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Abstract 

The use of High-Strength Low-Alloyed steels (HSLA) in offshore applications has risen 

considerably during the last decade. The increasing demand for lighter steels with higher 

strength has led to the development of steel grades with ultimate strengths up to 1100 

MPa. However, the high strength of these steels is achieved in detriment of other 

properties, and they are very susceptible to corrosion in marine environments, which 

comprise one of the most aggressive atmospheres. The likelihood of these steels of 

suffering substantial degradation with corrosion-related phenomena is high, and involves 

significant costs of maintenance and replacement of damaged structures. In order to 

protect steel from marine corrosion, protective measures have been successfully 

employed. One of the most recurrent solutions has been the use of coatings. 

On the other hand, materials in offshore structures are also subjected to mechanical 

stresses such as fatigue, abrasion, impact, and wear generated by waves, wind, ocean 

currents, floating objects, and so on. Wear is another degradation mechanism that is 

related to high material losses in offshore applications. When wear and corrosion take 

place simultaneously, the process is known as tribocorrosion. There is a synergism 

between wear and corrosion, since the material loss when the two processes take place 

simultaneously can be considerably larger than when they occur alone. This leads to 

material losses higher than those collected in the design codes, which can have 

significant implications on the long-term integrity of components and structures. 

Therefore, a closer understanding of the tribocorrosion and the synergistic effect that it 

involves in HSLA steels is necessary to reestablish the wear-corrosion allowances in the 

design phase, in order to better predict the durability of high-performance materials in 

such adverse working conditions.  

In this context, the first part of the present thesis deals with the assessment of 

tribocorrosion of HSLA steels used in chains of offshore mooring lines, which have been 

reported to be profoundly affected by both wear and corrosion during their service life. 

Up to know, tribocorrosion of passive materials has been widely reported, e.g., stainless 

steels, aluminum alloys, and titanium alloys. However, little investigations have been 

carried out on the response of active materials, such as HSLA steels of low corrosion 

resistance in the marine environment. In this regard, the present study aims to address 

the tribocorrosion of these materials on the basis of the procedures employed in passive 

materials, adapting and redesigning the protocols available in the standards and 

literature.  

Additionally, the second part of the thesis is focused on the evaluation of protective 

coatings employed for the protection of steel components and structures from corrosion. 

Up to now, the selection of the coatings has been made mainly considering their 

effectiveness against corrosion, neglecting their performance against wear. For instance, 

organic coatings with high corrosion resistance due to their polymeric nature have been 

the most employed solution. However, their wear resistance is rather low, and any 

damage generated on the coating can considerably decrease their efficiency. In this 

framework, tribocorrosion studies have been performed for different coatings currently 

employed in the protection of offshore mooring lines, to verify their suitability against 

wear-corrosion requirements. Finally, a widely employed coating system has been 

functionalized through different surface modification techniques, to enhance its 

performance against wear and corrosion, and provide it with additional abilities such as 

superhydrophobicity and a biocide ability against certain bacteria. 
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All in all, the outcomes of this work show the importance of the synergism between wear 

and corrosion on the degradation of the HSLA steels, evincing the necessity of 

tribocorrosion related studies to increase the knowledge on this synergism and 

reestablish the allowances included in the design codes.
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Resumen 

El uso de aceros de alta resistencia y baja aleación (HSLA, por sus siglas en inglés) en 

aplicaciones offshore ha aumentado considerablemente durante la última década. La 

creciente demanda por parte de la industria de aceros más ligeros con mayor resistencia 

ha dado lugar al desarrollo de nuevas aleaciones con tensiones de rotura de hasta 1100 

MPa. Sin embargo, la alta resistencia de estos aceros se consigue en detrimento de 

otras propiedades, por lo que su resistencia a corrosión en ambientes marinos, uno de 

los entornos más hostiles de trabajo, es relativamente baja. La probabilidad de fallo de 

componentes de aceros HSLA por mecanismos relacionados con la corrosión es alta, lo 

que da lugar a elevados costes de mantenimiento y reemplazo de estructuras dañadas. 

Con el fin de proteger las estructuras de acero frente a la corrosión se han tomado 

diversas medidas, siendo una de las más comunes el uso de recubrimientos protectores.  

Por otro lado, los materiales en estructuras offshore también se encuentran sujetos a 

solicitaciones mecánicas, siendo la fatiga, la abrasión, el impacto y el desgaste las más 

habituales. Estos fenómenos suelen ser generados por las olas, el viento, las corrientes 

marinas, los objetos flotantes y otras cargas climáticas. El desgaste es un mecanismo 

de degradación que conlleva una gran pérdida de material en aplicaciones offshore. 

Cuando la corrosión y el desgaste tienen lugar simultáneamente, el proceso generado 

se conoce como tribocorrosión. Existe un efecto sinérgico entre corrosión y desgaste, 

dado que la pérdida de material cuando ambos fenómenos ocurren a la vez puede ser 

considerablemente mayor que cuando actúan por separado. Esto tiene como 

consecuencia pérdidas de material mayores a las consideradas en los códigos de 

diseño, lo que podría tener una gran repercusión en la integridad a largo plazo de 

componentes y estructuras. Por lo tanto, es necesario ampliar el conocimiento en el 

comportamiento frente a tribocorrosion, y el efecto sinérgico que éste fenómeno 

conlleva, en aceros HSLA, para poder restablecer los márgenes de tolerancia de pérdida 

de material por corrosión y desgaste de los códigos de diseño. Con ello se conseguiría 

predecir de forma más fidedigna la durabilidad de materiales de alta prestaciones en 

condiciones adversas de trabajo, como el entorno offshore. 

En este contexto, la primera parte de esta tesis doctoral se centra en el estudio de la 

tribocorrosion de los aceros HSLA utilizados en la fabricación de cadenas para líneas 

de fondeo de estructuras flotantes, los cuales se encuentran sometidos a solicitaciones 

de corrosión-desgaste durante su vida útil. Hasta la fecha, se han realizado numerosas 

investigaciones sobre la tribocorrosión en materiales denominados pasivos, como las 

aleaciones de aluminio, titanio o aceros inoxidables, de alta resistencia a corrosión. Sin 

embargo, no existe información en sobre el comportamiento frente a tribocorrosion de 

materiales activos, como los aceros HSLA de baja resistencia a corrosión en ambientes 

marinos. Por lo tanto, el presente estudio pretende evaluar la tribocorrosion de estos 

materiales partiendo de los procedimientos de ensayo utilizados en materiales pasivos, 

adaptando y rediseñando los protocolos disponibles en la normativa y en la literatura.   

Además, la segunda parte de la tesis se centra en la evaluación del comportamiento de 

recubrimientos utilizados en la protección de componentes y estructuras de acero frente 

a la corrosión. Hasta el momento, la selección de recubrimientos se realiza 

considerando su efectividad en la protección frente a la corrosión, obviando su 

comportamiento frente al desgaste. Por ejemplo, entre los recubrimientos más utilizados 

se encuentran los de naturaleza orgánica, que poseen una alta resistencia a corrosión. 

Sin embargo, su resistencia al desgaste es baja, y su eficacia puede disminuir 

considerablemente si se encuentran sometidos a ambos fenómenos simultáneamente. 

A este respecto, se han realizado estudios del comportamiento frente a tribocorrosion 
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en recubrimientos actualmente utilizados en la protección de componentes de líneas de 

fondeo, para verificar su aptitud frente a solicitaciones de corrosión y desgaste. Por 

último, se ha realizado la funcionalización de un sistema de recubrimiento típicamente 

utilizado mediante distintas técnicas de modificación superficial, con el objetivo de 

mejorar su resistencia a la corrosión y al desgaste, y proporcionarle propiedades 

adicionales, como la superhidrofobia y la respuesta biocida ante cierto tipo de bacterias.  

En definitiva, los resultados principales de este trabajo muestran la importancia del 

sinergismo entre la corrosión y el desgaste en la degradación de los aceros HSLA, 

poniendo en evidencia la necesidad de realizar estudios de tribocorrosión para ampliar 

el conocimiento sobre dicho sinergismo, y poder aplicarlo en los requerimientos de los 

códigos de diseño.  



Abbreviations 

 
v 

Abbreviations  

General terms 

Abbr Description          Abbr          Description 

AC Alternating current 

AF Antifouling  

AHT Alternating humidity and air 

temperature 

AISI American Iron and Steel Institute 

API RP American Petroleum Institute, 

Recommended Practices 

APPs Antifouling paint particles 

ASTM American Society for Testing 

Materials 

AT Alternating air temperature 

CE Counter electrode 

CH Constant humidity 

COF Coefficient of friction 

DIN Deutsches Intitut für Norming  

DLC Diamond Like Carbon 

DNV-GL Det Norske Veritas and 

Germanischer Lloyd 

DP Dynamic Position mooring 

EEC Electric Equivalent Circuit 

EPS Extracellular polymeric 

substances  

FBS Fetal Bovine Serum 

FBW Flash Butt Welding 

FC Ferric corrosion 

FOWTs Floating offshore wind turbines  

FPS Floating Production and Storage 

FPSO Floating Production Storage and 

Offloading 

FPSs Floating Production Systems  

GNP Gross National Product 

HAWTs Horizontal axis wind turbines  

HBSS Hank’s Balanced Salt Solution   

HF High frequency 

HR Relative humidity 

HSE Health and Safety Executive 

HSLA High-Strength Low-Alloy Steels 

HSS High Strength Steels 

IACS International Association of 

Classification Society 

ISO International Organization for 

Standardization 

LF Low frequency 

MF Middle frequency 

MIC Microbiologically Induced 

Corrosion 

MODUs Mobile offshore drilling units 

NCS Norwegian Continental Shelf 

OWEAs Offshore wind energy devices  

OX Oxidized form of a meta 

PBS Phosphate Buffered Solution 

PVD Physical Vapor Deposition 

PWHT Post Welding Hear Treatment 

R4 HSLA steel grade denomination 

according to the classification 

societies 

R5 HSLA steel grade denomination 

according to the classification 

societies 

RE Reference electrode 

RED Reduced form of a metal 

Redox Reduction-oxidation reaction 

SCE Saturated Calomel Electrode 

SHE Standard Hydrogen Electrode 

SRB Sulphate reducing bacteria 

TBT Tributyltin oxide 

TLP Tension Leg Platform 

TSA  Thermally Sprayed Aluminum 

TSC Thermally Sprayed Coatings 

TSCC Thermally Sprayed Carbide 

Coatings 

TWh Terawatt hours 

UNE Una Norma Española 

WE Working electrode 
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WS White salts ZRA Zero Resistance Ammeter
 

Chemical Compounds 

Abbr Description 

Ag/AgCl Silver/Silver chloride 

Al Aluminum 

Al(OH)3 Aluminum hydroxide 

Al2O3 Alumina 

Al3+ Aluminum (III) ion 

C Carbon 

Ca Calcium 

Cl Chlorine 

Cl- Chloride ion 

CoCr Cobalt chromium 

Cr Chromium 

Cu2O Copper (II) oxide 

Cu2O Copper oxide 

Fe Iron 

Fe3+ Ferric (III) ion 

FeO(OH)3 Iron (III) oxyhydroxide 

(monohydrated) 

FeOOH Iron oxyhydroxide 

H Hydrogen 

K Potassium 

Abbr Description 

KCl Potassium chloride 

Mg Magnesium 

Mn Manganese 

Mo Molybdenum 

Na Sodium 

NaCl Sodium chloride  

Ni Nickel 

O Oxygen 

P Phosphorus 

S Sulphur 

Si Silicon 

SiO2 Silicon dioxide 

TaN Tantalum nitride 

Ti Titanium 

V Vanadium 

WC Tungsten carbide  

Zn Zinc 

ZrO2 Zirconium dioxide 

α-FeO(OH) Goethite 

γ -FeO(OH) Lepidocrocite 

 

Experimental techniques 

Abbr Description Abbr  Description 

BSE Back-Scattered Electrons 

EDS Energy Dispersive 

Spectroscopy 

EIS Electrochemical Impedance 

Spectroscopy 

EN Electrochemical Noise 

FE-SEM Field Emission Scanning 

Electron Microscope 

ICP-OES Inductive Plasma Optical 

Emission Spectroscopy 

LDS Laser Diffraction 

Spectrometry 

MAO Micro Arc Oxidation 

OCP Open Circuit Potential 

OD Optical Density 

PDP Potentiodynamic Polarization 

PEO Plasma Electrolytic Oxidation 

SEI Secondary Electron Imaging 

SEM Scanning Electron 

Microscope 
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Symbol Description        Units 

A0 Exposed surface area       cm2 

Aact Area of active material in the wear track     cm2 

At Average common logarithm of the number of viable bacteria recovered  

after 24 hours from the untreated samples    cell/cm2 

B Constant         12-15mV 

C0 Electrochemical corrosion rate in absence of wear   mm/yr 

CPE Constant Phase Element  

CPE-n Potential factor of the CPE 

CPE-Y0 Admittance constant of the CPE      F/cm-2s-n 

Cw Electrochemical corrosion rate during corrosive wear process  mm/yr  

EC50 Concentration of test substance resulting in a decrease of 50% in the 

algal growth        mg/L 

Ecorr Corrosion potential       V 

EL50 Concentration of leachate resulting in a decrease of 50% in the algal  

growth         Vol.% 

Epit Pitting potential        V 

Es
oc Stable potential during sliding      V 

F Faraday’s constant (9500)      C 

f Frequency        Hz 

HV Vickers hardness 

icorr Corrosion current density       A/cm2 

Icorr Corrosion current        A 

ip Current density in the passive domain     A/cm2 

ipass Corrosion current density of a passivated material   Ω 

Ipass Passivation current       A 

M Molar mass        g/mol 

n Number of electrons taking place in a reaction 

R Antibacterial activity       cell/cm2 

R(%) Antibacterial activity in percentage 

Ra Roughness        µm 

Ract Active polarization resistance      Ω 

Rp Polarization resistance       Ω 

Rpass Passive polarization resistance      Ω  

rpass Specific polarization resistance      Ω 

Rpore Pore resistance        Ω 

Rps Polarization resistance during sliding     Ω 
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Rs Solution resistance       Ω 

S Synergistic component       mm/yr 

T Total material loss rate       mm/yr 

Ut Average common logarithm of the number of viable bacteria recovered  

after 24 hours from the untreated samples    cell/cm2 

vcorr Corrosion rate        mm/yr 

Vcorr Material loss due to corrosion in the unworn area    cm3 

Vpc Material loss due to pure corrosion in the unworn area   cm3 

Vtot Total material loss in volume      cm3 

Vtr Material loss due to tribocorrosion in the wear track   cm3 

Vwac Material loss due to wear-accelerated corrosion in the unworn area cm3 

W0 Wear rate in absence of corrosion     mm/yr 

Wc Volume of material removed by the effect of corrosion   cm3 

Wact
c  Material loss due to corrosion in the wear track    cm3 

Wcm Effect of corrosion on wear      cm3 

Wm Volume of material removed by the effect of wear    cm3 

Wact
m  Material loss due to mechanical wear in the wear track   cm3 

Wmc Effect of wear on corrosion      cm3 

Ws Synergistic effect between wear and corrosion    cm3 

wt% Mass fraction as weight percentage 

Wtr Total volume of removed material or wear track volume   cm3 

W-Y0 Warburg admittance       F/cm-2s-1/2 

Z Total impedance of the system      Ω cm2 

Z’ Real component of the impedance     Ω cm2 

Z’’ Imaginary component of the impedance      Ω cm2 

ΔCW Change in electrochemical corrosion rate due to wear   mm/yr 

ΔWC Change in mechanical wear due to corrosion    mm/yr 

ω Angular frequency       rad/s 
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Chapter 1: General Introduction 

1.1 MOTIVATION 

The most employed structural material is steel, usually mild or low-alloyed, which easily 

corrode in the marine environment or submerged in seawater. These steels are relatively 

cost-effective, compared to other alloyed steels with higher corrosion resistances [1]. 

High-Strength Low-Alloyed (HSLA) steels, for instance, are widely used due to their high 

mechanical properties, with yield strengths in the range of 460-950 MPa, and relatively 

low weight [2,3]. The increasing demand of lighter and higher strength steels has led to 

an increase in the use of HSLA steels in offshore applications, from less than 10% to 

over 40% in less than a decade [4].  They are used in the fabrication of offshore 

structures such as jack-ups and legs, also in pipelines and tethering attachments for 

floating structures in tension leg platforms (TLPs), or mooring lines of semi-submersible 

structures, among others [2,5,6]. Typical HSLA steels employed currently are the R4 and 

R5 steel gradesi, of ultimate strengths of 960 and 1000 MPa [7], respectively. As a 

consequence of the high demand for steels with increased strength, new steel grades 

have been recently developed. This is the case of the recently approved R6 grade, with 

an ultimate strength of 1100 MPa [7,8]. 

However, the achievement of such high mechanical properties in terms of strength, 

toughness, and weldability, can be detrimental to other properties. The strength of these 

steels is controlled by their microstructure, which depends on the chemical composition, 

the heat treatment, and the deformation processes undergone during their production. 

In this context, the metallurgy of the steels is accurately controlled, and they usually 

contain alloying elements in a range of 1 to 5 % in weight. Despite containing 

manganese, chromium, nickel, and molybdenum, their amount is not high enough to 

provide them with a high corrosion resistance, as in the case of stainless steels in which 

some of these elements exceed the 15 % in weight. Therefore, HSLA steels are very 

susceptible to corrosion, especially in marine environments that comprise one of the 

most aggressive atmospheres. For instance, the corrosion rate of mild steel in seawater 

has been reported to be 250 microns per year [9,10]. Consequently, the likelihood of 

HSLA steels of suffering substantial degradation with corrosion-related phenomena, 

such as corrosion-fatigue, stress corrosion cracking, or hydrogen embrittlement, is 

considerably high. The high dissolution rate of HLSA involves significant costs on 

maintenance and replacement of damaged surfaces and, what is worse, the risk of 

premature deterioration of infrastructures or components that can lead to catastrophic 

failures, even taking human lives in the worst-case scenario. 

In fact, corrosion is one of the phenomena that worst affect the deterioration of materials 

in offshore applications. A 30% of failures in ships and other marine equipment are the 

consequence of marine corrosion, with an annual cost of over EUR 1.5 trillionii [1]. Marine 

corrosion is particularly aggressive, due to the salt content and low electrical resistivity 

of seawater [11]. The chlorides present in seawater depassivate metals and alloys such 

as stainless steels, aluminum alloys, or titanium alloys; even in the absence of oxygen. 

Chlorides are also present in marine atmospheres, which can lead to corrosion of non-

submerged materials and structures [12]. There are other factors affecting corrosion in 

seawater and marine environments, e.g., temperature, dissolved oxygen concentration, 

                                                

i Denomination according to the International Association of Classification Society (IACS) 
ii Currency expressed in American trillion (1012) 
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pH, the presence of microorganisms, and so on [1,13-16]. Temperature and salinity of 

seawater, as well as dissolved oxygen concentration, vary depending on the 

geographical location. Temperature and oxygen concentration also vary with water depth 

[1,13,14,17,18]. In fact, corrosion has been reported to be more severe some meters 

above and below the water level, i.e., the splash zone, where the concentration of oxygen 

is higher [9,15,19].  With the aim of minimizing the material loss rate of corrosion-

susceptible materials such as HSLA steels, protective measures have been successfully 

employed. Among the existing options, the use of coatings has been the most recurrent 

solution, and especially organic coatings with high corrosion resistance [20].  

On the other hand, in certain applications, materials are also subjected to mechanical 

stresses that can lead to premature failure of components and structures. This is the 

case of Oil&Gas platforms, wind towers, renewable energy extraction systems, and 

mooring lines, inter alia. Fatigue, abrasion, impact, and wear generated by waves, wind, 

ocean currents, floating objects, sand, and heavy waves are the major stress types 

[1,9,21]. Mooring lines, for instance, are subjected to severe wear degradation in the 

connection between links and accessories, as consequence of the relative movement 

generated between components by waves, wind, and ocean currents [15,22,23]. 

Offshore structures, as well as mooring lines, are also exposed to abrasion and impact 

in the splash zone generated by heavy waves, floating wastes, sand particles, and other 

contaminants present in seawater [1,9,21].  

Wear and corrosion are two processes that lead to an irreversible degradation, and 

whenever they take place simultaneously, the process is known as tribocorrosion [24-

26]. Tribocorrosion involves a synergism between wear and corrosion, since the total 

material loss when the two processes occur simultaneously is greater than when they 

act alone [24,27,28]. While the tribocorrosion behavior of passive metals and alloys has 

been widely studied over the last decades [24-28], tribocorrosion of active materials, i.e., 

low-alloyed steels with high corrosion rates, is poorly documented. The lack of 

knowledge in this field, along with the unpredictable behavior of materials under the large 

number of degradation phenomena occurring simultaneously in marine environments, 

has led to slow progress in the development of offshore technologies. Up to now, the 

reliability of structures minimizing the risks of catastrophic failures has been achieved by 

oversized designs of components and structures. This, together with the high in-situ 

maintenance costs of metallic structures and protective coatings, entail large 

investments. Furthermore, the insufficient knowledge of materials behavior impedes the 

geographical expansion of offshore technologies, limiting the location of platforms and 

structures to low depths close to shore. 

For all these reasons, a closer understanding of the behavior of active steels under wear-

corrosion requirements could provide a better insight into materials performance in 

offshore environments. In turn, this knowledge could be used in the design phase, 

reducing both materials and maintenance costs. With this aim, in the present thesis, the 

tribocorrosion behavior of active materials is addressed. The thesis is focused in the 

specific case of mooring lines for Oil&Gas platforms, where wear and corrosion have 

been reported to be one of the main failure causes of chains and components [29-37]. 

The materials, i.e., HSLA steel grades, and the mechanical loads, have been selected 

according to this application. Nevertheless, the knowledge generated can be 

extrapolated to other offshore applications, where similar structural materials are usually 

employed. 

This is the case of offshore technologies related to renewable energies. Oceans cover 

over 70% of the surface area of the earth and represent a rich source of renewable 
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energy. Therefore, the energetic resources available in the ocean have been found to be 

very attractive for the generation of renewable energy, due to the effectiveness of the 

marine environmental conditions, i.e., stronger wind, fewer turbulences, strong swell, 

currents, etc. It is estimated that ocean energy could produce from 20000 to 80000 TWh 

of electricity a year, covering the 100-400% of the current global demand [1]. The designs 

of onshore structures and the knowledge acquired in Oil&Gas and naval fields during the 

last decades have been used to develop current offshore technologies. However, ocean 

energy development is still in an early stage, and far from other renewable energies such 

as onshore wind power or photovoltaic solar [1], due to the harsher offshore 

environmental conditions. The better comprehension of materials performance in marine 

atmospheres is a crucial factor to achieve the expansion of both Oil&Gas platforms and 

renewable energy extraction systems and structures to key locations with higher 

resources. This could lead to a higher energy generation to meet the demand and fulfill 

the H2020 objectives: a 20% of the consumed energy in Europe to be obtained from 

renewable sources by 2020, and at least the 27% by 2030 [38]. 

Finally, it should be considered that the protective systems, i.e., coatings, are also 

subjected to tribocorrosion conditions [39,40], but they are usually selected mainly to 

protect steel structures and components from corrosion. Besides, the 45% of the 

mechanical damage in coatings is mainly generated in transport and erection operations 

[21], which can considerably reduce their durability in life service. Therefore, the 

performance of these coatings should also be addressed regarding tribocorrosion 

resistance, and the second part of this thesis deals with this matter. The selection of an 

adequate corrosion-wear resistant coating should also be a key issue in the design of 

offshore structures and components, to enhance the durability of coated systems against 

the great deterioration phenomena in marine environments. 

1.2 STRUCTURE OF THE THESIS 

This thesis is composed of 7 chapters. In this section, the structure of the thesis is 

explained, linking the different publications, and briefly describing the main topic 

addressed in each chapter. The main purpose of the present chapter, chapter 1, is to 

introduce the main motivation of the thesis.  

Chapter 2 reviews the state of the art related to the main topics treated in the thesis. The 

problematics of offshore applications, focused on the specific case of mooring lines, their 

working conditions, and failures causes are presented. In the second part of this section, 

basic definitions of the main degradation mechanisms in offshore applications are 

provided. Wear, corrosion, and tribocorrosion phenomena are described, and the 

experimental techniques for the evaluation of tribocorrosion are explained. It is worth 

mentioning that this section is part of a review paper written and published in the frame 

of this thesis, used as a state of the art of techniques and test protocols employed in the 

tribocorrosion assessment of passive materials. Although it is not presented as a main 

contribution in the core body of the thesis, the review is included in Annex 2, with the rest 

of the published contributions. Finally, the last section of this chapter provides an insight 

into the protective systems and coatings used in offshore applications, as well as the 

standards and test protocols employed for their selection, evaluation, and validation. 

After introducing the motivation and the state of the art, chapter 3 outlines the main 

objectives of the thesis and the key challenges that have been dealt with in its execution.  
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Chapter 4 explains the different methodologies employed in the thesis, briefly describing 

the type of characterization performed in each stage of the study.  

The main results of the thesis are presented in the form of 7 scientific papers. Some of 

these contributions have already been published in international journals, while the rest 

have been submitted for publication and are currently under review process. These 

contributions are collected in chapter 5. The core of the thesis can be divided into two 

main blocks. In the first part, from chapter 5.1 to chapter 5.3, the tribocorrosion behavior 

of active materials is assessed. In the second part, from chapter 5.4 to chapter 5.7, the 

evaluation of currently employed protective coatings in terms of corrosion and 

tribocorrosion is addressed. 

The first findings in the tribocorrosion behavior of active steels are presented in chapter 

5.1. In this paper, two HSLA steel grades used in offshore mooring chain manufacturing, 

i.e., grades R4 and R5, were evaluated. As briefly explained in chapter 2, there are two 

standardized test procedures for the assessment of tribocorrosion of passive materials 

(ASTM G119 [41] and UNE 112086 [42]). In this chapter, the procedure of ASTM G119 

standard was employed to evaluate the synergism between wear and corrosion for these 

steel grades in synthetic seawater. The results obtained in this work provided a first 

interesting insight into the response of active steels, showing a significant difference with 

respect to the better-known passive materials. 

In chapter 5.2, the response of the R4 and R5 steels was evaluated using the test 

protocol described in the more recently published standard for tribocorrosion of passive 

materials (UNE 112086). Since seawater temperature is well known to vary with the 

geographical location and water depth, the influence of this parameter in the 

tribocorrosion resistance of the steels has been evaluated in this chapter. For this aim, 

the tests were performed at two temperatures, i.e., 23 ºC representing seawater 

temperature in the Gulf of Mexico, and 2º C to reproduce the low temperature in the 

North Sea. The results obtained from this work demonstrated the suitability of the test 

procedure, but the material loss quantification for passive materials could not be used 

for active materials.   

In the last chapter from the first part of the thesis core, chapter 5.3, the tribocorrosion 

behavior of a passive AISI 316 steel and the active R4 steel grade is compared. In this 

chapter, the Zero Resistance Ammeter (ZRA) technique was employed, to 

simultaneously record information on the potential and corrosion current evolution during 

the wear test. The experiments were performed at different rotation speeds, so as to 

evaluate the influence of electrolyte agitation on the tribocorrosion response of both 

materials. The passive steel was found to be unaffected by the agitation, whereas the 

active steel showed a considerable acceleration of corrosion on the unworn surface with 

higher rotation speeds.  

The second part of the thesis, regarding the assessment of protective systems, starts in 

chapter 5.4. In this chapter, three commercial coatings currently employed in offshore 

submerged component protection were evaluated. Currently, the coatings are selected 

by their corrosion properties, and little is known about their performance against wear-

corrosion conditions. The corrosion and tribocorrosion performance of the coatings was 

studied, in order to compare the behavior of three physically different coatings and select 

the more suitable option for its use in severe working conditions, i.e., under wear-

corrosion requirements.   

The study of chapter 5.4 was completed with the aging tests presented in chapter 5.5. 

At present, the suitability of a coating for its use in atmospheres of different corrosivity is 
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verified subjecting the coated samples to different conditions in climatic chambers 

according to certain standards (ISO 12944 [43], NORSOK M501 [44]). The three 

commercial coatings were aged following these specifications. From the results obtained 

in chapter 5.4 and chapter 5.5, one of the three coatings was found to have the best 

performance in all the tests. This was a Thermally Sprayed Aluminum (TSA) coating with 

an organic topcoat.  

Based on the results of the two previous chapters, the last two chapters aimed to provide 

the commercial TSA/organic-topcoat coating system with enhanced properties. In 

chapter 5.6, the TSA coating was treated by Plasma Electrolytic Oxidation (PEO) 

technique, in order to improve the low wear resistance of the aluminum layer. The newly 

generated duplex TSA/PEO coating system was evaluated in terms of corrosion, dry 

abrasion, and tribocorrosion tests in synthetic seawater. Based on the results, the 

corrosion, the wear and the tribocorrosion mechanisms of the oxide layer were proposed. 

The PEO treatment was found to be an effective solution to enhance the wear and 

tribocorrosion behavior of the TSA coating.  

The last scientific work of the thesis is presented in chapter 5.7. In this paper, the organic 

topcoat applied to the TSA coating was functionalized to provide the system with 

antifouling abilities. The topcoat paint formulation was modified by adding SiO2 

nanoparticles to increase the hydrophobicity, and Cu2O nanoparticles to make it 

bactericide. The former property aims to avoid the attachment of fouling and 

microorganisms into the submerged components, whereas the latter intends to annihilate 

any organism that gets to stick on the surface. The newly formulated topcoat applied on 

the duplex TSA/PEO coating was evaluated in terms of wettability, bactericide activity, 

and ecotoxicity tests. Finally, the whole coating system was aged according to the 

coating validations standards previously mentioned.  

In chapter 6, the main deductions obtained from the outcomes of the seven previous 

chapters are discussed. At the end of this section, the final conclusions of the thesis are 

presented. 

Finally, the future work and studies that could be performed to improve this work, and to 

gain new insights into the tribocorrosion behavior of active materials are proposed in 

chapter 7.  

At the end of the document, two annexes are presented. In Annex I, the instrumental 

techniques employed in the execution of the thesis are described. In Annex II, the main 

contributions and dissemination activities derived from this thesis are listed. 
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Chapter 2: State of the art 

2.1 OFFSHORE APPLICATIONS: CASE STUDY OF MOORING 

LINES 

 Mooring lines  

Mooring lines are employed to maintain floating structures in a fixed position, within 
acceptable limits, ensuring the safe operation of the units. Mooring systems consist of a 
number of lines that are attached to different points of the floating structure. They have 
a physical contact with seabed providing restoring forces that act against the 
environmental solicitations that push the unit off station [1,2]. In operable platforms, the 
environmental forces cannot be withstood by a single mooring line, so typically 3 or 4 
lines are employed. Mooring lines can be of different configurations, depending on the 
type of unit, the water depth, the seabed layout, the geographical location, etc. The 
different kind of moorings are [2,3]:  

• Catenary mooring: consist of one single line or several lines in a radial fashion. The 

position of the floating units is maintained by the weight of the line.  

• Taut mooring: usually consist of synthetic fibre ropes, which are prestressed forming 

angles of 30-45º with the seafloor. In this case, the elastic properties of the ropes 

maintain the structure in place.  

• Tension leg mooring: They are a set of vertical tendons attached to the platform and 

the seabed, usually made of steel tubes and ropes.  

• Dynamic Position mooring (DP): active thrusters are employed to oppose drifting 

caused by the natural forces acting on the unit. 

 
Fig. 2.1 Schematics of a catenary mooring arrangement, using the weight as restoring force (left) and a 
taut mooring arrangement employing the elastic properties of prestressed ropes to maintain the position 

(right) (Image based on [4]) 

The predominantly employed mooring types have been the catenary and the tensioned 

mooring or taut mooring systems [5] (see Fig. 2.1). Catenary moorings can be composed 

of chains, wires, and fiber ropes. Chains can be used as a sole component in a mooring 

line, but they are usually combined with wires and ropes of steel, natural fiber or synthetic 

fiber [6]. The benefit of such materials combination is a synergy of stiffness provided by 

the heavy chain, and a reduction of dead load an increased flexibility provided by the 

rope. Chains are typically used at the bottom of the line connected to the anchor, and at 

the top connected to the floating structure. The splash zone and the thrash zone, i.e. the 

top and bottom of the line, respectively, are particularly exposed to corrosion, wear, axial 

load and bending, and the use of robust chain is preferred for such harsh conditions.  

 Mooring lines in offshore floating platforms and facilities 

The earliest moorings were employed as anchoring system for boats, ships, and vessels, 

to keep them from drifting freely in the ocean. These moorings consisted mainly of rope 
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or chains locket at a heavy anchor. As oceanic technologies developed to higher depths, 

moorings have been adapted and redesigned for their use in huge and heavy floating 

system station keeping operations.  

 
Fig. 2.2 Schematic of foundations and moorings employed in Oil&Gas production (Based on [7,8]) 

 

Regarding floating structures, the most ancient sector in ocean resources exploitations 

has been the petroleum industry. Oil&Gas continues to be the major source of energy in 

the 21st century. Oil&Gas Floating Production Systems (FPSs) are placed all over the 

world, and there has been an exponential growth in the number of facilities during the 

last decades. For instance, the number of FPSs increased from 277 in 2013 [9] to around 

370 in 2017 [10]. FPSs are usually employed for water depths above 1500 m, where 

fixed structures are not economically viable, so mooring systems are employed to keep 

the platforms in a stable position during years. In Fig. 2.2, different platform types 

employed in Oil&Gas production are presented, i.e. FPS (Floating Production and 

Storage), FPSO (Floating Production Storage and Offloading), Semi-Submersibles, 

Spar, and TLP (Tension Leg Platform). Furthermore, the image shows different 

attachments to seabed employed in the different units: catenary, tension leg, or taut. 

Unlike trading ships, FPSs must stay fixed in the same position for years. The misplace 

of a stable position may lead to a malfunctioning of the platform, failure of components, 

or even catastrophic failures.  

 
Fig. 2.3 Types of wind turbine foundations, showing floating structures adapted from Oil&Gas industry [13]  

On the other hand, the growing interest in renewable energies has led to the 

development of new technologies for the generation of energy from the ocean natural 

resources. This is the case of offshore wind energy. The earliest offshore wind turbines 

where built close to shore in fixed structures. The need to increase the generated energy 

is leading to wind farm movement further offshore, into deeper waters, where better wind 

resources are available. Similarly to Oil&Gas platforms, fixed structures in depths greater 

than 50 m are not an economically viable option. This has led to a transition from fixed 

to floating support structures [5,11-13]. Floating offshore wind turbines (FOWTs) are the 
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most promising technologies among all the available wind energy harvesting facilities 

[12,14]. The knowledge acquired from the Oil&Gas industry has been employed in the 

design of different technologies for wind energy [15], including the mooring systems for 

FOWTs [5,11-13] (see Fig. 2.3). Chain catenary moorings have been already employed 

in floating horizontal axis wind turbines (HAWTs), e.g. Windfloat [11] and Hywind [16] 

prototypes. The former is located 20 km offshore in water depths of 150m [11], whereas 

the latter is placed 24 km offshore in water depths of 220 m [17]. Both facilities use three-

catenary-chain line mooring systems for each wind tower of the farm. 

Another less known example where mooring is also necessary are fish cage structures. 

Nowadays, the fish consumption coming from aquaculture is on the 35 %, which has led 

to an increase of a 10% per year in volume within the food industry sector. Chain-

composed moorings are commonly employed to keep these platforms on a static specific 

position. The failure of mooring systems in these facilities results in fish scape, with the 

consequent economical loss [18,19].  

 Steel grades used in mooring chain links  

Chains have been used in offshore mooring lines for decades in catenary configuration. 

The high strength of steel to resist the imposed loads, and the weight of the chains to be 

used as position restoring, make these components a good choice for mooring 

operations. A mooring line can be composed of over 1,500 links, and the weight of each 

link in water can be around 474 kg for 165 mm diameter chain, and 550 kg for 178 mm 

diameter chain [20]. Usually more than one line is employed for each floating platform, 

so the weight of the mooring systems can be considerably high, over thousand tones.  

The steels used in mooring system components contain between 1 and 5 % of alloying 

elements by weight and are commonly referred to as High-Strength Low-Alloy Steels 

(HSLA). Links are manufactured from rolled steel bars, which are bent and joint by flash 

butt welding process. After welding, the links are heat treated, to achieve a proper 

microstructure and homogeneity. The heat treatments consist of two processes, namely 

quenching and tempering. The high mechanical properties, in terms of strength and 

toughness requited for mooring applications, are achieved through chemical composition 

and heat treatments [21,22]. Therefore, the properties of the steels can be controlled by 

adjusting the temperatures and the cooling rates of the heat treatments. There are two 

main types of chain links: stud links and studless links. The former are commonly 

employed in semi-submersible drilling platforms, whereas the latter are used in 

permanent moorings of FPSO, FPS and Spars [6]. The design of stud links is 

standardized and described in the ISO 1704 [23], whereas the design of studless link is 

not standardized, but the recommendations provided by the IACS W22 [24] are 

commonly considered. During manufacturing process, the links must undergo non-

destructive tests to ensure the absence of irregularities, and the finished chains must 

also be inspected, checking their dimensions to discard any anomality undergone during 

manufacturing stages [21]. The classification societies classify the HSLA steels in 

different grades depending on their mechanical properties. The International Association 

of Classification Society (IACS) denotes the steel grades with an “R” followed by a 

number. The required minimum properties for each steel grade are presented in Table 

2.1. 

After the last highest grade R5 was approved by the Classification Societies in 2005, 

great efforts have been made to design new steel grades, with higher strength [25]. 

Recently, a new standard including a new steel grade has been approved: the R6 grade, 

with 1100 MPa of ultimate strength [21]. The properties of these steels are included in 

Table 2.1.  
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Table 2.1 Mechanical properties of the different steel grades used in mooring chains [21]  

Steel 

grade 

Quality 

assurance ISO 

9000 

Ultimate 

Strength min. 

(MPa) 

Yield Strength 

min.  

(MPa) 

Reduction of 

area min.  

(%) 

Elongation 

min.  

(%) 

API 0RQ Required 641 - 40 17 

R3 Required 690 410 50 17 

R3S Required 770 490 50 15 

R4 Required 860 580 50 12 

R4S Required 960 700 50 12 

R5 Required 1000 760 50 12 

R6 Required 1100 850 50 12 

It is worth noting that the steel components and structures in offshore industry are 

commonly protected against marine corrosion by coatings and/or cathodic protection. 

The case of mooring lines where the steel components are mainly unprotected is rather 

special [22]. More about coatings for the protection of submerged components will be 

addressed in the following section of this chapter.  

 Offshore working conditions  

Offshore structures and their moorings are exposed to harsh environmental conditions, 
including high loadings coming from storms, waves, wind, ocean currents, marine 
growth, ice, and so on. Mooring lines can extent for several hundred meters undersea, 
and the weight of the catenary becomes very heavy. The environmental loads applied 
on the stationed unit are resisted by this high weight [2,26,27]. When the unit is forced 
to move in one direction, the mooring line stretches in the opposite direction, lifting from 
the seabed, and adding more weight to the line. The lifting and dropping of the line in the 
thrash zone can cause wear and abrasion damage in the links, by rubbing them against 
the sand in the seabed [2]. The combination of seawater with oxygen can generate 
considerable material loss of steel by corrosion. The sea behaviour results in cyclic 
loadings inducing the risk of fatigue. Since this fatigue takes place in a hostile 
environment, i.e. seawater, it corresponds to corrosion-fatigue phenomenon, which is a 
type of fatigue enhanced by corrosion. Therefore, mooring systems must withstand 
mechanical and environmental loads maintaining a stable position in the sea, ensuring 
the functionality of the FPSs [1,26-28]. Usually, mooring lines are designed for an 
operational life of 20 years [2,26,29], but the adversities in seawater environment can 
reduce the designed lifetime of these structures several years, resulting in unpredicted 
failures.  Since moorings of fixed structures are not frequently inspected and repaired in 
dry conditions, periodic inspections are essential to monitor their structural integrity.  

 Mooring line failure causes 

The mooring line is as strong as its weakest link. Therefore, the longer the chain the 

higher the probability that a link has a weakness that might lower its strength [26,27]. 

The failure of one or more lines results in an increase in the loading on the remaining 

lines, which can exceed their capacity, leading to failure of these lines. In 2000, the 

potential FPSOs hazards were identified and ranked in a report prepared by the 

Norwegian University of Science and Technology (NTNU) for Health and Safety 

Executive (HSE), based on frequency as well as consequence. In this report, multiple 

failures in mooring systems were ranked as safety critical risk category 1, which 

corresponded to the highest category [3]. 

Since the oldest offshore technology corresponds to FPSO industry, the most reported 

mooring incidents of floating units are associated with Oil&Gas production units. 

Premature line replacements as well as single or multiple line breakages have been 

reported [1,9,30-33]. Just in the period between 2010 and 2014, 16 failures were 
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reported on the Norwegian Continental Self [30]. Mooring line failures have occurred due 

to a range of motives, but the main causes are fatigue, corrosion and mechanical issues, 

including wear [1,2,9,26-30,33]. The most reported failure types are classified into the 

following major groups: 

• Corrosion-fatigue: Fatigue damage accumulates in mooring line components as a 

result of cyclic loading. As consequence of the low frequency generated by waves 

(0.1-0.5 Hz) [34,35], there is plenty of time for corrosion to occur, and the 

phenomenon shall be therefore referred to as corrosion-fatigue.  

   
Fig. 2.4 Chain failure by corrosion-fatigue crack propagation in the crown (left [36] and middle [37] ), and 

fatigue crack initiation in the crown (right) [37]  

• Electrochemical corrosion: Corrosion is an electrochemical process where 

metallic atoms are oxidized. In steel components, iron atoms oxidize into positive 

ions (Fe2+) that react with other ions and molecules present in seawater to form 

oxides and salts [22]. Iron dissolution corresponds to the anodic reaction, whereas 

the dominant cathodic reaction is the oxygen reduction. Iron ions can react forming 

different oxides or hydroxides, creating a rust layer in the surface of the steel. The 

most common corrosion product for steel in seawater has been found to be iron 

oxyhydroxide (FeOOH) [38-42], which can be present in different structures: goethite 

(α-FeO(OH)), lepidocrocite (γ-FeO(OH)), or monohydrated (Fe(OH)3). Magnetite 

has also been found under high iron ion and low oxygen concentrations [22,42].  

   
Fig. 2.5 Chain links presenting general corrosion (left) [2], chain covered by fouling (middle) [45], and 

chains showing localized corrosion due to MIC (right) [44]  

There are several corrosion types that can affect mooring components, from locally 

concentrated to generally extended over a wide surface. Localized corrosion, 

commonly referred to as pitting corrosion, causes typically 2-3 mm of metal loss with 

isolated areas of deeper pits [2]. This type of corrosion has been reported to be 

mainly consequence of the presence of microorganisms, what is known as 

Microbiologically Induced Corrosion (MIC) [9,22,33,42-47]. MIC has been found to 

reduce up to a 35% of the cross-sectional area of a chain link after 7 years of 

operation in West Africa [43]. Corrosion of steel in seawater is a function of many 
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factors including water temperature, salinity, water velocity, oxygen concentration, 

and surface roughness, inter alia [1,28,47,48]. Some of these factors vary with the 

geographical location, the year season, or the water depth. For instance, an 

increment water temperature of 10 degrees can increase the corrosion rate of low 

alloy steels by a factor of 1.5 or even 2 [22,42]. Furthermore, corrosion is also known 

to be more aggressive some meters above and below the water level, i.e. in the 

splash zone, where more oxygen is available for corrosion reactions 

[22,31,33,42,46,48].  Galvanic corrosion is another major concern in such 

applications were the combination of dissimilar materials is employed [2,22,33,42]. 

Therefore, corrosion rate of mooring chains is not a simple function of exposure 

period, but it is influenced by several variables hard to predict. 

• Wear and abrasion: The cyclic loads generated by environmental factors can lead 

to wear, and fatigue-wear, which can result in premature failure of components. 

Chain wear is more severe in the inter-link contact, particularly in the upper chain 

links [1,42,47] and in the sea floor or thrash zone [2,9,22,33,47]. The high wear in 

the less heavily loaded leeward lines is attributed to a greater inter-link rotation 

occurring in the thrash zone [26,27,33]. Furthermore, sand and other foreign 

materials can be trapped in the inter-link contact, aggravating the abrasion between 

links [1,30,49,50]. Some studies have reported wear rates up to 3-4 mm per year in 

chain links [22,26]. The main wear mechanisms found in the interaction between 

links in mooring lines have been found to be adhesive wear, abrasive wear, and 

surface fatigue wear [22,47]. The considerable reduction of the chain section results 

in a loss of strength, and the links might not resist the imposed load failing 

prematurely.   

 
Fig. 2.6 Chain links showing severe wear in the inter-link contact (left) [51], and wear and pitting 

corrosion (right) [2]  

• Tribocorrosion (wear and corrosion): Wear in inter-link contacts removes the 

corrosion products formed in the chains surface, leading to higher material loss in 

the inter-link zone than elsewhere [1,2]. The oxide formed in HSLA steels, mainly 

iron oxyhydroxide, is porous and loose [38-41]. However, its presence slows down 

the corrosion rate of the steel, strongly limiting the Fe3+ iron transport from the steel 

to water, and the oxygen transport from the water to the steel [52-54]. On the other 

hand, the salts present in seawater can precipitate on the surface of the steel, 

reducing its corrosion rate from 0.6 mm/yr to 0.1-0.2 mm/yr [22]. The removal of 

these oxides and deposits from the surface exposes the underlying steel, which can 

corrode faster [1,2,22,42]. The detached particles can be trapped in the contact 

between links enhancing the wear extent by a three-body abrasion mechanism. On 

the other hand, corrosion can increase the surface roughness, altering the contact 

forces and affecting the wear of the links. There is a synergistic effect between wear 
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and corrosion, where the material loss when the two processes take place 

simultaneously is higher than when they take place alone [22,42].  

• Overloading: Overloading is a common cause of mooring line failure, which often 

occurs during meteorological phenomena, i.e. storms, gales, etc. Under these 

circumstances, the chain links experience a far larger loading, which can exceed 

their maximum strength [9,30,55]. 

• Design errors and manufacturing defects: The unawareness of the potential 

threats in the design phase is usually behind the failures related with design errors. 

The uncertainties produced by a lack of knowledge, and the unpredictable behavior 

of materials in such unsteady environment, often make the design process difficult 

and imprecise [9,28]. Inappropriate chain manufacture is another issue of concern. 

Some reports indicated the failure of components by improper heat treatment 

resulting in low toughness [22,56-58]. Finally, a high number of mooring integrity 

issues and interventions have been consequence of installation related 

shortcomings, especially in the first years of service [29].  

As consequence of the diverse working conditions of mooring lines, the above mentioned 

failure causes can interact leaving to complex failure mechanisms. For instance, the 

material loss due to wear or corrosion, changing the cross-sectional geometry of the 

links, can lead to premature failure by faster crack propagation under corrosion-fatigue 

conditions. Excessive corrosion or wear can lead to the initiation of fatigue cracks under 

cyclic loading [22,42]. Furthermore, depending on the material, or steel grade in this 

case, the deterioration concerning wear and corrosion will be different. Corrosion and 

wear properties of the chain links will be influenced by the chemical composition, 

microstructure, hardness and surface conditions, in terms of roughness and oxides 

presence [22]. At present, little data is available related to the influence of wear and 

corrosion on the degradation of long-term mooring components of HSLA steels, and the 

reduction of their break strength [9]. 

 
Fig. 2.7 Main degradation processes and their location on a catenary mooring line (based on [2,9]) 

Some of the degradation mechanism that long-term mooring systems must withstand 

are presented in Fig. 2.7. As observed in the picture, the fairlead or chain stopper, i.e. 

the upper part of the line, is subjected to high tension with additional bending and twisting 

stresses. The twisting can also lead to inter-link wear in the contacts. The links located 

in the splash zone are exposed to highly oxygenated water, where high rate aerobic 

corrosion processes take place [31]. Finally, the touchdown or the links placed in the 

bottom of the line in contact with the sea floor, are exposed to severe wear, impact and 

abrasion [1,30,49,50].  

On the other hand, the different degradation mechanisms in a single chain link are 

presented in Fig. 2.8. Links are exposed to particle erosion in the whole surface. Fatigue 

cracks are generated due to cyclic tension and compression loads. Inter-link wear takes 

place in the crowns, and it can be aggravated by the presence of foreign particles, sand, 
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or iron oxides removed during wear. Corrosion affects the whole component, and in the 

areas where wear processes take place the material loss is accelerated (tribocorrosion).  

 
Fig. 2.8 Schematic of the different degradation mechanisms in a chain link (based on [33,50]) 

2.1.5.1 Reported failures: statistics of failure types and causes 

Over the years, there has been an increase in the number of mooring line failures, which 

has been proportional to the increase of the FPSO population [31]. Most of the reported 

failures have been related to a single line failure, but some multiple line failures and even 

catastrophic failures have also been reported. Furthermore, in most cases, the assets 

presented integrity issues requiring intervention, which resulted in partial or complete line 

replacements [29,31]. Mooring line failure frequency follows a classic U-shaped curve, 

presenting a high number of failures in the first 5 years of operation, a decrease during 

the following years, and a final increase in the late life above 15 years of operation [29]. 

The early life failures are consequence of poor design, defects on manufacture process, 

or damages originated during installation operations. The late life failures are often 

related with the aging of components, which is accelerated by the harsh environmental 

and mechanical working conditions, i.e. corrosion, wear, fatigue, etc [29,31,57]. 

Many authorities have gathered information on mooring line failures and their causes. 
Most of the data available is from the North Sea, where there are statutory requirements 
for reporting mooring-related incidents to the UK HSE (Health and Safety Executive) [9]. 
The surveys presented by the HSE showed different failure times depending on the 
structure type [2,30,55,59]. For FPSOs and FSOs, a line failure for every seven and 
seventeen operating years was expected, respectively. Drilling semi-submersible and 
Production semi-submersible units presented one failure every four and eight operating 
years, respectively. More frequent failures are expected for drilling ships, every year and 
a half. The shorter expected time to failure on non-permanent platforms, i.e. MODUs 
(mobile offshore drilling units), might be due to rougher handling of the lines, since they 
are more frequently installed and uninstalled when switching locations. Taking under 
consideration that mooring lines are designed to last for more than 20 years, the 
expected failure rate of mooring systems is rather high. Furthermore, giving the 
substantial increase in the number of FPSs installed during the last years, and the 
increasing age of the already installed ones, the probability of failure might increase in 
the near future.  

In 2014, a survey was carried out by E. Fontaine gathering information on the incidences 

related to pre-emptive replacements, reported degradations, and mooring failures, either 

single or multiple for ship-shaped FPSs [31]. According to this survey, the highest 

number of failures have been reported from the North Sea, followed by West Africa. The 

latter also presented the highest pre-emptive replacements. On the other hand, there 

was little data available from other locations such as Brazil or Asia, which were thought 



Chapter 2 

 

 

21 

to be an under reporting of failures rather than a lack of incidents [31]. As shown in Fig. 

2.9a, the survey revealed the highest failure event types to be single line failures (42%), 

followed by pre-emptive replacements (39%). Multiple line failures represented the 8% 

of the cases. The 19% of these failures led to a production shutdown (Fig. 2.9b). The 

reported root causes of the failures are presented in Fig. 2.9c. The most prevalent failure 

reasons were fatigue and corrosion, which together represented the 45% of the cases. 

Installation failures represented the 16%, which comprising residual mechanical 

damage, design issues, manufacturing defects, and so on. In Fig. 2.9d, it can be seen 

how most of failures took place during operation processes (49%), followed by 

installation (22%) and design (19%) related causes. The breakdown of mooring 

component type associated with single line failures and the prevalent failure modes for 

chain links are presented in Fig. 2.9e and f. Single line failures are mostly consequence 

of chain links failure (54%). In turn, chain link failures are dominated by corrosion (20%) 

and corrosion fatigue (19%), followed by fatigue (17%) [31]. Regarding the location of 

the failure along the length of the mooring line, most of the failures took place on the 

terminations (e.g. fairleads and anchor), in the touchdown regions on the seafloor, and 

at connectors [9,60].  

 
Fig. 2.9 (a) Failure event type, (b) effect of failures on the production of the units, (c) main causes of 

failures, (d) proportion of failure associated to each project phase of mooring line, (e) component type 
associated with single line failures, and (f) failure causes for steel chain links (from [31]) 

 Impact of mooring line failures 

A mooring line failure, which in turn can lead to the platform failure, can have a major 

impact on the local environment, the company economics, financial losses, and welfare 

of human lives [1,2,9,26,27]. The consequences connected to mooring failure are 

diverse, from damaging subsea equipment, to completely uncontrolled platform drifting 

in the sea. This was the case of Transworld 58, the first semi-submersible platform, which 

after 6 years of operation broke away in 1981 when a single mooring line failure was 

followed by multiple line failures. Another example is the Fulmar SALM, which broke free 

in the North Sea in 1988 after 7 years of service [2]. The free drifting of a platform could 
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also affect other units in the proximity, increasing the losses. Mooring systems failure 

represent the 77% of all FPSO losses. For the operational losses of FPSOs reported 

from 2001 to 2016, a total of EUR 3.6 billioniii was registered for around 300 losses. A 

37% of the losses (EUR 1.3 billioniii) were attributed to mooring line failures, whereas 

those corresponding to risers were the 16% (EUR 0.6 billioniii) [61]. 

The financial costs associated with mooring line failure can be extremely large. The 

replacement of a broken mooring line with a new one, or the production shutdown of the 

moored structure for a short period involves a considerable economic impact for offshore 

industries. The full replacement of a mooring may well take several months, due to lack 

of spares and procedures, and also to a possible non-availability of suitable vessels [27].  

The failure of a mooring line can lead to the rupture of risers or drilling pipes, allowing a 

large spill of hydrocarbons into the ocean. Hydrocarbon release might cause a severe 

environmental contamination, which can be difficult to treat. The presence of 

hydrocarbons can disturb the marine ecosystem, affecting the fish growth [62], or being 

lethal to certain organisms inducing the loss of habitat of marine species [63]. A worse 

and more catastrophic incident would be an explosion of a platform as consequence of 

hydrocarbons ignition after a leak in a broken drilling pipe. This would generate the loss 

of expensive equipment, and also the loss of human lives in the worst-case scenario.  

 Mooring line design codes: specifications and limitations 

Permanent mooring systems are typically designed to last 15 to 20 years [2,26,29]. The 

considerable number of assets that have require mooring replacement, or the premature 

failure of mooring lines, evince that the intended design performance of moorings does 

not meet the operational performance in real service conditions [29].   

Corrosion is one key issue that must be considered in mooring line design. However, 

certain uncertainties will always be present as corrosion process depends on diverse 

causes that are not always constant, e.g. temperature, salinity, presence of 

microorganisms, etc. This results in different corrosion rates that depend on the 

geographical location, depth, or year season, inter alia. Therefore, the influence of all 

these variables make the prediction of the corrosion behaviour of steel components 

markedly challenging [2,33]. Furthermore, the constant movement of the mooring line, 

the relative movement generated between the links, the graze generated in the seabed, 

and the impact of sand and other objects present in the ocean, can lead to considerable 

material loss by wear process. This produces a fairly reduction in the effective section of 

the chain links, which eventually might not withstand the loads failing prematurely. 

Therefore, a key factor in the long-term integrity of a mooring system is the correct 

accountancy of wear and corrosion in the design process.  

There are several design codes and standards that present design requirements 

considering wear and corrosion of steel chains. The early design and operational 

protocols were based on the knowledge acquired from the North Sea cold-water reported 

experience. All this knowledge is reflected in the most current requirements specified by 

the Classification Societies [47]. The oldest design codes did not include corrosion 

allowance or fatigue life calculation requirements, as in the case of POSMOOR code 

(1989) [64]. Back then, mooring lines were design just with load allowances, so there 

was no much margin to assure the durability of the links that could no longer meet 

allowable loads due to the degradation occasioned by wear and corrosion.  

                                                

iii Currency expressed in American billion (109) 
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Current industry practice is to increase the chain diameter several millimetres per service 

year. The wear and corrosion allowances for mooring line designs of more recent 

offshore-related standards are compiled in Table 2.2. As observed in the table, the 

allowances depend on the exposure zone of the mooring line. The parts of the mooring 

line are divided as splash zone, catenary, and bottom [65]. The splash zone is defined 

as 5 m above and 4 m below the still water level, the Catenary is the suspended length 

of the mooring line between the splash zone and the bottom, and the bottom is the line 

length in contact with the hard bottom sea-bed. According to the DNVGL-OS-E301 [65] 

and NORSOK M-001 standards [66], the design in the splash zone must be more 

conservative comparted to the remaining exposure zones, due to the aggressiveness of 

corrosion in this region with high oxygen concentration. The allowance of the bottom of 

the line should be increased if bacterial corrosion is suspected.  

Table 2.2 Chain wear-corrosion allowance requirements of different standards 

Codes/Standards 

Chain wear-corrosion allowance 

referred to chain diameter (mm/yr) 

Splash zone  Catenary Bottom 

API RP 2SK 0.2-0.4 0.1-0.2 0.2-0.4 

ISO 19907-1 0.2-0.8 0.1-0.2 0.2-0.8 

NORSOK M-001 0.4 0.1 - 

DNVGL-OS-E301 

No inspection 0.4 0.3 0.4 

Regular inspection 0.2 0.2 0.3 

Requirements of the Norwegian shelf 0.8 0.2 0.2 

Requirements for tropical water 1.0 0.3 0.4 

API RP 2SK [67] recommends an increase of 0.1-0.2 mm in the mid-catenary, and of 

0.2-0.4 mm in the splash zone and the hard bottom sea-bed. On the other hand, API RP 

2I [68] has been used in the design of long-term FPS moorings, but it does not take into 

consideration wear and corrosion allowances. The inconsistency of chain dimensions 

requirements of the two API standards has drawn the attention of the sector [69]. The 

ISO 19907-1 standard [70] recommends an increase of 0.2 mm to 0.8 mm per service 

year in the splash zone and the hard bottom sea-bed. Similarly, the NORSOK M-001 

prescribes 0.4 mm for the splash zone and 0.1 mm for fully submerged conditions. The 

requirements of NORSOK cover the regulations of the Norwegian Continental Shelf 

(NCS), which are stricter than the requirements of other locations around the world. The 

DNVGL-OS-E301 presents high-level requirements regarding in-service inspection 

programs. The standard states that corrosion allowance should depend on inspection 

schedules. The allowances are lower compared to other standards, since the lines are 

designed to be inspected with higher frequency, and states that the lines should be 

replaced when the diameter is reduced by 2%.   

 Challenges in the mooring line design  

Dimensional checks carried out on FPSs placed on the North Sea have demonstrated 

that wear and corrosion are significantly higher than that specified in most mooring 

design codes. For instance, the worn areas in the thrash zone of a failed line showed a 

reduction of 10 mm due to wear and corrosion over 16 years of service. This 

corresponded to a material loss rate of 0.615 mm/yr, being a 50% higher than the value 

specified in the DNVGL-OS-E301 [2,26]. If the material loss due to combined wear and 

corrosion processes is higher than that specified in mooring design codes, which could 

also have significant implications for the true long-term integrity of FPS moorings [27]. 

On the other hand, corrosion rate is also different depending on the corrosion 

mechanism. The localized corrosion induced by sulphate reducing bacteria (SRB) [29], 
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or by galvanic reaction when two distinct metals are in electrical contact, lead to fast 

metal dissolution, overcoming the values in the design codes. Other failure mechanisms 

such as friction induced bending fatigue appears to be a significant issue which has been 

somehow neglected and require further investigation [2,6]. The design codes offer little 

guidance about the influences of climatic, environmental, and operational conditions [47]. 

Finally, the synergistic effect of the combination of several degradation phenomena 

make the prediction a complicated issue. Awareness of corrosion, wear, and relevant 

loading conditions during design phase will certainly improve offshore structural 

components, guaranteeing their correct functioning and extending their service life.  

2.2 ANALYSIS OF THE DETERIORATION MECHANISMS IN 

OFFSHORE APPLICATIONS. TRIBOCORROSION 

 Introduction 

Materials working in offshore applications, are subjected to very harsh environmental 

conditions. Often several phenomena can take place simultaneously shortening the 

useful life of structural materials, leading to unpredicted failures. In the case of mooring 

systems, tribocorrosion plays an important role in terms of premature failure of 

components [71]. On one hand, the relative motion between chain links and connectors 

generated by waves, wind and ocean currents [72,73] leads to a continuous wear 

process in the contact surfaces. Moreover, the components that are continuously 

submerged or located in the splash zone of offshore structures, are subjected to high 

rate corrosion processes [48]. 

 Wear 

Wear is the removal of material from one or both of two solid surfaces in a solid-state 

contact. It occurs when solid surfaces are in a sliding, rolling, or impact motion relative 

to one another, through surface interactions at asperities [74,75]. The generation and 

circulation of wear debris can enlarge the total amount of wear [76,77]. In extreme 

conditions of mechanical or environmental stress, wear can lead to fatigue or fatigue-

corrosion failure of the material [78]. Wear has a significant economic impact on modern 

industrial society. Several studies estimate that the cost associated with wear damage 

corresponds approximately to a 1-22% GNP, so it plays a vital role from a socioeconomic 

standpoint [75]. Depending on the nature of the damage, the factors causing wear, and 

the combination of materials, wear damage on materials can be classified into the 

following wear modes [75,78,79]: 

• Adhesive wear: It is common in metal/metal, metal/polymer, and metal/ceramic 

contacts, and occurs when asperities on sliding surfaces interact to form cold welds. 

When the adhesion strength of the weld points exceeds the cohesive strength of the 

contacting materials, one material is transferred to the other and adhesion takes 

place. 

• Abrasive wear: Abrasion is the most common type of wear (55-60% of all wear). It 

occurs when one of the sliding materials is much harder than its counterpart, typically 

with a difference higher than a 20%. In such a case, known as two-body abrasion, 

surface asperities on the harder surface can easily abrade the softer material. Another 

kind of abrasion called three-body abrasion is caused by the particles confined in the 

tribological contact. In this case, the particle shape and hardness play a major role in 

the overall wear rate.  
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• Oxidation wear: Oxidation wear is commonly observed on oxide forming materials 

at high temperatures. In general, oxides on the surface of a metal can be released as 

wear particles once the oxide layer reaches a critical thickness.  

• Erosion wear: Erosion wear occurs when hard particles or fluids droplets impinge on 

a material. The erosion with particles is termed particle erosion, whereas erosion 

caused by the impingement of liquid droplets is called liquid erosion. 

• Fatigue wear: This type of wear occurs when materials are subjected to cyclic 

stresses.  

• Fretting: It is a special type of corrosive wear, that includes corrosion damage of 

surface asperities on contacting surfaces and involves micro-movements.  

• Cavitation wear: Fluid dynamic effects cause the formation and collapse of gas 

bubbles near the surface. Cavitation wear occurs therefore due to the collapse of 

those gas bubbles at the surface of the material, as consequence of the violent 

pressure impulses generated by their rapid collapse.  

 Corrosion 

Corrosion is another surface degradation phenomenon that is known to generate high 

material losses in diverse applications. Corrosion can be defined as the chemical or 

electrochemical reaction of a metal or an alloy with its surrounding media with the 

consequent deterioration in properties [75,80,81]. Corrosion occurs in every aspect of 

the modern life, affecting areas of the economy, from the integrated circuit to structural 

constructions made of steel or reinforced concrete [82-84]. The cost of corrosion in 

developed countries has been estimated to be between the 3.5 and 4.5% of the GNP 

[78,80-82,85]. Furthermore, replacement of corrosion-deteriorated materials implies 

material extraction from nature, with its subsequent environmental damage [80-83].  

When an electric union between two different metals is made, i.e. by immersing them in 

the same conductive solution; an electrical current is generated due to the difference of 

electrochemical potential of both metals. As consequence, there is a charge transfer 

through the liquid. The surface of the metal prone to dissolution (anode) is corroded in a 

process in which metallic atoms leave electrons in the core of the metal and pass to the 

solution as positive ions. On the other hand, the surface less prone to dissolution 

(cathode) receives the electrons liberated in the anode through the metallic mass 

remaining immune to the corrosive attack [72,75,78,80,81]. The oxidation reaction taking 

place in the dissolving anode, necessarily needs to be accompanied by a reduction 

process in the cathode (Fig. 2.10). The impurities and heterogeneities in the surface of 

a metal lead to electrochemically differentiated zones within the same material, and thus, 

corrosion can take place without the necessity of another metal to be in electrical contact 

[78,81,86].  

 
Fig. 2.10 Schematic representation of the electrochemical corrosion process for a divalent metal [78] 

The basic electrochemical reactions are the following: 
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o Anode (oxidation):    𝑀𝑒 ⟹ 𝑀𝑒
𝑛+ + 𝑛𝑒−   

o Cathode (reduction):  𝑂𝑋 + 𝑛𝑒− ⟹ 𝑅𝐸𝐷  

The oxidation reaction involves the loss of electrons or an increase in the oxidation state 

of a molecule, atom or ion:  𝐹𝑒 ⟹ 𝐹𝑒2+ + 2𝑒−. It causes either dissolution of the metal 

as metal ions in the surrounding environment or, alternatively, the formation of an oxide 

protective layer [75]. The reduction reaction is the gain on electrons or decrease in the 

oxidation state of molecule, atom or ion. A cathodic reaction is often related with the 

development of oxygen and hydrogen, depending on the solution: 

o Non-aerated acid dissolutions:  2𝐻+ + 2𝑒− ⟹ 𝐻2 

o Non-aerated neural or alkaline dissolutions: 2𝐻2𝑂 + 2𝑒− ⟹ 𝐻2 + 2𝑂𝐻− 

o Aerated acid dissolutions: 𝑂2 + 4𝐻+ + 4𝑒− ⟹ 2𝐻2𝑂 

o Aerated neutral or alkaline dissolutions: 𝑂2 + 2𝐻2𝑂 + 4𝑒− ⟹ 4𝑂𝐻− 

There are different types of corrosion [75,79,82,83,86,87]: 

• General or uniform corrosion: It is the most general type of corrosion and refers 

to a loss of material uniformly distributed over the entire surface exposed to a 

corrosive environment. For uniform corrosion attacks, metals can be classified into 

three groups according to their corrosion rates: 

o <0.15 mm/yr: Good corrosion resistance, and they are suitable for critical parts 

(e.g. valve seats, impellors, pump shafts…) 

o 0.15-1.5 mm/yr: Satisfactory performance, whenever higher corrosion rates can 

be tolerated (e.g., tanks, piping, valve bodies…) 

o >1.5 mm/yr: Not satisfactory. 

• Localized corrosion: This type of corrosion occurs on specific sites of the metal 

surface, under specific environmental conditions. There are several types of 

localized corrosion: pitting, fretting, crevice, filiform and cavitation.  

• Galvanic corrosion: It is also called bimetallic corrosion, and results from the 

formation of an electrochemical cell between two metals, due to the potential 

difference between them.  

Finally, there are forms of corrosion where two effects are overlapped, one chemical or 

electrochemical and another mechanical one. Erosion-corrosion or stress corrosion 

cracking are some examples. 

 Tribocorrosion  

All in all, wear and corrosion are two processes that lead to a surface damage due to a 

progressive material loss as a result of mechanical and electrochemical processes, 

respectively. When these two degradation processes occur in a simultaneous way, it is 

known as tribocorrosion [77,88,89]. Tribocorrosion can be defined as the irreversible 

transformation of materials resulting from the simultaneous action of mechanical loading 

(e.g., friction, erosion, abrasion) and chemical/electrochemical interactions with the 

surrounding environment (corrosion attack). It combines two major scientific areas: 

Tribology and Corrosion. The former comprises the study of friction, wear, and 

lubrication, whereas the latter is related to the chemical aspects of material degradation 

[76,88,90-99].  

Tribocorrosion involves a synergism between wear and corrosion, since the degradation 

caused by the combined action of mechanical and electrochemical processes is larger 

than the sum of each of them acting separately [76,88,90-100]. This synergism can be 

either beneficial or detrimental, depending on the surface reactions that take place in the 
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tribological contact [90,94]. The reaction products formed on the surface can protect the 

surface by forming self-lubricating layers, or accelerate the material degradation by third-

body effect, for instance [76,90,94,95,101-105]. The synergy between wear and 

corrosion can be defined as: 

𝑊𝑡 = 𝑊𝑚 + 𝑊𝑐 + 𝑊𝑠       (2.I) 

Where 𝑊𝑡 is the total volume removed, and 𝑊𝑚 and  𝑊𝑐 are the volume of material 

removed separately by the effects of wear and corrosion, respectively. 𝑊𝑠 represents 

the synergistic effect between wear and corrosion which can account for 20-70% of the 

total volume of material removed [77]. The previous equation may also be written as 

follows: 

𝑊𝑡𝑟 = 𝑊𝑚 + 𝑊𝑐 + 𝑊𝑐𝑚 + 𝑊𝑚𝑐           (2.II) 

Where 𝑊𝑐𝑚 is the effect of corrosion on wear and  𝑊𝑚𝑐 the effect of wear on corrosion. 

The origin of tribocorrosion is closely related to the presence of a passive film on material 

surfaces subjected to wear and the modifications of these surfaces by friction or any 

other form of mechanical loading. In very general terms, the passive film, mainly oxide, 

is considered to be snatched in the contact area [88]. 

 
Fig. 2.11 Schematic representation of the synergism in tribocorrosion: passive layer is removed promoting 

corrosion (wear-accelerated corrosion) and the oxidized wear debris can increase the wear extent 
(corrosion enhanced wear) 

The degradation of material due to tribocorrosion may occur under a variety of wear 

mechanisms (erosion, abrasion, microabrasion, fatigue, fretting, sliding wear, etc.) 

interacting with corrosion. Furthermore, contacts between surfaces in tribocorrosion can 

be both two-body or three-body contacts, and there are different contact modes such as 

sliding, fretting, rolling, impact, etc. The relative motion between surfaces can be either 

unidirectional or reciprocating [76,90,91,94,95,99].   

 Evaluation of tribocorrosion: electrochemical techniques and test 

procedures 

Tribocorrosion encompasses several industrial sectors, e.g., material processing, energy 

conversion, transportation, oil and gas exploration, medical and dental implants, surgical 

devices, among others [90,94,95]. Due to its impact on daily life and potential economic 

benefits, interest in the study of tribocorrosion phenomenon has increased over the last 

few decades [77,91,105]. As a consequence, several electrochemical techniques have 

been adapted to be applied to tribocorrosion research and crucial improvements have 

been achieved through a better interpretation of triboelectrochemical results [94,96]. 

There are two standards available for the assessment of tribocorrosion: ASTM G119 

[100] and UNE 112086 [106], published in 1994 and 2016, respectively. Nevertheless, 
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the knowledge acquired on tribocorrosion has been achieved by performing and 

combining different electrochemical techniques before, during, and after the wear 

process, to evaluate the influence of wear on corrosion, and vice versa.  

2.2.5.1  Tribocorrosion test apparatus 

For tribocorrosion, the test equipment shall allow monitoring and controlling both 

mechanical and electrochemical parameters. The apparatus used to measure 

tribological properties is named tribometer. A tribometer creates relative motion, either 

unidirectional (rotatory) or bidirectional (reciprocating), rubbing two surfaces against 

each other. On the other hand, electrochemical cells are used to record and control the 

electrochemical parameters. These cells are usually composed of three electrodes: a 

reference electrode (RE), a counter electrode (CE), and the working electrode (WE). The 

reference electrode has a stable, well-defined potential, and it is used to register the 

potential of the working electrode, i.e., the test sample. Typical reference electrodes are 

Saturated Calomel Electrodes (SCE) and Silver/Silver Chloride electrodes (Ag/AgCl). 

The counter electrode is used to measure or control the current and is usually made of 

inert materials such as platinum, gold, or graphite. The electrodes are connected to a 

potentiostat to register the potential between the reference electrode and the working 

electrode, or the current between the counter electrode and the working electrode. A 

typical tribocorrosion test set-up is schematically shown in Fig. 2.12, for a unidirectional 

tribometer under a ball-on-disc configuration. There is no standardized test apparatus 

for tribocorrosion tests, which makes the interlaboratory comparability difficult for results 

[90]. Generally, existing tribometers are modified to incorporate the electrochemical cell. 

 
Fig. 2.12 Schematic of a unidirectional tribocorrosion ball-on-disc experimental setup 

2.2.5.2 Electrochemical techniques for tribocorrosion  

The test procedures employed to assess tribocorrosion behaviour of passive materials 

involve performing and combining different electrochemical techniques. In general, 

tribocorrosion tests consist of analysing the electrochemical behaviour of surfaces 

before, during, and after the tribological process, in order to evaluate how wear 

influences the electrochemical response of materials exposed to specific corrosive 

media, under determined mechanical conditions. The most widely-used electrochemical 

techniques in tribocorrosion evaluation are potentiodynamic and potentiostatic tests, 

electrochemical impedance spectroscopy (EIS), open circuit potential registration (OCP) 

and electrochemical noise (EN) analysis.  

Potentiodynamic polarization tests 

The potentiodynamic polarization (PDP) technique is one of the most widely-used test 

methods to evaluate corrosion. It consists of imposing a potential between the reference 
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and working electrodes, in a potential difference range from the cathodic to the anodic 

domain at a constant sweep rate, while registering the current being produced. In these 

tests, the current represents the rate of the anodic or cathodic reactions that are taking 

place on the working electrode surface, i.e. the studied metal exposed to the corrosive 

electrolyte. The registered current is typically expressed in terms of current per unit area 

of the working electrode, that is, the current density [107]. This technique provides 

information about the different corrosion processes taking place on the surface of a 

metal, such as pitting occurrence susceptibility, passive layer formation, plus the 

cathodic behaviour of an electrochemical system. It is the most useful method to evaluate 

the active/passive behaviour of the materials at different potentials and to determine the 

kinetics of ongoing reactions, i.e., the corrosion rate [76,104,108].  

Performing potentiodynamic polarization tests during wear experiments can be used to 

evaluate the effect of wear on the electrochemical reactions on the surface of the working 

electrode, as a function of the potential applied, while being rubbed against an insulating 

body. Therefore, it is a quick and useful tool to detect the possible effects of friction on 

the electrochemical kinetics of the system, and vice versa [96,109]. As a first approach, 

the current registered during potentiodynamic polarization in a material subjected to a 

sliding process is the sum of two components, namely the currents of the worn and 

unworn areas. Furthermore, the coefficient of friction usually varies with applied potential 

during a potentiodynamic scan, due to the electrochemical changes taking place in the 

surface state of the material in the tribological contact [88,91]. 

 
Fig. 2.13 (a) Polarization curves of a Monel K500 alloy in artificial seawater obtained in corrosion-only and 
tribocorrosion conditions. (b) Polarization curve of Monel K500 alloy in artificial seawater and evolution of 

coefficient of friction obtained during measuring [110]  

Fig. 2.13a shows the polarization curve obtained for a Monel K500 alloy in artificial 

seawater under corrosion-only and tribocorrosion (wear and corrosion) conditions. It can 

be clearly seen that, under tribocorrosion conditions, the corrosion potential is shifted to 

more cathodic potentials, and the corrosion current density is increased by two orders of 

magnitude [110]. Furthermore, there is a correlation between the coefficient of friction 

and the current density arising from the polarization imposed (Fig. 2.13b). In this case, 

the coefficient of friction decreases at higher anodic potentials, as a consequence of 

oxide films forming on the surface [110]. Thus, the potentiodynamic polarization 

technique performed with and in the absence of sliding provides interesting information 

on both the effect of wear on corrosion, and the influence of corrosion on wear behaviour. 

Potentiostatic polarization tests 

Electrochemical polarization is used to simulate the oxidising action of a corrosive 

environment. This technique consists of imposing a fixed potential between the reference 

and the working electrodes. The current is measured as a function of time, to evaluate 
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the evolution of electrochemical kinetics of reactions occurring on the electrode surface 

[96]. The potential value being applied determines the dominant electrochemical 

reactions taking place. The polarization curve of passive materials can be divided in three 

regions: 

• Active region: where the metal dissolves directly in contact with the solution. 

• Passive region: where a protective passive film of few nanometres is grown on the 

surface, protecting the bare material from dissolution. 

• Transpassive region: at high anodic potentials, where the current increases sharply 

with potential, as a consequence of the non-stable state of the oxide layer and the 

breakdown of this film.  

These three regions are clearly observed in the polarization curve represented in Fig. 

2.14; with icorr the corrosion current density, Ecorr the corrosion potential, ip the current 

density in the passive state, and Epit the potential at which pitting processes begin in the 

passive layer.  

 
Fig. 2.14 Typical Polarization curve of a passive material showing the active, passive and Transpassive 

regions 

Imposing a fixed potential on rubbing surfaces gives information on the potential effect 

on the wear behaviour [94]. The current registered during rubbing mainly flows through 

the wear track area, which constitutes a very small area compared to the complete metal 

surface exposed to the electrolyte [96]. The measured current value corresponds to the 

sum of the anodic and cathodic currents, due to all electrochemical reactions occurring 

on the exposed surface. It is thus possible to simulate different corrosion conditions by 

imposing appropriate potentials [94,96,109]. At cathodic potentials, the corrosion is 

inhibited, and the material loss after the tribocorrosion tests is attributed to pure 

mechanical wear. On the contrary, at anodic or passive potentials, the metal is covered 

by an oxide film whose thickness is controlled by the applied potential. This layer reduces 

the dissolution rate of the metal to negligible values and affects the friction response of 

the material. During sliding, the registered anodic current increases due to the local 

damage or removal of the passive layer exposing the base material surface to the 

electrolyte and, thus, to an active dissolution [91]. 

Additionally, this technique can also quantify the metal dissolution rate, i.e. the corrosion 

rate, from the corrosion current density (𝑖𝑐𝑜𝑟𝑟) registered using Faraday’s law 

[92,94,96,98,108,111,112]: 

 𝑣𝑐𝑜𝑟𝑟 =
𝑖𝑐𝑜𝑟𝑟.𝑀

𝑛.𝐹
         (2.III) 

where 𝑣𝑐𝑜𝑟𝑟 is the corrosion rate, 𝑀 the atomic mass, 𝑛 the number of electrons taking 

part in the process and 𝐹 the Faraday constant (96500 coulomb per electron mol). More 

details on calculating corrosion rates from electrochemical measurements can be found 

in the ASTM G102 [113] Standard.  
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The evolution of current transient and coefficient of friction during sliding wear tests at 

different fixed potentials are shown in Fig. 2.15, for an AISI 304 stainless steel in 0.5M 

NaCl solution [114]. Sliding results in a shift of current transient towards more positive 

values due to the removal of the passive layer, and this shift becomes higher as greater 

potential is applied. Moreover, the coefficient of friction value is also variable depending 

on the potential.   

 
Fig. 2.15 Current transients and coefficients of friction (COF) recorded before, during and after sliding wear 
test at fixed potentials for an AISI 304 stainless steel in 0.5M NaCl solution: (a) -320 mV and -200 mV, (b) -

50 mV and 70 mV [114]  

Open Circuit Potential monitoring 

The open circuit potential (OCP) monitoring is the simplest electrochemical method for 

corrosion evaluation, although it does not provide quantitative information on the 

interaction between wear and corrosion. To study the effect of wear, the potential is 

monitored before, during and after the sliding. Before the sliding test, the samples are 

immersed in the electrolyte until a steady-state is achieved. Several authors have 

performed experiments with an hour of stabilisation [76,91,96,104]. However, the 

stabilisation period depends on the material and electrolyte used and should be selected 

considering the system being studied. The potential evolution registered during the 

stabilisation period provides information on the electrochemical reactivity of the material 

in the test solution. An increase in the potential with immersion time reaching stable 

values after several minutes of immersion indicates the formation of a passive oxide 

layer on the surface. This layer of a few nanometres protects the material underlying 

from corrosion. This phenomenon is known as passivation [76,91,96,104]. On the other 

hand, a decrease of potential with immersion time suggests that general corrosion has 

occurred. Finally, short term potential fluctuations are attributed to localized corrosion 

processes such as pitting. These fluctuations are a consequence of the successive 

breakage of the passive layer and subsequent growth of the film in the affected zone 

[76,97,115]. 

OCP measurement during sliding can also provide information on the evolution of 

surface state when the material is subjected to wear-corrosion conditions. Once sliding 

begins, the potential has been observed to shift towards more negative values, indicating 

the initiation of electrochemical activity. Change in potential is a consequence of 

removing the passive layer in the tribological contact, thus exposing the bare material to 

corrosion. During wear, galvanic coupling between the active worn area and passive 

unworn area is generated [76,91,96,104]. According to Ponthiaux et al. [104], there are 

four parameters that affect the corrosion potential during rubbing: 
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• The intrinsic corrosion potentials of the unworn and worn surfaces. The 

electrochemical state of the worn surface is disturbed by the removal of the passive 

layer and the mechanical strain caused by sliding.  

• The ratio between worn and unworn surface areas. 

• The relative position between worn and unworn areas. 

• The mechanisms and kinetics of the anodic and cathodic reactions involved in the 

worn and unworn areas. 

After sliding, the potential usually tends to increase again reaching values close to pre-

sliding figures, as a consequence of the re-formation of the passive layer in the 

depassivated area. The potential restoration process gives information on the material’s 

ability to recover after sliding, which is known as repassivation.  

 
Fig. 2.16 Evolution of the open circuit potential before, during and after sliding wear test for a Ti6Al4V alloy 

with different DLC coatings in PBS solution [116]  

The shift in potential due to the action of wear can be clearly observed in Fig. 2.16, for a 

Ti6Al4V alloy with several DLC (Diamond Like Carbon) coatings in Phosphate Buffered 

Solution (PBS) [116]. As soon as the countermaterial begins to slide against the test 

materials, a depassivated area is created in the surface leading to a decrease of potential 

due to the galvanic couple generated between the worn and unworn surfaces. Once 

sliding ends, the potential increases again to reach potential values close to those before 

wear process, as a consequence of the repassivation of the surface.  

Electrochemical Impedance Spectroscopy 

The Electrochemical Impedance Spectroscopy (EIS) technique consists of exciting the 

system using an AC potential or small amplitude current sinusoidal signal over a wide 

range of frequencies and measuring the current or potential response obtained. This 

technique is usually performed at free potential, with the requirement that the material 

should be electrochemically stable, in terms of the open circuit potential. Therefore, a 

small amplitude, usually 5-10 mV, is employed to maintain the system in a (quasi-) 

equilibrium state. Thus, the system can be evaluated without imposing significant 

perturbations. The impedance spectrums are obtained by plotting the electrochemical 

impedance, i.e. the potential and current ratio, over the frequency range being studied. 

The spectrums are then modelled using equivalent electric circuits that combine passive 

electric elements such as resistors, inductors, and capacitors. Combining the elements 

reproduces the electrochemical behaviour of the electrode surface. Information on the 

elementary steps occurring in the electrochemical reactions and their kinetics can also 

be obtained from the impedance diagrams [76,91,104,117-119].  
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One of the diagrams used to represent impedance data is the so-called Nyquist plot, 

where the imaginary impedance, indicative of capacitive response, is represented versus 

the real impedance, which indicates a resistive response. Fig. 2.17 shows typical Nyquist 

diagrams, together with the electrochemical equivalent circuit used in each curve to fit 

the impedance data. Fig. 2.17a represents a bare metal without any coating, (b) shows 

the response of a metal or alloy with mixed activation and diffusion control, and (c) is the 

case of a metal with a protective oxide layer or a porous coating on the surface. In the 

equivalent circuits, Rs represents the solution resistance, CPE is the constant phase 

element representing the capacitive properties of the electrolyte/metal interface, and Rct 

is the charge transfer resistance in the electrolyte/metal interface, which determines the 

kinetics of the reaction. The Warburg impedance (W) in Fig. 2.17b indicates the 

occurrence of reactant diffusion to the corroding surface, as a consequence of reactant 

concentration gradients in the solution. In the last circuit (Fig. 2.17c), CPE1 corresponds 

to the capacitance of the coating, whereas CPE2 is related to the capacitive properties 

of the electrolyte/metal interface. Finally, Rpore is the resistance of the paths generated in 

the coating, i.e. the resistance in the pores and defects.  

 
Fig. 2.17 Nyquist plots for impedance data and equivalent circuits used to fill each curve for a metal or 

alloy (a) without any coating, (b) without a coating showing diffusion of reactants, and (c) with a passive 
oxide layer or a porous coating on the surface 

This technique can be used to study the role of intermediate species adsorbed in the 

surface, the properties of the passive films generated, and also the changes in the 

metal/electrolyte interface. The high frequency loop is associated with the charge 

transfer taking place in the interface, whereas the low frequency loop is attributed to 

diffusion of dissolved oxygen from the electrolyte to the metal/electrolyte interface 

[104,108].  

By performing impedance measurements during sliding, it is possible to study the 

influence of wear on the elementary processes involved in the corrosion mechanism. 

Analysing the changes in the impedance diagrams with sliding parameters, i.e. normal 

force or sliding speed, it is possible to develop a model taking into account the effects of 

sliding in the corrosion mechanism [76,88]. On the other hand, the EIS measurements 

after sliding provide information on the recovery of the material in post-wear damage.  

The approximate value of corrosion current (𝐼𝑐𝑜𝑟𝑟) or passivation current (𝐼𝑝𝑎𝑠𝑠) of a metal 

or alloy, can be determined from the polarization resistance (𝑅𝑝). This value is obtained 

from the impedance diagrams. EIS is the most accurate technique among the different 

methods available to measure the polarization resistance [76]. Furthermore, the 

reduction in the corrosion resistance of the studied material during sliding can be 

quantified, by comparing the polarization resistances from the EIS data obtained before 

and during sliding.  

The effect of wear on corrosion can be observed in the Nyquist and Bode plots in Fig. 

2.18. The results correspond to EIS measurements performed before and during sliding 
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of a TaN-coated and uncoated titanium alloy in PBS solution [120]. The electrochemical 

data was fitted with the so-called Randles equivalent circuit (Fig. 2.17a).  

 
Fig. 2.18 Nyquist and Bode plots of the EIS measurements performed before (a,b,c) and during (d,e,f) 

sliding process, for a Titanium alloy and a TaN-coated titanium alloy in PBS solution [120]  

Electrochemical noise analysis 

Electrochemical noise (EN) can be defined as the spontaneous potential and current 

fluctuations taking place in a metal exposed to an aggressive medium. Most corrosion 

processes in metals are electrochemical and, thus, are likely to generate electrochemical 

noise [78,121,122]. EIS and EN are commonly used when the corrosion process takes 

place in a series of stages. In this case other techniques such as potentiodynamic 

polarization just provides information on the corrosion rate of the controlling reaction, 

which is not enough to understand the mechanism of the reaction taking place [78].  

The previously explained electrochemical techniques, i.e., potentiodynamic polarization, 

potentiostatic tests, and EIS, require an external potential source to perturb the system, 

by either accelerating or inhibiting the corrosion kinetics. The main advantage of the EN 

technique is that the corrosive system is not disturbed externally by the measurement 

process, so the system is kept in the natural corrosion potential. Thus, it allows potential 

and current fluctuations to be registered simultaneously, so it is possible to obtain 

information on the thermodynamics from the potential noise, and kinetics information 

from the current noise. EN measurements allow the early stages of localized corrosion 

to be detected and studied and can isolate the individual events related to film breakdown 

in the sliding zone [76,122-124]. The electrochemical noise is a low frequency (<10 Hz) 

potential or current fluctuation of small amplitude, originating from the variation of 

electrochemical reaction rates in a corrosion process. There are several noise sources 

in corrosion [122-124]: atoms exchange kinetics in the electrode surface, the formation 

and release of bubbles on the surface, mechanical effects, formation of pits, etc.  
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There are two main experimental configurations for simultaneous registration of potential 

and current signals. The configuration that has been most widely used in tribocorrosion 

assessment is schematically shown in Fig. 2.19a. It consists of using two working 

electrodes made of the same material (WE1, WE2). CE and RE are the counter electrode 

and reference electrode, respectively. It is necessary to connect the two working 

electrodes through a Zero Resistance Ammeter (ZRA), which can measure the current 

whilst maintaining both working electrodes at a negligible potential difference. Two 

electrodes coupled through a ZRA will basically behave as a single electrode. The 

registered current signal corresponds to the current flowing between the two working 

electrodes, whereas the potential measured is the potential difference between both 

working electrodes and the reference electrode [122-125]. 

 
Fig. 2.19 Schematic setup configuration for potential and current noise registration using: (a) two nominally 

identical electrodes, and (b) asymmetrical electrodes 

The local potential variations of each working electrode generate small variations in the 

mixed potential of the system. Therefore, the working electrodes must be nominally 

identical with the same surface preparation, since any difference would generate a 

galvanic couple, accelerating the oxidation of the more active electrode [121,123]. In a 

tribocorrosion test, however, the electrodes are identical right until sliding wear process 

is initiated. Once wear is generated, the removal of the passive layer makes the worn 

electrode more active compared to the undamaged one. Therefore, the mechanical 

activation leads to galvanic coupling between the worn (anode) and unworn (cathode) 

electrodes. The latter acts as the cathode of the reaction, accelerating the corrosion-

wear process on the worn sample [91,122,124,126].  

Sometimes, the different electrochemical characteristics presented in nominally identical 

electrodes generate asymmetry between them. In order to assess this drawback, several 

researchers have used asymmetric electrodes intentionally, measuring the 

electrochemical noise and studying the electrochemical processes taking place just in 

one of the working electrodes. For this purpose, platinum microcathodes have been 

widely used [121,122,124]. The configuration is schematically represented in Fig. 2.19b. 

The platinum microelectrode area must be small enough to avoid polarization of the 

working electrode, ensuring that the tribocorrosion process is not accelerated, and thus, 

current variations registered are the result of the mechanically influenced 

electrochemical process. Therefore, the electrochemical noise registered mainly belongs 

to the worn working electrode.  

Fig. 2.20 shows the response of current and potential before, during and after sliding 

measured by EN technique for a bare and duplex treated (plasma nitriding and 

deposition of CrN coatings) AISI 304 stainless steel in a Hank’s Balanced Salt Solution 
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(HBSS) [127]. In this study, the working electrode was coupled with a platinum 

microcathode through a ZRA.  

 
Fig. 2.20 Potential and current response measured by Electrochemical Noise Technique on (a) AISI 304 

stainless steel and (b) duplex treated 304 against corundum in HBSS [127]  

2.2.5.3 Standardized tribocorrosion test procedures for passive materials  

From approximately 1980 onwards, many researchers studied the synergism between 

wear and corrosion [92], but no tribocorrosion mechanism in sliding contacts was 

proposed until the 1990s [91]. Tribocorrosion mechanisms have been evaluated through 

different approaches: synergistic, mechanistic, third body and nanochemical wear 

approaches [91]. After several previous studies, Madsen [92,128,129] developed a 

standard guide in 1994 [100], to quantify the synergism between wear and corrosion. 

This is known as the synergistic approach, where the material loss is the sum of the 

material loss due to corrosion, the material loss due to wear, and a synergetic 

component. In order to assess some drawbacks of the synergistic approach collected in 

the ASTM G119 standard reported by some authors [91,97,98,115], a test procedure 

based on the mechanistic approach was developed. According to this approach, the 

material loss due tribocorrosion is considered to be composed of two main contributions: 

anodic dissolution and mechanical removal of material. This test procedure was 

standardized in 2016 as a UNE 112086 standard [106]. The third-body approach in 

tribocorrosion, was proposed by Mischler, et al. in 2001 [112], based on the third-body 

concept defined by Godet [130] in 1984 for dry sliding contacts. In this approach, the 

metal volume loss due to tribocorrosion is the sum of three contributions, namely the 

mechanically detached material (abrasion, adhesion, or delamination), the chemically 

removed material (metal ions dissolved in the electrolyte), and the metal oxidized to form 

the passive film. In turn, the metal particles in the track can be ejected from the contact, 

oxidized, or smeared and transferred to the metal surface. Finally, the most recent 

nanochemical wear approach considers subsurface deformation of the material in the 

contact under the mechanical solicitations. In dry sliding contacts, the plastic deformation 

leads to formation and movement of dislocations, leading to a recrystallization of the 

material and the modification of the mechanical behaviour in the contact [91,131,132]. 

Wear and corrosion synergism evaluation procedure (ASTM G119) 

The ASTM standard consists of four tests where the mechanical and electrochemical 

conditions were modified: corrosion only, wear only, and a combination of corrosion and 

wear. According to the standard, the total material loss (T) corresponds to the total 

degradation due to wear and corrosion, i.e., tribocorrosion. The term includes the 

contributions from mechanical wear, corrosion dissolution and the interaction between 

them, and can be defined as follows: 

𝑇 = 𝑊0 + 𝐶0 + 𝑆     (2.IV) 
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with 𝑊0 the rate of material loss in the absence of corrosion, 𝐶0 the electrochemical 

corrosion rate when no mechanical wear is applied, and S the synergetic component.  

Since wear affects corrosion, and corrosion affects wear, the synergetic component can 

be further divided into two components; namely, the increase in the mechanical wear 

due to corrosion (∆𝑊𝑐), and the increase in corrosion due to mechanical wear (∆𝐶𝑤): 

𝑆 = ∆𝑊𝑐 + ∆𝐶𝑤               (2.V) 

Where ∆𝑊𝑐 and ∆𝐶𝑤 can be calculated as follows: 

∆𝑊𝑐 = 𝑊𝑐 − 𝑊0     (2.VI) 

∆𝐶𝑤 = 𝐶𝑤 − 𝐶0              (2.VII) 

With 𝑊𝑐 the total wear component of T, and 𝐶𝑤 the electrochemical corrosion during 

corrosive wear.  

The above-mentioned parameters can be calculated, as specified in the ASTM G119 

standard, as follows: 

• T: material loss after a corrosion-wear test at open circuit potential. 

• 𝑊0: can be obtained from the material loss after a wear test in the absence of 

corrosion. For this aim, the sample must be cathodically polarized one volt with 

respect to the free corrosion potential, so that corrosion is inhibited.  

• 𝐶𝑤: calculated from the corrosion current obtained in a potentiodynamic polarization 

test under mechanical wear, by using Faraday’s law (Eq. I). 

• 𝐶0: is calculated similarly to 𝐶𝑤 from the corrosion current obtained from a 

potentiodynamic polarization test without mechanical wear.  

Finally, the standard defines three dimensionless factors to describe the degree of wear-

corrosion synergism:  

• The total synergism factor:    
𝑇

(𝑇−𝑆)
                             (2.VIII) 

• The corrosion augmentation factor: 
(𝐶0+∆𝐶𝑤)

𝐶0
       (2.IX) 

• The wear augmentation factor: 
(𝑊0+∆𝑊𝑐)

𝑊0
          (2.X) 

Tribocorrosion test procedure for passive materials (UNE 112086:2016)  

In spite of growing interest and enhancement of electrochemical techniques, the only 

existing standard until 2016 was the ASTM G119 [100]. In order to assess the drawbacks 

of the ASTM standard [91,97,98,115], different approaches were developed, and a new 

standard was developed in 2016. The ASTM [100] standard involves wear testing under 

anodic and cathodic polarization, whereas the new UNE 112086 [106] standard 

comprises wear tests at open circuit potential.  

The main shortcoming of the ASTM G119 standard reported by several authors 

[91,97,98,115], is that the methodology employed does not separate measurements of 

the different contributions to the total material loss. According to the ASTM, material loss 

due to wear is obtained by performing sliding tests at cathodic potentials, where 

corrosion is negligible. However, the material loss measured does not necessarily 

represent the real conditions correctly since the contribution of corrosion products to the 

mechanical response of the surface cannot be considered in the absence of corrosion 

[76,97]. Furthermore, the wear volume depends on the cathodic potential selected and 
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could vary by an order of magnitude due to the sensitivity to hydrogen embrittlement of 

the metal [133]. On the other hand, the standard does not consider the galvanic couple 

generated between the worn and unworn areas during sliding either. Another 

considerable drawback, is that the standard does not provide information on the different 

processes occurring within the wear track [76,97].  

The protocol of the UNE standard can be used to identify and quantify the different 

mechanical and electrochemical mechanisms leading to material loss. Furthermore, it 

can also be used to identify the origin of material loss from different parts of the wear 

track, that is, from the active areas and partially or fully repassivated areas inside the 

track [91,97,98,115]. The new approach consists of a series of successive steps during 

which essential data on tribocorrosion behaviour of materials is acquired:  

1. Open circuit potential registration until a steady-state is reached.  

2. Electrochemical impedance spectroscopy: The polarization resistance (Rp) value 

obtained from this measurement is then used to calculate the corrosion current 

density (𝑖𝑝𝑎𝑠𝑠) of the passivated material as follows: 

𝑟𝑝𝑎𝑠𝑠=𝑅𝑝. 𝐴0      (2.XI) 

𝑖𝑝𝑎𝑠𝑠 =
𝐵

𝑟𝑝𝑎𝑠𝑠
      (2.XII) 

Where 𝑟𝑝𝑎𝑠𝑠 is the specific polarisation resistance of the passive material, 𝐴0 the 

exposed surface area, and 𝐵 a constant with typical values between 13 and 15 mV 

for metallic materials.  
3. First sliding wear test: Determination of the corrosion rate of the depassivated material 

inside the wear track. For this purpose, a sliding wear test should be performed in 

order to remove the passive layer and keep the material in the wear track in a 

continuous active state. The potential is registered during the sliding process, and the 

stable potential during sliding (𝐸𝑜𝑐
𝑠 ) is calculated.  

4. Second sliding wear test and second EIS measurement: The effect of sliding on the 

corrosion resistance can be evaluated by performing an EIS measurement during 

sliding. In order to assure the stable state during sliding, EIS data is registered 

imposing a fixed potential on the system, which corresponds to 𝐸𝑜𝑐
𝑠 , calculated in the 

previous step. The polarization resistance during sliding (Rps) obtained is a 

combination of two polarisation resistances, namely the resistances corresponding to 

the active (Ract) and passive areas (Rpass): 

1

𝑅𝑝𝑠
=

1

𝑅𝑎𝑐𝑡
+

1

𝑅𝑝𝑎𝑠𝑠
              (2.XIII) 

𝑅𝑎𝑐𝑡 =
𝑟𝑎𝑐𝑡

𝐴𝑎𝑐𝑡
         (2.XIV) 

𝑅𝑝𝑎𝑠𝑠 =
𝑟𝑝𝑎𝑠𝑠

𝐴0−𝐴𝑎𝑐𝑡
             (2.XV) 

Since rpass is known from equation (IX), ract can be calculated as follows: 

 𝑟𝑎𝑐𝑡 =
𝐴𝑡𝑟.𝑅𝑝𝑠.𝑟𝑝𝑎𝑠𝑠

𝑟𝑝𝑎𝑠𝑠−𝑅𝑝𝑠.(𝐴0−𝐴𝑎𝑐𝑡)
         (2.XVI) 

The corrosion current density of the active material (iact) can be obtained from the next 

equation: 
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𝑖𝑎𝑐𝑡 =
𝐵

𝑟𝑎𝑐𝑡
     (2.XVII) 

The material loss due to corrosion in the wear track (𝑊𝑎𝑐𝑡
𝑐 ) can be calculated using 

Faraday’s law: 

𝑊𝑎𝑐𝑡
𝑐 = 𝑖𝑎𝑐𝑡. 𝐴𝑎𝑐𝑡.

𝑀

𝑛.𝐹.𝜌
𝑁. 𝑡𝑙𝑎𝑡    (2.XVIII) 

With 𝑀 the molecular weight, 𝑛 the number of electrons involved in the anodic process, 

𝜌 the density and 𝐹 the Faraday constant (96500 C). 𝑁 corresponds to the number of 

cycles and tlat is the latency time of the sliding test. The material loss due to wear and 

corrosion (𝑊𝑡𝑟) can be obtained from the volume of the wear track generated after the 

tribocorrosion test. Finally, the material loss due to mechanical wear in the wear track 

(𝑊𝑎𝑐𝑡
𝑚 ) can be calculated from the following equation: 

𝑊𝑡𝑟 = 𝑊𝑎𝑐𝑡
𝑐 + 𝑊𝑎𝑐𝑡

𝑚       (2.XIX) 

 Historical background in tribocorrosion of passive materials and 

coatings, and future challenges  

The earliest studies in the passivation phenomenon were performed using acidic 

solutions (e.g. sulphuric acid), and they were focused on understanding the formation of 

the passive film and its behaviour under corrosion-wear solicitations [99,111,112,134]. 

The electrolyte and materials used in tribocorrosion tests were reasonably well-adapted 

to the technological interests, so saline solutions began to be used more in order to 

reproduce industrial applications [113,135-138], and thus predict the useful life of 

components more accurately. Remarkable developments in the marine industry have 

also promoted tribocorrosion studies in synthetic seawater in later years [110,139-143]. 

On the other hand, developing coatings with enhanced wear and corrosion properties 

has also aroused interest, and a great number of tribocorrosion studies have taken place 

over the last decade to evaluate the performance of coatings produced by different 

depositing techniques (HVOF, PVD, etc.) [137,144,145]. Finally, the increasing impact 

and growing interest of biomedicine over the last decade has led to a great number of 

studies involving biomedical alloys used in orthopaedic and dental implants 

[90,115,122,146], which are subjected to both corrosion and wear as a result of human 

daily activity. Biomedical materials such as the CoCrMo [147-149] alloy or titanium alloys 

[150-152] have been widely studied in simulated body fluids (SBF), e.g., artificial saliva, 

NaCl solutions, phosphate buffer saline (PBS) solutions, or foetal bovine serum (FBS) 

solutions. 

A major challenge in the study of tribocorrosion to be addressed is adapting test 

procedures for passive materials to assessment of tribocorrosion in active materials, 

such as the HSLA employed in offshore structures and components. Unlike passive 

materials, active materials do not generate a protective oxide layer on the surface when 

in contact with a corrosive media. On the contrary, the oxide layer in the surface is rather 

porous with low adherence. Therefore, the material loss is a consequence not only of 

wear and corrosion processes taking place in the wear track, but also of pure corrosion 

in the unworn surface. Tribocorrosion of passive materials has been widely studied, 

whereas the response of active materials is less documented. A closer understanding 

on the tribocorrosion degradation mechanism of active metals and alloys could provide 

better awareness of the use of these materials, with or without protective coatings, in 

order to enlarge their useful life in applications where passive materials are not suitable 

for use, i.e. higher costs and lower mechanical properties.  
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2.3 COATINGS EMPLOYED IN THE PROTECTION OF STEEL IN 

OFFSHORE APPLICATIONS 

 Marine Corrosion 

Corrosion is one of the phenomena that worst affects the deterioration of materials in 

offshore applications. A 30% of failures in ships and other marine equipment are 

consequence of marine corrosion, with an annual cost of over EUR 1.5 trillioniv [153]. 

Marine corrosion is particularly aggressive, due to the salt content and low electrical 

resistivity of seawater [81,153]. The salt particles present in marine atmospheres, 

containing chlorides, combined with moisture initiate corrosion processes by the 

formation of galvanic or differential aeration cells [86]. Chlorides depassivate metal and 

alloys such as stainless steels, aluminum alloys or titanium alloys; even in absence of 

oxygen. They are also present in marine atmospheres, leading to corrosion of non-

submerged materials and structures [154]. Fig. 2.21 shows the corrosion rate of steel at 

different sodium chloride solutions, where a maximum peak in corrosion rate can be 

observed at around 3% of NaCl. The salinity of seawater is 3.5 %, making it the one of 

the most corrosive chloride salt solution [153,155]. The amount of chlorides and, thus, 

the corrosion rate of metals decrease with increasing distance from ocean, and it is 

influenced by the wind direction and velocity [87,155]. 

 
Fig. 2.21 Corrosion rate of Steel in various sodium chloride solutions [155]  

There are other factors affecting corrosion in seawater and marine environments, i.e., 

temperature, dissolved oxygen concentration, pH, presence of microorganisms, and so 

on. The corrosion reaction rate in seawater increases with increasing temperature.  

Dissolved oxygen has a major influence on the corrosion rate of metals, since it is the 

principal reactant involved on the cathodic reaction, and also on the passive layer 

formation of several metals and alloys in seawater, e.g. stainless steel, titanium or 

aluminum. Seawater temperature varies depending on the geographical location and 

ocean currents, ranging from -2 ºC in the poles to 35 ºC in the equator. Furthermore, 

temperature and oxygen concentration vary with water depth, with the lowest 

temperatures close to 0 ºC and lowest oxygen at the higher depths [79,87,153,156,157]. 

The solubility of oxygen depends on the temperature, decreasing with increasing 

temperature [48,79,87,153]. Oxygen concentration on the seawater surface in the North 

Pacific Ocean is 1.4 times higher than that in the North Atlantic Ocean. However, both 

temperature and salinity are lower in the North Pacific Ocean and reach similar values 

with high depths below 15000 m [79]. Therefore, it is difficult to predict the deterioration 

of materials in seawater, and the results obtained from corrosion studies performed with 

                                                

iv Currency expressed in American trillion (1012) 
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synthetic seawater in the laboratory are not easy to correlate with that observed in real 

applications. 

 Use of coatings to protect steel structures and components in marine 

applications 

It is estimated that one third of the cost produced by corrosion could be saved by using 

the actual knowledge on corrosion-control measures [81,82,84]. In order to avoid or 

prevent unpredictable failures, coatings have been successfully used to minimize 

corrosion losses in steel structures. The requirements of protective coatings and their 

application procedures vary significantly depending on the installation location, i.e., 

onshore or offshore, and exposition zone. The coatings repair operation costs in hard 

accessibility places and locations, such as offshore structures, can be 50 times higher 

than the initial application cost of the protective system [158]. This is the case of Oil&Gas 

platforms, offshore wind energy devices (OWEAs), jack-ups, mooring systems, and so 

on. Therefore, it is of great interest to have an awareness of the performance of the 

coatings in a certain environment, in order to assure their proper functioning and plan an 

adequate maintenance strategy, without putting in risk the service life of structures.    

The high economic impact of corrosion has served as a motivation for the study of the 

phenomenon during the last decades. A better comprehension of corrosion mechanisms 

has been achieved thanks to advancements of corrosion evaluation techniques and 

characterization technologies. This, in turn, has make possible to develop different 

corrosion preventive measures [82]. As highlighted before, one third of the costs 

produced by corrosion could be saved by applying corrosion-control measures 

[81,82,84].  

The goal of the fight against corrosion is to guarantee the predetermined life of a 

structure, component or device at minimum cost, considering both the investment and 

maintenance costs. The solution must also be compatible with environmental 

regulations, allowing recycling of components at the end of their life. There are several 

approaches to minimize corrosion of engineering structures, i.e., preventive measures 

(appropriate design and correct election of materials) or protective measures (use of 

corrosion inhibitors, protective coatings or electrochemical protection) [83]. Corrosion 

protective measures consist of stopping one or more of the electrochemical or transport 

processes involved in the substrate corrosion [159], and they can be either active or 

passive. An active protection is achieved by changing the electrochemical properties of 

the substrate to avoid electrochemical corrosion; whereas passive protection is achieved 

by providing the metals with a barrier that inhibits or slows down corrosion. Protective 

measures can be applied alone or by combining different methods, e.g., the application 

of coating in conjunction with cathodic protection [82,84,153]. 

Cathodic protection 

Cathodic protection consists of applying a sufficiently negative potential to the metal, so 

its corrosion rate becomes negligibly small or zero. This kind of protection is widely used 

to protect heavy steel structures against corrosion [82,83,155,159,160]. There are two 

methods of cathodic protection: by sacrificial anode and by impressed current. A 

sacrificial anode is a metal with more negative potential value than the metal to be 

protected in the corroding electrolyte. Magnesium, zinc, and aluminum are typical 

sacrificial anodes used to protect steel structures. Cathodic protection by impressed 

currents involves the use of an external power source to polarize the metal to a potential 

range in which it does not corrode.  
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Protective coatings 

Protective coatings are probably the most employed corrosion-control measure [85,160]. 

An 89% of the money spent in corrosion prevention nowadays corresponds to coating 

service sector [84]. The main objective of protective coatings is not to provide the 

structural materials with strength or improved mechanical properties, but to assure a 

long-term protection under a wide range of corrosive conditions, by isolating the 

corroding materials from the corrosive environments. The quality of a coating depends 

on many factors, including the nature of the materials that comprises it [160]. On the 

other hand, coatings are designed to withstand different service conditions, so they can 

be single-layered or more robust multilayered coatings [82]. The use of different 

multifunctional layers provides the coating system with more effectiveness for a wide 

range of corrosion mechanisms.  There are different types of coatings, depending on 

their nature [82,83,87,76,160]:  

• Metallic coatings: This kind of coatings can provide the substrate not only with 

corrosion protection, but also with higher wear resistance. Metallic coatings can be 

divided into two groups: more noble and less noble than the substrate. Chromium, 

nickel, and copper are usually used as more noble coatings than steel substrates, 

whereas zinc, cadmium and aluminum are used less noble coatings. Coating metals 

less noble than the substrate act as a sacrificial anode and dissolve in the electrolyte, 

whereas coating metals more noble than the substrate act as the cathode of the 

reaction and accelerate the dissolution of the substrate.  

• Inorganic non-metallic coatings: They can be divided into two groups: conversion 

coatings (anodizing, phosphatizing, or chromatizing) and contact coatings (Physical 

Vapor Deposition (PVD) or electroplating techniques).  

• Organic coatings: they can be divided in bituminous coatings, polymer coatings, and 

paints and varnishes. Paint systems usually consist of various layers, including the 

primer, intermediates and topcoat. Organic coatings are widely employed in offshore 

applications, since they offer a barrier effect to the corrosive environment due to their 

polymeric nature. 

 Selection of coating system for different exposition zone in offshore 

applications 

Since offshore installations are exposed to very severe corrosion conditions, the most 

effective corrosion control system is required. There are five exposure zones, in which 

the corrosion rate of steel is different [79,81,82,87,159,161,162], as shown in Fig. 2.22. 

Protective coatings used for marine environment strongly depend on the exposure zone, 

and they are selected considering whether the protected system will be subjected to 

marine atmosphere (atmospheric zone), continuous immersion (immersed zone), or 

intermittent exposure to marine atmosphere and seawater (splash and tidal zones). 

Depending on the exposure zone, the coatings must provide the system with specific 

properties to guarantee infrastructures durability. Furthermore, it is common to combine 

protective measures such as cathodic protection and organic coatings [82,83,163]: 

• Atmospheric zone: it is above the sea level, so it is not continuously wetted or 

affected by the rise of tidal waves. There is a direct relationship between atmospheric 

salt content and corrosion rate.  On the other hand, materials are also exposed to 

solar radiation, which deteriorates the performance of organic coatings. Corrosion 

protection is usually achieved with organic coatings based on zinc rich epoxy primer 

(60-100µm), an epoxy intermediate layer (100-120 µm), and a polyurethane top-coat 

(50-80 µm). The coating must provide the structural materials with anti-corrosion, anti-
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erosion, anti-icing, and UV-resistant properties. Given that this zone is not in contact 

with the electrolyte, the coating does not need to be complimented by cathodic 

protection.   

• Splash zone: section in the structure that is intermittently exposed to seawater. Tides 

and wind are responsible for wetting this zone. Since it is constantly being wetted, 

chlorides can concentrate in the surface while the water films dry. The corrosion rate 

of metals in this zone is the highest, due to the aerated condition, which makes the 

access of dissolved oxygen for electrochemical reactions easy. The corrosion 

protection is achieved through the combination of a high-performance coating system 

supplemented by a cathodic protection system. Typical organic coatings are based 

on 2 or three epoxy coats (200-250 µm), with a polyurethane top-coat (50-70 µm). 

The coating used in this exposure frame must provide the structural materials with 

properties that combine the atmospheric exposure (corrosion, erosion, UV radiation, 

icing…) and the submerged exposure (corrosion, wear, fouling…) 

• Tidal zone: the materials are alternatively submerged and exposed to the splash 

zone, as the tide fluctuates. In the submerged condition, materials are exposed to a 

well-aerated seawater, which favors the attachment and growth of biofouling. In some 

materials, fouling can protect the metals, e.g. steel; whereas in other cases such as 

for stainless steels, biofouling can accelerate localized corrosion attack. The corrosion 

rate is influenced by the tidal flow, with higher corrosion rates with increasing 

movements. The coatings employed in the splash and tidal zone usually are the same.  

• Submerged zone: section of structure that is below the end of the splash zone and 

always below the sea level. This zone is always immersed in the electrolyte. The 

corrosion rate in this zone depends on the availability of oxygen to be transported to 

the cathodic sites of materials surfaces. As oxygen concentration varies with depth, 

decreasing with increasing distance to surface, the corrosion rate is also slower at 

higher depths. Similarly to the splash and tidal zones, protective coatings are used 

together with cathodic protection. The coatings for submerged structures and 

components are epoxy-based (200-250 µm), with lower thicknesses that those in the 

splash and tidal components. The coatings should have anti-corrosion, anti-wear, and 

antifouling properties. 

 

 

 

 

 

 

 

 

 

 

Environmental zone Corrosion rate 

Splash zone 0.40 mm/yr 

Tidal zone 0.25 mm/yr 

Submerged zone 0.20 mm/yr 

Subsoil 0.10 mm/yr 

  

Fig. 2.22 (left)Zones of corrosion for Steel piling in seawater, and relative loss in thickness depending on 
the exposure zone [164], and (right)the corrosion rate of steel depending the exposure zone [161,165] 

The most widely employed corrosion-control measure for metallic materials in marine 

environments are organic coatings (250-300 µm thick), due to their high corrosion 
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resistance. However, the low wear resistance of these coatings is a drawback in certain 

offshore applications. On the other hand, Thermally Sprayed Coatings (TSC) have 

recently been used in offshore applications [166,167]. For instance, Thermally Sprayed 

Aluminum (TSA) coatings with organic sealant systems (250-300 µm thick) have widely 

been applied in submerged components [161,168], providing effective service life of 

coated systems for 30 years in different exposure zones [159,168,169]. The aluminum 

layer deposited on top of the steel provides the substrate with an additional cathodic 

protection via the sacrificial anodic reaction of the aluminum. The NORSOK M-501 [170] 

standard recommends the use of an organic sealant on top of the sprayed aluminum to 

fill the pores and irregularities present in the coating and enhance the coating lifetime. 

When an additional wear resistance is required, Thermally Sprayed Carbide Coatings 

(TSCC) have also been used. This kind of coating protects the substrates against wear 

due to their high hardness, also providing the system with enhanced corrosion 

resistance. 

 Evaluation and validation of protective coatings for different 

corrosivity atmospheres 

Currently, the protection systems used in offshore structures are regulated by several 

standards, among which the ISO 12944 (2008) [171] and the NORSOK M 501 (2012) 

[170] can be found. The selection of the protective system deeply depends on the 

location of the component. According to ISO 9223 [172] and ISO 12944 (part two), there 

are five corrosivity categories; from the C1 corresponding to a non-corrosive 

atmosphere, to industrial and marine corrosive categories (C5-I and C5-M). There are 

also IM1 and IM3 categories, to describe the water and soil corrosivities, respectively. 

ISO 12944 standard has been recently revised, and a new part has been published in 

January 2018 (part 9). In this new part, entitled “Protective paint systems and laboratory 

performance test methods for offshore and related structures”, new categories have 

been added to refer to extreme conditions in offshore applications: CX-offshore for 

atmospheric exposure, CX-offshore/Im4 for splash and tidal zones, and Im4 for 

immersion zone. ISO 9223 classifies the corrosivity atmospheres and provides 

information on the material loss of different metals (carbon steel, zinc, copper, and 

aluminum) for a year of exposition to each category. On the other hand, ISO 12944 

consists of nine different parts, that comprise from substrate preparation, design 

considerations, coating system selection, and so on. Based on the corrosivity categories 

of ISO 9223, ISO 12944 proposes several aging tests in climatic chambers, with different 

exposure durations depending on the corrosivity category, which are used to validate the 

effectiveness of coatings to be used in real applications. ISO 12944 also considers the 

durability, or the time for the first major maintenance of the coating systems as: 

• Low (L): 2 to 5 years 

• Medium (M): 5 to 15 years 

• High (H): 15 to 25 years 

• Very High (VH): >25 years  

In order to obtain the protection grades specified in the ISO 12944 (C5-M/Im2), the 

standard recommends employing multilayer coatings with thickness between 320 and 

500 µm for a C5-M category in the atmospheric zone, and between 480 and 1000 µm 

for the splash zone and submerged components (Im2). According to the standard, these 

specifications should be enough to assure a component durability of 15 years [171]. On 

the other hand, the NORSOK standard does not specify a coating thickness range, but 

a minimum thickness. Therefore, a coating requiring a C5-M category should be at least 
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280 µm, whereas submerged components should have a minimum of 350 µm for a Im2 

category [170].  

Typical coating systems employed in offshore applications [163] with the desired 

properties depending on the exposure zone are compiled in Table 2.3. The coatings 

used in the splash and submerged zones are usually combined with a well-designed 

cathodic protection, either by sacrificial anodes or impressed currents; in order to protect 

steel structures against the aggressive corrosion conditions in marine environment 

[82,84,153,161]. 

Table 2.3 Typical coating systems employed in offshore applications in the different exposure zones [163], 
with the desired properties and corrosivity category required (ISO 12944) 

Exposure zone Coating system Desirable coating properties 

Atmospheric zone 

C5-M (ISO 12944) 

Zinc rich epoxy primer (60-100 µm) Corrosion-resistant, erosion-

resistant, anti-icing, 

UV-resistant 

Epoxy intermediate layer (100-120 µm) 

Polyurethane top-coat (50-80 µm) 

Splash and tidal 

zones 

C5-M/Im2 (ISO 

12944) 

Two or three epoxy-based 

coats 
(>1000 µm in total) Combination of atmospheric 

and submerged coatings´ 

properties Polyurethane top-coat (50-80 µm) 

Submerged zone 

Im2 (ISO 12944) 

Two or three epoxy-based 

coats 
(>450 µm in total) 

Corrosion-resistant, 

antifouling, wear-resistant 

 Antifouling coatings 

2.3.5.1 Biofilms and Biofouling 

Marine biofouling can be defined as the undesirable accumulation of microorganisms, 

algae and animals on submerged structures in seawater [173,174]. When bacteria attach 

themselves onto metallic surfaces, they start to form a thin film known as biofilm. This 

film consists of immobilized microorganisms that are held together with excreted slime, 

referred to as extracellular polymeric substances (EPS). EPS is composed of sticky, high 

molecular weight compounds and is abundantly produced by many microorganisms, 

rapidly coating the surface of steel in natural environments [175,176]. The active 

metabolism of microorganisms consumes oxygen and produces metabolites. The net 

result of the biofilm formation is that it usually creates concentration gradients of chemical 

species across the thickness of the biofilm, which can enhance the corrosion in the metal 

surface [175-177]. 

2.3.5.2 Microbiologically Induced Corrosion (MIC) 

Microbiologically Influenced Corrosion (MIC) is a corrosion process that is initiated and/or 

accelerated by the activity of microorganisms. The presence of biofilms on the material 

surface is linked to the degradation process. The microorganisms that adhere to the 

interfaces have influence on the corrosion kinetics of the metals by initiating, facilitating 

or accelerating the reactions through the interaction of the three components that make 

up the system: metal, solution and microorganisms. The term “microorganism” refers to 

bacteria, cyanobacteria, algae, lichens and fungi [175,177]. Some researchers have 

found MIC to accelerate corrosion, e.g. impeding passivation of pits; but others have 

reported that the biofilm formed could have a protecting rather than a deteriorating effect 

[175]. Bacterial activity can result in local acidification, which can threaten the stability of 

the oxide layer of steels, enhancing corrosion [42]. MIC has been reported to cause 2-3 

mm of materials loss in steel components in the form of pits [2,43]. 
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2.3.5.3 Antifouling paints  

The accumulation of biomass results in the formation of microenvironments that may 

encourage corrosion and increase the weight of components. Besides, the inspection 

and maintenance operations of immersed surfaces is complicated [173]. In order to 

prevent the colonization of microorganisms, antifouling (AF) paints have been widely 

employed in marine environments [173,174,178]. These paints were firstly used in boat 

hulls, where the presence of fouling increases the drag friction and weight, thus, 

increasing the fuel consumption up to a 40% [179,180], and reducing the speed in a 70% 

[173,178]. AF paints have also been used in static structures such as buoys, pipelines, 

drilling platforms and submerged components [181,182], in order to reduce MIC 

occurrence. The use of AF protection can save up to EUR 4.8 billionv per year worldwide 

[173,183,184].  

The former AF paints were formulated adding extremely toxic organotin, e.g. tributyltin 

oxide (TBT). However, TBT was found to affect a wide variety of organisms, including 

invertebrates and fish or water birds that feed on intoxicated marine species. This made 

the consumption of marine foods an important route to human exposure [173,183]. The 

use of TBT was banned in 2003 in the EU territory, and globally in 2008 by the Maritime 

Organization [173,182,185,186]. Different formulations and technologies have been 

used thenceforth. Copper has been the predominant biocide after the ban of TBT 

[174,179,183,187]. Copper can be found naturally in marine environments, and it is an 

essential element in the metabolic functioning of many organisms. However, it becomes 

toxic when exceeding the threshold of the organism tolerance of marine species. Copper 

can be naturally found in concentrations of 0.5-3 µg/L, but it can be raised up to 21 µg/L 

in contaminated areas [183]. The use of copper-based AF paints is regulated in some 

countries based on the copper release rate. For instance, the allowance in Canada is of 

40 µg/cm2/day, whereas that in Denmark is 200 µg/cm2 over the first 14 days [183]. AF 

paints are usually loaded with high amounts of copper oxide (Cu2O) and algaecide co-

biocides or boosters, e.g. Irgarol 1051, diuron or chlorothalonil, among others 

[173,178,182,183,186,188]. Inorganic zinc, as zinc oxide or zinc acetate, has been 

employed in combination with copper to increase the toxicity and to ease the leaching 

process [178,181,188,187]. Currently, there are approximately 23 boosters in use [186], 

and some of them have been restricted in some countries [173,183,185].  

Some non-toxic silicone-based coatings have been developed, which are best known as 

foul release coatings [182,183]. These shelf-polishing paints rely on the controlled 

formation of seawater soluble salts within the paint matrix, which allows a controlled 

release of biocides or algaecides [173]. The use of biocide releasing paints and their 

effect on marine environment after the release is an issue of concern. This is because 

the concentration of this components can be considerable in high activity areas 

[173,181,183,189]. Since AF paints are designed to slowly release the biocides to 

seawater, they lose their efficiency over time. Therefore, they have to pe replaced 

periodically, leading to antifouling paint particles (APPs) generation, due to the removal 

of the old coating. APPs have been found to be a source of contamination [181,186,190]. 

Unlike the self-releasing biocides, those bonded to particles on the paint matrix are more 

persistent and more likely to be a long-term threat for the environment [189]. 

                                                

v Currency expressed in American billion (109) 
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 Challenges in the protection of submerged components 

Coatings are one of the best routes to achieve the proper protection of submerged steel 

components and structures from marine corrosion. Up to now, the coating selection has 

been mainly made considering the efficiency of the coating in terms of corrosion 

protection. However, the threats in marine environments are diverse, often combining 

mechanical solicitations, such as wear and fatigue, as previously explained. The 

protective system should as well resist these solicitations to ensure their correct 

functioning. The most employed coatings are usually polymeric, with low mechanical 

properties. This kind of soft coatings have been found to be damaged in transport and 

erection operations [158], which reduces their effectiveness from the beginning of 

immersion. Therefore, the long-term durability of the coatings is uncertain and must not 

be established solely based on exposition tests specified in the ISO 12944 and NORSOK 

standards. Awareness of the tribological and wear-corrosion (tribocorrosion) 

performance of protective systems will improve the selection of the most suitable option 

depending on the application and solicitations that it will be subjected to. On the other 

hand, the development of proper AF paints has become a challenge for the paint 

industry, as a good active substance for antifouling paint should be not only technically 

and economically viable, but also environmentally friendly [185].  
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Chapter 3: Objectives 

As previously mentioned in the state of the art (chapter 2), High-Strength Low-Alloys 

steel components in offshore mooring lines are exposed to tribocorrosion conditions 

during their service life. A better understanding of this phenomenon could be used to 

improve the design of steel structures in extreme conditions, such as those in marine 

environments. In fact, the wear and corrosion allowance requirements specified on the 

mooring design codes are below the actual material loss registered after real service of 

components, as highlighted in chapter 2. In this context, the main objective of the first 

part of this thesis is to provide a closer insight into the tribocorrosion behavior of HSLA 

steels, i.e., active materials, in offshore applications. Up to now, the existing knowledge 

on tribocorrosion field has been related to materials and alloys with considerably high 

corrosion resistance in aggressive media, such as stainless steels or titanium alloys, 

commonly referred to as passive materials. Therefore, the work developed within this 

thesis would provide a first insight into the tribocorrosion of active materials, for which 

new test protocols and procedures need to be developed, on the basis of those employed 

in the assessment of passive materials.  

On the other hand, in light of the common use of protective coatings to protect steel 

components and structures, the second part of the thesis deals with this matter. 

Coherently with the information gathered in chapter 2, the coatings are exposed to the 

same threats as the steel structures, including wear and fatigue, among others. However, 

the selection of the coatings is mainly made by considering their efficiency in terms of 

corrosion, and little is known on their tribocorrosion performance. Considering that the 

effectiveness of a coating system can be compromised once it has been damaged by 

mechanical means, further investigations on tribocorrosion of coatings should be 

performed. For all these reasons, the evaluation of protective coatings behavior in terms 

of wear-corrosion requirements is the second goal of the thesis.   

All in all, the aim of this work was achieved through a multidisciplinary approach, by 

fulfilling the main objectives that can be summarized as follows:  

➢ Evaluation and understanding of the tribocorrosion phenomenon in active 

materials, i.e., HSLA steels used in mooring line systems.  
 

 

➢ Design of suitable testing procedures for the assessment of tribocorrosion in 

active materials, considering the influence of test parameters and conditions.   
 

 

➢ Evaluation of the suitability of currently employed coatings for the protection 

of steel structures and components against extreme conditions.   
 

 

➢ Development of enhanced wear-corrosion resistant coatings, by means of 

functionalization of pre-existing solutions.  
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Chapter 4: Methodology 

The studies performed within this thesis, can be divided into two major parts. In the first 

one, the tribocorrosion behavior of active materials, i.e., High-Strength Low-Alloy (HSLA) 

steels employed in offshore applications, has been investigated. The second part, in turn, 

can be divided into two principal approaches: the performance evaluation of different 

coatings currently employed in the protection of structural steel in offshore applications, 

and the development or improvement of the existing coating systems. For this aims, 

different technologies and equipment have been employed. 

The different methodologies used in this thesis can be divided into different categories 

depending on the type of activity or characterization performed. Fig. 4.1 shows the 

methodology employed in the different steps of the investigation performed in the thesis. 

Additional information on the instrumental techniques and equipment is included in 

Annex I. 

 
Fig. 4.1 Schematic representation of the methodology employed in the different steps of the investigation 

performed in the thesis 

4.1 ELECTROCHEMICAL CORROSION TESTS 

The electrochemical corrosion tests were employed to evaluate the corrosion behavior 

in synthetic seawater of the uncoated HSLA steels, the steels coated with the coatings 

currently employed in offshore applications, and also the new solutions developed in the 

last section of this work.  

The corrosion behavior evaluation was carried out by performing different 

electrochemical techniques in a three-electrode electrochemical test set-up connected 

to an Autolab-Metrohm PGSTAT302N potentiostat equipped with FRA32M and EDC 

modules. 

The surface of the samples was evaluated after the tests by means of an Olympus GX71 

optical microscope and a ZEISS ULTRA plus Field Emission Scanning Electron 

Microscope (SEM) with EDS and BSE microanalysis from OXFORD INCA synergy. 

4.2 TRIBOCORROSION 

For the tribocorrosion behavior evaluation the HSLA steels and the different coating 

systems in synthetic seawater, a rotatory MicroTest MT/10/SCM tribometer was 

employed, under ball-on-disc configuration. The tribometer was connected to the 

Autolab-Metrohm PGSTAT302N potentiostat for the control and registration of the 
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electrochemical parameters. The reciprocating UMT-CETR3 tribometer connected to the 

potentiostat was also employed for testing HSLA steels.  

After the tests, the worn surface of the samples was evaluated through different 

microscopic techniques. The total material loss was quantified by weighing the samples 

before and after the tests in a Mettler Toledo XP205 balance. The material loss in the 

wear tracks was calculated from the cross-section profiles obtained with a Nikon 

ECLIPSE ME600 and a Sensofar S Neox confocal microscopes. The tribocorrosion 

mechanisms were proposed by analyzing the test surfaces with the above-mentioned 

optical and SEM microscopes.   

4.3 WEATHERING AGING TESTS 

The protective effectiveness of the commercial coatings and the newly developed 

solutions was assessed by performing weathering aging tests in different climatic 

chambers: 

• Julabo ED thermostatic bath for water immersion tests (ISO 2812-2 [1]) 

• ASCOTT 2000S chamber for the salt-fog exposure tests (ISO 9227[2]) 

• Kesternich HK300-800 S/M humidostatic chamber for the water condensation tests 

(ISO 6270-2 [3]) 

• WEISS C340/70 climatic chamber for the low-temperature exposure (ISO 12944-

9 [4], NORSOK M501 [5]) 

• Atlas UVTest weathering device with type II UV lamps (UVA-340) of 340 nm (ISO 

16474-3 [6]) 

The exposure types and durations were based on different standards currently employed 

for the evaluation of the coatings performance and validation for different corrosivity 

atmospheres (ISO 12944-6 [7], ISO 12944-9 [4], NORSOK M501 [5]).   

After the aging in the different chambers, the surface of the coatings was analyzed with 

the Olympus GX71 optical microscope. 

4.4 COATINGS DEVELOPMENT TECHNOLOGIES 

The development of the improved solutions for the protection of HSLA steels for offshore 

submerged components was achieved through two main steps. 

The wear and tribocorrosion resistance of the Thermally Sprayed Aluminum (TSA) 

coating was enhanced with the Plasma Electrolytic Oxidation (PEO) technique, by 

growing a hard aluminum oxide layer in a KERONITE KT 20-50 (20KW AC power supply) 

instrument. 

On the other hand, the organic sealant applied on top of the TSA coating was 

functionalized to provide it with antifouling properties by incorporating nanoparticles. The 

nanoparticles selected were the silicon dioxide (SiO2) to obtain superhydrophilicity, and 

copper II oxide (Cu2O) to provide the paint with antibacterial ability. The nanoparticles 

were dispersed using an ultrasonic homogenizer (Vibracell-VCX750), incorporated into 

the paint formulation, and applied by spray technique.  
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4.5 PHYSICOCHEMICAL AND STRUCTURAL CHARACTERIZATION 

The physicochemical and structural characterization of the coatings was assessed with 

the following equipment and methodologies: 

• The thickness of the coatings was measured from the cross-section profile in the 

Olympus GX71 optical microscope (UNE-EN ISO 1463 [8]).   

• For the hardness determination, the Akashi AVK-A and Future-Tech FM-700 

testers equipped with Vickers indenters were employed (UNE-EN ISO 6507-1 [9]) 

• The roughness was determined in a Perthometer M2 (Mar GmBH) profilometer 

(DIN EN-ISO 4288 [10]). 

• The adhesion of the coating systems was evaluated by means of pull-off adhesion 

tests with a PosiTest AT-A equipment (ISO 4624 [11]) 

• The microstructure of the coatings was analyzed with the above-mentioned SEM 

microscope 

• The chemical composition was also analyzed in the SEM microscope, equipped 

with Energy Dispersive Spectroscopy (EDS) technique 

• The phases of the newly generated PEO coating were analyzed by X-ray diffraction 

(XRD) in a D8 Advance diffractometer from Bruker, equipped with a Cr-Kα1 

radiation source.  

• The hydrophobicity or hydrophilicity grade of the organic sealants with nanoparticle 

addition was evaluated in a SURFTENS universal goniometer. 

• Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) technique 

was employed to quantify the particle release of the sealant with nanoparticles, in 

an ULTIMA 2 HORIBA Jobin Yvon instrument.  

4.6 ENVIRONMENTAL ASSESSMENT 

The environmental related assessment was performed to evaluate the antibacterial 

activity and ecotoxicity of the organic sealant with nanoparticle addition, to determine its 

suitability to be employed in the marine environment. 

The antibacterial activity tests were performed according to JIS Z2801 [12] standard, and 

its equivalent ISO 22196 [13], with Escherichia coli ATCC 8739 (E. Coli) microorganism. 

The ecotoxicological analysis performed was the algal growth inhibition tests following 

the ISO 10253 standard [14], with the MARINE ALGALTOXKIT recommended. The 

marine algae employed was the Phaeodactylum tricornutum (MICROBIOTESTS Inc.). 

The algal growth inhibition was determined by measuring the optical density (OD) at 670 

nm in a Jenway 6300 spectrophotometer.  
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5.1. TRIBOCORROSION BEHAVIOR OF MOORING HIGH 

STRENGTH LOW ALLOY STEELS IN SYNTHETIC 

SEAWATER 

A. Lópeza, R. Bayóna, F. Paganoa, A. Igartuaa, A. Arredondob, J.L. Aranab, J.J. Gonzálezc 

aIK4-TEKNIKER, Eibar, Spain 
bDepartment of Metallurgical and Materials Engineering, University of the Basque Country, Spain 
cVicinay Marine Innovación, Spain 
 

ABSTRACT 

Offshore components of High-Strength Low-Alloy Steel (HSLA) are frequently exposed to 

tribological and corrosion effects during their working life. In the present work, several 

experiments have been performed to study the tribocorrosion behavior of two steel grades, under 

unidirectional sliding in synthetic seawater. Sliding wear tests were performed under 

potentiodynamic and potentiostatic conditions at different applied potentials. The wear tracks 

were analyzed by means of optical microscope and profilometry. The wear-corrosion synergism 

was quantified according to the ASTM G119 standard. Sliding promotes the wear accelerated 

corrosion of the unworn area in both alloys. Furthermore, the coefficient of friction of the steels is 

strongly influenced by the corrosion products and the applied potential.  

Keywords: High Strength Steel; Tribocorrosion; Corrosion; Seawater 

 Introduction 

The main energetic sources used nowadays are oil and gas, especially those generated 

offshore. The platforms used for this aim have a great impact at environmental, social 

and economic levels. Offshore platforms are tied up to the sea bottom through mooring 

systems, which are composed of chains, anchor systems, and connectors. 

High strength steels (yield strength from 460 MPa to 960 MPa) are increasingly being 

used in offshore structural applications. These steels offer some advantages over 

conventional steels, especially when the weight plays an important role.  

When immersed in the ocean, the chains are subjected to high corrosion rates [1] 

especially in the splash zone, where the concentration of oxygen is high. Moreover, the 

floater motions induced by the environmental actions due to waves, wind and current 

movements of the sea [2,3] involves the links to be in relative motion with each other 

leading to a continuous wear in the surfaces in contact [1]. Wear and corrosion are two 

processes that lead to a surface damage due to a progressive material loss as a result 

of mechanical and electrochemical processes, respectively [4]. When these two 

degradation processes occur in a simultaneous way, it is known as tribocorrosion. 

In accordance with the ASTM G40 Standard [5], tribocorrosion can be defined as a form 

of solid surface alteration that involves the joint action of relatively moving mechanical 

contact with chemical reaction in which the result may be different in effect than either 

process acting separately. In other words, it is the process leading to an irreversible 

transformation of the material resulting from the simultaneous physic-chemical and 

mechanical surface interactions occurring at a tribological contact [6-11]. In passive 

materials, the origin of tribocorrosion is closely related to the presence of a protective 

oxide film of few nm thick on material surfaces [11-13]. Under tribocorrosion conditions 

two main mechanisms contribute to material removal from the surface of the material: 
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wear accelerated corrosion and mechanical removal from the sliding contact 

[4,7,13,14,15]. Tribocorrosion involves numerous synergy effects between mechanical 

and chemical or electrochemical phenomena [6-11].  

The tribocorrosion behavior of passive materials such as stainless steels or titanium has 

been widely studied [16,17,18] during years in different solutions. It is well known that 

these passive materials form a protective layer of few nanometers thick, which is mostly 

composed of oxides as a consequence of a spontaneous reaction when immersed in 

aqueous solutions [11-13]. 

As for low alloy steels, like those used in mooring line chains, the content in alloy 

elements is not enough to form such protective layer, and the major oxide formed is the 

ferric oxyhydroxide (FeOOH). The rust layer formed in carbon steels has a complex 

morphology and it is generally porous, with poor adherence and cracked in the outer part 

[19-21]. Unlike that formed on stainless steels, the film is not protective in the presence 

of corrosive electrolytes and it usually breaks down [22], so the electrolyte and the 

corrosive species can easily penetrate the porous rust layers to the substrate where 

corrosion reactions proceed continuously [19].  

While a good understanding of the tribocorrosion behavior of passive materials has been 

achieved, little is known about the behavior of active materials, such as the steels used 

in offshore components.   

The present investigation was carried out with the aim to further comprehend the 

behavior of two steel grades commonly used in mooring lines. The tribocorrosion 

behavior of the steels under unidirectional sliding in synthetic seawater was studied using 

a rotatory tribometer under ball-on-disc configuration, equipped with an electrochemical 

cell placed over the rotating plate. The combination of mechanical and electrochemical 

techniques allowed an in-situ characterization of the surface state of that material and its 

evolution during sliding tests [23,24]. The tests were performed under laboratory 

conditions that simulated as close as possible to those that the chains are subjected to. 

A series of experiments have been performed to study the effect of applied potential on 

the tribocorrosion behavior of the steels. Furthermore, a surfaces examination was 

conducted to study the materials degradation mechanisms involved. 

 Experimental Procedures 

5.1.2.1 Materials and sample preparation 

The steel grades used in the manufacture of chains and accessories that form the 

mooring lines are approved by the current Classification Societies. The steels are 

classified by specified minimum ultimate tensile strength into five grades: R3, R3S, R4, 

R4S and R5 [25]. The present work studies the tribocorrosion behavior of the steel 

grades R4 and R5.  

High strength steel (HSS) grades, such as the R4, R4S and the R5, are manufactured 

with the chemical compositions of low and medium alloy steels (Cr, Ni, Mo, V…), using 

alloying percentages that depend on the hardenability (mass effect) and the specific 

mechanical characteristics of each grade. The chains are welded by flash butt welding 

(FBW) process, followed by a post-welding heat treatment (PWHT). 

The samples used in the tests were discs of 7.9 mm thickness obtained by cutting 24 

mm diameter bars from a real chain component. The discs were mirror polished in order 

to obtain a surface with low roughness (Ra=0.05m). Prior to the tests, the samples were 

cleaned with ether and acetone in an ultrasonic bath, dried with air and adequately stored 
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in a desiccator in order to avoid corrosion and contamination. The exposed surface of 

the samples was of 2.54 cm2.  

5.1.2.2 Tribocorrosion tests with in situ electrochemical measurements by ball 

on disc rotatory system 

Frictional tests were carried out using a unidirectional tribometer shown schematically in 

Fig. 5.1.1. An electrochemical cell is placed on the rotatory plate of the tribometer in 

order to perform the tribocorrosion tests by controlling both mechanical and 

electrochemical parameters simultaneously. The tribocorrosion test system was 

composed of a ball-on-disc MicroTest MT/10/SCM tribometer and an Autolab-Metrohm 

PGSTAT30 potentiostat. 

 
Fig. 5.1.1 Schematic of tribocorrosion ball-on-disc experimental setup used in this work [15] 

The samples were fixed in the electrochemical cell, which rotates ensuring the contact 

between the stationary counterbody and the specimen under controlled load, radius and 

speed conditions. An alumina ball of 10 mm in diameter (G28) was used as the 

counterbody. The cell and the ball holder were made of Teflon and nylon, respectively. 

These insulating and corrosion resistant materials ensure the electrical isolation of the 

specimen from the metallic components of the tribometer.  

The electrolyte used for the test was synthetic seawater with heavy metals, which was 

prepared in accordance with ASTM D1141. The test cells were filled with 150 ml of this 

dissolution. A commercial Ag/AgCl (KCl 3M) electrode and a platinum wire were placed 

5 mm above the exposed surface of the sample to act as the reference electrode and 

the auxiliary electrode, respectively. The sample was connected as the third electrode 

(working electrode). The potential of the reference electrode is of 207 mV versus 

standard hydrogen electrode (SHE), and all the potentials registered in this work are 

referred to this electrode.  

During the wear experiments the frictional forces, as well as the current and potential are 

continuously monitored. The coefficient of friction was obtained by dividing the frictional 

force measured during the test by the normal force applied. Sliding was used in this study 

to represent the conditions when the links in the chains move with relative movement to 

one another causing wear in the contact points. The contact conditions of the surfaces 

were calculated using the Hertzian Contact Theory [26], considering the real contact 

pressure between the links in real applications. The normal force used in the tests was 

of 5 N, which corresponded to an average Hertzian pressure of 930 MPa with a contact 

radius of 50.5 m. The ball described a wear track of 5 mm radius, with a rotation speed 

of 100 rpm.   

Potentiodynamic tests were performed at a sweep rate of 1 mVs-1, from -1000 mV to 400 

mV. The polarization curves of the two steels were obtained both in the absence of sliding 
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and with sliding under the mechanical conditions of load, wear track radius and rotation 

speed mentioned above. Before each potentiodynamic measurement, the open circuit 

potential (OCP) was measured during 3600 s in order to study the evolution of the 

potential of the steels with immersion time until its stabilization. 

After the potentiodynamic tests, five potentials were selected: two cathodic potentials, 

two anodic potentials and the OCP of each steel grade. Sliding wear tests under 

potentiostatic conditions were performed by using the selected potentials, at a constant 

load of 5 N and 100 rpm for a rubbing time of 2400 s, corresponding to 4000 cycles. All 

the tests were conducted at room temperature and aerated conditions. 

5.1.2.3 Wear and corrosion synergistic experiments 

The evaluation of corrosion, wear, and combined wear and corrosion behavior was 

carried out according to the ASTM G119 Standard [27], which allows quantifying the 

synergism by calculating the parameters mentioned throughout this section. 

The total material loss (T), which includes contributions from mechanical wear, corrosion 

dissolution and the interaction between these two can be defined as: 

𝑇 =  𝑊0 + 𝐶0  +  𝑆     (5.1.I) 

Where W0 is the rate of material loss in the absence of corrosion, C0 is the 

electrochemical corrosion rate when no mechanical wear is applied, and S the synergetic 

component.  

Therefore, mechanical wear affects corrosion, and corrosion affects mechanical wear. 

The synergetic component can be divided into two components: the increase in the 

mechanical wear due to corrosion, ΔWC, and the increase in corrosion due to mechanical 

wear, ΔCW, as follows: 

𝑆 =  𝛥𝑊𝐶  +  𝛥𝐶𝑊     (5.1.II) 

Where ΔWC and ΔCW can be calculated by using the following equations: 

 𝛥𝑊𝐶  =   𝑊𝐶  –  𝑊0     (5.1.III) 

𝛥𝐶𝑊  =  𝐶𝑊 – 𝐶0             (5.1.IV) 

Where WC is the total wear component of T, and CW represents the electrochemical 

corrosion rate during the corrosive wear and.  

In order to obtain the parameters in accordance with the ASTM Standard, the samples 

tested under potentiodynamic and potentiostatic conditions were weighted before and 

after each test, using a Mettler Toledo XP205 balance with an accuracy of 0.01mg.  

5.1.2.4 Morphology of the worn surface by optic microscope and profilometry 

The morphology of all the tested specimens was examined by optical microscopy (Leica 

DM2500MH). The contact area on the surface of the alumina ball was also examined, 

but the wear of the ball was not measurable in either test. 

After each test, the wear track volume due to the combined action of wear and corrosion 

of the samples was calculated by using the profiles registered with a confocal microscope 

(Nikon ECLIPSE ME600). The cross-section of the track was measured in four 

equidistant locations.  Average values of the track width and depth were obtained, and 

the cross-sectional area of the track was estimated by approaching its shape with a semi-
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elliptical geometry [4]. The volume of material loss in the wear track was calculated by 

multiplying the cross-sectional area by the circumferential length of the wear track. 

 Results and Discussion 

5.1.3.1 Potentiodynamic tests with and without sliding 

Potentiodynamic tests were performed to obtain the polarization curves under sliding 

(tribocorrosion) and without sliding (corrosion), at a sweep rate of 1 mVs-1. The 

polarization curves under sliding were measured under a load of 5 N and a rotation speed 

of 100 rpm. Before each polarization measurement, the specimens were stabilized for 

3600 s of immersion in the seawater. 

 
Fig. 5.1.2 Potentiodynamic curves obtained for both steel grades without sliding and under sliding  

Fig. 5.1.2 shows the polarization curves obtained under sliding and without sliding. In the 

curves obtained in the absence of sliding, both steels exhibit similar behavior, with close 

corrosion potential values and identical anodic currents. No passive region is observed 

in either curve. Instead, a great activation stretch is observed in the anodic region at 

potentials above the corrosion potential, where the current increases several orders of 

magnitudes for small potential variations. Such increase in the current to reach values 

near 700 mA, indicates that the steels are very active materials and undergo high rate 

corrosion processes when immersed in seawater, coherently with that observed by other 

authors [28].  

 
Fig. 5.1.3 Polarization curves and recorded COF during the potentiodynamic tests under sliding for both 

steel grades 

The electrochemical behavior of both steels changes significantly when sliding is applied. 

The corrosion potential or zero-current potential of both steels is anodically shifted, from 

-680±25 mV to -395±15 mV for steel grade R4 and from -668±21 mV to -372±13 mV for 
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steel grade R5. Moreover, a decrease of nearly an order of magnitude in the anodic 

currents is observed for both steels due to the action of sliding. However, the activation 

stretch under sliding is smaller than that of the tests performed without sliding, and the 

anodic currents reach lower values, of around 100 mA. The difference in the values of 

currents measured with and without sliding suggests that the corrosion kinetic in the track 

and in the outer part of the track is different, since the continuous action of the 

counterbody seems to impede the natural trend of corrosion of the material inside the 

wear track. This peculiar tendency in the current results was observed by the authors in 

tribocorrosion tests performed under reciprocating sliding with small volumes of 

seawater dissolution. Therefore, the fluid motion during sliding does not seem to affect 

the corrosion system and the current tendency registered during the tests.  

The coefficients of friction (COF) recorded during the potentiodynamic tests are very 

similar for both steel grades. The evolution of the COF with the applied potential can be 

observed in Fig. 5.1.3, where the COF and the polarization curves are plotted together. 

In the cathodic region, the COF experiences a sudden increase when the potential 

sweep starts, and the samples are polarized to the cathodic potential of -1000 mV. Then, 

the COF decreases until the applied potential is close to -600 mV, after what it increases 

again during the cathodic activation region. At potentials close to the corrosion potential, 

the COF increases suddenly. More stable values are observed when the slope of the 

polarization curve changes to the anodic region. At higher anodic potentials the COF 

decreases again and stabilizes until the end of the sliding when it reaches higher values. 

Therefore, the COF is reduced when the samples are cathodically protected, and it 

seems that the formation of the oxide layers in the track when the samples are anodically 

polarized helps to maintain a low COF. 

  
Fig. 5.1.4 Optical micrographs of the steel grade R5 (a) under no sliding condition and (b) under sliding 

showing the presence of pits, and corrosion products in the wear track 

The surface of the samples was examined by means of an optical microscope. The 

micrographs are shown in Fig. 5.1.4 reveal the existence of generalized corrosion along 

the surface of the steels, and some localized corrosion in the form of pits. Furthermore, 

the formation of corrosion products in the wear track is observed in the samples tested 

under sliding (Fig. 5.1.4b). The degradation and the presence of corrosion products are 

more evident in the unworn area of the sample tested under sliding, suggesting that 

sliding accelerates the corrosion kinetics outside the wear track. 

5.1.3.2 Potentiostatic sliding tests 

After studying the potentiodynamic behavior of the steels, sliding wear tests were 

performed under potentiostatic conditions at five different potentials. The sliding tests 

were carried out under a 5N load and a speed of 100 rpm for 4000 cycles. The tests 

started after an hour of immersion, and once the potential was stable. The potential was 

applied 2 minutes before the sliding started, and it was maintained for 10 minutes after 
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the sliding finished, so the total duration of the polarization was of 52 min. In all the tests 

the current and the COF were registered simultaneously. The tests were performed 

under the following potential values: two cathodic potentials (-1000 mV and -650 mV), 

open circuit potential (-395 mV for the R4 steel and -371 mV for the R5 one) and two 

anodic potentials (0mV and 300 mV), which were selected in accordance with the 

polarization curves obtained in the potentiodynamic tests under sliding. 

Electrochemical behavior under applied potential 

The first potentiostatic test was conducted at a cathodic potential of -1000 mV. This 

potential is below the corrosion potentials measured under both sliding and without 

sliding conditions for both steels, so the sample is cathodically protected. Therefore, the 

occurrence of corrosion is impeded, and the contribution of pure mechanical wear to the 

total material loss from the wear track can be determined [8,14,16]. The recorded 

currents and COF at -1000 mV are plotted together in Fig. 5.1.5a. The currents measured 

in both steels are cathodic (negative) before, during and after sliding, confirming that no 

electrochemical corrosion occurred on the surface of the steels at this potential. The 

average values of the COF and the currents registered are compiled in Table 5.1.1. 

 

 
Fig. 5.1.5 Evolution of the current and COF recorded before, during and after sliding for both steel grades 

under cathodic potentials: (a) -1000 mV and (b) -650 mV 

Another test was performed under cathodic protection at -650 mV (Fig. 5.1.5b). The 

measured currents are still cathodic, indicating that at this potential the material loss is 

totally attributed to mechanical wear. The currents registered at -650 mV are more stable 

and slightly higher than those at -1000 mV during the whole test. Wear volumes 

measured under both cathodic potentials are similar (Table 5.1.2). Therefore, the wear 
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at those cathodic potentials is purely mechanical, and the negative currents are 

controlled by the reduction of water and, partially, of dissolved oxygen [12,13,18,24]. 

 
Fig. 5.1.6 Evolution of OCP during the first hour of immersion and the variations of OCP and COF with 

sliding for both steel grades 

For the tests performed under open circuit conditions, the open circuit potential (OCP) 

was recorded instead of the current. The corrosion currents compiled in Table 5.1.1 for 

open circuit conditions were obtained by standard Tafel extrapolation in the polarization 

curves. Before each sliding tests, the OCP of both steels was recorded for the first hour 

of immersion. Fig. 5.1.6 depicts the evolution of potential during the first hour of 

immersion and its variation during sliding, plotted together with the evolution of the COF. 

The tendency of potential during the first hour of immersion in seawater was observed 

to be the same for both steel grades. The behavior of these steels is the opposite to that 

observed for passive materials, where the OCP usually shifts towards anodic potentials 

due to the formation of the protective layer when immersed in some specific electrolytes, 

and changes again reaching more cathodic potentials when sliding starts, as a 

consequence of the rupture of that protective layer and the dissolution of the bare 

material exposed to the electrolyte [4,6,18,23,29,30]. The initial drop in the potential of 

these active steels to more negative values shown in Fig. 5.1.6 indicates the initiation of 

corrosion processes in the surface of the steels just after the immersion in seawater. This 

is attributed to high rate corrosion, since the steel surface at the seawater/metal interface 

is exposed to the full oxygen concentration of the solution [31]. The microscopic 

examination of the samples confirmed that corrosion started as localized in the form of 

pits, and spread until the whole surface is covered by an uniform corrosion. Once the 

oxygen in the interface has been consumed, a stabilization of the potential is observed 

since a further diffusion of oxygen from the bulk water to the corroding surface is 

necessary for corrosion to continue. 

As soon as the alumina ball comes into contact with the surface of the steels, the OCP 

measured towards more positive values. The OCP measurement is a mixture lecture of 

potentials on the surface of the studied material [4,22,23]. The inhomogeneities in the 

surface of the materials act as microbatteries due to the difference in the potential with 

reference to that of the rest of the surface, and the recorded potential is the result of the 

two differentiated potentials of the cathodic and small anodic regions. The result of the 

sliding in the surface of the steels is the formation of a macrobattery, where the potential 

in wear track seems to be more cathodic than that of the unworn area. The continuous 

action of the alumina ball modifies the kinetics of corrosion in the track, since the material 

in the top is constantly being removed, slowing down corrosion processes occurring in 

that area. The modification of the potential in the track increases the difference between 

the two regions in the sample, and the mixed OCP lecture shifts towards more positive 
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values. Although the track seems to be less subjected to corrosion, the difference in 

potentials generated in the two regions affects the corrosion of the unworn area, where 

the potential is more anodic and, thus, the material is subjected to higher rate corrosion 

processes. Therefore, sliding results in the formation of a macrobattery in the surface of 

the steels where the worn area acts as the cathode and the unworn one as the anode. 

 

 
Fig. 5.1.7 Evolution of the current and COF recorded before, during and after sliding for both steel grades 

under anodic potentials: (a) 0 mV and (b) 300 mV 

At anodic potentials, the currents registered during sliding of both steels are positive and 

further higher when compared to those measured at OCP conditions. As for the previous 

tests, a decrease in the current is observed during sliding for both steels, as shown in 

Fig. 5.1.7a and b. At 0 mV, the current values registered before sliding are between 60 

and 67 mA for both steel grades, whereas at 300 mV the current values before sliding 

are close to 100 mA. In both cases, the shift in current due to sliding is of about 15 mA. 

In all the tests performed at different potentials the current shifts to lower values when 

sliding is applied (Fig. 5.1.5 and Fig. 5.1.7). This observation is again against to that 

observed for passive materials, where the current tends to increase during sliding 

processes indicating the start of corrosion dissolution processes in the track, where the 

protective layer has been removed [4,6,18,23,29,30]. The samples of steel grade R4 and 

R5 immersed in seawater are constantly being dissolved, since no effective protective 

layer is formed on their surfaces. Hence, that shift in the current indicates that the 

corrosion kinetics in the track and in the outer part of the track is different. Thus, 

considering that the shift of current is to more negative values, this suggests that the 

corrosion rate in the worn area is lower than that of the unworn area. This is a 

consequence of the continuous action of the alumina ball against the surface of the steel, 

which removes the bare material and the corrosion products present in the track, 
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reducing the corrosion kinetics in that area. Therefore, sliding results in wear accelerated 

corrosion process in the unworn area, leading to high loss of material due to the sum of 

the material loss by tribocorrosion in track and the material loss by corrosion in the outer 

part of the track.  

Effect of potential on the coefficient of friction  

The average current and the average coefficients of friction (COF) obtained in the sliding 

tests under different potentiostatic conditions are summarized in Table 5.1.1. 

Table 5.1.1 Average current and COF obtained from the potentiostatic tests under different potentials for 
the steel grades R4 and R5 

Potential  

(mV vs Ag/AgCl) 

Average current (mA) 
 

Average COF 

R4 R5 R4 R5 

-1000 -0.6175 -0.6190  0.2753 0.2598 

-650 -0.5463 -0.5990  0.3341 0.3387 

-395 (OCP R4) 0.1134 (Icorr)* -  0.5782 - 

-371 (OCP R5) - 0.1032 (Icorr)*  - 0.5526 

0 54.9290 53.3231  0.2894 0.2834 

300 90.0013 84.2813  0.2946 0.2931 

*Corrosion currents measured from the polarization curves  

The evolution of the coefficients of friction with time and the average values registered 

of both steel grades are similar for the different applied potentials. In the cathodic region, 

the friction coefficient recorded is low, and it decreases as the sliding time increases (Fig. 

5.1.5a and b). At open circuit conditions, the coefficient of friction increases gradually 

with increasing sliding time. At anodic potentials, the average COF values are low and 

practically constant for both steels. 

 
Fig. 5.1.8 Average COF as a function of applied potential 

The average COF as a function of applied potential plotted in Fig. 5.1.8 shows how the 

material and the corrosion products removed from the surface can modify the frictional 

behavior of the surface and thus, the wear mechanism. The low values of the friction 

coefficient in the cathodic region for both steels are attributed to the particles detached 

from the metal that remain between the steel and the ball. These particles are sheared 

by the continuous action of the counterbody and become smeared in the contact area, 

where they act as a lubricant accommodating the sliding by shearing [12,13,17,32]. The 

coefficient decreases with the increasing sliding time, as a consequence of a greater 

amount of particles smeared in the contact. Furthermore, as part of the material is 

recirculated but not removed from the contact, the total material loss in the wear track is 

lowered. Some smeared layers are eventually eliminated from the wear track due to the 

continuous action of the countermaterial. According to the theory of adhesion [33], the 
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coefficient of friction corresponds to the shear stress and hardness ratio, being of 0.2 for 

most metals. The friction coefficients measured for the tests performed at cathodic 

potentials are close to that value, confirming the prediction made.  

At open circuit conditions (OCP), the coefficient of friction increases gradually with 

increasing sliding time and eventually remains more constant. The increase in the 

coefficient can be attributed to the continuous superficial modification produced by the 

sliding which, at first, removes the oxides formed during the first 3600 s of immersion, 

changing the nature and morphology of the contact area between the countermaterial 

and the steel. Then, the equilibrium between the oxide formation rate and their removal 

is reached, and the coefficient acquires more constant values.  

At anodic potentials, the average COF values are low and practically constant for both 

steels. The low values of the coefficients of friction suggest that the layer of corrosion 

products formed in the surface at high anodic potentials have the ability of reducing the 

friction and act as a lubricant. The micrographs of the samples tested at anodic potentials 

show a great amount of corrosion products in the wear tracks, confirming the existence 

of compact layers of oxides that reduce the frictional forces measured. 

Effect of potential on the wear track  

The total material loss in volume (Vtot) obtained by the weight difference in the samples 

before and after each test, and the volume of the wear tracks (Wtr) measured with the 

confocal microscope are listed in Table 5.1.2. 

Table 5.1.2 Total material loss and wear track volume of the steel grades R4 and R5 tested under different 
potentials 

Potential  

(mV vs Ag/AgCl) 

Total material loss, Vtot (mm3) Wear track Volume, Vtr (mm3) 

R4 R5 R4 R5 

-1000 0.0128 0.0115 0.0088 0.0074 

-650 0.0641 0.0512 0.0116 0.0891 

-395 (OCP R4) 0.3333 - 0.0216 - 

-371 (OCP R5) - 0.3205 - 0.0199 

0 9.3987 8.6141 0.0794 0.0782 

300 12.1721 10.2564 0.0947 0.0923 

All the samples were weighed before and after each test, so the total material loss due 

to tribocorrosion in the wear track and corrosion in the outer part of the track is calculated, 

and the results are compiled in Table 5.1.2. Fig. 5.1.9 shows the total material loss (Vtot) 

against the applied potential. It is evident that the material loss increases with increasing 

potential, but that increasing tendency seems to be slightly reduced at high anodic 

potentials. In passive materials, this is attributed to the transpassive potential [16]. As for 

the active steels studied in this work, no transpassive region is observed in the 

polarization curves (Fig. 5.1.2), since the material is constantly dissolving in the 

electrolyte due to the low protective quality of the rust layer formed on the surface. 

Therefore, such decrease in the trend of material loss can be attributed to a deceleration 

of corrosion kinetics due to both the saturation where the oxygen in the electrolyte is 

almost consumed, and the inhibition of oxygen diffusion to the corroding surface by the 

oxide layer and corrosion products formed on top of the surface. The seawater solution 

volume used in the tests is small, and the reduction of dissolved oxygen in small 

compartments has been found to be noticeable when the corrosion rate is high [34], as 

in the case of these mooring steels when polarized at anodic potentials. Furthermore, 

some researchers have observed that the iron oxide layer formed on top of the surface 

and the pits in carbon steels immersed in NaCl solutions acts as a physical barrier to the 
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oxygen diffusion to the corroding surface [22], slowing down the rate of corrosion 

processes.  

 
Fig. 5.1.9 Total material loss as a function of applied potential 

Fig. 5.1.10 shows cross-section profiles measured across the wear tracks generated in 

the steels under different potentials. For both steels, the surface of the wear tracks 

observed in the profiles are smooth at cathodic and open circuit potentials, but an 

increase of roughness is observed at anodic potentials. The cross-section profiles of the 

tracks of the steels verify that the track size is increased with increasing potential for both 

steels. The small wear volumes measured in the samples tested at cathodic potential 

show the effectiveness of cathodic protection against tribocorrosion. The roughness of 

the surface of both the worn and unworn areas increases with increasing potentials, 

since more corrosion processes occur at higher potentials. As it was expected, at higher 

anodic potentials the major material loss is due to the dissolution of the metal in the outer 

part of the track rather than the material loss in the wear track due to the simultaneous 

action of wear and corrosion. This is evidenced when comparing the values of the total 

material loss (Vtot) and the material loss in the track (Wtr) in Table 5.1.2. 

 
Fig. 5.1.10 Cross section profiles across the wear tracks at different potentials on the steel grades (a) R4 

and (b) R5 

5.1.3.3 Wear-corrosion synergism  

Material loss rate has been obtained by using the equations described in Section 5.1.2.3 

(Eqs. (2.I)-(2.IV)). The total material loss (T) is the sum of the wear rate in the absence 

of corrosion (W0), the corrosion rate in the absence of wear (C0) and the synergistic 

component (S), which is, in turn, the sum of interactions between corrosion and wear 

processes. 

In the tests, T was calculated from the weight loss measured in the samples in the 

potentiostatic sliding tests at OCP potential, whereas W0 was obtained from the weight 
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loss of the samples tested under applied cathodic potential (-1000 mV). CW and C0 were 

calculated from the weight difference in the samples used for potentiodynamic tests 

under sliding and without sliding conditions, respectively. 

The wear and corrosion synergistic data compiled in Table 5.1.3 show that the total 

material loss (T) is similar in both steels. The higher amount of material loss is found to 

be due to mechanical wear rather than corrosion dissolution. Corrosion rate (CW) seems 

to be influenced by the action of wear, and the change observed in the corrosion rate 

(ΔCW) is similar in both steels. The differences between the results obtained for the two 

steels are negligible. Thus, both steel grades can be considered to have the same 

tribocorrosion behavior in seawater.  

Table 5.1.3 Wear and corrosion synergistic data 

Steel grade 
Material loss rate, (mm3/mm2/yr) 

T W0 C0 Cw S ΔCw ΔWc 

R4 1.7047 0.6556 0.0581 0.0876 0.9909 0.0295 0.9614 

R5 1.6391 0.6228 0.0519 0.0740 0.9643 0.0220 0.9422 

5.1.3.4 Surface morphology 

Fig. 5.1.11 show the optical micrographs of the wear track of steel grade R4 produced 

by sliding tests at the different applied potentials. The surface of the sample tested at the 

first cathodic potential of -1000 mV is smooth, as observed in the cross-section profiles 

of the wear tracks. The sample is free from corrosion products, and abrasion lines are 

clearly observed (Fig. 5.1.11a). At -650 mV, the state of the surface is similar to that 

observed at -1000 mV. Corrosion products are not detected either in the surface nor in 

the track (Fig. 5.1.11b). However, the track is wider, and the abrasion lines are deeper 

when comparing to that of the samples tested at -1000 mV, in accordance with the track 

profiles. In the sample tested at open circuit potential, both worn and unworn areas are 

covered by large shaped corrosion products (Fig. 5.1.11). Piled material is also observed 

at the edge of the track, which seems to have undergone corrosion processes. At anodic 

potentials, the surface of the steel is highly degraded in comparison with the previous 

samples (Fig. 5.1.11d and e). The surface is completely covered by corrosion products, 

and corrosion is also present in the tracks. Abrasion is represented by the lines parallel 

to the sliding movement, but it is less evident than in the samples tested at more cathodic 

potentials.  

 
Fig. 5.1.11 Optical micrographs of the wear tracks in the steel grade R4 at different applied potentials 
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The micrographs of the tracks of steel grade R5 are depicted in Fig. 5.1.12 for all the 

applied potentials. The results are very similar to those of the steel grade R4. Corrosion 

is not present in either of the samples tested at cathodic potentials, but the wear tracks 

are wider, and the abrasion lines are deeper under -650 mV. Similar large shaped 

corrosion products are formed in the steel grade R5 at open circuit potential. Finally, the 

degradation observed in the samples at anodic potentials is comparable to that in the 

samples of steel grade R4. The sizes of the wear tracks of both steels observed by optical 

microscopy are similar, in agreement with that measured by profilometry. 

 
Fig. 5.1.12 Optical micrographs of the wear tracks in the steel grade R5 at different applied potentials 

 Conclusions  

In the present work, the tribocorrosion behavior of the steel grades R4 and R5 used in 

mooring line components has been studied in synthetic seawater. For this aim, 

potentiodynamic and potentiostatic tests have been performed. The following 

conclusions can be drawn: 

• The polarization curves obtained with and without sliding present a great activation 

stretch in the anodic region, where the current increases several orders of 

magnitude for small potential variations, indicating that the steels are very active 

materials and undergo high rate corrosion processes when immersed in seawater. 

• The evolution of potential and current under the simultaneous action of wear and 

corrosion is the opposite of that observed for passive materials. Sliding results in an 

increase in the OCP registered and a decrease in the current measured. This is due 

to the different corrosion kinetic inside the track, which have more cathodic potential 

that the outer part of the track, indicating that sliding accelerates corrosion in the 

unworn area. 

• The coefficient of friction of the steels is strongly influenced by the corrosion 

products and the applied potential. At cathodic potentials, the COF is reduced due 

to detached particles of the metal that accommodate sliding by shearing. The oxide 

products film formed at high anodic potential seems to have a lubricating ability.  

• The total material loss increases with increasing applied potential. At higher anodic 

potentials, the major material loss is due to the dissolution of the alloy in the outer 

part of the track rather than the material loss in the wear track due to the 

simultaneous action of wear and corrosion.  
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• The tests performed revealed that both steel grades exhibited a similar 

tribocorrosion response under the selected testing conditions. The differences in the 

results obtained for the synergism quantification are negligible and, therefore, both 

steels can be considered to have the same tribocorrosion behavior in seawater.  
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ABSTRACT 

Tribocorrosion is an important failure cause of High-Strength Low-Alloy steel (HSLA) components 

in offshore applications due to the synergistic effect of wear and the corrosiveness of seawater. 

In this work, the effect of temperature on the tribocorrosion behavior of two steel grades has been 

investigated by performing tribocorrosion tests under reciprocating sliding at two electrolyte 

temperatures. The total material loss due to corrosion in the unworn surface and due to 

tribocorrosion in the wear track was quantified. Sliding was found to accelerate the corrosion in 

the unworn area. Furthermore, temperature was confirmed to have an important effect on the 

tribocorrosion behavior of the steels, in terms of higher material losses due to corrosion at higher 

test temperature.   

Keywords: High Strength Low Alloy steel; Tribocorrosion; Seawater; Offshore 

 Introduction 

The materials working in offshore applications, are subjected to very harsh 

environmental conditions that accelerate their degradation. In marine environments, 

several phenomena take place simultaneously, which can shorten the useful life of 

structural materials leading to unpredicted failures. In the case of mooring systems, for 

instance, tribocorrosion plays a vital role in terms of premature failure of components [1]. 

On the one hand, the relative motion between chain links and connectors generated by 

waves, wind and ocean currents [2,3] leads to a continuous wear process in the contact 

surfaces. Moreover, corrosion is another important phenomenon to take into 

consideration in marine environments. The components that are continuously 

submerged or located in the splash zone of offshore structures, are subjected to high 

rate corrosion processes [4]. When wear and corrosion take place simultaneously, the 

process is known as tribocorrosion. There is a synergism between wear and corrosion, 

since the material loss when the two processes are occurring simultaneously, is greater 

than when they act separately [5,6].  

Tribocorrosion of passive materials, e.g., stainless steels and titanium alloys, has been 

widely studied during the last decades for different applications and corrosive 

environments. It is well known that passive materials form a protective oxide layer of few 

nanometers in the surface [5-7], and that wear locally destroys and removes this layer, 

exposing the underlying fresh material to the electrolyte. The unprotected material in the 

track generated by wear undergoes corrosion while the intact protective film in the 

unworn surface remains undamaged [5-8]. However, the use of passive materials in 

offshore applications is limited, due to their high cost in comparison with lower alloyed 

steels, that meet the mechanical requirements at the expense of a higher corrosion 

resistance. For instance, High Strength Steels (HSS), with yield strength values ranging 
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from 460 to 960 MPa, are commonly used in offshore structural applications due to the 

high resistance/weight ratio. Submerged structures, anchor systems, chains and 

connectors composing mooring systems of offshore oil and gas platforms are 

predominantly manufactured with HSS steels. This kind of low-alloyed steels do not grow 

a protective oxide layer in the surface as a consequence of their low content in alloying 

elements precursors of passive film formation (Cr, Ni, Mo, etc.). The dominant oxide 

formed on their surface is the ferric oxyhydroxide (FeOOH) compound. This rust film is 

highly porous and presents week adhesion bonds [9-12], allowing the electrolyte to 

penetrate through and reach the bare steel leading to continuous corrosion processes 

and high rates of material loss. Therefore, unlike passive alloys, low alloy steels are 

subjected to corrosion not only in the regions where the rust layer has been removed 

due to wear, but also in the remaining surface where the oxide layer does not form an 

effective barrier. Consequently, the surface degradation experienced in these steels is 

the sum of the material loss resulting from tribocorrosion in the contact area and the 

wear-accelerated corrosion process at the unworn area [13].  

It is well known that the corrosion rate of metals in seawater is influenced by a series of 

variables, i.e., salinity, pH, temperature, dissolved oxygen concentration or 

microorganisms [4,14,15]. The temperature of seawater is not constant but varies 

depending on the geographical location and ocean currents, ranging from -2 ºC in the 

poles to 35 ºC in the equator [15-17]. Moreover, there is also a variation of temperature 

with the depth, reaching values close to 0 ºC at the lower depths [14,15]. Temperature 

can affect corrosion in several ways. When the corrosion rate is governed by the 

elementary process of metal oxidation, the corrosion rate increases exponentially with 

the increase in temperature [15,16]. Therefore, temperature is an important factor to 

consider in terms of corrosion degradation of the steels that compose submerged 

components. 

Unlike in the case of passive materials, little is known about the tribocorrosion behavior 

of active materials, e.g., the HSLA steels used in offshore components. Furthermore, 

while a good understanding of the effect of temperature on corrosion of carbon steels 

has been achieved, little is known about the effect of temperature when the steels are 

subjected to the simultaneous action of wear and corrosion. 

In the present work, the tribocorrosion behavior of two steel grades commonly used in 

offshore components is studied at two seawater temperatures. For this aim, reciprocating 

tribocorrosion tests were performed at room (23 ºC) and low temperature (2 ºC), under 

ball-on-disc configuration. The temperature of 23 ºC corresponds to the sea temperature 

in the Gulf of Mexico, whereas the low temperature of 2 ºC was selected in order to 

reproduce the climatic conditions that mooring lines are subjected to in the North Sea 

[18]. 

The tribocorrosion test procedure employed in this work has been used by several 

researchers in the tribocorrosion assessment of passive materials [8,19-23], and was 

standardized in 2016 [24]. The procedure was selected both to analyze and comprehend 

the behavior of active materials as well as to determine the suitability of the procedure 

designed for passive materials for the evaluation of less-studied active materials. The 

combination of tribological and electrochemical techniques commonly used in 

tribocorrosion studies allows the in-situ characterization of the state of the surfaces 

during the tests [13,25,26].  
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 Experimental Procedures 

5.2.2.1 Materials and samples preparation 

The present work studies the tribocorrosion behavior of two steel grades commonly used 

in the manufacturing of offshore components. The steels are the R4 and R5 grades, 

approved by the Classification Societies [27]. These are High Strength steel grades 

manufactured with the chemical compositions of low and medium alloy steels (Cr, Ni, 

Mo, V, etc.). The alloying percentages slightly vary depending on the hardenability (mass 

effect) and the specific mechanical characteristics of each steel grade. The components 

manufactured with these steel grades, e.g., mooring chain links, are welded by means 

of flash butt welding (FBW), and eventually heat treated to reach the desired mechanical 

properties. 

The test samples were discs of 24 mm in diameter and 7.9 mm thick, directly machined 

from real components. The surface of the samples was mirror-polished to low roughness 

values (Ra<0.05μm). After polishing the samples and prior to the tests, the discs were 

cleaned in an ultrasonic bath with ether and acetone, dried with compressed air, and 

stored in a desiccator to avoid contamination or corrosion.  

5.2.2.2 Tribocorrosion tests  

The tribocorrosion tests consisted of reciprocating ball-on-disc tests in the tribometer 

schematically depicted in Fig. 5.2.1. The electrochemical cell was placed in the 

reciprocating plate of the tribometer, so both electrochemical and mechanical 

parameters were simultaneously controlled during the tests. The tribocorrosion test 

system was composed of a ball-on-disc UMT-CETR3 reciprocating tribometer connected 

to an Autolab-Metrohm PGSTAT30 potentiostat.  

 
Fig. 5.2.1 Reciprocating tribocorrosion ball-on-disc experimental setup used in this work 

The electrolyte used in the tests was synthetic seawater with heavy metals prepared in 

accordance with the ASTM D1141 standard. 150 ml of this solution was used in each 

test. A commercial Ag/AgCl (KCl 3M) and a platinum wire were used as the reference 

electrode and auxiliary electrode, respectively. The test sample was connected as the 

working electrode. The potential of the reference electrode is of 207 mV versus the 

Standard Hydrogen Electrode (SHE), and all the potentials presented in this work are 

referred to the Ag/AgCl electrode. The tests were performed at two electrolyte 

temperatures and under aerated conditions. The higher temperature, of 23 ºC 

represented the seawater temperature in the Gulf of Mexico, whereas the low 

temperature of 2 ºC represented the water temperature in the North Sea [18]. The tests 

at 23 ºC were performed at laboratory facilities with controlled climatic conditions of 23 

ºC and 50% HR. The low temperature of 2 ºC tests were done after introducing the 
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tribometer in a climatic chamber, controlling both temperature and humidity (0% HR). 

The exposed surface of the samples was in all cases of 2.54 cm2.  

The countermaterial used in the tests was an alumina ball of 10 mm in diameter (G28).  

The ball remained stationary as the electrochemical cell oscillated ensuring a proper 

contact between the countermaterial and the sample under the selected mechanical 

conditions. The ball holder and the electrochemical cell were made of nylon and 

polyethylene, respectively, assuring the electrical isolation of the sample from the 

metallic components of the tribological equipment.    

Prior to the tribocorrosion tests, potentiodynamic polarization tests were performed in the 

potential range from -1000 mV to +400 mV, at a sweep rate of 1 mV/s. Two polarization 

curves were obtained for each steel grade at each test temperature: in the absence of 

sliding (corrosion only) and under sliding (tribocorrosion). In the tests performed during 

sliding, a normal load of 49 N was applied, corresponding to a maximum average 

Hertzian contact pressure of 2000 MPa with a contact radius of 215 μm. The ball 

oscillated at a frequency of 2.5 Hz, with a stroke length of 10 mm. Before the 

potentiodynamic measurements, the Open Circuit Potential (OCP) was stabilized for 60 

minutes. 

The test procedure employed for tribocorrosion tests, as described elsewhere [8,19-24], 

consisted of combining OCP registration and Electrochemical Impedance Spectroscopy 

(EIS) measurements. At the beginning of the tribocorrosion tests, the OCP of the 

samples was registered during 3600 s of immersion in the electrolyte, and the mean 

stable potential value was obtained. Two EIS measurements were performed during the 

tribocorrosion tests, both under a sinusoidal perturbation of ±10 mV amplitude, at a 

frequency range from 100 kHz to 10 mHz. The first EIS was recorded after the 

stabilization time of 3600 s in the electrolyte at OCP conditions, whereas the second one 

was obtained during sliding process under potentiostatic control, in order to obtain stable 

values. The potential applied in the second EIS was the potential of the steels during 

sliding, which was calculated by performing a preliminary short wear test of 600 cycles 

(4 min) after the first EIS. The potential was registered 2 minutes before sliding, 4 minutes 

during sliding, and 10 minutes after sliding. The mean potential value during sliding was 

calculated, and the samples were then polarized at this potential to perform a longer 

sliding wear test of 11400 cycles, during which the second EIS was measured. The 

coefficient of friction (COF) was simultaneously recorded during this sliding test. The 

load, sliding speed and the stroke used in tribocorrosion tests was the same as in the 

potentiodynamic polarization tests under sliding, previously described. The total duration 

of sliding was of 80 minutes, corresponding to 12000 cycles. Immediately after the 

second sliding wear test ended, the samples were removed from the cell, rinsed with 

alcohol and distilled water and dried with compressed air. The samples were kept in a 

desiccator until the analysis of their surfaces.  

After the test, the morphology of the surfaces was examined by optical microscopy (Leica 

DM2500MH) and by Field Emission Scanning Electron Microscope (FE-SEM), equipped 

with Energy Dispersive X-ray Spectrometer (EDS), from OXFORD INCA Synergy. The 

contact area on the surface of the alumina ball was also examined, but the wear of the 

ball was found to be negligible. The cross-section profiles of the wear tracks were 

obtained with a Nikon ECLIPSE ME600 and Sensofar S Neox confocal microscopes. 

Furthermore, indentation hardness tests were performed in an Akashi AVK-A tester 

equipped with Vickers indentation device, following the UNE-EN ISO 6507-1:2006 

Standard. The measurements were performed with a Vickers diamond pyramid indenter, 

under a load of 1 Kg and an indentation time of 10 s. The hardness was determined in 
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two zones of each sample; inside the wear track and outside the wear track in a non-

tested area, in order to compare the effects of sliding in the hardness of the steels after 

tribocorrosion tests. Finally, the roughness of the corroded unworn area of the samples 

was evaluated by means of a Perthometer M2 (Mar GmbH), under the DIN EN-ISO 

4288:1998 Standard. 

5.2.2.3 Material loss estimation due to tribocorrosion and corrosion phenomena 

The material loss due to tribocorrosion in the wear track (𝑉𝑡𝑟) was determined by 

calculating the volume of the wear tracks from the cross-section profiles obtained with 

the confocal microscope. Average width and depth values of the wear tracks were 

obtained from different locations along the wear track length. The cross-sectional area 

of the track was estimated by approaching its shape with a semi-elliptical geometry [8]. 

Finally, the volume of material loss was calculated by multiplying the cross-sectional area 

by the stroke length of the wear track. 

The material loss volume due to electrochemical corrosion in the unworn area (𝑉𝑐𝑜𝑟𝑟) was 

calculated by subtracting the volume due to tribocorrosion in the wear track (𝑉𝑡𝑟) to the 

total material loss (𝑉𝑡𝑜𝑡): 

𝑉𝑐𝑜𝑟𝑟 = 𝑉𝑡𝑜𝑡 − 𝑉𝑡𝑟     (5.2.I)  

The total material loss in volume (𝑉𝑡𝑜𝑡), was obtained by weighting the test samples 

before and after each test and multiplying this value by the density of the steels.  

 Results and Discussion 

5.2.3.1 Polarization curves with and without sliding 

The polarization curves of the R4 and R5 steels were obtained under corrosion (no 

sliding) and tribocorrosion (sliding) conditions at 23 and 2 ºC. All the curves are plotted 

together in Fig. 5.2.2, and the corrosion potentials and corrosion currents values 

obtained by standard Tafel extrapolation are given in Table 5.2.1. 

Table 5.2.1 Corrosion potentials and currents for the two steel grades in synthetic seawater at 23 and 2 ºC, 
obtained from the polarization curves with no sliding and under sliding conditions 

 No Sliding  Sliding 

 R4 R5  R4 R5 

 23 ºC 2 ºC 23 ºC 2 ºC  23 ºC 2 ºC 23 ºC 2 ºC 

Ecorr (mV) -680 -624 -668 -611  -535 -494 -497 -459 

icorr (µA/cm2) 9.40 2.58 4.95 2.44  31.47 9.66 13.50 8.14 

The curves presented in dashed lines in Fig. 5.2.2 correspond to the tests without sliding 

at both temperatures. The results obtained at 23 ºC show that the steels present a great 

activation stretch, with no passive plateau. The current increases rapidly for small 

potential variations above the corrosion potential, indicating that the steels are very 

active in seawater and corrode with high corrosion rates. At 2 ºC, the polarization curves 

are anodically displaced with respect to the ones at 23 ºC. Furthermore, the activation 

stretch is less pronounced in the curves at 2 ºC, and the anodic currents registered are 

considerably smaller, indicating that the corrosion kinetics of the steels at low 

temperature is slower.    

The polarization curves obtained under sliding conditions are presented in straight lines 

in Fig. 5.2.2. In these tests too, the curves of both steels at 2 ºC are anodically displaced 

with reference to those at 23 ºC. The curve corresponding to the steel grade R4 at 2 ºC 

and the steel grade R5 at 23 ºC are almost superimposed. The difference in the anodic 
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currents registered due to temperature is not as pronounced as in the tests performed 

without sliding, which indicates that the corrosion kinetics of the steel is less influenced 

by temperature when wear and corrosion are acting simultaneously. 

 
Fig. 5.2.2 Polarization curves of the R4 and R5 steel grades in absence of sliding and under sliding, at 23 

ºC and 2 ºC 

Sliding has been found to modify the electrochemical behavior of both steels. When 

comparing all the polarization curves obtained at 23 ºC, the activation stretch in the 

anodic region is noticeably reduced in the tests performed with sliding. When the 

samples are subjected to wear, a difference of an order of magnitude is observed 

between the anodic currents in the range from -100 to 400 mV. At 2 ºC, this difference 

in the anodic currents is not so pronounced, being less than 100 mA in the same potential 

ranges. However, there is an increase in the corrosion currents registered in the tests 

performed with sliding at both temperatures (Table 5.2.1).  

The dissimilarity in the current values observed in the absence of sliding at different 

temperatures confirms the slower corrosion rate at a lower temperature, as previously 

reported by several researchers [9,14-17]. The same trend is observed in the results with 

sliding, where the curves at low temperature are shifted towards more positive potential 

values. On the other hand, the displacement observed for the curves under sliding with 

reference to those in the absence of sliding at both temperatures, indicates that there is 

a difference in the corrosion kinetics of the worn and unworn areas. This is a 

consequence of the continuous mechanical action of the countermaterial above the 

surface of the steels, which alters the natural trend of corrosion dissolution in the contact 

area and seems to slow down the corrosion kinetics of the material in the track [13]. 

However, the higher corrosion currents registered under sliding conditions suggest that 

wear increases the corrosion rates of the steels. 

The surface of the samples was analyzed by means of optical microscopy.  The optical 

micrographs of the samples of the steel grade R4 tested with and without sliding at 23 

and 2 ºC are presented in Fig. 5.2.3. The micrographs of the R5 steel were very similar 

to those of the R4 steel showed in Fig. 5.2.3 and, thus, are not presented in the paper. 

The micrographs revealed the surface of the steels to be covered by generalized 

corrosion products, and some localized corrosion in the form of pits is also observed in 

all the specimens. In the samples tested under sliding conditions, corrosion products can 

be clearly observed in the wear tracks. The unworn surface of the samples tested under 

sliding at 23 ºC seems to be more degraded in comparison with those tested at 2 ºC.  
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Fig. 5.2.3 Optical micrographs of the R4 steel grade (a) under no sliding condition at 23 ºC, (b) under no 

sliding condition at 2 ºC, (c) under sliding condition at 23 ºC, and (d) under sliding condition at 2 ºC 

5.2.3.2 Tribocorrosion tests 

Fig. 5.2.4a depicts the evolution of the open circuit potential (OCP) during the first hour 

of immersion in synthetic seawater of the two steels at 23 and 2 ºC. There is an initial 

drop in potential observed in all the samples, followed by a stabilization after 2000 

seconds of immersion. This is the opposite response observed for passive materials, 

where the potential shifts towards nobler values as a consequence of the formation of 

the characteristic oxide layer in the surface [5,7,8,25,26]. The shift of potential towards 

negative values observed in these active steels, indicates the initiation of corrosion 

processes in the surface, which is exposed to the full oxygen concentration of the 

solution. This is known as phase 0 or activation control [4,28-30], during which a series 

of phenomena take place simultaneously, e.g., corrosion by activation control. In all the 

samples, corrosion was observed to start as localized in the forms of pits, which then 

spread leading to a surface covered by a homogeneous corrosion. The change in the 

slope of potential curve observed after several minutes of immersion is the consequence 

of the consumption of oxygen in the metal/electrolyte interface, which involves the further 

diffusion of oxygen from the bulk electrolyte to the corroding surface to give continuity to 

corrosion processes. This phase is known as phase 1 or concentration control [4,28-30], 

as the corrosion rate depends on the supply of oxygen to the corroding surface and the 

governing factor is the oxygen concentration in the electrolyte. During this phase, the 

corrosion of the steel leads to the formation of a rust layer in its surface. Eventually, the 

potential stabilizes in phase 2 or non-linear diffusion control [4,28-30]. In this phase, the 

further corrosion of the steel involves the diffusion of oxygen through the rust layer, which 

hinders the access of oxygen. The stable potential values of the samples registered after 

the hour of immersion are presented Table 5.2.2.The potential drop during the first 

minutes of immersion is less pronounced in the tests at 2 ºC, and the potential values 

registered during the whole hour are nobler, which can be attributed to slower corrosion 

processes taking place at lower temperatures. As previously reported by several 

researchers [9,14,16,31-34], temperature has an influence on corrosion rate of metals 

primarily through its effect on factors which control the diffusion rate of oxygen. The 

increase in temperature leads to an increase in the diffusion coefficient of oxygen and a 
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decrease in the viscosity of the electrolyte, which entails faster oxygen diffusion to the 

corroding surface and thus, higher corrosion rates. 

 
Fig. 5.2.4 Evolution of the open circuit potential with time for the R4 and R5 steel grades at 23 ºC and 2 ºC 

during the first hour of immersion (a) and before, during and 10 min after sliding (b) 

The evolution of potential of both steels at the two temperatures registered during the 

sliding wear test of 4 minutes, and the stabilization time of 10 minutes after sliding is 

illustrated in Fig. 5.2.4b. Before the wear test, the potential remains stable, but a shift of 

potential is observed towards nobler values when the alumina ball comes into contact 

with the sample surface and sliding begins. In the case of passive materials, it has been 

widely observed that sliding results in a change of potential to more negative values as 

a consequence of the partial or total removal of the passive layer, and the subsequent 

exposure of corrodible fresh material to the electrolyte [5,7,8,25,26]. Active materials 

such as the R4 and R5 steels, however, do not grow such a protective oxide layer. It is 

well known that the OCP measurement is a mixed lecture of potential resulting from the 

different potentials of the anodic and cathodic regions [8,25,26]. Therefore, the shift of 

potential to more positive values observed in the steels when sliding is applied, suggests 

that the wear tracks generated, with different potential value than that of the unworn 

surfaces, possess a nobler potential. This is a consequence of the continuous action of 

the countermaterial in the worn surface modifying the natural trend of corrosion, due to 

both material removal and the plastic deformation under a normal load that exceeds the 

yield strength of the steels. Thus, sliding results in the formation of two electrochemically 

differentiated areas in the surface. A galvanic couple is established between the wear 

track and the uncrown surface, where the worn material with more noble potential acts 

as the cathode of the electrochemical reaction, and the unworn surface as the anode 

[13]. In other words, sliding results in a wear-accelerated corrosion of the unworn 

surface. The potential reached during sliding is more positive in the tests at low 

temperature, but the shift of potential is larger at 23 ºC. A decrease in potential value 

with sliding time can be observed in all the tests, which is more noticeable at 2 ºC, and 

especially in the R4 steel. This progressive change in potential can be attributed to both 

corrosion and structural transformation that are taking place in the tribological contact. 

The corrosion of the worn surface between successive events of the countermaterial 

strongly influences the potential lecture after several cycles of sliding. Furthermore, the 

normal load exceeding the yield strength of the steels (800 MPa and 950 MPa for the R4 

and R5 steel grades, respectively [27]), results in a plastic deformation that affects the 

potential of the samples [25]. This plastic deformation undergone by the steels causes a 

work hardening of the material in the wear track [35,36,37], which increases with sliding 

time leading in turn to a gradual decrease in the potential. This work hardening was 

confirmed by the increase in hardness measured in the worn material with reference to 

the rest of the surface (Table 5.2.3). Once the wear test ends, there is an increase in 

potential to positive values, which is attributed to the contribution of the fresh material in 
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the worn area to the lecture. The continuous material removal taking place during sliding, 

leaves the worn surface free from corrosion and corrosion products. Therefore, at the 

end of sliding, the potential of the track material corresponds to the potential of a freshly 

immersed steel, which corrodes in contact with seawater, leading a decrease in potential 

and an eventual stabilization reaching values close to those registered before sliding. 

 
Fig. 5.2.5 Electrochemical impedance spectroscopy diagrams before and during the wear process for the 

R4 and R5 steels grades at 23 ºC and 2 ºC 

The impedance data obtained from the EIS measurements performed before and during 

sliding are displayed in Fig. 5.2.5 in the form of Nyquist and Bode diagrams. In all the 

cases, the one single capacitive semicircle at high frequencies present in the Nyquist 

plot indicates that there is a charge transfer reaction taking place at the electrolyte/steel 

interface, and hence, the corrosion reaction is controlled by the transfer process. The 

corrosion resistance of the steels is slightly higher at a lower temperature. The reduction 

in the Nyquist semicircle and the lowest values of log |Z| in the Bode diagram observed 

during sliding, indicate a decrease of the corrosion resistance of the steels during wear 

at both temperatures. However, this decrease is more noticeable at 23 ºC. 

 

Fig. 5.2.6 Equivalent circuit used in the fitting process of the experimental data of R4 and R5 steel grades 
before and during sliding at 23 ºC and 2 ºC 

The experimental data was analyzed with the Autolab FRA version 4.9 software and 

fitted to the Randles equivalent circuit of Fig. 5.2.6.  Electrical equivalent circuits are 

widely used to describe the electrochemical behavior of the studied systems. In this 

circuit, Rs represents the resistance of the electrolyte between the reference and the 

working electrodes, and Rct corresponds to the charge transfer resistance or the 

polarization resistance, in the case of these uncoated steels. The Constant Phase 
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Element (CPE) represents the double layer capacitance at the electrolyte/steel interface. 

Constant phase elements are used for replacing the simple capacitances for a better fit 

quality of the experimental data. The impedance of a CPE element can be represented 

by the following expression as: 𝑍𝐶𝑃𝐸 = 1 𝑌0⁄ (𝑖𝜔)𝑛, where ω is the angular frequency, and 

i the imaginary number. Y0 and n (n≤1) are the admittance and the empirical exponent 

of the CPE, respectively. Whether the surface acts as an ideal capacitor n is equal to 

unity and Y0 is identical to the double layer capacitance. Table 5.2.2 summarizes the 

parameters obtained from the fitting process of the impedance data recorded before and 

during sliding.  

Table 5.2.2 OCP values registered and equivalent circuit parameters obtained from the Impedance data 
before and during sliding in synthetic seawater at 23 ºC and 2 ºC 

Steel grade Temp. Condition 
OCP 

(mV*) 

Rs 

(Ω cm2) 

CPE-Y0 

(F cm-2 s-n)  
CPE-n 

Rct 

(Ω cm2) 

R4 

23 ºC 
Before sliding -661 30.05 265.95 0.785 1176.02 

During sliding -525 31.27 661.81 0.627 100.84 

2 ºC 
Before sliding -572 16.19 239.80 0.805 1371.60 

During sliding -504 28.47 405.12 0.668 679.96 

R5 

23 ºC 
Before sliding -650 18.67 292.68 0.780 1196.34 

During sliding -506 20.46 389.88 0.719 95.25 

2 ºC 
Before sliding -534 51.16 219.61 0.807 1384.30 

During sliding -445 51.46 377.32 0.660 656.84 

V* Volts are referred to Ag/AgCl reference electrode 

 
Fig. 5.2.7 Reduction of the corrosion resistance of the R4 and R5 steel grades tested at 23 and 2 ºC due to 

sliding 

Before sliding, the corrosion resistance of the steels is close to 1200 Ω cm2 and 1380 Ω 

cm2 at 23 ºC and 2 ºC, respectively. The difference in the resistance at 23 and 2 ºC can 

be attributed to the effect of temperature in the diffusivity of oxygen in the electrolyte, 

which is more favored at higher temperatures, thus leading to slightly smaller corrosion 

resistance. The corrosion resistance of the steels is considerably affected by sliding, 

especially at 23 ºC. As observed in Fig. 5.2.7, the corrosion resistance of the steels at 

23 ºC decreases in a 92%, reaching values close to 100 Ω cm2 during sliding, whereas 

at 2 ºC the reduction is significantly smaller, of a 52%, with values close to 660 Ω cm2. 

Hence, sliding has a greater effect in the reduction of corrosion resistance at higher 

temperature, as a consequence of the faster corrosion processes taking place in the 

unworn surface at 23 ºC. Analyzing the CPE element in Table 5.2.2, it can be noticed 

that Y0 increases during sliding, due to the increase in the surface roughness of the 

samples, due to the corrosion processes taking place [38].  
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Fig. 5.2.8 depicts the evolution of the coefficient of friction (COF) with time, for the sliding 

wear test of 11400 cycles (76 min), and coefficient values are given Table 5.2.4. 

 
Fig. 5.2.8 Evolution of the COF during the wear processes of 76 min for the R4 and R5 steel grades in 

synthetic seawater at 23 ºC and 2 ºC. 
 

Table 5.2.3 Mean hardness values obtained inside and outside the wear track, and mean roughness of the 
surface of the samples before and after the tests for both steel grades at 23 ºC and 2 ºC 

Steel 

grade 
Temperature 

Hardness (HV1)  Roughness (µm) 

Wear track Outside Increase (%)  Initial final 

R4 
23 ºC 264.00±4.00 258.33±3.51 2.27  0.017±0.002 0.241±0.042 

2 ºC 301.00±6.93 264.33±2.88 12.29  0.018±0.005 0.123±0.040 

R5 
23 ºC 326.33±4.04 322.00±2.64 1.33  0.016±0.004 0.239±0.034 

2 ºC 338.00±6.25 319.00±6.08 5.62  0.018±0.003 0.125±0.036 

In all the samples, the COF was observed to increase with sliding time, as a 

consequence of the superficial modifications produced by sliding. The countermaterial 

continuously removes the oxides that are formed in the contact, leading to a change in 

the wear track morphology and size affecting in this way the contact pressure during the 

sliding. The higher coefficients of friction were registered for the steels at 23 ºC. This can 

be attributed to several factors: the lower hardness of the material in the wear tack, the 

higher amount of corrosion products in the contact, and the lower viscosity of seawater 

at 23 ºC. On the one hand, the plastic deformation of the material in the track under the 

applied load that exceeds the yield strength of the steels, leads to an increase in 

hardness of the 12.29 % (R4) and 5.6 % (R5) at 2 ºC, respectively; and a smaller increase 

of the 2.27 % (R4) and 1.32 % (R5) at 23 ºC (Table 5.2.3). Thus, the lower hardness of 

the steels at 23 ºC makes material detachment easier, leading to higher particle 

adherence in the contact and, in turn, to higher coefficients of friction [39]. On the other 

hand, the greater particle detachment can lead to larger amount of corrosion products 

(ferrous oxides) present in the junction, leading again to higher coefficients. The higher 

amount of corrosion products in the track were confirmed in the microscopic analyses of 

the samples (Fig. 5.2.9 and Fig. 5.2.10). Finally, temperature affects the viscosity of 

seawater, which according to literature is of 1.783 x10-3 Pa.s at 2 ºC and 1.004 x10-3 

Pa.s at 23 ºC [40-43]. Therefore, the lower viscosity of the electrolyte at 23 ºC entails a 

poorer lubricating ability of seawater and, thus, higher coefficients of friction at that 

temperature [44].    
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Table 5.2.4 Mean COF values obtained from the sliding test of 76 min, total material loss (Vtot), material loss 
due to tribocorrosion in the wear track (Vtr) and material loss due to corrosion in the unworn surface (Vcorr) 
for both steel grades at 23 ºC and 2 ºC 

Steel grade Temperature Mean COF Vtot (x10-2mm3) Vtr (x10-2mm3) Vcorr (x10-2mm3) 

R4 
23 ºC 0.533±0.009 23.03±0.76 14.39±0.45 8.64±0.53 

2 ºC 0.483±0.009 13.96±0.55 11.52±0.02 2.44±0.05 

R5 
23 ºC 0.560±0.010 17.27±0.55 12.17±0.06 5.10±0.05 

2 ºC 0.464±0.012 13.48±0.17 11.44±0.31 2.03±0.19 

5.2.3.3 Superficial state of the samples after tribocorrosion test 

The optical micrographs of the worn surfaces of the steels at 23 and 2 ºC are presented 

in Fig. 5.2.9 and Fig. 5.2.10, respectively. In all the samples, the unworn area is uniformly 

corroded. However, the worn surfaces present some differences depending on the test 

temperature. The wear tracks of the steels tested at 23 ºC (Fig. 5.2.9) are covered by 

large-shaped corrosion products, whereas those tested at 2 ºC (Fig. 5.2.10) are almost 

free from corrosion. In all the cases, abrasion lines parallel to sliding motion are also 

visible in the corrosion-free areas. The wear tracks of the steels at 2 ºC are narrower 

than those obtained at 23 ºC. 

 

  
Fig. 5.2.9 Optical micrographs of the samples after the tribocorrosion tests performed at 23 ºC: (a) R4 and 

(b) R5 steel grades 

 

  
Fig. 5.2.10 Optical micrographs of the samples after the tribocorrosion tests performed at 2 ºC: (a) R4 and 

(b) R5 steel grades 
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Fig. 5.2.11 SEM images and EDS analysis of the wear tracks in the samples tested at 23 ºC: (a) R4 steel 

grade, (b) R5 steel grades, and (c) EDS obtained from the R5 steel sample 

  

 
Fig. 5.2.12 SEM images and EDS analysis of the wear tracks in the samples tested at 2 ºC: (a) R4 steel 

grade, (b) R5 steel grades, and (c) EDS obtained from the R5 steel sample 

Fig. 5.2.11 and Fig. 5.2.12 show the SEM images and EDS results of the wear tracks of 

the specimens at 23 and 2 ºC, respectively. In the images of the samples tested at 23 

ºC (Fig. 5.2.11a and b), abrasion lines, corrosion products, and some localized corrosion 
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in the form of pits can be observed along the wear tracks. The R5 steel sample (Fig. 

5.2.11b) presents some whiter areas, which showed low oxygen content in the EDS 

analysis (Fig. 5.2.11c). Furthermore, the analysis of the wear track in the confocal 

microscope showed these areas to be hollows (Fig. 5.2.13). Therefore, they correspond 

to material detachment due to adhesion of the steel on the countermaterial. Some steel 

and corrosion products were observed in the alumina balls, which corroborated the 

former statement. No evidence of cracks and fatigue are observed in the SEM images. 

In the samples tested at lower temperature (Fig. 5.2.12a and b), the wear tracks are 

almost free from corrosion and abrasion grooves are visible. The darker zones in the 

tracks showed low oxygen content in the EDS analysis (Fig. 5.2.12c). Similarly to that 

observed in Fig. 5.2.13 for the R5 steel at 23 ºC, the surface analysis by confocal 

microscopy confirmed these areas to be caused by material detachment due to adhesive 

wear occurring in the track.  

 
Fig. 5.2.13 Surface topography of the wear track of the R5 steel rested at 23 ºC, showing the presence of 

hollows in the cross-section profile of the track, corresponding to material detachment during sliding 

 
Fig. 5.2.14 Cross section profiles across the wear tracks on the two steel grades tested at 23 ºC and 2 ºC 

The cross-section profiles of the wear tracks are depicted in Fig. 5.2.14. The biggest 

tracks were obtained in the R4 steel at 23 ºC, followed by the R5 steel sample tested at 

the same temperature. The wear tracks of both steels tested at 2 ºC are identical in size. 

The difference in the wear track size, which was considerably smaller at 2 ºC, can be 

attributed to the lower deformation and material detachment, due to the higher superficial 

hardness of the steels in the tribological contact at 2 ºC [39]. On the other hand, the 
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roughness in the unworn surface of the samples, which was mirror polished before the 

tests, increased during the test being comparable to that of the track, especially in the 

case of the samples at 23 ºC. The roughness of the samples unworn surface was 

measured after the test, and the mean values are compiled in Table 5.2.3. The increase 

in roughness confirms the high corrosion undergone by the steels during the test, in 

accordance with that observed in the optical micrographs. 

The protocol described in the UNE 112086 standard [24] allows quantifying the 

mechanical and electrochemical contributions to material loss in the wear track due to 

tribocorrosion process. In this procedure, the material loss due to corrosion (𝑊𝑐)  in the 

wear track is obtained by Faraday’s law: 

𝑊𝑐 = 𝑖𝑎𝑐𝑡. 𝐴𝑎𝑐𝑡.
𝑀

𝑛.𝐹.𝜌
𝑁. 𝑡𝑙𝑎𝑡    (5.2.II) 

With M the molecular weight, n the number of electrons involved in the anodic process, 

ρ the density, and F the Faraday constant (96500 C). N corresponds to the number of 

cycles, and tlat is the latency time of the sliding test. 𝐴𝑎𝑐𝑡  and 𝑖𝑎𝑐𝑡 are the area and the 

current density flowing in the wear track, i.e., the active area. The material loss due to 

mechanical wear in the wear track (𝑊𝑚) is then calculated from the following equation:   

𝑊𝑚 = 𝑊𝑡𝑟 − 𝑊𝑐       (5.2.III) 

where 𝑊𝑡𝑟 is the total material loss in the wear track, obtained by calculating the volume 

of the wear track. 

For the calculation of 𝑊𝑐 in Eq. 5.2.II, 𝑖𝑎𝑐𝑡 must be obtained by means of a set of 

equations as described elsewhere [8,19,20,23,24]. For this aim, the polarization 

resistance values obtained in the EIS measurements performed before and during sliding 

are employed. The basis of the calculations consists of considering the unworn surface 

of the tested sample to be in the same electrochemical state during the whole test. Since 

the oxide layer protects the material from corrosion, sliding is considered not to affect 

this area, that remains undamaged and unaltered during the whole tests. Then, the 

corrosion current in the wear track is obtained considering that the polarization resistance 

measured during sliding is the combination of two resistances, corresponding to the worn 

and unworn areas, where the resistance of the unworn surface is known from the 

impedance data obtained in tribocorrosion tests before sliding.  

In the case of active steels, such as the steels studied in this work, no protective passive 

film is formed on the surface, so the steels are continuously corroding during immersion. 

Furthermore, sliding has been observed to increase the corrosion of the unworn surface 

of the steel samples [13], so the electrochemical state of this area cannot be considered 

to remain unchanging during the whole test. Therefore, the approach specified in the 

standard is not applicable to the active steels studied in this work. 

In this case, the total material loss is the sum of material loss due to tribocorrosion in the 

worn area and the material loss due to corrosion in the unworn surface. In turn, the latter 

is derived from two components: pure corrosion (Vpc) and wear-accelerated corrosion 

(Vwac).  The total material loss in volume (Vtot) was obtained by weighting the samples 

before and after each test, and multiplying the results by the density of the steels. The 

wear track volume (Vtr) was quantified by calculating the wear track volume from the 

cross-section profiles obtained by profilometry, as explained in section 5.2.2.3. Finally, 

the material loss due to corrosion in the unworn area (Vcorr) was calculated by subtracting 

the wear track volume to the total material loss (Eq. 5.2.I). In order to estimate the wear-

accelerated corrosion of the steels in the unworn surface, additional corrosion tests were 
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performed to quantify the material loss due to pure corrosion (Vpc) in the absence of 

sliding. For this aim, the samples were immersed in synthetic seawater for the total 

duration of the tribocorrosion test, and Vpc was calculated by weighting the samples 

before and after the tests. These values were compared with the results from 

tribocorrosion tests, and the wear-accelerated corrosion (Vwac) component was 

calculated as the difference between Vcorr and Vpc. All the contributions to material loss 

obtained for both steel grades at 2 and 23 ºC are listed in Table 5.2.4, and the results 

are depicted in Fig. 5.2.15.  

 
Fig. 5.2.15 Total material loss (Vtot), material loss due to tribocorrosion in the wear track (Vtr) and material 
loss due to corrosion in the unworn surface (Vcorr), in volume. In the detailed image, the material loss due 

to pure corrosion (Vpc) and the wear-accelerated corrosion (Vwac) in the unworn surface. 

 
Fig. 5.2.16 Picture of the tested surface of the samples of R4 steel at 23 ºC (a) and 2 ºC (c) and the 

samples of R5 steel at 23 ºC (b) and 2 ºC (d) 

The larger total material loss corresponds to the R4 steel grade at 23 ºC, followed by the 

R5 steel grade at the same temperature. The material loss of both steels at 2 ºC is similar 

and considerably smaller than that obtained at 23 ºC. The principal cause of material 

loss in all the samples is tribocorrosion in the wear track, rather than corrosion in the 

unworn surface. Furthermore, considering the low amount of corrosion products 

observed in the wear tracks at 2 ºC, the main contribution to material loss in the tracks 

seems to be due to mechanical effects. The material loss due to corrosion in the unworn 

surface (Vcorr) is larger at 23 ºC for both steels, in accordance with that observed in the 

surface state of the tested samples in Fig. 5.2.16. The material loss due to corrosion is 

3.5 (R4) and 2.5 (R5) times higher at 23 ºC than at 2 ºC. The difference in the material 

loss due to corrosion in the unworn surface obtained in the tribocorrosion and the 

corrosion tests, confirms the wear-accelerated corrosion of the unworn surface during 
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sliding. In fact, Vcorr is triplicated (2 ºC) and quadruplicated (23 ºC) for both steels when 

wear is applied. Therefore, wear accelerates the corrosion in the unworn surface, 

especially at 23 ºC, due to a more favored oxygen diffusion from the bulk solution to the 

corroding surface at higher temperature.   

 Conclusions  

The objective of this work was to investigate the effect of temperature on the 

tribocorrosion behavior of the R4 and R5 steel grades, commonly used in offshore 

structural applications. For this aim, reciprocating tribocorrosion tests were performed in 

synthetic seawater at two electrolyte temperatures, under ball-on-disc configuration. 

Furthermore, the suitability of the test protocol developed for passive materials (UNE 

112086) has been evaluated to be used for active materials. With the results obtained 

from the tests, the following conclusions can be drawn: 

• The increase in the corrosion current observed in the polarization curves when 

sliding is taking place, suggests that wear promotes the corrosion of the steels.  

• Moreover, sliding results in the potential shift to nobler values, indicating that a 

galvanic coupling is established on the surface of the steels between the worn and 

unworn surfaces. The former possesses a nobler potential, leading to a wear-

accelerated corrosion of the unworn surface. 

• The corrosion resistance of the steels before sliding is slightly higher at 2 ºC. Sliding 

results in a decrease of corrosion resistance in all the cases, increasing the 

difference between the results at different temperatures, with values more than six 

times smaller at 23 ºC in comparison with those at 2 ºC.  

• The COF registered during tribocorrosion tests were higher for the steels at 23 ºC. 

The lower hardness of the material led to higher particle detachment and, in turn, to 

a greater amount of corrosion products remaining in the contact, which led to higher 

coefficients. Furthermore, the lower viscosity of seawater at 23 ºC also led to higher 

coefficient lectures, due to a poorer lubricating ability of the electrolyte.   

• In all the tests, the principal cause of material loss is tribocorrosion in the wear track. 

The material loss due to corrosion in the unworn surface is more than two times 

higher in the steels tested at 23 ºC. Furthermore, the corrosion of the unworn surface 

is accelerated by wear, being three times and four times higher during sliding at 2 

and 23 ºC, respectively.  

• Even if sliding accelerates the corrosion of the unworn area of the steels at both 

temperatures, the effect is more noticeable at 23 ºC, since the access of oxygen is 

more favored. Therefore, temperature has an influence on the tribocorrosion 

response of both steels, leading to higher material losses and lower corrosion 

resistance at a higher temperature. 

• Finally, the test procedure of the UNE 112086 standard designed for the assessment 

of tribocorrosion of passive materials, has been found to be suitable to evaluate the 

effect of wear in corrosion, and vice versa, in active materials. However, the 

procedure described in the standard to quantify the contribution of mechanical and 

electrochemical parameters to the material loss due to tribocorrosion in the wear 

track, is not appropriate for active materials, since the material loss, in this case, is 

the sum of three components: pure corrosion and wear-accelerated corrosion in the 

unworn surface, and tribocorrosion (wear+corrosion) in the wear tack. 
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ABSTRACT 

In this study, the tribocorrosion behavior of an AISI 316 stainless steel (passive) and a Low-

Alloyed steel (active) was compared, also evaluating the influence of agitation. Unidirectional ball-

on-disc tests were performed in synthetic seawater with the Zero Resistant Ammetry technique. 

The differences on the currents registered for both materials evinced the high dissolution rate of 

the active steel even in the absence of sliding when the AISI showed negligible electrochemical 

activity. The results showed little influence of the agitation for the passive material, but a 

considerable effect on the wear-accelerated corrosion in the unworn surface of the active steel.   

Keywords: Tribocorrosion; Active materials; Zero-Resistance Ammeter (ZRA); Wear-

accelerated corrosion; Seawater 

 Introduction 

Tribocorrosion can be defined as the irreversible transformation of materials resulting 

from the simultaneous action of mechanical loading and chemical/electrochemical 

interactions with the surrounding environment. It combines two major scientific areas: 

Tribology and Corrosion. Tribology comprises the study of friction, wear, and lubrication, 

whereas corrosion science is related to the chemical aspects of material degradation [1-

5]. Tribocorrosion involves a synergism between wear and corrosion, since the 

degradation in terms of material loss generated by the two processes acting 

simultaneously is larger than the sum of each of them acting separately [6-10]. On the 

one hand, corrosion can be accelerated by the removal of the passive layer by 

mechanical actions, which expose the bare material where active corrosion can take 

place. On the other hand, solid products of corrosion resulting from the material loss 

during wear can act as third body particles in the tribological contact. Those products 

can oxidize and form hard oxides that induce abrasion of the bare material, in which is 

known as the third-body effect [3,6,11-14].  

The interest on the study of tribocorrosion has increased over the last decades, due to 

the high impact of tribocorrosion on the daily life, encompassing several industrial sectors 

such as material processing, energy conversion, transportation, oil and gas exploitations, 

and medical and dental implants, among others [1,3-7,11]. Tribocorrosion of passive 

materials has been studied since the late 1970s, when several researchers evaluated 

abrasion-corrosion, erosion-corrosion or sliding-corrosion in different industrial 

application systems [1,15]. The earliest studies were focused on understanding the 

formation of a passive film and its behavior under wear-corrosion solicitations, for which 

acidic solutions were usually employed [11,16-18]. Over time, the studies were more 

focused on reproducing tribocorrosion systems on industrial applications in order to 

predict the useful life of components, using saline solutions as electrolytes [19-22]. With 

the increasing interest and impact of biomedicine over the last decades, a significant 

number of tribocorrosion studies in simulated body fluids have been performed for 
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biomedical alloys such as titanium or CoCrMo alloys [23-28]. These alloys are used in 

orthopedic and dental implants [6,29-31], which are subjected to both corrosion and wear 

as a result of the human daily activity.   

In short, tribocorrosion of passive materials such as stainless steels or titanium alloys 

has been widely studied during the last decades, under different mechanical and 

electrochemical conditions, in a wide range of corrosive electrolytes. However, little 

research has been done on the assessment of tribocorrosion of active materials. Unlike 

passive materials, active materials do not grow a protective oxide layer on their surface 

when in contact with an aggressive environment. On the contrary, active materials are 

subjected to progressive active dissolution. Low-alloyed steels, with low percentages of 

nickel, chromium, or molybdenum in their chemical composition are some examples. The 

rust layer formed on the surface of this kind of steels is somewhat porous with low 

adhesion bonds [32-36], so it does not provide an effective barrier against the penetration 

of electrolyte to the bare material surface, where corrosion proceeds unstoppably. As 

observed in previous works that dealt with the assessment of tribocorrosion of active 

materials [37-39], the material loss is a consequence not only of wear and corrosion 

processes taking place in the wear track, but also of pure corrosion on the unworn 

surface. The results showed a shift of potential towards more positive values during 

sliding, contrary to that observed in passive materials where the potential changes to 

more cathodic values due to the removal of the passive layer. In the case of active 

materials, the wear track was found to be more cathodic than the unworn surface, which 

led to a formation of a galvanic couple between worn and unworn areas promoting the 

corrosion of the unworn surface. 

In these works, the tribocorrosion performance of High-Strength Low-Alloyed (HSLA) 

steels used in the manufacturing of mooring lines and components in offshore 

applications was evaluated in synthetic seawater [37-39]. Low-alloyed steels are highly 

employed as structural materials, due to their high resistance, and relatively low cost 

compared to more corrosion resistant materials and alloys [40]. HSLA, for instance, 

reach yield strengths in the range of 460-960 MPa, with relatively low weight [41,42]. The 

corrosion rate of low-alloyed steels in seawater has been measured to be around 250 

microns per year [43]. Furthermore, the material loss is highly accelerated when the 

components are exposed to the combined action of wear and corrosion, which can lead 

to unpredicted premature failures with fatal consequences. Therefore, a closer 

understanding on the tribocorrosion degradation mechanism of active metals and alloys 

could provide better awareness of the use of these materials, with or without protective 

coatings, to enlarge their useful life in applications where passive materials are not 

suitable for use, i.e., higher costs and lower mechanical properties. 

A major challenge in the study of tribocorrosion to be addressed is adapting test 

procedures for passive materials to the assessment of tribocorrosion in active materials 

[44]. In this context, the present study deals with the further investigation on the 

tribocorrosion of HSLA steels in synthetic seawater. In previous works, different tests 

procedures were employed, i.e., ASMT G119 [45] standard to evaluate the wear and 

corrosion synergism [37], and the procedure described in the UNE 112086 [46] standard 

with which the influence of the electrolyte temperature was also evaluated [38]. In the 

present work, the test procedure employed consisted of using Electrochemical Noise 

(EN) analysis, to register both the potential and current responses before, during, and 

after wear tests. The tribocorrosion response of a HSLA steel is compared with that of a 

passive material, an AISI 316 stainless steel. Furthermore, the influence of the agitation 

of the electrolyte is evaluated and compared for the active and passive steels.  
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 Materials and methods 

5.3.2.1 Materials  

The present work compares the tribocorrosion behavior of a passive material and an 

active material. The passive material was an AISI 316 stainless steel. The active material 

was an R4 steel grade [47] commonly used in the manufacturing of offshore components. 

This is a High-Strength Low-Alloyed steel, with the chemical compositions of low and 

medium alloy steels (Cr, Ni, Mo, V, etc.) and heat treated to reach the desired mechanical 

properties.  

The test samples were discs of 24 mm in diameter and 7.9 mm thick. The surface of the 

specimens was mirror polished to low roughness values (Ra<0.05μm). After polishing 

the samples and prior to the tests, the discs were cleaned in an ultrasonic bath with ether 

and acetone, dried with compressed air, and stored in a desiccator to avoid 

contamination or corrosion. 

5.3.2.2 Potentiodynamic tests with and without sliding 

For the electrochemical corrosion tests, a three-electrode set-up was employed, with the 

test sample as working electrode, a platinum wire as counterelectrode, and a commercial 

Ag/AgCl (KCl 3M) as reference electrode (+207 mV/SHE). The electrodes were 

connected to an Autolab-Metrohm PGSTAT302N potentiostat. The corrosion behavior 

of the two materials was evaluated by means of Potentiodynamic Polarization (PDP) 

measurements in synthetic seawater with heavy metals (ASTM D1141) at room 

temperature (23±2 ºC) and aerated conditions. After the stabilization of the Open Circuit 

Potential (OCP) for an hour of immersion, the polarization curves were recorded in a 

potential range from -0.4 V to 1.6 V with respect to the open circuit potential (OCP vs. 

Ag/AgCl) of each sample. The scan rate employed was of 0.166 mV/s (ASTM G5). The 

samples were placed horizontally in the cell, which was filled with 150 ml of electrolyte. 

The exposed surface of the samples was of 2.31 cm2. 

 
Fig. 5.3.1 Schematics of tribocorrosion ball-on-disc experimental setup used in this work (left) and the 

setup configuration for potential and current noise registration using two asymmetrical electrodes 

The electrochemical cell was placed above the rotatory plate of a MicroTest MT/10/SCM 

tribometer, in order to perform the tests in rotating conditions with and without sliding. 

The experimental set-up is schematically depicted in Fig. 5.3.1a. This configuration 

allows the simultaneous control of both electrochemical and mechanical parameters 

during the tests. The cell and the ball holder are made of Teflon and nylon, respectively, 

in order to ensure the electrical isolation of the specimen from the metallic components 

of the tribometer. The samples were fixed in the electrochemical cell, which rotates 

ensuring the contact between the stationary counterbody and the specimen under 

controlled mechanical conditions, i.e., load, radius and rotation speed. The contact 
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conditions were calculated using the Hertzian Contact Theory [48], considering the actual 

contact pressure between links in real applications, as already reported in previous works 

[37-39]. The normal load was of 5 N, corresponding to an average Hertzian pressure of 

930 MPa with a contact radius of 50.5 µm. An alumina ball of 10 mm in diameter (G28) 

was used as the countermaterial. The ball described a wear track of 10 mm in diameter 

at a rotation speed of 50 and 100 rpm. 

In order to evaluate the influence of both agitation and wear, the tests were performed 

under different conditions: static cell, rotating cell at 50 rpm, rotating cell at 100 rpm, and 

tribocorrosion conditions under 5 N at 50 and 100 rpm. All the tests were triplicated in 

order to ensure the reproducibility of the results. 

5.3.2.3 Tribocorrosion tests  

The electrochemical technique employed in the tribocorrosion tests was the 

Electrochemical Noise (EN) analysis. The test configuration employed in the 

experiments is shown in Fig. 5.3.1b, where the working electrode (WE) and the 

counterelectrode (CE) were connected through a Zero Resistance Ammeter (ZRA). This 

configuration allows measuring the current whilst maintaining both the WE and CE at a 

negligible potential difference. A platinum wire of 1mm in diameter was used as the CE, 

and the test sample was connected as the WE. The reference electrode (RE) was a 

commercial Ag/AgCl (KCl 3M) electrode. Potential and current signals were recorded at 

a sampling rate of 1Hz. The potentiostat is equipped with an EDC modulus, that allowed 

the registration of current and potential variations with a resolution of 100 pA and 0.3 µV, 

respectively. The electrolyte used for the tests was synthetic seawater with heavy metals 

prepared in accordance with the ASTM D 1141. For each test, the cell was filled with 150 

ml of this solution. The experiments were carried out at room temperature (23±2 ºC) and 

aerated conditions, and the exposed area of the samples was of 2.31 cm2.  

The test consisted of monitoring both the potential and the current before, during and 

after wear process. The samples were immersed in the electrolyte, and the potential was 

stabilized for an hour, after which a sliding wear test was performed under the above-

mentioned mechanical conditions, i.e., under 5 N and wear track radius of 5 mm. After 

the end of sliding, the samples were left in the electrolyte for 15 minutes to register the 

recovery of the samples after wear. At the end of the tests, the samples were removed 

from the cells, cleaned with ether and acetone in an ultrasonic bath, and dried with air. 

The tests were repeated for two rotation speeds, 50 and 100 rpm, under two conditions: 

the cells rotated just during sliding (still), and the cell was rotating during the whole test 

(rotating). The duration of sliding for both rotation speeds was of 40 minutes, so the total 

number of cycles was 2000 for the tests at 50 rpm and 4000 for the one at 100rpm. Three 

replicates were tested for each material and test conditions to ensure the repeatability of 

the results. 

5.3.2.4 Morphology of the worn surface and material loss quantification 

After the tribocorrosion tests, the surface morphology of all the tested specimens was 

examined by optical microscopy and scanning electron microscopy (FE-SEM / EDS), in 

order to identify the wear mechanism. The cross-section profile of the wear tracks was 

obtained with a confocal microscope (Sensofar S Neox). The contact area of the alumina 

ball was also examined by optical microscopy (Olympus GX71).  

The material loss due to tribocorrosion in the wear track (Vtr) was determined by 

calculating the volume of the wear tracks from the cross-section profiles obtained by 

confocal microscopy. Average width and depth values of the wear tracks were obtained 
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from different locations along the wear track length. The cross-sectional area of the track 

was estimated by approaching its shape with a semi-elliptical geometry. Finally, the 

volume of material loss was calculated by multiplying the cross-sectional area by the 

circumferential length of the wear track. The material loss volume due to electrochemical 

corrosion in the unworn surface (Vcorr) was obtained by subtracting the volume due to 

tribocorrosion in the wear track (Vtr) to the total material loss (Vtot) as follows: 

𝑉𝑐𝑜𝑟𝑟 = 𝑉𝑡𝑜𝑡 − 𝑉𝑡𝑟     (5.3.I)  

The total material loss in volume (Vtot), was obtained by weighting the test samples before 

and after each test and multiplying this value by the density of the steels. The density of 

the steels was calculated by means of a precision balance with bellow weighting 

capability. All the samples were weighted in a Mettler Toledo XP205 balance with an 

accuracy of 0.01 mg.  

 Results and discussion 

5.3.3.1 Polarization curves with and without sliding 

The polarization curves were obtained under corrosion conditions (no sliding) and 

tribocorrosion conditions (sliding) at different rotation velocities.  The curves under 

tribocorrosion conditions were measured under 5 N of applied load, while the rest of the 

tests were performed without any load. All the curves are presented in Fig. 5.3.2, 

separated for each steel type. The electrochemical data obtained from the curves by 

standard Tafel extrapolation are collected in Table 5.3.1. 

 
Fig. 5.3.2 Potentiodynamic polarization curves obtained for the AISI 316 stainless steel and R4 steel grade 
in synthetic seawater under different conditions: no rotation, rotation at 50 and 100 rpm, and tribocorrosion 

at 50 and 100 rpm under 5N 

The curves obtained for the AISI 316 stainless steel possess the typical shape for a 

passive material, showing a passive plateau and a transpassive domain. The former is 

observed above the corrosion potential, where the potential remains almost constant for 

a current range, as a consequence of the formation of a protective oxide layer of few 

nanometers that protects the bare material from dissolution. The transpassive domain is 

presented after the plateau when the current increases sharply for small potential 

variations. The breakdown potential, also named pitting potential, indicates the 

breakdown of the passive film, which starts to dissolve in the electrolyte due to the 

occurrence of stable pitting [29,49,50]. The breakdown of the passive film by pitting 

attack is a typical failure type of stainless steels in seawater, as a consequence of the 

presence of chloride ions in the solution that can penetrate through the surface film due 

to their small size [51]. It can be seen that the curve is shifted to more cathodic potentials 

when changing the test conditions. In the case of the rotating cell without sliding, the 

zero-current potential or corrosion potential (Ecorr) moved from -0.216 V to around -0.234 
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V, and the corrosion current (icorr) increased. This difference in Ecorr and icorr for the static 

and rotating conditions might be attributed to a slower passivation of the stainless steel 

due to the agitation of the electrolyte. However, above 0.100 V, the anodic currents in 

the passive plateau are similar in both cases. The two curves obtained with the cell 

rotating at 50 and 100 rpm are superimposed, indicating that there is a small influence 

of agitation speed on the corrosion of the steel. On the other hand, the curves obtained 

under tribocorrosion conditions are considerably displaced to lower potentials and higher 

corrosion currents. The higher shift corresponds to the higher rotation speed. icorr 

increased in an order of magnitude for the test at 50 rpm, and in two orders of magnitude 

at 100 rpm. This increase can be attributed to the depassivation of the material in the 

wear track, which is exposed to the electrolyte were corrosion processes can take place. 

In all the curves, fluctuations can be observed below and above the pitting potential (Epit). 

These have been ascribed to metastable pitting activity [52-54], as a consequence of 

successive passive film breakdown and recovery events. With regard to the pitting 

potential of the alloy, little variation can be observed in the curves at different conditions. 

In all the cases, the Epit was close to 0.300 V, indicating that the electrolyte agitation or 

the action of wear does not promote the breakdown of the passive layer present in the 

alloy.  

Table 5.3.1 Electrochemical data obtained from the potentiodynamic curve by standard Tafel extrapolation 

Material Condition 
icorr 

(μA/cm2) 

Ecorr 

(V vs Ag/AgCl) 

Epit 

(V vs Ag/AgCl) 

Rp 

(kΩ cm2) 

vcorr 

(mm/yr) 

AISI 316 

No rotation 0.12 -0.216 0.295 159.95 0.001 

Rotation 
50 rpm 0.19 -0.234 0.316 81.26 0.002 

100 rpm 0.20 -0.236 0.305 80.27 0.002 

Sliding 
50 rpm 9.70 -0.278 0.281 2.18 0.111 

100 rpm 12.73 -0.277 0.297 2.09 0.146 

R4 

No rotation 18.52 -0.660 - 1.89 0.242 

Rotation 
50 rpm 37.13 -0.562 - 0.29 0.427 

100 rpm 71.44 -0.528 - 0.27 0.821 

Sliding 
50 rpm 86.93 -0.556 - 0.22 1.101 

100 rpm 94.80 -0.515 - 0.18 1.114 

On the curve of the R4 steel grade under no rotation conditions, a great activation stretch 

is observed in the anodic branch. Above the corrosion potential, the current increases 

several orders of magnitude for small potential variations. Furthermore, no passive 

region is observed. This is a typical response of active materials undergoing high rate 

corrosion processes, i.e., active dissolution [55]. The curves obtained under rotation and 

tribocorrosion conditions present similar shape, but they are shifted towards more 

positive potentials. In this case, the curves performed at the same rotation speed are 

almost superimposed. Ecorr is shifted from -0.660 V in the static test, to around -0.560 V 

at 50 rpm and around -0.520 V at 100 rpm. The curves obtained under tribocorrosion 

conditions are just slightly shifted with respect to those in the rotating cells without sliding. 

On the other hand, icorr increases with sliding speed, but also when wear is applied. The 

increase of icorr during tribocorrosion process is attributed to the modifications taking 

place on the wear track, which natural trend of corrosion dissolution is impeded by 

sliding. The wear track has been found to have more positive potential than the unworn 

area, leading to wear-accelerated corrosion of the latter [37,38]. Therefore, the results 

suggest that the effect of agitation is the main contributor to the acceleration of corrosion 

of the R4 steel in synthetic seawater. However, the slight increase in the corrosion 

current leading to lower resistance (Rp) and higher corrosion rates (vcorr) indicates that 

there is also a wear-accelerated corrosion of the unworn surface during sliding.  
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5.3.3.2 Tribocorrosion tests 

Fig. 5.3.3 shows the continuous evolution of potential and current measured through the 

ZRA configuration during the first hour of immersion, the 40 minutes of sliding, and after 

sliding.   

 
Fig. 5.3.3 Evolution of the potential and current before, during, and after sliding wear test registered by the 

EN technique through a ZRA for the AISI 316 stainless steel and R4 steel grade 

In the results obtained for the AISI 316 stainless steel, during the first hour of immersion 

the potential fluctuates around 0.01 V. The surface of the steel passivates rapidly in 

contact with seawater, increasing to reach 0.01 V. The potential fluctuations observed 

during the first hour can be related to the formation of metastable pits, with successive 

passive layer breakdown and recovery events. In all the test conditions, the currents 

registered during this period are around 0.2 µA/cm2. These small values close to 0 

indicate low electrochemical activity on the surface of the steel, just that related to the 

formation of the metastable pits. Immediately after the steel is submerged in seawater, 

the surface reacts to form the passive layer, protecting the bare material and impeding 

its further reaction with the electrolyte resulting in low currents. Once the ball comes into 

contact with the surface and sliding begins, a sharp drop in the potential towards negative 

values and an increase in the current is observed. This is the consequence of the 

damage generated in the passive film, which is removed from the tribological contact, 

exposing the bare material to the electrolyte [1,3-5,9,21,56-58]. The potential lecture is 

a mixed potential reflecting the state of the unworn and worn areas. The activation of the 

worn during sliding leads to a galvanic coupling formation between the worn and unworn 

surface [1,7,59,60]. The active area is then subjected to local dissolution, and since the 

potential in this region is more negative, the mixed potential lecture shifts towards 

negative values. Little difference is observed in the potential of the samples tested at 

different conditions. In all the cases, the potential during sliding is close to -0.33 V and 

remains practically constant around that value during the whole test. Similarly, the 

increase in the electrochemical activity due to the removal of the passive layer and the 

dissolution taking place in the worn surface leads to an increase in the registered current. 

The shift in current was found to be larger for the tests at 100 rpm. At 50 rpm, the current 

was slightly higher for the sample that rotated during the whole test, whereas at 100 rpm 

it corresponded to the current in the sample that just rotated during sliding. The more 

considerable increase in the current in the tests at 100 rpm can be attributed to the 

successive passes of the countermaterial at a higher frequency, with lower time for 

partial repassivation to take place, maintaining the worn surface in a more active state. 
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At the end of sliding, the potential increases again, recovering values close to those 

before sliding. The regeneration of the passive film after sliding is known as 

repassivation. As the surface repassivates the current decreases to reach values close 

to 0. 

In the case of the R4 steel grade, the shape of the potential evolution is different for that 

of the stainless steel, being almost the opposite response. In the samples that just 

rotated during sliding, the potential decreases during the first hour of immersion as a 

consequence of the initiation of corrosion processes on the steel surface. On the first 

stage in which the potential decreases sharply, known as phase 0 or activation control, 

the surface is exposed to the full oxygen concentration of the solution [61-64]. After 

several minutes, the oxygen on the electrolyte/metal interface is consumed, and the 

further diffusion of oxygen to the corroding surface is hindered, leading to a change in 

the slope of potential in what is known as phase 1 or concentration control [61-64]. At 

this stage, the reaction rate depends on the oxygen supply to the corroding surface, and 

the governing factor is the oxygen concentration in the electrolyte. A thin corrosion 

product layer is formed on the surface of the samples, and the potential eventually 

stabilizes. The common corrosion product forming the rust layer on HSLA steels in 

seawater has been reported to be composed mainly of iron oxyhydroxide (FeOOH) 

compound [32-35]. This can be present in different structures, such as goethite (α-

FeO(OH)), lepidocrocite (γ-FeO(OH)), or monohydrated (Fe(OH)3). Magnetite has also 

been found under high iron ion and low oxygen concentrations [36,65]. Even if the oxide 

layer formed in HSLA steels composed of these oxyhydroxides is porous and loose [32-

35], its presence slows down the corrosion rate of the steel, strongly limiting the Fe3+ iron 

transport from the steel to water, and the oxygen transport from the water to the steel 

[62-64]. This is known as phase 2 or non-linear diffusion control [61-64], where the 

corrosion of the steel involves the diffusion of oxygen through the rust layer. The current 

registered during this first hour of immersion follows a similar trend, showing an initial 

sharp decrease from 33 µA/cm2 to 14 µA/cm2 during the first 10 minutes of sliding. 

Afterward, the current remains fluctuating around this value, slowly decreasing to 11 

µA/cm2 before sliding. This indicates the electrochemical activity on the surface of the 

steel is slowly reduced as the rust layer is formed on the surface, but not wholly impeded. 

During sliding, the potential increases to more positive values, as observed in previous 

works [37,38], showing the opposite response of that in a passive material like the AISI 

316 previously explained. This shift has been attributed to the more positive potential of 

the material on the worn surface, which is free from rust as it is removed by the 

countermaterial during sliding [37,38]. The increase in the current lecture during sliding 

confirms the activation of the surface and the occurrence of corrosion reactions of higher 

rate. In this case, the galvanic coupling formed between the worn and unworn surfaces 

lead to the wear-acceleration of corrosion of the latter, which constitutes the active area 

with more negative potential [37,38]. The current increase during sliding is more 

substantial for the test performed at higher rotation speed, suggesting a more 

pronounced wear-acceleration corrosion caused by the higher frequency between 

successive contacts with less time for the worn material to recover. At the end of sliding, 

the worn surface reacts with the electrolyte leading to potential and current values close 

to those before sliding, with a decreasing trend similar to that at the beginning of 

immersion.  

In the tests performed for the R4 steel in the rotating cell, the potential evolution differs 

from that in the static conditions. The initial trend of potential decrease towards more 

negative values is not so pronounced. This can be ascribed to the continuous rotation of 

the cell impeding the settlement of corrosion products on the surface of the samples and 
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pushing them away by centrifugal forces. Therefore, the diffusion of oxygen to the 

corroding surface is not slowed by the rust layer, but it is further facilitated by the 

continuous electrolyte agitation. This leads to a lower decrease on the potential and, in 

turn, to larger corrosion currents evincing higher electrochemical activity on these 

samples. During sliding, the potential shows a small shift to slightly more negative values, 

whereas the current increases. The current increase also reflects an acceleration of 

corrosion during sliding. Furthermore, the larger currents registered for the samples that 

rotated during the whole test evince higher corrosion rate of the steel during sliding in 

these samples. This might be related to lower oxides deposited in both the worn and 

unworn surfaces, which might somehow hinder the access of oxygen in the samples that 

just rotated during sliding. At the end of sliding, the potential remains in similar values 

and the current shows a slight increase with time until the end of the test. The current 

values are slightly higher than those registered before the wear test. This can be a 

consequence of the reaction of the worn surface with electrolyte after wear, which 

removed the initially corroded surface during sliding, leaving fresh bulk material to the 

electrolyte, as well as to the further corrosion of the unworn surface. 

When comparing the results obtained for the passive and active steels, apart from the 

opposite tends on potential evolution previously explained, the more relevant difference 

between the two materials relies on the current evolution. As it can be noticed, the 

currents registered for the R4 steel are considerably higher than those of the AISI. Before 

sliding, the currents on the stainless steel are close to 0, reflecting negligible 

electrochemical activity after surface passivation. However, in the case of the R4, the 

current around 14 µA/cm2 evinces the reactivity of the steel in seawater despite the rust 

layer formed in the surface. On the other hand, even if there is a considerable increase 

of current during sliding in both materials, that of the R4 is larger, which is a consequence 

of the greater active area corresponding to the unworn surface constituting the anode, 

rather than the smaller wear track area as in the case of the AISI. After sliding the 

currents in the passive steel are close to zero, decreasing as the surface repassivates, 

whereas those in the active steel continue to be higher as the whole surface continues 

reacting with seawater. Finally, the agitation was found to have low influence on the AISI 

steel, whereas in the R4 increased the corrosion rate, by both impeding the deposition 

of corrosion products on the surface and the facilitating the uninterrupted supply of 

dissolved oxygen to the corroding surface.   

 
Fig. 5.3.4 Evolution of the coefficient of friction with sliding time for the AISI 316 stainless steel and R4 

steel grade in synthetic seawater 

The evolution of the coefficient of friction (COF) registered during tribocorrosion tests for 

both steels is presented in Fig. 5.3.4. The mean COF values are compiled in Table 5.3.2. 

The curves registered for the AISI 316 steel show a gradual increase of the COF after 
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an initial running-in period. This trend has been observed in stainless steels and was 

attributed to the removal of the passive layer and exposure of the fresh surface, 

increasing the coefficient [57]. The detached material can react with the surface to form 

oxides that remain in the contact increasing the COF by third body effect [12,13,14,66]. 

The curves corresponding to the rotating tests and the static test at 100 rpm increase 

with a similar trend, with close values after 1000 seconds of sliding. The coefficient in 

the static test at 50 rpm increases sharply during the running-in period, fluctuating around 

the same value after 200 seconds. The COF of the R4 steel were found to be similar in 

trend for each speed pair, regardless of the previous cell condition, i.e., static or rotating. 

The results obtained at 50 rpm seem to remain constant after the running-in period, 

increasing progressively after around 1000 s of sliding. On the other hand, the curves of 

the tests at 100 rpm increase from the beginning of the sliding test and fluctuate around 

0.5 after 800 seconds. Above 1900 seconds all the curves converge to values close to 

0.5. In this case, the increase in the COF is a consequence of the continuous 

modifications produced by sliding, removing the corrosion products from the wear track 

and changing the nature and morphology of the contact area [37,38]. In both materials, 

the fluctuations observed in all the curves are attributed to the formation and ejection of 

wear debris in the tribological contact [56]. Furthermore, as the sliding time increases, 

the contact area is enlarged decreasing the contact pressure [38,66].   

Table 5.3.2 Mean coefficient of friction values obtained during the tribocorrosion tests, total material loss 
(Vtot), material loss due to tribocorrosion in the wear track (Vtr), and material loss due to corrosion in the 
unworn surface (Vcorr) for both steel types 

Material Test type Mean COF Vtot (µm3) Vtr (µm3) Vcorr (µm3) 

AISI 316 

Still-50 0.42±0.03 10.8±0.2 10.7±0.1 0.1±0.0 

Still-100 0.38±0.01 14.6±0.2 14.2±0.2 0.4±0.0 

Rot-50 0.38±0.02 6.1±0.5 5.9±0.6 0.1±0.0 

Rot-100 0.37±0.01 11.4±0.1 11.1±0.2 0.3±0.0 

R4 

Still-50 0.43±0.01 59. 5±8.5 35.8±0.9 23.6±7.6 

Still-100 0.47±0.03 89.2±7.1 57.0±0.5 32.1±6.5 

Rot-50 0.46±0.03 48.8±2.9 36.9±1.1 11.9±1.8 

Rot-100 0.46±0.01 76.4±4.4 55.2±0.6 21.2±3.8 

From the values collected in Table 5.3.2, it can be noticed that the mean coefficients 

values of each material do not vary significantly for the different test conditions. In the 

case of the stainless steel, for instance, the COF is around 0.38 for the static tests at 100 

rpm and both rotating tests. The coefficient in the static test at 50 rpm is slightly higher, 

with values of 0.42. The results of the R4 steel are quite higher, being around 0.46 for 

the static tests and the rotating test at 100 rpm. The coefficient in the rotating test at 50 

rpm was lower, around 0.43. 

5.3.3.3 Surface analysis of the test surface after tribocorrosion tests 

At the end of the tests, the surface of the specimens was analyzed by SEM-EDS and 

confocal microscopic techniques. The SEM micrographs obtained in the AISI and R4 

steel under the different test conditions are presented in Fig. 5.3.5 and Fig. 5.3.6, 

respectively, and the optical micrographs of the alumina counterbody are shown in Fig. 

5.3.7. For both materials, the appearance of the alumina ball was similar for each rotation 

speed, independently of the cell condition before sliding, i.e., static or rotating. Thus, one 

representative image is presented in Fig. 5.3.7 for each material and rotation speed.  

All the samples of AISI 316 in Fig. 5.3.5 present similar appearance showing ploughing 

lines parallel to sliding direction and some corrosion in the form of pits inside the wear 

track. The EDS analysis performed in the worn surface revealed the presence of the 
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main alloying elements with low oxygen content (66.59wt% Fe, 16.78wt% Cr, 9.16wt% 

Ni, 2.47wt% Mo, 2.34 wt% C, 1.38wt%Mn, and 1.30wt% O). However, the oxygen 

concentration on the pits formed inside the wear track was considerable higher, showing 

also some elements such as chlorine, sodium or magnesium coming from the electrolyte 

composition, as a consequence of the reaction of the steel with the solution (52.8wt% O, 

26.8wt% Fe, 8.57wt% Cr, 3.59wt% C, 3.31wt% Si, 2.05wt% Ca, 1.49wt% Cl, 0.76wt% 

Na, and 0.63wt% Mg  ). Furthermore, the analysis made on some grooves of the track 

revealed the presence of corrosion products with high oxygen content (59.21wt% Fe, 

20.1wt% O, 8.23wt% Cr, 8.19wt% Ni, 2.21wt% C, 1.08wt% Mn, 0.75wt% Cl, and 

0.23wt% Na). This can be a consequence of the wear debris that react with the 

electrolyte to form oxides which are smeared and compacted in the tribological contact, 

filling the ploughs generated during sliding. The unworn surface, however, seems to be 

free from corrosion, with no pits or corrosion products. The EDS results indicated that 

this region is mainly composed by the main alloying elements with some oxygen, which 

corresponds to the passive oxide layer formed during the first hour of immersion in 

seawater (61.79wt% Fe, 15.27wt% Cr, 9.21wt% Ni, 7.69wt% O, 2.63wt% C, 2.16wt% 

Mo, 1.23wt% Mn). This is in coherence with that stated by noteworthy researchers, that 

the passivated surface, i.e., the unworn area, remains unaltered and protected by the 

passive layer whereas the wear track is subjected to both wear and corrosion due to the 

removal of the passive layer and the synergism taking place during tribocorrosion [1-10]. 

The surface analysis performed in the countermaterial after the tests showed the 

presence of adhered steel that was transferred from the surface of the sample during the 

tests (Fig. 5.3.7). In spite of the adhesion observed in the balls, no plough or delamination 

was detected in the tracks, suggesting that the material transferred to the countermaterial 

corresponded to the debris detached from the worn surface during sliding. Therefore, 

the tribocorrosion mechanism of the AISI 316 stainless steel in seawater is abrasive-

corrosive.  

 
Fig. 5.3.5 SEM images showing the topography of the wear tracks of the AISI stainless steel obtained in the 

tests with rotation just during sliding at (a) 50 and (b)100 rpm, and the rotating tests at (c) 50 and (d) 100 rpm 

In the case of the R4 steel samples, the images show more severe damage in both the 

wear track and unworn surface comparing with the AISI samples (Fig. 5.3.6). In all the 

samples, abrasion lines aligned in the direction of the countermaterial movement can be 

clearly observed. Corrosion pits and corrosion products are also present in both the worn 
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and unworn areas. The EDS analysis showed similar composition for the pits and 

corrosion products detected in the samples inside and outside the wear track. In all the 

cases, apart from a considerable amount of oxygen, certain elements such as chlorine 

and sodium coming from the reaction with the electrolyte were detected in the pits 

(51.84wt% Fe, 37.19wt% O, 5.66wt% C, 2.96wt% Cr, 1.43wt% S, 0.50wt% Cl, and 

0.41wt% Na) and the corrosion products (61.55wt% Fe, 27.46wt% O, 9.36wt% C, 

0.93wt% Cr, and 0.70wt% Cl). Furthermore, the analyses made on the abrasion grooves 

revealed the presence of corrosion products that might have been smeared during sliding 

(57.59wt% Fe, 56.72wt% O, 4.17wt% Cr, 3.73wt% C, 1.76wt% S, 0.84wt% Mn, and 

0.41wt% Cl). Finally, the EDS results revealed low oxygen concentration on the abraded 

regions inside the wear track (87.71wt% Fe, 5.45wt% C, 3.70wt% O, 1.18wt% Cr, 

0.85wt% Mn), whereas the worn surface showed higher oxygen content (74.58 wt% Fe, 

15.29wt% O, 7.11 wt% C, 1.34 wt% Cr, 0.95 0.75 wt% Mn). This evinces the degradation 

of the unworn surface by corrosion both before and during the wear test. The evaluation 

of the countermaterial surface revealed the transference of material during the test, but 

no adhesive detachment was observed in the tracks. No abrasion or wear was observed 

in the ball. Therefore, the tribocorrosion mechanism of the R4 steel in seawater was a 

combination of abrasion and corrosion.    

 
Fig. 5.3.6 SEM images showing the topography of the wear tracks of the R4 steel grade obtained in the tests 

with rotation just during sliding at (a) 50 and (b)100 rpm, and the rotating tests at (c) 50 and (d) 100 rpm 

The degradation of both the wear track and the unworn surface seem to increase with 

increasing rotation speed. Furthermore, the damage is higher when comparing the 

samples that rotated during the whole test with those that rotated just during sliding. This 

is evinced in the topography images of the test surfaces obtained by confocal microscope 

depicted in Fig. 5.3.8, where the roughness of both the worn and unworn surfaces 

increases with sliding speed. The test that rotated during the whole test show higher 

roughness. The increase in roughness in the samples that were mirror polished before 

the tests is associated with the degradation of the samples by corrosion reactions. 

Therefore, the higher roughness confirmed a larger material loss in the samples that 

rotated during the whole test, as previously suggested in the current registered before, 

during and after the wear tests. This increase in roughness is not observed in the AISI 

316 steel samples, where the surface remains smooth after all the tests. This is again 

related with the negligible corrosion taking place in the unworn protected surface.  
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Fig. 5.3.7 Optical micrographs of the alumina counterbody surface after the tests for the AISI 316 at (a) 50 

and (b) 100 rpm, and the R4 steel at (c) 50 and (d)100 rpm 

 
Fig. 5.3.8 Topography of the wear tracks generated in the AISI 316 and R4 steels, in the tests performed 

at different 

 
Fig. 5.3.9 Cross-section profiles of the wear tracks generated in the AISI 316 and R4 steels after the 

tribocorrosion tests 

The wear track size of all the samples can be compared at a glance in the images 

presented in Fig. 5.3.8. In both materials, the tracks generated during the tests at 50 rpm 

is smaller. It can also be noticed that the tracks of the stainless steel seem to be bigger 

than those of the R4 steel. This is confirmed by the cross-section profiles of the wear 

tracks obtained from the topographies presented in Fig. 5.3.9. The bigger tracks in the 

AISI 316 samples can be ascribed to the lower mechanical resistance of the alloyed steel 
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in comparison with the low-alloyed one. When comparing the size of the tracks for the 

AISI 316 steel at the different tests, the bigger tracks correspond to the tests performed 

at 100 rpm, as a result of the higher number of cycles, i.e., the double, with the 

subsequent higher material removal. In the case of the R4 steel, the same trend is 

observed, although the difference is not so evident.     

5.3.3.4 Material loss evaluation 

As previously commented, the material loss in passive materials corresponds to the wear 

track volume, as a result of both chemical and mechanical interactions in the tribological 

contact due to depassivation of the surface. On the other hand, the material loss in an 

active material is the sum of the tribocorrosion in worn area, by both corrosion and 

mechanical interplay, and the corrosion in the unworn surface. This, in turn, is derived 

from two components: pure corrosion and wear-accelerated corrosion. Therefore, the 

procedures employed in passive materials to quantify the contributions of wear and 

corrosion to the total material loss cannot be used for passive materials, as already 

explained in previous works [38,44].  

The material loss evaluation was made following the procedure employed in a previous 

study [38]. The total material loss (Vtot) was obtained by weighting the samples before 

and after each test and multiplying this value by the steels density. The material loss due 

to tribocorrosion (Vtr) was quantified by calculating the wear track volume from the cross-

section profiles, as explained in section 5.3.2.4. Finally, the material loss due to corrosion 

in the unworn area (Vcorr) was obtained by subtracting the wear track volume to the total 

material loss (Eq. 5.3.I). Even if the material loss evaluation of passive materials has 

been made differently [5,8,9], in this work, the same procedure has been employed for 

both steels in order to compare the results. The results are depicted in Fig. 5.3.10 and 

compiled in Table 5.3.2. 

 
Fig. 5.3.10 Total material loss (Vtot), material loss due to tribocorrosion on the wear track (Wtr), and 

material loss due to corrosion in the unworn surface (Vcorr) in volume 

The results obtained for the AISI 316 stainless steel showed that the larger Vtot 

corresponds to the tests performed at 100rpm. This is in coherence with the cross-

section profiles and topographies showing the greater wear tracks in these tests, with 

the double number of total sliding cycles. In fact, little difference can be noticed between 

Vtr and Vtot, which in turn leads to low Vcorr values. This is a consequence of the little 

corrosion reactions taking place in the passive unworn surface before and during sliding, 

as previously explained. Furthermore, no significant difference is observed in the values 

obtained for the tests in static and rotating conditions, confirming the low influence of 

agitation on the tribocorrosion response of the stainless steel. 



Chapter 5 

 

 
127 

In the case of the R4 steel, the samples tested at 100 rpm also presented the larger Vtot. 

Besides, at both rotation speeds, Vtot was larger for the samples that rotated during the 

whole test. The Vtr values obtained for the samples showed similar values for each 

rotation speed. Therefore, the differences in the material loss for the static and rotating 

samples are related to the material loss due to corrosion on the unworn surface (Vcorr), 

rather than tribocorrosion in the wear track. As it can be noticed, Vcorr is higher in the 

rotating cells and increases with increasing rotation speed in both cases. These results 

are in coherence with that observed in the evolution of the corrosion currents in Section 

5.3.3.2, that showed higher currents both before and during sliding as a consequence of 

higher corrosion rates on the steel in the rotating cells.  

All these results evinced the wear-acceleration corrosion of the unworn surface and 

revealed high sensitivity to the agitation of the electrolyte on the tribocorrosion 

degradation of active materials. 

 Conclusions 

This work aimed to compare the tribocorrosion behavior of a passive and an active 

material, i.e., an AISI 316 stainless steel and an R4 HSLA steel grade. Furthermore, the 

influence of the electrolyte agitation has been investigated for both materials. For this 

aim, unidirectional ball-on-disc tribocorrosion tests have been performed using the zero 

resistant ammetry (ZRA) electrochemical technique. The effect of agitation was 

evaluated by performing the tests at different rotation speeds, in the samples that rotated 

just during sliding and other that rotated during the whole test duration.  

From the results obtained in this work, the following conclusions can be drawn: 

• The potentiodynamic polarization tests showed little influence of agitation in the AISI 

316 stainless steel but a significant influence of wear, since the curves obtained 

under tribocorrosion conditions were cathodically displaced as a consequence of 

the depassivation of the worn surface increasing corrosion reactions in the 

tribological contact.  

• The results obtained for the R4 steel showed a high influence of agitation as a shift 

of the curves towards more positive potentials and higher currents, suggesting the 

increase in the corrosion rate by the electrolyte agitation. The curves under 

tribocorrosion conditions were even more displaced, indicating the acceleration of 

corrosion by wear process.  

• The tribocorrosion tests showed completely different results for both materials, 

showing negligible currents before sliding for the passive alloy and an increase 

during sliding as a result of the activation of the material in wear track. No significant 

influence of agitation was observed from the results of the AISI steel. 

• However, the results of the R4 steel showed considerable currents before sliding, 

indicating a high reactivity of the active steel, in which no passive layer is formed. 

The currents increased during sliding, as a consequence of the wear-accelerated 

corrosion of the unworn surface. The currents were observed to be higher in the 

rotating cells, suggesting a significant influence of the electrolyte agitation in the 

corrosion rate of the steel.   

• The coefficients of friction registered during the tribocorrosion test did not present 

significant differences between the different test conditions for either material. In 

both cases, the wear debris that reacted with the solution and remained in the 

tribological contact led to an increase of the coefficient with sliding time.  
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• The superficial analysis and the material loss evaluation showed a negligible 

influence of agitation on the stainless steel, but a considerable effect on the material 

loss in the unworn surface of the active steel, coherently with the current evolution 

registered during the tests, confirming the detrimental effect of agitation. 

• All these results evinced the wear-acceleration corrosion of the unworn surface and 

revealed high sensitivity to the agitation of the electrolyte on the tribocorrosion 

degradation of active materials. 
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ABSTRACT 

Coatings have been widely used in the corrosion protection of metallic materials in marine 

environments. In this work, the corrosion and tribocorrosion behavior of three potential coatings 

employed in offshore applications has been evaluated. The coatings studied were a Thermally 

Sprayed Carbide coating with an organic sealant (C1), a Thermally Sprayed Aluminum with an 

organic topcoat (C2), and an epoxydic organic coating reinforced with ceramic platelets (C3). 

Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization techniques have 

been employed to assess the corrosion performance of the coatings in synthetic seawater. 

Furthermore, unidirectional ball-on-disc tribocorrosion tests were performed to study the response 

of the coatings subjected to the simultaneous action of wear and corrosion. The coatings were 

found to provide to the steel substrate with enhanced corrosion resistance, both in the absence 

and during wear process, and to improve the tribological properties with lower coefficients of 

friction in seawater. The coating less affected by sliding in terms of corrosion resistance was the 

C2 coating, which also showed the lowest coefficient of friction. 

Keywords: Offshore; Corrosion; Tribocorrosion; Coatings; Seawater  

 Introduction 

Corrosion is one of the phenomena that worst affect the deterioration of materials in 

offshore applications. 30% of failures in ships and other marine equipment are the 

consequence of marine corrosion, with an annual cost of over EUR 1.5 trillionvi [1]. 

Marine corrosion is particularly aggressive, due to the high salt content and low electrical 

resistivity of seawater [2]. The chlorides present in seawater depassivate metal and 

alloys such as stainless steels, aluminum alloys or titanium alloys; even in the absence 

of oxygen. Chlorides are also present in marine atmospheres, which can lead to 

corrosion of non-submerged materials and structures [3]. The maximum corrosion rate 

of steel has been observed to be at a NaCl content of 3% in weight, which corresponds 

to the salinity of seawater (around 3.5wt%) [1,4]. There are other factors affecting 

corrosion in seawater and marine environments, e.g., temperature, dissolved oxygen 

concentration, pH, the presence of microorganisms, and so on [1,5-7]. Temperature and 

salinity of seawater, as well as dissolved oxygen concentration, vary depending on the 

geographical location. Furthermore, temperature and oxygen concentration also vary 

with water depth [1,5,6,8,9]. On the other hand, there are specific applications, e.g., 

mooring line systems, where the movement of seawater due to waves, wind and ocean 

currents, generates a relative movement between components that leads to a continuous 

                                                

vi Currency expressed in American trillion (1012) 
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wear in the contact [7,10,11]. When wear and corrosion take place simultaneously, the 

phenomenon is known as tribocorrosion [12-14].   

The most employed structural material is steel, usually mild or low-alloyed, which easily 

corrodes in the marine environment or submerged in seawater. These steels are 

relatively cost-effective, compared to other more corrosion resistant steels and alloys [1]. 

High-Strength Low-Alloyed (HSLA) steels, for instance, are widely used due to their high 

mechanical properties, with yield strengths in the range of 460-960 MPa, and relatively 

low weight [15,16]. The use of HSLA steels in offshore applications has increased from 

less than 10% to over 40% in less than a decade [17]. They are used in the fabrication 

of offshore structures such as jack-ups and legs, also in pipelines and tethering 

attachments for floating structures in tension leg platforms (TLPs), or mooring lines of 

semi-submersible structures, among others [15,18,19]. The corrosion rate of mild steel 

in seawater has been measured to be 250 microns per year [20,21]. This high dissolution 

rate involves elevate costs on maintenance and replacement of damaged surfaces, and 

what is worse, the risk of premature deterioration of infrastructures or components that 

can lead to catastrophic failures, even taking human lives in the worst-case scenario. 

In order to avoid or prevent such unpredictable failures, coatings have been successfully 

used to minimize corrosion losses in steel structures. Protective coatings selected for 

marine environment strongly depend on the exposure zone, i.e., considering whether the 

protected system will be subjected to the marine atmosphere (atmospheric zone), 

continuous immersion (immersed zone), or intermittent exposure to marine atmosphere 

and seawater (splash and tidal zones) [22]. Depending on the exposure zone, the 

coatings must provide the system with specific properties to assure infrastructures 

durability. 

The most widely employed corrosion-control solution for metallic materials in marine 

environments are organic coatings (250-300 µm thick), due to their high corrosion 

resistance [22,23]. However, the low wear resistance of these coatings is a drawback in 

specific applications. On the other hand, Thermally Sprayed Coatings (TSC) have 

recently been used in offshore applications [24,25]. For instance, Thermally Sprayed 

Aluminum (TSA) coatings with organic topcoat systems (250-300 µm thick) have widely 

been applied in submerged components [20,22,26], providing an effective service life of 

coated systems for 30 years in different exposure zones [26-28]. The aluminum layer 

deposited on top of the steel provides the substrate with an additional cathodic protection 

via the sacrificial anodic reaction of the aluminum. The NORSOK M-501 [29] standard 

recommends the use of an organic sealant on top of the sprayed aluminum to fill the 

pores and irregularities present in the coating and enhance the coating lifetime. When 

an additional wear resistance was required, Thermally Sprayed Carbide Coatings 

(TSCC) have also been used. This kind of coating protects the substrates against wear 

due to their high hardness, also providing the system with enhanced corrosion 

resistance. 

In this work, three commercial coatings currently used for the protection of submerged 

steel components in mooring line systems have been evaluated in terms of corrosion 

and wear-corrosion behavior. For this aim, electrochemical corrosion tests consisting of 

electrochemical impedance spectroscopy and potentiodynamic polarization 

measurements were performed in synthetic seawater. Furthermore, the wear-corrosion 

(tribocorrosion) behavior of the coatings was evaluated by performing unidirectional ball-

on-disc sliding tests in synthetic seawater, monitoring both electrochemical and 

tribological responses. The corrosion and tribocorrosion results of the coatings were 
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compared with the uncoated steel to confirm the actual improvements provided by the 

coatings. 

 Experimental procedure 

5.4.2.1 Materials and sample preparation  

In the present work, the corrosion and wear-corrosion behavior of three commercial 

coatings used in the protection of submerged components has been evaluated. The 

selected coatings are used in the protection of offshore mooring line components. The 

chain links and accessories that compose mooring lines are manufactured of High-

Strength Low-Alloy steels, which are classified into five grades depending on their 

ultimate strength: R3, R3S, R4, R4S and R5[30]. In this study, R4 steel grade samples 

were coated with the following systems: 

• Thermally Sprayed Carbide (WC-CrCo) with an organic sealant (C1) 

• Arc Thermally Sprayed Aluminum with an organic topcoat (C2) 

• Epoxy based organic coating reinforced with ceramic particles (C3) 

The coatings were applied by the client in the frame of an industrial project, and the 

information on the coatings preparation is confidential. The test samples were R4 steel 

grade panels of 30x40 mm2, which were coated after machining the plates from real 

chain components. For both corrosion and tribocorrosion tests, an exposed area of 2.31 

cm2 was created by using an insulating wax. The results of the coatings were compared 

with the un-coated steel samples, which were mirror polished (Ra<0.05 µm) before 

testing.  

5.4.2.2 Coatings characterization  

The roughness of the coatings was measured according to the DIN EN-ISO 4288:1998 

standard, in a Perthometer M2 (Mar GmbH) profilometer. The cross-section of the 

coatings was analyzed in an Olympus GX71 optical microscope, and the coating 

thickness was measured in accordance to the UNE-EN ISO 1463:2005 standard. The 

morphology of C1 and C2 metallic coatings was assessed by Field Emission Scanning 

Electron Microscope (FE-SEM) equipped with Energy Dispersive X-ray Spectrometer 

(EDS), from OXFORD INCA Synergy. The porosity degree was obtained from the SEM 

cross-sectional images by image analysis software (AnalySIS pro). Finally, the hardness 

of the three coatings was measured in an Akashi AVK-A tester, equipped with Vickers 

indentation equipment, following the UNE-EN ISO 6507-1:2006 standard. The 

measurements were performed with a Vickers diamond pyramid indenter, with an 

indentation time of 10 s, under a load of 1 Kg for C1 coating, and 100 g for C2 and C3 

coatings. 

5.4.2.3 Electrochemical corrosion tests 

The electrochemical corrosion tests were performed in a three-electrode cell, connected 

to an Autolab-Metrohm PGSTAT302N potentiostat, equipped with a FRA32M and EDC 

modules. A commercial Ag/AgCl (KCl 3M) and a platinum wire were used as the 

reference and counter electrodes. The test samples were connected as the working 

electrodes. The potential of the reference electrode is of 207 mV with respect to the 

Standard Hydrogen Electrode (SHE), and all the potentials in this work are referred to 

the Ag/AgCl electrode. The test solution was synthetic seawater with heavy metals 

prepared in accordance with the ASTM D 1141 standard. For each test, the cell was filled 

with 50 ml of this solution. The tests were performed at room temperature (23±2 ºC) and 

aerated conditions. The exposed surface of all the samples was circular and of 2.31 cm2. 
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The samples were horizontally placed in the corrosion cell. All the tests were triplicated 

to ensure the reproducibility of the results.  

The first series of electrochemical corrosion tests consisted of obtaining the polarization 

curve of the materials in synthetic seawater. The samples were immersed in synthetic 

seawater during 60 minutes for potential stabilization, during which the Open Circuit 

Potential (OCP) was recorded. Then, a potentiodynamic polarization measurement was 

carried out in the potential range from -400 mV to +1600 mV with respect to the open 

circuit potential (OCP vs. Ag/AgCl), at a sweep rate of 0.166 mV/s (ASTM G5). 

In the second series of experiments, new samples were immersed in the electrolyte for 

500 hours, and periodic Electrochemical Impedance Spectroscopy (EIS) measurements 

were performed to evaluate the evolution of coatings performance with immersion time. 

The impedance data was registered after 24, 168, 336 and 504 hours in synthetic 

seawater. The measurements were made under a sinusoidal perturbation of ±10 mV 

amplitude, at a frequency range from 10 kHz to 1 mHz, with 10 points per frequency 

decade. 

5.4.2.4 Tribocorrosion tests 

The tribocorrosion tests were performed in a unidirectional MicroTest MT/10/SCM 

tribometer under ball-on-disc configuration, as schematically shown in Fig. 5.4.1. The 

test samples were fixed in a three-electrode electrochemical cell, placed in the rotatory 

plate of the tribometer, and connected to an Autolab-Metrohm PGSTAT302N 

potentiostat, equipped with a FRA32M and EDC modules. This configuration allows the 

simultaneous control of both electrochemical and mechanical parameters during the 

tests.  

 
Fig. 5.4.1 Unidirectional tribocorrosion ball-on-disc experimental setup employed in this work 

A commercial Ag/AgCl (KCl 3M), a platinum wire, and the test samples were connected 

as the reference electrode, the counterelectrode, and the working electrode, 

respectively. The test solution was synthetic seawater with heavy metals prepared in 

accordance with the ASTM D 1141 standard. For each test, 150 ml of this solution was 

employed. 

In these tests, sliding represents the wear conditions between chain links and 

accessories with relative movement to one another. The contact conditions were 

calculated using the Hertzian Contact Theory [31], considering the real contact pressure 

between links in real applications, as already performed in a previous work [10]. The 

normal load was of 5 N, corresponding to an average Hertzian pressure of 930 MPa with 

a contact radius of 50.5 µm. The wear track was of 5 mm and the rotation speed 100 

rpm. An alumina ball of 10 mm in diameter (G28) was used as the countermaterial. 
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The samples were immersed in the electrolyte, and after an hour of immersion, an 

Electrochemical Impedance Spectroscopy measurement was made. After the 

impedance measurement, a sliding wear test of 4000 cycles was performed, during 

which the coefficient of friction (COF) and a second EIS were simultaneously recorded. 

The EIS measurements were performed under a sinusoidal perturbation of ±10 mV 

amplitude, at a frequency range from 10 kHz to 10 mHz, with 10 points per frequency 

decade. The tests were performed at room temperature (23±2 ºC) and aerated 

conditions. The exposed surface of the samples was circular, of 2.31 cm2. All the tests 

were performed by triplicate to ensure the reproducibility of the results.  

After the tests, the surface of the samples was examined in an optical microscope 

(Olympus GX71), and the cross-section profiles of the wear tracks were obtained with a 

confocal microscope (Nikon ECLIPSE ME600). The material loss due to tribocorrosion 

in the wear track was quantified by calculating the wear track volume from the cross-

section profiles, as described elsewhere [10-12,32]. The contact area of the alumina ball 

was also examined, but the wear of the balls was negligible, so no further mention is 

made in this work. 

 Results and discussion 

5.4.3.1 Coatings characterization 

Fig. 5.4.2 shows the cross-section morphologies of the three coatings. From the 

micrographs, it can be observed that the three coatings are well-bonded to the substrate, 

since no distinctive irregular interface is detected. The difference in thickness between 

the thee coatings can be clearly observed in these images, obtained with different 

magnitude. The organic sealant applied on C1 coating was not distinguished in the 

micrographs, whereas the organic topcoat applied on C2 coating was considerably thick. 

  

 
Fig. 5.4.2 Transversal micrographs of the (a) C1, (b) C2, (c) and C3 coatings applied on the R4 steel grade 

The roughness and thickness of the coatings are compiled in Table 5.4.1. The higher 

roughness corresponds to the C3 coating, whereas the lower one was measured for the 
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C1 coating with values of 0.36 µm (Ra). C1 coating is the thinner of the three coatings, 

with the highest hardness values, in the typical hardness range of thermally sprayed WC-

CrCo coatings [33-39]. The thickness of the organic sealant of C1 coating was measured 

with a Fischer Dual-Scope non-destructive portable thickness meter (ISO 2178, ISO 

2360), and it was found to be of few microns (9±3 µm). The total thickness of C2 coating 

was around 533±14 µm, corresponding to the sum of the sprayed aluminum layer and 

the organic paint applied on top, as clearly observed in Fig. 5.4.2. The hardness of each 

layer is presented in Table 5.4.1. The hardness measured for C2 coating is also in 

accordance with that observed in literature for aluminum sprayed coatings [40,40]. C1 

coating hardness is two orders of magnitude higher than those of C2 and C3 coatings. 

The hardness values of C3 coating are not far from those of C2 coating, which can be 

attributed to the presence of the ceramic platelets in the polymeric matrix, providing the 

coating with higher hardness than that of the un-reinforced polymer.   

Table 5.4.1 Mean roughness, thickness, hardness and porosity values for the three coatings 

Coating 
Roughness, 

Ra (µm) 

Thickness (µm) Hardness  

(HV) 

Porosity  

(%) Organic sealant Sprayed metal 

C1 0.36±0.06 9.30±3.50 190.73±14.35 1269.00±30.00 1.90±0.38 

C2 1.29±0.20 239.02±8.12 283.89±13.51 40.17±13.19 4.69±0.24 

C3 3.34±0.24 430.20±14.94* 28.30±2.32 - 

*The thickness of C3 coating corresponds to the total thickness of the epoxydic layer with ceramic platelets 

  

 
Fig. 5.4.3 Cross section SEM images and EDS analysis of C1 coating applied on the R4 steel grade 

The SEM images and the results of EDS analyses of C1 and C2 coatings are shown in 

Fig. 5.4.3 and Fig. 5.4.4, respectively. From the SEM images, it can be observed that 

the coatings present typical morphology structure of thermally sprayed coatings, 

containing defects such as pores and cracks [42-46]. These defects are the 

consequence of the solidification of the sprayed material between successive splats, and 

to thermal stresses generated during the spray process [43,45,46]. In both cases, the 

coating consists of a dense matrix with some voids. The results obtained by EDS indicate 

that the dense (bright) regions in C1 coating are 11.25wt% C, 4.08wt% Cr, 10.07wt% 
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Co, and 74.60wt% W; whereas the chemical composition of the lighter (dark) regions 

corresponding to pores or cracks is 56.98wt% C, 12.61wt% O, 2.64wt% Cr, 8.54wt% Co, 

and 19.04wt% W. In the case of C2 coating, the dense (bright) regions are 3.74wt% O, 

and 96,26wt% Al; whereas the lighter (dark) regions are 50.47wt% C, 22.21wt% O, and 

27.32wt% Al. The higher oxygen content in the dark regions of both thermally sprayed 

coatings indicates the presence of oxides coming from the in-flight particles oxidation 

during the spraying process [43,47,48]. The porosity percentages of coatings C1 and C2 

were estimated from the SEM images, and were around 1.90% and 4.69%, respectively. 

  

 
Fig. 5.4.4 Cross section SEM images and EDS analysis of C2 coating applied on the R4 steel grade 

5.4.3.2 Electrochemical corrosion tests 

Fig. 5.4.5 depicts the evolution of the open circuit potential of the samples during the first 

hour of immersion in synthetic seawater. In the case of the uncoated steel, there is an 

initial decrease in the potential and a stabilization after 1500 seconds. The potential drop 

towards negative values indicates corrosion of the steel. During this stage, known as 

phase 0 or activation control [7,49-51], the surface of the steel is exposed to the whole 

oxygen concentration of the electrolyte, and corrosion takes place by activation control. 

After several minutes, the oxygen close to the steel/electrolyte interface is consumed, 

and a diffusion of oxygen present in the bulk electrolyte to the corroding surface is 

required to give continuity to corrosion. This is known as phase 1 or concentration control 

[7,49-51], and is observed as a change in the slope of potential in Fig. 5.4.5. During this 

stage, the corrosion products generated lead to the formation of a rust layer, composed 

mainly of ferric oxyhydroxide (FeOOH) compound. This rust layer is known to be porous 

with week adhesion bounds [52-55] and, therefore, allows the penetration of the 

electrolyte to reach the substrate. However, the presence of the rust layer hinders the 

access of oxygen, which must diffuse through this layer to reach the steel surface. This 

phase is known as phase 2 or non-linear diffusion control [7,49-51], which takes place 

when the potential reaches more stable values around -0.65V in Fig. 5.4.5. The 

potentials registered for the three coatings are nobler than that of the uncoated steel.  

The potential of C1 coating remains almost constant around -0.12 V during the whole 



Results and discussion, Part II 

 

 
144 

hour of immersion. According to literature, the potential of WC-CrCo coatings in seawater 

is close to -0.4 V [39,56]. Similarly, the potential registered for C2 coating (-0.14 V) differs 

from that observed for aluminum in seawater, which is usually around to -1 V [47,57-59]. 

The nobler potential registered for C1 and C2 coating is ascribed to the presence of the 

organic layers that act as barriers impeding the access of electrolyte to the metallic 

coatings surfaces. The potential of C3 coating is close to 0, which is attributed to the 

non-conductive nature of the organic components of the coating, with high electrical 

resistance impeding the charge transfer between the electrolyte and the substrate 

[60,61]. Any potential lecture in the organic coating C3 or the organic layers used in C1 

and C2 coatings is due to the penetration of electrolyte through the defects and pores of 

the organic layer, and the subsequent contribution of the substrate to the lecture. 

Therefore, the potentials in the C1 and C2 coatings of -0.12 V and -0.4 V, respectively, 

suggest that the electrolyte has reached the sprayed metal layers. In the case of C3 

coating, no contribution of the substrate is observed. 

 
Fig. 5.4.5 Evolution of the open circuit potential during the first hour of immersion in synthetic seawater for 

the R4 steel grade and the three coatings 

The polarization curves obtained in the potentiodynamic tests for the uncoated steel and 

the three coatings are presented in Fig. 5.4.6, and the electrochemical data obtained 

from the curves by standard Tafel extrapolation is compiled in  Table 5.4.2. In the curve 

of the R4 steel, a great activation stretch is observed in the anodic branch above the 

corrosion potential (Ecorr) (-0.659 V). In this region, the current increases sharply for small 

potential variations. Furthermore, no passive region is observed, indicating that the steel 

is very active in seawater. The curve corresponding to C1 coating is anodically displaced 

with respect to that of the R4 steel, with more positive corrosion potential (-0.275 V). In 

this case, a more stable anodic region is observed, where the current increases slightly 

with the potential increase. Above 0.5 V, the current increases more rapidly, and the 

transpassive region is observed close to 1 V. The corrosion current (icorr) of C1 coating 

is one order of magnitude smaller than that of the R4 steel, and a difference of two orders 

of magnitude is observed in the anodic currents. Furthermore, the polarization resistance 

(Rp) of the coating is close to 3 x104 Ω cm2, whereas that of the steel is considerably 

lower, of 690 Ω cm2. The curves obtained for C2 and C3 coatings were found to be very 

similar. In both cases, the curves are anodically shifted with respect to that of the 

uncoated sample. Besides, the corrosion current and anodic currents are six orders of 

magnitude smaller than those of R4 and C1 coating, and the polarization resistances 

over 109 Ω cm2. In both C2 and C3 coatings, the high corrosion resistance registered is 

attributed to the presence of a non-conductive component as the organic topcoat in C2, 

and the organic coating itself in C3. The corrosion potential of the aluminum in seawater 

is known to be close to -0.9 V [47,57-59,62], and the values registered for C2 coating of 
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0.02 V suggest a low porosity of the topcoat and, thus, a weak contribution of the 

aluminum layer to the lecture. Therefore, the three coatings provide the steel with an 

enhanced corrosion resistance in synthetic seawater, especially in the case of C2 and 

C3 coatings, due to the presence of a non-conductive organic layer. 

 
Fig. 5.4.6 Potentiodynamic curves obtained for the R4 steel grade and the three coatings in synthetic 

seawater under a sweep rate of 0.5 mV/s 

Table 5.4.2 Electrochemical data obtained from the potentiodynamic curve by standard Tafel extrapolation 

Material 
Electrochemical parameters 

icorr (A/cm2) Ecorr (V vs Ag/AgCl) Rp (Ω cm2) 

R4 2.77 x10-5 -0.659 0.96 x103 

C1 1.83 x10-6 -0.275 30.12 x103 

C2 1.74 x10-12 +0.002 33.5 x108 

C3 1.50 x10-12 -0.004 25.87 x109 

In the second test series, electrochemical impedance spectroscopy measurements were 

performed at different immersion times. The results are presented in Fig. 5.4.8, in the 

form of Nyquist and Bode plots for the uncoated steel and the three coatings. The 

experimental data was analyzed with the NOVA 2.1 software.  The quality of the obtained 

results was evaluated using Kramers-Kroing transformation (complex fit). The results 

showed an excellent fit for the substrate and C1 coating (χ2<106), and a reasonable fit 

quality for C2 and C3 coatings (105 <χ2<106). The impedance data was fitted using the 

Electrical Equivalent Circuits (EEC) shown in Fig. 5.4.7. The circuit represented in Fig. 

5.4.7a, known as the simple Randles circuit, is employed to represent a coating or an 

uncoated corroding metal. The EEC represented in Fig. 5.4.7b is typically used to 

describe a coating on a metallic substrate, and that in Fig. 5.4.7c is used to describe the 

coating when there is a diffusion-limited reaction in the substrate/coating interface, e.g., 

due to the presence of corrosion products coming from substrate corrosion. Finally, the 

circuit in Fig. 5.4.7d can be used to represent a two-layer coating system on a metallic 

substrate. In all circuits, R1 represents the resistance of the electrolyte between the 

reference and the working electrodes. In Fig. 5.4.7a, R2 is associated with the resistance 

of the coating, or with the charge transfer resistance (polarization resistance) in the case 

of a corroding metal. The Constant Phase Element (CPE1) represents the double layer 

capacitance at the electrolyte/coating or the electrolyte/steel interface. Constant phase 

elements are used for replacing simple capacitances for a better fit quality of the 

experimental data. The impedance of a CPE element can be represented as: 𝑍𝐶𝑃𝐸 =

1 𝑌0⁄ (𝑖𝜔)𝑛, where ω is the angular frequency, and i the imaginary number. Y0 and n 

(n≤1) are the admittance and the empirical exponent of the CPE, respectively. Whenever 

the surface acts as an ideal capacitor n is equal to unity and Y0 is identical to the double 
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layer capacitance. CPE2 in Fig. 5.4.7b represents the double layer capacitance of the 

electrolyte/substrate interface, R2 is the pore resistance of the coating, and R3 is related 

to the polarization resistance of the substrate. The diffusion in Fig. 5.4.7c is represented 

by the Warburg diffusional element, which impedance can be expressed as: 𝑍𝑊 =

𝜎𝜔1/2(1 − 𝑖). σ is the Warburg coefficient, which is inversely proportional to the diffusion 

coefficient. In Fig. 5.4.7d, R2 and R3 are the pore resistances of the two coating layers, 

and R4 represents the resistance of the substrate. After several fitting processes, these 

circuits were selected as they gave the best fitting parameters with the smallest error, 

based on the chi-squared values (χ2). This represents the square of the standard 

deviation between the original data and the calculated spectrum. The χ2 values obtained 

were below 10-3, showing an adequate fitting quality. Furthermore, the relative error of 

each element in the circuit was below 10%. The fitting curves are presented as solid lines 

in Fig. 5.4.8 for each spectrum, and the fitting process results are summarized in Table 

5.4.3 for the different immersion times. 

 
Fig. 5.4.7 Electrical equivalent circuits used to fit the electrochemical impedance spectroscopy data: (a) to 

represent a coating or a corroding metal, (b) to represent a coating with a corroding substrate, (c) to 
represent a coating with a corroding substrate with diffusion-controlled reactions, and (d) to represent a 

two-layer coating system with a corroding substrate 

In the results obtained for the uncoated steel, two capacitive loops are observed in the 

Nyquist plot and in accordance, two inflection points in the Bode plot. The big capacitive 

loop at medium-frequency (MF) is physically related to the charge transfer process of the 

corrosion reaction of the steel [63]. The second time constant present in the impedance 

plots is related to a corrosion product layer that is formed on the surface [64]. The 

enlargement of the semicircle in the Nyquist plot with immersion time, is attributed to an 

increase in the corrosion resistance of the steel. Accordingly, an increase in the 

impedance modulus in the Bode plot is observed with higher exposure time. After 168 h, 

the phase angle maximum at MF ranges has shifted to lower frequencies (LF). The 

phase angle at high frequencies (HF) reaches values close to 0º, which is characteristic 

of purely resistive behavior [65,66]. The increase in the capacitive loop, the impedance 

modulus, and the phase angle at LF indicates an enhancement in the corrosion resistant 

response of the steel, as a result of the surface changes undergone during immersion 

[67]. The incomplete capacitive loop in the Nyquist plot at 168, 336, and 504 hours, and 

the increase in the phase angle values at LF, correspond to a more capacitive response 

of the system, as a consequence of the corrosion product layer presence [63]. The 

thickness of this layer increases with exposure time, hindering the access of electrolyte 

to the substrate surface and slowing down corrosion reactions, leading in turn to slightly 

higher corrosion resistance. The corrosion resistance of the uncoated steel (R3) 

increases with immersion time up to values close to 3.5 x103 Ω cm2. Even if the rust layer 
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impedes the dissolution of the substrate to some extent, the low resistance of this layer 

(R2) confirms its poor barrier effect in the long-term corrosion protection of the steel in 

seawater [52-55]. The slight increase in the CPE2-Y0 values indicates an increase in the 

exposed steel surface, as a result of an increase in the roughness due to corrosion 

degradation [68]. 

In the case of C1 coating, two semicircles in the Nyquist diagram and two inflection points 

in the Bode plot are observed, corresponding to two-time constants. The HF loop is 

related to the electrolyte/coating interface, whereas the LF loop corresponds to the 

electrolyte/substrate interface (corrosion process in the substrate) [47]. The electrolyte 

penetrates through the organic sealant pores, reaching the sprayed. The phase angle 

values close to zero at HF in all the measurements indicate an ohmic behavior of the 

system, corresponding to the WC-CrCo layer. Therefore, the organic sealant does not 

provide an effective barrier but allows the penetration of electrolyte from the beginning 

of immersion. In contact with seawater, the tungsten carbides form a galvanic couple 

with the metallic binder of the sprayed layer, leading to a selective dissolution of the CrCo 

matrix [24,36,46,56,69,70]. Eventually, the chromium oxides formed from the matrix 

dissolution, mainly Cr2O3 [38,71], block the pores and defects of the thermally sprayed 

layer, leading to lower corrosion rates and a stable behavior. This is observed as an 

improvement of the corrosion resistance (R2) after 168 hours of immersion. At this stage, 

the phase maximum at MF has increased, indicating an enhancement of the capacitive 

behavior of the WC-CrCo layer, due to the passivation of the coating through the 

formation of chromium oxides. Furthermore, the phase maximum at LF also increases, 

indicating a higher capacitive response in the electrolyte/substrate interface, as a 

consequence of the presence of corrosion products coming from substrate corrosion. In 

fact, the shape of the phase at LF suggests the occurrence of diffusion-controlled 

reactions. This is often related to the presence of pores and the opening of pinholes in 

the coating [72], and the accumulation of products in these defects that delay the reactant 

migration to the corroding surface [47,53,72-74]. The increase of the pore resistance (R2) 

and the decrease of W-Y0 parameter with immersion time confirm the accumulation of 

substrate corrosion products, which in turn lead to slightly higher corrosion resistance of 

the substrate (R3), since corrosion is delayed by diffusion processes. The results 

obtained after 336 and 504 hours were very similar, and the values of CPE1 remain 

almost constant, revealing low changes in the sprayed layers due to corrosion or 

passivation processes, and, therefore, good stability in seawater.  

The Nyquist plot obtained for C2 coating at 24 hours presents two capacitive loops. The 

high impedance modulus measured for the coating close to 1011 Ω cm2, and the highly 

capacitive response with a phase angle maximum of 90º at HF, evinces that the organic 

topcoat provides an effective barrier to corrosion. Similar resistance results have been 

observed for organic coatings with excellent resistant properties in seawater [75-77]. In 

spite of the high resistance of the system, the second capacitive loop at LF indicates a 

slight contribution of the aluminum layer from the early stages of immersion, as a result 

of the penetration of the electrolyte through the pinholes of the topcoat. The values of 

the phase maximum in the MF range close to 80º show a highly capacitive response of 

the electrolyte/aluminum interface. This is attributed to the passivation of the aluminum 

in contact with seawater, as confirmed by the high R3 values. In the results obtained at 

168, 336 and 504 hours, three capacitive loops and three inflection points are observed 

in the Nyquist and Bode plots, respectively. After 168 hours, the pore resistance of the 

topcoat (R2) is considerably reduced, indicating an opening of pinholes in the organic 

layer. At this stage, the electrolyte has also penetrated through the pores and defects of 

the aluminum layer, causing the dissolution of active zones inside the coating. This is 
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observed as a decrease in the impedance modulus in two orders of magnitude, and a 

reduction of the capacitive loop at HF in the Nyquist Plot. The decrease of the phase 

maximums in the HF and MF denote a reduction in the capacitive responses of both the 

organic topcoat and the aluminum layer. Accordingly, the increase of CPE2-Y0 and the 

decrease in CPE2-n are related to a greater exposed surface of aluminum [72], as a 

consequence of topcoat delamination and penetration of electrolyte through the 

aluminum layer defects. The apparition of a phase maximum at LF range of around 30º 

confirms the presence of a third interface, corresponding to the electrolyte/substrate. The 

steel is nobler than the aluminum in seawater, which potential is around -1 V [47,57-59], 

and thus, a galvanic corrosion reaction is generated between the two metals. The 

aluminum dissolves protecting the steel substrate by a sacrificial cathodic protection 

mechanism [47,63]. At 336 hours, the capacitive loop at LF and the impedance modulus 

have increased, indicating a slight enhancement in the corrosion resistance of the 

system. The aluminum corrosion products are accumulated in the pores, hindering 

electrolyte penetration and leading to higher resistances (R3) with time. These oxides 

block the pinholes and defects in the aluminum layer [43,47,59,63], hindering the 

electrolyte access and delaying the substrate corrosion. This is known as ‘plugging 

effect’ [47], and is confirmed by the increase of the substrate resistance (R4). At 504 

hours, the Nyquist semicircle at LF, the impedance modulus, and the phase maximum 

at LF increase again. This is again attributed to the higher amount of corrosion products 

delaying the further corrosion of the substrate, leading to slightly higher corrosion 

resistance of the system, as confirmed by the higher values of R3 and R4 after 504 h in 

Table 5.4.3.  

C3 coating shows two-time constants after 24 hours of immersion, with high impedance 

modulus and a phase angle of 90 º in the HF range. This high resistance close to 1010 Ω 

cm2 and the capacitive response, confirm the excellent barrier properties of the organic 

coating [75-77]. After 168 hours, a depletion in the semicircle and the impedance 

modulus decrease is observed, along with a shift of the phase angle plot towards HF. 

The electrolyte has permeated through the pinholes of the coating reaching the 

substrate, leading to a decrease in the corrosion resistance. The decrease in the 

substrate resistance value (R3), as well as the increase of W-Y0, suggest the 

enlargement of the exposed surface of the steel. This observation is in coherence with 

the increase of CPE2-Y0 and the decrease of CPE2-n, indicating a higher roughness of 

the substrate generated by corrosion, which leads to a greater substrate exposed 

surface. Accordingly, the decrease in the pore resistance of the coating (R2) and CPE1-

n value, and the increase in CPE1-Y0, indicate a loss of capacity of the coating due to 

an increase of revealed pinholes and pathways for the electrolyte to the corroding 

substrate. Therefore, the coating becomes more conductive, and its performance is 

weakened [72,73]. Additionally, the oxides coming from substrate corrosion block the 

electrolyte pathways, leading to a diffusion-controlled reaction, which is clearly observed 

in the Nyquist plot at LF as a straight line of slope equal to 45º. The substrate corrosion 

and the formation of corrosion products can cause some coating delamination [4,27,60]. 

The increase of CPE2-Y0, and decrease of CPE2-n and R2, can be related to a greater 

steel surface exposed due to coating delamination [60,78,79]. The resistance of the 

system continues to decrease with time, and the phase angle at HF range decreases up 

to 80º after 504 hours. This decrease indicates a loss in the capacitive behavior of the 

coating, which can be attributed to a greater delamination of the coating. Furthermore, 

the greater amount of corrosion products leads to an increase in the phase values at LF 

range. 
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Fig. 5.4.8 Electrochemical Impedance Spectroscopy results obtained for the R4 steel and three coatings at 

different immersion times, where the solid lines represent the fitting curves obtained with the equivalent 
circuits 
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The evolution of the OCP during the 504 hours of immersion is plotted in Fig. 5.4.9. The 

potential of the uncoated steel slightly decreases during the first 24 hours in seawater, 

and then remains constant around -0.67 V. In the case of C1 coating, the potential 

decreases from -0.03 V at 24 hours to -0.15 V at 168 hours and stabilizes in this value. 

This decrease can be attributed to the gradual dissolution of the CoCr matrix observed 

in the EIS results. Eventually, the matrix passivates forming Cr2O3 oxides, giving stable 

potential lectures. The results of C2 coating show a sharp decrease of potential after 168 

hours. This is coherent with the EIS results, that showed the contribution of the aluminum 

layer as a consequence of electrolyte permeation through the organic topcoat. The 

potential lecture close to -1 V corresponds to the aluminum in seawater [47,57-59]. The 

increase in potential up to -0.88 V at 504 hours is attributed to the passivation of the 

aluminum, and the pinhole blockage by aluminum corrosion products as described in the 

impedance results. Finally, the results of C3 coating exhibit a slight reduction in the OCP, 

as a consequence of the penetration of electrolyte through the pinholes. After 24 hours 

the potential remains almost constant around -0.04 V.    

 
Fig. 5.4.9 Evolution of the open circuit potential during the 504 hours of immersion in synthetic seawater 

for the R4 steel and the three coatings 

5.4.3.3 Tribocorrosion tests 

Fig. 5.4.10 shows the results of the EIS measurements performed before and during 

wear sliding test, in the form of Bode Plots. The quality of the obtained results was 

analyzed using Kramers-Kroing transformation (complex fit). An excellent fit was 

obtained for the substrate and C1 coating (χ2<106) before sliding, and a reasonable fit 

quality during sliding (105 <χ2<106). C2 and C3 coatings showed reasonable fit quality 

both before and during sliding (105 <χ2<106). In all the samples, the corrosion resistance 

is affected by sliding, decreasing during wear. The impedance experimental data of the 

R4 steel was fitted with the EEC in Fig. 5.4.7a, whereas the results of the coatings were 

analyzed with the circuit in Fig. 5.4.7b. The χ2 values obtained with these circuits were 

below 10-3, and the relative error of each element in the circuit was below 10%, showing 

an adequate fitting quality. The fitting curves as presented as solid lines in Fig. 5.4.10 for 

each spectrum and the fitting process results are compiled in Table 5.4.4.  

R4 steel shows one time constant, in a typical curve shape of a corroding metal where a 

charge transfer reaction is taking place in the electrolyte/metal interface. During sliding, 

the impedance modulus decreases one order of magnitude and the phase maximum 

decreases from 70º to 20º shifting to HF. This indicates a reduction of the corrosion 

resistance of the steel during the sliding process. The CPE-Y0 value increases as a 

consequence of the increase in the roughness of the steel surface due to corrosion [68]. 

Furthermore, the decrease in the CPE-n parameter indicates a loss in the capacitive 

response, since the surface becomes more conductive as a result of the greater number 
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of corrosion processes taking place. Therefore, the corrosion of the steel is accelerated 

during sliding, in accordance with the results observed in previous studies [10,11]. 

 
Fig. 5.4.10 Electrochemical Impedance Spectroscopy results obtained for the R4 steel and three coatings 
before and during sliding process in synthetic seawater, where the solid lines represent the fitting curves 

obtained with the equivalent circuits 

C1 coating exhibits two-time constants, one in the HF limits with phase angle values of 

80º, characteristic of capacitive films, and a second maximum of 50º in the MF range. 

The former is related to the sealant/electrolyte interface, whereas the latter corresponds 

to the WC-CrCo/electrolyte interface. Unlike the results obtained in the previous 

electrochemical corrosion tests, the organic sealant is contributing to this lecture. The 

existence of a second time constant evinces the penetration of electrolyte through the 

sealant reaching the sprayed carbide metal. Therefore, the sealant seems to be present 

during the first hours of immersion, but it is removed or delaminated from the surface 

with higher exposures, and its contribution is not detected after 24 hours in seawater. 

During sliding, the impedance modulus is reduced in three orders of magnitude. The 

phase angle at HF decreases from 80 º to 20º, indicating a more ohmic response of the 

system, as a consequence of the removal of the organic sealant and the exposure of a 

greater WC-CrCo area to the electrolyte. This is confirmed by the decrease of the pore 

resistance of the sealant (R2) with sliding in three orders of magnitude, and the increase 

of CPE2-Y0 parameter. The corrosion resistance of the carbide layer (R3) before sliding 

is high, of 8.27 x106 Ω cm2, and it is reduced in three orders of magnitude during sliding. 

This is attributed to the removal of the chromium oxides present in the tribological 

contact, which are formed in the absence of sliding when the CrCo matrix reacts with the 

electrolyte [38,71], leading to exposure of the fresh material to seawater. The unworn 

surface is still coated with the organic sealant, but its presence seems to be masked in 

the plots with the contribution of the metallic coating to the lecture. 

C2 coating also shows two-time constants, corresponding to the electrolyte/ organic 

topcoat and electrolyte/aluminum interfaces. The phase angle at HF limit is 70º, slightly 

smaller than that observed after 24 hours in the electrochemical corrosion test results, 
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where the values were close to 90º. The lower capacitive response in this test is related 

to a greater contribution of the aluminum due to a greater number of pores present in the 

organic layer of this sample. During sliding, the impedance modulus decreases in nearly 

an order of magnitude. However, the resistance during sliding of C2 coating remains 

high, with values close to 108 Ω cm2, being the coating less affected by sliding. The pore 

resistance (R2) remains similar during the wear process, and the corrosion resistance of 

the aluminum layer (R3) decreases from 1.22 x109 to 1.45 x108 Ω cm2. These results 

suggest that the organic topcoat resists the action of the countermaterial, without 

considerable acceleration of the aluminum layer corrosion. The results were in 

coherence with the optical analysis of the samples, where no detachment of the topcoat 

was observed after the tests (see Section 5.4.2.4).  

C3 coating also presents high corrosion resistance before sliding, in the order of 1010 Ω 

cm2. The system shows two-time constants, corresponding to the coating/electrolyte and 

the steel/electrolyte interfaces. The phase angle before sliding presents values close to 

90º in the HF limit. This indicates a highly capacitive behavior of the coating, coherently 

with its polymeric nature. The high resistance registered due to the good protective 

properties of the organic coating mask the contribution of the substrate corrosion. During 

the wear process, the two-time constants are more evident. The resistance of the coating 

is highly affected by sliding, as observed by the great decrease in the impedance 

modulus at LF limit to values close to 105 Ω cm2. The pore resistance (R2) of C3 coating 

decreases considerably.  The decrease in the phase angle maximum at HF from 90º to 

15º, and the reduction in the CPE1-n value from highly capacitive values close to 1 to 

values around 0.5, indicate a reduction in the capacitive response of the coating, showing 

a more ohmic behavior. This is attributed to an increase in the number of pinholes and a 

weakening of the protective performance of the coating which has become more 

conductive [68,73]. This can be the consequence of certain coating delamination and 

exposure of the underlying steel. The decrease in the phase angle at LF to values close 

to 20º, the increase in the CPE2-Y0 parameter and the substantial reduction in the 

corrosion resistance of the steel substrate (R3), indicate a greater exposed area of the 

corroding substrate due to the coating delamination [68,73]. 

Table 5.4.4 Equivalent circuit parameters obtained from the impedance data fitting before and during sliding 
in synthetic seawater for the R4 steel and the three coatings 

Material Condition 
R1 

(Ω cm2) 
CPE1-Y0 

 (F cm-2 s-n) 
CPE1-n 

R2 

(Ω cm2) 
CPE2-Y0 

(F cm-2 s-n) 
CPE2-n 

R3 

(Ω cm2) 

R4 
Before sliding 16.74 1.73 x10-4 0.855 1.45 x103 - - - 

During sliding 18.62 6.54 x10-4 0.741 0.10 x103 - - - 

C1 
Before sliding 24.67 1.29 x10-8 0.798 3.56 x105 3.73 x10-8 0.673 8.27 x106 

During sliding 27.26 6.23 x10-6 0.850 0.26 x103 8.66 x10-6 0.878 8.36 x104 

C2 
Before sliding 97.48 1.15 x10-10 0.886 9.22 x106 1.04 x10-8 0.874 1.22 x109 

During sliding 54.10 7.66 x10-11 0.935 9.31 x106 5.32 x10-8 0.616 1.45 x108 

C3 
Before sliding 119.19 1.49 x10-10 0.956 1.64 x108 2.30 x10-10 0.702 8.09 x109 

During sliding 101.64 3.23 x10-10 0.537 2.19 x106 3.22 x10-5 0.735 3.74 x104 

The coefficients of friction (COF) registered for the uncoated steel and the three coatings 

are plotted together in Fig. 5.4.11, and the mean coefficient values are presented in 

Table 5.4.5. There is a slight increase in the coefficient of the R4 steel with sliding time, 

as a consequence of the superficial modifications that are taking place in the tribological 

contact. Furthermore, some fluctuations can be observed in the results, which are 

attributed to the detached particles and oxides that can remain in the contact [10,11,80]. 

The coefficients of the three coatings are considerably smaller than that of the R4 steel. 

At the beginning of the test, C1 coating presents values close to 0.18, increasing to 0.36 
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after 1000 seconds. This is the result of the removal of the organic sealant during the 

first cycles of sliding, leading to an alumina/WC-CrCo contact and, thus, to an increase 

in the coefficient value. The lower coefficient of friction corresponds to the C2 coating, 

with values close to 0.19 during the whole test duration. This is ascribed to the organic 

topcoat, which resists the tribological conditions imposed and is not removed from the 

surface. The coefficient registered for C3 coating is also low, close to 0.23. The 

fluctuations of the COF in this case can be attributed to the interactions of the alumina 

ball with the ceramic platelets present in the coating. 

 
Fig. 5.4.11  Evolution of the coefficient of friction with sliding time for the R4 steel grade and three coatings 

in synthetic seawater 

Table 5.4.5 Average coefficient of friction, total wear track volume (Wtr) and wear coefficient (K) for the R4 
steel and the three coatings 

Material R4 
C1 

C2 C3 
Sealant WC-CrCo layer 

Mean COF 0.49 0.18 0.36 0.19 0.23 

Wtr (x10-5 cm3) 1.28 12.75 4.01 2.45 

K (x10-14 m3 N-1 m-1) 2.04 20.28 6.38 3.89 

5.4.3.4 Surface analysis and material loss evaluation  

After the tests, the surface of the samples was analyzed by several microscopic 

techniques. The optical micrographs in Fig. 5.4.12 show the wear tracks of the R4 steel 

and the three coatings.  

In the micrograph of the R4 steel grade, deep abrasion lines parallel to the sliding 

direction can be clearly observed. Furthermore, some corrosion in the form of pits can 

also be distinguished inside the track. The unworn surface of the sample is entirely 

covered by a homogeneous layer of corrosion products. As already observed in previous 

studies [10,11], sliding promotes the corrosion of the unworn surface, as a consequence 

of the coupling generated between the wear track and the unworn surface. In the wear 

track, however, less corrosion is observed as the countermaterial is continuously 

removing the corrosion products that may form. 

In the case of C1 coating, the micrograph reveals the presence of pores in the unworn 

surface where the organic sealant is intact. The presence of these pores in the sealant 

was already observed in the EIS measurement obtained before sliding, where the 

penetration of electrolyte through the pores led to the contribution of the WC-CrCo 

metallic layer to the lecture. In the worn surface, the sealant has been completely 

removed, and some deformation of the sealant can be observed in the edges of the wear 

track. The straight lines present in the worn surface can also be observed in the wear 
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track, with the same direction. As it can be observed in Fig. 5.4.13, the lines are 

perpendicular to sliding direction, and they are visible under the organic sealant as well. 

Therefore, these lines are not abrasion lines generated by the sliding of the alumina ball 

but a consequence of the surface finishing of the sprayed coating. No significant wear is 

observed in the track, and no ferric corrosion products are detected neither in the worn 

or the unworn areas. 

  

 
Fig. 5.4.12 Optical micrographs of the wear tracks of (a) R4 steel, (b) C1 coating, (c) C2 coating, and (d) 

C3 coating after the tribocorrosion test in synthetic seawater 

 
Fig. 5.4.13 Optical micrograph of C1 coating showing lines perpendicular to sliding direction, resulting from 

the surface roughness of the samples 

The wear tracks of coatings C2 and C3 are similar. In both cases, abrasion lines can be 

clearly observed, and both worn and unworn areas are free of corrosion products. The 

organic topcoat in the case of C2 coating, and the C3 coating itself, seem to have resisted 

the tribological conditions imposed, without being removed or delaminated from the 

surface exhibiting the underneath aluminum layer or steel substrate, respectively. 

Therefore, the contributions of the metallic materials to the electrochemical 

measurements observed in previous impedance tests, are consequence of the access 

of electrolyte through the pores and defects present in the organic topcoat (C2) and in 

the organic coating (C3), rather than exposure of the underneath metallic material as a 

consequence of the elimination of the coating during sliding. 
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The topographies and the cross-section profiles of the wear tracks obtained in the 

confocal profilometer are shown in Fig. 5.4.14 and Fig. 5.4.15, respectively. The 

topography of R4 steel wear track reveals deep abrasion lines generated during the 

sliding test, and a high roughness of the unworn surface as a consequence of the severe 

degradation of the steel due to the wear-accelerated corrosion. The wear track 

morphology observed in C1 coating, and its rectangular shape (see Fig. 5.4.15), 

indicates that it was generated in the sealant rather than in the metal sprayed layer. The 

deep lines present in the track are not abrasion caused but surface roughness generated 

in the mechanization of the test samples. The same lines are clearly observed in the 

organic sealant, confirming the previous statement. The wear tracks of coatings C2 and 

C3 are visibly smaller than that of C1 coating, showing some abrasion lines.  

 
Fig. 5.4.14 Topography of the wear tracks generated in the sliding test in synthetic seawater for the R4 

steel and the three coatings 

As it can be observed in Fig. 5.4.15, the bigger track corresponds to C1 coating. 

However, the depth of the track close to 6 µm coincides with the thickness of the organic 

sealant deposited on top of the sprayed layer. Therefore, the material removed during 

the wear test is the organic sealant, whereas the WC-CrCo layer resists the conditions 

of the test, and no great wear is observed in its surface. The wear tracks of coatings C2 

and C3 are similar and slightly bigger than that generated in the R4 steel grade. In both 

cases, the wear track depth is close to 4 µm, which is considerably smaller than the 

thickness of the organic topcoat of C2 coating and the thickness of C3 coating (see Table 

5.4.1). Therefore, the organic layers in C3 and C3 coatings are not removed from the 

surface during the test.   

The wear track volume is obtained from the profilometry analysis, and the wear 

coefficient (K) can be obtained by dividing the wear volume between the applied normal 

force and the sliding distance as follows: 

𝐾 =
𝑊𝑒𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 .  𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑚3𝑁−1𝑚−1     (5.4.I) 

The results are compiled in Table 5.4.5. The smaller wear track has been found to be 

that of the R4 steel. However, the metal sprayed layer in C1 coating has not suffered any 

wear degradation. On the other hand, the tracks of C2 and C3 coatings are consequence 

of both the material removal in the tribological contact and some material plastic 
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deformation that took place under the applied load. Therefore, the coatings have resisted 

the tribological conditions imposed in the tribocorrosion test, without being removed from 

the contact exposing the bare material. 

 
Fig. 5.4.15 Cross-section profiles of the wear tracks obtained in the tribocorrosion test of 4000 cycles at 

100 rpm under 5N 

 Conclusions 

In this work, three protective coatings used in offshore component protection have been 

evaluated in terms of corrosion and wear-corrosion behavior. For this aim, 

electrochemical corrosion tests and unidirectional tribocorrosion tests have been 

performed, comparing the behavior of the coatings with the un-coated R4 steel grade. 

From the results obtained in the tests, the following conclusions can be drawn: 

• The corrosion tests showed a poor corrosion resistance and high corrosion rates for 

the R4 steel, and an enhancement of corrosion response for the three coatings. C2 

and C3 presented the higher resistances, due to the polymeric nature of the topcoat 

in C2 and the organic layer of C3 coating.  

• In the tribocorrosion tests, the corrosion resistance of the steel and the three 

coatings was found to be affected by sliding, decreasing in several orders of 

magnitude during wear process. C2 coating was observed to be the less affected 

sample, with corrosion resistances above 108 Ω cm2.  

• Furthermore, the three coatings improved the tribological response of the steel in 

synthetic seawater, presenting lower coefficients of friction than the uncoated 

sample. The smallest coefficient was obtained for C2 coating with values close to 

0.19. 

• Microscopy of the R4 steel samples showed deep abrasion lines with small corrosion 

pits in the wear track, and a significant amount of corrosion degradation undergone 

in the unworn surface. The coatings did not present ferric corrosion products either 

in the track or the unworn surface. 

• The higher material loss corresponded to C1 coating, which was attributed to the 

organic sealant removal, with low abrasion and material loss from the hard WC-

CrCo layer. C2 and C3 coatings presented similar material loss values, which was 

the sum of material removal and plastic deformation that took place under the 

applied load.  

• Therefore, the three coatings were found to improve the corrosion performance also 

providing the steel with improved tribological response in synthetic seawater.  
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• The coating that showed the best performance with higher corrosion resistance and 

lower coefficient of friction was C2 coating. C3 coating presented high corrosion 

resistance, slightly lower than those of C2, a low coefficient of friction and small 

material loss due to the presence of ceramic platelets reinforcing the organic layer. 

Finally, C1 coating exhibited a good tribological response as a consequence of its 

high hardness, but the corrosion resistance was considerably lower than that of C2 

and C3 coatings.   
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ABSTRACT 

The interest in renewable energies obtained from the resources availed in the ocean has 

increased during the last years. However, the harsh atmospheric conditions in marine 

environments is a major drawback in the design of offshore structures. The protective systems 

employed to preserve offshore steel structures are regulated by several standards (ISO 12944, 

NORSOK M-501), which classify the corrosivity category of offshore installations as C5-M and 

Im2. In this work, three coatings employed in offshore components protection have been 

evaluated according to these standards, by performing aging tests in different climatic cabinets. 

The coatings studied were a Thermally Sprayed Carbide coating with an organic sealant (C1), a 

Thermally Sprayed Aluminum (TSA) with an organic topcoat (C2), and an epoxydic organic 

coating reinforced with ceramic platelets (C2). The only coating that reached the higher categories 

in all the tests was C2 coating. C1 coating presented ferric corrosion products coming from the 

substrate in some of the tests, and blistering was detected in C3 coating. 

Keywords: Offshore; Corrosion; Coatings; Weathering 

 Introduction 

Marine environment is a very aggressive working atmosphere, where structural materials 

and components are exposed to ultraviolet radiation, chloride-rich salty environment, 

frequent wetting and drying cycles, high humidity, the attack of biological microorganisms 

and marine bacteria, etc. [1-5]. Furthermore, there is also abrasion and severe wear 

caused by sand, ocean currents, floating wastes and contamination [1,5-8]. As 

schematically depicted in Fig. 5.5.1, offshore materials and structures are exposed to 

five corrosion zones, with different material corrosion rates [3,6,9-11]: 

• Atmospheric zone: it is located above the sea level, and the severity of corrosion 

is related to the time of wetness, during which electrochemical processes take place. 

There is a direct relationship between atmospheric salt content and corrosion rate. 

Materials are also exposed to solar radiation, which deteriorates the performance of 

organic coatings.   

• Splash zone: the section in the structure that is intermittently wetted, due to tides 

and the wind. The corrosion rate of metals in this zone is the higher, due to the 

aerated condition, which makes the access of dissolved oxygen for electrochemical 

reactions easy. Since it is continuously being wetted, chlorides can concentrate on 

the surface while the water films dry. Furthermore, the impinging of seawater 

containing sand and other flowing matter adds a mechanical component to the 

materials deterioration in this exposure zone.   

• Tidal zone: the materials are alternately submerged and exposed to the splash 

zone, as the tide fluctuates. In the submerged condition, materials are exposed to a 
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well-aerated seawater, which favors the attachment and growth of biofouling. The 

corrosion rate is influenced by the tidal flow, with higher corrosion rates with 

increasing movements.   

• Submerged zone: the section of the structure that is always immersed in the sea. 

The corrosion rate in this zone depends on the availability of oxygen to be 

transported to the cathodic sites of materials surfaces. As oxygen concentration 

varies with depth, decreasing with increasing distance to the surface, the corrosion 

rate is also slower at higher depths.  

• Subsoil: In the buried structure, the oxygen concentration is low and hydrogen 

sulfide may be present.   

 
Fig. 5.5.1 Zones of corrosion and relative corrosion rate depending on the exposure zone (based on [8]) 

The most employed structural material in offshore applications is steel, usually mild or 

low-alloyed, due to their superior mechanical properties [1,13,14]. However, this kind of 

steels possess low corrosion resistance in seawater and corrode relatively fast. The 

corrosion rate of mild steel in seawater has been measured to be 250 microns per year 

[15,16]. In order to avoid or prevent premature failures due to high corrosion rate of 

structural steel, coatings have been successfully used. The requirements of protective 

coatings and their application procedures vary significantly depending on the installation 

location, i.e., onshore or offshore. Currently, the protection systems used in offshore 

structures are regulated by several standards, among which the ISO 12944:1-9[17] and 

the NORSOK M-501 [18] can be found. The selection of the protective system deeply 

depends on the location of the component. According to ISO 12944 (part two) and ISO 

9223 [19], there are five corrosivity categories; from the C1 corresponding to a non-

corrosive atmosphere, to industrial and marine corrosive categories (C5-I and C5-M). 

There are also IM1 and IM3 categories, to describe the water and soil corrosivity, 

respectively. The first edition of the ISO 12944-9 [20] published in January 2018, adds 

new categories for offshore related atmospheres: CX-offshore (atmospheric), Im4 

(immersion), and CX-Offshore/Im4 for the splash and tidal exposure zones. ISO 12944 

also classifies the durability, or the time for the first major maintenance as: 

• Low (L): 2 to 5 years 

• Medium (M): 5 to 15 years 

• High (H): 15 to 25 years 

• Very High (VH): >25 years 
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The categories required for a protective system in an offshore installation are C5-M and 

Im2, for non-submerged and submerged components, respectively. In order to obtain 

these protection grades, the ISO 12944 standard recommends employing multilayer 

coatings with thickness between 320 and 500 µm for a C5-M category in the atmospheric 

zone, and between 480 and 1000 µm for the splash zone and submerged components 

(Im2). According to the standard, these specifications should be enough to assure a 

component durability of 15 years [17]. On the other hand, the NORSOK standard does 

not specify a coating thickness range, but a minimum thickness. Therefore, a coating 

requiring a C5-M category should be at least 280 µm, whereas submerged components 

should have a minimum of 350 µm for an Im2 category [18].  

Protective coatings selected for marine environment strongly depend on the exposure 

zone and must provide the system with specific properties to assure infrastructures 

durability. Typical coating systems employed in offshore applications [21] with the 

desired properties depending on the exposure zone are compiled in Table 5.5.1. 

Table 5.5.1 Typical coating systems employed in offshore applications in the different exposure zones [21], 
with the desired properties and corrosivity category required (ISO 12944 [17]) 

Exposure zone Coating system 
Desirable coating 

properties 

Atmospheric 

C5-M 

(ISO 12944) 

Zinc rich epoxy primer (60-100 µm) Corrosion-resistant, 

erosion-resistant, anti-

icing, 

UV-resistant 

Epoxy intermediate layer (100-120 µm) 

Polyurethane top-coat (50-80 µm) 

Splash and tidal 

C5-M and Im2 

(ISO 12944) 

Two or three epoxy-based coats (>1000 µm in total) Combination of 

atmospheric and 

submerged coatings´ 

properties 
Polyurethane top-coat (50-80 µm) 

Submerged 

Im2 

(ISO 12944) 

Two or three epoxy-based coats (>450 µm in total) 

Corrosion-resistant, 

antifouling, wear-

resistant 

In this work, three coatings used in offshore component protection have been evaluated. 

The selected coatings are commercial coatings currently used in the protection of steel 

submerged components in mooring line systems. In a previous work, the corrosion and 

tribocorrosion (wear+corrosion) behavior of the three coatings was evaluated [22]. 

Furthermore, the characterization of the coatings, in terms of thickness, hardness, 

porosity and microscopic analysis of the morphologies, was included in the first part of 

this work [22]. In the second part of the study, compiled within this document, the 

corrosion protection effectiveness of the coatings was assessed according to the ISO 

12944 and NORSOK M-501 standards by performing aging tests on different cabinets. 

This work was carried out before the ISO 12944-9 was published, so the conditions and 

exposure times employed were those in the ISO 12944-6, for the C5-M/Im2 (high) 

category. On the other hand, the combined aging test performed in this work was 

performed according to the ISO 20340 and NORSOK M-501. However, after the 

publication of the ISO 12944-9, where this test procedure is recommended, ISO 20340 

was withdrawn. Therefore, no longer mention to the ISO 20340 is made throughout the 

document, and these tests are referred to the new ISO 12944-9. 

 Experimental procedure 

5.5.2.1 Materials and sample preparation  

In the present work, the effectiveness of three coatings for offshore structural steel 

protection has been evaluated. The coatings studied in this work were the following: 
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• Thermally Sprayed Carbide (WC-CrCo) with an organic sealant (C1) 

• Arc Thermally Sprayed Aluminum with an organic topcoat (C2) 

• Epoxy based organic coating reinforced with ceramic particles (C3) 

The coatings were applied on R4 [23] steel grade panels of 100x150 mm2, which were 

mechanized to obtain samples of 100x75 mm2. The uncoated backside and edges of the 

panels were isolated with an insulating wax to avoid corrosion of the steel substrate to 

affect the results. The exposed area of these samples was of 71 cm2. 

5.5.2.2 Corrosion-aging tests 

The ISO 12944 and the NORSOK M-501 standards propose several accelerated aging 

tests such as immersion (ISO 2812-2[24]), water condensation (ISO 6270[25]) or salt-

fog exposure (ISO 9227[26]); and the minimum time for the protective system to be 

effective depending on the corrosivity category and durability. The NORSOK M-501 and 

the ISO 12944-9 also propose an accelerated test combining UV irradiation (ISO 

11507[27]), salt spray (ISO 9227) and low-temperature exposure in different chambers, 

to reproduce the aging conditions of the marine atmosphere. The exposure times that 

the coatings must fulfill without losing their protective effectiveness to achieve the C5-M 

and Im2 categories, according to the ISO 12944 standard, are listed Table 5.5.2 for the 

different aging tests. 

Table 5.5.2 Minimum exposure time for the coatings to achieve the C5-M and Im2 categories according to 
the ISO 12944 standard [17] 

Category 
Durability 

ranges 

ISO 2812-2 [24] 

(Immersion in water) 

ISO 6270-2 [25] 

(Water condensation) 

ISO 9227 [26] 

(Salt spray test) 

C5-M 

Low - 240 480 

Medium - 480 720 

High - 720 1440 

Im2 

Low - - - 

Medium 2000 - 720 

High 3000 - 1440 

In all the tests, visual inspections were performed periodically, so as to detect the 

presence of any defect such as blisters, cracks, delamination of the coating or corrosion 

of the substrate. All the samples were exposed in the chamber for the maximum duration 

to achieve the C5-M High category, unless premature failure of the coating due to the 

appearance of defects was detected (ISO 4628 1-5 [28]). 

Immersion tests (ISO 2812-2) 

The resistance of the coatings to immersion was analyzed according to the ISO 2812-2 

[24] standard (Table 5.5.3). The test was performed in a Julabo ED thermostatic bath. 

The temperature of the bath was fixed at 40 ºC, and the circulation and aeration system 

of the water was activated during the whole test duration. The total duration of the test 

was of 3000 hours (Im2-High category). Three samples of each coating were tested. 

Water condensation tests (ISO 6270) 

A water condensation test was performed according to the ISO 6270-2 standard to 

analyze the resistance of the coatings to humidity under water condensation conditions. 

The standard describes three water atmospheres: 

• Condensation atmosphere with constant humidity (CH) 

• Condensation atmosphere with alternating humidity and air temperature (AHT) 
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• Condensation atmosphere with alternating air temperature (AT) 

The conditions of the three tests are summarized in Table 5.5.3. The test cycles were 

repeated until a total duration of 720 hours was completed. The test was performed in a 

Kesternich HK300-800 S/M humidostatic chamber. Three samples of each coating were 

introduced in the chamber, for each test alternative.  

Salt spray tests (ISO 9227) 

Corrosion-aging tests in neutral salt spray chamber were performed under the conditions 

specified in the ISO 9227 standard (Table 5.5.3) in an ASCOTT 2000S chamber. Six test 

samples were prepared for each coating. In three of these samples, an X-shaped incision 

that reached the steel substrate was made (ISO 17872 [29]). No incision was made in 

the C1 coating, due to the high hardness of the tungsten carbide, and the six samples 

were introduced in the chamber without an incision. According to EN ISO 12944-6 

standard, the corrosion from the scratch in the samples with incision shall not exceed 1 

mm, calculated as:  

𝑀 =
𝐶−𝑊

2
     (5.5.I) 

Where W is the original width of the scratch, and C the maximum width of corrosion 

across the scratch, in millimeters. In the samples with the incision, adhesion tests were 

performed at the end of the exposure, following the ASTM D3359 standard [30]. 

Combined-aging test (NORSOK M-501, ISO 12944-9) 

The coatings were aged by combining the exposure to several climatic environments, in 

accordance with the procedure described in the NORSOK M-501 and ISO 12944-9 

standards. The test consisted of combining the exposure to UV radiation and 

condensation (ISO 11507, A method), with the exposure to salt spray (ISO 9227) and 

low temperature. The duration of exposure to different conditions is presented in Table 

5.5.3. The UV/condensation period was performed in an Atlas UVTest weathering 

device. The UV lamps employed in the test were type II UV lamps (UVA-340), of 340 nm 

(ISO 11507). The salt spray and low-temperature periods were carried out in an ASCOTT 

2000S chamber and in a WEISS C340/70 climatic chamber, respectively. The 

UV/condensation period was started with the UV radiation and finished with 

condensation. The coatings were rinsed with deionized water between the salt spray and 

the low-temperature periods. The temperature of -20±2 ºC of the low-temperature period 

was reached in less than 30 minutes from the moment the samples were introduced into 

the chamber. The cycle was repeated 4 times, for a total duration of 720 h. The samples 

were evaluated three times per cycle after the samples were removed from each 

chamber.  
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 Results and discussion 

The results of the corrosion-aging tests for the three coatings in different climatic 

chambers, and their categorization in accordance with the ISO 12944 and NORSOK M-

501 standards are briefly recapitulated within this section. 

5.5.3.1 Immersion tests (ISO 2812-2) 

Immersion tests were performed to evaluate the resistance of the coatings to water 

immersion. The final surface state of the samples is presented in Fig. 5.5.2, comparing 

the tested samples with an untested one.  

In the first evaluation after 168 hours of immersion, C1 coating samples presented some 

decolorized zones in the surface. This could be a consequence of the partial removal of 

the organic sealant applied on top of the sprayed carbide. After 336 hours, two small 

ferritic pits were detected in one of the samples. The discoloration of the samples was 

more evident with increasing exposure time. In the evaluation performed at 1344 hours, 

ferric corrosion was observed in the edges of the samples, close to the insulating wax, 

which was formed due to cavitation effect, and by the possible penetration of water under 

the wax leading to corrosion of the underneath steel. This corrosion spread with time, 

but no corrosion sign was detected in the middle zone of the surface. At the end of the 

exposure, the tone of the tested samples was more brownish color, and several 

decolorized and brighter zones were distinguished as a consequence of the sealant loss. 

The corrosion present in the edges was not considered as a coating failure, since it was 

observed to be caused by a non-adequate insulating property of the organic wax. The 

microscopic analysis of the surface revealed some isolated pits along the surface, in a 

lower density than 1 % of the total surface (Fig. 5.5.3).  

In the case of C2 coating, the presence of ferric corrosion pits was detected close to the 

edges in the first evaluation at 168 hours. These pits corresponded to the oxidation 

undergone by some metallic particles that were embedded in the surface of the coatings 

during machining processes, i.e., contaminants. After 672 hours, the apparition of white 

salts resulting from the oxidation of the aluminum layer beneath the organic topcoat was 

observed. The state of the coating remained unaltered in the following evaluations at 

longer immersion times. The final surface state of the coating was similar to that of the 

untested sample, in terms of color and bright, and no presence of ferric corrosion coming 

from the steel substrate was detected.  

The samples of C3 coating presented a loss of brightness from the first evaluation at 168 

hours of exposure, showing a considerably paler tone. After 504 hours, a blister 

appeared in one of the three samples (Fig. 5.5.4), which was removed from the chamber 

thereafter. The microscopic analysis of the transversal surface of the blister showed the 

presence of ferric corrosion products, revealing the underneath corrosion of the substrate 

by electrolyte penetration through the coating. In the next evaluation, at 672 hours, some 

blisters were detected in the other two samples. The samples were kept in the chamber 

until the 3000 hours of immersion were reached, and the blisters were observed to 

increase in size and number with higher exposure time. At the end of the test, the surface 

of both samples was covered with blisters (Fig. 5.5.2). In accordance with the UNE EN-

ISO 4628-2 standard, the blistering grade of the three samples was the following: 

• C3-sample No.1: 4(S4) 

• C3-sample No.2: 2(S4) (removed from the chamber after 504 hours of immersion) 

• C3-sample No.2: 4(S5) 
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C1 and C2 coatings passed the 3000 hours of immersion, achieving the Im2(High) 
category (ISO 12944-6), whereas C3 coating did not pass the immersion test, not even 
reaching the 2000 hours of immersion required for an Im1(Medium) category (Table 
5.5.7). 

C1 

 

C2 

 

C3 

 
Fig. 5.5.2 Visual appearance of the R4-coated samples after 3000 hours of immersion in accordance with 

the ISO 2812 standard 

 
Fig. 5.5.3 Optical microscopies of the C1 coating surface showing corrosion pits 
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Fig. 5.5.4 Surface state of sample No.2 of the C3 coating showing blisters after 504 hours of immersion 

(left) and micrograph of the ferric corrosion products formed under the blister (right) 

5.5.3.2 Water condensation tests (ISO 6270) 

The resistance of the coatings to humidity under water condensation conditions was 

evaluated under three atmospheres, i.e., constant humidity (CH), alternating 

temperature and humidity (AHT), and alternating temperature (AT). The final surface 

appearance of the tested coatings compared with an untested sample is presented in 

Fig. 5.5.5. Table 5.5.4 summarizes the results obtained after the condensation tests, 

expressed as the surface percentage covered by ferric corrosion (FC), white salts (WS) 

and blistering grade.  

In the three exposure atmospheres, C1 coating presented some decolorized zones in 

the surface after several hours in the cabinet, as a consequence of the partial elimination 

of the sealant applied on top of the sprayed carbide. This was observed after 110 in CH 

test, and after 278 hours in AHT and AT tests. Furthermore, ferric corrosion was 

observed to appear in all the samples close to edges. As previously explained in the 

immersion tests, this corrosion phenomenon was due to cavitation effects in the edges 

of the insulating wax and was not considered as a coating failure. The color of the coating 

changed with increasing exposure, as a consequence of the sealant degradation, 

acquiring a more reddish tone (Fig. 5.5.5). In the AHT test, some characteristic red/brown 

colored corrosion products were observed in the center of one of the samples, but the 

surface coverage by these corrosion products did not exceed the 1 %, so the coating 

was considered to pass the three tests successfully, with a C5-M(High) category (ISO 

12944-6). 

In the case of C2 coating, all the samples presented some red spots on the surface, 

corresponding to ferric oxides. These oxides, however, did not came from substrate 

corrosion but from corrosion of metallic particles that were embedded in the coating 

surface during sample machining process. No significant changes were observed in the 

coating during the exposure to the three condensation atmospheres in terms of ferric 

corrosion, blistering, cracking, or color change. In CH test, the presence of white salts 

resulting from the aluminum oxidation was detected after 614 hours. One of the samples 

for the AHT test was prepared with a smaller exposed surface, due to several 

imperfections presented in the top of the coating, in order to avoid the influence of those 

defects on the final results. No defects such cracks, ferric corrosion, or blisters were 

detected in any sample of AHT test, not even white salts from aluminum oxidation. 

Finally, in the AT test, white salts appeared after 336 hours just in one of the samples. 

Therefore, C2 coating passed the three condensation tests, achieving a C5-M(High) 

category (ISO 12944-6).  
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The samples of C3 coating showed color and brightness loss after several hours of 

exposure, but no presence of ferric corrosion, cracks, or other defects was detected 

during the evaluations. The only defects appeared in the CH test samples, which 

presented a significant part of the surface covered by blisters. According to the UNE EN-

ISO 4628-2 standard, the blistering grade of the three samples was the following: 

• C3-sample No.1: 2(S3) 

• C3-sample No.2: 2(S4)  

• C3-sample No.2: 2(S4) 

Table 5.5.4 Summary of the oxidation and blistering grade of the coatings after the condensation tests in 
accordance with the ISO 6270-2 standard [25] 

Coating 
Oxidation grade 

 
Blistering grade 

CH AHT AH CH AHT AH 

C1 

Sample 1 3%E* 2%E 3%E  0% 0% 0% 

Sample 2 3%E 2%E+1%C* 2%E  0% 0% 0% 

Sample 3 3%E 1%E -  0% 0% - 

C2 

Sample 1 1%WS* 0% 0%  0% 0% 0% 

Sample 2 1%WS 0% 1%(WS)  0% 0% 0% 

Sample 3 1%WS 0% -  0% 0% - 

C3 

Sample 1 0% 0% 0%  20% 0% 0% 

Sample 2 0% 0% 0%  30% 0% 0% 

Sample 3 0% 0% -  30% 0% - 

(*) E: ferric corrosion at edges; C: ferric corrosion at the center; WS: white salts 

Consequently, C3 coating was classified with C5-M(High) category for the AHT and AT 

tests, and with a C4(High)/C5-M(Medium) category for the CH test, corresponding to an 

optimal surface condition of the coating for 480 hours of exposure to constant humidity 

(ISO 12944-6) (Table 5.5.7).  

5.5.3.3 Salt spray tests (ISO 9227) 

The coatings were exposed to salt spray conditions to evaluate the resistance to saline 

corrosive environment. The final surface appearance of the tested samples with and 

without incision are presented in Fig. 5.5.6. In the case of C1, the six samples were 

tested without an incision, and just the final state of three of the samples are presented 

in Fig. 5.5.6, as representative of all the samples. Table 5.5.5 summarizes the 

degradation observed in the coatings along the different evaluations, in terms of 

percentage of ferric corrosion or white salts, and progression of ferric corrosion.  

C1 coating remained unaltered for the first 504 hours of exposure, after which corrosion 

was observed to spread in all the samples. After 1440 hours in the chamber, four of the 

six samples presented a 25-30 % of the surface covered by ferric corrosion. The color of 

the coating changed with exposure time, acquiring a purple tonality. The surface 

evaluated with a magnifying glass revealed the presence of ferric pits along the whole 

exposed surface (Fig. 5.5.7). The oxidation grade of the coating was Ri4(S2), in 

accordance with the UNE-EN ISO 4628-3 standard.  
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  Without incision With incision 

 C1 

 

 

 C2 

 

 

 C3 

 

 

Fig. 5.5.6 Visual appearance of the coatings surface with and without incision after 1440 hours of exposure 
to salt spray, according to the ISO 9227 standard 

 

 
Fig. 5.5.7 Surface estate of C1 coating after 1440 hours of exposure to salt spray, showing ferric pits along 

the whole exposed surface 
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In the case of C2 coating, the presence of white salts was detected after 672 hours in 

the chamber. These salts were observed in the form of small pits, which increased in 

size with exposure time. The surface percentage covered by white salts was of 5% after 

1178 hours and increased reaching the 5-10 % at the end of the test. The samples of C2 

coating with incision did not present ferric corrosion in either evaluation. White salts were 

observed from the first evaluation at 504 hours. The adhesion test results of the samples 

with incision was of 5A grade for two of the three samples, corresponding to the higher 

grade of the scale, with no detachment of the coating. The third sample was classified 

as 4A, since a small trace of the coating was removed with the adhesive tape. 

C3 coating remained unaltered for 840 hours, when the presence of one blister was 

detected in two of the three samples without incision, but the apparition of new blisters 

or other defects was not observed in the following evaluations. The third sample 

remained unaffected until the end of the test. The samples with incision showed the 

progression of ferric corrosion from the first evaluation at 504 hours. Ferric corrosion 

spread with exposure time, exceeding the 2 mm in two of the three samples after 1370 

hours. Furthermore, a blister was detected in one of these samples. The adhesion results 

were 5A grade for two of the samples, and 4A for the third one. 

Considering the high amount of ferric corrosion in C1 coating, and the presence of a 

blister in C3 coating, the failure of these two coatings was estimated at 504 and 672 

hours, respectively, so they were classified as C4(Medium)/C5-M(Low) category (ISO 

12944-6). C2 coating, however, overcame the 1440 hours of exposure to salt spray with 

no ferric corrosion presence, and it was classified as C5-M(High) category (ISO 12944-

6) (Table 5.5.7). 

5.5.3.4 Combined-aging test (NORSOK M-501, ISO 12944-9) 

In the combined-aging test, the coatings were exposed to different atmospheres, so as 

to reproduce climatic conditions. The samples were subjected to UV radiation and water 

condensation, salt spray, and low temperature. The visual appearance of the coatings at 

the end of the test is depicted in Fig. 5.5.8, and the degradation in terms of ferric 

corrosion coverage of the samples and blistering are summarized in Table 5.5.6. 

Ferric corrosion was observed in coating C1 samples from the end of the first exposure 

to salt spray, covering a 1% of the exposed surface. This corrosion appeared close to 

edges of the samples, as a consequence of cavitation effects under the insulating wax 

employed. The samples lost their initial brightness, as a consequence of the degradation 

and elimination of the organic sealant. Ferric corrosion increased during the second test 

cycle, and the samples acquired a more reddish tone in the entire surface. The tonality 

change undergone by the coating was observed to be the consequence of the presence 

of ferric pits distributed along the exposed surface of the samples (Fig. 5.5.9).   

In the case of C2 coating, oxides coming from metallic impurities were observed, similarly 

to the previous tests. Some white salts resulting from aluminum oxidation were detected 

in one of the samples during the second cycle, but no more changes were observed in 

any sample during the rest of the exposure. The color and appearance of the samples 

did not change during the test, and ferric corrosion or other defects were not detected.    

C3 coating showed discoloration and brightness loss from the first exposure to UV 

radiation, especially in the center of the samples. The color change was more noticeable 

with increasing exposure, but no other defects such as blisters or ferric corrosion were 

observed in any sample. 
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C1 

 

C2 

 

C3 

 
Fig. 5.5.8 Visual appearance of the coatings surface after 720 hours of exposure to combined aging 

according to the ISO 20340 and NORSOK M-501 standards 

  
Fig. 5.5.9 Surface estate of C1 coating after 720 hours of exposure to combined aging, showing ferric pits 

along the whole exposed surface 

Considering the significant number of ferric corrosion pits present in the surface of the 

samples, C1 coating did not pass the combined aging test. On the other hand, C2 and 

C3 coatings passed the test, showing just discoloration and brightness loss in the case 
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of C3 coating, which does not compromise the protective performance of the coating 

(Table 5.5.6).  

Table 5.5.6 Summary of the oxidation and blistering grade of the coatings after the combined aging test in 
accordance with the ISO 12944-9[20] and NORSOK M-501[18] standards 

Coating Oxidation grade Blistering grade 

C1 

Sample 1 16% 0% 

Sample 2 4% 0% 

Sample 3 12% 0% 

C2 

Sample 1 2% (Inclusions) 0% 

Sample 2 2% (Inclusions) 0% 

Sample 3 3% (Inclusions) 0% 

C3 

Sample 1 0% 0% 

Sample 2 0% 0% 

Sample 3 0% 0% 

 

Table 5.5.7 Summary of the corrosivity categories of the ISO 12944-6[17] standard obtained for the coatings 
in the different corrosion-aging tests performed 

Test/Standard Type 
Coating Category (ISO 12944-6) 

C1 C2 C3 

Immersion  

ISO 2812 
- Im2(High) Im2(High) No pass (Blistering) 

Condensation  

ISO 6270 

CH C5-M(High) C5-M(High) C4(High)/C5-M(Medium) 

AHT C5-M(High) C5-M(High) C5-M(High) 

AT C5-M(High) C5-M(High) C5-M(High) 

Salt spray 

ISO 9227 
- C4(Medium)/C5-M(Low) C5-M(High) C4(Medium)/C5-M(Low) 

Combined aging 

ISO 12944-9 

NORSOK M-501 

- Not passed Passed Passed 

 

 Conclusions 

In the present work, the effectiveness of three coatings for the corrosion protection of 

offshore structural steel has been evaluated, according to the ISO 12944 and NORSOK 

M-501 standards. The corrosivity category of the coatings was determined for each aging 

test condition (ISO 12944). The conclusions of this work were the following: 

• From the immersion tests (ISO 2812-2), the only coating that did not reach the 4000 

hours of immersion was C3 coting. Blisters were detected to appear after 504 hours 

in one of the samples, and after 672 hours in the other two samples. C1 and C2 

coatings were classified as IM2(High), overcoming the 4000 hours of exposure 

without the appearance of any defect. 

• Regarding the water condensation tests (ISO 6270), C1 and C2 coatings obtained 

the C5-M(High) category in the three water atmospheres. C3, however, was 

classified as C5-M (High) in AHT and AT atmospheres, and as C4(High)/C5-

M(Medium) due to the apparition of blisters after 614 hours of exposure. 

• In the case of salt spray tests (ISO 9227), C2 was the only coating reaching the C5-

M(High) category. C1 and C3 coatings were classified as C4(Medium)/C5-M(Low), 

after the presence of ferric corrosion (480 hours) in C1 coating and blisters (972 

hours) in C3 coating were detected. The adherence measured for C2 and C3 

coatings in the samples with incision was of 4A/5A, according to ASTM D3359 
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standard. The adherence of C1 coating was not measured, since the incision could 

not be made in the hard carbide layer.  

• With respect to combined-aging tests (NORSOK M-501, ISO 12944), C1 coating did 

not pass the test since the surface of the samples was covered by a considerable 

amount of ferric corrosion at the end of the test. On the other hand, C2 and C3 

coatings pass the test, showing just some discoloration and loss of brightness, 

maintaining the protective properties. 

• Finally, the only coating that reached the higher category and overtook all the test 

atmospheres was C2 coating.    
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ABSTRACT 

Thermally Sprayed Aluminum (TSA) coatings have been widely employed to protect steel 

components from corrosion in the marine environment. However, TSA is highly damaged in 

transport operations, due to the low wear resistance of aluminum, leading to a rapid coating 

deterioration during final service. In this work, the TSA properties have been improved by Plasma 

Electrolytic Oxidation (PEO) technique. The response of the newly generated TSA/PEO duplex 

system was investigated by means of sliding wear tests, electrochemical corrosion tests, and 

tribocorrosion tests in synthetic seawater. The study was completed with several characterization 

techniques, including SEM and confocal microscopy, and X-ray diffractometry. 

Keywords: Offshore; Corrosion; Tribocorrosion; Coatings; Thermally Sprayed 

Aluminum; Plasma Electrolytic Oxidation 

 Introduction 

Marine environment is a very aggressive working atmosphere, that comprises several 

phenomena that can accelerate the degradation of structural materials reducing their 

useful life. The exposition to ultraviolet radiation, chloride-rich salty environment, 

frequent wet-dry cycles, high humidity, low temperature, and the presence of marine 

bacteria and microorganisms are some examples. Corrosion is one of the phenomena 

that worst affect the deterioration of materials in offshore applications. The high salinity 

and low electrical resistivity of seawater make this environment especially aggressive 

[1]. In certain applications, materials are also subjected to mechanical stresses that can 

lead to premature failure of components and structures. This is the case of Oil&Gas 

platforms, wind towers, renewable energy extraction systems, and mooring lines, inter 

alia. Abrasion, impact, and wear generated by waves, wind, ocean currents, floating 

objects, sand, and heavy waves are the major stress types [2]. Mooring lines, for 

instance, are subjected to severe wear degradation in the connection between links and 

accessories, as a consequence of the relative movement generated between 

components by waves, wind, and ocean currents [3-7]. Offshore structures, as well as 

mooring lines, are also exposed to abrasion and impact in the splash zone generated by 

heavy waves, floating wastes, sand particles, and other contaminants present in 

seawater [2,8,9]. Corrosion is also more severe in the splash zone, where the 

concentration of oxygen is higher [3,9,10]. Wear and corrosion are two processes that 

lead to an irreversible degradation, and whenever they take place simultaneously, the 

process is known as tribocorrosion. Tribocorrosion involves a synergism between wear 
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and corrosion, since the total material loss when the two processes occur simultaneously 

is greater than when they act alone [6,7,11-13].  

Steel is the most employed structural material in offshore applications, usually mild or 

low-alloyed, due to their good properties and relatively low cost compared to high-alloyed 

steels [8]. High-Strength Low-Alloyed (HSLA) steels, for instance, are widely used for 

their high mechanical properties, with yield strengths in the range of 460-960 MPa, and 

relatively low weight [14,15]. This kind of steels is used in jack-ups and legs, pipelines, 

tethering attachments for floating structures in Tension Leg Platforms (TLPs), mooring 

lines of semi-submersible structures, etc. [14,16,17]. However, due to their low alloying 

content, HSLA steels possess low corrosion resistance in seawater, with corrosion rates 

around 250 microns per year [9,18].  

In order to save the elevate maintenance and replacement costs of damaged elements, 

and avoid premature failure of infrastructures or components, protective coatings have 

been widely used to protect steel in the marine environment. The selection of the 

appropriate coating strongly depends on the exposure zone, since the requirements and 

desirable properties of the coating vary with the degradation phenomena taking place in 

each exposure location [19]. In splash zone, for instance, the coating should provide the 

steel structures and components with both corrosion and wear resistance, whereas, in 

the atmospheric zone, the coating should also be resistant to UV radiation and icing 

conditions. Thermally Sprayed Aluminum (TSA) coatings have been widely used for the 

protection of submerged components [13,19,20], providing effective service life for 30 

years in different exposure zones [10,13,21]. The aluminum deposited on steel substrate 

acts as a sacrificial anode, providing the steel with an additional cathodic protection. 

However, the poor wear resistance of the aluminum can be a major drawback [22]. The 

coatings in structural components and other elements are not applied in situ, due to the 

complexity of coating technologies and equipment dimensions. Some studies have 

revealed that the 45% of the damage in coatings by mechanical stresses is mainly 

generated during transport and erection operations [2]. Hence, if the TSA coating is 

damaged or partially removed before installed in the final application, the defects 

generated in the coating can accelerate the further dissolution of the aluminum by 

galvanic corrosion mechanism. On the other hand, in certain applications such as 

mooring lines, wear between links also leads to fast deterioration of the aluminum in 

working conditions. Therefore, the improvement of the wear resistance of the sprayed 

layer is a major concern to assure the durability of the coating.  

In this work, a TSA coating has been treated by Plasma Electrolytic Oxidation (PEO) 

technique in order to provide the coating with an enhanced wear resistance. Plasma 

Electrolytic Oxidation, also named Micro Arc Oxidation (MAO) technique, is an 

electrochemical process of oxidation that allows the generation of ceramic oxide coatings 

with improved hardness, adhesion, wear and corrosion resistance [23-32]. The process 

involves an anodic polarization of the sample to high voltages, exceeding the dielectric 

breakdown voltage, so as to generate discrete short-lived plasma micro-discharges in 

the surface [23,24,26,29,32-34]. PEO technique is based on the conventional anodizing, 

with similar configuration, but higher voltages (300-600 V) and current densities (100-

500 mA/cm2) are employed. The high voltages allow the generation of plasma micro-

discharges, facilitating the diffusion of oxygen ions through the discharge channels 

present in the oxide film, to react with the substrate forming the anodic film [23,24,28,31-

33,35]. Due to the rapid development and extinction of the discharges, within 10-4 and 

10-5 seconds, the substrate is not subjected to thermal damage. The characteristics of 

PEO-generated coatings are superior to those of conventional and hard anodizing 

coatings, in terms of wear and corrosion resistance, and higher thickness [24]. The better 
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properties are associated with the presence of high-temperature phases, e.g., Al2O3, 

generated during PEO process by rapid melting by micro-discharges and cooling in 

contact with refrigerated electrolyte [29,32,33,35]. Another difference between the two 

processes, is the employment of environmentally friendly alkaline electrolytes in PEO, 

making it a more sustainable process, which has grown the interest in several industrial 

sectors to replace conventional anodizing [24-27,36]. This technique has widely been 

used for coating light metals such as aluminum, magnesium, titanium, and their alloys 

for a large number of applications, i.e., aerospace, automobile, biomedical, etc. 

[24,25,27,35]. Some researchers have developed ceramic PEO coatings on steel by 

using a pretreatment of the surface, such as hot-dipping in aluminum [37,38]. W. Gu, et 

al. prepared PEO coatings on arc-sprayed aluminum, and evaluated the corrosion 

response of the generated duplex-system [39]. While the corrosion behavior of PEO 

coatings generated in aluminum has been widely investigated [23,31-34], little 

investigation has been done on the tribocorrosion response of aluminum PEO coatings. 

Furthermore, the tribocorrosion response of PEO generated coatings on TSA has not 

been investigated yet. 

The aim of this work is to enhance the wear and tribocorrosion performance of a TSA 

coating used in submerged component protection, modifying the aluminum layer by PEO 

technique. These components are exposed to wear conditions during transport and 

erection, and corrosion and tribocorrosion conditions during their service life while 

immersed in the ocean. Therefore, the corrosion, wear and tribocorrosion response of 

the generated duplex coating was investigated. For this aim, electrochemical corrosion 

tests consisting of electrochemical impedance spectroscopy and potentiodynamic 

polarization measurements were performed in synthetic seawater (ASTM D1141). The 

wear resistance was evaluated by performing dry abrasion tests under ball-on-disc 

configuration in a unidirectional tribometer. Finally, the wear-corrosion (tribocorrosion) 

behavior was studied using the same tribometer and configuration with the samples 

immersed in synthetic seawater, monitoring both electrochemical and tribological 

responses. The results of the developed duplex coating were compared with the as-

sprayed coating and the steel substrate. The study was completed with several 

characterization techniques, including SEM and confocal microscopy, pull-off adhesion 

tests, hardness and roughness measurements, and X-ray diffractometry.  

 Materials and methods 

5.6.2.1 Materials  

In the present work, the response of a modified TSA coating by PEO technique was 

analyzed in terms of wear, corrosion, and tribocorrosion resistance. The selected coating 

system is used in the protection of offshore mooring line components, such as chain links 

and accessories. These elements are manufactured of High-Strength Low-Alloy steels, 

which are classified into five grades depending on their ultimate strength: R3, R3S, R4, 

R4S and R5[40]. In this study, R4 steel grade samples were used as substrates.  

Steel panels were extracted from real chain components and coated by arc Thermal 

Spray technique with an aluminum layer. Prior to the spraying process, the panels were 

sand-blasted to remove any dust or impurities, and to provide the substrate with proper 

roughness to increase the coating bonding strength to the substrate [41,42]. The 

aluminum was deposited by arc spray method using a Margarido Mod-M45 equipment, 

using Al1050 wires of 1.60 mm in diameter (Oerlikon Metco). The optimized spraying 

parameters are listed in Table 5.6.1. With these process parameters, coating layers of 

250-300 µm were reached.  



Results and discussion, Part II 

 

 
188 

Table 5.6.1 Deposition parameters of the arc spraying process 

Air 

pressure 

Spraying 

Voltage 

Spraying 

Current 

Spraying 

distance 

Wire feed 

rate 

Deposition 

rate 

6-7 bar 30-32 V 90-150 A 30 cm 12.8 m/min 140 g/min 

5.6.2.2 Plasma electrolytic oxidation 

After the spraying process, the samples were subjected to a Plasma Electrolytic 

Oxidation (PEO) process. Prior to the PEO process, the TSA-coated panels were ground 

with 400 grit polishing paper to ensure reproducible initial surface conditions in all the 

samples. Then, the panels were cleaned in an ultrasonic bath with ether and acetone, 

rinsed with alcohol and dried with air. The treatments were performed in a commercial 

KERONITE KT 20-50 (20KW AC power supply) equipment. The electrolyte used was an 

aqueous standard aluminum electrolyte provided by KERONITE with a pH of around 2, 

and a conductivity of 6.82 mS/cm, which composition is confidential. After several trials, 

the more suitable process parameters to obtain thick oxide layers with low porosity in the 

TSA/PEO interface were selected: 25 A/dm2 for 135 minutes. In this work, the results 

obtained in the optimization of process parameters are not presented. The test 

equipment is composed of a water-cooled bath with a stirring system that ensured the 

electrolyte temperature to be below 20 ºC in all the processes. A stainless steel mesh 

was used as the cathode, whereas the TSA-coated steel samples were connected as 

the anodes. The total area of the samples exposed in each process was of 69.12 cm2. 

After the PEO process, the samples were cleaned ultrasonically with ether and acetone, 

rinse with alcohol and dried with compressed air.  

5.6.2.3 Coatings characterization  

The roughness of the as-sprayed and PEO-treated coatings was determined in a 

Perthometer M2 (Mar GmBH) profilometer (DIN EN-ISO 4288). The thickness of the 

coatings was measured from the cross-section profile in an Olympus GX71 optical 

microscope (UNE-EN ISO 1463). The hardness was assessed in a Future-Tech FM-700 

microhardness tester, equipped with Vickers indentation equipment (UNE-EN ISO 6507-

1). The measurements were performed using a Vickers diamond pyramid indenter, with 

an indentation time of 15 s, under a load of 100g for the R4 steel substrate and PEO 

layer, and under 25 g for the TSA coating.  

The morphology of the coatings was analyzed by Field Emission Scanning Electron 

Microscope (FE-SEM) equipped with Energy Dispersive X-ray Spectrometer (EDS), from 

OXFORD INCA Synergy. The porosity degree was obtained from the SEM cross-

sectional images by image analysis software (AnalySIS pro). The chemical composition 

of the samples was assessed by EDS. The phase structure of the PEO coatings was 

defined by X-ray diffraction (XRD) analysis in a D8 Advance diffractometer from Bruker, 

using a Cr-Kα1 radiation source operating at 40 mA and 40 kV, in the 2θ=5-160º range 

with steps of 0.06º and time step of 0.5 s. The results were analyzed with a DIFRAC.EVA 

software from Bruker.   

Finally, the adhesion of the TSA and the TSA/PEO coating systems was analyzed by a 

pull-off adhesion test (PosiTest AT-A), with dollies of 20 mm in diameter at a tensile rate 

of 0.7 MPa/s (ISO 4624). The adhesive used in the tests was a methyl-based LOCTITE 

496. Four repetitions were performed for each coating system, and the mean value was 

obtained. The fracture type was analyzed according to ISO 4624.  
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5.6.2.4 Electrochemical corrosion tests 

For the electrochemical corrosion tests, a three-electrode set-up was used, with the test 

sample as working electrode, a platinum wire as counterelectrode, and a commercial 

Ag/AgCl (KCl 3M) as reference electrode (+207 mV/SHE). The electrodes were 

connected to an Autolab-Metrohm PGSTAT30 potentiostat equipped with FRA32M and 

EDC modules. Synthetic seawater with heavy metals (ASTM D 1141) was used as the 

electrolyte. 50 ml of this solution was employed in each test. The tests were performed 

at room temperature (23±2 ºC) and aerated conditions, and the exposed surface of all 

the samples was of 2.31 cm2. The results of the coatings were compared with the un-

coated steel samples, which were mirror polished (Ra<0.05 µm) before testing. All the 

tests were performed by triplicate to ensure the reproducibility of the results.  

The corrosion tests consisted of two test series: potentiodynamic Polarization (PDP) and 

Electrochemical Impedance Spectroscopy (EIS) measurements. PDP tests were 

performed after one hour of immersion, once the potential of the samples was stabilized. 

The potential ranged from -400 mV to +1600 mV with respect to the open circuit potential 

(OCP vs. Ag/AgCl) of each sample, at a sweep rate of 0.166 mV/s. In the second test 

series, the evolution of coatings performance with immersion time was assessed by 

performing EIS measurements. The impedance data was registered after 24 hours, and 

weekly until 1512 hours (9 weeks) of immersion were completed. The measurements 

were registered under a sinusoidal AC perturbation of ±10 mV amplitude, at a frequency 

range from 10 kHz to 1 mHz, with 10 points per frequency decade. At the end of the 

tests, the surface of the samples was analyzed by scanning electron microscopy (FE-

SEM / EDS). 

5.6.2.5 Abrasion and tribocorrosion tests  

Abrasion tests were performed in a unidirectional MicroTest MT/10/SCM tribometer 

under ball-on-disc configuration. In these tests, sliding represents the wear conditions 

between components in dry conditions, as in the case of transport and erection in the 

final location. The contact conditions were calculated using the Hertzian Contact Theory 

[43], considering the real contact pressure between links in real applications, as already 

performed in previous works [6,7,19]. The normal load was of 5 N, corresponding to an 

average Hertzian pressure of 930 MPa with a contact radius of 50.5 µm. An alumina ball 

of 10 mm in diameter (G28) was used as the countermaterial. The ball described a wear 

track of 10 mm in diameter at a rotation speed of 100 rpm. The duration of the sliding 

abrasion test was of 40 minutes, during which the coefficient of friction (COF) was 

registered.   

The tribocorrosion experiments were conducted in the same unidirectional tribometer 

used for abrasion tests. The specimens were fixed in a three-electrode cell placed in the 

rotatory plate of the tribometer and connected to an Autolab-Metrohm PGSTAT30 

potentiostat. This setup has been employed in previous studies and can be found 

elsewhere [6,7,19]. This configuration allows the simultaneous control of both 

electrochemical and mechanical parameters during the tests. A commercial Ag/AgCl 

(KCl 3M), a platinum wire, and the test samples were connected as the reference 

electrode, the counterelectrode, and the working electrode, respectively. For each test, 

150 ml of synthetic seawater (ASTM D 1141) was employed. In these tests, sliding 

represents the wear conditions between chain links and accessories with relative 

movement to one another generated by wind, waves, ocean currents, and so on. The 

tribological conditions were the same as in the above-mentioned abrasion tests, with an 

alumina ball as countermaterial. The tests consisted of monitoring the Open Circuit 

Potential (OCP) during the first hour of immersion, followed by an EIS measurement. 
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Then, a sliding wear test of 4000 cycles was performed during which the OCP and the 

COF were simultaneously recorded. After the wear process, the potential was stabilized 

for fifteen minutes, and a second EIS was measured. Both EIS measurements were 

obtained under a sinusoidal AC perturbation of ±10 mV amplitude, at a frequency range 

from 10 kHz to 10 mHz, with 10 points per frequency decade. The tests were made at 

room temperature (23±2 ºC) and aerated conditions. The exposed surface of the 

samples was of 2.31 cm2. The results of the coatings were compared with mirror polished 

steel specimens (Ra<0.05 µm). Three replicates of each material were tested to ensure 

the reproducibility of the results. 

5.6.2.6 Morphology of the worn surface and material loss quantification 

After the abrasion and tribocorrosion tests, the surface morphology of all the tested 

specimens was examined by optical microscopy and scanning electron microscopy (FE-

SEM / EDS), to identify the wear mechanism and measure the dimensions of the wear 

tracks generated. The cross-section profile of the wear tracks was obtained with a 

confocal microscope (Sensofar S Neox). The material loss in the wear track was 

quantified by calculating the wear track volume from the cross-section profiles, as 

described elsewhere [6,11,19,44]. The contact area of the alumina ball was also 

examined by optical microscopy (Olympus GX71).  

 Results and discussion 

5.6.3.1 Coatings characterization 

Fig. 5.6.1 shows the cross-section morphologies of the as-sprayed and PEO-modified 

coatings. In both cases, the TSA coating is well-bonded to the substrate, since no 

distinctive irregularity is detected in the coating/steel interface. The PEO layer generated 

above the sprayed coating also shows good adhesion to the aluminum, without any 

discontinuity in the junction of the two coatings.   

  
Fig. 5.6.1 Transversal micrographs of the (a) TSA and (b) TSA/PEO coatings applied on the R4 steel 

grade substrate 

The roughness, thickness, and hardness measurements of both coatings are compiled 

in Table 5.6.2. In the duplex TSA/PEO system, the thickness of the aluminum layer prior 

to the PEO process was of 270±16 µm, and it was slightly reduced during the oxidation 

process to values close to 233 µm. The oxide layer obtained by PEO technique was of 

103 µm. The hardness of the TSA layer was not affected by the plasma oxidation 

process, presenting values of around 45 HV in both specimens. The hardness of the 

oxide layer was considerably superior, with values of 25 times higher than those of the 

sprayed aluminum. The values obtained for both the TSA [45,46] and the PEO-generated 

aluminum oxide [28,31] are in accordance with that reported in the literature for this type 



Chapter 5 

 

 

191 

of coatings. The hardness of the substrate was also measured, giving values of 

264.80±14.08 (HV 0.1). 

Table 5.6.2 Mean roughness, thickness, hardness, porosity, and pull-off adhesion values obtained for the 
TSA and TSA/PEO coatings 

Coating 
Porosity 

(%) 

Thickness 

(µm) 

Hardness 

(HV) 

Roughness, 

Ra (µm) 

Pull-off 

(MPa) 

TSA 4.11±0.97 273.95±47.95 44.10±2.49 2.24±0.12 21.49±0.49 

TSA/PEO 

TSA 4.17±1.82 233.95±25.68 45.33±3.28 

5.69±0.64 21.07±0.70 
Inner dense layer 1.29±0.76 

103.68±8.14 

 

Intermediate layer 5.10±2.22 1187.00±31.17 

Outer porous layer 11.27±3.78  

The SEM images and the results of EDS analysis of the TSA are shown in Fig. 5.6.2. 

The coating presents a typical morphology structure of a thermally sprayed coating, 

containing defects such as pores and cracks [47-51]. These defects are a consequence 

of the solidification of the sprayed material between successive splats, and to thermal 

stresses generated during the spray process [48,50,51]. The coating consists of a bright 

matrix with some dark voids. The EDS results indicate that the bright regions are mainly 

composed of aluminum. The dark regions corresponding to cracks and pores possess a 

higher oxygen content (52.86 wt% Al and 47.14 wt% O), corresponding to oxides coming 

from the in-flight particles oxidation during the spraying process [48,52,53]. The porosity 

of the TSA layer estimated from the SEM images was around 4.2%. 

  
Fig. 5.6.2 Cross section SEM images and EDS analysis of TSA coating applied on the R4 steel grade 

  
Fig. 5.6.3 SEM image showing the surface morphology of the PEO coating and EDS analysis obtained in 

the topmost surface 

The SEM image in Fig. 5.6.3 shows the surface morphology of the PEO oxide layer 

generated on the TSA coating. The surface exhibits a typical PEO morphology, 

consisting of a large proportion of pores with high roughness, as a consequence of the 

gas evolution taking place in the molten oxide material during the process [23,25,30]. 

The air bubbles formed increase the turbulence in the electrolyte promoting the 
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homogeneous growth of the coating. The gas can be trapped into bubbles within the 

material, generating the characteristic porous morphology of PEO coatings. The high 

pressure in the trapped air generates the explosion of these bubbles, and the rapid 

cooling of the melted material in contact with the electrolyte results in a high roughness 

[28,30]. As observed in the cross-section images in Fig. 5.6.4, the PEO-generated oxide 

layer consists of three distinct regions characteristic of this kind of coatings [27,29-31,33]: 

a thin inner layer, an intermediate or functional layer, and an outer layer. The inner layer 

shows a dense appearance with low pore content. A greater pore content can be 

observed in the intermediate layer, while the outer layer presents a highly porous 

structure. The intermediate layer has been found to provide good mechanical properties 

against wear, and good corrosion protection, whereas the best corrosion performance is 

provided by the inner dense layer [27,29,33,35,36,]. In the intermediate layer, the pores 

are small with diameters no larger than 2 µm, and they are evenly distributed. The pores 

in the top layer are larger and randomly dispersed. The micropores present in the oxide 

layer are formed as a result of the plasma micro-discharges and the fast melting of the 

material in contact with the electrolyte, and the gas evolution in the plasma channels 

[34].  No columnar pores or cracks are observed across the different layers of the PEO 

coating. The thickness of each layer was measured, and the porosity percentage was 

estimated from the SEM images (Table 5.6.2). The inner layer was the thinner and 

denser layer, with 12.75±4.57 microns of thickness and a porosity of 1.3%. The 

intermediate layer thickness was of 47.75±5.32 microns, and its porosity of 5%. The 

outer layer was the thicker and the more porous layer, with 52.50±9.08 microns and 11% 

of porosity. The EDS spectra obtained on the topmost surface is presented in Fig. 5.6.3. 

The PEO layer is composed mainly of aluminum and oxygen. Some other elements such 

as sodium, phosphorous, potassium, and calcium coming from the electrolyte have also 

been detected in small percentages. The EDS analysis obtained in the cross-section of 

the PEO coating revealed the presence of these elements only in the outer layer, while 

the intermediate and inner layers were composed of aluminum and oxygen: 52.4 wt% Al 

and 47.59 wt% O for the inner layer, and 41.8 wt% Al and 58.20 wt% O for the 

intermediate one. Finally, the XRD spectrum showed that the PEO-generated aluminum 

oxide layer was mainly formed by -Al2O3 and - Al2O3 (Fig. 5.6.5). The formation of 

these phases can be attributed to the high current densities at the vicinity of the micro-

discharges sites, generating the rapid heating and cooling of the aluminum. The -Al2O3 

can be formed from - Al2O3 at high temperatures (1000-2000 ºC) [23,33]. The hard -

Al2O3 phase has been observed to be formed in intermediate layers and is responsible 

for the wear properties in PEO coatings [23,29,32,33,54]. 

 
Fig. 5.6.4 Cross section SEM images of (left) the TSA/PEO coating system applied on the R4 steel grade 

and (right) the PEO layer in detail showing three distinct sub-layers 
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Fig. 5.6.5 XRD pattern of the PEO coating generated on the TSA 

The pull-off adhesion test (ISO 4626) showed an adequate bonding strength of both the 

as-sprayed coating and the TSA/PEO duplex system, with values around 21 MPa (Table 

5.6.2). According to the ISO 12944-9 [55] standard, the minimum pull-off test value for 

protective coatings in their initial performance, i.e., before any exposure to aggressive 

atmospheres, should be of 5 MPa for their use in splash and tidal zones (CX-offshore 

and Im4 categories [56]). Therefore, the results obtained for the coatings of this work 

exceed this value noticeably. Furthermore, the standard recommends a 0% adhesive 

failure between the substrate/metalized steel and the first coat, when the results are 

below 5 MPa. In this case, the fractures on the as-sprayed coating were a combination 

of adhesive fracture between the adhesive and the aluminum layer and adhesive 

between substrate and aluminum layer (Fig. 5.6.6a and b). On the other hand, the 

fracture in the TSA/PEO coating was cohesive within the oxide layer (Fig. 5.6.6c and d).  

 
Fig. 5.6.6 Fracture surface of the coatings after pull-off adhesion test: TSA coated sample (a) and dolly (b), 

and TSA/PEO coated sample (c) and dolly (d) 

5.6.3.2 Electrochemical corrosion tests 

Fig. 5.6.7 shows the polarization curves obtained for the R4 steel grade and the two 

coating systems in synthetic seawater. The steel substrate shows a typical curve shape 

of an active material, characterized by a great activation stretch in the anodic branch and 

a lack of passive plateau [6,7,22,57]. There is a sharp increase in current values for small 

potential variations above the corrosion potential (Ecorr). The curve of the aluminum 

shows a more negative corrosion potential close to -1 V, which is in accordance with the 

values reported in literature for aluminum in seawater [52,58-61]. In this case, four well-

defined regions can be observed: the cathodic domain below Ecorr, the cathodic-anodic 

transitions at potentials close to Ecorr, a passive plateau (from -0.9 to -0.6 V), and a 

transpassive dissolution domain above -0.6 V. In the passive domain, the aluminum 

reacts with seawater to form a protective oxide layer that slows down corrosion 

processes and leads to constant corrosion currents, i.e. corrosion rates, in the whole 

domain. The corrosion current is limited to values of 0.2 µA/cm2. In the transpassive 

domain, there is a sharp increase of the current density of almost two orders of 
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magnitude for small potential variations. This is attributed to the passive film breakdown 

leading to its transpassive dissolution, as well as water oxidation processes [62-64]. The 

breakdown of the passive layer is a consequence of the presence of aggressive ions in 

seawater, such as Cl-. These ions can penetrate through the passive film due to their 

small size, generating the dissolution of the aluminum oxide and the localized corrosion 

of the bare aluminum beneath the passive film [22,31,65]. The current values at higher 

anodic potentials reach those of the substrate, suggesting that the fast dissolution of the 

aluminum leads to the exposition of the steel. Once the aluminum layer thickness is 

considerably reduced, the anodic polarization promotes the corrosion of the steel, and 

thus, the current values registered close to 0.3 A/cm2 corresponds to the substrate 

corrosion. The curve registered for the TSA/PEO duplex system shows a corrosion 

potential between those of the uncoated steel and the as-sprayed coating. This sample 

presents lower currents in the whole anodic domain, and no sharp increase is observed 

but the current increases progressively with the potential increase. The currents 

registered at high anodic potentials are close to 0.13 µA/cm2.  

 
Fig. 5.6.7 Potentiodynamic curves obtained for the R4 steel grade, TSA, and TSA/PEO coating systems in 

synthetic seawater under a sweep rate of 0.166 mV/s 

Table 5.6.3 Electrochemical data obtained from the potentiodynamic curve by standard Tafel extrapolation 

Material 
Electrochemical parameters 

icorr (µA/cm2) Ecorr (V vs Ag/AgCl) Rp (kΩ cm2) vcorr (mm/yr) 

R4 27.02 -0.567 2.70 0.299 

TSA 7.74 -1.056 5.06 0.085 

TSA/PEO 4.55 -0.912 12.37 0.043 

The electrochemical data obtained from the curves by standard Tafel polarization is 

collected in Table 5.6.3. From these values, it can be noticed that the corrosion current, 

corrosion resistance and corrosion rate obtained for the as-sprayed coating are not very 

far from those of the steel substrate, and being higher than those reported for bulk 

aluminum elsewhere[66]. This could be the consequence of the contribution of the steel 

across the cracks and defects of the aluminum layer, leading to higher aluminum 

dissolution through galvanic protection mechanism[47,52,66]. On the other hand, the 

TSA/PEO system exhibits lower corrosion currents, considerably higher corrosion 

resistance, and smaller corrosion rates. Therefore, the shift of corrosion potential in the 

noble direction of the PEO-modified TSA coating with respect to the as-sprayed coating, 

along with the better electrochemical data obtained from the curve, indicate that the PEO 

treatment improves the corrosion response of the sprayed aluminum coating in seawater. 

The better corrosion response of the duplex coating system can be attributed to the 

higher chemical stability of the PEO-generated thick oxide layer in seawater, due to its 
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ceramic nature, acting as an effective barrier to the underneath aluminum and steel 

substrate. 

For the assessment of the corrosion performance of the coatings with prolonged 

exposition to seawater, EIS measurements were performed at different immersion times 

in synthetic seawater. The results obtained for the uncoated steel, the TSA coating, and 

the PEO-modified TSA coating are presented in Fig. 5.6.8, in the form of Nyquist and 

Bode plots. The corrosion degradation mechanism of the TSA and TSA/PEO coatings in 

synthetic seawater deduced from the impedance spectroscopy results, is schematized 

in Fig. 5.6.9.  

 
Fig. 5.6.8 Electrochemical Impedance Spectroscopy results obtained for the R4 steel, TSA, and TSA/PEO 

coating systems at different immersion times, where the solid lines represent the fitting curves obtained 
with the equivalent circuits 

The diagrams of the uncoated steel show two capacitive loops in the Nyquist plot and 

two inflection points in the Bode plot. The big capacitive loop at medium-frequency (MF) 

range is physically related to the charge transfer process of the corrosion reaction taking 

place on the steel surface [67]. The second time constant at lower frequencies is related 
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to the corrosion product layer formed on the surface of the sample [68].  The phase angle 

values at high frequencies (HF) close to 0º is characteristic of purely resistive behavior 

[69,70]. In the first week of immersion, a decrease in the semicircle in the Nyquist plot 

and a reduction in the impedance modulus is observed, which is attributed to a reduction 

in the resistance of the steel. However, for larger immersion times the semicircle is 

enlarged, and the impedance modulus increases, indicating an enhancement in the 

corrosion resistance with immersion time [71]. The increase of the phase maximum at 

low frequencies (LF), its shifts to lower frequencies, and the form of the Nyquist diagram 

as an incomplete semicircle confirm the previous statement. These changes are related 

to the formation of a corrosion product layer on the surface, which shows a more 

capacitive response [67]. The increase in this layer thickness with immersion time leads 

to an increase in the corrosion resistance, as a consequence of the higher restriction of 

electrolyte access to the corroding surface with immersion time. 

After 24 hours in seawater, the Nyquist plots of the TSA coating present two capacitive 

loops, and accordingly two inflection points in the Bode diagram. As a consequence of 

the non-homogeneous topography of the sprayed aluminum, which also contains pores, 

cracks, and other irregularities, the solution penetrates through the pores from the 

beginning of immersion, generating an increase in the exposed surface as it infiltrates 

through the defects (Stage 1 in Fig. 5.6.9). The depressed semicircle at middle-low 

frequencies is enlarged with immersion time, accordingly with the increase in the 

impedance modulus at LF, indicating an improvement in the corrosion response of the 

system with time. The phase maximum at MF increases from 58º at 24h to 70º after 168 

hours of immersion, suggesting a more capacitive response as a consequence of the 

reactions taking place in the coating surface forming a thin oxide passive layer (Stage 2 

in Fig. 5.6.9). The deviation of the phase maximum values from 90º indicate a non-ideal 

capacitor behavior. This dispersion can be attributed to inhomogeneities in the dielectric 

material, i.e., the passive layer, such as porosity, mass transport, and relaxation effects 

[72]. The presence of a second time constant is more evident above 336 hours, showing 

two-phase maximums in the medium-high and medium-low frequency ranges. The 

former is related to the oxide layer formed in the topmost surface of the coating, whereas 

the latter can be a consequence of the reactions taking place in the coating/substrate 

interface [53,61]. Due to inherent properties of the sprayed layer, with a considerable 

presence of pores and defects, the solution penetrates through these defects after hours 

of immersion. These defects form ion conducting paths across the coating, allowing 

aggressive species to reach the substrate surface. Since the steel is nobler than the 

coating, with more positive Ecorr as previously observed polarization tests, a galvanic 

corrosion process is formed between the steel and the aluminum [22,52,67,73]. 

Therefore, the aluminum dissolves to provide the substrate with a sacrificial cathodic 

protection (Stage 3 in Fig. 5.6.9). After 504 hours in seawater, the two-phase maximums 

with values around 60º are more clearly distinguished at HF (~100Hz) and MF (~0.5Hz). 

Furthermore, a diffusion tale is detected in the LF range in the Nyquist plot. The second 

time constant at MF is related to the reaction of the aluminum to form corrosion products 

in the regions close to the substrate. In neutral chloride solutions, aluminum is known to 

dissolved forming Al3+ ions, which hydrolyze and precipitate as Al(OH)3 on the coating 

walls [22,31]. These deposits can block the pinholes and defects in the aluminum layer 

[22,48,52,61,67,73], hindering the electrolyte access and delaying the further aluminum 

dissolution that requires diffusion of reactants through the oxides (Stage 3 in Fig. 5.6.9). 

This is known as ‘plugging effect’ [52]. The presence of white deposits was confirmed in 

the SEM-EDS analysis performed on the samples after the test, which is presented at 

the end of this section. No significant changes are observed thereafter in the corrosion 

response of the coating, but a slight increase in the impedance modulus at LF, indicating 
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the enhancement of the corrosion response with time. This is attributed to both the 

formation of the passive layer, and the blockage of conducting paths in the coating by 

aluminum corrosion products [22,60]. The contributions of the outer passive film oxides 

and the corrosion products closer to the interface have similar phase maximum values 

close to 60º. The further exposition of the system to seawater, would eventually lead to 

the TSA coating failure, due to aluminum dissolution by cathodic corrosion mechanism, 

protecting the steel substrate to a certain extent (Stage 5 in Fig. 5.6.9). 

 
Fig. 5.6.9 Schematics of the corrosion mechanisms of the TSA (left) and TSA/PEO (right) coating systems 

in synthetic seawater 

The impedance spectra obtained for the TSA/PEO coating exhibits two relaxation 

processes. This is coherent with that observed in literature for PEO coatings, where the 

time constant at HF has been attributed to the outer porous layer, and the time constant 

in MF range to the less porous inner layer [23,32,35,75,76]. The Nyquist plot at 24 hours 
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shows a small capacitive loop at HF and a bigger one for the LF range. This indicates 

that the corrosion resistance of the PEO layer in the early immersion stage is provided 

mainly by the inner barrier layer, by delaying the access of solution to the substrate 

surface [31]. The porous nature of the outer and the intermediate layers make them 

permeable by electrolyte [26], which reaches the inner barrier layer after 24 hours of 

immersion (Stage 1 and 2 in Fig. 5.6.9). After 168 hours, the two capacitive loops are 

more difficult to distinguish, and a diffusion tale appears in the LF range. In the Bode 

plot, two-phase maximums are clearly defined. The phase maximum in the HF range has 

shifted to lower frequencies from values above 104 Hz to 103 Hz, with values close to 

50º. The maximum at MF also shifts to lower frequencies (from 26Hz-4Hz to 1.4Hz-

0.13Hz) and increases from 17º to 20º. The impedance modulus at MF slightly increases, 

while no difference is observed at LF. All these variations suggest the infiltration of 

electrolyte through the small pores of the inner barrier, and exposure of underneath 

aluminum of the TSA layer (Stage 3 in Fig. 5.6.9). The diffusion tale at LF is associated 

with the diffusion of ions and corrosion products in the coating/surface interface. The 

reaction of the aluminum to form corrosion products that remain in the pores of the inner 

layer blocking the access of solution, leads to an increase in the corrosion resistance 

response of the system with higher exposure to seawater. This is observed as a gradual 

enlargement of the capacitive loops in the Nyquist diagram and the increase in the 

impedance modulus at MF and LF. Furthermore, the slight increase of the phase 

maximums and their shift to lower frequencies indicate a more capacitive response, 

which can be attributed to a more significant accumulation of corrosion products in the 

pores. Similar results were obtained by C. Liu et al. [31], who ascribed the improvement 

of the PEO coating with exposure time to diffusion of Al3+ ions and their hydrolyzation to 

form Al(OH)3 deposits that blocked the coating defects (Stage 4 in Fig. 5.6.9). Coherently 

with their arguments, the EDS analysis performed in the TSA/PEO coating at the end of 

long-exposure test revealed the white deposits to be formed by Al and O, in an atomic 

ratio of 1:3 (Al:O), which corresponds to Al(OH)3 compound[31] (see Fig. 5.6.12 and Fig. 

5.6.13). G.-L. Song and Z, Shi [77] described the corrosion protection mechanism of 

anodized magnesium alloys by three different effects. These effects were also confirmed 

to occur in PEO coatings by C. Liu et al. [31], and are attributable to the PEO layer 

generated in this work. There is a "retarding" effect by delaying the infiltration of solution 

through the oxide layer defects, especially in the less porous inner barrier layer. There 

is also a "blocking" effect, which restricts the exposed area of the substrate surface in 

contact with the electrolyte. Finally, there is a "passivation" effect, where the active 

regions of the substrate through the defects of the PEO layer react to form a passive 

layer of corrosion products that eventually are accumulated in the small pores of the 

inner barrier layer of the PEO coating. Therefore, even if the solution reaches the TSA 

layer, the aluminum hydroxides formed impede the further penetration of electrolyte 

through the TSA pores and defects, improving the long-term response of this coating.    

 
Fig. 5.6.10 Electrical equivalent circuits used to fit the electrochemical impedance spectroscopy data 

Electrical Equivalent Circuits (EEC) are widely used for EIS modeling, which consist of 

an assembly of electrical elements that represent the physical and electrical 

characteristics of the electrochemical interface. The experimental data was analyzed 



Chapter 5 

 

 

199 

with NOVA 2.1 software, and the ECCs used are shown in Fig. 5.6.10. After several 

fitting processes, these circuits were selected as they gave the best fitting parameters 

with the smallest error, based on the chi-squared values (χ2). This represents the square 

of the standard deviation between the original data and the calculated spectrum. The χ2 

values obtained were below 10-3, showing an adequate fitting quality. Furthermore, the 

relative error of each element in the circuit was below 5%. The fitting curves are 

presented as solid lines in Fig. 5.6.8 for each spectrum. In the three circuits Fig. 5.6.10, 

Rs represents the solution resistance, and each CPE/R pair is used to represent a 

capacitance and a resistance in an interface, corresponding to a time constant. The 

Constant Phase Element (CPE) is widely used for replacing the simple capacitances for 

a better fit quality of the experimental data, when there is a deviation of the ideal 

capacitive behavior due to inhomogeneities, roughness, porosity, and other non-ideal 

dielectric properties [31,35,52,53,61,78]. The impedance of a CPE element can be 

represented as: 𝑍𝐶𝑃𝐸 = 1 𝑌0⁄ (𝑖𝜔)𝑛, where ω is the angular frequency, and i the imaginary 

number. Y0 and n (n≤1) are the admittance and the empirical exponent of the CPE, 

respectively. Whenever the surface acts as an ideal capacitor n is equal to unity and Y0 

is identical to the double layer capacitance. The circuit parameters obtained from the 

fitting process are compiled in Table 5.6.4. 

In the case of the R4 steel, even if no coating is applied on top of the substrate, the 

corrosion products formed during immersion accumulate in the surface hindering the 

access of electrolyte to the corroding substrate, and the circuit in Fig. 5.6.10b can be 

used from the early immersion stage. The CPE1/R1 pair is used to describe the behavior 

of the rust film, which thickness increases with immersion time as the corrosion of the 

steel progresses. The second CPE2/R2 describes the double layer capacitance in the 

electrolyte/substrate interface and the charge transfer resistance, which is ascribed to 

the electrochemical reaction taking place in this interface. The corrosion resistance of 

the steel (R2) increases with immersion time up to 2.85 kΩ cm2. These values are in 

accordance with the results obtained in the polarization tests (2.74 kΩ cm2), indicating a 

low corrosion resistance of the active R4 steel in synthetic seawater. The slight increase 

of R1 is attributed to a thickening of the rust layer with immersion time, but its low value 

confirms the poor barrier effect of this film. Finally, the small increase in the CPE2-Y0 

values indicates an increase in the exposed steel surface, as a result of an increase in 

the roughness due to corrosion [79].  

The circuit in Fig. 5.6.10b has been employed to describe passive materials, i.e., 

aluminum alloys in 3.5% NaCl solution [75], to represent the passive film generated as 

a spontaneous reaction of the surface with the electrolyte and the reactions taking place 

in the metal surface. In the case of TSA coating, where the aluminum is placed over a 

steel substrate, the same circuit can be employed to describe the dissolution of the 

aluminum layer by galvanic corrosion mechanism. In this case, the CPE1/R1 pair 

corresponds to the aluminum layer and represents the coating capacitance and pore 

resistance. The latter is ascribed to the ion conducting paths across the coating, i.e., 

pores and other defects, that allow the penetration of electrolyte, and gives information 

on the coating ability to protect the substrate in terms of corrosion resistance. The 

CPE2/R2 describe the double layer capacitance in the vulnerable regions of the exposed 

surface in the bottom of the coating, and the charge transfer resistance of the 

electrochemical reaction in these regions. As explained before, the nobler potential of 

the steel with respect to the aluminum leads to a galvanic dissolution of the latter and, 

thus, the CPE2/R2 in this case describes the reactions of the aluminum layer in the 

coating/substrate interface. The decrease in the pore resistance (R1) and increase in 

CPE2-Y0 observed from 24 to 168 hours, are a consequence of the increase in the 
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exposed area of the coating due to uncovering of porosity, and electrolyte penetration. 

At this stage, the higher CPE1-n and CPE2-n values in the range of 0.8 indicate a more 

capacitive response, as a consequence of higher aluminum corrosion products due to 

reactions that have taken place in the aluminum in contact with seawater. The EEC 

employed for 504 and longer exposure times is represented in Fig. 5.6.10c. Similarly to 

the previous circuit, CPE1/R1 and CPE2/R2 correspond to the aluminum layer and the 

coating/substrate interface, respectively. The Warburg diffusional element (W) is used to 

represent the diffusion-limited reaction in the TSA/steel interface, as a result of the 

presence of corrosion products coming from aluminum reaction with seawater. The 

impedance of the Warburg element can be expressed as: 𝑍𝑊 = 𝜎𝜔1/2(1 − 𝑖), where σ 

is the Warburg coefficient, which is inversely proportional to the diffusion coefficient. The 

increase of pore resistance of the coating (R1) with time indicates an enhancement of 

the aluminum layer resistance. The decrease in W-Y0 and increase in R2 indicate a 

reduction of the exposed surface in the TSA/steel interface, as a consequence of the 

greater aluminum corrosion products coming from the galvanic reaction of the aluminum 

in contact with the steel substrate. The mass transfer reaction controlling the aluminum 

dissolution process leads to solution hindering by the mass transfer of corrosion 

products, increasing the provided protection of the coating against corrosion [53]. The 

gradual increase of both R1 and R2 with immersion time indicate an enhancement on the 

protection of the steel substrate, by both the galvanic dissolution of the aluminum in the 

vulnerable regions where the electrolyte reaches the substrate, and by the blockage of 

the ion conducting paths by the corrosion products formed in these electrochemical 

reactions.  

The EEC circuit in Fig. 5.6.10b has been widely employed in literature for PEO coatings 

[23,32,35,74-76]. According to literature, due to the porous nature of the outer layer, it is 

unlikely to contribute to the corrosion resistance of the coating, and the EEC is composed 

of two relaxation processes [23,32,35,75,76]. The time constant at HF range (CPE1/R1) 

is related to the outer porous layers of the PEO coating (i.e., top porous and 

intermediate), whereas the second at LF (CPE2/R2) is associated with the inner barrier 

layer. R1 corresponds to the pore resistance of the topmost layers and is related to the 

pores and defects such as discharge channels generated in the outer and functional 

layers. CPE2 corresponds to the double layer capacitance in the electrolyte/inner layer 

interface, and R2 is the charge transfer resistance across the dense layer. The results 

obtained are consistent with those found in literature for PEO coatings generated in 

aluminum alloys for long exposure to 3.5% NaCl solutions (after 24 and 168) [23,75]. 

The higher R2 values compared to R1 confirm a poorer corrosion behavior of the outer 

porous layers and evince the corrosion protection of the system to be provided mainly 

by the inner layer [31]. The low CPE-n values for both layers, close to 0.6, can be 

attributed to the non-uniform porous nature of the oxide layer [75]. The EEC employed 

for longer exposure is represented in Fig. 5.6.10c. CPE1/R1 and CPE2/R2 correspond to 

the outer porous layer and the inner barrier layer, respectively. The Warburg diffusional 

element (W) is used to represent the diffusion-limited reaction in the PEO/TSA interface, 

as a result of the presence of corrosion products coming from the reaction of the 

aluminum sprayed layer with seawater. The increase in CPE2-Y0 and decrease in CPE2-

n and R2 values from 24 hours to 168 h, indicate an increase in the exposed surface of 

the inner barrier layer as a consequence of solution infiltration through its discharge 

channels. The increase in R1 and R2 with immersion time represents an improvement in 

the corrosion resistant response of the system. The gradual increase in CPE1-n and 

CPE2-n values, and the decrease in W-Y0 indicate a higher capacitive response due to 

greater accumulation of corrosion products in the pores of the PEO coating layers, 

hindering the further penetration of solution.  
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The main information on a coating performance in terms of corrosion (combination of 

capacitive and resistive behavior), is mainly reflected in the impedance at the lowest 

frequency (|Z|f→0), where higher values correspond to lower corrosion rates [67]. 

Therefore, the modulus at LF such as 0.01Hz (|Z|0.01Hz) is often used to evaluate the 

protection abilities of the coating system [36,67,80]. The modulus at 0.01Hz of the steel 

and the two coating systems are represented in Fig. 5.6.11a as a function of immersion 

time. The modulus of the two coatings are considerably higher than that of the steel 

substrate. In both coatings, the impedance modulus increases with immersion time. The 

sharp increase in the TSA/PEO coating above 168 h can be ascribed to the increasing 

presence of aluminum corrosion products blocking the pores in the PEO layer. In the 

case of the TSA, the increase is progressive, and is also attributed to the greater 

presence of aluminum corrosion products with increasing exposition to seawater. 

 

 
Fig. 5.6.11 Evolution of the impedance modulus at 0.01Hz (a) and OCP (b) with immersion time 

The evolution of the OCP during the 1500 hours of immersion is plotted in Fig. 5.6.11b. 

The potential of the uncoated steel slightly decreases during the first 24 hours in 

seawater, and then remains constant around -0.67 V. In the case of the TSA coating, 

there is a drop in potential after the first week of immersion to values close to -1.1 V, and 

a progressive increase in the successive weeks to values around -0.9 V. The results are 

in coherence with the EIS evolution explained above. The decrease in potential is a 

consequence of the penetration of electrolyte through all coating defects, whereas the 

subsequent increase is related to the passivation of the aluminum and blockage of pores 

with aluminum corrosion products. Finally, the potential of the TSA/PEO decreases with 

time, reaching values close to those of aluminum in seawater. At the beginning of 

immersion, the PEO layer presents a barrier to electrolyte permeation due to the small 

pores of the intermediate and inner layers. Coherently with that observed in the EIS 

results, the potential drop around -0.9 V after 168 h indicate the penetration of solution 

which reaches the aluminum layer. The blockage of small PEO layer pores with 
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aluminum corrosion products leads to a slight increase in potential with time after the 

end of the test, presenting potential values close to those of the as-sprayed coating. 

After corrosion tests, the surface of the specimens was analyzed by SEM-EDS 

microscopy. The SEM micrographs of the tree samples are depicted in Fig. 5.6.12 and 

the EDS analysis results are presented in Fig. 5.6.13.  

 
Fig. 5.6.12 SEM images of the specimens after long-term exposure to seawater: (a) uncoated steel, (b) 

TSA coating deposited on steel, (c) TSA/PEO duplex coating system 

The high degradation of the uncoated steel is evident (Fig. 5.6.12a). The roughness of 

the previously mirror polished specimen has notably increased as a consequence of the 

high corrosion dissolution of the sample. The EDS analysis revealed the presence of 

chlorine (0.37 wt%) and oxygen (14.19 wt%) on the corroded surface of the steel, with a 

higher presence of these elements on the corrosion products (0.80 wt% Cl and 27.72 

wt% O). The TSA coating (Fig. 5.6.12b) showed an inhomogeneous surface, presenting 

some smooth regions, with white deposits, and some rougher regions where the coating 

appeared to be damaged. The smoothest region of the surface was mainly composed of 

aluminum (47.14 wt%) and oxygen (22.5wt%), and a slight presence of chlorine was also 

detected (0.62 wt%). This region corresponded to the passive film formed as the 

spontaneous reaction of the aluminum with seawater. The white deposits, corresponded 

to aluminum oxides that might form as a consequence of the dissolution of aluminum 

close to the TSA/steel interface, that reacted with the solution to form complex oxides. 

The composition of this deposits contained some elements such as sodium, magnesium, 

and chlorine present in synthetic seawater (55.07 wt% O, 21.55 wt% Al, 2.39 wt% Mg, 

1.69 wt% Ca, 0.76 wt% Na, 1.69 wt% Cl, and the rest C, Si and S). Finally, in the rough 

regions where the aluminum layer seems to be more damaged, a slight presence of iron 

was detected (4.21 wt% Fe, 18.42 wt% O, and 14.68 wt% Al, the rest C, Mg, Si, S, and 

Cl). This corroborates that solution reached the TSA/steel interface. In the TSA/PEO 

duplex system (Fig. 5.6.12c), the topmost surface of the PEO coating presented similar 

morphology to that before any corrosion test, showing negligible degradation (Fig. 5.6.3). 

The EDS analysis of the surface revealed the composition of this layer to be unchanged, 

just showing a slight amount of chlorine (61.04 wt% O, 33.31 wt% Al, 3.32 wt% K, 1.12 

wt% Na, 0.88 wt% P, 0.33 wt% Cl, and 0.86 wt % C.). In a small region of the sample, 

the surface presented a brittle-like appearance. This region was found to be composed 
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mostly of aluminum and oxygen (66.42 wt% O, 31.78 wt% Al, 1.25 wt% Cl, and 0.56 wt% 

Si), in a 1:3 (Al:O) atomic ratio, confirming the presence of Al(OH)3 compound blocking 

the pores of the PEO coating.   

 
Fig. 5.6.13 EDS results of the specimens after long-term exposure to seawater: (a) uncoated steel, (b) 

TSA coating deposited on steel, (c) TSA/PEO duplex coating system 

5.6.3.3 Abrasion and tribocorrosion tests 

The evolution of the open circuit potential (OCP) of the specimens registered for the first 

hour of immersion is depicted in Fig. 5.6.14a. The potential of the uncoated steel 

decreases during the first minutes of immersion, and stabilizes in values close to -0.6 V. 

In this kind of steels, the potential drop is attributed to corrosion processes taking place 

in the surface [6,7,22], leading to the formation of a rust layer composed mainly of ferric 

oxyhydroxide (FeOOH) compound [81-84]. This rust layer is known to be porous and low 

adherent; thus, it does not constitute an effective barrier to the electrolyte. However, after 

acquiring a certain thickness after several minutes, the rust layer hinders the access of 

oxygen to the corroding surface [3,22,85-87], and the system reaches a stable state at -

0.6 V. In the case of the TSA coating, the potential slightly increases during the first 

minutes of immersion. This is the typical response of a passive material, as a 

consequence of the formation of a protective oxide layer from the spontaneous reaction 

with the electrolyte [11-13,22]. The passive film, of few nanometers thick, acts as a 

barrier impeding the further access of electrolyte and protecting the aluminum layer from 

corrosion. The stable values obtained after the first hour around -0.9 V are in accordance 

with that measured for the aluminum in seawater [52,59-61], indicating that there is no 

contribution of the substrate to the potential lecture. Finally, the potential of the TSA/PEO 

decreases from values close to -0.2 V to stabilize at around -0.68V. The decrease in the 

potential might be ascribed to the porous nature of the PEO layer. As observed from the 

microscopical characterization, the outer layer is porous and loose, so the electrolyte 

easily penetrates through the pores of the outer layer, resulting in a decrease of potential. 

Once the electrolyte reaches the less porous intermediate layer, the system stabilizes 

giving steady potential values at the end of the curve. Although the potential is close to 

that of the uncoated steel, no contribution of the substrate is expected due to the good 

barrier effect provided by the PEO layer, as demonstrated from the long-term immersion 

tests of the previous section. Therefore, the higher potential of the TSA/PEO system in 
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comparison with the as-sprayed coating, indicates that the PEO layer provides the 

sprayed aluminum with an effective protection in seawater. 

 
Fig. 5.6.14 Evolution of the open circuit potential during the (a) first hour of immersion in synthetic 

seawater and (b) during and after sliding wear test 

The evolution of potential during the sliding is presented in Fig. 5.6.14b. Sliding 

generates a potential shift towards more positive values in the uncoated steel. According 

to the results obtained in previous studies [6,7], this change in the potential is attributed 

to the more positive potential of the material in the wear track, free of the rust that is 

removed from the contact, with respect to the unworn surface. At the end of sliding, the 

material in the worn surface reacts again to form a new rust layer, reaching potential 

values close to those before sliding. In the case of the TSA coating, the response 

registered during the sliding test is a potential drop to more cathodic values, as a 

consequence of the rupture and removal of the passive layer exposing the bare 

aluminum to the electrolyte [11-13]. During the whole wear test, the potential remains 

around -1.25 V, showing some fluctuations above 1000 seconds. These small potential 

variations can be the consequence of localized corrosion processes taking place in the 

depassivated surface (repassivation and depassivation events) [11-13,88-90], as well as 

to debris remaining in the contact or even some material adhesion that can lead to 

variations in the frictional response. Once sliding ends, the potential increases again 

indicating a repassivation of the worn surface, showing slightly lower values in 

comparison with those before the wear test. The potential of the TSA/PEO coating 

system is not affected by the mechanical effect imposed during sliding, remaining almost 

constant during the whole test around -0.7 V. Similar responses have been observed for 

hard ceramic coatings generated by PEO technique [89-91], indicating excellent stability 

under wear-corrosion solicitations. This behavior can be ascribed to the higher 

resistance to abrasion of the oxide layer which resists the mechanical stresses with no 

significant changes that can lead to variations in the corrosion response. 

The EIS measurements obtained before and after wear process are presented in Fig. 

5.6.15, and the fitted impedance values are collected in Table 5.6.5.The steel sample 

shows one capacitive loop in the Nyquist plot and one inflection point in the Bode plot, 

corresponding to a one time constant in both lectures. The shape of the curves is the 

typical response of a corroding metal with a charge transfer reaction in the 

electrolyte/metal interface. There is a small reduction in the impedance modulus, and a 

decrease in the phase maximum from 70º to 60º, indicating a decrease in the corrosion 

resistance of the steel after sliding wear test. The impedance data was fitted using the 

EEC in Fig. 5.6.10a, known as Randles simple circuit. The CPE1 is the double layer 

capacitance in the electrolyte/steel interface, and R1 is the charge transfer resistance. 

The higher CPE1-Y0 value after sliding indicates an increase in the exposed surface of 
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the steel, as a consequence of the higher roughness of the sample due to corrosion [79]. 

The slight decrease in R1 confirms the reduction of the resistance due to sliding.  

 
Fig. 5.6.15 Electrochemical Impedance Spectroscopy results obtained before and after sliding process in 
synthetic seawater for the steel and two coating systems, where the solid lines represent the fitting curves 

obtained with the equivalent circuits 

The TSA-coated sample shows two capacitive loops, which correspond to the aluminum 

layer in the topmost surface at HF and within the ionic paths of the coating at LF. The 

capacitive loop at HF is more significant than that at LF, indicating that after an hour of 

immersion the electrolytes barely penetrates within the defects of the sprayed layer, and 

the exposed surface of aluminum in these regions is small in comparison with the 

topmost surface of the sample. After the test, there is a slight decrease in the impedance 

modulus at LF, and a reduction in the size of the capacitive loop at HF. The removal of 

the passivated aluminum in the tribological contact, and the successive material 

detachment during the whole test, leaves fresh material in the wear track to react at the 

end of the test. The depassivation of this surface, with not enough time to fully 

repassivate after sliding, leads to a decrease in the semicircle at HF. Furthermore, the 

considerable material removal in the contact makes it easier for the electrolyte to reach 

the TSA/steel interface, where the aluminum dissolves due to galvanic sacrificial 

protection mechanism. 
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The EEC used to fit the results of the coating was the same used in early corrosion stage 

(Fig. 5.6.10b). The decrease in CPE1-Y0 and increase in CPE1-n are attributed to a 

decrease in the topmost passive surface, which is also confirmed by a decrease in R1. 

On the other hand, CPE2-Y0 decreases and R2 increases after sliding. This could be 

related to the wear debris that might be smeared and compacted in the wear track during 

the mechanical solicitation [92-94], filling the pores or paths to the substrate. 

Furthermore, the partial repassivation of the worn surface after the wear test might also 

be responsible for the increase of R2. The overall effect of sliding in the system is a 

decrease in the protectiveness of the coating, due to the removal of the topmost passive 

layer, and generation of shorter paths for the solution to penetrate and reach the steel 

through the remaining TSA layer in the worn surface. Once the substrate is exposed, the 

galvanic reaction between the aluminum and steel begins, and the aluminum dissolves. 

Eventually, this would lead to a greater steel surface exposed, i.e., larger cathode size, 

which in turn, will accelerate the aluminum dissolution, causing the total coating failure. 

The Nyquist diagram of the TSA/PEO duplex coating before sliding shows one capacitive 

loop. However, the impedance data was fitted with the EEC in Fig. 5.6.10b giving smaller 

fitting error than the circuit in Fig. 5.6.10a. Therefore, the second relaxation process at 

LF is masked by the great contribution at HF. In this case, CPE1/R1 represents the outer 

porous layer, and CPE2/R2 is the contribution of both the intermediate and inner layers. 

During the one hour of immersion before sliding, the electrolyte penetrates through the 

pores in the outer layer, reaching the intermediate layer. The smaller pore sizes of the 

latter, make it difficult for the solution to further penetrate and reach the inner barrier 

layer and, thus, the contribution at LF can be considered to correspond to this layer. 

During sliding, the topmost porous layer is partially removed, and greater intermediate 

layer surface is exposed. This leads to a decrease in the semicircle loop at HF, and an 

increase of that at LF. The partial removal of the top layer was confirmed in the surface 

analysis explained later in Section 5.6.3.4. The reduction in R1 indicates a lower 

resistance of the ripped outer layer, whereas the decrease in CPE2-Y0 and increase of 

R2 could be related to the presence of corrosion products coming from the tribochemical 

reactions taking place during the wear process [95]. The presence of Al(OH)3 deposits 

in the worn surface was confirmed in the surface analysis of the samples (see Section 

5.6.3.4).  

Table 5.6.5 Equivalent circuit parameters obtained from the impedance data fitting before and after sliding 
test in synthetic seawater 

Material Condition 
Rs 

(Ω cm2) 

CPE1-Y0 

(F cm-2 s-n) 
CPE1-n 

R1 

(kΩ cm2) 

CPE2-Y0 

(F cm-2 s-n) 
CPE2-n 

R2 

(kΩ cm2) 

R4 
Before sliding 13.10 3.53 x10-04 0.822 0.75 - - - 

After sliding 16.05 5.97 x10-04 0.767 0.73 - - - 

TSA 
Before sliding 5.96 2.56 x10-04 0.773 1.43 1.01 x10-02 0.888 1.56 

After sliding 6.21 1.26 x10-04 0.846 0.03 1.06 x10-04 0.853 2.33 

PEO 
Before sliding 10.79 1.48 x10-05 0.517 4.02 3.48 x10-03 0.813 0.84 

After sliding 8.38 1.84 x10-05 0.521 3.26 8.44 x10-05 0.841 3.51 

Despite the physical modifications generated by sliding in the PEO layer, the overall 

corrosion resistance of the coating provided by the duplex system is affected by wear. 

The impedance modulus at LF remains similar, and no contribution of the aluminum of 

the sprayed layer is observed. Furthermore, the negligible variations in the OCP during 

sliding also confirms the good stability of the coating under wear-corrosion solicitations. 

Consequently, the PEO process seems to improve the tribocorrosion resistance of the 

aluminum sprayed coating. 
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The coefficients of friction registered for the dry abrasion test and the tribocorrosion test 

in synthetic seawater are plotted together in Fig. 5.6.16, and the mean values are 

compiled in Table 5.6.6. In the dry abrasion tests, the lowest COF corresponded to the 

TSA coating, whereas the highest was measured for the TSA/PEO system. In the 

tribocorrosion tests, however, the opposite situation was observed, being the COF of the 

TSA coating the higher and that of the TSA/PEO the lowest. 

 
Fig. 5.6.16 Evolution of the coefficient of friction with sliding time for the steel and two coating systems in 

the dry abrasion and tribocorrosion tests 

The coefficient of friction of the R4 steel in dry conditions has a greater running-in period 

compared to that of tribocorrosion conditions, but similar values are registered from 200 

up to 1600 seconds of sliding. The gradual increase in the COF in dry sliding can be 

attributed to the more significant amount of debris remaining in the tribological contact 

[6,96]. On the other hand, the decrease in the coefficient observed for the tribocorrosion 

test above 1600 seconds can be a consequence of a slight lubrication effect of seawater 

[7,97], as well as to lower debris presence in the contact which are removed by the 

electrolyte movement.  

In the case of the TSA coating, the COF in the tribocorrosion tests was considerably 

higher. The aluminum detached from the worn surface can react with the electrolyte to 

form oxides that remain in the contact acting as third body particles [98-100]. In dry 

conditions, the coating shows a running-in period during which the COF is higher, close 

to 0.7, with high fluctuations. This can be attributed to the detachment of aluminum 

particles which linger in the tribological contact, and to an increase in the contact surface 

with each cycle leading to higher COFs [101]. After several cycles, the wear debris can 

be smeared in the tribological contact providing some lubricating effect accommodating 

the sliding by shearing, reducing the coefficient and leading to more stable values [102].  

Finally, the COF of the TSA/PEO duplex coating in dry and wet conditions are 

considerably different. The topmost porous layer of the PEO coating can be easily 

cracked and delaminated during the first test cycles, forming a smooth surface as the 

intermediate layer is exposed. The increase in the contact surface leads to an increase 

in the frictional force and the COFs registered during the first minutes of sliding [103]. 

Once the intermediate layer is reached, the coefficient is almost constant during the 

whole test. This transition is more evident in the dry tests, where the outer porous layer 

was removed entirely, as confirmed in the surface analysis in Section 5.6.3.4. The 

contact between two hard alumina materials, i.e., the counterbody and the PEO coating, 

leads to high coefficients at dry conditions. Similar COF values have been registered for 

Al2O3/Al2O3 contacts in dry conditions [100]. M. Treviño, et al. [30] attributed these high 

values in alumina-PEO contacts to the irregular topography, together with the edges 
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formed in the wear track that difficult the movement of the countermaterial, increasing 

the shear stresses in the surface and the COF. Furthermore, the easy removal of the 

porous and loose topmost layer can lead to debris formation, also increasing the 

resistance to countermaterial motion [105]. In tribocorrosion conditions, the coefficient is 

close to 0.42, being the lowest registered for all the materials and conditions tested, 

showing a good tribological response of the PEO-modified coating in seawater.  Several 

researchers [106-109] have ascribed the low friction on Al2O3/Al2O3 contacts at wet 

conditions to the aluminum hydroxide that may form by a tribochemical reaction. 

Moreover, Wong et al. [110] stated that tribochemical wear resulted in surface 

smoothing, and the thin water film of low viscosity between the two hard materials 

provided a hydrodynamic lubrication. The apparition of aluminum hydroxides, i.e., 

Al(OH)3, from the reaction of wear debris with seawater was confirmed in the surface 

analysis explained later in Section 5.6.3.4. 

Table 5.6.6 Average coefficient of friction and total wear track volume (Wtr) obtained for dry abrasion and 
tribocorrosion tests of the R4 steel and the two coatings 

 
R4 TSA TSA/PEO 

Dry abrasion Seawater Dry abrasion Seawater Dry abrasion Seawater 

Mean COF 0.577±0.011 0.525±0.016 0.493±0.008 0.930±0.007 0.821±0.045 0.425±0.007 

Wtr (x10-3 mm3) 83.16±2.16 0.91±0.06 739.55±28.33 646.73±14.75 120.88±3.79 
Not 

measurable 

5.6.3.4 Surface analysis and material loss evaluation  

At the end of the tests, the surface of the specimens was analyzed by confocal and SEM-

EDS microscopic techniques. The SEM micrographs obtained in dry abrasion and 

tribocorrosion tests in synthetic seawater are presented in Fig. 5.6.17, Fig. 5.6.19, and 

Fig. 5.6.21.  

The images of the R4 steel substrate at 200 magnifications show an evident difference 

in the size and appearance of the wear track size generated after dry and tribocorrosion 

tests (Fig. 5.6.17). In dry abrasion tests, abrasion lines parallel to sliding direction can be 

observed. The steel removed from the track remaining in the tribological contact has 

been deformed and smeared under the applied load. The EDS analysis revealed the 

presence of some oxides in the worn surface (7.11 wt% C, 31.13 wt% O, 1.03 wt% Cr, 

0.64 wt% Mn, and 60.09 wt% Fe), which might be formed as a consequence of the high 

temperatures reached in the contact during dry abrasion conditions. The rest of the worn 

surface presented similar EDS results as the unworn surface, with no oxygen at all (4.28 

wt% C, 1.10 wt% Cr, 1.00 wt% Mn, and 93.62 wt% Fe). In tribocorrosion test specimens, 

however, abrasion grooves are more evident, and no smeared material is observed in 

the contact (Fig. 5.6.17b). Some corrosion products can be observed in the track, formed 

as a consequence of localized corrosion taking place in the worn surface. The EDS 

analysis revealed a considerable amount of oxygen along the whole wear track (5.95 

wt% C, 14.83 wt% O, 1.06 wt% Cr, 0.71 wt% Mn, 2.02 wt% Na, 0.69 wt% Cl, and 75.72 

wt% Fe), which could be consequence of crushing and spreading of the oxidized 

detached material remaining in the tribological contact. The material out of the wear track 

has also been highly corroded (Fig. 5.6.18). As previously observed for this kind of steels 

under tribocorrosion conditions, sliding promotes the corrosion of the unworn surface of 

the sample [6,7]. The EDS results of these region showing high oxygen content (11.88 

wt% C, 32.91 wt% O, 2.02 wt% Na, 0.69 wt% Cl, 0.73 wt% Cr, and 51.77 wt% Fe), 

corresponding to a highly corroded surface, confirm the previous statement. The surface 

analysis performed in the countermaterial after the tests showed the presence of 

adhered steel in the alumina ball after dry abrasion test (Fig. 5.6.20a). Less transference 

of material is observed in the ball after tribocorrosion tests (Fig. 5.6.20b). In both tests, 
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the asperities of the hard ball generated grooves in the steel samples of lower hardness. 

No abrasion signs are observed in the ball indicating negligible wear damage of the 

countermaterial. The difference in the abrasion extent in the wear tracks, i.e., lower 

abrasion lines in dry condition, can be ascribed to a greater amount of steel adhered in 

the countermaterial filling its irregularities, which could eventually lead to a steel-steel 

contact. 

 
Fig. 5.6.17 SEM images showing the topography of the wear tracks of the steel samples after (a) dry 

abrasion and (b) tribocorrosion tests 

 
Fig. 5.6.18 SEM image showing the unworn surface topography of the R4 steel substrate after 

tribocorrosion test 

The images of the wear track morphology of the TSA coating show severe damage and 

high roughness at both corrosion (Fig. 5.6.19a) and tribocorrosion (Fig. 5.6.19b) 

conditions. The worn surface in dry abrasion tests shows plowing, which led to 

delamination and material removal. This has been observed to be a common feature in 

soft metal wear mechanism [66,102]. The detached material is smeared and plastically 

deformed in the tribological contact under the stresses generated during the test, also 

showing abrasion lines in sliding direction. The results of the EDS analysis indicate that 

the deformed material is mainly composed of aluminum (97.83 wt % Al and 2.17 wt% 

O). A higher presence of oxygen is detected in the white regions around the smeared 

layers, indicating the oxidation of aluminum that might have occurred under high 
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temperatures reached during dry sliding conditions (56.36 wt% Al and 43.64 wt% O). 

The low abrasion resistance of the aluminum led to high delamination and eventual 

exposure of the steel substrate in certain regions of the wear track, as confirmed by EDS 

analysis in the whiter areas in Fig. 5.6.19(right) (5.58 wt% C, 1.74 wt% Mn, 5.90 wt% Al, 

and 86.78 wt% Fe). The worn surface morphology of the TSA coating in the 

tribocorrosion test is quite different, showing a more rough and brittle appearance than 

the dry test specimen. Material deformation is also observed in this sample, showing a 

tongue-shaped structure and shallower ploughing. The EDS revealed the main 

composition of the deformed layers to be aluminum (97.99 wt% Al and 2.01wt% O). The 

oxygen content in some regions of the track is higher (33.61 wt% O, 62.71 wt% Al, 0.56 

wt% Na, 0.66 wt% S, 2.21 wt% Cl, and 0.25 wt% Ca), which can be attributed to a partial 

repassivation of the worn surface after sliding. The ploughed regions also presented 

oxides coming from aluminum reaction with the electrolyte (41.58 wt% O, 55.02 wt% Al, 

2.05 wt% Cl, 0.68 wt% Na, and 0.68 wt% S). The passive layer in the unworn surface 

contained slight amounts of chlorine and sodium, and was mainly composed by 

aluminum and oxygen (41.84 wt% O, 54.34 wt% Al, 3.14 wt% Cl, 0.68 wt% Na). Contrary 

to the sample in dry conditions, no presence of iron was detected in the wear track of 

this specimen. The analysis of the countermaterial revealed a high transference of 

aluminum in dry sliding tests (Fig. 5.6.20c). The high hardness of the alumina ball results 

in adhesion of softer aluminum, which can oxidize after several cycles of sliding, acting 

as a third body particle and increasing the wear extent [111]. In tribocorrosion tests, 

however, less aluminum was adhered to the counterbody surface (Fig. 5.6.20d). The 

high difference in hardness between the hard countermaterial and soft aluminum layer 

resulted in negligible damage in the ball. Hence, the wear mechanism of the as-sprayed 

coating in dry conditions was a combination of adhesive, oxidative and abrasive wear, 

whereas the tribocorrosion mechanism was corrosive-adhesive. 

 
Fig. 5.6.19 SEM images showing the topography of the wear tracks of the TSA-coated steel samples after 

(a) dry abrasion and (b) tribocorrosion tests 
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Fig. 5.6.20 Optical micrographs of the alumina counterbody surface after abrasion and tribocorrosion tests: 

steel dry abrasion (a) and tribocorrosion (b), TSA coating dry abrasion (c) and tribocorrosion (d), and 
TSA/PEO system after dry abrasion (e) and tribocorrosion (f) 

 
Fig. 5.6.21 SEM images showing the topography of the wear tracks of the TSA/PEO-coated steel samples 

after (a) dry abrasion and (b) tribocorrosion tests 

The wear tracks generated in the TSA/PEO coating in dry and tribocorrosion tests are 

presented in Fig. 5.6.21. The wear and tribocorrosion mechanisms of the PEO layer of 

the duplex system are schematically depicted in Fig. 5.6.23 and Fig. 5.6.24, respectively.  

From the SEM images at 150 magnifications, a clear difference in the wear track size 

can be noticed, being considerably wider for the sample testes at dry conditions. In both 

cases, abrasion lines are observed parallel to sliding direction. During the first cycles in 

contact with the hard alumina countermaterial, the outer porous and loose oxide layer of 

the PEO coating can be easily removed (Stage 1 in Fig. 5.6.23 and Fig. 5.6.24). As this 
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layer is delaminated from the surface, a smoother surface is generated, corresponding 

to the intermediate functional layer. This layer, mainly composed of hard α-Al2O3 phase, 

decreases the wear rate [39,112]. The worn surface of the specimen at dry conditions 

shows low pore presence, which suggests the total removal of the topmost porous layer 

and deeper penetration of the countermaterial in the less porous intermediate layer, and 

thus, a greater material removal. The EDS results of the abraded regions in dry tests 

showed no presence of calcium, potassium, and phosphate, which were observed to be 

present in the outer layer of the coating (61.08 wt% O, 3.78 wt% K, 1.16 wt% Ca, 2.46 

wt% P, and 30.82 wt% Al). This confirms the previous statement, as the composition of 

the worn surface in dry abrasion test (60.14 wt% O and 39.86 wt% Al) is in accordance 

with the intermediate layer composition measured in the coating characterization in 

Section 5.6.3.1. These elements were detected in the worn surface of the tribocorrosion 

test specimen (77.4 wt% O, 0.51 wt% K, 1.08 wt% P, 0.71 wt% Na, and 32.56 wt% Al), 

indicating a shallower penetration of the ball and just a partial removal of the top porous 

layer. A higher magnification analysis of the tracks revealed the presence of cracks in 

the worn surface of the samples (Fig. 5.6.22). These microcracks are created under the 

stresses generated by the successive passes of the countermaterial, due to the presence 

of pores beneath the worn surface (Stage 1 in Fig. 5.6.23 and Fig. 5.6.24). The cracks 

propagate generating the coarsening of pores (Stage 2 in Fig. 5.6.23 and Fig. 5.6.24) 

that eventually lead to material pull-out, leaving a brittle-like fracture appearance in 

several regions of the worn surface (Stage 3 in Fig. 5.6.23 and Fig. 5.6.24). This is more 

evident in the specimens tested at dry conditions, where a greater material detachment 

can be observed Fig. 5.6.22a. This is a typical wear model for ceramic brittle materials 

[28,113], and similar wear morphologies have been observed for dry Al2O3/Al2O3 

contacts [114]. According to wear-regime maps of Al2O3/Al2O3 contacts at room 

temperature and dry conditions, under the speed and loads used in this study, the wear 

mechanism is localized microfracture [104], which is in accordance with the results 

obtained in this work. In the worn surface of the tribocorrosion test specimen in Fig. 21b, 

the initiation of crack generation above the pores and less pull-out material can be 

observed. In this case, the stable aluminum hydroxides, such as Al(OH)3, formed from 

the reaction of wear debris with seawater (Stage 2 in Fig. 5.6.24) can provide the surface 

with a lubrication effect by shearing in the contact[106-109] (Stage 3 in Fig. 5.6.24). On 

the other hand, the slight lubricating ability of seawater [110] can also contribute to 

diminishing the material rate in wet conditions. The crack propagation is retarded, leading 

to lower material pull-out and shallower penetration of the countermaterial into the 

coating. Abrasion grooves are more evident in dry test sample, which can be ascribed to 

greater third body interaction resulting from more substantial detached material 

remaining in the tribological contact. In tribocorrosion tests, the wear debris can be more 

easily removed from the worn surface by seawater movement. The contact between two 

identical materials with similar hardness, i.e., alumina ball and alumina phases in the 

PEO layer, led to abrasion of the countermaterial at both test conditions (Fig. 5.6.20e 

and f). The wear extent was considerably higher in the ball used in dry conditions, which 

can be ascribed to a greater surface of contact with the hard intermediate layer. In spite 

of the evident abrasion of the ball, no wear could be measured in either case. Therefore, 

the wear mechanism of the PEO coating in dry conditions is a combination of abrasion 

and microfracture, whereas the tribocorrosion mechanism is composed of abrasion, 

microfracture and tribochemical wear (corrosion delamination fatigue). 
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Fig. 5.6.22 SEM images of the TSA/PEO worn surface showing cracks and pulled-out material: (a) dry 

abrasion test and (b) tribocorrosion test specimens 

 
Fig. 5.6.23 Schematic of the wear mechanism for the PEO layer of the TSA/PEO duplex coating at dry 

conditions 

 
Fig. 5.6.24 Schematic of the tribocorrosion mechanism for the PEO layer in the TSA/PEO duplex coating 

in synthetic seawater 
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The topography of the samples surface is presented in the images obtained with the 

confocal microscope in Fig. 5.6.25, where the wear track size can be compared at a 

glance. In all cases, the wear track is wider and deeper in the dry tests. The topography 

of the unworn surface of the steel is different in both tests, showing a smooth surface in 

the dry abrasion test, and a rather rough appearance in the tribocorrosion test sample. 

The wear-accelerated corrosion undergone in seawater during the sliding tests led to an 

increase in roughness [6,7]. The porous surface of the TSA and TSA/PEO coatings is 

evident in the images, showing little difference between the dry and wet conditions in the 

duplex coating. In the TSA, however, greater and deeper porosity can be observed for 

the tribocorrosion specimen. This could be related with a certain dissolution of the 

aluminum reacting with seawater. 

 
Fig. 5.6.25 Topography of the wear tracks generated in the (a) steel, (c) TSA, and (e) TSA/PEO in the dry 

sliding test, and in the (b) steel, (d) TSA, and (f) TSA/PEO in the tribocorrosion tests in seawater 

The cross-section profiles of the wear tracks are plotted together in Fig. 5.6.26a, and the 

material loss obtained from the wear track volumes is represented in Fig. 5.6.26b and 

compiled in Table 5.6.6. The greater wear track, and accordingly the higher material loss, 

was measured for the TSA coating in dry abrasion test, followed by the TSA specimen 

tested in seawater. The depth of the track in dry conditions close to 200 microns confirms 

the removal of a great part of the sprayed layer, which original thickness was close to 

270 microns (). The depth of the track in tribocorrosion conditions is around 120 microns. 

The tracks of the R4 steel and TSA/PEO coating in dry abrasion tests were very similar. 

The slightly greater material loss obtained for the latter can be attributed to a more brittle 

wear mechanism, and fast and easy removal of the outer porous layer. The track depth 

close to 50 microns coincides with the original thickness measured for the top porous 

layer (see Section 5.6.3.1), confirming the previous statement. The wear track of the 

steel in tribocorrosion tests was small in comparison with the dry condition sample. The 

material loss of the TSA/PEO coating could not be quantified, as the track depth was in 

the order of the roughness degree of the sample. A slight smoothing of the peaks in the 

wear track can be noticed in the cross-section, and abrasion lines are visible in the 

topography in Fig. 5.6.25d, but the wear was found to be negligible. This confirms that 

there was just a partial removal of the top porous layer in tribocorrosion test.  
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Consequently, the wear performance of the as-sprayed coating is considerably improved 

by PEO treatment, leading to lower material losses, especially in tribocorrosion 

conditions.  

 
Fig. 5.6.26 Fig. 1 (a) Cross-section profiles of the wear tracks obtained in dry abrasion and tribocorrosion 

tests (4000 cycles at 100 rpm under 5N), and (b) material loss obtained from the wear track volume 

 Conclusions 

The objective of this work was to investigate the enhancement of wear and tribocorrosion 

behavior of a PEO-modified TSA coating used in the protection of submerged 

components in offshore applications. For this aim, electrochemical corrosion tests, dry 

abrasion tests, and tribocorrosion tests have been performed comparing the results of 

the steel substrate, the as-sprayed aluminum coating, and the newly developed 

TSA/PEO duplex system. From the results obtained in this work, the following 

conclusions can be drawn: 

• The PEO coating generated on top of the TSA presented a three-layered 

structure with a dense inner barrier in the interface with the TSA coating, showing 

an appropriate bonding strength to the sprayed layer.  

• The corrosion tests confirmed the good barrier properties of the TSA/PEO duplex 

system, as a combination of the retarding and blocking effects provided by the 

PEO oxide layer, and the passivation given by the aluminum layer. The PDP and 

EIS results showed an improvement with respect to the as-sprayed coating, 

which durability could be expected to be lower due to aluminum dissolution 

through galvanic corrosion reaction with the steel substrate. 

• The electrochemical response of the PEO coating was not affected by sliding, in 

terms of noticeable variations in the OCP and EIS results, indicating an 

improvement in the tribocorrosion resistance of the as-sprayed coating. 

• The tribological behavior of the TSA coating was improved by the PEO treatment, 

showing smaller material losses at both dry and tribocorrosion conditions, and 

lower COF in tribocorrosion conditions. The high COF registered at dry abrasion 

tests was attributed to the contact between two hard Al2O3 materials. 

Nonetheless, the material loss was considerably smaller than that in the TSA 

coating.  

• The wear mechanism of the PEO layer in the duplex coating was found to be a 

combination of abrasion and microfracture, whereas the tribocorrosion 



Chapter 5 

 

 

217 

mechanism was composed of abrasion, microfracture and tribochemical wear 

(corrosion delamination fatigue). 

• Therefore, the TSA coating modified by PEO technique showed an improvement 

of the long-term corrosion behavior, and an enhancement of the wear and 

tribocorrosion resistance due to the high hardness and the ceramic nature of the 

generated oxide layer.   
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ABSTRACT 

Marine environment is a very aggressive working atmosphere, where metals are subjected to 
corrosion and biological attacks, among other phenomena. The protection of steel components 
and structures has been achieved by means of protective coatings, including coatings with 
antifouling characteristics to avoid microbiological corrosion. In this work, an organic topcoat 
usually applied on top of Thermally Sprayed Aluminum (TSA) coatings has been functionalized. 
The paint was provided with superhydrophobic and antibacterial characteristics by the addition of 
SiO2 nanoparticles and biocide agents to its composition. Three biocide agents were evaluated, 
and the best one was selected by means of wettability and bacterial activity tests. The adhesion 
of the paint was measured, and ecotoxicity of the paint was analyzed in aqueous marine 
environment. Finally, weathering aging tests were performed to evaluate the corrosion protection 
ability of the coatings for its use in aggressive atmospheres.    

Keywords: Offshore; Coatings; Antifouling; Ecotoxicity; 

 Introduction 

Marine environment is a very aggressive working atmosphere that comprises several 

phenomena that can accelerate the degradation of structural materials reducing their 

useful life. The exposition to ultraviolet radiation, chloride-rich salty environment, 

frequent wet-dry cycles, high humidity, low temperature, the presence of marine bacteria 

and microorganisms, are some examples. One of the phenomena that worst affect the 

deterioration of materials in offshore applications is corrosion. The high salinity and low 

electrical resistivity of seawater make this environment especially aggressive [1]. Along 

with marine corrosion, marine biofouling is another natural phenomenon representing 

the most significant problems in marine technology [2]. Offshore structures such as 

platforms, vessels, drilling pipes or mooring lines are subjected to biological attack [3]. 

Marine biofouling can be defined as the undesirable accumulation of microorganisms, 

algae, and animals on submerged structures in seawater [4-7]. When bacteria attach 

themselves onto metallic surfaces, they start to form a thin film known as biofilm, which 

can rapidly cover the surface of steel in natural environments [6,8]. The net result of the 

biofilm formation is that it usually creates concentration gradients of chemical species 

across its thickness, which can enhance corrosion on the metal surface [3,6-8]. The 

corrosion process that is initiated or accelerated by the activity of microorganisms is 

known as Microbiologically Influenced Corrosion (MIC). MIC has been reported to cause 

2-3 mm of materials loss in the form of pits [9,10]. 

In order to prevent the colonization of microorganisms, antifouling (AF) paints have been 

widely employed in marine environments [4,5,11]. These paints were firstly used in boat 
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hulls, where the presence of fouling increases the drag friction and weight, thus, 

incrementing the fuel consumption up to a 40% [12] (around a 6% for every 100 µm 

increase in surface roughness [13]), and reducing the speed in a 70% [4,11]. AF paints 

have also been used in static structures such as buoys, pipelines and drilling platforms 

[14,15], in order to reduce MIC in submerged structures and components. The use of AF 

protection can save up to EUR 4.8 billionvii per year worldwide [4,16,17]. The former AF 

paints were formulated adding extremely toxic organotin, e.g., tributyltin oxide or TBT.  

These paints were characterized by a gradual release of biocide agents, also known as 

self-polishing [2]. However, TBT was found to be extremely toxic, and its use was banned 

in the EU in 2003, and globally in 2008 by the Maritime Organization [2,4,16,18,19]. 

Different formulations and technologies have been used thenceforth. The predominant 

biocide after the ban of TBT has been copper [2,5,17,16,20]. This element can be found 

naturally in marine environments, but it becomes toxic when exceeding the threshold of 

the organism tolerance of marine species [3,16]. The use of copper-based AF paints is 

regulated in some countries, according to the copper release rate. For instance, the 

allowance in Canada is of 40 µg/cm2/day, whereas that in Denmark is 200 µg/cm2 over 

the first 14 days [16]. Paints are usually loaded with high amounts of copper oxide (Cu2O) 

and algaecide co-biocides or boosters, e.g., Irgarol 1051, diuron or chlorothalonil 

[4,11,15,16,19,21]. Currently, there are approximately 23 boosters in use [19], and some 

of them have been restricted in some countries [4,16,18]. Several studies have 

demonstrated that the addition of nanoparticles to paints formulation provide the paint 

with antibacterial ability. This is related to their peculiar physical, chemical, and biological 

properties, as well as to their high surface/volume ratio, which make their interaction with 

bacteria highly effective [22-24]. Three of the most promising nanoparticles for biocide 

applications are the copper oxide (CuO) [2], silicon dioxide (SiO2) [25], and zirconium 

dioxide (ZrO2) [26].  

More recently alternatives in AF technologies include non-toxic formulations based on 

controlling the physicochemical and mechanical properties. This is achieved by 

controlling the surface free energy, surface topography or the wettability, modifying the 

interaction between the surface and marine microorganisms [2,3,27]. Hydrophobic 

surfaces, for instance, have been found to easily release bacteria and microorganisms 

from the surface inhibiting their settlement. Superhydrophobic surfaces prevent the 

sticking of organisms due to their low free energy surface. The minimization of 

intermolecular forces of interactions between microorganisms and the surface leads to 

an easy release of the adhered organisms under low shear stresses [28]. 

Superhydrophobic films have been achieved by using silica nanoparticles [25,27,29-31] 

or carbon nanotubes [27,32,33], among others. Furthermore, silica nanoparticles have 

been found to provide not only hydrophobicity properties but also bactericide ability [2] 

and corrosion resistance [34,35] to the paint. 

The requirements of protective coatings and their application procedures vary 

significantly depending on the installation location, i.e., onshore or offshore. Currently, 

the protection systems used in offshore structures are regulated by several standards, 

among which the ISO 12944:1-9 (2018) [36] and the NORSOK M-501 (2012) [37] can 

be found. The selection of the protective system profoundly depends on the location of 

the component. According to the ISO 12944-2 and ISO 9223 [38], there are five 

corrosivity categories; from the C1 corresponding to a non-corrosive atmosphere, to 

industrial and marine corrosive categories (C5-I and C5-M). There are also IM1 and IM3 

categories, to describe the water and soil corrosivity, respectively. The first edition of the 

                                                

vii Currency expressed in American billion (109) 
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ISO 12944-9 [39] published in January 2018, adds new categories for offshore related 

atmospheres: CX-offshore (atmospheric), Im4 (immersion), and CX-Offshore/Im4 

(splash and tidal exposure zones). The standard also classifies the durability or the time 

for the first major maintenance of the coatings as:  

• Low (L): 2 to 5 years 

• Medium (M): 5 to 15 years 

• High (H): 15 to 25 years 

• Very High (VH): >25 years 

In previous works, the corrosion and tribocorrosion of several coating used in offshore 

applications have been assessed [40,41]. One of those coatings was a Thermally 

Sprayed Aluminum (TSA) with an organic topcoat. TSA coatings have been widely used 

for the protection of submerged components [42,43], providing effective service life for 

30 years in different exposure zones [43-45]. The use of an organic layer on top of 

sprayed coatings is recommended to seal pores and defects, enhancing the coating 

lifetime [37]. The present study aims to functionalize the performance of both the TSA 

layer and the organic topcoat. In the first part of this work, the wear response of the TSA 

was enhanced by Plasma Electrolytic Oxidation (PEO) technique [46]. In the second part 

of the work, compiled within this paper, the organic topcoat paint is functionalized by 

means of nanoparticle incorporation to provide it with hydrophobic and antibacterial 

abilities, i.e., antifouling properties. The nanoparticles selected for this aim have already 

been employed to formulate hydrophobic or bactericide paints, but little is known on the 

properties of the paint when incorporating both nanoparticle types simultaneously. The 

paint obtained in this work was evaluated in terms of wettability, antibacterial activity, 

ecotoxicity, and weathering aging tests. The latter are currently employed to evaluate 

and validate the corrosion protection ability of coatings for their use in aggressive 

atmospheres. The coatings were aged in different cabinets according to ISO 12944 and 

NORSOK M-501 standards. 

 Materials and methods 

5.7.2.1 Materials  

The test samples were R4 steel grade [47] plates. This is a High-Strength Low-Alloyed 

steel usually used in the manufacturing of chains, connector and other accessories 

composing the mooring lines employed in offshore floating platforms. The test panels 

were extracted from real chain components and coated by arc Thermal Spray technique 

with an aluminum layer (TSA). Some of the panels were treated by Plasma Electrolytic 

Oxidation (PEO), in order to enhance the wear performance of the sprayed aluminum. 

All the details on the TSA and PEO processes parameters, coatings properties and 

morphologies were explained previously [46]. The dimensions of the panels were 

50x75x8mm. 

The topcoat paint selected for its functionalization was the Carboguard® paint from 

Carboline®. This paint is usually employed on top of TSA coatings for the protection of 

submerged components. For the different tests and evaluations carried out in this work, 

the original Carboguard coating was applied on the TSA coating, whereas the modified 

Carboguard paint was applied on top of the newly developed TSA/PEO duplex coating 

system.  

Three different biocide agents were evaluated, and one of them was selected after a first 

characterization based on wettability and bacterial activity tests. For these tests, the 

paints were applied on flat aluminum 5005 H24 plates of 140x70x0.8 mm.  
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5.7.2.2 Organic topcoat paint functionalization 

For the functionalization of the organic topcoat paint, a commercial paint Carboguard® 

890 & 890 (LT) from Carboline® was selected. The paint consisted of three components, 

i.e., the binder (Carboguard-A), the hardener (Carboguard-B), and a thinner (C). The 

paint was prepared in a proportion of A/B/C=1/1/2, as recommended by the 

manufacturer. The nanoparticles were incorporated into the paint by dispersing them in 

the thinner. 

For the hydrophobicity, silicon dioxide (SiO2) nanoparticles from Evonic (Aerosil R 812) 

were used. The characteristics of the nanoparticles are presented in Table 5.7.1. A pre-

dispersion of the SiO2 nanoparticles was prepared in the thinner. In order to ensure the 

stability of the nanoparticles once added in the paint system, a Croda-KD3 surfactant 

was used in the pre-dispersion. The optimum concentrations of SiO2 nanoparticles and 

Croda-KD3 surfactant were 25 wt% and 5 wt%, respectively. The pre-dispersion was 

prepared by mechanically agitating the solution for 15 minutes, followed by 30 minutes 

in an ultrasonic homogenizer (Vibracell-VCX750) at an operating frequency of 20kHz, 

pulsing operating mode of 1s on/1s off, and output power fixed at 750W at 60% 

amplitude. During this last operation, the nanoparticle size distribution was repeatedly 

measured by Laser Diffraction Spectrometry (LDS) in a Malvern Mastersizer 2000 

instrument, until the optimum values were reached. Based on previous knowledge, the 

minimum nanoparticle size distribution to achieve a stable dispersion was set on 180 nm 

(see Fig. 5.7.1).  

 
Fig. 5.7.1 Size distribution of the SiO2 (top) and Cu2O (bottom) nanoparticles pre-dispersions measured by LDS 

For the antibacterial properties, three strategies were evaluated: two commercial 

biocides Econea (Tralopyril) from Sigma-Aldrich and Irgarol 1051 from Ciba Inc., and 

copper (II) oxide (Cu2O) nanoparticles from Sigma-Aldrich (Table 5.7.1). The Econea 

and Irgarol biocides were directly incorporated in the thinner, whereas for the Cu2O 

nanoparticles a pre-dispersion in the thinner was prepared. For this aim, the mixture was 

mechanically agitated for 15 minutes, for which a nanoparticle size distribution of 1-5 µm 

was obtained (see Fig. 5.7.1). For each of the three biocides evaluated, two 

concentrations were prepared: 1.5 wt% and 5 wt% in weight.  

The paints were prepared by adding the 25wt% SiO2 pre-dispersion with the dispersions 

containing the bactericide agents as the thinner, and applied by spray technique. For the 

first characterization of the different paint formulations, aluminum 5005 H24 plates were 

spray painted. The thickness of the coatings was of 100±20 µm. After the most effective 

combination of SiO2 and biocide agent in terms of wettability and antibacterial ability was 

selected, the TSA/PEO samples were sprayed with this paint. The TSA samples were 
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coated with the non-modified topcoat, to use this system as the reference for the different 

tests performed within this work. In both cases, several spray passes were made to reach 

a coating thickness of around 250 microns, as recommended in the ISO 12944-9.  

Table 5.7.1 Information of the nanoparticles employed for the paint functionalization 

Nanoparticle Size BET (m2/g) Molecular weight (g/mol) Company 

Silicon dioxide 

(SiO2) 
10-30 nm 260±30 - Evonik 

Copper (II) oxide 

(Cu2O) 
≤5 µm - MW= 143.09 (97% assay) Sigma-Aldrich 

5.7.2.3 Coatings characterization  

Roughness, thickness, and adhesion 

The roughness of the as-sprayed and PEO-treated coatings before and after applying 

the organic topcoats was determined in a Perthometer M2 (Mar GmBH) profilometer 

(DIN EN-ISO 4288). The thickness of the different layers composing the coatings was 

measured from the cross-section profile in an Olympus GX71 optical microscope (UNE-

EN ISO 1463). Finally, the adhesion of the paints was analyzed by a pull-off adhesion 

test (PosiTest AT-A), with aluminum dollies of 20 mm in diameter at a tensile rate of 0.7 

MPa/s (ISO 4624). The adhesive used in the tests was a methyl-based material 

(LOCTITE 496). Prior to the test, after the curing time of the adhesive, the coatings were 

cut to the substrate around the circumference of the dollies. Four repetitions were 

performed for each sample, and the mean value was obtained. The fracture type was 

visually estimated according to ISO 4624. 

Surface hydrophobicity assessment  

The hydrophobicity grade of the developed topcoat paint was evaluated by measuring 

the static contact angles formed by drops of synthetic seawater with heavy metals (ASTM 

D1141) on the tests sample surfaces at room temperature (23±2 ºC). The evaluation was 

carried out in a SURFTENS universal goniometer, with the SURFTENS 4.6 software, 

where the contact angle was measured by means of an optical camera.   

5.7.2.4 Antibacterial activity assessment 

To assess the antibacterial activity, the procedure described in JIS Z2801:2012 [48] and 

its equivalent ISO 22196:2011 [49] standards were followed. A bacterial suspension of 

a known concentration (2.5-10 x105 bacteria per mL) was prepared, and 400 µL were 

inoculated on the studied surfaces, followed by their incubation for 24 hours at an 

optimum temperature (35± 1ºC). The samples size was of 50x50 mm, and a cover film 

(parafilm) of 40x40 mm dimensions was placed on the top of the bacterial suspension 

inoculated on each surface, before the incubation step. The antibacterial activity was 

determined comparing the results of the modified topcoat paint with the non-modified 

one. After the incubation period, the bacterial suspension was recovered from each 

surface, followed by their quantification and calculation of the number of the viable 

bacteria recovered per cm2. The number of viable bacteria was determined by performing 

10-fold serial dilutions of the recovered bacterial suspension in phosphate-buffered 

physiological saline. The microorganism used for the study was the Escherichia coli 

ATCC 8739 (E.Coli). Prior to the tests, the surfaces and the parafilm were sterilized with 

UV radiation in a laminar airflow chamber for 15 minutes. Commercially pure titanium 

grade 4 (cpTi4) samples were used as a negative control, since this material allows the 

bacterial growth. Due to the high hydrophobicity of the testing samples, the bacterial 

inoculum viscosity was increased by adding agar as an inert thickener, as indicated in 
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the ISO 22196:2011 standard. The quantity of agar-agar is not specified in the standard, 

so its preparation was made according to the ASTM E2180-18 [50] standard guideline: 

0.85 g of NaCl and 0.3 g of agar-agar in 100 mL of distilled water. Three replicates were 

tested for each coating system.  

The first test series consisted of a qualitative approach, comparing the bacterial growth 

for the topcoat paint modified with the three different biocides at two concentrations. The 

results of the different formulations were compared with those of the paint with a 25 wt.% 

of SiO2, in order to evaluate just the influence of the biocide on the bacterial growth. From 

these results, the best paint formulation was selected, and a quantitative study was 

performed comparing the modified paint with the original paint. Finally, the quantitative 

tests were repeated for the topcoat paints applied on real samples, i.e., non-modified 

paint on the TSA-coated steel, and the modified paint on the TSA/PEO coating. 

5.7.2.5  Marine aquatic ecotoxicity tests 

For the evaluation of the new paint formulation toxicity, marine algal growth inhibition 

tests were performed according to the ISO 10253 [51] standard and using the MARINE 

ALGALTOXKIT recommended. Phaeodactylum tricornutum algae were purchased from 

MICROBIOTESTS Inc. The culturing was conducted in synthetic seawater mixed with a 

stock solution of nutrients prepared in accordance with ISO 10253. The algae 

concentration in the initial culture inoculum was adapted to 104 cell/mL three days before 

the tests, to ensure they were in the exponential growth phase. The incubation was made 

by maintaining the cultures at 20±2 ºC, with a constant lateral illumination of around 

10000 lux for three days.  

The toxicity tests were performed by using the leachate obtained from stirring the coated 

panels in synthetic seawater (ISO 10253), in accordance to the OECD no 23 guidance 

[52] for non-soluble substances. The panels were immersed in 1L of synthetic seawater 

and agitated during 28 days in a magnetic stirring. The leaching was collected and 

analyzed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) in 

an ULTIMA 2 HORIBA Jobin Yvon equipment every 24 hours to measure the release 

rate of copper and other main elements present in the painted samples. After analyzing 

the results, new samples were immersed and agitated during the time in which the metal 

release was observed to be the maximum. The leachates obtained in this second series 

were used to culture the Phaeodactylum tricornutum and analyze the paint toxicity. Algal 

growth inhibition was registered every 24 hours, measuring the optical density (OD) at 

670 nm in a Jenway 6300 spectrophotometer. With the optical density, it was possible to 

calculate the EL50, which is the concentration of leachate that causes a decrease of 50% 

in the algal growth. This terminology is employed instead of the standard EC50 

(concentration of test substance resulting in algae growth reduction of 50%) when the 

test material is not completely soluble, as the substances studied in this work.  

5.7.2.6  Evaluation of the coatings for high corrosivity category atmospheres 

To compare and evaluate the corrosion protection performance of the two coating 

systems, accelerated weathering tests were performed in different climatic chambers. 

The test conditions were selected based on the ISO 12944-6 [53] and ISO 12944-9 [39] 

standards. The conditions and duration proposed by these standards for the C5-M (VH) 

(ISO 12944-6) and CX-offshore/Im4 (ISO 12944-9) categories are specified in Table 

5.7.2. For the water condensation and salt spray tests, the samples were aged for the 

maximum duration set by the ISO 12944-6 to achieve the C5-M(VH) category. In the 

case of the immersion test and combined aging test, the duration of the tests was 

reduced to 2000 h. 
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The resistance to water immersion was performed in a Julabo ED thermostatic bath, at 

40 ºC (ISO 2812-2 [55]). The water condensation tests were performed according to the 

ISO 6270-2 [56], under constant humidity conditions at 40 ºC, in a Kesternich HK300-

800 S/M humidostatic chamber. Salt-fog tests were carried out in an ASCOTT 2000S 

chamber, under the conditions specified in the ISO 9227 [56] standard. For this test, six 

samples of each coating systems were introduced in the chamber. In three of the 

specimens, an X-shaped incision that reached the steel substrate was made (ISO 17872 

[57]). According to EN ISO 12944-6 standard, the rust coming from substrate corrosion 

from the scratch in the samples with incision shall not exceed 1 mm, calculated as: 

𝑀 =
𝐶−𝑊

2
     (5.7.I) 

Where W is the original width of the scratch, and C the maximum width of corrosion 

across the scratch, in millimeters. In the samples with the incision, adhesion tests were 

performed at the end of the exposure, following the ASTM D3359 standard [58]. 

Finally, the combined cycle aging test was performed based on the procedure described 

in the ISO 12944-9 [39] and NORSOK M-501 [37] standards. The test consists of 

combining the exposure to UV radiation and condensation (ISO 16474-3 [59], A method), 

with the exposure to salt spray (ISO 9227) and low temperature. The UV/condensation 

period was performed in an Atlas UVTest weathering device. The UV lamps employed 

in the test were type II UV lamps (UVA-340), of 340 nm (ISO 16474). The salt spray and 

low-temperature periods were carried out in an ASCOTT 2000S chamber and in a 

WEISS C340/70 climatic chamber, respectively. 

For all the tests, three replicates of each coating system were evaluated, in order to 

ensure the repeatability of the results. The panels were periodically examined to detect 

the appearance of any defect such as blisters, cracks, delamination of the coating or 

corrosion of the substrate (ISO 4628 1-5 [60]). At the end of the aging tests, pull-off 

adhesion tests were repeated upon the tested samples under the above-mentioned 

conditions (ISO 4624). According to the ISO 12944-9 standard, the minimum pull-off 

value before artificial aging must be of 5 MPa. After aging, the adhesion should not be 

reduced more than the 50%. The fracture should show 0% of adhesive failure between 

the substrate and the first coating layer, unless the pull-off values are above 5 MPa, in 

which case the failure type required is not specified. 

 Results and discussion 

5.7.3.1 Selection of the biocide agent 

The static water contact angles of the flat aluminum 5005 H24 samples with and without 

the paint containing the three biocides in different concentrations is shown in Fig. 5.7.2. 

The images of the water droplets are presented on top of the results for each paint 

composition. The non-coated sample and the sample with the non-modified commercial 

paint presented hydrophilic behavior with contact angles below 90º. The addition of SiO2 

was confirmed to provide the paint with superhydrophobic character, showing contact 

angles above 150º. The incorporation of biocides modifies the wettability reducing the 

contact angles to values between 136 and 140º. The only system showing little variation 

on the contact angle with values close to those of the superhydrophobic composition with 

SiO2 was the one containing a 1.5 wt% of Cu2O. 
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Fig. 5.7.2 Contact angles measured with synthetic seawater (ASTM D1141) on the aluminum substrate, 

the reference paint and the modified paint with different biocides and concentrations 

Fig. 5.7.3 shows the results of the qualitative analysis of bacterial growth carried out on 

the paint with SiO2, and the paint with SiO2 and the three bactericides in two 

concentrations.  

 
Fig. 5.7.3 Bacterial growth after 24 hours obtained for the cpTi4 reference, the paint with 25wt% SiO2, and 

the paint with 25wt%SiO2 and the different biocides in two concentrations 

From the image, it can be noticed that the modified paints showed dissimilarities in the 

bacterial growth for the different biocides. The paint modified with SiO2 exhibited a slight 

reduction of bacteria presence with respect to the cpTi4 reference sample. Some authors 

have already reported the antibacterial character of SiO2 in AF paints [25]. However, the 

paints with silicon oxide combined with Irgarol or Econea did not present any biocide 

effect, in either concentration evaluated. The biocide agent that showed the best 

antibacterial performance was the copper oxide, especially for the lowest concentration 

(1.5 wt%). Comparing the results of the paint with SiO2 and the paint with SiO2 and 1.5 

wt% Cu2O, the former showed a slight decrease in the bacterial growth whereas the latter 

completely avoided the bacterial growth, most likely because of its bactericidal effect. 

Therefore, this paint was selected as the most promising one to perform the rest of the 

characterization within this work. Thenceforth, the non-modified paint and the modified 

one (25 wt% SiO2+1.5 wt% Cu2O) will be referred to as C and CM, respectively.   
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5.7.3.2 Coatings characterization 

Fig. 5.7.4 shows the cross-section profile of the two coating systems, i.e., the TSA with 

the non-modified topcoat (TSA+C) and the TSA treated by PEO technique with the 

modified topcoat (TSA/PEO+CM). Both paints seem to be well bonded to the TSA and 

TSA/PEO coatings, showing no appreciable irregularity on the interface. The roughness 

of the samples before and after the spraying of the paints are presented Table 

5.7.3,along with the thickness of each coating layer. The roughness of the TSA+C 

coating system shows little variation before and after painting. In the case of the 

TSA/PEO system, the initial roughness was higher, around 5 microns, due to the high 

porosity of the topmost layer of the PEO layer [46]. This value was reduced to 3.5 microns 

after applying the modified paint. Regarding the thickness of the coatings, the lower 

thickness of the TSA layer in the sample treated by PEO technique is attributed to the 

transformation of part of the aluminum to aluminum oxide during the process. The 

thickness of the PEO layer was around 95 microns, obtained with the process 

parameters described in the previous work [46]. In the case of the organic topcoats, the 

layer thickness acquired after several spraying passes was around 250 microns. 

Table 5.7.3 Mean thickness and roughness values obtained for the TSA+C and TSA/PEO+CM coating 
systems 

 
TSA+C  TSA/PEO+CM 

TSA C  TSA PEO CM 

Roughness, Ra (µm) 2.3±0.6 2.1±0.3  - 5.3±0.3 3.5±.3 

Thickness (µm) 254±22 255±11  148±17 94±9 248±11 

The values of the table were obtained from three samples of each material 

 
Fig. 5.7.4 Transversal micrographs of the TSA+C (left) and TSA/PEO+CM (right)coating systems applied 

on the R4 steel grade substrate 

The adhesion of the two coating systems was evaluated by means of a pull-off test (ISO 

4624). Both systems showed adequate bonding strength, with similar results: 8.78±0.28 

MPa for the TSA+C and 8.03±0.10 MPa for the TSA/PEO+CM. According to the ISO 

12944-9 [39] standard, the minimum pull-off test value for protective coatings in their 

initial performance, i.e., before any exposure to aggressive atmospheres, should be of 5 

MPa for their use in splash and tidal zones (CX-offshore and Im4 categories). Therefore, 

the results obtained for the coatings are considered appropriate. Furthermore, the 

standard recommends a 0% adhesive failure between the substrate/metalized steel and 

the first coat, when the results are below 5 MPa. A representative fracture surface of 

each coating sample and the respective dolly is presented in Fig. 5.7.5. In both cases, 

the fracture type was generally cohesive within the paint, showing in some punctual 

cases an adhesive failure between the adhesive and the coating in areas below the 20% 

of the test surface.  
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Fig. 5.7.5 Fracture surface of the coatings after pull-off adhesion test: TSA+C coated sample and dolly 

(left), and TSA/PEO+CM coated sample and dolly (right) 

Wettability tests were repeated comparing the results for the non-modified and modified 

topcoat applied on flat aluminum samples (C and CM), for the TSA and TSA/PEO 

samples with no paint, and the non-modified and modified topcoats applied on the TSA 

and TSA/PEO specimens, respectively. The results are presented in Fig. 5.7.6, showing 

the contact angle values and the water drop shape. The TSA and TSA/PEO samples 

show low contact angles, especially in the case of the TSA/PEO sample, due to the high 

porosity and roughness of the topmost layer of the oxide layer. The contact angles of the 

non-modified topcoat are close to 75º in both the flat and the TSA+C samples, indicating 

a small influence of the sample roughness or topography on the wettability of the topcoat. 

Similarly, the modified topcoat presents a superhydrophobic behavior in both the flat 

sample and the high-porous TSA/PEO coating. The considerable increase of the contact 

angle from 16.30º to 152.42º, and the similar results in the smoother and rougher 

samples, suggest that the topography of the substrate does not affect the 

superhydrophobic character of the modified paint.  

 
Fig. 5.7.6 Contact angles measured on the non-modified (C) and modified (CM) paints applied on the flat 

aluminum 5005 H24 samples, TSA coating with no paint, TSA coating with the non-modified paint 
(TSA+C), TSA/PEO duplex coating system with no paint, and TSA/PEO coating with the modified paint 

(TSA/PEO+CM). The liquid used in the measurements was Synthetic seawater (ASTM D1141) 

5.7.3.3 Antibacterial activity assessment 

The quantitative bacterial assessment was carried out for the topcoat paints applied on 

both the flat aluminum 5005 H24 samples and the real samples, i.e., TSA and TSA/PEO 

coatings, to evaluate the influence of the topography on the antibacterial ability of the 

topcoat. Fig. 5.7.7 shows the lowest dilution (1/10) at which a representative difference 

on the bacterial growth was observed. The non-modified Carboguard paint showed an 

appreciable decrease on the bacteria content after 24 hours with respect to the cpTi4 

reference. On the other hand, no bacteria could be detected in the CM sample, 

confirming the effective antibacterial character achieved by means of the addition of Si2O 

and specially Cu2O to the paint formulation.  
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The results obtained for the non-modified paint applied on the TSA coating, the modified 

paint applied on the TSA/PEO coating, and the cpTi4 reference after 24 hours of 

incubation are depicted in Fig. 5.7.8. The images correspond to the lowest dilution at 

which a representative difference could be observed between the different materials 

(1/10). A decrease in the bacterial growth can be noticed in the non-modified paint with 

respect to the reference. In turn, there is a further bacterial growth decrease in the 

modified topcoat. However, there is a noticeable difference between the results obtained 

for the flat samples, which display greater growth inhibition.  

 
Fig. 5.7.7 Bacterial growth after 24 hours obtained for the cpTi4 reference (left), and the non-modified paint 

(middle) and modified paint (right) applied in the flat aluminum 5005 H24 samples, for the 1/10 dilution 

 
Fig. 5.7.8 Bacterial growth after 24 hours obtained for the cpTi4 reference (left), the non-modified paint on 
the TSA coating (middle) and the modified paint on the TSA/PEO coating (right), for the 1/10 dilution in the 

real samples 

The antibacterial activity (R) was calculated according to ISO 22196 with the following 

equation: 

𝑅 = 𝑈𝑡 − 𝐴𝑡         (5.7.II) 

Where 𝑈𝑡 and 𝐴𝑡 are the average of the common logarithm of the number of viable 

bacteria (bacteria/cm2) recovered after 24 hours from the untreated and treated test 

specimens, respectively. 

The antibacterial activity after 24 hours of incubation can also be expressed as a 

microorganism percentage reduction (R%), as follows: 

𝑅 (%) =
𝐶−𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑐𝑚2⁄ )−𝐶𝑀(𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑐𝑚2⁄ )

𝐶−𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑐𝑚2⁄ )
 𝑥100   (5.7.III) 

The results obtained for the C and CM paints are presented in Fig. 5.7.9. The diagram 

on the left corresponds to the paints applied on the flat aluminum 5005 H24 samples, 

whereas the figure on the right shows the result of the C and CM applied on top of the 
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TSA and TSA/PEO coatings, respectively. From the results, it can be noticed that there 

is a reduction on the number of bacteria after 24 hours for the paint containing the biocide 

agents, especially in the flat samples. This confirmed the enhancement of bactericide 

behavior of the paint with the addition of SiO2 and Cu2O nanoparticles.  

The bacteria reduction of the modified paint in the flat aluminum sample was of the 

99.72%, whereas that of the one applied on top of the TSA/PEO coating was of 64.53%. 

Therefore, the effective antibacterial ability of the topcoat was confirmed to be 

considerably high in both cases. On the other hand, the difference on the results 

indicated an influence of the surface topography on the antibacterial activity, showing a 

decrease on the growth inhibition in the paint applied on the real TSA/PEO coating 

system of high roughness. Similar trends have been previously reported, in which the 

infectious bacterial adhesion and growth was enhanced in rougher substrates [61-64]. 

Nevertheless, the results still showed an efficient antibacterial ability with a decrease of 

64.53% of viable bacteria.  

 
Fig. 5.7.9 Mean viable bacteria recovered per cm2 in the non-modified sample at 0 and 24 h, and the 

modified topcoat at 24 h, and antibacterial activity (R) 

5.7.3.4 Marine aquatic ecotoxicity tests 

Fig. 5.7.10 shows the release of the main elements present in the painted samples during 

the 28 days that the specimens were stirred in synthetic seawater. In both coating 

systems, i.e., TSA+C and TSA/PEO+CM, the release trends for the different elements 

are very similar. The higher concentration in both cases corresponded to silicon, which 

was reduced with increasing immersion time. Manganese was detected during the first 

14 days, but its presence was negligible henceforth. Finally, the concentration of the 

other two main elements, i.e., titanium from the base paint composition and copper from 

the nanoparticles incorporated in this study, was negligible and could not be quantified 

in either evaluation. This indicated a good bonding and stability of copper nanoparticles 

in the paint, with low release rate, which could enlarge the antibacterial ability of the 

coating. On the other hand, the more substantial silicon content obtained for the modified 

paint during the initial days could be attributed to the higher concentration of this element 

due to the addition of Si2O nanoparticles. Nevertheless, the silicon content in the 

modified paint decreases with time to lower values than those of the original paint at the 

end of the test.  
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Fig. 5.7.10 Metal release in mg/L obtained from the leachates of the TSA+C and TSA/PEO+CM coating 

systems agitated during 28 days in synthetic seawater. The release of copper and titanium was negligible 
in both samples. 

From the previous results, the solubility of elements was observed to be critical after 96 

hours. New samples were immersed in seawater and stirred for 96 hours to perform the 

ecotoxicity tests with the Phaeodactylum tricornutum algae. Aslo, a second series of 

ecotoxicity tests were performed for the leachates obtained after 28 days of stirring, to 

compare the results obtained at the two stirring times. From these leachates, the 

concentrations bringing the decrease of 50% in the algal growth (EL50) as well as their 

associated 95% confidence limits were determined. The results obtained for the TSA+C 

and the TSA/PEO+CM systems are compiled in Table 5.7.4. For the leachates obtained 

after 96 hours of stirring, the EL50 of both coatings are above 100%, indicating that the 

toxicity of the coatings at this stage is negligible. The results obtained for the leachates 

after 28 days, however, show higher toxicity levels, especially for the non-modified paint, 

which are more than the double of that of the modified-paint. This interesting result could 

be related to the higher concentration of both silicon on the base paint leachate. The 

EL50 obtained for the TSA/PEO+CM system indicates that it is necessary a 61.78 vol. % 

of the substances present in the leachate to inhibit the algal growth.  

Table 5.7.4 EL50 values and lower and upper 95% confidence limits obtained for the algal growth inhibition 
test of 72 hours with Phaeodactylum tricornutum. The studied leachates were obtained after stirring the 
TSA+C and TSA/PEO+CM for 96 hours and 28 days in synthetic seawater 

Stirring time Sample EL50, 72h (vol. %) 95% Confidence limits 

96 hours 
TSA+C >100 - 

TSA/PEO+CM >100 - 

28 days 
TSA+C 23.77 23.66- 24.82 

TSA/PEO+CM 61.78 58.22-82.89 

5.7.3.5 Evaluation of the coatings for high corrosivity category atmospheres 

Fig. 5.7.11 contains one representative image of the coated samples before and after 

the weathering aging tests in the different atmospheric conditions: salt fog with and 

without the scribe, water condensation, immersion, and the combined cycle. As it can be 
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noticed from the images after aging, neither coating system presented severe 

degradation showing rusting or underrusting, chalking, or delamination.   
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Fig. 5.7.11 Accelerated aging tests results showing the surface state of one representative sample for 
each exposure type 

In the case of the non-modified topcoat applied on the TSA, no discoloration or 

brightness loss was observed, presenting a similar appearance from that prior to the 

tests. The only samples showing a deterioration in the form of blisters where those tested 

in the salt fog chamber. The samples with no incision presented one or two blisters, 

which appeared after 840 hours of exposure increasing in size up to 15 mm in diameter 

(Fig. 5.7.12a). In the case of the samples with the scribe, white salts coming from the 

underneath aluminum layer reaction was observed from the beginning of the test. The 

white salts spread with the exposure time, to an extent up to 2mm. Furthermore, the 

blisters appeared in the vicinity of the scribe after 168 h, increasing in size and number, 

up to sizes of 14 mm in diameter the (Fig. 5.7.12b). The samples of the water 

condensation test, immersion test, and combined cycle presented no blister or any other 

relevant defect. In the case of the CM topcoat applied on top of the TSA/PEO system, 

an evident discoloration can be noticed in all the samples from the images in Fig. 5.7.11. 

The discoloration was more evident in the samples tested in the salt fog chamber. In the 

samples tested with the scribe, an isolated blister was detected in one of the samples 

close to the scribe. The blister appeared after 1300 hours in the chamber and increased 

in size up to 6 mm in diameter at the end of the test (Fig. 5.7.12c).  In the rest of the 
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samples, apart from the color loss, no rust, blistering, cracking or delamination was 

observed. Therefore, the results obtained for both coating systems showed a good 

performance of both paints, showing little deterioration such as discoloration in the case 

of the CM paint. The samples with higher deterioration in both coatings were those 

exposed to the salt spray, presenting blisters both in the scribed and non-scribed 

samples in the original paint, and a noticeable discoloration and an isolated blister in the 

case of the CM paint. 

 
Fig. 5.7.12 Images showing in detail the blisters that appeared in the TSA+C samples (a) without and (b) 

with scribe, and (c) TSA/PEO+CM sample with scribe after the salt-fog exposure 

The results of the pull-off adhesion tests performed in the two coating systems after the 

weathering aging tests are collected in Table 5.7.5. A representative fracture surface of 

the samples and the respective dollies are presented in Fig. 5.7.13 for each atmospheric 

condition.  
 

Table 5.7.5 Pull-off adhesion test results performed on the TSA+C and TSA/PEO+CM coating systems after 
the weathering aging tests in different atmospheric conditions. 

 Pull-off adhesion (MPa) 

Type of exposure TSA+C TSA/PEO+CM 

Reference 8.78±0.28 8.03±0.10 

Salt-fog 5.78±0.28 6.52±0.10 

Water condensation 7.31±0.47 7.96±0.24 

Immersion 8.06±0.24 5.40±0.12 

Combined cycle 7.78±0.28 7.77±0.16 

As recommended in the ISO 12944-9 standard, the minimum pull-off value before 

artificial aging must be of 5 MPa, and it should not be reduced more than the 50% after 

aging. According to the results in Table 5.7.5,all the values exceeded the 5 MPa specified 

on the standard, with reductions with respect to the initial results lower than the 35%. 

Therefore, both coating systems fulfill the requirements of the ISO 12944-9 standard. On 

the other hand, different fractures types were found depending on the aging atmosphere. 

In the case of the TSA+C coating, for instance, the fracture observed in most cases was 

cohesive within the organic sealant, with isolated regions showing adhesive failure 

between the adhesive and the paint. In the case of the samples from the water 

condensation and immersion tests, the fractures were mainly adhesive between the TSA 

layer and the paint. In the case of the TSA/PEO+CM system, the fracture in all the 

samples was cohesive within the modified paint. Just one case of adhesive failure 

between the PEO layer and the paint in a small region of the surface took place. This 

was found in one of the samples after the combined cycle aging test and is presented in 

Fig. 5.7.13. Finally, from the adhesion tests performed on the samples with scribe aged 

in the salt-fog chamber, both coating systems presented good adhesion showing no 

delamination. According to the ASTM D3359 standard classification, the samples were 

classified as 5B, which corresponds to the higher level of adhesion. 



Chapter 5 

 

 

241 

  Type of exposure 

  Reference Salt-fog 
Water 

condensation 
Immersion 

Combined 

cycle 

T
S

A
+

C
 S

a
m

p
le

 

 

 
 

  

D
o

lly
 

     

T
S

A
/P

E
O

+
C

M
 

S
a

m
p

le
 

   

 

 

D
o

lly
 

   

 

 

Fig. 5.7.13 Fracture surface of the two coating systems after weathering aging tests in different 
atmospheric conditions 

 Conclusions 

In the present work, the organic topcoat paint used on top of TSA coatings for the 

protection of offshore submerged components has been functionalized, to provide it with 

antifouling properties. For this aim, SiO2 and Cu2O nanoparticles have been incorporated 

into the paint formulation. The former aimed to increase the hydrophobicity of the paint 

to minimize the attachment of bacteria and microorganisms to the surface, whereas the 

latter are intended to make the paint bactericide. From the results obtained in this work, 

the following conclusions can be drawn: 

• From the initial wettability and antibacterial activity assessment tests, the paint 

containing a 25wt% of Si2O and a 1.5wt% of Cu2O was found to be the most 

promising, with high hydrophobicity and antibacterial characteristics.  

• The wettability tests performed on the original paint and the modified paint in the 

flat samples showed an increase in the hydrophobicity of the paint by the addition 

of the silica nanoparticles, with values above 150°.  After applying the modified 

paint on real samples, the topography of the rough TSA/PEO substrate did not 

show any detrimental effect on its superhydrophobicity.  

• From the antibacterial activity assessment, however, an influence of the surface 

topography was found, showing a slight decrease in the antibacterial activity of 

the modified paint when applied on the rough TSA/PEO sample. Nevertheless, 

the system exhibited an efficient antibacterial ability decreasing 64.53% of viable 

bacteria.  
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• The ecotoxicity tests confirmed a low toxicity of both the original paint and the 

modified one after the first 4 days of immersion. The toxicity of both systems 

increased after 28 days, especially for the original paint, which presented a 

toxicity three times higher than the non-modified paint.   

• The artificial aging tests performed in different atmospheres revealed the 

appearance of blisters in some samples of TSA with the original paint, whereas 

no defects were detected for the TSA/PEO and modified-paint system apart from 

a discoloration. 

• The adhesion pull-off tests revealed an adequate bonding strength for both non-

modified and modified paints with their respective substrates, with values above 

the 5 MPa recommended on the ISO 12944-9 standard. Furthermore, the 

reduction in the adhesion after the weathering aging tests was below the 35%, 

fulfilling the requirements of the standard for a CX-offshore/Im4 category. 
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Chapter 6: Discussion and final conclusions 

6.1 DISCUSSION 

PART I. Tribocorrosion of HSLA steels (active materials) in offshore applications 

In the present thesis, one of the main challenges that have been overcome is the 

assessment of the tribocorrosion behavior of active materials. This work was focused on 

the specific case study of offshore mooring lines. These elements are manufactured with 

HSLA steels of low corrosion resistance in the aggressive marine environment, and they 

are subjected to tribocorrosion solicitations during their service life. In fact, wear and 

corrosion and, thus, their interaction, has been reported to highly accelerate the 

degradation of this components, increasing the probability of failure by fatigue-corrosion.  

The first investigations of this study revealed that the tribocorrosion response of the 

active HSLA steels strongly differed from that of passive alloys, in terms of potential and 

current evolution during sliding and degradation synergisms. In passive materials, there 

is a decrease in the potential and an increase in the current as a consequence of the 

rupture of the passive layer in the tribological contact. As the passive layer is removed, 

the wear track is activated and reacts with the electrolyte, which is reflected in an 

increase in the current. In this case, the material in the worn surface dissolves during 

continuous sliding whereas the area outside the track remains under passive state. 

However, the behavior of HSLA steels was found to be somewhat different, and the 

potentials registered in the different experiments carried out increased during sliding. In 

these steels of low corrosion resistance in seawater, the surface is not passivated, and 

it is corroding the whole time that it is in contact with the aggressive environment. The 

oxides formed on the surface of the steel, mainly ferric oxyhydroxides (FeOOH), can 

slow down corrosion to some extent by impeding the access of oxygen to the corroding 

surface. Nevertheless, when this corrosion product layer is removed by sliding, and the 

fresh alloy is exposed in the wear track, two electrochemically different regions are 

generated in the surface of the steel: the worn and the unworn surfaces. The former 

presents more positive potential than the latter, which makes the potential shift to more 

positive values as soon as it is created during the wear test. This potential difference 

generated makes the surface of the steel to behave as a macrobattery. The nobler worn 

surface constitutes the cathode of the reaction, whereas the outer part of the track 

behaves as an anode. This leads to a wear-accelerated corrosion of the unworn surface 

during tribocorrosion.  

The evolution of the current and thus the corrosion kinetics for the HSLA steels was 

different depending on the test type performed, i.e., under applied potential in the 

potentiostatic tests (chapter 5.1) or at open circuit potential conditions with the ZRA 

configuration (chapter 5.3). In the former, the samples are kept at the same potential 

during the whole test, whereas in the latter the potential is not fixed but varies depending 

on the electrochemical state of the surface. In the potentiostatic tests, both at anodic and 

cathodic potentials, the current was found to decrease during sliding. This peculiar 

response indicated that the corrosion kinetics in the newly generated wear track was 

different from that of the rest of the surface. Since the corrosion current is directly related 

with the corrosion rate, this decrease confirmed the worn material to have lower 

corrosion rate. On the other hand, in the tests performed at open circuit potential 

conditions with the ZRA configuration, the current increased during sliding. This indicated 

an increase in the overall corrosion rate of the sample. Since the wear track was 
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observed to have lower corrosion kinetics, the rise in the current was related to the wear-

accelerated corrosion of the unworn region.  

The superficial analyses and the material loss quantifications carried out after the 

different tests, evinced the considerable material loss due to wear-accelerated corrosion 

of the unworn surface. In fact, the quantifications carried out in chapter 5.2 demonstrated 

the material loss due to wear-accelerated corrosion in the outer part of the track to be 

quadruplicated at room temperature.  

Another interesting finding was the strong dependence of the coefficient of friction as 

well as the material loss on the applied potential and the corrosion products formed in 

each electrochemical situation. At cathodic potentials, where corrosion was inhibited, the 

metal particles detached from the surface were deformed on the tribological contact, 

accommodating the sliding by shearing and leading to low coefficients and low material 

losses. At high anodic potentials, the oxide products formed a film with a certain 

lubricating ability that reduced the coefficient of friction. The high material losses at 

anodic potentials were a consequence of the fast dissolution of the steel enhanced by 

the potentials applied. Finally, the higher coefficients always corresponded to the tests 

performed at open circuit potential conditions, mainly due to the third-body effect 

generated by the material particles detached that remained in the tribological contact.   

The tribocorrosion behavior of the active steels was found to be influenced by several 

parameters, as the temperature and electrolyte agitation. In chapter 5.2, the influence of 

temperature was evaluated. The results showed that the increase in the electrolyte 

temperature led to more substantial material loss due to corrosion in the unworn surface, 

encouraged by the easiest diffusion of oxygen to the corroding surface. Similarly, the 

investigations on the effect of agitation in chapter 5.3 confirmed that this parameter also 

enhanced corrosion through a greater oxygen supply towards the sample surface. In the 

case of tests in chapter 5.3, the influence of agitation was negligible for the passive AISI 

316 steel. Therefore, the tribocorrosion behavior of the active steels was found to be 

highly dependent on these variables that can affect the corrosion rate, which in the case 

of passive materials seem to have little or, at least, less influence. These factors are 

variable in real applications and, thus, their impact on the response of the material should 

be taken into consideration to avoid premature failures of steel components. 

Finally, for the studies performed within the first part of this thesis concerning active 

materials, different test methodologies were used, based on previous investigations and 

protocols employed in the assessment of passive materials. With the procedure 

described in the ASTM G119 standard used in chapter 5.1, the synergism between wear 

and corrosion could be quantified for the R4 and R5 steel grades. Nevertheless, this 

procedure has been questioned by experts, since it consists of performing individual 

tests either avoiding corrosion or wear, and the influence of one another can be thus 

neglected. The second test protocol employed in chapter 5.2 was the one of the UNE 

112086 standard. With this practice, the effect of wear on corrosion and vice versa could 

be evaluated, since the tests were performed at open circuit potential conditions. 

However, the quantification of the mechanical and electrochemical parameters to the 

total material loss described in this protocol was found to be unsuitable for active 

materials. In this kind of materials, the unworn surface is not protected by the passive 

layer, but it is actively dissolving during the whole test. Therefore, the electrochemical 

contribution is the sum of the corrosion taking place in the wear track and the wear-

accelerated corrosion of the unworn surface, which cannot be separated following the 

above-mentioned protocol. The last test procedure proposed in chapter 5.3 comprised 

the ZRA technique to register the potential and current evolution simultaneously, gaining 
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information on both thermodynamics and the kinetics of the reactions taking place in the 

steel. Therefore, this technique presented certain advantages with respect to the two 

former procedures. Firstly, the tests are performed at open circuit potential conditions, 

without applying any potential that could hinder the effect of wear on corrosion, or vice 

versa. And secondly, since both potential and current responses are registered 

simultaneously, it takes just one experiment to gain information of both parameters.  

PART II. Protective coatings: evaluation and development of new solutions 

The second part of this thesis dealt with the evaluation of tribocorrosion performance of 

coatings employed in the protection of steel components and structures in offshore 

applications. Also, new developments have been proposed to enhance the existing 

solutions against tribocorrosion in order to enlarge their durability in such harsh 

conditions.  

The three commercial coatings of different nature evaluated in chapter 5.4 were 

confirmed to improve the corrosion response of the steel substrate, especially when 

organic layers were involved, as in the case of the organic topcoat applied on the TSA 

(C2) and the organic coating C3. However, the performance of the coatings was affected 

by wear, which reduced their resistance and accelerated their degradation by mechanical 

removal. The coatings showed low coefficients of friction and resisted the tribological 

conditions imposed. Therefore, the three commercial coatings selected in this work 

presented adequate tribological performance, due to the high hardness of the TSC 

coating (C1), the ceramic reinforcement of the organic coating (C3), and the high solid 

contents of the organic topcoat applied on the TSA (C2). In both C3 and C2 coatings, 

the organic component withstood the tribological conditions. In fact, the TSA coating 

without the organic topcoat was confirmed to be highly damaged in the tests performed 

in chapter 5.6 during both dry abrasion and tribocorrosion in seawater. The low abrasion 

resistance of aluminum could lead to fast degradation of the coating losing its protecting 

purpose faster than expected. Therefore, further considerations should be taken into 

account in the selection of coatings that will be subjected to wear and corrosion 

solicitations.  

On the other hand, the new solution proposed in chapter 5.6 to enhance the performance 

of the TSA coating by PEO treatment was found to be very promising. The duplex 

TSA/PEO system presented appropriate bonding strength exceeding the 

recommendations of the offshore standards considerably. The long-term corrosion 

behavior of the TSA was also improved after the treatment. While the durability of the 

aluminum layer can be reduced through sacrificial dissolution when it is protecting the 

steel substrate by galvanic corrosion mechanism, the PEO layer provided a combination 

of retarding and blocking effects that lowered the corrosion rate of the system. The inner 

dense layer of the PEO coating hindered the infiltration of electrolyte through the coating, 

and once seawater reached the TSA layer, the aluminum passivated blocking the small 

pores of the PEO oxide layer. The results of the tribocorrosion tests showed that the 

PEO layer was not mechanically affected by sliding, presenting low material losses and, 

thus, improving the tribocorrosion response of the TSA coating. Also, the higher wear 

resistance in dry conditions after the treatment could enlarge the life of the coating 

reducing the damage of the component during transport or assembly operations.  

The second strategy proposed in chapter 5.7 as a new coating solution was the 

functionalization of the organic topcoat applied on top of the TSA. For this aim, 

nanoparticles were incorporated into the Carboguard® paint to provide it with antifouling 

properties. SiO2 and Cu2O nanoparticles were selected to achieve hydrophobic and 
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bactericide properties, respectively. Although these nanoparticles have been previously 

used to get these properties separately, little information has been found on the effect of 

the addition of both on the resulting paint properties. The paint obtained in this work was 

superhydrophobic with high bactericide ability, and no detrimental effect on either 

property was observed by the simultaneous addition of both nanoparticle types. The 

topography of the coated substrate, in terms of roughness, was found to affect the 

antibacterial ability of the paint, whereas the superhydrophilicity was not influenced by 

this parameter. The topcoat was able to decrease the E. Coli bacteria in a 64.53%, 

showing an effective biocide ability against this bacterium, and its ecotoxicity was also 

proven to be low. No copper release was observed from these analyses, which could be 

interesting considering the acceptance levels of this element in certain countries (e.g., 

40 µg/cm2/day in Canada or 15 µg/cm2/day in Denmark).  

Finally, the new coating system consisting of the TSA/PEO with the functionalized 

organic topcoat showed a good performance in all the weathering aging tests, with no 

degradation signs, and proper adherence after the prolonged exposure in the different 

climatic chambers. Therefore, from the results of chapters 5.6 and 5.7, the 

functionalization of the TSA/organic-topcoat was successfully accomplished. The steel 

substrate was protected from corrosion by the three-layered coating system, the wear 

resistance of the TSA layer was highly improved, and the whole system was provided 

with additional properties by the incorporation of nanoparticles in the organic topcoat.   
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Chapter 6: Discussion and final conclusions 

6.2 FINAL CONCLUSIONS 

The first part of the present thesis was focused on the evaluation of tribocorrosion of 

active materials, such as the HSLA steels employed in offshore applications, exposed to 

the aggressive marine environment. The main outcomes of this investigation are 

summarized as follows: 

• The tribocorrosion behavior of the active HSLA steels has been evaluated, and a 

closer understanding of the phenomena has been achieved: 

o During the wear test, a potential difference between the worn and unworn 

surfaces was created. The registered potential increased indicating that the 

worn surface generated was more cathodic than the rest of the surface, which 

led to the formation of a macrobattery on the surface of the sample. 

o On the other hand, the current in potentiostatic tests decreased during sliding. 

The corrosion rate on the worn material was found to be slower than that on the 

rest of the surface.  

o In the tests at open circuit potential conditions, the current increased indicating 

an increase in the overall corrosion rate of the sample. Since the corrosion rate 

in the wear track was lower, the increase should be taking place on the unworn 

surface.  

o Therefore, it was found that during tribocorrosion tests, there was a wear 

accelerated-corrosion of the unworn surface of the steels, which increased their 

degradation considerably.  

• The coefficient of friction was found to depend on the electrochemical potential and 

the corrosion products formed. At anodic and cathodic potentials, the formation of 

corrosion products layer or their absence, respectively, led to lower coefficients. On 

the other hand, the higher coefficients were registered at open circuit potential 

conditions, where third-body effect took place. 

• The tribocorrosion behavior of HSLA steels was highly influenced by the electrolyte 

temperature and the agitation, which can ease the oxygen supply to the corroding 

surface affecting the corrosion rate. 

• The protocols available for the assessment of passive materials can be used to 

evaluate the behavior of active materials, with some limitations: 

o With the ASTM G119 standard, the synergism can be quantified, but the 

influence of wear in corrosion and vice versa can be neglected.  

o With the UNE 112086, the effect of wear on corrosion and vice versa can be 

evaluated, but the material loss protocol is not suitable. 

o Finally, the ZRA configuration proposed in the thesis allowed to register both 

the potential and current evolution simultaneously and could be an interesting 

route to evaluate this kind of materials.  

The second part of this thesis, regarding protective coatings, has allowed achieving the 

original conclusions summarized below: 

• The tribocorrosion behavior of three commercial coatings currently employed in 

offshore submerged components was evaluated. The three coatings enhanced the 

corrosion response of the steel substrate, but their performance was affected by 

wear. Their corrosion resistance was reduced, and their degradation was 

accelerated by mechanical removal. 



Discussion and final conclusions 

 

 
258 

• The coatings resisted tribological conditions imposed, presenting low coefficients of 

friction. This was ascribed to the high hardness of C1 and the reinforcements in C2 

and C3 coatings. 

• The new solution proposed to enhance the performance of the TSA coating by PEO 

treatment was found to be very promising. The PEO layer improved the corrosion, 

wear and tribocorrosion resistances of the TSA in synthetic seawater. 

• The addition of SiO2 and Cu2O nanoparticles to the Carboguard® paint provided it 

with superhydrophobicity and highly bactericide ability against E. Coli bacterium. 

The copper release of the paint was negligible, and its ecotoxicity was low. 

• Finally, the three-layered coating system consisting of the TSA/PEO with the 

functionalized organic topcoat showed a good performance in all the weathering 

aging tests. 

 

Summarizing, the findings of this thesis have evinced the importance of the synergism 

between wear and corrosion on the degradation of HSLA steels. There is a complex 

interaction that depends on several variables as temperature, salinity, mechanical loads, 

and so on. This investigation has demonstrated the considerable acceleration of material 

loss by corrosion during wear. In turn, the occurrence of this synergism emphasizes the 

necessity of considering this material loss by wear-accelerated corrosion in the design 

codes which, at present, underestimate this phenomenon. Furthermore, the importance 

of evaluating the tribocorrosion performance of protective coatings is also manifested. 

Finally, this study highlights the necessity of using this kind of methodology for the 

evaluation of the materials performance under wear-corrosion requirements, and to 

increase the knowledge on the synergism between both phenomena.    
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Chapter 7: Future work 

After the development of the present thesis, and taking into account all the results and 

the knowledge acquired during its execution, the following four future lines of 

investigations are proposed: 

Extrapolation to other applications 

On the basis of the importance of the evaluation of tribocorrosion for the design of 

components, as it has been highlighted in this thesis for offshore mooring lines, the 

extrapolation of the knowledge acquired to other offshore sectors would be of great 

interest. This would be the case of renewable energies, such as wind, wave, or tidal 

power. The further development of all these technologies will imply the use of high-

performance steels in their installations, which will be subjected to similar threats as 

those of Oil&Gas mooring lines. Based on the course of action followed to date, the 

knowledge from Oil&Gas should be employed to further develop these offshore 

technologies. The methodology and the test protocols employed in this work could be 

used for the assessment of other high-performance, adapting the test procedures to the 

different materials and working conditions of each application, to gain information on this 

phenomenon.  

Improve paint formulations for wear-corrosion requirements 

In the studies carried out for the different coatings currently used in the protection of steel 

components and structures against wear-corrosion requirements, the reinforced organic 

layers were found to perform satisfactorily. Therefore, another future work in the field 

would be the functionalization of new paint systems by the incorporation of different 

agents, to increase their wear resistance and simultaneously provide other 

functionalities. For instance, the addition of nanomaterials could highly improve the 

performance of the paints, due to the interaction of these nanoparticles with the 

polymeric matrix. For this aim, ceramic oxides such as silicon oxide, titanium oxide, 

aluminum oxide, zirconium oxide, or graphene could be used. Also, the simultaneous 

addition of different nanoparticles that could lead to the achievement of combined 

properties, such as hydrophobicity, bactericide ability, and improved wear performance 

should be investigated. In this context, the reinforcement of the self-healing paints that 

are currently gaining attention in the field could also be a matter of interest.   

Scalability of the Plasma Electrolytic Process 

The modification of the TSA coating by the PEO process was found to be very promising, 

in terms of both abrasion and tribocorrosion resistance. Notwithstanding the findings of 

this work, further efforts should be made to evaluate the scalability of this process to be 

implemented on the fabrication chain. This would entail proving the effectivity of the 

process when moving from small test samples at laboratory scale to real components at 

industrial scale, to ensure the convenience of the process implementation both at 

technical and economic levels.  

Validation of the functionalized organic topcoat 

After functionalizing the Carboguard® paint and confirming the resulting topcoat to 

present superhydrophobic and bactericide ability against E. Coli bacterium, further 

investigations should be made to validate its performance as a proper antifouling paint. 

On the one hand, the antibacterial properties of the paint should be studied against 

another wild range of bacteria present in seawater environments, e.g., crustaceans and 
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algae. On the other hand, after validating the corrosion protection ability of the coatings 

in climatic chambers, long-term exposure tests in real marine environment would be 

necessary to really confirm the performance of the paint.  
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Annex I: Instrumental techniques 

A.I.1 CORROSION TESTS 

The experimental dispositive used in the corrosion tests performed in this thesis was a 

three-electrode electrochemical cell. The cell is composed by a reference electrode (RE), 

a counterelectrode (CE), and a working electrode (WE). The RE is a non-polarizable 

electrode, used to measure the potential variations occurring in the working electrode. 

Typical reference electrodes are Saturated Calomel Electrodes (SCE) and Silver/Silver 

Chloride electrodes (Ag/AgCl). The CE is the one used to polarize the working electrode. 

This electrode is usually made of platinum, gold, graphite, or another inert material, to 

avoid producing any distortion in the system. Finally, the metal which corrosion rate is 

the aim of the study is connected as the WE. The electrodes are connected to a 

potentiostat, to register the potential between the RE and the WE, or the current between 

the CE and the RE.  

 
Fig. A.I.1 Experimental set-up of the corrosion tests 

The experimental setup used in this work is presented in Fig. A.I.1. A commercial 

Ag/AgCl (KCl 3M) electrode and a platinum wire of 1 mm in diameter were employed as 

the reference and the counter electrodes, respectively. The electrodes were connected 

to an Autolab-Metrohm PGSTAT302N potentiostat [1] with which the electrochemical 

parameters were both controlled and registered. This potentiostat is equipped with a 

FRA32M and EDC modules, which allow the registration of currents up to 100 pA in 

systems with high impedances, i.e., protective coatings with high resistances (>100 GΩ). 

All the corrosion tests were performed in synthetic seawater with heavy metals, prepared 

in accordance with the ASTM D1141 standard [2], and on aerated conditions and room 

temperature. The electrochemical techniques employed within this thesis were the 

following: 

• Open Circuit Potential (OCP) monitoring: is the simplest electrochemical method. 

It provides information on the electrochemical reactivity of the material in the test 

solution, but it does not give quantitative information on the kinetics of the reactions, 

i.e., corrosion rates.   

• Potentiodynamic Polarization (PDP) technique: is one of the most widely-used 

test methods to evaluate corrosion and consists of performing a potential sweep in 

the range from cathodic to the anodic domain while registering the current produced. 
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This technique allows evaluating the active/passive behavior of the materials at 

different potentials and determining the kinetics of ongoing reactions, i.e., the 

corrosion rate. 

• Potentiostatic polarization: it is used to simulate the oxidizing action of a corrosive 

environment. This technique consists of imposing a fixed potential between the 

reference and the working electrodes. The current is measured as a function of time, 

to evaluate the evolution of electrochemical kinetics of reactions occurring on the 

electrode surface. 

• Electrochemical Impedance Spectroscopy (EIS) measurements: it consists of 

exciting the system using an AC potential or small amplitude current sinusoidal 

signal over a wide range of frequencies and measuring the current or potential 

response obtained. The impedance spectrums give information on the elementary 

steps occurring in the electrochemical reactions, and their kinetics can also be 

obtained from these diagrams. 

• Electrochemical noise (EN) analysis: it can be defined as the spontaneous 

potential and current fluctuations taking place in a metal exposed to an aggressive 

medium. This technique allows potential and current fluctuations to be registered 

simultaneously, so it is possible to obtain information on the thermodynamics from 

the potential noise, and kinetics information from the current noise. 

A.I.2 TRIBOCORROSION TESTS 

For tribocorrosion assessment, the test equipment shall allow controlling and monitoring 

both mechanical and electrochemical parameters. The apparatus used to measure 

tribological properties is named tribometer. A tribometer generates a relative motion, 

either unidirectional (rotatory) or bidirectional (reciprocating), rubbing two surfaces 

against each other. On the other hand, the electrochemical parameters are controlled 

and registered with electrochemical cells, as the one previously explained. 

Tribocorrosion tests consist of performing wear tests under certain mechanical 

conditions of normal load and speed or frequency, while performing electrochemical 

techniques to evaluate the response of the system before, during and/or after the wear 

process.  

The tribocorrosion tests were performed in a rotatory MicroTest MT/10/SCM tribometer 

[3]. The tribometer is adapted so an electrochemical cell can be placed above the 

rotatory plate (Fig. A.I.2). The machine allows applying a load in the range of 1 to 20 N 

and rotation speeds from 10 to 500 rpm. In the case of the work presented in chapter 

5.2, the tests were performed in a UMT-CETR3 reciprocating tribometer [4], with loads 

in the range of 0.05 to 1000 N, and frequencies from 0.1 to 30 Hz. For both tribometers, 

the electrodes were connected to an Autobal-Metrohm PGSTAT302N potentiostat. 

Similarly to those in electrochemical corrosion tests, the electrodes used were a 

commercial Ag/AgCl (KCl 3M) as the RE, a platinum wire as the CE, and the test sample 

as the WE. The tests were performed under ball-on-disc configuration, using an alumina 

ball of 10 mm in diameter (G28) as the countermaterial. The tests conditions, in terms of 

applied load, were selected to be close to those in real applications. The contact 

conditions were calculated using the Hertzian Contact Theory, considering the contact 

pressure between links and accessories. The normal load was 5 N, corresponding to an 

average Hertzian pressure of 930 MPa with a contact radius of 50.5 µm. The 

electrochemical techniques employed in tribocorrosion tests consisted of a combination 

of the previously explained techniques.  
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Fig. A.I.2 Tribocorrosion test set-up, showing the electrochemical cell disposition in detail in the MicroTest 

rotatory (right) and CETR reciprocating (left) tribometers used in this work 

A.I.3 WEATHERING AGING TESTS 

Weathering aging tests were performed according to several standards (ISO 6270 [5], 

ISO 2812 [6], ISO 9227 [7], ISO 16474 [8], etc.) to evaluate the effectiveness of different 

coatings for the protection of steel components, as regulated by the current classification 

societies (ISO 12944 [9] and NORSOK M501 [10] standards).  

 
Fig. A.I.3 Climatic chambers employed in the ageing tests 

The climatic chambers employed in the evaluation of coatings in chapters 5.5 and 5.7 

are presented in Fig. A.I.3. The immersion tests were performed in a Julabo ED 
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thermostatic bath [11], the salt spray tests in a neutral salt fog chamber ASCOTT 2000S 

[12], and the condensation tests in a Kesternich HK300-800 S/M humidostatic chamber 

[13]. The climatic chamber WEISS C340/70 [14] was used to reproduce low-temperature 

conditions, and the Atlas UVTest weathering device [15] to perform UV radiation and 

water condensation cycles.  

A.I.4 PLASMA ELECTROLYTIC OXIDATION TECHNIQUE 

The Plasma Electrolytic Oxidation (PEO) process involves the application of a modulated 

voltage to the component in an electrolyte bath agitated using compressed air and under 

temperature control. The sample acts as an anode while the stainless steel mesh placed 

in the bath acts as a cathode. The process involves an anodic polarization of the sample 

to high voltages, exceeding the dielectric breakdown voltage, so as to generate discrete 

short-lived plasma micro-discharges in the surface. This results in oxidation of the 

component surface (plasma electrolytic oxidation) as well as elemental co-deposition 

from the electrolyte solution, which creates a hard ceramic oxide layer on the substrate 

alloy. The process schematic is presented in Fig. A.I.4.  

 
Fig. A.I.4 Schematic illustration of the Plasma Electrolytic Oxidation (PEO) process 

The equipment used in this work was a commercial KERONITE KT 20-50 (20KW AC 

power supply) instrument [16]. The PEO coatings were generated above a Thermally 

Sprayed Aluminum (TSA) coating, to enhance the wear and tribocorrosion behavior of 

the aluminum layer. The coating system developed by PEO technique and its 

characterization are presented in chapter 5.6. 

A.I.5 SURFACE CHARACTERIZATION TECHNIQUES 

A.I.5.1 Optical microscopy 

The optical microscope is one of the oldest microscopic techniques used in the 

characterization of surfaces. This useful tool allows the observation of the surface at high 

magnifications in order to make a first characterization of the surface. The microscope 

used in this work was the Olympus GX71 [17], equipped with the AnalySIS pro image 

software (Fig. A.I.5).    
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Fig. A.I.5 Olympus GX71 optical microscope (left) and Sensofar S Neox confocal microscope (right) 

A.I.5.2 Confocal microscopy 

Confocal microscopy is an optical imaging technique used to increase optical resolution 

and contrast of a micrograph by using point illumination and a spatial pinhole to eliminate 

out-of-focus light in specimens that are thicker than the focal plane. It enables the 

reconstruction of three-dimensional structures from the obtained images. This technique 

has gained popularity in the scientific and industrial communities, and typical applications 

are in life sciences, semiconductor inspection, and material science. The devices used 

in this work were a Nikon ECLIPSE ME600 (Z resolution 10 nm) and a Sensofar S Neox 

[18] confocal (Z resolution 3 nm) microscopes (Fig. A.I.5).  

A.I.5.3 Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy 

Scanning Electron Microscopy (SEM) 

A scanning electron microscope (SEM) is a type of electron microscope that images a 

sample by scanning it with a high-energy beam of electrons in a raster scan pattern. The 

electrons interact with the atoms that make up the sample producing signals that contain 

information about the sample surface topography, composition, and other properties 

such as electrical conductivity. The types of signals produced by a SEM include 

secondary electrons, back-scattered electrons (BSE), characteristic X-rays, light 

(cathodoluminescence), specimen current and transmitted electrons. The signals result 

from interactions of the electron beam with atoms at or near the surface of the sample. 

In the most common or standard detection mode, secondary electron imaging (SEI), the 

SEM can produce very high-resolution images of a sample surface, revealing details less 

than 1 nm size. Due to the very narrow electron beam, SEM micrographs have a large 

depth of field yielding a characteristic three-dimensional appearance useful for 

understanding the surface structure of a sample.  

Energy-Dispersive X-ray Spectroscopy (EDS) 

EDX or EDS is an analytical technique used for the elemental analysis or chemical 

characterization of a sample. It is one of the variants of X-ray fluorescence spectroscopy 

which relies on the investigation of a sample through interactions between 

electromagnetic radiation and matter. Its characterization capabilities are in large part 

due to the fundamental principle that each element has a unique atomic structure 

allowing X-ray that are characteristic of an element’s atomic structure to be identified 

uniquely from one another. To simulate the emission of characteristic X-rays from a 

specimen, a high-energy beam of charged particles such as electrons or protons, or a 
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beam of X-rays, is focused into the sample being studied. At rest, an atom within the 

sample contains ground state (or unexcited) electrons in discrete energy levels or 

electron shells bounds to the nucleus. The incident beam may excite an electron in an 

inner shell, ejecting it from the shell while creating an electron hole where the electron 

was. An electron from an outer, higher-energy shell then fills the hole, and the difference 

in the energy between the higher-energy shell and the lower energy shell may be 

released in the form of an X-ray. The number and energy of the X-rays emitted from a 

specimen can be measured by an energy-dispersive spectrometer. As the energy of the 

X-rays is a characteristic of the difference in energy between the two shells, and of the 

atomic structure of the element from which they were emitted, this allows the elemental 

composition of the specimen to be measured.  

   
Fig. A.I.6 ZEISS ULTRA plus SEM microscope (left) and D8 Advance X-ray diffractometer (right) 

The equipment used in this work was the ZEISS ULTRA plus Field Emission Scanning 

Electron Microscope with EDS and BSE microanalysis from OXFORD INCA synergy [19] 

(Fig. A.I.6). The equipment has a controlled field emission source with incorporated 

GEMINI® patented column, for high resolution and analysis from ZEISS Company.  

A.I.5.4 X-ray diffraction 

X-rays are electromagnetic radiation with the wavelength (𝜆) of the same order as the 

cell parameters of crystals. This makes crystalline substances able to diffract X-rays. 

When the radiation strikes on the atoms electronic cloud of a crystal lattice, these 

become on-time emitters of that radiation. The emitted radiation of each atom is 

expanded in the form of a spherical wave and interferes with that created by bordering 

atoms. This interference can be either destructive or constructive. The directions in which 

the interference is constructive follow Bragg's law: 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃    (A.I.I) 

Where 𝑛 is a natural number, 𝜆 the wavelength of the used X-rays, 𝑑ℎ𝑘𝑙 the distance 

between two consecutive planes defined by a components vector ℎ𝑘l, and 𝜃 the radiation 

incidence angle.  

X-ray diffraction (XRD) can be used to qualitatively analyze the phases present in a 

polycrystalline material, i.e., a material formed by a large number of small crystals 

randomly arranged. A sample with these features will always present a certain number 

of crystallites that fulfill Bragg's law when irradiated with a beam of X-rays. The 

diffractometers allow the accurate determination of the direction in which the diffraction 

occurs.  
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In the present thesis, X-ray measurements were performed to characterize the phase 

structure of the PEO coating developed in chapter 5.7. The analyses were carried out in 

a D8 Advance diffractometer from Bruker [20], equipped with a Cr-Kα1 radiation source 

(Fig. A.I.6). The measurements were carried out from5 to 160º in 2θ, with steps of 0.06º 

and time counting of 0.5 s. The results were analyzed with the DIFRAC.EVA software 

from Bruker.  

A.I.5.5 Surface roughness measurements 

Surface roughness, often shortened to roughness, is a measure of the texture of a 

surface. The tracing method is employed to determine the roughness of a surface, and 

it is an inspection method for the two-dimensional tracing of the surface. It requires a 

surface pick-up to be traversed horizontally across the surface at a constant speed. The 

traced profile is the surface profile, and it is quantified by the vertical deviations of a real 

surface from its ideal form. When the deviations are significant, the surface is rough, and, 

on the other hand, if the deviations are small, the surface is smooth.   

 
Fig. A.I.7 Perthometer M2 profilometer of Mahr 

In this work, the Marh Perthometer M2 [21] was used to measure the roughness of 

different surfaces (Fig. A.I.7). This equipment has a maximum measuring range of 150 

µm, with a maximum cut off length of 17.5 mm. The evaluation and selection of the 

measurement length can be made according to different standards (ISO, JIS, CNOMO). 

For the calculation of the arithmetic average roughness (Ra) values, the equipment 

followed the DIN EN ISO 4288 and DIN EN ISO 4287 standards [22].  

A.I.5.6 Vickers hardness tests 

In this work, the hardness of different materials has been measured by Vickers 

indentation method, also referred as to microhardness test method. The test consists of 

making an indentation on the material, using a diamond pyramid, by applying a specific 

load at a controlled speed. The pyramid impresses a geometrical form in the surface, 

which size depends on the materials ability to resist the load imposed. The results are 

obtained in what is known as Vickers Hardness (HV), which can be converted to pascals 

or other hardness units, e.g., Rockwell or Brinell. After the indentation, the diagonals of 

the impressed diamond are measured and converted to HV by the following equation: 

𝐻𝑉 =
𝐹

𝐴
≈

0.1591 𝐹

𝑑2          (A.I.II) 

Where F is the applied force in newtons, A the surface area of the indentation in square 

millimeters, and d the diagonals of the impressed diamond in millimeters. 

The macro and microhardness tests in this thesis have been performed in an Akashi 

AVK-A and a Future-Tech FM-700 testers, respectively (Fig. A.I.8). Both apparatuses 

are equipped with a Vickers indentation device, following the UNE-EN ISO 6507-1 [23] 
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standard. The applied loads were in the range of 0.025 to 1 Kg, depending on the test 

material nature, and the indentation time was set to 15 seconds.  

     
Fig. A.I.8 Akashi AVK-A tester, Future-Tech FM-700 tester, and schematic of the indentation made by the 

diamond indenter 

A.I.5.7 Goniometer 

The SURFTENS universal goniometer [24] was used to investigate the wetting behavior 

of the samples, i.e., to evaluate the hydrophilic/hydrophobic grade of the studied surfaces 

(Fig. A.I.9). This evaluation is based on the measurement of the static contact angle of 

a drop of water on the surface investigated.  

 
Fig. A.I.9 Schematic of the water drop shape and contact angle in solid surfaces with different 

hydrophobicity-hydrophilicity gradients, and SURFTENS universal goniometer 

For the evaluation of the hydrophobicity of the coatings in chapter 5.7, synthetic seawater 

(ASTM D1141) was employed as the test liquid. The contact angle is measured by 

means of an optical system which calculates the values. The higher the contact angle 

value, the higher the hydrophobicity of the studied surface.  

A.I.5.8 Pull-off adhesion tests 

Adhesion tests consist of measuring the force required to pull the coating away from the 

substrate, by applying a specific pressure. The breaking points, i.e., the detachment of 

the coating, takes place along the weakest interface within the system composed by the 

substrate, the single or multi-layered coating, the glue, and the dolly. The fracture type 

can be determined by analyzing the test surface of both the coated substrate and the 
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dolly, and it can be either cohesive or adhesive (Fig. A.I.10). A cohesive fracture takes 

place within a coating layer, showing the same material in both the dolly and the coated 

substrate. On the other hand, an adhesive fracture occurs at the interface between 

layers, leaving different materials on the dolly and the coated substrate. The failure can 

also combine cohesive and adhesive fractures in different proportions along the different 

layers.    

 

 
Fig. A.I.10 Schematic of the failure types in a pull-off adhesion test and PosiTest AT-A automatic 

equipment  

The adhesion tests carried out in the characterization of coatings in chapters 5.6 and 5.7 

were performed with a PosiTest AT-A automatic equipment from DeFelsko [25] (Fig. 

A.I.10). Aluminum dollies of 20 mm in diameter were stuck in the test surface with a 

methyl-based LOCTITE 496 adhesive and pulled-off after 48 hours of curing at a tensile 

rate of 0.7 MPa/s (ISO 4624 [26]). 

A.I.6 CHEMICAL CHARACTERIZATION TESTS 

A.I.6.1 Inductively Coupled Plasma Optical Emission Spectroscopy 

The Inductively Coupled Plasma (ICP) associated with the Optical Emission 

Spectrometry (OES) is a multielement technique for the determination of 70 types of 

elements from the µg/L to the percent level without dilution. The technique is based upon 

the spontaneous emission of photons from atoms and ions that have been excited in a 

radio frequency (RF) discharge. Liquid and gas can be directly injected into the 

instrument, whereas solid samples require extraction or acid digestion so that the 

analytes will be present in a solution. The sample solution is converted to an aerosol and 

directed into the central channel of the plasma. At its core, ICP sustains a temperature 

of approximately 10000 K, which quickly vaporizes the aerosol. Analyte elements are 

then liberated as free atoms in the gaseous state. Further collisional excitation within the 

plasma imparts additional energy to the atoms, promoting their excited states. 

Sufficiently energy is often available to convert the atoms into ions and subsequently 

promote the ions to their excited states. Both the atomic and ionic excited state species 

may then relax to the ground state via the emission of a photon. These photons have 

characteristic energies that are determined by the quantized energy levels of the 

structure for the atoms or ions. Thus, the photons wavelengths can be used to identify 

the elements from which they originated, and the total number of photons is directly 

proportional to the concentration of the original element in the sample.  
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The ICP-OES in this work was used in the leaching obtained from superhydrophobic and 

bactericidal paint developed in chapter 5.7, in order to measure and quantify the copper 

and other main element release. The equipment used was an ULTIMA 2 HORIBA Jobin 

Yvon instrument [27].  

A.I.7 ENVIRONMENTAL CHARACTERIZATION TESTS 

A.I.7.1 Antibacterial activity tests 

The antibacterial activity tests were performed in chapter 5.7 to evaluate the antifouling 

ability of the paint modified with nanoparticles incorporation. These tests consist of 

incubating a bacterial inoculum of a known concentration on the studied surfaces. The 

bacteria colonies are quantified in viable bacteria recovered per square centimeter after 

24 hours of incubation at optimum temperature (35±2 ºC).  

  

  
Fig. A.I.11 Image showing different steps of the antibacterial assessment test and different bacterial 

growth in the suspension incubated on the studied surfaces 

The test procedure used in this thesis is based on the JIS Z2801 [28] standard, and its 

equivalent ISO 22196 [29]. The microorganism used for the study was the Escherichia 

coli ATCC 8739 (E.Coli). Prior to the tests, the surfaces were sterilized with UV radiation 

in a laminar airflow chamber for 15 minutes. The results are always contrasted with a 

negative control that allows the bacterial growth, to compare the ability of the test sample 

to reduce the bacterial activity. When evaluating hydrophobic surfaces such as the paints 

developed within this work, the bacteria inoculum viscosity should be increased by 

adding agar-agar, as indicated in the ISO 22196:2011 [30] standard.  

A.I.7.2 Ecotoxicity tests 

Ecotoxicity tests were performed to evaluate the toxicity of the paints with nanoparticles 

developed in chapter 5.7. The test procedure selected to analyze the antifouling coatings 

were marine algal growth inhibition tests following the ISO 10253 [31] standard using the 

MARINE ALGALTOXKIT [32] recommended. The marine algae used in the tests 

was Phaeodactylum tricornutum (MICROBIOTESTS Inc.), which were cultured in 

synthetic seawater mixed with nutrient containing solutions. The incubation of the algae 

culture was made three days before the tests, at a controlled temperature (20±2 ºC) with 

a constant lateral illumination of 100000 lux.   

The evaluation of the paint toxicity was made by using the leaching obtained after stirring 

coated panels in synthetic seawater for several days (OECD no 23 guidance). The 

leaching was collected and analyzed by ICP-OES to measure the release rate of the 

main elements present in the samples every 24 hours for 28 days. The leachates in 
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which the release was observed to be the maximum was then selected to perform the 

ecotoxicity tests. The algal growth inhibition in the leachates was registered every 24 

hours by measuring the optical density (OD) at 670 nm in a Jenway 6300 

spectrophotometer [33]. With the optical density, it is possible to calculate the EL50, which 

is the concentration of the leachate that causes a decrease of 50% in the algal growth.   

   
Fig. A.I.12 Phaeodactylum tricornutum from the AGALTOXIKIT (left), algal growth (middle) and Jenway 

6300 spectrophotometer 
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This paper reviews the most recent available literature relating to the electrochemical techniques and test procedures employed
to assess tribocorrosion behaviour of passive materials. Over the last few decades, interest in tribocorrosion studies has notably
increased, and several electrochemical techniques have been adapted to be applied on tribocorrosion research. Until 2016, the
only existing standard to study tribocorrosion and to determine the synergism between wear and corrosion was the ASTMG119. In
2016, the UNE 112086 standard was developed, based on a test protocol suggested by several authors to address the drawbacks of the
ASTMG119 standard. Current knowledge on tribocorrosion has been acquired by combining different electrochemical techniques.
This work compiles different test procedures and a combination of electrochemical techniques used by noteworthy researchers to
assess tribocorrosion behaviour of passivematerials. A brief insight is also provided into the electrochemical techniques and studies
made by tribocorrosion researchers.

1. Introduction

In accordance with the ASTM G 40 Standard [1], tribocor-
rosion can be defined as a synergetic process involving the
simultaneous action of contact between surfaces in relative
motion with the chemical reactions in the environment,
where each process is affected by the action of the other and,
in many cases, accelerated.

The first steps in the field of tribocorrosion date back
to 1875, when Edison observed alterations in the coeffi-
cient of friction with different applied potentials [2]. The
effect of surface chemistry on the mechanical response of
materials has been investigated since the beginning of the
twentieth century [3]. Between the late 1970s and early
1980s, the effect of wear on corrosion was studied by several
researchers in different industrial application systems, i.e.,
abrasion-corrosion, erosion-corrosion, or sliding-corrosion
[4]. But it was not until the 1990s that tribocorrosion
mechanisms in sliding contact were proposed by Mischler
et al. (1993) [5] and Madsen (1994) in a standard form
[6].

Tribocorrosion encompasses several industrial sectors,
e.g., material processing, energy conversion, transportation,
oil and gas exploration, medical and dental implants, surgical
devices, among others [2, 7, 8]. Due to its impact on daily
life and potential economic benefits, interest in the study of
tribocorrosion phenomenon has increased over the last few
decades [3, 9, 10]. As a consequence, several electrochemical
techniques have been adapted to be applied to tribocorrosion
research. Thus, crucial improvements in the study of tribo-
corrosion have been achieved through a better interpretation
of triboelectrochemical results [7, 11].

Despite growing interest and the enhancement of elec-
trochemical techniques, standardized testing methodology
for tribocorrosion evaluation has only been made available
recently. Prior to 2016, the only existing standard was the
ASTM G119 [6], which describes a method to determine
the synergism between wear and corrosion. However, this
standard has drawn criticism from several authors who
developed different approaches to study the tribocorrosion
behaviour of passive materials [3, 12, 13]. In 2016, a new
standard (UNE 112086 [14]) was published, with a different
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a b s t r a c t

Offshore components of High-Strength Low-Alloy Steel (HSLA) are frequently exposed to tribological and
corrosion effects during their working life. In the present work, several experiments have been per-
formed to study the tribocorrosion behaviour of two steel grades, under unidirectional sliding in syn-
thetic seawater. Sliding wear tests were performed under potentiodynamic and potentiostatic conditions
at different applied potentials. The wear tracks were analysed by means of optical microscope and
profilometry. The wear-corrosion synergismwas quantified according to the ASTM G119 standard. Sliding
promotes the wear accelerated corrosion of the unworn area in both alloys. Furthermore, the coefficient
of friction of the steels is strongly influenced by the corrosion products and the applied potential.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The main energetic sources used nowadays are oil and gas,
especially those generated offshore. The platforms used for this
aim have a great impact at environment, social and economic
levels. Offshore platforms are tied up to the sea bottom through
mooring systems, which are composed of chains, anchor systems
and connectors.

High strength steels (yield strength from 460 MPa to 960 MPa)
are increasingly being used in offshore structural applications.
These steels offer some advantages over conventional steels,
especially when the weight plays an important role.

When immersed in the ocean, the chains are subjected to high
corrosion rates [1] especially in the splash zone, where the con-
centration of oxygen is high. Moreover, the floater motions
induced by the environmental actions due to waves, wind and
current movements of the sea [2,3] involves the links to be in
relative motion with each other leading to a continuous wear in
the surfaces in contact [1]. Wear and corrosion are two processes
that lead to a surface damage due to a progressive material loss as
a result of mechanical and electrochemical processes, respectively
[4]. When this two degradation processes occur in a simultaneous
way, it is known as tribocorrosion.

In accordance with the ASTM G40 Standard [5], tribocorrosion
can be defined as a form of solid surface alteration that involves

the joint action of relatively moving mechanical contact with
chemical reaction in which the result may be different in effect
than either process acting separately. In other words, it is the
process leading to an irreversible transformation of the material
resulting from the simultaneous physic-chemical and mechanical
surface interactions occurring at a tribological contact [6–11]. In
passive materials, the origin of tribocorrosion is closely related to
the presence of a protective oxide film of few nm thick on material
surfaces [11–13]. Under tribocorrosion conditions two main
mechanisms contribute to material removal from the surface of
the material: wear accelerated corrosion and mechanical removal
from the sliding contact [4,7,13–15]. Tribocorrosion involves
numerous synergy effects between mechanical and chemical or
electrochemical phenomena [6–11].

The tribocorrosion behaviour of passive materials such as
stainless steels or titanium has been widely studied [16–18] during
years in different solutions. It is well known that these passive
materials form a protective layer of few nanometres thick, which is
mostly composed by oxides as a consequence of a spontaneous
reaction when immersed in aqueous solutions [11–13].

As for low alloy steels, as those used in mooring line chains, the
content in alloy elements is not enough to form such protective
layer, and the major oxide formed is the ferric oxyhydroxide
(FeOOH). The rust layer formed in carbon steels has a complex
morphology and it is generally porous, with poor adherence and
cracked in the outer part [19–21]. Unlike that formed on stainless
steels, the film is not protective in the presence of corrosive
electrolytes and it usually breaks down [22], so the electrolyte and
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A B S T R A C T

Tribocorrosion is an important failure cause of High-Strength Low-Alloy steel (HSLA) components in offshore
applications due to the synergistic effect of wear and the corrosiveness of seawater. In this work, the effect of
temperature on the tribocorrosion behaviour of two steel grades has been investigated by performing tribo-
corrosion tests under reciprocating sliding at two electrolyte temperatures. The total material loss due to corrosion
in the unworn surface and due to tribocorrosion in the wear track was quantified. Sliding was found to accelerate
the corrosion in the unworn area. Furthermore, temperature was confirmed to have an important effect on the
tribocorrosion behaviour of the steels, in terms of higher material losses due to corrosion at higher test
temperature.

1. Introduction

The materials working in offshore applications, are subjected to very
harsh environmental conditions that accelerate their degradation. In
marine environments, several phenomena take place simultaneously,
which can shorten the useful life of structural materials leading to
unpredicted failures. In the case of mooring systems, for instance, tri-
bocorrosion plays an important role in terms of premature failure of
components [1]. On one hand, the relative motion between chain links
and connectors generated by waves, wind and ocean currents [2,3] leads
to a continuous wear process in the contact surfaces. Moreover, corrosion
is another important phenomenon to take into consideration in marine
environments. The components that are continuously submerged or
located in the splash zone of offshore structures, are subjected to high
rate corrosion processes [4]. When wear and corrosion take place
simultaneously, the process is known as tribocorrosion. There is a syn-
ergism between wear and corrosion, since the material loss when the two
processes are occurring simultaneously, is greater than when they act
separately [5,6].

Tribocorrosion of passive materials, e.g., stainless steels and titanium
alloys, has been widely studied during the last decades for different ap-
plications and corrosive environments. It is well known that passive
materials form a protective oxide layer of few nanometres in the surface
[5–7], and that wear locally destroys and removes this layer, exposing

the underlying fresh material to the electrolyte. The unprotectedmaterial
in the track generated by wear undergoes corrosion while the intact
protective film in the unworn surface remains undamaged [5–8]. How-
ever, the use of passive materials in offshore applications is limited, due
to their high cost in comparison with lower alloyed steels, that meet the
mechanical requirements at the expense of a higher corrosion resistance.
For instance, High Strength steels (HSS), with yield strength values
ranging from 460 to 960MPa, are commonly used in offshore structural
applications due to the high resistance/weight ratio. Submerged struc-
tures, anchor systems, chains and connectors composing mooring sys-
tems of offshore oil and gas platforms are predominantly manufactured
with HSS steels. This kind of low-alloyed steels do not grow a protective
oxide layer in the surface as a consequence of their low content in
alloying elements precursors of passive film formation (Cr, Ni, Mo, etc).
The dominant oxide formed on their surface is the ferric oxyhydroxide
(FeOOH) compound. This rust film is highly porous and presents week
adhesion bonds [9–12], allowing the electrolyte to penetrate though and
reach the bare steel leading to continuous corrosion processes and high
rates of material loss. Therefore, unlike passive alloys, low alloy steels are
subjected to corrosion not only in the regions where the rust layer has
been removed due to wear, but also in the remainder surface where the
oxide layer does not form an effective barrier. Consequently, the surface
degradation experienced in these steels is the sum of the material loss
resulting from tribocorrosion in the contact area and the
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A B S T R A C T

Coatings have been widely used in the corrosion protection of metallic materials in marine environments. In this
work, the corrosion and tribocorrosion behavior of three potential coatings employed in offshore applications
has been evaluated. The coatings studied were a Thermally Sprayed Carbide coating with an organic sealant
(C1), a Thermally Sprayed Aluminum with an organic sealant (C2), and an epoxydic organic coating reinforced
with ceramic platelets (C3). Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization tech-
niques have been employed to assess the corrosion performance of the coatings in synthetic seawater.
Furthermore, unidirectional ball-on-disc tribocorrosion tests were performed to study the response of the
coatings subjected to simultaneous action of wear and corrosion. The coatings were found to provide to the steel
substrate with enhanced corrosion resistance, both in absence and during wear process, and to improve in the
tribological properties with lower coefficients of friction in seawater. The coating less affected by sliding in terms
of corrosion resistance was C2 coating, which also showed the lowest coefficient of friction.

1. Introduction

Corrosion is one of the phenomena that worst affects the dete-
rioration of materials in offshore applications. A 30% of failures in ships
and other marine equipment are consequence of marine corrosion, with
an annual cost of over $1.8 trillion [1]. Marine corrosion is particularly
aggressive, due to the high salt content and low electrical resistivity of
seawater [2]. The chlorides present in seawater depassivate metal and
alloys such as stainless steels, aluminum alloys or titanium alloys; even
in absence of oxygen. Chlorides are also present in marine atmospheres,
which can lead to corrosion of non-submerged materials and structures
[3]. The maximum corrosion rate of steel has been observed to be at a
NaCl content of 3% in weight, which corresponds to the salinity of
seawater (around 3.5wt%) [1, 4]. There are other factors affecting
corrosion in seawater and marine environments, e.g., temperature,
dissolved oxygen concentration, pH, presence of microorganisms, and
so on [1, 5–7]. Temperature and salinity of seawater, as well as dis-
solved oxygen concentration vary depending on the geographical lo-
cation. Furthermore, temperature and oxygen concentration also vary
with water depth [1, 5, 6, 8, 9]. On the other hand, there are certain
applications, e.g. mooring line systems, where the movement of sea-
water due to waves, wind and ocean currents, generates a relative
movement between components that leads to a continuous wear in the

contact [7, 10, 11]. When wear and corrosion take place simulta-
neously, the phenomenon is known as tribocorrosion [12–14].

The most employed structural material is steel, usually mild or low-
alloyed, which easily corrodes in marine environment or submerged in
seawater. These steels are relatively cost-effective, compared to other
more corrosion resistant steels and alloys [1]. High-Strength Low-Al-
loyed (HSLA) steels, for instance, are widely used due to their high
mechanical properties, with yield strengths in the range of
460–960MPa, and relatively low weight [15, 16]. The use of HSLA
steels in offshore applications has increased from less than 10% to over
40% in less than a decade [17]. They are used in the fabrication of
offshore structures such as jack-ups and legs, also in pipelines and te-
thering attachments for floating structures in tension leg platforms
(TLPs), or mooring lines of semi-submersible structures, among others
[15, 18, 19]. The corrosion rate of mild steel in seawater has been
measured to be 250 μm per year [20, 21]. This high dissolution rate
involves elevate costs on maintenance and replacement of damaged
surfaces, and what is worse, the risk of premature deterioration of in-
frastructures or components that can lead to catastrophic failures, even
taking human lives in the worst-case scenario.

In order to avoid or prevent such unpredictable failures, coatings
have been successfully used to minimize corrosion losses in steel
structures. Protective coatings selected for marine environment
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A B S T R A C T

Thermally Sprayed Aluminum (TSA) coatings have been widely employed to protect steel components from
corrosion in marine environment. However, TSA is highly damaged in transport operations, due to the low wear
resistance of aluminum, leading to a rapid coating deterioration during final service. In this work, the TSA
properties have been improved by Plasma Electrolytic Oxidation (PEO) technique. The response of the newly
generated TSA/PEO duplex system was investigated by means of sliding wear tests, electrochemical corrosion
tests, and tribocorrosion tests in synthetic seawater. The study was completed with several characterization
techniques, including SEM and confocal microscopy, and X-ray diffractometry.

1. Introduction

Marine environment is a very aggressive working atmosphere, that
comprises several phenomena that can accelerate the degradation of
structural materials reducing their useful life. The exposition to ultra-
violet radiation, chloride rich salty environment, frequent wet-dry cy-
cles, high humidity, low temperature, and the presence of marine
bacteria and microorganisms are some examples. Corrosion is one of
the phenomena that worst affect the deterioration of materials in off-
shore applications. The high salinity and low electrical resistivity of
seawater makes this environment especially aggressive [1]. In certain
applications, materials are also subjected to mechanical stresses than
can lead to premature failure of components and structures. This is the
case of Oil & Gas platforms, wind towers, renewable energy extraction
systems, and mooring lines, inter alia. Abrasion, impact, and wear
generated by waves, wind, ocean currents, floating objects, sand, and
heavy waves are the major stress types [2]. Mooring lines, for instance,
are subjected to severe wear degradation in the connection between
links and accessories, as consequence of the relative movement gener-
ated between components by waves, wind, and ocean currents [3–7].
Offshore structures, as well as mooring lines, are also exposed to
abrasion and impact in the splash zone generated by heavy waves,
floating wastes, sand particles, and other contaminants present in sea-
water [2,8,9]. Corrosion is also more severe in the splash zone, where

the concentration of oxygen is higher [3,9,10]. Wear and corrosion are
two processes that lead to an irreversible degradation, and whenever
they take place simultaneously, the process is known as tribocorrosion.
Tribocorrosion involves a synergism between wear and corrosion, since
the total material loss when the two processes occur simultaneously is
greater than when they act alone [6,7,11–13].

Steel is the most employed structural material in offshore applica-
tions, usually mild or low-alloyed, due to their good properties and
relatively low cost compared to high-alloyed steels [8]. High-Strength
Low-Alloyed (HSLA) steels, for instance, are widely used for their high
mechanical properties, with yield strengths in the range of
460–960MPa, and relatively low weight [14,15]. This kind of steels are
used in jack-ups and legs, pipelines, tethering attachments for floating
structures in Tension Leg Platforms (TLPs), mooring lines of semi-sub-
mersible structures, etc [14,16,17]. However, due to their low alloying
content, HSLA steels possess low corrosion resistance in seawater, with
corrosion rates around 250 microns per year [9,18].

In order to save the elevate maintenance and replacement costs of
damaged elements, and avoid premature failure of infrastructures or
components, protective coatings have been widely used to protect steel
in marine environment. The selection of the appropriate coating
strongly depends on the exposure zone, since the requirements and
desirable properties of the coating vary with the degradation phe-
nomena taking place in each exposure location [19]. In splash zone, for
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