmol·L-1 vs. 
2.8 mmol·L-1 at 13.5 km·h-1, indicative of race pace), 
than 4 weeks before the Olympic Games. In contrast, 
HR values were similar in both tests 4 weeks before 
each major competition (i.e. 152 vs. 150 beats·min-1 at 
13.5 km·h-1, respectively) (Figure 2). 

Haemoglobin concentration (16.2 vs. 15.12 g·dl-1; Fig-
ure 3A) and hematocrit (47.5 vs. 44.7%; Figure 3B) also 
showed a negative trend when comparing the values of 
the first and the second competition approaches (Figure 

Results

Total training load

The weekly training volume and intensity distribu-
tion are depicted in Figure 1. The training data are based 
on 479 sessions divided in 45 weeks, with a total en-
durance work of 37457 minutes, of which 67.6% were 
performed at K1-2 intensities, 17.6% at K3, 11.0% at 
K4 and 3.8% at K5. Weekly training consisted of 
832.4±287.8 minutes in 10±2 sessions. 

Competition approaches 

The first competition approach (last 12 weeks be-
fore the Race Walking World Cup, where the athlete 
finished in 4th position timed in 3h47’30’’) had lower 
total training volume (9620 min vs. 10908 min, respec-
tively) and weekly training volume (791.7±192.8 min vs. 
959.0±120.0 min, respectively. ES=1.0, large effect, 95% 
CI from 0.16 to 1.86) than the second competition ap-
proach (last 12 weeks before the Olympic Games, where 
the racewalker finished in 13th position with 3h51’30”). 

Training intensity zones distribution in each competi-

Figure 1.—Total training volume expressed in minutes with weekly training intensity zones distribution.  The numbers represent the priority of the 
races during the season (1>2>3). The sub-zones represent the periods of General Physical Preparation (GPP) and High-Altitude Training Stages 
(HAT).Two approaching periods are expressed with A1 and A2. Testing weeks are represented with a T. 
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Discussion
The main finding of this study was that the training 

strategy used in Approach 1, which consisted in high-
er incidence of high intensities and lower volumes of 
work, resulted in a better performance, lower blood 
lactate concentrations and better haematological values 
than the training strategy followed in Approach 2 (high-
er volume of work and lower intensities). 

The typical training programme of an elite 50-km 
racewalker is characterised by large volumes of work, 
mostly performed at low and moderate training intensi-
ties aiming for a peak performance at one or two major 
global competitions per season.3 This was not the case 
for the racewalker featured in this study, as he followed 
two different competition approaches (12 weeks) before 
the Race Walking World Cup and the Olympic Games 
as coach’s decision. 

During the last 12 weeks of training before the Race 
Walking World Cup, the training plan was characterised 
by a smaller total and weekly volume of work (large ef-

Figure 2.—Changes in blood lactate concentrations ([La-]) and heart 
rate (HR) values during an incremental racewalking test consisting in 
5x2000-m repetitions, 4 weeks before the Race Walking World Cup (■) 
and the Olympic Games (▲). 

Figure 3.—The evolution of different haematological variables during the season: A) hemoglobin; B) hematocrit; C) ferritin; and D) serum iron. The 
lines indicate the Race Walking World Cup (WC, week 29) and the Olympic Games (OG, week 45).

A

C

B

D

3). However, ferritin values (83 vs. 88 mg·mL-1; Figure 
3C) and serum iron concentration (81 vs. 73 µg·dl-1; Fig-
ure 3D) were similar at the end of Approach 1 and 2.
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training intensity zone distribution in the first and second 
competition approaches, may therefore partially explain 
the racewalker’s impaired performance in the 50-km 
racewalking event in the Olympic Games. 

Conclusions

In summary, according to the results of this analy-
sis, it seems that a training strategy characterised by a 
higher incidence of high intensity training and low vol-
ume of work may lead to superior training adaptations 
and performance in 50-km racewalking when compared 
to current guidelines consisting in high volume at low 
training intensities. This may help elite racewalkers and 
their coaches to achieve an optimum performance in 
their major goal competitions. 
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fect) and higher intensity training (large effect) in com-
parison to the training plan before the Olympic Games 
(Figure 1). 

This novel training strategy in Approach 1 contrasted 
with current racewalking training guidelines that are 
more focused on high training volumes at low intensi-
ties.3 

The racewalker markedly reduced his training volume 
6 weeks before the Race Walking World Cup for 2 weeks, 
and then completed 4 weeks with a high incidence of high 
intensity training (K3 - which is indicative of race pace- 
K4 and K5). In contrast, before the Olympic Games the 
racewalker followed a traditional longer linear approach 
with high incidence of low training intensities (K1-2) 
(Figure 1). Training at high intensities has been suggest-
ed to play a key role in inducing maximal physiological 
adaptations in highly trained athletes and to further en-
hance training-induced adaptations while athletes reduce 
their training volume before a major competition,5 and 
more importantly, these adaptations can be elicited and 
maintained over the long term.10 The training strategy 
followed during Approach 1 may therefore explain the 
lower blood lactate concentrations at race pace 4 weeks 
before the Race Walking World Cup when compared to 
the Olympic Games (Figure 2), although we acknowl-
edge that the training regime the days before testing was 
not identical. 

Despite the longer high altitude stage during Approach 
2 when compared to Approach 1 (6 weeks vs. 4 weeks, 
respectively) and although the racewalker used iron 
supplementation during Approach 2, this did not result 
in better haematogical values on the contrary to the ex-
pected.11, 12 The lack of erythropoietic response is usually 
attributed to illness or an injury blunt,13 but this was not 
the case of the racewalker featured in this study. We ex-
plain the different haematological values recorded before 
each major competition by the different training strate-
gies followed in Approach 1 and 2. Several studies have 
reported that consecutive high-volume training sessions, 
as was the case of the second competition approach (Fig-
ure 1), can result in decreased haematocrit and haemo-
globin concentrations 11 and serum iron levels.14 These 
worse hematological values, together with the different 
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A B S T RAC   T
BACKGROUND: Typical training programmes in elite race walkers involve high training volumes at low and moderate intensities, which have been 
reported to induce functional and structural adaptations at an anthropometric level. Since anthropometrical variables are closely related to move-
ment efficiency and performance in endurance events, the aim of this study was to describe the anthropometric profile of world-class race walkers.
METHODS: Twenty-nine world-class race walkers (21 men and 8 women) participated in this study. Anthropometric characteristics, including 
height, body mass, eight skinfolds, five girths and four bone breadths were measured. Body composition, somatotype, somatotype dispersion 
mean, somatotype attitudinal mean and height to weight ratio, as well as skinfolds extremity to trunk ratio were also calculated
RESULTS: Mean height, body mass and body mass index were 177.1±7.1 cm, 66.4±5.8 kg, and 21.2±1.3 kg·m2 for men and 165.6±4.5 cm, 
53.6±3.7 kg, and 19.6±1.6 kg· m2 for women, respectively. Women presented greater body fat content (6.7±0.6 vs. 12.2±0.8%; very large ef-
fect), less muscle mass (65.6±4.6 vs. 61.6±2.6 kg; large effect), and were more endomorphic (large effect) than men. Men specialists in 20-km 
showed greater muscle mass (66.7±4.9 vs. 64.4±4.3 kg; moderate effect), and slightly higher skinfolds, girths, body fat content and were more 
mesomorphic than 50-km specialists (moderate effect).
CONCLUSIONS: The present study expands the limited knowledge on the anthropometric characteristics and somatotype elements of elite 
top-class race walkers. The characterisation of the morphology of elite race walkers provides coaches a reference values to control the training 
development of the race walker, as well as providing reference values to improve talent identification.
(Cite this article as: Gomez-Ezeiza J, Tam N, Torres-Unda J, Granados C, Santos-Concejero J. Anthropometric characteristics of top-class Olympic 
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Race walking is an athletic event where athletes com-
pete over distances of 20 kilometres and 50 kilome-

tres. The peculiar gait employed in race walking is a con-
sequence of the rules that govern this sport, as judges dis-
qualify competitors who display a visible loss of contact 
with the ground or a bent knee from first contact until the 
vertical upright position.1 Race walking places special em-
phasis on technical ability and endurance capacity,2 as suc-
cess in endurance events has previously been associated to 
certain physiological parameters,3, 4 including: 1) a greater 
cardiac output; 2) higher capacity to uptake and delivery 

oxygen to active muscles; 3) a faster lactate threshold; and 
4) a lower oxygen cost of transport.

Numerous studies have found relationships between 
endurance performance and anthropometrical parameters, 
based on the proportional relationships between metabolic 
cost and body mass.5 The most important physiological 
metrics to excel in endurance events are dependent on 
body mass (i.e. VO2max in mL/kg/min, running economy 
in mL/kg/km).6 Thus, the body composition is known to 
influence an athlete’s potential within a sport such as run-
ning,7 cycling8 and skiing.9 For instance, Teunissen et al. 
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involved and provided written informed consent before 
testing. The Ethics Committee for Research on Human 
subjects of the University of the Basque Country (CEISH/
GIEB) granted permission for this study (REF. 66/2015).

Data collection

Anthropometric characteristics were measured in a resting 
state by an accredited anthropometrist following the stan-
dardised techniques adopted by the International Society 
for the Advancement of Kinanthropometry (ISAK). All 
variables, except body mass and height, were measured on 
the right side of the body.

Height and body mass were measured in running shorts to 
the nearest 0.1 cm and 0.1 kg using a portable stadiometer 
(Seca, Hamburg, Germany) and digital scale (Tanita Cor-
poration, Tokyo, Japan), respectively. Eight body skinfolds 
(triceps, subscapular, biceps, iliac crest, supraspinale, ab-
dominal, front thigh and medial calf) were measured to the 
nearest 0.2 cm using a Harpenden skinfold caliper (British 
Indicators Ltd, St Albans, UK) and the sum of the eight skin-
folds was calculated. Bone breadths and segmental girths 
were measured by a small bone sliding caliper (Rosscraft In-
novations Inc, Vancouver, Canada) and a retractable measur-
ing tape (Cooper Industries, Sparks, NV, USA), respectively. 
Girths were corrected at the sites where the skinfold and girth 
measurements coincided (upper arm, thigh and calf) using 
the formula proposed by Jelliffe et al.17 All anthropometric 
equipment was calibrated before the assessment period, with 
additional checks made against certified calibration weights 
and rods. Every measure was performed twice, and a third 
measure was taken when the difference was >5% for skin-
folds or >1% for other anthropometric variables.

Body fat content was calculated as proposed by Yu-
hasz,18 whereas the muscle mass was calculated according 
to equation proposed by Matiegka.19 Health-Carter equa-
tions were used to estimate the somatotype, determining 
the relative fatness (endomorphy), musculoskeletal ro-
bustness (mesomorphy) and linearity or slenderness (ec-
tomorphy) using a score of 0.5-2.5 for low, 3.0-5.0 moder-
ate, 5.5-7.0 high, and ≥7.5 very high.20

Statistical analysis

All values are expressed as mean±standard deviation 
(SD). Statistical analyses of data were performed using 
the Statistical Package for the Social Sciences 21.0 soft-
ware package (IBM Corp, Armonk, NY, USA). Data were 
screened for normality of distribution and homogeneity 
of variances using a Shapiro-Wilk Normality Test and a 
Levene’s test, respectively. One-way ANOVA was used 

showed that the 74% of the total metabolic cost of running 
is generated by the support of the body weight.10

As race walking is an endurance event based on the for-
ward propulsion of the body, a reduced body mass might 
be a good strategy to improve performance.6 However, 
too low body mass may be a consequence of muscle mass 
loss,11 low bone mineral density,12 sickness13 and injury,12 
which would ultimately affect performance outcomes by 
decreasing the ability to enhance training adaptations and 
to generate optimal power and speed.6

Race walkers may improve their anthropometrical pro-
file as an strategy to ensure health, generate positive train-
ing adaptations and perform in the best conditions, Many 
endurance athletes use different nutritional strategies to 
optimise their body composition14 and specific training 
regimes have also been reported to induce specific func-
tional and structural adaptations, including changes in an-
thropometrical variables such as body mass and the sum of 
skinfolds.7 Elite race walking training regimes are typical-
ly characterised by high training volumes at low and mod-
erate intensities, which may result in certain specific func-
tional and structural adaptations.15 Although some studies 
have previously reported that well-trained race walkers 
have similar anthropometric characteristics to other endur-
ance athletes,16 the anthropometrical profiles of elite race 
walkers of different distances are yet to be explored.

Thus, the aim of this study was to describe and compare 
the anthropometric profile of world-class female and male 
race walkers and their respective distance specialisation 
(20-km and 50-km). Secondly, this study aimed to estab-
lish reference values for athlete selection, talent identifica-
tion and training programme development in race walking.

Materials and methods
Participants

Twenty-nine international elite race walkers from Spain, 
Canada, Australia, France, Mexico, Sweden, Ireland and 
England agreed to participate in this study. All race walkers 
met the Olympic Entry Standard for Games of the XXXI 
Olympiad taking place in Rio de Janeiro 2016 (1:24:00 for 
men and 1:30:00 for women in 20-km and 4:06:00 in 50-
km for men). Our sample also included the current World 
and Olympic champions for men over both 20-km and 50-
km. Participants were tested during their training stages 
in Europe, in preparation for target International Amateur 
Athletics Federations’ (IAAF) Permited Race walking 
meetings (i.e. XXX Gran Premio Cantones de La Coru-
ña), were informed about all the tests and possible risks 
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in 20-km (ES=0.86 moderate effect, P=0.01) and presented 
lower sum of skinfolds (ES=0.78 moderate, P=0.02).

When comparing 20-km men and women specialists, 
we observed significant differences in height (ES=0.77 
moderate, P<0.001), body mass (ES=0.83 moderate ef-
fect, P<0.001), sum of skinfold (ES=0.89 moderate effect, 
P<0.001), body fat content (ES=0.97 moderate, P<0.001) 
and muscle mass (ES=0.84 moderate effect, P<0.001).

Figure 1 depicts a graphical description of individual val-
ues and the mean of the sample of somatotype values for 
both male and female race walkers. Again, we found no sig-
nificant differences between the somatotype classification of 
the three groups analysed. Even though all groups presented 
a balanced mesomorph-ectomorph somatotype, the figure 
exhibits a specific somatotype profile related to the position 
of the mean values for each event group. In men, 20-km 
race walkers presented higher mesomorphism values than 
50-km race walkers, with a tendency towards more muscu-
lar physique when compared to the linearity presented by 
the 50-km race walkers. On the other hand, 20-km female 
race walkers scored higher endomorphic values than men.

Discussion

The main finding of this study was that sex differences 
were found for all key anthropometrical characteristics 
required to excel in endurance events. In addition, males 
competing in the 50- and 20-km race walking events also 
presented differences in certain variables. These results 
suggest that unique anthropometric profiles are suited to 

to compare anthropometrical characteristics between race 
walkers of different sex and event. The magnitude of dif-
ferences or effect sizes (ES) were calculated according 
to Cohen’s d 21 and interpreted as small (>0.2 and <0.6), 
moderate (≥0.6 and <1.2) and large (≥1.2 and <2) accord-
ing to the scale proposed by Hopkins.22 Significance for all 
analyses was set at P<0.05.

Results

The average 20-km race walking time of the participants 
was 80.79±2.11 min (CV=2.6%) and 90.93±2.81 min 
(CV=3.1%) for men and women, respectively, indicat-
ing that the sample was homogenous from a performance 
point of view.

All the absolute anthropometric characteristics are pre-
sented in Table I. In men, we found no significant differenc-
es in height, body mass, fat percentage or muscle mass be-
tween 50-km and 20-km specialists. However, male 50-km 
race walkers were significantly older than those competing 

Table I.—�Anthropometrical characteristics of elite racewalkers.
20-km men 

(N.=11)
Mean±SD

50-km men 
(N.=10)

Mean±SD

20-km women 
(N.=8)

Mean±SD

Age (years) 24.9±3.2† 28.5±4.9 22.5±2.8
Height (cm) 177.5±5.4 176.6±6.9 165.5±4.4*
Mass (kg) 67.8±5.5 65.0±3.2 53.6±3.7*
∑ 8 skinfold (mm) 49.9±3.9† 45.6±3.5 71.9±6.9*
Body fat (%) 6.8±0.2 6.4±0.3 12.2±0.8*
Muscle mass (kg) 38.0±2.9 36.5±3.3 30.8±1.3*
Skinfolds (mm)

Biceps 2.8±0.3 2.8±0.5 5.1±2.8
Subscapular 7.2±0.7 7.0±1.3 7.2±0.9
Triceps 5.7±1.5 6.0±1.7 10.7±1.2
Iliac crest 7.6±1.0 7.1±1.0 10.8±2.9
Supraspinale 6.9±0.82 6.1±1.4 8.7±2.3
Abdominal 7.5±0.9 7.0±1.3 9.3±2.0
Front thigh 7.7±1.0 7.5±2.0 12.7±4.1
Medial calf 4.35±0.9 4.4±0.9 7.2±1.3

Breadths (cm)
Wrist 4.9±0.7 4.8±0.6 4.2±0.6
Humerus 6.1±0.6 5.9±0.4 5.3±0.6
Femur 8.9±0.8 8.6±0.9 8.0±0.7
Ankle 6.10±0.6 6.0±0.5 5.5±0.7

Girths (cm)
Relaxed arm 28.0±1.2 27.6±1.8 24.5±1.5
Flexed arm 29.4±1.3 28.7±1.6 25.3±1.4
Waist 73.6±2.4 73.7±3.05 66.0±2.7
Hip 91.3±2.3 90.0±4.3 87.0±8.1
Mid-Thigh 48.9±2.2 48.2±2.3 47.4±2.7
Calf 36.1±1.7 35.2±1.3 34.1±1.7

Values are mean±SD. Significant difference on main characteristics (P<0.05): 
*20-km women vs. 20-km men group and †20-km men vs. 50-km men group.
CV: coefficient of variation; ∑ 8 skinfolds: biceps, triceps, subscapular, 
supraspinale, abdominal, suprailiac, mid-thigh and medial calf.

Figure 1.—Somatotype distribution of elite race walkers according to 
sex and competitive event. Squares: 20-km male race walkers. Trian-
gles: 20-km women race walkers. Circles: 50-km male race walkers. 
The biggest icons represent the mean value of each event participants.
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the race walkers may be explained by the greater muscle 
demand and effort needed to maintain the race-walking 
gait patterns.29 Unlike running, the rules that govern race 
walking force the race walker to limit the gait to a less ef-
ficient pattern. Specially, the lack of knee flexion that does 
occur during stance phase has been shown to result in a 
reduced energy-saving role of the Achilles tendon, in ad-
dition to higher muscle effort done by the use of: 1) longer 
propulsive phases; 2) higher stride frequencies; 3) greater 
action of the upper-body; making race walking mechani-
cally more costly than running at the same speed.30, 31

In this study, the somatotype categorisation in male and 
female race walkers was compared to assess morphology 
according to the relative contribution of three fundamen-
tal elements: mesomorphy, ectomorphy and endomorphy. 
A study conducted by Vernillo29 reported the ectomorphic 
character that showed elite Kenyan marathon runners, re-
lated to a relative linearity and long-line body types. How-
ever, the results of this study show that elite race walkers 
exhibited a balanced mesomorph-ectomorph somatotype 
dimension (Figure 1). This morphological body-type is 
characterised by an athletically balanced element of a lon-
gi-linear athlete with well-developed muscles. Although 
all groups in this study presented a balanced mesomorph-
ectomorph somatotype, distance specialised group (20-km 
vs. 50-km) exhibited a specific somatotype-rating trend 
related to the values of each somatotype category (Figure 
1). These anthropometrical and morphological differences 
may be a result of the different training approaches from 
the different competitive distances. The higher training 
volumes at low intensities employed by the 50-km race 
walkers may rely on the use of fat metabolism and imply a 
reduced energy availability.12 This may induce adaptations 
in lower sum of skinfolds, favouring a more ectomorphic 
somatotype profile. In contrast, race walkers competing 
over 20-km train at a higher intensity and speed,32 result-
ing in slightly greater muscle mass values and more meso-
morphic profiles.

This study faced several limitations. The first limitation 
of this study is the error in anthropometric manual mea-
surement, the technique used, the equipment, the formula 
used, and the site location, as all these factors can affect 
the results. However, since the anthropometrical measure-
ments were performed by an accredited anthropometrist 
following standardised techniques, we believe that the 
measurement error was negligible. In the future, the use of 
dual energy X-ray absorptiometry (DXA) could most ap-
propriately assess the anthropometrical characteristics of 
elite race walkers.33

each event (Table I). Previous research has shown the pos-
itive influence of certain anthropometrical characteristics 
on endurance performance.6-9 Of these, the most used an-
thropometrical parameter in endurance athletes is the sum 
of skinfolds, often reported as an important predictor of 
endurance performance.23 Previous studies analysing elite 
endurance athletes have reported low skinfold thickness 
and body fat content, which is in agreement with the re-
sults of this study (Table I).6-9 For instance, a lower sum 
of skinfolds was found in the 50-km male racewalkers 
when compared to their 20-km male counterparts. Simi-
larly, Legaz-Arrese et al. found lower skinfold thickness 
in marathon runners than athletes competing over shorter 
distances.24 This lower sum of skinfold is representative 
of a reduced subcutaneous fat and gross mass, which may 
consequently reduce the muscular effort required to main-
tain the same walking intensity.10 Interestingly, a lower 
sum of skinfolds and body fat content was found in male 
race walkers when compared to female walkers. This is in 
agreement with other studies describing sex differences in 
multiple athletic disciplines.25

It is known that endurance training regimes result in 
specific anthropometric adaptations.26 To our best knowl-
edge, there is a lack of longitudinal data describing an-
thropometrical changes associated with training regimes 
of elite race walkers. However, this can be inferred taking 
into account the seasonal training load of elite race walk-
ers.15 It has been reported that the training regime of an 
elite race walker consists of very high training volumes 
at low intensities, divided into phases where training load 
is variable (volume/intensity). Specifically, Knechtle et 
al. showed that weekly training volumes are associated to 
lower sum of skinfolds and body fat percentages.26 These 
changes, and other factors like injuries, illnesses, recovery 
phases, altitude training camps etc. may also contribute to 
changes in body composition during the season.11 Consid-
ering the years of continuous training spent by athletes in 
a high-performance environment, certain anthropometric 
adaptations during the whole period are expected.

With the aim of reducing body fat mass, some endur-
ance athletes use nutritional interventions.14 However, a 
reduction of energy availability may concomitantly be as-
sociated with a loss of muscle mass,11 which may result 
in a reduced capacity to produce optimal muscle-power.6 
In this study, a greater muscle mass was found in both 
20- and 50-km elite race walkers (38.0±2.9 and 36.5±3.3 
kg) when compared to elite endurance athletes from other 
studies such as Kenyan runners (33.2 kg, ES=0.76, moder-
ate effect)27 or European runners.28 Higher muscle mass in 
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14.  Martinsen M, Bratland-Sanda S, Eriksson AK, Sundgot-Borgen 
J. Dieting to win or to be thin? A study of dieting and disordered eating 
among adolescent elite athletes and non-athlete controls. Br J Sports Med 
2010;44:70–6. 
15.  Gomez-Ezeiza J, Granados C, Santos-Concejero J. Different competi-
tion approaches in a world-class 50-km racewalker during an Olympic year. 
J Sports Med Phys Fitness 2016;56:1423–7.
16.  Hagberg JM, Coyle EF. Physiologic comparison of competitive race-
walking and running. Int J Sports Med 1984;5:74–7. 
17.  Jelliffe DB, Jelliffe EP. The arm circumference as a public health in-
dex of protein-calorie malnutrition of early childhood. J Trop Pediatr (1967) 
1969;15:177–260.
18.  Yuhasz MS. Physical fitness Manual. London: University of Western 
Ontario; 1974.
19.  Matiegka J. The testing of physical efficiency. Am J Phys Anthropol 
1921;4:223–30. 
20.  Carter JL, Heath BH. Somatotyping: development and applications. 
Cambridge: University Press; 1990.
21.  Cohen J. Statistical power analysis for the behavioral sciences. Hills-
dale, NJ: Lawrence Erlbaum Associates; 1988.
22.  Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive sta-
tistics for studies in sports medicine and exercise science. Med Sci Sports 
Exerc 2009;41:3–13. 
23.  Legaz-Arrese A, Kinfu H, Munguía-Izquierdo D, Carranza-Garcia LE, 
Calderón FJ. Basic physiological measures determine fitness and are asso-
ciated with running performance in elite young male and female Ethiopian 
runners. J Sports Med Phys Fitness 2009;49:358–63.
24.  Legaz A, Eston R. Changes in performance, skinfold thicknesses, and 
fat patterning after three years of intense athletic conditioning in high level 
runners. Br J Sports Med 2005;39:851–6. 
25.  Knechtle B, Knechtle P, Barandun U, Rosemann T, Lepers R. Predictor 
variables for half marathon race time in recreational female runners. Clinics 
(São Paulo) 2011;66:287–91. 
26.  Knechtle B, Knechtle P, Rosemann T. Race performance in male 
mountain ultra-marathoners: anthropometry or training? Percept Mot Skills 
2010;110:721–35. 
27.  Vernillo G, Schena F, Berardelli C, Rosa G, Galvani C, Maggioni M, et 
al. Anthropometric characteristics of top-class Kenyan marathon runners. J 
Sports Med Phys Fitness 2013;53:403–8.
28.  Santos-Concejero J, Granados C, Irazusta J, Bidaurrazaga-Letona 
I, Zabala-Lili J, Tam N, et al. Differences in ground contact time explain 
the less efficient running economy in north african runners. Biol Sport 
2013;30:181–7. 
29.  Cronin NJ, Hanley B, Bissas A. Mechanical and neural function of tri-
ceps surae in elite racewalking. J Appl Physiol (1985) 2016;121:101–5. 
30.  Hoga-Miura K, Ae M, Fujii N, Yokozawa T. Kinetic analysis of the 
function of the upper body for elite race walkers during official men 20 km 
walking race. J Sports Med Phys Fitness 2016;56:1147–55.
31.  Gomez-Ezeiza J, Torres-Unda J, Tam N, Irazusta J, Granados C, San-
tos-Concejero J. Race walking gait and its influence on race walking econ-
omy in world-class race walkers. J Sport Sci 2018;1–7
32.  Drake A. The training methods of Olympic Champion Ivano Brugnetti 
and Italian race walkers. The Coach 2005;27:55–61.
33.  Ball SD, Altena TS, Swan PD. Comparison of anthropometry to DXA: 
a new prediction equation for men. Eur J Clin Nutr 2004;58:1525–31. 

Conclusions

The present study expands the limited knowledge on the 
anthropometric characteristics and somatotype elements 
of elite top-class race walkers in each competitive dis-
tance events. The characterisation of the morphology of 
elite race walkers provides a reference values to assess an 
optimal body composition for an elite race walker, as well 
as providing reference values to improve talent identifica-
tion. However, to ensure health, generate positive training 
adaptations and perform in the best conditions for each 
race-walking event, coaches and nutritionists should con-
trol and manage body composition to complete the goals 
of each training phases during the season.
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The influence of racewalking on the calcaneal bone 

density status in world-class racewalkers. 
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ABSTRACT

Background: Elite race walkers can walk up to 1000 minutes each week during the athletic 

season, which may dramatically affect the skeletal system through repetitive loading. 

Assessing the bone density of elite race walkers will improve our understanding of race 

walking’s relationship with health, injury risk and performance.

Methods: Twenty-four elite race walkers and 16 healthy controls participated in this study. 

BMD was assessed with ultrasonography of the calcaneus using speed of sound (SOS), 

broadband ultrasound attenuation (BUA), stiffness index (SI), Z- and T-scores. Gait variables 

and GRF were also determined in the race walkers. 

Results: The 20-km race walkers presented higher SOS (p=0.032) and SI (p=0.041) values 

than the 50-km male race walkers, who had lower mean T- and Z-scores (p=0.007; p=0.003). 

In addition, BUA differed between male and female 20-km race walkers (p=0.049). Greater 

training load and the initial loading rate was associated with BUA (p=0.022; p=0.049). 

Greater time spent in ground contact and propulsive phase, were associated with higher SOS 

and SI (p=0.003; p=0.004 and p=0.004; p=0.014, respectively). 

Conclusions: The specificity of the training may explain the differences observed on the 

BMD on race walkers. Initial loading and the propulsive energy production could positively 

change the BMD in race walkers. Additionally, race walkers may be required to optimize 

their training load and energy availability to ensure healthy BMD.

Key words: bone stiffness; ground contact; injury risk; training; elite; load
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1. INTRODUCTION

Race walking is a unique athletic event included in the Olympic Games and other major 

athletic championships, where participants compete over 20-km and 50-km. Elite race 

walkers display not only a great endurance capacity, but also great technical ability as they 

must adhere to the rules that govern this discipline: no visible loss of contact with the ground 

and a straightened knee from the first contact until the vertical upright position 1. This rule 

results in a peculiar gait pattern that enforces a definite heel-strike and extended knee at 

initial ground contact 2.

It has also been reported that elite race walkers can walk up to 1000 minutes each week 

during the athletic season 3, which may dramatically affect the skeletal system through 

repetitive loading  4. Bone stimulation derived from high muscular forces and high impact 

forces has been reported to promote osteogenesis 5 and the greater the forces, the greater the 

osteogenesis effect 6. It is known that sports linked to direct actions of gravitational forces, 

such as running, generate higher osteogenesis than sports like swimming or rowing 7. 

Similarly, animal studies using external loads have found higher bone osteogenesis by 

applying high magnitude strains at a high rate and relatively lower strain cycle 8. However, 

there is no agreement linking bone mineral density (BMD) to training volume as some studies 

have found increased BMD in bones associated with impact loading 9, whereas other studies 

associated an increased training volume and running distances with lower bone densities 10. 

Thus, it appears that the site of loading will likely influence bone density most proximal to 

load application. Despite this, many factors also have the potential to negatively affect bone 

density in athletes with high training volumes: low calcium and D vitamin intake 11, energy 

deficit 12, low body fat 4 and low testosterone levels 13. In fact, even elite runners have been 
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found to present with low lumbar spine bone density values due to low energy availability 9 

and even stress fracture 14. This suggests a risk in elite race walkers who are exposed to both 

high training loads and constrained gait patterns and loading. 

Bone health has been extensively assessed in sedentary populations determining bone 

formation and turnover 15. Similarly, a few studies on bone health in elite athletes have also 

been published across various sporting disciplines 7, including skiers 16, football players 17 

and endurance runners 9,10. These studies associated BMD with injuries 18, training volumes 4, 

sex or age 19. To date, only two studies assessing bone characteristics in master race walkers 

have been conducted 20 21, although bone characteristics in elite race walkers have yet to be 

explored.

Recently, Lara et al. 6 reported calcaneal bone stiffness, a cost effective and portable method 

of determining bone density, in a cohort of amateur recreational runners. They found that 

calcaneal stiffness was higher in the endurance runners than sedentary controls. In addition, 

greater bone stiffness values were observed in marathon runners than their half-marathon and 

shorter 10-km counterparts. On the contrary, Gast et al. 22 found an inverse association 

between competitive distance with BMD in short-, middle- and long-distance masters 

athletes. Whether or not this is exhibited in younger elite race walkers is of interest as their 

training volume and unique gait pattern may expose the body to different external and 

internal loads 23 and subsequent influence on bone density than runners. Calcaneal bone 

stiffness is of interest as it is the first bone exposed to the external ground reaction force at 

ground contact, and is also influenced by internal loading produced by the contractions of the 

gastrocnemius and tibialis anterior 24. The question arises whether any relationship between 

bone density, competitive distance, training volume, sex and biomechanics exist in elite race 

walkers.  

Subsequently, assessing the bone density of elite race walkers will improve our 
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understanding of race walking’s relationship with health, injury risk and performance. Thus, 

this study aimed to describe and compare markers of bone density in elite male and female 

race walkers. In addition, this study aimed to determine relationships between spatiotemporal 

and ground reaction variables characteristics of the gait cycle that may influence the bone 

density variables.

2. MATERIAL AND METHODS 

2.1 Participants

Twenty-four world-class race walkers (16 males and 8 females) volunteered to participate in 

this study. All race walkers were of Olympic Entry Standard for Rio de Janeiro 2016 (1:24:00 

for men & 1:34:00 for women in 20-km and 4:06:00 in 50-km for men). Additionally, a 

convenience sample of sixteen (8 males and 8 females) apparently healthy male and female 

active students were recruited as a comparative cohort for calcaneal stiffness measures. 

Participants were tested during training camps in Spain, whilst they were in Europe for target 

IAAF Permit Race Walking meetings (i.e. XXX Gran Premio Cantones de La Coruña) before 

to the Rio de Janeiro 2016. Participants provided written informed consent after they were 

informed about all tests and possible risks involved. The Ethics Committee for Research on 

Human subjects of the University of the Basque Country (CEISH/GIEB) granted permission 

for this study (Ref. 2015/053).

2.2 Design and protocol

The study was performed in a resting state without any training or physical activity 24 hours 

before the measurement of the calcaneus stiffness. In addition, race walkers provided 

information regarding training habits and previous medical conditions and injuries. For 
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descriptive purpose, anthropometrical characteristics were measured following the 

standardised techniques adopted by the International Society for the Advancement of 

Kinanthropometry 25

2.2.1 Calcaneal density assessment. An ultrasonographic bone scanner (Achilles, General 

Electric Healthcare-Lunar, WI, USA) was used to perform an assessment of the calcaneus of 

the right foot 6. This scanner consisted of a control box with a heel water bath and two 

transducers placed opposite each other on either side of the water bath. One of these 

transducers emitted ultrasound signals through the water bath with the heel in it. whilst the 

other received the signals emitted. All signal parameters were digitised and further analysed 

for biological interpretation. Recent investigations have shown that quantitative ultrasound 

can accurately determine the exercise induced changes in bone status 15. The bone scanner 

used as found to be both valid and reliable in prior studies, with a coefficient of variation of 

0.47%, 2.6% and 1.6% for speed of sound (SOS), for the broadband ultrasound attenuation 

(BUA) and the calcaneal stiffness index (SI), respectively 26.

During this assessment race walkers were seated with their right bare foot placed in the water 

bath. Subsequently, expandable membranes were filled with warm water and isopropyl 

alcohol was used to assist coupling between the heel and the membranes, consequently 

eliminating air spaces. Signals recorded during each assessment by the bone scanner used to 

determine bone density were the speed of sound and the broadband ultrasound attenuation. 

While SOS assesses the elastic resistance of the bone, which is related to mineral and protein 

contents, the loss of ultrasound energy occurred by absorption or dispersion was assessed by 

the BUA, which is related to the bone density 26. The calcaneal stiffness index (SI) was 

calculated by the combination of SOS and BUA related to participant age as follows 6: 
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SI = (0.67 · BUA + 0.28 · SOS) – 420

T- and Z-scores for calcaneus stiffness were calculated for each ultrasonographic 

measurement using the predetermined reference values used by the manufacturer’s software. 

The individual T- and Z-score represents the difference between the participant’s value for 

calcaneus stiffness and the mean value for a population of young adults of the same sex with 

peak bone mass and the difference between the participant’s value for calcaneal stiffness and 

the value of a sex- and age-adjusted population, respectively 22.

2.2.2 Spatiotemporal variables. The spatiotemporal assessment was conducted during a 

treadmill test using an optical measurement system (Optojump-next, Microgate, Bolzano, 

Italy). The values between the 2nd and 3rd min of the race walking stage corresponding to 12 

km·h-1 were averaged to analyse a stable gait data. Gait cycle characteristics determined were 

ground contact time, swing time, step length, cadence and the percentage of the stance phase 

at which the different sub-phases occurs (initial contact, midstance and propulsion). During 

stance, the initial contact sub-phase corresponds to the time from initial ground contact to 

foot flat; the midstance sub-phase from foot flat to initial take off and the propulsive sub-

phase from initial take off to toe off.

2.2.3 Ground reaction forces. Ground reaction force (GRF) data were collected at 2000 Hz, 

using a 900 × 600 mm force platform (AMTI, Watertown, MA, USA). Race walkers 

completed four trials at the same speed (12 km·h-1) on a 30-m indoor laboratory track. Trials 

were accepted if the speed was within ± 4% of target speed and when there was no visual 

evidence of athletes targeting the force platform. Force platform data were filtered using a 

low-pass fourth-order Butterworth filter with a cut-off frequency at 100 Hz. For each trial, the 
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participants right limb was analysed. GRF data were normalized to bodyweight (BW). Peak 

vertical GRF as well as initial loading rate were determined as previously described by 

Williams, McClay, & Manal 27.

2.3 Statistical analysis

All values are expressed as mean ± standard deviation (SD) and statistical analyses of data 

were performed using IBM SPSS 21 (IBM Corporation, Armok, USA). Data were screened 

for normality of distribution and homogeneity of variances using a Shapiro-Wilk normality 

test and a Levene’s test respectively. A one-way analysis of covariance (ANCOVA) was 

employed to compare differences in bone density ultrasonographic variables between 

competitive event-related groups (20-km men vs. 50-km men vs. 20-km women) and control 

groups adjusting for age. Pearson’s correlation coefficient and regression analysis were 

performed to assess the relationships between calcaneus bone density related 

ultrasonographic variables and biomechanical factors in the race walking group only. Effect 

sizes (ES) were calculated for differences according to 28 and interpreted as small (>0.2 and 

<0.6). moderate (≥0.6 and <1.2). large (≥1.2 and <2) and very large (≥2 and <4) 29. 

Significance was set at p<0.05.

3. RESULTS

The descriptive characteristics of the race walkers and control group are listed in Table 1. 

Participants are considered world-class as all possessed a personal best time faster than the 

entry standard required to participate in the Olympic Games of Rio de Janeiro 2016 (84.0 min 

for men and 94.0 min for women for 20-km). Fifty-km race walkers performed higher weekly 

training volumes than 20-km male and female race walkers (p<0.001; ES=1.6, large effect & 
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ES=2.4 very large effect, respectively). There were no significant anthropometrical 

differences between 50- and 20-km male race walkers, however female race walkers were 

shorter (p=0.001; ES=2.0, very large effect), lighter (p=0.003; ES=2.1, very large effect) and 

had greater sum of skinfolds (p=0.001; ES=4.5, very large effect) than the male race walkers. 

The control group were younger (p=0.001; ES=1.25, large effect) and had higher sum of 

skinfolds (p=0.001; ES=1.25, large effect).

No differences in calcaneal ultrasonographic parameters were found between race walkers 

and controls regardless of adjusting for age. However, various differences were found 

between 50-km and 20-km men and 20-km women race walkers (Figure 1). The 20-km race 

walkers presented higher SOS (p=0.032; ES=1.3, large effect) and SI (p=0.041; ES=1.3, large 

effect) values than the 50-km male race walkers. In contrast, BUA values differed only 

between male and female 20-km race walkers (p=0.049; ES=1.1, moderate effect). Mean T- 

and Z-score were higher in the 20-km male race walkers than the 50-km male race walkers 

(p=0.007; ES=2.4 and p=0.003; ES=3.0, very large effect, respectively). 

In the race walking cohort, a greater weekly training load was associated with BUA values 

(r=-0.466, p=0.022). As it is described on table 2, initial loading rate of ground reaction force 

variables was found to positively correlate with greater BUA values (r=0.442, p=0.049), 

whereas not with the peak vertical forces.  Additionally, greater time spent in ground contact 

was associated with higher SOS, BUA and SI values (r=0.696, p=0.003; r=521, p=0.039; 

r=0.679, p=0.004 respectively). Specifically, longer propulsive sub-phase of ground contact 

was related to a higher SOS (r=0.561, p=0.004) and SI values (r=0.496, p=0.014). There were 

not found any other significant association between spatiotemporal values or kinematics with 

BMD.
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4. DISCUSSION

The main goal of this study was to analyse and compare calcaneal stiffness, a marker of bone 

mineral density (BMD), in elite 20-km and 50-km male and 20-km female race walkers. It 

was hypothesized that, because of the specific gait pattern employed by race walkers and 

distance specific training, calcaneal stiffness may differ between these groups. Indeed, within 

the race walking group differences were found in various bone ultrasonographic parameters 

between sex and competitive distances, however, no differences were found between the race 

walkers and control group. 

The first notable finding was that the 50-km male race walkers presented lower SOS, SI, T- 

and Z-score values but not BUA values when compared to the 20-km male race walkers. The 

lower SOS values suggest the 50-km male race walkers possess lower soft tissue and 

differing micro-architecture of cortical thickness/elasticity that comprises the bone 6. This 

subsequently results in a lower SI, T- and Z-scores and these discrepancies maybe related to 

differences found in training volume and intensity between these athletes of different distance 

specialization. Interestingly, a correlation between weekly training load and BUA values of 

the entire race walking group was found, where a greater training load was associated with a 

lower BUA, a marker of BMD 26. Previous studies have found that recreational marathon 

runners possess greater calcaneal stiffness than half-marathon and 10-km runners 6. However, 

our current findings in race walker suggest that too high training volumes may expose one to 

lower bone quality, especially when comparing elite to recreational athletes. This and a 

previous study have described that elite race walkers’ training regimens consist of very high 

training volumes at low and moderate intensities 23. These demanding training regimes 

increase the risk of low energy availability 30, usually associated with endurance athletes 31. 

Low energy availability alters the endocrine system 12, with negative consequences on BMD 

32.  Thus, the observed lower SOS, SI, T- and Z-score values found in the 50-km race 
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walkers, suggest lower bone quality that appears to be related to possible energy availability 

from high training volumes and subsequent disruption in bone turnover and consolidation 

which may increase injury risk. 

Moreover, the 50-km race walkers exhibited below normal T- and Z-score values (-0.8 ± 1.3 

& -0.8 ± 1.2, respectively). Indeed, five of the eight (62.5%) 50-km race walkers in this study 

presented values of T- and Z-scores below -1.0, classifying them as osteopenic according to 

the World Health Organization classification system 33. By contrast, no male 20-km race 

walkers, three of the eight female 20-km race walkers and one participant in the control group 

presented T- and Z-scores below -1.0. Collectively this finding suggests that ultra-endurance 

athletes maybe at a higher risk of bone injury possibly because of large training volumes, 

inadequate nutrition and subsequent low energy availability 30.

The following finding was that the 20-km male race walkers exhibited higher BUA values 

than the 20-km female race walkers but not SOS. This finding suggests the male 20-km race 

walkers posses greater trabecular bone tissue 26. However, the difference between sexes in 

BUA appears to not influence the overall calcaneal SI and as previously mentioned three of 

the eight female race walkers presented with calcaneal stiffness T- and Z-scores below -1.0. 

Thus, the values observed in this cohort of female race walkers appear to be variable and 

make it difficult to make definitive interpretations from this finding. Sex differences in bone 

density have been previously documented, where low BMD in females have been influenced 

due to body size, dietary intake that influence energy availability and hormonal factors 10. 

Other factors that may also contribute to these differences such as training intensity and 

ground reaction forces may play an important role, although no differences were found 

between training volumes in these race walking groups. 

Lastly, some biomechanical values were associated with higher ultrasonographic values when 

assessing the race walkers as a population. All of these biomechanical variables were related 
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to ground contact time related events and rate of loading. Greater time spent in ground 

contact of the gait cycle was associated with calcaneal stiffness variables whereas, greater 

time spent in the propulsion phase of ground contact was only associated with SOS and SI. 

These findings indicate that increased time in ground contact and more specifically during the 

propulsion sub-phase of ground contact are associated with greater calcaneal bone stiffness. 

Bone mineral density stimulation and bone strength are induced by mechanical forces 

produced by muscular and impact forces in runners 5, as previously described in endurance 

runners 10. 

Unlike in running, race walking implies higher contact times and subsequently vertical 

ground reaction force is more sustained when trying to walk at the same velocity as running. 

This possibly places a greater reliance on the lower limb muscle contraction than in running 34 

and may influence the calcaneal stiffness values observed in the race walkers with longer 

contact times of the gait cycle. Furthermore, the correlations found between BMD and the 

propulsive sub-phase of ground contact, could be attributed to the force placed on the 

calcaneus from the gastrocnemius and soleus during toe-off propulsion phase of gait 35. 

Moreover, the absence of knee flexion reduces ground reaction force attenuation through 

movement and increases muscles demand in facilitating it 36. 

Also associated with higher BUA values was a greater initial loading rate. It appears that the 

greater the loading rate the greater the marker of bone mineral density in race walkers. This 

may be an indication of bone adaptation to higher loads experience by some race walkers. A 

further interpretation of this correlation may also suggest that greater vertical force 

development upon initial ground contact, could indicate higher exercise intensity or 

mechanical stimuli 22,37. This could contribute to the greater BMD values found in the 20-km 

male race walkers, who perform higher velocity and subsequent intensive training regimens 

than 50-km male and 20-km female race walkers 38.
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Lastly, we acknowledge that although ultrasonography measurement is a valid method to 

determine BMD, bone mineral density assessment might be more specific with the use of 

dual-energy x-ray absorptiometry or quantitative computed tomography to provide a 

comprehensive overview of bone density and body composition in race walkers. Therefore, 

the outcome measures related to gait characteristics were only spatiotemporal in nature, and it 

may be that other biomechanical factors not reported here may be important determinants of 

bone density, in addition to muscular activation in the gastrocnemius and the tibialis anterior. 

Similarly, future research studying the relationships between bone density and 

biomechanical, nutritional and hormonal factors are thus warranted. 

5. CONCLUSIONS

In this study, race walkers exhibited differences in the ultrasonographic values at the 

calcaneus bone compared between sex and competitive specialization, resulting in lower 

BMD values for 50-km male race walkers, with superior values for 20-km male race walkers. 

These differences may be explained by the specificity of the training loads for the 50-km race 

walkers, resulting a negative relation between weekly training volume to BMD factors. 

Additionally, initial loading and greater contact time and propulsive energy production by the 

musculoskeletal system could make positive changes in BMD values in elite race walkers. 

Thus, it can be suggested that race walkers who endure very high training volumes are 

required to optimize their training load and energy availability to ensure healthy BMD values.

Competing interests. Authors declare no conflict of interest. Additionally, authors declare 

that the results of this study are presented clearly, honestly, and without fabrication, 

falsification, or inappropriate data manipulation.
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FIGURES LEGEND

Figure 1. Ultrasonographic characteristics of elite race walkers according to sex and 

competitive event. SOS, speed of sound; BUA, broadband ultrasound attenuation; SI, 

calcaneus stiffness index.
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Table 1. Physical and physiological characteristics of elite racewalkers and the control 

group.

50 km men

(n=8)

20 km men

(n=8)

20 km women

(n=8)

Control group

(n=16)

Age (years) 27.4 ± 6.4 23.8 ± 3.1 22.5 ± 2.8 20.0 ± 0.2

Body height (m) 1.77 ± 0.06* 1.77 ± 0.08* 1.65 ± 0.04 1.73 ± 0.09

Body mass (kg) 64.4 ± 6.1* 67.4 ± 6.2* 53.6 ± 3.7 65.8 ± 11.5

∑ 8 skinfold (mm) 45.9 ± 4.1* 46.1 ± 3.9* 71.9 ± 6.9 99.2 ± 23.3

20-km PB (min) 81.9 ± 1.8* 79.8 ± 1.9* 90.9 ± 2.8 -

Weekly Training 
(km)

197.5 ± 11.4*† 158.5 ± 16.5 146.8 ± 10.6 -

n, number of participants; PB, personal best; ∑ 8 skinfolds: biceps, triceps, subscapular, 

supraspinale, abdominal, suprailiac, mid-thigh and medial calf. Values are presented as 

mean ± SD. *Significantly different from 20-km women (p < 0.05), #Significantly 

different from race walkers (p < 0.05), † Significantly different from 20-km men and 

women (p < 0.05).
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Table 2. Relationships between ultrasonographic variables and various biomechanical and 

training load variables.

SOS (m·s-1) BUA (db mHz-1) SI (u)
r p r p r p

Training load
(km/week) NS -0.466 0.022 NS

Initial loading 
rate
(BW/s)

NS 0.442 0.049 NS

Peak GRF (BW) NS NS NS
Ground contact
(%) 0.696 0.003 0.521 0.039 0.679 0.004

Braking sub-
phase (%) NS NS NS

Propulsion sub-
phase
(%)

0.561 0.004 NS 0.496 0.014

SOS, speed of sound; BUA, broadband ultrasound attenuation; SI, calcaneus stiffness index. 
r, Pearson correlation coefficient; NS, no significant differences. 
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Ultrasonographic characteristics of elite race walkers according to sex and competitive event. SOS, speed of 
sound; BUA, broadband ultrasound attenuation; SI, calcaneus stiffness index. 
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Racewalking gait and its influence on racewalking 

economy in World-Class racewalkers. 
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Race walking gait and its influence on race walking economy in world-class race
walkers
Josu Gomez-Ezeizaa, Jon Torres-Undab, Nicholas Tamc, Jon Irazustab, Cristina Granadosa and Jordan Santos-Concejero a

aDepartment of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; bDepartment of Physiology,
University of Basque Country UPV/EHU, Leioa, Spain; cDivision of Exercise Science and Sports Medicine, Department of Human Biology, University
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ABSTRACT
Aim: The aim of this study was to determine the relationships between biomechanical parameters of
the gait cycle and race walking economy in world-class Olympic race walkers.
Methods: Twenty-One world-class race walkers possessing the Olympic qualifying standard partici-
pated in this study. Participants completed an incremental race walking test starting at 10 km·h−1,
where race walking economy (ml·kg−1·km−1) and spatiotemporal gait variables were analysed at
different speeds.
Results: 20-km race walking performance was related to race walking economy, being the fastest race
walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p < 0.001). Longer ground
contact times, shorter flight times, longer midstance sub-phase and shorter propulsive sub-phase
during stance were related to a better race walking economy (moderate effect, p < 0.05).
Conclusion: According to the results of this study, the fastest race walkers were more economi cal than
the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking
economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight
times, as it may not only impair economy, but also lead to disqualification.
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Introduction

Race walking is a unique athletic event contested at the
Olympic Games and other major athletic championships
where race walkers typically participate over 20 km and
50 km. Success in this kind of endurance event has tradition-
ally been associated with a number of physiological attributes,
including a 1) high cardiac output; 2) high capacity to uptake
and delivery oxygen to active muscles; 3) high lactate thresh-
old; and 4) a low oxygen cost of transport (Nummela, Keränen,
& Mikkelsson, 2007; Santos-Concejero et al., 2013, 2015).

Oxygen cost of transport has been found to most appro-
priately discriminate between performances in well-trained
homogenous groups of athletes (Foster & Lucia, 2007). In
fact, several studies have identified this variable as a critical
factor contributing to performance in endurance sports
including running (Santos-Concejero et al., 2015), cycling
(Faria, Parker, & Faria, 2005), swimming (Toussaint, Knops, De
Groot, & Hollander, 1990) or cross-country skiing (Sandbakk &
Holmberg, 2013). The question arises whether the oxygen cost
(also known as race walking economy and defined as the
steady-state oxygen uptake at a given submaximal speed),
would also influence race walking performance, especially in
an elite population.

Inter-individual oxygen cost variations have been attribu-
ted to metabolic and physiological factors (Barnes & Kilding,
2015), neuromuscular factors (Barnes, Mcguigan, & Kilding,

2014), anthropometric factors (Bergh, Sjodin, Forsberg, &
Svedenhag, 1991) and more importantly, to biomechanical
variables (Padulo et al., 2013). Unlike other endurance sports,
race walking is governed by strict biomechanical rules, as
athletes are not allowed to have any visible loss of contact
with the ground and must maintain a straightened knee from
the initial contact with the ground until the vertical upright
position (IAAF, 2015). The result of this is a distinct gait pattern
and the need of not only endurance capacity, but also a great
technical ability to perform at elite level (Hanley, Bissas, &
Drake, 2013; Padulo et al., 2013).

For example, non-peer reviewed evidence suggests that
when race walking, the optimum foot position at initial con-
tact is directly under the centre of mass, as a foot ahead
approaching zero would result in considerably reduced brak-
ing forces and, therefore, help maintain forward momentum
(Summers, 1991). This would lead to a subsequent reduction
in step length, which contrasts with research suggesting that
larger step lengths would contribute to faster race walking
speeds in elite race walkers (Hoga, Ae, Enomoto, & Fujii, 2003;
Padulo, 2015). Other researchers have reported smaller vertical
oscillations and longer flight times as key factors for increased
walking speeds (Hanley & Bissas, 2017). Despite all previous
research on the influence of biomechanical factors in race
walking performance and economy (Morgan & Martin, 1986),
the relationship between biomechanical gait variables and
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race walking economy in world-class race walkers are yet to be
explored.

Thus, the aim of this study was to analyse whether spatio-
temporal characteristics of the gait cycle, including ground
contact and flight times, step length, cadence and the distri-
bution of the different sub-phases during stance (initial con-
tact, midstance and propulsion) are related to race walking
economy in world-class Olympic race walkers.

Methods

Participants

Twenty-one world-class Olympic male race walkers from
Spain, Sweden, Ireland, Australia and Canada agreed to parti-
cipate in this study. All race walkers possessed the Olympic
Entry Standard for Rio de Janeiro 2016 (1:24:00 in 20 km and
4:06:00 in 50 km for men) and the sample included current
20 km world champion and other World and Olympic medal-
lists. Participants were tested during training camps in Spain,
whilst they were in Europe for target IAAF Permit Race
Walking meetings (i.e. Gran Premio Cantones de A Coruña).
The race walkers were informed about all tests and possible
risks involved and provided written informed consent before
testing. The Ethics Committee for Research on Human subjects
of the University of the Basque Country granted permission for
this study (CEISH 66/2015).

Twenty-four hours before testing, race walkers were
required to abstain from a hard training session and competi-
tion to be well rested. They were also requested to maintain
their pre-competition diets throughout the test procedures
and to abstain from caffeine and alcohol intake the day before
testing. All testing sessions were performed under similar
environmental conditions (20–23 ºC and at 09:00–13:00).

Design and protocols

Anthropometry
Anthropometrical characteristics were measured at rest by an
accredited anthropometrist following the standardised techni-
ques adopted by the International Society for the Advancement
of Kinanthropometry (ISAK). Height and body mass were mea-
sured in running shorts to the nearest 0.1 cm and 0.1 kg using
a portable stadiometer (Seca, Hamburg, Germany) and digital
scale (Tanita Corporation, Tokyo, Japan), respectively. Eight
body skinfolds (triceps, subscapular, biceps, iliac crest, supras-
pinale, abdominal, front thigh and medial calf) were measured
to the nearest 0.2 cm using a Harpenden skinfold caliper
(British Indicators Ltd, St Albans, UK). Bone breadths and seg-
mental girths were measured by a small bone sliding caliper
(Rosscraft Innovations Inc, Vancouver, Canada) and a retract-
able measuring tape (Cooper Industries, Sparks, US),
respectively.

Treadmill incremental test
All race walkers completed an incremental test on a treadmill
(3p pulsar, H/P/cosmos, Germany) set at a 1% gradient (Jones
& Doust, 1996). The treadmill was calibrated using a measur-
ing wheel (ERGelek, Vitoria-Gasteiz, Spain) with a

measurement error <0.5 m per 100 m interval. The test started
at 10 km·h−1 without previous warm up and the speed was
increased by 1 km·h−1 every 3 min until volitional exhaustion,
with 30 s of recovery between stages (Bär, 1990). The analysed
speeds were selected based on intensities corresponding to
typical warm-up pace (10 km h−1), long-walk training pace
(12 km·h−1) and Tempo training pace (14 km·h−1).

During the test, heart rate was recorded every 5 seconds
continuously by a heart rate monitor (Polar RS800, Kempele,
Finland) and respiratory variables were continuously measured
using a gas analyser system (Ergostik, Geratherm, Germany)
calibrated before each session (Beijst, 2011). Volume calibra-
tion was performed at different flow rates with a 3 L calibra-
tion syringe (Ergostik, Geratherm, Germany) allowing an error
≤2%, and gas calibration was performed automatically by the
system using both ambient and reference gases (CO2 4.10%;
O2 15.92%) (Linde Gas, Germany).

In consideration of the slow component in oxygen uptake
(VO2), a slow increase in VO2 during a constant-work-rate
exercise performed above the lactate threshold (Jones et al.,
2011), VO2 (ml·kg−1·min−1) values collected during the last 30 s
of three different speeds under the lactate threshold for all
race walkers were averaged and designated as steady-state
race walking economy (ml·kg−1·km−1). This was performed to
ensure steady-state VO2 values and to avoid possible biome-
chanical differences as a consequence of differing race walk-
ing speeds.

Immediately, after each exercise stage, capillary blood sam-
ples from the earlobe were obtained and analysed with a
portable lactate analyser (Lactate Pro2, Arkray, KDK
Corporation, Kyoto, Japan) to determinate the lactate concen-
trations ([La−]). The lactate threshold of each participant was
determined using a third order polynomial regression equa-
tion calculated with the plasma [La−] versus speed (Santos-
Concejero et al., 2014b). The point on the polynomial regres-
sion curve that yielded the maximal distance to the straight
line formed by the two end data points was identified as the
lactate threshold (Cheng et al., 1992).

Biomechanics
The spatiotemporal assessment was conducted during the
treadmill test using an optical measurement system
(Optojump-next, Microgate, Bolzano, Italy). The values of the
2nd and 3rd min of the race walking stages corresponding to
10, 12 and 14 km·h−1 were averaged and used for data
analysis.

Optojump-next system consists of two bars (size
100 × 3 × 4 cm), one containing the reception and control
unit, the other embedding the transmission electronics. Each
of these contains 32 light emitting diodes (LEDs), positioned
0.3 cm from ground level at 3.125 cm intervals. The LEDs on
the transmitting bar communicate continuously (1 kHz) with
those on the receiving bar and has been shown to accurately
determine gait spatiotemporal variables (Alvarez, Sebastian,
Pellitero, & Ferrer-Roca, 2017). Gait cycle characteristics deter-
mined were ground contact time, swing time, step length,
cadence and the percentage of the stance phase at which
the different sub-phases occurs (initial contact, midstance
and propulsion) (Padulo, Chamari, & Ardigò, 2014). During
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stance, the subphases were defined as: the initial contact sub-
phase corresponds to the time from initial ground contact to
foot flat; the midstance sub-phase from foot flat to initial take
off and the propulsive sub-phase from initial take off to toe off.

Statistical analysis
All values are expressed as mean ± standard deviation (SD)
and statistical analyses of data were performed using IBM SPSS
21 (IBM Corporation, Armok, USA). Data were screened for
normality of distribution and homogeneity of variances using
a Shapiro-Wilk normality test and a Levene’s test respectively.
The magnitude of differences or effect sizes (ES) were calcu-
lated according to Cohen’s d and interpreted as small (>0.2
and <0.6), moderate (≥0.6 and <1.2) and large (≥1.2 and <2)
according to the scale proposed by (Hopkins, Marshall,
Tterham, & Hanin, 2009). Pearson’s product-moment correla-
tions were used to assess the relationships between spatio-
temporal variables of the gait cycle and race walking economy
and interpreted as small (>0.1 and <0.3), moderate (≥0.3 and
<0.5), large (≥0.5 and <0.7) and very large (≥0.7 and <0.9)
(Hopkins et al., 2009). A linear regression was performed to
analyse the relationships between race walking economy and
performance and 95% confidence intervals were calculated.
Linear regression assumptions were checked using residual
versus fitted, normal QQ, and Cook’s distance plots.
Significance for all analyses was set at p < 0.05.

Results

Descriptive characteristics

The physiological variables and descriptive characteristics of
the race walkers participating in this study are listed in Table 1.
All athletes possessed a personal best time faster than the
entry standard needed to participate in the Olympic Games of
Rio de Janeiro 2016 (1:24:00 for men), confirming that all
participants were world-class elite race walkers. The homoge-
neity of the group was confirmed by a coefficient of variation
<10% for all anthropometrical (except the ∑ 8 skinfold), phy-
siological and performance related variables, including their
personal best 20-km race walking times.

Figure 1 illustrates the relationship between race walking
performance according to their best 20-km race time and race
walking economy. Race walking economy at 14 km·h−1 was
positively correlated with performance (R = 0.760, p < 0.001;
very large effect).

Figures 2 and 3 depict changes in spatiotemporal para-
meters of the gait cycle as walking speeds increase. At increas-
ing race walking speeds, step length and walking cadence
increased by 24.8% and 12.2%, respectively. Ground contact
time decreased from 0.34 ± 0.01 s at 10 km·h−1 to 0.28 ± 0.01 s
at 14 km·h−1, whereas the flight time increased from a double
support to a flight time of 0.026 ± 0.007 s at 14 km·h−1.
Similarly, increasing race walking speeds were accompanied
by a reduction of the initial contact sub-phase and propulsive
sub-phase times in 19.1 and 29.7%, respectively. On the other
hand, midstance sub-phase time increased in 101.1%.

Correlations between spatiotemporal gait variables and
race walking economy at different speeds are depicted in
Table 2. Significant correlations between flight time (s) at
12 km·h−1 (moderate effect) and 14 km·h−1 (moderate effect)
were observed. Similarly, the percentage of the gait cycle
spent in the swing phase correlated positively with race walk-
ing economy at 12 km·h−1 (large effect) and at 14 km·h−1

(large effect), whereas ground contact time (s) at 12 km·h−1

and 14 km·h−1 was negatively associated with race walking
economy (large effect and moderate effect). The percentage of
the gait cycle spent in the stance phase also correlated sig-
nificantly with race walking economy at both 12 and
14 km·h−1 (large effect). Lastly, the midstance sub-phase
showed a significant correlation with race walking economy
at 12 km·h−1 (moderate effect) and at 14 km·h−1 (moderate
effect), whereas the propulsive sub-phase correlated only at
12 km·h−1 (moderate effect).

Discussion

This study investigated the influence of spatiotemporal gait
characteristics of race walking economy in world-class race
walkers with an average personal best of 80.42 ± 2.13 min
for 20 km (~ 4 minutes faster than the Olympic qualifying
standard) and an average race walking economy of
241.30 ± 14.94 ml·kg−1·km−1. The first finding of this study
was that race walking performance (according to their best 20-
km race time), was positively associated with race walking
economy at race pace (Figure 1), which implies that the fastest
race walkers were more economical than the lesser perfor-
mers. This association is in agreement with previous research
in other endurance sports like distance running (Santos-
Concejero et al., 2015), cycling (Faria et al., 2005) or cross-
country skiing (Sandbakk & Holmberg, 2013) and further high-
lights the importance of movement efficiency in elite sport.

Table 1. Physical and physiological characteristics of elite race walkers (n = 21).

Mean ± SD CV (%)

Age (years) 26.6 ± 5.5 20.8
VO2 at 14 km·h−1 (mL·kg−1·min−1) 56.3 ± 3.5 6.2
20-km PB (min) 80.4 ± 2.1 2.7
Race walking economy (mL·kg−1·km−1) 241.3 ± 14.9 6.2
LT (km·h−1) 14.6 ± 0.5 3.4
Height (cm) 177.1 ± 7.1 4
Mass (kg) 66.4 ± 5.8 8.7
∑ 8 skinfold (mm) 49.3 ± 6.8 13.7

n, number of participants; CV, coefficient of variation; VO2 at 14 km·h−1, oxygen uptake at 14 km·h−1; PB, personal best; LT, lactate threshold; ∑ 8 skinfolds: biceps,
triceps, subscapular, supraspinale, abdominal, suprailiac, mid-thigh, and medial calf. Values are means ± SD.
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Previous research has hypothesised that certain biomecha-
nical factors would be associated with greater movement
efficiency in race walking, and that most economical race
walkers may have distinct race walking patterns (Hanley &
Bissas, 2017). In agreement with this hypothesis, we found
significant relationships between race walking economy and
ground contact characteristics (ground contact time, stance
phase duration, midstance and propulsive sub-phases dura-
tion) as well as with flight time and swing phase duration
(Table 2). Specifically, in race walking step length is restricted
because race walkers have to elude visible flight times to

elude disqualification (IAAF, 2015). It has been reported that
race walking judges cannot observe a loss of contact below
the threshold of 0.040 s (Lee, Mellifont, Burkett, & James,
2013), although the real limit may be a bit higher as the fastest
rate a human eye can retain an image is 16 Hz, or 0.06 s
(Winter, 2005). This implies that current rules of observation
by the judges are flawed as race walkers are provided a
“window” of non-perceptible flight times without the risk of
disqualification. De Angelis and Menchinelli (1992) analysed
the progression of flight times in international race walkers at
different speeds, reporting values of 0.04 ± 0.007 s at

Figure 1. Relationship between race walking economy and participants’ personal best performance in 20 km (n = 21). 95% confidence intervals are shown.

Figure 2. Step length (A), Step frequency (B), contact time (C) and flight time (D) at different speeds (n = 21). ES, effect sizes according to Cohen’s d.
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14 km·h−1 (just in the limit of what is perceptible for the
human eye). Similarly, Hanley, Bissas, and Drake (2011)
observed flight times of 0.03 ± 0.01 s in competition. These
results are in line with the values observed in this study
(0.026 ± 0.007 s), suggesting that world-class race walkers
can compete at fast speeds without a visible loss of contact
with the ground (Figure 2). Interestingly, we observed positive
correlations between flight time and race walking economy at
12 km·h−1 and at 14 km·h−1 (Table 2) and found that flight
times increased when the speed was increased. Although we
acknowledge that correlation does not always implies causa-
tion, this finding suggests that the most economical race
walkers are those exhibiting shorter flight times at a given
speed, resulting in a safer race walking technique in terms of
risk of disqualification.

Previous studies on recreational and well-trained endur-
ance runners (Paavolainen, Nummela, & Rusko, 1999; Santos-
Concejero et al., 2014a) have reported that shorter ground
contact times are strongly associated with lower oxygen cost
at speeds ranging from 12 km·h−1 to 23 km·h−1.

Mechanistically, shorter ground contact times may reduce
the duration of the braking phase during stance, which is
usually associated with greater musculo-tendon stiffness and
improved economy (Nummela et al., 2007; Paavolainen et al.,
1999; Santos-Concejero et al., 2016). However, we found that
longer ground contact times were related to a more efficient
race walking economy at a given speed (Table 2). Due to the
rules that govern the sport (i.e. a straightened knee from the
first contact with the ground until the vertical upright posi-
tion), race walkers may need a longer stance phase and longer
contact times to apply force to ground and move forward
without losing speed. As a result, to increase their walking
speeds, race walkers would be required to maximise step
length and step length:heigh ratio to an optimal value that
does not increase the aerobic demands (Morgan & Martin,
1986), neither violate the rules of the sport. The step lengths
observed in this study are in accordance with those reported
by (Hanley et al., 2011) in an elite 20-km competition
(68.0 ± 3.7% vs. 68.1 ± 2.0% and 121 ± 0.7 cm vs.
120.5 ± 5.1 cm, respectively). Once the optimum step length

Figure 3. Percentage of time spent in each sub-phase of the stance phase (initial contact, midstance and propulsive) at different speeds (n = 21). ES, effect sizes
according to Cohen’s d.

Table 2. Interrelationships between biomechanical variables and race walking economy at different speeds (n = 21).

Race walking economy

10 km·h−1 12 km·h−1 14 km·h−1

R p R p R p

Step length (cm) −0.327 0.147 −0.398 0.074 −0.116 0.618
Ration height:step length −0.082 0.725 −0.193 0.403 0.051 0.826
Cadence (step/s) 0.333 0.140 0.397 0.075 0.123 0.594
Contact Time (s) −0.253 0.268 −0.524* 0.015 −0.448* 0.042
Flight Time (s) .a 0.477* 0.029 0.487* 0.025
Stance Phase (%) .a −0.543* 0.011 −0.607** 0.004
Swing Phase (%) .a 0.543* 0.011 0.607** 0.004
Initial Contact sub-phase (%) 0.358 0.111 0.318 0.160 0.371 0.098
Midstance sub-phase (%) −0.386 0.084 −0.454* 0.039 −0.460* 0.036
Propulsive sub-phase (%) 0.129 0.576 0.470* 0.032 0.382 0.087

r, Pearson correlation coefficient; P, significance; NS, no significant differences. .a, Cannot be computed because at 10 km·h−1 Flight Time (s) is 0 (Constant), Stance
phase (%) is 100% (Constant); and Swing phase (%) is 0 (Constant).
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is achieved, any speed increase would be dependent on
increasing cadence (Cairns, Burdette, Pisciotta, & Simon,
1986). In this study, race walkers increased their cadence
from 2.88 ± 0.1 steps·s−1 at 10 km·h−1 to 3.23 ± 0.14 steps·s−1

at a typical race-pace of 14 km·h−1 (12.22% increase). However,
neither step length nor cadence were correlated with race
walking economy or performance in this study.

It was observed that when race walking speed increased,
the time spent in the initial contact sub-phase decreased by
19.1% (from 44.8 ± 6.1% at 10 km·h−1 to 36.2 ± 6.67% at
14 km·h−1). This reduction in the initial contact sub-phase
has been attributed to an increase in hip extension velocity
before contact (Lafortune, Cochrane, & Wright, 1989). During
the midstance sub-phase, race walkers must produce the
energy to overcome the braking forces generated in the pre-
vious sub-phase and to prepare the body for acceleration
during the propulsion sub-phase (Levine, Richards, & Whittle,
2012). This may explain the correlation found between race
walking economy and midstance sub-phase at both 12 km·h−1

and at 14 km·h−1 (Table 2). These findings agree with non
peer-reviewed coaching opinion suggesting that the relation
between gait sub-phases (initial contact, mid-stance and pro-
pulsive) may change the efficiency during race walking
(Summers, 1991). Interestingly, although time spent in the
propulsive sub-phase maybe beneficial in terms of race walk-
ing economy at slower speeds, it appears to be just a mechan-
ical necessity as speed increases.

This is study was limited based on certain factors. These
include a relatively small (n = 21) and very specific and homo-
geneous sample, which makes generalisation of the obtained
results to all race walkers difficult. Similarly, race walking econ-
omy was assessed on a motorised treadmill. It is known that the
lack of air resistance results in a lower oxygen cost compared
with exercising outdoors at the same speed (Mooses, Tippi,
Mooses, Durussel, & Mäestu, 2014). However, a 1% treadmill
grade was chosen as previous research has reported that it
accurately reflects the oxygen cost of exercising outdoors
(Jones & Doust, 1996). In addition, spatiotemporal variables
assessed in this study might vary from over-ground race walking
when compared to treadmill race walking. Further, the outcome
measures related to gait characteristics were only spatiotem-
poral in nature, and it may be that biomechanical factors related
to stiffness and function of tendons, not reported here, are
important determinants of race walking economy.

Future research studying neuromuscular activation in con-
junction with ground reaction forces and 3-dimensional bio-
mechanical analyses during over-ground race walking are thus
warranted. These clinical, ecologically valid and in-depth mea-
sures may reveal additional answers for exceptional race walk-
ing performance in world-class race walkers and provide
practical information for clinicians and coaches for ongoing
management of elite race walking training programmes.

Conclusion

In summary, race walking performance was positively associated
with race walking economy, which implies that the fastest race
walkers were more economical than the lesser performers.
Similarly, race walking economy was related to ground contact

characteristics and swing time, which highlights the importance
of race walking biomechanics for elite competitors in this sport.
In this regard, shorter flight times (below of what is perceptible
for the human eye) and longer ground contact times may
reduce the oxygen cost of race walking in world-class race
walkers. Since the rules of the sport penalise a visible lost of
contact with the ground, coaches and race walkers should avoid
modifying their race walking style by increasing flight times, as it
may not only impair economy, but also lead to disqualification.

Acknowledgments

This study has been supported by a grant from the University of the
Basque Country UPV/EHU (EHUA16/12). Authors also want to thank race
walkers and coaches for their participation in this study.

Funding

This work was supported by the Euskal Herriko Unibertsitatea [EHUA16/
12].

Conflict of interest

Authors declare no conflict of interest. Authors declare that the results of
this study are presented clearly, honestly, and without fabrication, falsifi-
cation, or inappropriate data manipulation.

ORCID
Jordan Santos-Concejero http://orcid.org/0000-0001-9467-525X

References

Alvarez, D., Sebastian, A., Pellitero, L., & Ferrer-Roca, V. (2017). Validation of
the photoelevtric optogait system to measure racewalking biomecha-
nical parameters on a treadmill. ISBS Proceedings Archive, 35, 292-294.

Bär, H. (1990). Sportärztliche untersuchung und beratung (Medical
Examination and Consultation). Perimed-Fachbuch-VerlagGes. Germany:
Perimed-Fachbuch-VerlagGes.

Barnes, K. R., & Kilding, A. E. (2015). Strategies to improve running econ-
omy. Sports Medicine, 45(1), 37–56.

Barnes, K. R., Mcguigan, M. R., & Kilding, A. E. (2014). Lower-body determi-
nants of running economy in male and female distance runners. The
Journal of Strength & Conditioning Research, 28(5), 1289.

Beigst, C. (2011). The accuracy and precision of equipment for cardiopulmonary
exercise testing. Master thesis. Eindhoven University of Technology.

Bergh, U., Sjodin, B., Forsberg, A., & Svedenhag, J. (1991). The relationship
between body mass and oxygen uptake during running in humans.
Medicine & Science in Sports & Exercise, 23(2), 205.

Cairns, M., Burdette, R., Pisciotta, J., & Simon, S. (1986). A biomechanical
analysis of racewalking gait. Medicine & Science in Sports & Exercise, 18
(4), 446.

Cheng, B., Kuipers, H., Snyder, A., Keizer, H., Jeukendrup, A., & Hesselink, M.
(1992). A new approach for the determination of ventilatory and lactate
thresholds. International Journal of Sports Medicine, 13(07), 518–522.

De Angelis, M., & Menchinelli, C. (1992). Times of flight, frequency and length
of stride in race walking. In R. Rodano (ed.), Proceedings of the X interna-
tional symposium of biomechanics in sports. Milan (Italy): EdiErmes.

Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling. Sports
Medicine, 35(4), 285–312.

Foster, C., & Lucia, A. (2007). Running economy. Sports Medicine, 37(4),
316–319.

Hanley, B., & Bissas, A. (2017). Analysis of lower limb work-energy patterns
in world-class race walkers. Journal of Sports Sciences, 35(10), 1–7.

6 J. GOMEZ-EZEIZA ET AL.



Hanley, B., Bissas, A., & Drake, A. (2011). Kinematic characteristics of elite
men’s and women’s 20 km race walking and their variation during the
race. Sports Biomechanics, 10(02), 110–124.

Hanley, B., Bissas, A., & Drake, A. (2013). Kinematic characteristics of elite
men’s 50 km race walking. European Journal of Sport Science, 13(3),
272–279.

Hoga, K., Ae,M., Enomoto, Y., & Fujii, N. (2003). Athletics:Mechanical energy flow
in the recovery leg of elite race walkers. Sports Biomechanics, 2(1), 1–13.

Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive
statistics for studies in sports medicine and exercise science. Medicine &
Science in Sports & Exercise, 41(1), 3.

International Association of Athletics Federation (IAAF). (2015).
Competition rules 2017-2018. IAAF. Monte Carlo: IAAF.

Jones, A., Grassi, B., Christensen, P., Krustrup, P., Ngsbo, J., & Poole, D.
(2011). Slow component of V˙O2 kinetics: Mechanistic bases and prac-
tical applications. Medicine & Science in Sports & Exercise, 43(11), 2046.

Jones, A. M., & Doust, J. H. (1996). A 1% treadmill grade most accurately
reflects the energetic cost of outdoor running. Journal of Sports
Sciences, 14(4), 321–327.

Lafortune, M., Cochrane, A., & Wright, A. (1989). Selected biomechanical
parameters of race walking. Excel, 5, 15-17.

Lee, J., Mellifont, R., Burkett, B., & James, D. (2013). Detection of illegal race
walking: A tool to assist coaching and judging. Sensors, 13, 16065–16074.

Levine, D., Richards, J., & Whittle, M. W. (2012). Whittle’s gait analysis-E-book.
Amsterdam: Elsevier.

Mooses, M., Tippi, B., Mooses, K., Durussel, J., & Mäestu, J. (2014). Better
economy in field running than on the treadmill: Evidence from high-
level distance runners. Biology of Sport, 32(2), 155–159.

Morgan, D. W., & Martin, P. E. (1986). Effects of stride length alteration on
racewalking economy. Canadian Journal of Applied Sport Sciences.
Journal Canadien Des Sciences Appliquées Au Sport, 11(4), 211–217.

Nummela, A., Keränen, T., &Mikkelsson, L. (2007). Factors related to top running
speed and economy. International Journal of SportsMedicine, 28(8), 655–661.

Paavolainen, L., Nummela, A., & Rusko, H. (1999). Neuromuscular charac-
teristics and muscle power as determinants of 5-km running perfor-
mance. Medicine and Science in Sports and Exercise, 31(1), 124–130.

Padulo, J. (2015). The effect of uphill stride manipulation on race walking
gait. Biology of Sport, 32(3), 267–271.

Padulo, J., Annino, G., Tihanyi, J., Calcagno, G., Vando, S., Smith, L., . . .
Dʼottavio, S. (2013). Uphill racewalking at iso-efficiency speed. Journal
of Strength and Conditioning Research, 27(7), 1964–1973.

Padulo, J., Chamari, K., & Ardigò, L. (2014). Walking and running on
treadmill: The standard criteria for kinematics studies. Muscles,
Ligaments and Tendons Journal, 4(2), 159–162.

Sandbakk, Ø., & Holmberg, H. C. (2013). A reappraisal of success factors for
Olympic cross-country skiing. International Journal of Sports Physiology
and Performance, 9(1), 117–121.

Santos-Concejero, J., Granados, C., Irazusta, J., Bidaurrazaga-Letona, I.,
Zabala-Lili, J., Tam, N., & Gil, S. M. (2013). Differences in ground contact
time explain the less efficient running economy in north african run-
ners. Biology of Sport, 30(3), 181–187.

Santos-Concejero, J., Oliván, J., Maté-Muñoz, J. L., Muniesa, C., Montil, M.,
Tucker, R., & Lucia, A. (2015). Gait-Cycle characteristics and running
economy in elite eritrean and European runners. International Journal
of Sports Physiology and Performance, 10(3), 381–387.

Santos-Concejero, J., Tam, N., Coetzee, D. R., Oliván, J., Noakes, T. D., &
Tucker, R. (2016). Are gait characteristics and ground reaction forces
related to energy cost of running in elite Kenyan runners? Journal of
Sports Sciences, 35(6), 531-538.

Santos-Concejero, J., Tam, N., Granados, C., Irazusta, J., Bidaurrazaga-
Letona, I., Zabala-Lili, J., & Gil, S. M. (2014a). Interaction effects of stride
angle and strike pattern on running economy. International Journal of
Sports Medicine, 35(13), 1118–1123.

Santos-Concejero, J., Tucker, R., Granados, C., Irazusta, J., Bidaurrazaga-
Letona, I., Zabala-Lili, J., & Gil, S. M. (2014b). Influence of regression
model and initial intensity of an incremental test on the relationship
between the lactate threshold estimated by the maximal-deviation
method and running performance. Journal of Sports Sciences, 32(9),
853–859.

Summers, H. (1991). Placement of the leading foot in race walking. Modern
Athlete and Coach, 29(1), 33–35.

Toussaint, H., Knops, W., De Groot, G., & Hollander, P. (1990). The mechan-
ical efficiency of front crawl swimming. Medicine & Science in Sports &
Exercise, 22(3), 402.

Winter, D. A. (2005). Biomechanics and motor control of human movement
(3rd, pp. 36–40). Hoboken, NJ, USA, Kinematics: John Wiley & Sons Inc.

JOURNAL OF SPORTS SCIENCES 7



184 
 

 

 

 

Addendum 5
 

Biomechanical analysis of gait waveform data in 

elite race walkers and runners. 

 



 



Manuscript Details

Manuscript number GAIPOS_2018_1094

Title Biomechanical analysis of gait waveform data in elite race walkers and runners

Article type Full Length Article

Abstract

Research question. The aim of this study was to compare gait waveforms of world-class male race walkers and
runners. Methods. Twenty-one elite race walkers and 15 elite runners performed overground gait trials at 12 km·h-1.
Kinematic and ground reaction force data were collected, and joint kinetics calculated using inverse dynamics. One-
dimensional statistical parametric mapping two-sample t-test assessed differences throughout the gait cycle on
variables. Results. Race walkers exhibited longer contact and swing times, shorter strides and higher cadence
(P<0.001). Race walkers had lower hip flexion-extension (P=0.011), greater knee extension (P=0.001) and reduced
peak dorsi-plantarflexion during stance (P=0.001). Smaller ranges of frontal plane motion were observed in race
walkers in both the knee and ankle (P<0.01), and greater hip adduction-abduction (P=0.018) and ankle rotation
(P=0.004) were found in race walkers. Runners exhibited greater hip and knee flexion moments, and lower ankle
flexion during 24-40% of the gait cycle. Discussion. Race walkers are required to modify their gait pattern to maintain
a velocity similar to runners. Race walkers exhibited restricted ranges of motion in the knee and ankle sagittal planes,
subsequently resulting in larger kinematic changes in the hip and increasing cadence and ground contact to maintain
the same gait velocities. Thus, race walkers optimise their gait pattern from imposed gait contractions, resulting on a
very specific and complex motor control task.

Keywords Biomechanics; motion capture; race walk; running; high-performance

Taxonomy Measurement Technique of Gait, Joint, Biomechanics of Gait

Corresponding Author Josu Gomez

Order of Authors Josu Gomez, Nicholas Tam, Brian Hanley, Ion Lascurain-Aguirrebeña, Jordan
Santos-Concejero

Suggested reviewers Athanassios Bissas, Antonio La Torre

Submission Files Included in this PDF

File Name [File Type]

CoverLetter.pdf [Cover Letter]

WaveformRW-R_MainManuscript_Gait&Posture_Blind.docx [Highlights]

WaveformRW-R_MainManuscript_Gait&Posture_Titlepage.doc [Title Page (with Author Details)]

WaveformRW-R_MainManuscript_Gait&Posture_Highlights.docx [Manuscript File]

WaveformRW-R_Figure2.tif [Figure]

WaveformRW-R_Figure1.tif [Figure]

Table1.doc [Table]

Table2.doc [Table]

WaveformRW-R_MainManuscript_Gait&Posture_ConflictofInterest.doc [Conflict of Interest]

Author statement.doc [Author Statement]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given:
The authors do not have permission to share data



1

Biomechanical analysis of gait waveform data in elite race walkers and 

runners

Abstract count: 215 words

Word count: 2926 words



2

ABSTRACT

Research question. The aim of this study was to compare gait waveforms of world-class 

male race walkers and runners. 

Methods. Twenty-one elite race walkers and 15 elite runners performed overground gait 

trials at 12 km·h-1. Kinematic and ground reaction force data were collected, and joint 

kinetics calculated using inverse dynamics. ﻿One-dimensional statistical parametric 

mapping two-sample t-test assessed differences throughout the gait cycle on variables. 

Results. Race walkers exhibited longer contact and swing times, shorter strides and 

higher cadence (P<0.001). Race walkers had lower hip flexion-extension (P=0.011), 

greater knee extension (P=0.001) and reduced peak dorsi-plantarflexion during stance 

(P=0.001). Smaller ranges of frontal plane motion were observed in race walkers in both 

the knee and ankle (P<0.01), and greater hip adduction-abduction (P=0.018) and ankle 

rotation (P=0.004) were found in race walkers. Runners exhibited greater hip and knee 

flexion moments, and lower ankle flexion during 24-40% of the gait cycle.

Discussion. Race walkers are required to modify their gait pattern to maintain a velocity 

similar to runners. Race walkers exhibited restricted ranges of motion in the knee and 

ankle sagittal planes, subsequently resulting in larger kinematic changes in the hip and 

increasing cadence and ground contact to maintain the same gait velocities. Thus, race 

walkers optimise their gait pattern from imposed gait contractions, resulting on a very 

specific and complex motor control task.

Key words: Biomechanics; motion capture; race walk; running; high-performance
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INTRODUCTION

Endurance events in the Olympic Games and all major athletic championships include 

race walking and long-distance running. In both endurance disciplines, success by 

achieving the fastest mean speed, thus athletes require great physical capacity to 

accomplish this. However, unlike running, race walking is governed by a specific rule 

(Rule 230.2) [1] that enforces a unique gait pattern. Specifically, race walkers are 

restricted from exhibiting any visible loss of ground contact and are obliged to maintain 

a straightened knee from initial contact until the vertical upright position or risk warnings 

and disqualification.

Either running and race walking have been studied independently. As most studies have 

rather observed gait differences between training populations (recreational, national, 

elite) in race walkers or runners but not between disciplines [12,13]. Over the last decade, 

there has been an increase in race walking research, especially with complex 

considerations in motor variability [9] and functional data analysis of skilled and less-

skilled individuals [7,8,10]. However, the full extent of gait waveform data of elite 

athletes have yet to been fully described, despite previous studies using two-dimensional 

videography [2–5] and three-dimensional motion capture [6–8]. However, to date, three-

dimensional waveform comparisons between athletic disciplines have not been 

adequately conducted. 

During running, the main propulsive mechanism of the runners is the flex-extension of 

the ankle and the knee during stance [2]. However, race walkers are restricted from the 

use of the knee mechanism due to the rules imposed. A comprehensive understanding of 

gait waveforms, whether kinetic or kinematic, during running and race walking in elite 
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athletes provide insight into the specific and well-defined demands of these different gait 

disciplines. The use of one-dimensional statistical parametric mapping (1DSPM) 

provides the temporal assessment of gait data, that allows a broader understanding of the 

modifications required throughout the gait cycle that enable race walkers to maintain 

velocities similar to those of runners, [3]. Thus, the aim of this study was to analyse and 

compare the kinematics and kinetics of the gait cycle in world-class runners and race 

walkers using three-dimensional motion capture and force platform data. Additionally, 

these types of data analysis techniques can contribute to our better understanding of the 

gait sub phases [2].

METHODS 

Participants

Twenty-one elite male race walkers (20 km: 80.8 ± 2.1 min) and 15 elite male endurance 

runners (21.1 km: 62.2 ± 1.0 min) agreed to participate in this study. All participants were 

informed about all tests and possible risks involved and provided written informed 

consent before testing. The Ethics Committee for Research on Human subjects of the 

University of the Basque Country (CEISH 66/2015) and the Research Ethics Committee 

of the University of Cape Town (HREC ref 151/2013) approved this study.

Design and protocol

Anthropometric characteristics of the participants, comprising height, mass and the sum 

of eight skinfolds (∑ 8 skinfolds: biceps, triceps, subscapular, supraspinale, abdominal, 

suprailiac, mid-thigh and medial calf) were measured. The measurement of running and 

race walking economy was achieved by a constant running/race walking test (12 km·h-1) 

completed on a treadmill (3p pulsar, h/p/cosmos, Germany) [4]. The speed of 12 km·h-1 
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was chosen to allow the comparison between both running and race walking at a constant 

submaximal speed, avoiding any fatigue interference in the participants’ gait patterns.

Participants completed race walking trials on a 30-m track in an indoor laboratory and 

were not provided with any technical instruction. During this time, three-dimensional 

marker trajectories were captured at 250 Hz, using a 10-camera Vicon Bonita motion 

capture system (Vicon, Oxford, UK). Synchronised collection of ground reaction force 

(GRF) data was sampled at 2000 Hz using a 900 × 600 mm force platform (AMTI, 

Watertown, MA, USA). Prior to testing, reflective markers were attached according to a 

modified Helen-Hayes Marker set [2]. The speed of the trials was set at 12 km·h-1 and 

accepted if the speed was within ± 4% of the target speed, when all markers were in view 

of the cameras and there was no visual evidence of athletes targeting the force platform.

Data analysis

For each trial, a complete gait of the participant`s right limb was analysed (ground 

contact-ground contact). Marker trajectory and force platform data were filtered using a 

low-pass fourth-order Butterworth filter with cut-off frequencies of 20 and 100 Hz 

respectively. Three-dimensional joint angles (ankle, knee and hip) were determined using 

the PlugInGait model and net resultant joint’s sagittal moments using a Newton-Euler 

inverse dynamics approach [5]. Joint moments were expressed as external moments 

normalised to body mass (Nm·kg−1). Additionally, GRF data were normalised to 

bodyweight (BW) and the initial rate of loading was calculated [6]. Subsequently, joint 

kinematic and kinetic data are presented as waveforms that changed continuously 

throughout the entire gait cycle (101 data points), except for the vertical GRF waveform 

that is normalised to percentage of stance (101 data points).
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Statistical analysis

Data were screened for normality of distribution using a Shapiro-Wilk’s Normality test. 

Differences in descriptive characteristics, initial loading rate and ground contact time 

were assessed using independent t-tests or non-parametric Wilcoxon sign rank test, where 

appropriate. To detect differences between the kinematic and kinetic waveforms, 1DSPM 

was employed [3]. The running and race walking gait waveforms were compared using a 

one-way analysis of variance (SPM{f}). All 1DSPM analyses were implemented using 

the open-source 1DSPM code (v.M0.1, www.spm1d.org) in MATLAB (R2014a, 

8.3.0.532, MathWorks Inc., Natick, MA, USA).

RESULTS

The athletic discipline specificity between groups resulted in large differences, as the race 

walkers were taller (P=0.009), heavier (P=0.004), greater ∑ 8 skinfolds (P=0.006) and 

higher oxygen cost of transport at 12 km·h-1 (P=0.001) (Table 1). Race walking and 

running speeds were similar between groups, however, differences in discrete kinetic and 

spatiotemporal variables were found (Table 1). To maintain a similar speed, race walkers 

exhibited longer ground contact times (P=0.001) and shorter swing times (P=0.001) than 

the runners. Additionally, race walkers also presented shorter strides (P=0.001) and 

higher cadences (P=0.001).

Large kinematic waveform differences were found between running and race walking at 

the same speed (Table 2 and Figure 1). Especially, in the sagittal plane, hip flexion-

extension range of motion was more restricted in the race walkers than the runners 

between 0-81% of the gait cycle (F=7.935; P=0.011). In addition, greater knee extension 
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was observed in the race walkers when compared with the runners throughout the gait 

cycle and an absent knee flexion peak during stance phase (F=8.142; P=0.001). Ankle 

dorsiflexion range of motion in the race walkers compared with runners was decreased 

with a later and smaller peak dorsi- and plantarflexion during stance at 0-47% of the gait 

cycle (F=8.271; P=0.001). In the frontal plane, decreased range of motion was found 

during stance in the race walkers in both the knee and ankle when compared with the 

runners at 20-48% and 0-46% of the gait cycle, respectively (F=8.142; P=0.008 and 

P=0.001, respectively). Greater ranges of motion in hip adduction-abduction were found 

in the race walkers than runners between 0-16% and 36-100% of the gait cycle (F=7.935; 

P=0.018 and P=0.004). Moreover, only the ankle exhibited differences in the transverse 

plane, where race walkers remained in greater ankle external rotation during stance (0-

40%), early mid-swing (48-80%) and terminal swing (96-100% of the gait cycle) when 

compared with the runners (F=8.271; P=0.001, P=0.002 and P=0.001, respectively).

With regard to joint kinetic waveforms, runners exhibited greater hip flexion moments 

between 0-14% and 20-42% of the gait cycle when compared with the runners (Table 2). 

Runners presented with greater knee flexion moments at 1-5% and 7-38% of the gait 

cycle than the race walkers. Thereafter, knee flexion moments were greater in the race 

walkers over 28-38% of the gait cycle when compared with the runners. The ankle flexion 

moment was lower in the race walkers from 2-23%, and thereafter greater during 24-40% 

of the gait cycle when compared with the runners. Lastly, there was greater vertical GRF 

in the runners than the race walkers between 19-77% of the stance phase (Figure 2). Race 

walkers and runners showed similar GRF patterns during initial contact. However, the 

initial loading rate was higher in the runners (P=0.011) (Table 2). 
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DISCUSSION

The main goal of this study was to compare the joint kinematics and kinetics of the gait 

waveforms in world-class race walkers and runners. Both spatiotemporal variables and 

analysis of waveform variables presented insightful results. The main finding was that 

differences were found in all three joints and planes throughout the gait cycle. These 

differences are a consequence of the rules that race walkers are required to comply with 

(Rule 230.2) and are discussed in further detail below.

Spatiotemporal variables

Despite similar gait velocities, compared with runners, race walkers had higher ground 

contact times, in an attempt to avoid losing contact with the ground and to maintain a 

constant support leg on the ground. Whereas flight distances in elite race walkers have 

been previously observed to contribute to 13% of total step length, this factor has to be 

limited to avoid any visible loss of contact [7]. Thus, because flight times are restricted, 

stride length and cadence remain key factors in race walking performance [8]. Moreover, 

the distribution of sub-phases plays an important role in the effective displacement of the 

centre of mass [9,10]. This was noticeable during the late stance sub-phase, which lasted 

longer in race walking than running, increasing the propulsion time required to maintain 

a similar velocity.

Knee joint

The most distinct differences between running and race walking waveforms were 

observed in the sagittal plane of the hip, knee and ankle. In particular, reduced knee 

flexion was observed throughout stance in the race walkers when compared with the 

runners. Furthermore, the race walkers also exhibited knee hyperextension and delayed 
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knee flexion during the propulsive phase of stance produced by the knee flexion-

extension moment. An overall observation of the race walkers’ knee flexion-extension 

gait cycle waveform illustrates a singular peak in knee flexion during the swing phase; 

notably, this is the absence of knee flexion during initial stance. The absence of this initial 

knee flexion peak in race walking has been suggested to be mechanically costlier than 

running at the same speed [11,12]. This phenomenon in running and normal walking 

during stance has been suggested to increase locomotion efficiency as a result of the 

energy-saving role of the Achilles tendon [13]. However, the flexion of the knee from the 

upright position to toe-off benefits the race walkers with a lower vertical oscillation of 

the body, consequently limiting flight time [7]. This study clearly distinguishes for the 

first time the magnitude of difference in knee flexion during stance in elite race walkers 

and runners simultaneously. Furthermore, there is reduced knee flexion throughout swing 

during race walking compared with running. This might benefit race walkers in 

facilitating knee extension during late swing and help to reduce flight time, but with the 

subsequent disadvantage of increased energy cost from an increased lower limb moment 

of inertia [14]

Hip Joint

The effect of having to achieve a straightened knee by initial contact and maintain it 

through mid-stance restricts the whole lower limb to one rigid lever. In response to this, 

the race walker adopts an exaggerated movement of the hip, which is one of the peculiar 

aspects of race walking [10,15]. Compared with runners, a reduced hip flexion at initial 

ground contact was observed in the race walkers to avoid exaggerated over-striding in 

preventing greater braking forces [8]. In addition, higher variability in the frontal plane 

was showed by race walkers to effectively increase step length. As the pelvis moves 



8

forwards (creating an abduction of the hip) in conjunction with the leg, it creates a forward 

momentum and longer step length with a decrease in stride width [16]. During the stance 

phase and in response to the need to straighten the knee, race walkers rotate the hip 

obliquely to avoid vertical displacement of the body’s centre of mass [10,17]. While the 

hip continues to extend until the first part of the swing phase in runners, race walkers 

begin flexing the hip before toe-off; this prevents the leg from falling behind and drives 

the leg forwards into swing [7]. The larger hip abduction observed during swing appears 

to accommodate hip adduction during stance, as the stance leg is positioned below the 

body and the swing leg must move laterally outwards to pass it. The activation of the hip 

flexors and forward momentum created by pelvis rotation results in positive energy 

transfer, helping to the body to move over the straightened leg [18]. Subsequently, to 

ensure race walking gait is efficient and remains within the rules of competition, the hip 

has been suggested to be the predominant energy-generating joint in race walking gait 

[7].

Ankle Joint

In concordance with the other joints, ankle sagittal and frontal plane angles were limited 

in the race walkers when compared with the runners. To maintain a straight and stiff knee 

during initial contact, race walkers land with pronounced ankle dorsiflexion [8], which is 

exacerbated as a consequence of knee hyperextension. In this study, the runners exhibited 

a neutral ankle angle during stance at initial ground contact that progressed into greater 

dorsiflexion at mid-stance and greater plantarflexion at toe-off. This allows runners to 

store and transfer energy using the Achilles tendon but the ankle position during race 

walking does not allow this. In this study there is a pronounced ankle dorsiflexion at initial 

ground contact that progresses directly into a neutral – plantarflexion and then a delayed 
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and suppressed dorsiflexion before a reduced plantarflexion toe-off [12]. The possible 

absence of the elastic forces in the calf and Achilles tendon obliges the race walkers to 

generate a greater plantarflexion moment during late stance than running [15]. Moreover, 

the reduced knee flexion that race walkers showed during the swing phase demands 

earlier and greater ankle dorsiflexion than in running. Whereas runners’ ankle adduction 

and rotation are nearly neutral avoiding any wasting movement, race walkers have to 

ensure that the foot clears the ground and aids in a heel strike, requiring adduction of the 

ankle with an external rotation during swing phase [10,19,20].

Vertical ground reaction forces

As the restricted range of motion during race walking does not allow the body to store 

and transfer energy as effectively as during running, it is observed that the lower 

magnitude of the vertical GRF in the race walkers appears to be linked to the entire 

kinematic chain. A greater initial loading rate, in addition to greater vertical GRF 

observed during mid-stance, was observed in the runners. This might be perhaps because 

of the ability to store and transfer energy during ground contact more efficiently using the 

Achilles tendon and other energy transfer strategies based on a spring-mass model [13]. 

By contrast, race walkers exhibited lower GRFs during mid-stance. This reduced and 

delayed GRF peak might first be explained by avoidance of high GRFs due to the 

observed overall restricted range of motion of the lower limb joint angles during stance. 

In addition, this might be explained by the contrasting gait patterns used by both groups 

of elite athletes to propel against the ground. Whereas race walkers move the knee from 

a hyperextended position to a flexed one during late stance [7], runners use a flexion-

extension pattern in the mid-stance phase. Thus, the technical restrictions oblige race 

walkers to transfer the energy using an extension-flexion pattern, causing the biggest 
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differences in the joint flexion moments between both groups.

The last finding of this study was that the runners exhibited a better economy than the 

race walkers at the same sub-maximal speed. This was evident despite athletes being 

matched for athletic ability with regard to IAAF performance scores and both groups 

comprising endurance athletes who compete over similar distances. However, physical 

differences were also found between groups that might be relevant to the specific event 

that they participate in and also influence transport cost [21]. Interestingly, as running 

economy was expressed relative to body mass, the runners benefitted as a result of a 

reduced body mass (runners were 17% lighter than the race walkers); however, their 

smaller physiques might not be suited to race walking, where a greater stature is 

associated with longer step lengths [22], and where muscle activation is greater [12]. For 

both running and race walking, mechanical work and metabolic demand were suggested 

to be a principal factor affecting efficiency of locomotion [4,23]. Further research 

investigating the optimal biomechanics for efficient race walking economy is required to 

confirm this assumption. 

Lastly, the use of the standard PlugInGait model was used to determine joint kinematics 

and kinetics. This model is acknowledged to provide highly variable transverse planes 

and limits our ability to effectively critique this plane [24]; the use of a different model 

might elucidate differences that this model cannot reveal for this study. However, the 

entire waveform data from this model remains relevant because it is useful for 

understanding the gait changes and further interpretation of the differences between elite 

runners’ and race walkers’ gait patterns. Further research investigating the supplementary 

assessments of joint powers and the assessment of electromyography might yield further 
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insightful results.

CONCLUSIONS

Race walkers modify their gait pattern to maintain a velocity similar to runners whilst 

exhibiting restricted ranges of motion in the knee and ankle sagittal plane. Subsequently 

this resulted in larger kinematic changes in the hip and increased cadence and ground 

contact to maintain the same gait velocities. Thus, race walkers optimise their gait pattern 

from imposed gait contractions, resulting in a very specific and complex motor control 

task. Interestingly, these findings indicate that race walkers may require tailored 

technical, strength and conditioning training programmes specific to their athletic 

discipline race walking is evidently not running.
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FIGURE LEGENDS

Figure 1. Kinematic data over an entire gait cycle. Mean ± SD for race walkers (constant 

line) and runners (dashed line). GREY bars denote periods where there were differences 

between-group.



12

Figure 2. Ground reaction forces data over the stance phase. Mean ± SD for race walkers 

(constant line) and runners (dashed line). GREY bars denote periods where there were 

differences between-group.
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Table 1. Comparison of physical, physiological and gait characteristics (at 12 km· h−1) 

of elite long-distance runners and race walkers.

Race walkers (n=21) Runners (n=15)

IAAF performance (u)
1184 ± 44

(20 km RW)
1100 ± 37

(21.097 km)
Age (years) 26.6 ± 5.5 23.7 ± 4.1
Height (m) 1.77 ± 0.07 1.71 ± 0.06**
Mass (kg) 66.4 ± 5.8 54.8 ± 6.0**
∑ 8 skinfold (mm) 49.3 ± 6.8 35.7 ± 8.6**
Economy at 12 km·h-1 
(mL·kg-1·km-1)

236.8 ± 16.2 192.6 ± 11.1**

Initial loading rate 
(BW·s−1)

27.67 ± 5.90 84.63 ± 36.92**

Ground contact time (s) 0.322 ± 0.011 0.237 ± 0.016**
Swing time (s) 0.304 ± 0.010 0.498 ± 0.044**
Step length (m) 1.08 ± 0.06 1.35 ± 0.10**
Cadence (step·s−1) 3.09 ± 0.10 2.47 ± 0.18**
Early stance (%) 0-16 0-13
Late stance (%) 17-46 14-36
Swing phase (%) 47-100 37-100
n: number of participants; ∑ 8 skinfolds: biceps, triceps, subscapular, supraspinale, 

abdominal, suprailiac, mid-thigh and medial calf. Values are mean ± SD. Statistically 

significant difference *p < 0.05, ** p < 0.01.



Table 2. Summary table with respect to SPM analyses.

Variables Critical threshold exceeded (% of gait cycle) Supra-threshold 
p-values

Critical threshold 
(*f)

Kinematics    
Hip    

Sagittal plane Stance and swing  (0-81%) P = 0.011 F = 7.935
Frontal plane Early stance (0-16% ) P = 0.018  

 End stance and swing (36-100%) P = 0.004  

Knee
Sagittal plane Entire cycle (0-100%) P = 0.001 F = 8.142

Frontal plane Mid stance and early swing (20-48%) P = 0.008  

 Swing (60-100%) P = 0.006  
Ankle  

Sagittal plane Stance and early swing (0-47%) P = 0.001 F = 8.271

 Swing (53-100%) P = 0.013  
Frontal plane Stance (0-46% ) P = 0.001  
 Late swing (89-100%) P = 0.014  
Transverse plane Stance (0-40%) P = 0.001  
  Swing (48-80%)  P = 0.002  
 Late swing (96-100%) P = 0.001  
Moments    
Hip
Sagittal plane Early stance (0-14% ) P = 0.001 F = 11.943
 Late stance (20-42%)  P = 0.002  
Knee
Sagittal plane Early stance (1-5%) P = 0.001 F = 12.223
 Early and Mid stance (7-38%)  P = 0.001  
Ankle
Sagittal plane Early stance and early swing (2-40%) P = 0.038 F = 12.182
Ground Reaction Force    
Vertical Mid stance (19-77%) P = 0.001 F = 8.998
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Muscle activation patterns correlate with race 

walking economy in elite race walkers: a waveform 

analysis. 
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ABSTRACT 

Purpose: The aim of this study was to analyse the association between muscle activation 

patterns on oxygen cost of transport in elite race walkers over the entire gait waveform. 

Methods: Twenty-one Olympic race walkers performed overground walking trials at 14 km∙h-

1 where muscle activity of the gluteus maximus, adductor magnus, rectus femoris, biceps 

femoris, medial gastrocnemius and tibialis anterior were recorded. Race walking economy was 

determined by performing an incremental treadmill test ending at 14 km∙h-1. Results: This 

study found that more economical race walkers exhibit greater gluteus maximus (p=0.022, 

r=0.716), biceps femoris (p=0.011, r=0.801) and medial gastrocnemius (p=0.041, r=0.662) 

activation prior to initial contact and weight acceptance. Additionally, during the propulsive 

and the early swing phase, race walkers with higher activation of the rectus femoris (p=0.021, 

r=0.798) exhibited better race walking economy. Conclusions: This study suggests that 

neuromuscular system is optimally co-ordinated through varying muscle activation to reduce 

metabolic demand of race walking. These findings highlight the importance of proximal 

posterior muscle activation during initial contact and hip flexor activation during early swing 

phase are associated with efficient energy transfer. Practically, race walking coaches may find 

this information useful in development of specific training strategies on technique. 

Key words: oxygen cost of transport; efficiency; performance; electromyography; gait. 
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INTRODUCTION 

Race walking possesses a unique locomotor strategy different from running because of 

the limitations arising from Rule 230.2 set by the International Association of Athletic 

Federations 1, which requires the athlete to present a straightened knee from initial contact to 

the “vertical upright position” and no visible loss of contact. Despite this restriction, athletes 

participating in this athletic discipline reach high speeds (e.g., 15 km∙h-1) through 

biomechanical modification of their gait 2. Nonetheless, race walking is more metabolically 

demanding than running at the same velocity as a result of the restrained biomechanics and 

neuromuscular coordination 3. Previous research suggested that race walkers enhance 

movement efficiency using specific gait pattern strategies 4. This was also confirmed by some 

researchers where shorter ground contact times, with shorter initial loading sub-phases, were 

associated with better oxygen cost of transport in elite race walkers 5. 

Although recent gait analyses in race walking have mostly assessed peaks, range of 

motion and other discrete parameters of the entire gait cycle 5–7, a comprehensive 

understanding of the role and activity of the major muscles used throughout specific gait phases 

have not be conducted and could provide useful information. In addition, older 

electromyography studies assessed race walking before the implementation of modern race 

walking rules in 1995 8 and more recent studies have analysed muscle moments, power and 

work through inverse dynamics 9–11. These estimations established the role of particular muscle 

group contribution to the race walking movement, suggesting the importance of smaller 

deceleration phases during braking in early stance and subsequent smaller acceleration phases 

during late stance 12. Assessing joint kinetics in elite men and women race walkers have 

provided novel insight of the role of specific lower limb muscles 9. From a physiological 

perspective, assessing muscle activity may expand and improve the validity of modelled joint 

kinetic data, that may further reveal the role of neuromuscular factors on race walking 
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locomotion. Previous measurements of muscle activity on race walking have been used to 

support kinematic findings 9, and determine muscle contributions race walking at different 

gradients 13. However, the relationship between muscle activity and oxygen cost is required to 

fully understand the efficiency of the locomotion used in elite race walking. 

In running, imbalanced antagonist:agonist co-activation ratios have been linked with an 

increased energy cost of transport 14, and previous research modelled lower limb muscle energy 

costs, using electromyography, were found to be higher in race walking than in running 15. 

However, the key factor that might facilitate a more efficient oxygen cost of transport is the 

timing of muscle activation during the gait cycle 16, as pre-activation of lower limb posterior 

musculature has been found to relate to better running economy 17,18. This implicates the lower 

limb musculature in ground reaction force attenuation during braking at initial ground contact, 

this is achieved through optimising joint stiffness for a more efficient transfer of energy 19. 

Whether this neural preparation is also important in race walking has not been established, but 

is possibly crucial for athletes in this discipline given the high energy costs of race walking and 

restricted joint biomechanics compared with running 15. 

Understanding the influence of muscle activation on oxygen cost of transport in race 

walkers is of interest as it provides insight into regulation of race walking kinematics that are 

associated with metabolic efficiency a marker of performance 5. Additionally, this analysis may 

give new insights in coaching race walkers, with regard to the development of specific training 

strategies that consider the specific biomechanical and physiological demands of race walking. 

Thus, the aim of this study was to analyse the influence of muscle activation patterns on oxygen 

cost of transport in elite race walkers over the entire gait waveform. 
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METHODS  

Participants 

Twenty-one male Olympic race walkers agreed to participate in this study. All athletes 

possessed the 2016 Olympic Entry Standard for Rio de Janeiro (84 minutes for 20-km). All 

participants were informed about all tests and possible risks involved and provided written 

informed consent before testing. The Ethics Committee for Research on Human subjects of the 

University of the Basque Country (CEISH 66/2015) approved this study. 

Design and protocol 

Twenty-four hours before testing, the participants were required to abstain from a hard 

training session or competition to be well rested. They were also requested to maintain their 

pre-competition diets throughout the test procedures and to abstain from caffeine and alcohol 

intake the day before testing. All testing sessions were performed under similar environmental 

conditions (20 – 23ºC and between 09:00 – 13:00). Anthropometric characteristics of the 

participants, comprising height, mass and the sum of eight skinfolds (biceps, triceps, 

subscapular, supraspinale, abdominal, suprailiac, mid-thigh and medial calf) were measured. 

Participants completed race walking trials on a 30-m track in an indoor laboratory and 

were not provided with any technical instruction. During this time, synchronized collection of 

three-dimensional markers trajectories using a 10-camera Vicon Bonita 10 motion capture 

system (Vicon, Oxford, UK), ground reaction force data (AMTI, Watertown, MA, USA) and 

wireless surface electromyography (myON 320, Schwarzenberg, Switzerland) were recorded. 

The six muscles of interest for electromyography were gluteus maximus, adductor magnus, 

rectus femoris, biceps femoris, medial gastrocnemius and tibialis anterior. Before assessment, 

skin areas were prepared, and two surface electrodes placed according to established 

guidelines20. Leads and pre-amplifiers connected to the electrodes were secured with medical 
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grade tape to avoid artefacts from lower limb movement during gait. The speed of the trials 

was set at 14 km·h-1 and trials were accepted if the speed was within ± 4% of the target speed, 

the entire right-foot made contact with a force platform and an entire gait cycle was visible 

from there on (ground contact-ground contact of the right foot). Motion capture and ground 

reaction force data were used only for gait event detection in this study.  

Subsequently, race walking economy was determined by performing an incremental 

treadmill test (3p pulsar, h/p/cosmos, Germany). The slope was set at a 1% gradient 21 and the 

test started at 10 km·h-1; after 3 min, the speed was increased by 1 km·h-1 every 3 min until 14 

km·h-1 was completed, the velocity used for analysis. A 30 s recovery was taken between 

stages. During the test, oxygen uptake (VO2) was continuously measured using a gas analyzer 

system (Ergostik, Geratherm, Germany). To ensure VO2 steady-state measurements, the speed 

selected (14 km·h-1) was slower than the individual lactate threshold of each athlete (further 

confirmed during the test by respiratory exchange ratios below 1.0 during the whole running 

bout for all athletes at each speed). VO2 (mL·kg-1·min-1) values collected during the last 30 s 

of each stage were averaged and designated as steady-state race walking economy (mL·kg-

1·km-1) to avoid the slow component in VO2 
22. 

Data analysis 

The raw digital electromyography signal of sub-maximal trials were bandpass filtered 

between 30-450 Hz, then rectified and smoothed using root mean square (RMS) analysis at a 

50 ms moving window 23. Additionally, the EMG signals were normalised to each muscle 

activation peak. Subsequently, electromyography data were reduced to 101 points and 

presented as waveforms that changed continuously throughout the race walking gait cycle (a 

point per percentage of the gait cycle).  

  

D
ow

nl
oa

de
d 

by
 L

A
 T

R
O

B
E

 U
N

IV
E

R
SI

T
Y

 L
IB

 o
n 

03
/1

6/
19



“Muscle Activation Patterns Correlate With Race Walking Economy in Elite Race Walkers: A Waveform Analysis”  

by Gomez-Ezeiza J et al.  

International Journal of Sports Physiology and Performance 

© 2019 Human Kinetics, Inc. 

 

Statistical analysis 

Data were screened for normality of distribution using a Shapiro-Wilk’s Normality test. 

To detect relationships between muscle activity waveforms with race walking economy (at 14 

km·h-1), one-dimensional statistical parametric mapping (1DSPM) regression was employed 

24. The 1DSPM analyses were implemented using the open-source 1DSPM code (v.M0.4, 

www.spm1d.org) in Python (2.7, Python Foundation, USA). Significance for regressions were 

accepted at p<0.05. 

RESULTS  

The descriptive characteristics and physiological variables of the race walkers 

participating in the study are presented in Table 1. Specifically, this cohort presented a mean 

20-km race performance of 80.49 ± 2.12 min and a race walking economy of 241.32 ± 14.91 

mL·kg-1·km-1. 

Posterior muscle activity and race walking economy 

Relationships between posterior muscle activation and race walking economy were 

found in elite race walkers are listed in Table 2. During terminal swing (biceps femoris: 96-

100% of the gait cycle, p=0.010, r=-0.801; gluteus maximus: 98-100%, p=0.022, r=-0.716) and 

initial weight acceptance (biceps femoris: 0-4%, p=0.011, r=-0.809; gluteus maximus: 0-6%, 

p=0.011, r=-0.723), higher activation of biceps femoris and gluteus maximus were associated 

with better race walking economy (Figure 1B and 1C). Additionally, a higher activation of the 

medial gastrocnemius during weight acceptance (5-8% of the gait cycle, p=0.041, r=-0.662) 

was found in more economical race walkers (Figure 1A). During the propulsion phase a greater 

medial gastrocnemius activation was also associated with a lower oxygen cost of transport (20-

27% of the gait cycle, p=0.039, r=-0.668). Lastly, a lower activation of the biceps femoris was 

D
ow

nl
oa

de
d 

by
 L

A
 T

R
O

B
E

 U
N

IV
E

R
SI

T
Y

 L
IB

 o
n 

03
/1

6/
19



“Muscle Activation Patterns Correlate With Race Walking Economy in Elite Race Walkers: A Waveform Analysis”  

by Gomez-Ezeiza J et al.  

International Journal of Sports Physiology and Performance 

© 2019 Human Kinetics, Inc. 

 

associated with more economical race walkers at 36-43% of the gait cycle (late propulsive 

phase to toe-off, p=0.012, r=0.697) (Figure 1B). 

Anterior activity and race walking economy 

During weight acceptance of ground contact, greater rectus femoris activation was 

associated with the most economical race walkers (8-11% of the gait cycle, p=0.016, r=-0.678). 

This coincided with a lower tibialis anterior activation at 6-12% of the gait cycle was associated 

with efficient race walking economy (p=0.033, r=0.671) (Figure 1D), whereas, during the 

propulsive phase (18-23% of the gait cycle) lower rectus femoris activation was associated 

better race walking economy (p=0.034, r=0.637) (Figure 1E). Subsequently, at the end of the 

propulsive phase (35-41% of the gait cycle), early- and mid-swing (42-53% and 63-68% of the 

gait cycle) greater rectus femoris activation was associated with lower oxygen cost of transport 

(p=0.018, r=-0.798; p=0.018, r=-0.798 and p=0.021, r=-0.813) (Figure 1E). Lastly, lower 

adductor magnus activation during early swing (43-50% of the gait cycle) was associated with 

better race walking economy (p=0.041, r=0.690) (Figure 1F). 

DISCUSSION 

The goal of this study was to explore muscle activation patterns over an entire gait cycle 

and its association with oxygen cost of race walking in elite race walkers. Interestingly, we 

have found some associations between oxygen cost of race walking and specific muscle group 

activation patterns at similar points of the gait cycle that may influence optimal race walking 

biomechanics. 

Terminal swing and initial ground contact 

Greater activation of gluteus maximus and biceps femoris at ground contact was 

associated with better race walking economy. Both posterior lower limb muscle relationships 

were found during late swing and continued into initial ground contact (96-100% and 0-6% of 
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the gait cycle).  This finding highlights the importance of proximal posterior muscle activation 

in contributing to oxygen cost of transport optimization, especially prior to and at initial ground 

contact. Previous research and our findings suggest these relationships activate in synchrony 

during this part of the gait cycle to prepare for ground contact and assist with joint stabilization 

and stiffness to lower oxygen cost of transport 16,19
 .  Thus, these observed phenomena appear 

to be related to the management of ground reaction forces at ground contact. 

Large loading forces are experienced at initial ground contact, and the management of 

these forces is key to efficient energy transfer and reduced metabolic demand during ground 

contact 25. Mechanisms to facilitate these forces appear to be associated with pre-activation 19 

during terminal swing 16 and consequent joint biomechanics that enable efficient gait 18. Thus, 

during initial ground contact, the biarticular muscle, biceps femoris appears to behave as a joint 

stabiliser for both the knee and hip, as similar findings have been found previously during 

running by Moore et al. 26 and Heise et al. 17. While the gluteus maximus extends the hip.9 The 

greater activation of gluteus maximus might reduce metabolic cost by optimizing 

neuromuscular control to assist efficient energy transfer (muscle tuning) 19 and joint movement 

(hip extension and stabilisation) 17. Understanding these specific neuromuscular profiles in 

relation to race walking economy may assist coaches to consider the importance of training 

motor control pathways when working with their athletes12. By training these metabolic 

demands maybe be decreased by a reduction in co-activation through co-ordinate and selective 

activation profiles of antagonist-agonist muscles.  

Midstance 

Continuing from initial ground contact, associations between shank musculature and 

oxygen cost of race walking were found. Specifically, greater medial gastrocnemius and lower 

tibialis anterior activation were associated with favourable race walking economy. A similar 
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finding has been previously observed in runners at 12 km∙h-1 although this was over the entire 

ground contact phase 18. This study further details the temporal nature of this relationship that 

was found between 5-8% of the gait cycle in the medial gastrocnemius and 6-12% of the gait 

cycle in the tibialis anterior. This overlap of associations illustrates the importance of the 

posterior chain and agonist-antagonist co-ordination during gait 14. Considering a lower tibialis 

anterior activity was associated with better race walking economy and may be a feature of 

better technique as the activation of this muscle influence the stability of the ankle joint to 

optimally transition from initial ground contact to propulsion. Interestingly, higher activity has 

been suggested as a source of the shin pain frequently reported by race walkers 9,27 and thus 

excessive activation appears to be both uneconomical and possibly implicated with increased 

injury risk. 

Further up the leg, greater rectus femoris activity was found to be favourable for 

metabolic cost before midstance (18-23% of the gait cycle). This finding, alongside previous 

other research could suggest that this biarticular muscle might act to mediate ground reaction 

forces through energy absorption through activation and simultaneous joint stabilisation of the 

knee and hip, allowing other structures of the lower limb to move in a way that improves energy 

transfer for locomotion 17,28. 

However, during 35-41% of the gait cycle (post-midstance), lower rectus femoris 

activity was associated with better race walking economy. This is beneficial as increased 

activation of rectus femoris would possibly restrict gait kinematics, as this gait phase is 

associated with hip extension and knee flexion in order to shift the centre of mass. 

Propulsion and swing 

During terminal stance and early swing phases of race walking gait, a lower oxygen 

cost was associated with greater rectus femoris activation. 27 The exertion of the hip flexor 
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torques that are generated by a higher activation of the rectus femoris at this time might benefit 

the race walkers with more efficient energy usage 10. Due to the dynamic coupling of the body, 

the greater activation of the rectus femoris during late stance may be more effective as it could 

influence both the trunk and support leg segments 29. This can be crucial given the contralateral 

stance leg’s role functioning predominantly as a lever during midstance 9. Additionally, this 

strategy could benefit race walkers via a better horizontal force production, and consequently 

a lower vertical oscillation of the body 28. Thus, this finding suggests that the hip flexors play 

a substantial role in economical race walking by stabilizing and accelerating the lower limb 

through its bi-articular composition and proximal position.  

Furthermore, the observation of a greater activation of the adductor magnus during 

early swing (43-50% of the gait cycle) is associated with higher race walking oxygen cost 

suggests that an excessive adduction of the hip is metabolically costly. Interestingly, this 

adduction of the hip is often observed in race walkers to increase step length and avoid visible 

loss of contact of the ground 30, but these findings suggest that this might be counterproductive 

from a metabolic perspective. Notably, during this phase the role of posterior muscle activation 

shifts, and greater biceps femoris activity was found to be possibly detrimental to race walking 

economy. This is important as greater activation of the antagonist biceps femoris during this 

period of gait might obstruct forward propulsion during toe-off as it is predominantly 

performed by the hip flexors 10. 

Although the trials were performed on a treadmill and over ground, spatiotemporal data 

and walking velocity were found to be similar between conditions (Supplementary Table 1). 

Therefore, the comparisons can be made but one should not forget that differences between 

testing conditions do exist (surface, joint kinematics, belt vs. body speed etc.) but were 

minimized as much as possible. Further, understanding of the complex interaction between 

neuromuscular control and gait biomechanics could be further explored through analyses like 
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functional data analysis or principal component analysis that could assist in collectively 

assessing features of such data on their impact on race walking economy. 

PRACTICAL APPLICATIONS 

This study provides unique insight into the complex role muscles perform throughout 

the race walking gait cycle and its correlations with performance. Interestingly, the associations 

found in this study between oxygen cost of race walking and muscle activation patterns 

emphasize the importance of optimal neuromuscular control in reducing the metabolic demand 

of movement. The ability to determine specific temporal relationships between race walking 

economy and muscle activation reveals possible facilitation of gait biomechanics that coaches 

and trainers may find useful to make athletes aware of. Thus, race walking coaches may find 

this study useful to incorporate technical advice and quotes for the race walkers oriented to the 

improvement of technically more efficient factors based on these neuromuscular activation 

insights.  

CONCLUSIONS 

This study illustrates that the most economical race walkers possess a refined 

neuromuscular system that is optimally co-ordinated to reduce the metabolic demand 

throughout race walking gait. It appears that this is achieved through the modulation of muscle 

activity to effect efficient joint biomechanics. Also, the importance of proximal posterior 

muscle activation at terminal swing and initial ground contact is noted in efficient energy 

transfer (ground reaction force facilitation) and consequent optimal joint biomechanics (hip 

extension and stabilisation). Lastly, the role of the hip flexors during the propulsive phase and 

the early swing phase was found to be associated with oxygen cost of race walking, that is 

suggested to assist in coordinating the acceleration of the lower limb. 
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Figure 1: Muscle activation data over an entire gait cycle. Mean ± SD for each muscle. GREEN 

bands, negative correlation between muscle activation and oxygen uptake; RED bands, positive 

correlation between muscle activation and oxygen uptake. 
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Table 1: Physical and physiological characteristics of the race walkers (n=21). 

 

 Mean ± SD 

Age (years) 26.62 ± 5.53 

Height (cm) 177.11 ± 7.13 

Mass (kg) 66.41 ± 5.77 

∑ 8 skinfold (mm) 49.33 ± 6.78 

20-km race time (min) 80.49 ± 2.12 

Race walking economy (mL·kg-1·km-1)* 241.32 ± 14.91 

*: walking speed at 14 kmh-1; ∑ 8 skinfolds: biceps, triceps, subscapular, supraspinale, abdominal, suprailiac, 

mid-thigh and medial calf. 
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Table 2: Summary table with respect to SPM analyses. Presented outcomes for regression of 

race walking race walking economy and muscle activity. 

 

Muscles 
Critical threshold exceeded 

(% of gait cycle)* 

Supra-threshold 

p-values 
r-values 

Gluteus Maximus Weight acceptance (0-4%) 0.011 -0.723 

  Swing (98-100%) 0.022 -0.716 

Adductor Magnus Swing phase (43-50%) 0.041 0.690 

Biceps Femoris Weight acceptance (0-6%) 0.011 -0.809 

  Propulsive phase (38-43%) 0.012 0.697 

  Swing (96-100%) 0.010 -0.801 

Rectus Femoris Weight acceptance (8-11%) 0.016 -0.678 

  Weight acceptance (18-23%) 0.034 0.637 

  Propulsive phase (35-41%) 0.018 -0.798 

  Swing phase (42-53%) 0.018 -0.798 

  Swing phase (63-68%) 0.021 -0.813 

Gastrocnemius Weight acceptance (5-8%) 0.041 -0.662 

  Propulsive phase (20-27%) 0.039 -0.668 

Tibialis Anterior Weight acceptance (6-12%) 0.033 0.671 

SPM, Statistical parametric mapping; *Critical threshold (*f) was calculated at F=3.96. 
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Supplementary Table 1: Comparison of spatiotemporal values on a treadmill and over ground 

(using t-test). 

 

 Treadmill Over ground p-values 

Speed (km·h-1) 14.00 ± 0.00 14.03 ± 0.05 0.953 

Ground contact time (s) 0.322 ± 0.011 0.328 ± 0.023 
0.974 

Swing time (s) 0.304 ± 0.010 0.299 ± 0.012 
0.971 

Step length (m) 1.08 ± 0.06 1.09 ± 0.09 
0.974 

Cadence (step·s−1) 3.09 ± 0.10 3.02 ± 0.14 
0.978 

Values are mean ± SD. Statistically significant difference *p < 0.05, ** p < 0.01. 
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