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 1 

Abstract 2 

This longitudinal study was aimed at testing the relation between rhythm 3 

sensitivity and behavioural and neural orthographic sensitivity in pre-reading stages. 4 

Basque-speaking children performed several behavioural and EEG tasks at two time 5 

points prior to formal reading acquisition (T1: 4 years old; T2: 5 years old). Neural 6 

sensitivity to print was measured via a novel child friendly N170-elicitation paradigm. 7 

Our results highlight a transversal and longitudinal relation between rhythm sensitivity 8 

and letter name knowledge in pre-reading children. Moreover, they show that children’s 9 

rhythm sensitivity predicts a significant part of the variance of their N170 response one 10 

year later, highlighting the potential of rhythm tasks to predict future orthographic 11 

sensitivity in pre-reading stages. Interestingly, the relation between rhythmic skills and 12 

print sensitivity was not mediated by the children’s phonological short-term memory. 13 

Our results provide novel evidence on the importance of rhythm sensitivity for the 14 

development of early orthographic sensitivity. 15 

 16 
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 20 

1. Introduction 21 

Reading is an instruction-derived ability that requires learning the cross-modal 22 

arbitrary mapping between speech sounds (phonemes) and their graphical 23 

representation. Although joint efforts from the educational and the scientific fields have 24 

been abundant, from 3 to 10% of children still struggle to acquire reading despite 25 

appropriate instruction and in the absence of further severe cognitive deficits 26 

(developmental dyslexia; Bishop & Snowling, 2004; Snowling, 2001). This being the 27 

case, an intense line of research has been devoted to the search of the pre-requisites of 28 

reading, i.e. the foundations upon which reading acquisition can consolidate. Within the 29 

field of pre-reading speech perception abilities, accumulating evidence points to a 30 

causal role of the slow speech rhythms perception for reading development (see Wood, 31 

Wade-Woolley, & Holliman, 2009 for a review). This idea is supported by abundant 32 

evidence in the field of dyslexia showing that, as compared to typically developing 33 
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participants, dyslexic participants show deficits in behavioural receptive and productive 1 

rhythm tasks (Corriveau & Goswami, 2009; Corriveau, Goswami, & Thomson, 2010; 2 

Flaugnacco et al., 2014; Huss, Verney, Fosker, Mead, & Goswami, 2011; Richardson, 3 

Thomson, Scott, & Goswami, 2004; Thomson, Fryer, Maltby, & Goswami, 2006; 4 

Thomson & Goswami, 2008; Tierney & Kraus, 2013). Despite the importance of the 5 

evidence coming from the comparison between dyslexic and typically developing 6 

participants, it does not allow discarding the presence of bidirectional contributions 7 

between reading acquisition and rhythm sensitivity. More appropriate evidence on the 8 

causal relation between these two comes from longitudinal studies that established a 9 

relation between rhythm sensitivity prior to reading acquisition and future reading, and 10 

from transversal studies reporting a tight relation between rhythm sensitivity and other 11 

classical reading predictors in pre-readers (e.g. Holliman et al., 2010; Lundetræ & 12 

Thomson, 2017; Moritz et al., 2013; Ozernov-Palchik, Wolf, & Patel, 2018; Carr, 13 

White-Schwoch, Tierney, Strait, & Kraus, 2014).  14 

In this context, several theories have proposed that the relation between rhythm 15 

sensitivity and reading predictors in pre-reading stages would be mediated by 16 

phonological skills. Specifically, they suggest that the sensitivity to language rhythm 17 

would aid speech segmentation (Ramus, Hauser, Miller, Morris, & Mehler, 2000) 18 

bootstrapping hence phonological awareness, which would in turn boost reading 19 

development (Goswami, Power, Lallier, & Facoetti, 2014; Lallier et al., 2018; Lallier, 20 

Molinaro, Lizarazu, Bourguignon, & Carreiras, 2017; Leong, Hämäläinen, Soltész, & 21 

Goswami, 2011; Moritz et al., 2013; Wood & Terrell, 1998). Following this theoretical 22 

line, studies examining the relation between rhythm sensitivity and other pre-reading 23 

skills have focused predominantly on phonological reading predictors, i.e. on 24 

phonological awareness, phonological short-term memory and RAN and have indeed 25 

found a tight relation between these and rhythm sensitivity in pre-readers (e.g. Carr et 26 

al., 2014; Holliman et al. 2010; Moritz et al., 2013).  27 

The present study will address the issue as to whether rhythmic sensitivity plays 28 

a role in the development of early (pre-reading) orthographic predictors of reading. 29 

This question is timely and of interest given recent evidence challenging the mediator 30 

role of phonological processing skills in the rhythm-reading relation (Calet, Gutierréz-31 

Palma, Defior, & Jimenéz-Fernández, 2019; Calet, Gutiérrez-Palma, Simpson, 32 

González-Trujillo, & Defior, 2015; González-Trujillo, Defior, & Gutiérrez-Palma, 33 

2014; Holliman et al., 2014; Holliman, Wood, & Sheehy, 2008). For example, Holliman 34 
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et al. (2008) reported that linguistic rhythm sensitivity (as assessed by a stress 1 

manipulation task) predicted significant variance at early stages of reading development 2 

after controlling for performance in a phonemic awareness task. The authors proposed 3 

that early segmental phonological skills might be relatively independent of early 4 

orthographic skills such that very young children might develop (rudimentary) pre-5 

reading phonological awareness via exposure to speech since birth, whereas 6 

orthographic representations of language might develop independently as a function of 7 

experience with written language. Accordingly, Wood (2004) reported no differences in 8 

phonological awareness between groups of pre-reading children classified as a function 9 

of their knowledge of the letters of the alphabet. Without denying the relation between 10 

phonological awareness and orthographic skills once reading is acquired, this evidence 11 

opens the possibility that during pre-reading stages, the contribution of rhythm 12 

sensitivity to orthographic sensitivity could be partly independent of phonological skills. 13 

In fact, rhythmic sensitivity might contribute to early reading and orthographic 14 

development through two pathways amongst which only one would be mediated by 15 

phonology (Holliman et al., 2008). Although identifying potential non-phonological 16 

mediators falls out of the scope of the present study, some have suggested that factors 17 

such as written prosody (e.g., Calet et al., 2019) or morphology (Holliman et al., 2014) 18 

could be good candidates.  19 

In pre-readers, one study to date has specifically assessed the relation between 20 

rhythmic abilities and orthographic predictors of reading such as letter knowledge 21 

(Ozernov-Palchik et al., 2018). This study showed that pre-readers’ (mean age: 5.8 22 

years) performance on a metrical perception task accounted for unique variance in a 23 

letter-sound-knowledge task, and perhaps more interestingly, even beyond phonological 24 

awareness. In any case, the authors tested the children only at one time point, which 25 

prevents from concluding on the causality of this relation. The debate on the 26 

independent contribution of rhythm sensitivity to orthographic sensitivity at pre-reading 27 

and early reading stages is hence open. One way to examine this question is to test both 28 

rhythm and orthographic sensitivity when the latter is assumed to be relatively 29 

independent of phonemic awareness, i.e. before formal reading tuition (Wood, 2004). 30 

To our knowledge, no study has taken such enterprise from a longitudinal perspective to 31 

establish a causal relationship between rhythmic processing and print sensitivity, 32 

controlling for phonological processing skills.  33 
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Beside behavioural measures of orthographic sensitivity such as letter 1 

knowledge (Byrne & Fielding-Barnsley, 1990; Evans, Bell, Shaw, Moretti, & Page, 2 

2006; Stuart & Coltheart, 1988), pre-readers’ orthographic sensitivity can also be 3 

measured at the brain level, whilst performing orthographic tasks under 4 

electrophysiological recording. Measuring behavioural performance in very young 5 

children is often prone to high variability that does not only result from the process of 6 

interest but that is likely to stem from variability in general speed of motor/oral 7 

response or strategic response bias. Event related potentials (ERP) are generally more 8 

sensitive to capture variability in certain processes since they are able to measure very 9 

early effects elicited by the unconscious processing of the stimuli free from any 10 

response bias. In the present study, we assessed the contribution of rhythmic sensitivity 11 

to both a behavioural, i.e., letter name knowledge (LNK) and a neural, i.e., the N170, 12 

early orthographic predictors or reading.  13 

The N170 is a negative ERP that appears around 170 milliseconds after the 14 

presentation of print as opposed to other control stimuli such as symbol strings or false 15 

fonts (Brem et al., 2009; Maurer, Brandeis, et al., 2005; Maurer, Brem, et al., 2005; 16 

Maurer et al., 2006). This ERP component has been repeatedly shown as one 17 

neurophysiological correlate of expert (Bentin, Mouchetant-Rostaing, Giard, Echallier, 18 

& Pernier, 1999; Brem et al., 2005; Maurer, Brandeis, & McCandliss, 2005) and 19 

developing (Bach, Richardson, Brandeis, Martin, & Brem, 2013; Brem et al., 2013; 20 

Lochy, Van Reybroeck, & Rossion, 2016; Maurer et al., 2006) print sensitivity. 21 

Although it had been proposed that the N170 response should be absent in pre-readers 22 

(Brem et al., 2009, 2005; Eberhard-Moscicka et al., 2015; Maurer, Brem, et al., 2005; 23 

Maurer et al., 2006), several studies have challenged this assumption (Bach et al., 2013; 24 

Brem et al., 2013; Lochy et al., 2016). For example, Lochy et al. (2016) reported that 25 

letters embedded in pseudofont streams elicited a pronounced response in left occipital 26 

electrodes in pre-readers and that individual differences in the amplitude of the letter-27 

specific response was positively correlated with children’s LNK. Additionally, pre-28 

reading N170 amplitude difference between words and symbols were found to correlate 29 

positively with children’s LNK (Maurer, Brem, et al., 2005). Lastly, Brem et al. (2013) 30 

found that after a short training in letter-to-sound correspondences, pre-readers showed 31 

a significant N170 to words in contrast to symbols in the left hemisphere.  32 

Overall, the aforementioned evidence suggests that print-specific N170 as well 33 

as LNK could be two good indexes of orthographic sensitivity in the pre-reading brain 34 
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and are good candidates to test the contribution of rhythmic sensitivity to pre-reading 1 

orthographic sensitivity.  2 

 3 

 4 

This study 5 

The goal of this longitudinal study was to test the relation between rhythm 6 

sensitivity and orthographic sensitivity at pre-reading stages, whilst controlling for the 7 

putative mediation of phonological skills in the relation. On the one hand, we wanted to 8 

examine the relation between rhythm sensitivity and a behavioural orthographic marker 9 

of reading readiness (i.e., LNK), for which evidence is scarce in cross-sectional designs 10 

(Ozernov-Palchik et al., 2018) and absent in the longitudinal domain. On the other hand, 11 

we intended to extend the relation between rhythmic abilities and orthographic reading 12 

readiness at the neural level (i.e., N170 responses). 13 

In that aim, we carried out a longitudinal study in which we collected pre-14 

readers data at two different times before children received formal reading instruction: 15 

during the summer breaks immediately previous (T1; four years old) and posterior (T2 16 

five years old) to the last year of kindergarten. Both at T1 and T2, we collected 17 

children’s performance on a LNK task and on an online beat synchronization task 18 

previously used in the literature to measure rhythm sensitivity (Carr et al., 2014). In 19 

addition, we collected two phonological measures (Phoneme awareness and 20 

Phonological short-term memory) to test the hypothesis that the rhythm-reading 21 

readiness relation should be mediated by phonological skills since pre-reading stages 22 

(e.g. Goswami, 2011). At T2, we also collected the electrophysiological print-specific 23 

responses of the children using EEG. Rather than a one-back task with whole words, we 24 

used a passive viewing paradigm with consonant-vowel syllables. Indeed, some (Lochy 25 

et al., 2016) have proposed that the presence of the N170 in pre-readers could be 26 

obscured by the high perceptual and memory demands of classic one-back tasks using 27 

whole words (e.g. Maurer, Brem, et al., 2005; Maurer et al., 2006).  28 

 29 

 30 

Hypotheses 31 

Firstly, if rhythmic sensitivity plays a role in pre-reading behavioural 32 

orthographic sensitivity, we expected performance on the beat synchronization task to 33 
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be correlated with LNK before the formal start of reading tuition, both within T1, within 1 

T2, and across T1 and T2 (Ozernov-Palchik et al., 2018).  2 

Secondly, if rhythmic sensitivity plays a role in pre-reading neural orthographic 3 

sensitivity, and if N170 responses are a good neural index of print sensitivity at the pre-4 

reading stage, we expected beat synchronization at T1 to explain a significant part of the 5 

variance in the amplitude of the N170 at T2, as well as a significant relation between 6 

beat synchronization and N170 at T2.  7 

Thirdly, if LNK and N170 both reflect a unique orthographic sensitivity 8 

construct, we expected significant relations between LNK measured at T1 and T2 with 9 

the N170 responses measured at T2. 10 

Lastly, we had no clear prediction as to whether we would find a significant 11 

mediating effect of phonological skills in the relation between beat synchronization 12 

performance and both our behavioural (LNK) and neural (N170) markers of 13 

orthographic sensitivity. On the one hand, several studies found a relation between 14 

rhythmic abilities and phonological processing (e.g. Carr et al., 2014; Holliman et al. 15 

2010; Moritz et al., 2013). On the other hand, recent evidence challenged the idea that 16 

phonological skills could mediate the relation between rhythm sensitivity and early 17 

reading and orthographic development (Calet et al., 2015; Holliman et al., 2008; 18 

Ozernov-Palchik et al., 2018).  19 

 20 

2. Materials and methods 21 

2.1. Participants 22 

Forty-three pre-readers (22 males; age M = 5.09 years; SD = 0.31) were 23 

recruited from two different schools in Donostia-San Sebastián (Basque Country, 24 

Spain).  25 

Thirty-eight children came back for behavioural testing one year later (20 males; 26 

age M = 5.88 years; SD = 0.34). Thirty-two of these children completed also the EEG 27 

session. 28 

The Basque Country is a bilingual community in which two official languages 29 

coexist (Basque and Spanish), but given that all children received formal education in 30 

Basque, all linguistic tasks were performed in this language. 31 
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Testing proceeded during the summer vacations prior to (T1) and after (T2) the 1 

last year of kindergarten. At T1, children completed only the behavioural tasks. At T2, 2 

children came to the lab twice; the first time for the behavioural session and the second 3 

time for the EEG session. 4 

At both testing times, parents were asked to fulfil a questionnaire on reading 5 

habits to ensure that children could not read fluently in any of the phases of the 6 

longitudinal study. Moreover, we asked children directly whether they knew how to 7 

read and ran a quick test consisting on the presentation of short words printed in paper. 8 

We considered that failing to complete this test was a sign of the child’s inability to 9 

decode written material. The explicit question and the short test confirmed that none of 10 

the children that participated in this study was able to read. 11 

All children were tested under signed parental authorization and the experiment 12 

was approved by the BCBL Ethics Review Board and complied with the guidelines of 13 

the Helsinki Declaration. 14 

2.2. Stimuli and procedure 15 

  2.2.1. Behavioural battery (T1 and T2) 16 

Children completed five tasks while seating comfortably in a shielded room with 17 

the experimenter. The session took approximately 30 minutes.  18 

   2.2.1.1. IQ assessment 19 

The Matrix reasoning subtest from the WPPSI-III (Wechsler, 2002) was used to 20 

obtain a measure of non-verbal IQ. Children were presented with a matrix of three 21 

drawings and a blank square and were asked to complete the series with the correct 22 

element out of four to five alternatives. The test consisted of a total of 29 items, and the 23 

initial item was adapted upon the child’s age. Direct scores where converted into scalar 24 

(standardized) scores to correct for children’s age differences (in months) and for 25 

comparability across testing years. 26 

2.2.1.2. Reading predictors 27 

i) Letter name knowledge (LNK) 28 
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The letters of the Basque alphabet were presented in capital case and one by one 1 

in a random order. The child’s task was to name the letter. The experimenter recorded 2 

accuracy scores (maximum of 27).  3 

ii) Phoneme deletion/elision 4 

This task has been extensively used to measure phonological awareness in 5 

young children (e.g. Stanovich, Cunningham, & Cramer, 1984). Stimuli consisted of a 6 

total of 16 pseudowords and were presented one at a time through headphones at 80 dB 7 

SPL. Immediately after presentation, children were asked to recall them, but omitting 8 

the first phoneme of the pseudoword (phoneme deletion) for half of the items (eight) 9 

and the first phoneme of the pseudoword’s second syllable (phoneme elision) for the 10 

remaining half. For each subtask, stimuli consisted of eight by-syllabic items that were 11 

presented in a randomised order. Within the deletion task, half of the items (four) 12 

consisted of two syllables with a consonant-vowel structure (CV; e.g. /timu/; correct 13 

response: /imu/). The remaining half of the items had a consonant-consonant-vowel 14 

(CCV) structure in the first syllable and a simple CV structure in the second (e.g. 15 

/bluno/, correct response: /luno/). The structure of the stimuli for the elision subtask was 16 

identical to the deletion subtask (i.e. four CV-CV items and four CCV-CV items). 17 

Children now had to omit the first phoneme of the second syllable (e.g. /bupa/; correct 18 

response: /bua/) and consequently, they never had to break down a consonant cluster 19 

(i.e. /flope/; correct response: /floe/). This was done in order to decrease the task 20 

complexity due to our participants’ young age. The number of correct responses was 21 

recorded (maximum of 16). 22 

iii) Pseudoword repetition 23 

This task has been extensively used to measure phonological short-term memory 24 

and its contribution to reading skills (Jorm, 1979; Muter & Snowling, 1998). Stimuli 25 

were presented through headphones at an SPL of 80 dB. Stimuli consisted in a total of 26 

28 items that complied with Basque phonotactics and the child was instructed to repeat 27 

the corresponding item immediately after he/she heard it. Stimuli consisted in items 28 

differing in length: 8 two-syllable items, 8 three-syllable items, 6 four-syllable items, 29 

and 6 five-syllable items. Seventy per cent of the stimuli were formed by syllables 30 

whose phonemic structure followed the consonant-vowel pattern. For the thirty per cent 31 
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of remaining stimuli, one syllable contained a consonant cluster (three letters; e.g. /pra/). 1 

Items were different in T1 and T2 to avoid (not likely) repetition effects across the 2 

years. In each testing time, two practice items were presented before the task started to 3 

ensure that the children understood the task. This task took approx. five minutes. Total 4 

time for the repetition of the whole list and errors were recorded by the experimenter. A 5 

measure of efficiency per minute was calculated as follows: 6 

 7 

 8 

iv) Beat synchronisation 9 

To assess the rhythmic skills of the children, we adapted a task that has been 10 

previously shown to correlate with other reading predictors in pre-readers (Carr et al., 11 

2014). The task was originally proposed by Kirschner and Tomasello (2009) as the best 12 

available task to measure children’s motor skills in social situations. In this task, the 13 

child is asked to tap to a beat in synchrony with the experimenter. This situation, due to 14 

the social interaction with another human being, generates a special motivation for 15 

synchronised movement that is absent when tapping to a recorded rhythm (Kirschner & 16 

Tomasello, 2009). In our case, the experimenter produced a rhythmic drum beat and 17 

children were asked to “synchronise” to this rhythm, i.e. to tap at the tempo set by the 18 

experimenter. Children were asked to tap with their dominant hand, since significant 19 

group differences when tapping to a beat with the dominant versus the non-dominant 20 

hand have been previously reported in the literature (Nozaradan, Zerouali, Peretz, & 21 

Mouraux, 2015). Before the task, the experimenter was trained to produce the rhythmic 22 

pattern as accurately as possible, so that the mean SD of her inter-drum intervals was 23 

below 25 ms. The task consisted of two trials at 1.67 Hz (606 ms ISI; duration of 20 24 

seconds; total 50 beats). The experimenter and the child produced the drum beats 25 

separately in a peripheral drumming pad. Input was recorded via a custom-script created 26 

in Python. 27 

2.2.2. EEG session (T2) 28 

2.2.2.1. Syllable presentation task 29 
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This task was used to record electrophysiological activity evoked by print 1 

(syllables) as compared to other perceptually similar but non-meaningful visual stimuli 2 

(false fonts) before formal reading instruction. Stimuli consisted of 72 syllables and 72 3 

false fonts created via Adobe Illustrator with font Consolas Regular and size 200. 4 

Syllables were formed by a combination of consonants /b/, /p/, /d/, /t/, /g/ and /k/ with 5 

vowels /a/, /e/, /i/, /o/ and /u/. 12 of the syllables (ba, be, di, do, ga, gu, pe, pi, to, tu, ka, 6 

ke) were presented three times and 18 of the syllables (bi, bo, bu, da, de, du, ge, gi, go, 7 

pa, po, pu, ta, te, ti, ki, ko, ku) two times to make a total of 72. False fonts were 8 

constructed rotating and inverting the features of original syllables to avoid low level 9 

visual differences between experimental conditions (see Supplementary Figure 1 for a 10 

set of examples of the stimuli presented in each condition). Each false font was repeated 11 

three times. Fillers (n = 20) consisted of the image of a dog and were included to ensure 12 

that children were paying constant attention to the screen. Presentation order was 13 

pseudorandomised, such that more than three stimuli of the same time did not appear 14 

consecutively, and delivered through Psychopy (Peirce, 2009). The children’s task was 15 

to press the “space” key every time the dog appeared in the screen. All types of stimuli 16 

appeared in the screen for 1000 ms and interstimulus interval was set at 0 ms. Ten 17 

practice trials were included before starting with the experiment to ensure that the child 18 

understood the task. The total duration of the task was 4 minutes. 19 

 20 

2.2.2.2. EEG data acquisition 21 

The EEG signals were recorded in a child-friendly soundproof electrically-22 

shielded room. Children were comfortably seated in a chair adapted to their size. They 23 

were instructed to stay silent and to avoid moving as much as possible. EEG signals 24 

were recorded using a Brain Products GmbH actiCAP with 32 electrodes. To reduce 25 

preparation time and avoid children’s fatigue, we reduced the array of scalp electrodes 26 

to 19 (FP1, FP2, F7, F3, Fz, F8, F4, C3, Cz, C4, T7, T8, P7, P3, Pz, P8, P4, O1 and O2) 27 

which were distributed over the scalp based on 10-10 International System. Additional 28 

reference electrodes were placed on both mastoids A1 and A2. In addition, we recorded 29 

electrode FCz and around the eyes at left Heog, right Heog and left Veog. Signals were 30 

sampled at 500 Hz with a high-pass filter at 0.1 Hz. Monopolar differential recording 31 

was referenced online to electrode FCz. 32 
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2.3. Data analysis 1 

 2.3.1. Behavioural data 2 

We considered that children were outliers in a task when their score was above 3 3 

SD from the mean of the group. Furthermore, we also assessed the children’s 4 

performance across testing times to spot longitudinal outliers (i.e. children whose 5 

performance from T1 to T2 decreased inexplicably) using the same criterion (≥ 3 SD). 6 

2.3.1.1. Beat synchronisation task: Drumming consistency 7 

Data analysis of the BSynch task was based on circular statistics (Fisher, 1993). 8 

Circular statistics are intended to assess the level of synchronization to the pace of an 9 

external beat (see Kirchner & Tomasello, 2009 for a full justification for the use of this 10 

type of statistics with children data). We recorded both onset and offset movements, but 11 

for the purpose of this study only onsets were analysed. Data analysis consisted of the 12 

following steps: i) Drum hits were assigned a point in a circular scale, with the stimulus 13 

beat aligned at 0º. Every beat was defined by an angle in degrees or phase, i.e. the result 14 

of subtracting the onset time from the onset of the stimulus closest in time. In this way, 15 

it is possible to measure the degree of synchronization independently of its attribution to 16 

the preceding or following stimulus drum hit, i.e. instead of using traditional linear 17 

statistics, a measure of phase consistency is created; ii) thereafter, the result was divided 18 

by the ISI and multiplied by 360; iii) lastly, all vectors were summed and divided by the 19 

number of hits generated, which rendered a mean vector R. The mean vector R gives 20 

information about two parameters: the vector’s mean direction h, which can be used as a 21 

measure of the child’s phase preference, and the vector’s mean length. The latter 22 

provides a measure of the phase consistency of the produced drum hits with regard to 23 

the stimulus. Its value ranges between 0 (no phase consistency) and 1 (perfect phase 24 

consistency). For the purpose of this experiment, we only analysed the vector R’s mean 25 

length, which was z-transformed using the function circ_rtest() available in Matlab’s 26 

package CircStat (Berens, 2009).  27 

 2.3.1.2. Joint analysis of reading predictors 28 

The aim of this part of the analysis was to explore concurrent and longitudinal 29 

correlations among our behavioural tasks. First, scores were z-transformed for 30 
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comparability among tasks. Partial correlations controlling for IQ and age were 1 

performed to examine the test-retest reliability of the Beat synchronisation and the LNK 2 

tasks and to explore the inter-correlation between these variables. When the specific 3 

analysis involved multiple comparisons, both uncorrected and FDR-corrected p values 4 

are reported. Lastly, based on previous theoretical frameworks claiming that the relation 5 

between early literacy indexes and rhythm sensitivity might be mediated by 6 

phonological skills (Goswami, 2011), we conducted a second analysis in which the 7 

children’s phonological skills (phonological short-term memory, see Results section) 8 

were controlled for.  9 

2.3.2. EEG data 10 

We used BrainVision Analyzer 2.0 to pre-process the EEG data. Statistical 11 

analyses of the EEG data were carried out in R (R Core Team, 2017). Based on 12 

previous studies on the N170 component, we focused our analysis on a broad time 13 

interval between 100 and 400 ms (e.g. Bach et al., 2013; Maurer, Brandeis, et al., 2005). 14 

Due to the facts that the N170 effect had never tested before in Basque-speaking pre-15 

readers and that we used a novel task, we run an objective statistical test to refine our 16 

time window of interest to the interval where the differential N170 to print was actually 17 

present. The test consisted in computing multiple point-by-point t-tests (FDR-corrected 18 

for multiple comparisons) to compare the amplitude evoked by Syllables and by False 19 

fonts across the whole time window (from -200 to 400 ms). Next, we averaged the data 20 

across our window of interest and used the lme4 package to build a mixed effect model 21 

(Baayen, Davidson, & Bates, 2008) with the amplitude of the EEG as dependent 22 

variable. Concerning the construction of the random effects, the complexity of their 23 

structure was increased in a series of models (Barr, Levy, Scheepers, & Tily, 2013), 24 

leading to a maximal model that converged and contained only the random effects that 25 

increased significantly the residual variance captured by the model. The fixed effects 26 

structure was built up with the Condition (Syllable vs. False font) and the Hemisphere 27 

(Left vs. Right) factors and their interaction. In addition, we always introduced to the 28 

model the factors IQ (continuous Matrix score) and Age (in months) to control for 29 

intelligence and age effects in the amplitude of the EEG signal. Regarding post-hoc 30 

analysis for exploring interaction effects, we set up paired contrasts using the least 31 

squares means method available in the R package lsmeans (Lenth, 2016). This method 32 

allows estimating pairwise comparisons of the slopes of categorical variables fitted in a 33 
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linear mixed effect model at different levels of a continuous variable. In this analysis, 1 

significance estimation is based on confidence intervals at 0.95 and corrected for 2 

multiplicity with the Tukey HSD method. Finally, as an indicator of the models’ 3 

goodness of fit, we estimated the coefficient of determination (pseudo R
2
) and report 4 

both the marginal R
2
 (i.e. the proportion of variance explained only by the fixed effects) 5 

and the conditional R
2
 (i.e. the proportion of variance explained by both the fixed and 6 

the random effects together) for each specific fit. 7 

After inspection of the raw data, we decided to discard directly the data of ten 8 

participants due to excessive movement during recording or to reduced number of trials. 9 

Therefore, the total number of children whose data were considered for further analysis 10 

was 22. Further raw inspection of the data indicated the presence of excessive noise in 11 

mastoid channels due to movement. Accordingly, we excluded electrodes A1 and A2 12 

from further analysis, and re-referenced the data offline to electrode Cz. In each 13 

individual case, we pooled other channels with excessive noise from the signal of at 14 

least three surrounding electrodes. Next, we applied the signal a Butterworth Zero Phase 15 

Bandpass Filter (0.1 – 45 Hz; 48 dB/oct) and a notch filter at 50 Hz. Then, we inspected 16 

manually the raw data to detect ocular activity and head movements. Afterwards, we 17 

applied an Independent Component Analysis (ICA) analysis (Infomax; Bell & 18 

Sejnowski, 1995) to the whole participant’s recording. We then inspected the 19 

components to detect blinks, heart beat and muscular activity and removed them 20 

accordingly. We defined the epochs of interest from 200 ms before to 400 ms after 21 

stimulus presentation and proceeded with semiautomatic artefact rejection. We removed 22 

segments containing voltage steps larger than 50 µV/ms and/or voltage differences of 23 

more than 150 µV in intervals of 200 ms and segments where activity was lower than 24 

0.5 µV for 100 ms or more. These criteria led us to discard a total of 21% of the epochs 25 

(with no difference between the Syllables and the False font conditions in the amount of 26 

rejected trials; t(21) = 0.14; p = 0.89). At this point, we discarded individual data sets 27 

for which more than 25% of the data for one or both conditions were rejected (i.e. lower 28 

threshold for further analysis was set at 75% of the data, or trials 54 trials, per 29 

condition). We discarded the data of three children based on this threshold. Thereafter, 30 

we baseline corrected (200 ms to 0 ms) the data of the 19 children for whom enough 31 

movement-free trials were available. We calculated individual ERPs for each condition 32 

and averaged them across subjects to calculate grand-averaged ERPs.  33 
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2.3.2. Behavioural and EEG data 1 

After the initial analyses of the separate EEG data, we moved on to building 2 

mixed effects models that included our behavioural tasks of interest. In all analysis, we 3 

included Beat synchronisation (our main predictor of interest) and LNK (due to the 4 

relation between this and the N170 found previously in the literature; e.g. Lochy et al., 5 

2016).  6 

Models were built separately for the different testing times (i.e. one model 7 

including the behavioural predictors at T1 and a second model including the 8 

behavioural predictors at T2). The dependent variable of the models was the amplitude 9 

of the N170 effect at T2 averaged across the time window of interest, and the fixed 10 

effects were built by the factors Condition (Syllable vs. False font), Hemisphere (Left 11 

vs. Right), continuous score in the Beat synchronisation task (at T1 or T2, 12 

correspondingly) and continuous score in the LNK task (at T1 or T2, correspondingly), 13 

and all possible interactions between these factors. As for the previous analyses, IQ and 14 

age were also introduced in the model to control for effects of these factors on the 15 

amplitude of the EEG signal. The procedure followed to explore post-hoc contrasts was 16 

identical to the one followed for the EEG-only analysis.  17 

 Lastly, we built two models (one per testing time) in which, beside our 18 

behavioural predictors of interest (LNK and Beat synchronisation), the score of the 19 

children in the Pseudoword repetition task was introduced. Models with and without the 20 

phonological factor were compared through analyses of variance (ANOVA) to test if 21 

introducing this factor improved significantly the model’s fit of the data, suggesting that 22 

the phonological skills explained part of the N170 variance beyond our behavioural 23 

predictors of interest.  24 

 25 

3. Results 26 

Within the Results section, we first present the descriptive and correlational 27 

analysis of the behavioural data (section 3.1). Section 3.2 presents the separate analysis 28 

of the Syllable presentation task (EEG data). Finally, section 3.3 introduces different 29 

models in which the behavioural data at the different testing times are used to predict 30 

the variance of the EEG data.  31 

3.1.  Behavioural data 32 
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 3.1.1. Descriptive statistics 1 

Unfortunately, the Phoneme deletion/elision task appeared to be too difficult for 2 

the children and they were not able to complete it successfully in any of the testing 3 

times. Therefore, the score in the phonological short-term memory task (Pseudoword 4 

repetition) was the only phonology-related measure available for analysis (see 5 

Discussion). 6 

 The longitudinal performance of five of the children in the Beat synchronisation 7 

task was notably deviated from the mean of the group from the longitudinal perspective, 8 

such that there was an inexplicable detriment (≥ 3 SD) in performance from T1 to T2. In 9 

consequence, we considered that the risk of measurement error or experimental fatigue 10 

in these five participants was high and did not use their data for further analysis. Table 1 11 

shows the scores of the children in the behavioural tasks after outlier removal. 12 

 13 

Table 1. Behavioural results after outlier removal 14 

 

T n M SD median min max kurtosis 

Matrices 
1 38 7.74 2.67 8 3 14 -0.40 

2 31 6.39 2.36 6 2 11 -0.92 

LNK 
1 36 14.86 6.13 16 1 23 -1.07 

2 31 20.26 3.43 21 7 23 4.78 

BSynch* 
1 34 1.69 1.38 1.63 0 4.87 -0.32 

2 31 4.88 5.84 2.22 0.25 21.57 1.80 

*Z-transformed as specified in text (2.3.1.1. Beat synchronisation task: Drumming 15 

consistency); BSynch = Beat synchronisation 16 

 17 

3.1.2. Partial correlations 18 

As shown in Table 2, our different measures correlated significantly with 19 

themselves across testing times, showing hence reliability. Table 2 shows the results of 20 

the partial correlations between our different measures within and across testing times. 21 

(see Supplementary Figure 2 for a visual depiction of all correlations presented in this 22 

section). 23 
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Table 2. Partial correlations between the LNK and the Beat synchronisation tasks 1 

across testing times 2 

  1. 2. 3. 

 
n r p (FDR) n r p (FDR) n r p (FDR) 

1. LNK T1 - 
- 

- 2. LNK T2 30 .60 <.001* 

3. BSynch T1 33 .26 .14 27 .36 .06 (.08)* 

4. BSynch T2 29 .50 <.01 (.02)* 27 .49 .01 (.02)* 29 .46 .01* 

BSynch = Beat synchronisation. FDR correction (in brackets) is only provided when 3 

relevant (i.e. when multiple comparisons are involved). 4 

 5 

3.1.3. Phonological short-term memory as a mediator in the relation 6 

between rhythmic skills and letter knowledge 7 

 After controlling for children’s score in the Pseudoword repetition task, the 8 

partial correlation coefficients between LNK and Beat synchronisation did not change 9 

significantly either at T1 (R = .30; p = .15) or at T2 (R = .47; p = .02), suggesting that, 10 

in our sample, the relation between Beat synchronisation and LNK was not mediated by 11 

the scores of the children in this phonological task. 12 

3.2. EEG data 13 

Visual inspection of the topographical maps across the time window ranging 14 

from -200 ms (baseline) up to 400 ms after stimulus presentation showed that the 15 

maximum difference of amplitude between our conditions of interest (Syllables vs. 16 

False fonts) occurred in the window between 190 and 325 ms in left posterior (P7, P3 17 

and O1) and right posterior (P8, P4 and O2) electrodes (see Figure 1).  18 

[Insert Figure 1 around here] 19 

After visual inspection, we transferred the data to R (R Core Team, 2017) for 20 

statistical analysis. In the interest of reducing the number of statistical comparisons, we 21 

computed the mean of the left and right electrodes separately and created two scalp 22 

regions: the left hemisphere region (LH region; electrodes P3, P7 and O1), and the right 23 

hemisphere region (RH region; electrodes P4, P8 and O2). The ERP analysis for the 24 

separate electrodes can be consulted in the Supplementary analyses in the Appendix. 25 
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First, to support our selection of the N170-time window with an objective measure and 1 

to ensure that no other differences between the waves was present before the N170 2 

component, we computed a point-by-point (in steps of 2 ms; sampling frequency = 500 3 

Hz) paired t-tests across the whole window (-200 to 400 ms) in both regions (see Figure 4 

1). Results showed that in the window between -200 ms and 190 ms (i.e. were no 5 

significant difference was expected), there was no difference between the waves at any 6 

time point in any of the regions (all ps > 0.05). The significant difference between 7 

Syllables and False fonts started earlier in the LH region (at 198 ms; t(18) = 2.70; FDR 8 

corrected p < 0.05) as compared to the RH region (at 222 ms; t(18) = 2.58; all p < 0.05). 9 

Regardless of region, the difference between the waves was sustained until the end of 10 

our window of interest (325 ms; all ps < 0.05). Finally, visual inspection of the waves 11 

indicated that at around 325 ms, although the experimental effect between conditions 12 

was still present, ERPs showed a subsequent positive trend reflecting a later positive 13 

component following the N170. Differences in this later time interval could reflect a 14 

carry-over of the differences observed in the N170 interval. Accordingly, the 15 

differences across waves was significant in all electrodes at all time points between 325 16 

and 400 ms when the baseline was kept at -200 ms (all ps < 0.05), but it did not reach 17 

statistical significance when the baseline was set at 325 ms (all ps < 0.05). Hence, this 18 

analysis confirmed that the differences after 325 ms were most probably a post-effect of 19 

the previous N170 component, reason why we did not consider for further analysis any 20 

activity occurring after this time point. For later analyses, we selected our time window 21 

of interest to include the whole range of significant time points found across the regions, 22 

i.e. from 198 to 325 ms. 23 

 Thereafter, we moved on to explore the possibility that the activity prompted by 24 

Syllables and False fonts was different as a function of region (Hemisphere). To this 25 

aim, we fitted a linear mixed effect model (Baayen et al., 2008) with average amplitude 26 

of the EEG signal in our window of interest as dependent variable, and Condition (two 27 

levels: Syllables and False fonts), Hemisphere (two levels: Left and Right) and their 28 

interaction (Condition by Hemisphere) as main predictors. Reference levels for these 29 

predictors were the False fonts for the Condition factor, and the Left hemisphere for the 30 

Hemisphere factor. The fixed effects structure also included factors IQ and Age. The 31 

maximal converging model included a random intercept by-Subject and two random 32 
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slopes by-subject for the effect of the factors Condition and Hemisphere (to control for 1 

within-subject variability and measures’ interdependency).  2 

Table 3 shows the full summary of the model’s results. The analysis showed that 3 

there was a significant main effect of Condition, such that the EEG amplitude values 4 

were more negative for Syllables (mean = -.48, SD = 6.20) as compared to False fonts 5 

(mean = 4.08, SD = 4.10), whereas we found no amplitude differences between 6 

hemispheres to the different stimuli.  7 

Table 3.  Summary of results of the model with amplitude of the EEG at T2 as DV and 8 

Condition, Hemisphere and their interaction as predictors 9 

Model characteristics 

    n obs M R
2
 C R

2
  

    19 76 .48 .93  

Random effects 

  SD       

By-subject intercept 3.15       

By-subject slope Condition 3.63       

By-subject slope Hemisphere 1.96       

Residual 1.81    

Fixed effects 

 
 

SE t p 

Intercept 

-

59.93 15.09 -3.97 <.01 

Age .89 .24 3.79 <.01 

IQ 1.29 .30 4.32 <.001 

Condition
1 -5.34 1.10 -5.24 <.001 

Hemisphere
2 .84 .74 1.13 .26 

Condition * Hemisphere .75 .83 .90 .37 
1
Reference: False fonts; 

2
Reference: Left hemisphere. C R

2
 = Conditional R square; M 10 

R
2
 = Marginal R square; obs = total of observations 11 

 12 

3.3. Behavioural and EEG data 13 

3.3.1. Longitudinal analysis 14 

This analysis was carried out with the data of 17 children for whom data for all 15 

the tasks involved were available (to avoid missing data biases). Before fitting the 16 

model, we calculated the variance inflation factor (VIF) of our predictors to assess 17 
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possible multicollinearity issues, given that our behavioural predictors (Beat 1 

synchronisation and LNK) were correlated. This analysis showed that our data were not 2 

severely affected by multicollinearity, since the VIF values of our variables were below 3 

the maximum recommended value of five (VIF of LNK: 4.56; VIF of Beat 4 

synchronisation: 4.44; Rogerson, 2001). 5 

 6 

For parsimony reasons, only the relevant main fixed effects and interactions will 7 

be discussed in the text (see Table 4 a for a summary of the statistics of all the model’s 8 

effects). All interactions involving Beat synchronisation at T1 were modulated by the 9 

significant triple interaction Beat synchronisation T1 by Condition by Hemisphere, such 10 

that response to Syllables as compared to False fonts was different in the Left and the 11 

Right hemispheres as a function of performance in the Beat synchronisation task. As 12 

shown in Table 4 a, neither the main effect of LNK at T1 nor any of the interactions in 13 

which it was involved were significant. In consequence, we focused our post-hoc 14 

analysis in the triple interaction Beat synchronisation T1 by Condition by Hemisphere 15 

(see Table 4 b and left panel of Figure 2). The Tukey HSD comparisons indicated that, 16 

in the Left hemisphere, the slopes for the Syllables and the False fonts were different for 17 

varying levels of performance in the Beat synchronisation such that the negativity for 18 

the Syllables increased as the score in the Beat synchronisation task increased, while 19 

this trend was not present for the False fonts (see Supplementary table 3 for description 20 

of the least square means for the different factors’ levels). On the contrary, in the Right 21 

hemisphere, neither the slope for the Syllables nor the slope for the False fonts changed 22 

significantly with varying levels of the Beat synchronisation task.  23 

Table 4 24 

a. Summary of results of the model with amplitude of the EEG at T2 as DV and 25 

Condition, Hemisphere, Beat synchronisation T1, LNK T1, Age and IQ as predictors 26 

Model characteristics 

   n obs M R
2
 C R

2
   

   17 68 .55 .95   

Random effects 

  SD       

By-subject intercept 3.00       

By-subject slope Condition 2.61       

By-subject slope Hemisphere 2.21       
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Residual 1.44    

Fixed effects 

 
 

SE t p 

Intercept -62.67 14.06 -4.46 <0.001* 

BSynch T1 -.73 1.45 -50 0.62 

Condition
1 -6.20 0.87 -7.12 <0.001* 

Hemisphere
2
 -1.35 0.79 -1.70 0.10 

LNK T1 0.51 0.90 0.57 0.58 

Age 0.97 0.22 4.49 <0.001* 

IQ 1.08 0.32 3.35 <0.01* 

BSynch T1 * Condition -3.51 1.36 -2.58 0.02* 

BSynch T1 * Hemisphere -.53 1.24 -.43 0.67 

Condition * Hemisphere 1.88 0.76 2.48 0.03* 

LNK T1 * Condition -1.37 0.81 -1.69 0.10 

LNK T1 * Hemisphere 0.16 0.74 0.22 0.83 

BSynch T1 * Condition * 

Hemisphere 
2.88 1.19 2.43 0.03* 

LNK T1 * Condition * Hemisphere 2.88 0.71 2.43 0.95 
1
Reference: False fonts; 

2
Reference: Left hemisphere. BSynch = Beat synchronisation; 1 

C R
2
 = Conditional R square; FF = False fonts; M R

2
 = Marginal R square; obs = total 2 

of observations; Syll = Syllables 3 

 4 

b. Tukey HSD post-hoc comparison of the triple interaction Beat synchronisation T1 by 5 

Condition by Hemisphere 6 

Contrast 
 

SE t p 

False fonts - Syllables 

Left Hemisphere 

3.51 1.36 2.58 .02 

Right Hemisphere 

.63 1.36 .46 .64 

 7 

[Insert Figure 2 around here] 8 

 9 

3.3.2. Within-T2 analysis 10 

The procedure for model construction and analysis of the within-T2 data was 11 

identical to the one of the previous section, with the exception that the behavioural 12 

predictors (Beat synchronisation and LNK) were now the ones corresponding to T2. In 13 

this model, the triple interaction Beat synchronisation T2 by Condition by Hemisphere 14 

was again significant. As compared to the longitudinal model, LNK at T2 interacted 15 
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significantly with the Condition factor. A description of all fixed effects results for this 1 

model can be seen in Table 5 a.  2 

We then moved on to explore the significant interactions in the model. 3 

Regarding the triple interaction Beat synchronisation T2 by Condition by Hemisphere 4 

(i.e. the pairwise comparisons of the levels of Condition and Hemisphere as a function 5 

of varying scores in Beat synchronisation T2), the least square means analysis showed 6 

that, as for the longitudinal data, amplitude for the Syllables was more negative for 7 

higher scores at the Beat synchronisation task in the Left hemisphere, while this effect 8 

was absent for the False fonts (see Table 5 b and Figure 3). Nevertheless, this 9 

comparison did not survive the Tukey HSD adjustment for multiplicity (see 10 

Supplementary table 4 in the Appendix for description of the least square means for the 11 

different factors’ levels). As shown in Figure 3, the amplitude for both the Syllables and 12 

the False fonts was more negative with higher performance in the Beat synchronisation 13 

task. Regarding the interaction LNK at T2 by Condition (see Supplementary Figure 3), 14 

the contrast between False fonts and Syllables changed significantly with varying values 15 

of LNK T2 (  = 5.20; SE = 1.13; t = 4.60; p < 0.001), such that the more negative the 16 

amplitude for the Syllables, the better the LNK, while the latter did not modulate 17 

amplitude values for the False fonts (see Supplementary table 5 in the Appendix for 18 

description of the least square means for the different factors’ levels).  19 

[Insert Figure 3 around here] 20 

 21 

Table 5.  22 

a. Summary of results of the model with amplitude of the EEG at T2 as DV and 23 

Condition, Hemisphere, Beat synchronisation T2, LNK T2, Age and IQ as predictors 24 

Model characteristics 

   n obs M R
2
 C R

2
   

   17 68 .58 .93   

Random effects 

  SD       

By-subject intercept 3.19       

By-subject slope Condition 1.95       

By-subject slope Hemisphere 2.04       

Residual 1.61       

Fixed effects 

 
 

SE t p 
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Intercept -58.98 21.57 -2.735 0.01* 

BSynch T2 0.08 0.92 0.08 0.93 

Condition
1 -4.20 0.78 -5.42 <0.001* 

Hemisphere
2 -.49 0.79 -.63 0.54 

LNK T2 -.28 2.02 -.14 0.89 

Age 0.80 0.29 2.73 0.01* 

IQ 1.11 0.38 2.92 0.01* 

BSynch T2 * Condition -1.16 0.65 -1.76 0.09 

BSynch T2 * Hemisphere -.48 0.67 -.71 0.48 

Condition * Hemisphere 0.73 0.83 0.88 0.39 

LNK T2 * Condition -4.87 1.34 -3.63 0.001* 

LNK T2 * Hemisphere -.38 1.37 -.28 0.79 

BSynch T2 * Condition * Hemisphere 1.49 0.71 2.12 0.05* 

LNK T2 * Condition * Hemisphere -.68 1.44 -.47 0.64 
1
Reference: False fonts; 

2
Reference: Left hemisphere. BSynch = Beat synchronisation; 1 

C R
2
 = Conditional R square; FF = False fonts; M R

2
 = Marginal R square; obs = total 2 

of observations; Syll = Syllables 3 

 4 

b. Tukey HSD post-hoc comparison of the triple interaction Beat synchronisation T2 by 5 

Condition by Hemisphere 6 

Contrast 
 

SE t p 

False fonts - Syllables 

Left Hemisphere 

1.15 .66 1.76 .09 

Right Hemisphere 

-.33 .66 .51 .61 

 7 

 8 

3.3.3. Phonology as a mediator of the rhythm-N170 relation 9 

 Regarding T1, the ANOVA comparing the model with and without the 10 

Pseudoword repetition scores revealed that the models were not significantly different, 11 

suggesting that the phonological short-term memory skills of the children did not 12 

mediate in the relation between our behavioural predictors and the amplitude of the 13 

N170 in our sample. The upper part of Table 6 shows the detailed output of the 14 

ANOVA. Furthermore, the model containing the Pseudoword repetition scores did not 15 

capture significantly more variance as compared to the model without them (Model 16 

without Pseudoword repetition: marginal R
2
= .55; conditional R

2
 = .95; Model with 17 

Pseudoword repetition: marginal R
2
= .47; conditional R

2
 = .96).  18 
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At T2, the ANOVA showed again that the model including the Pseudoword 1 

repetition factor was not significantly different of the model that did not include it (see 2 

bottom part of Table 4 for the output of this analysis) and that the marginal variance 3 

captured by the new model was even reduced (Model without Pseudoword repetition: 4 

marginal R
2
= .58; conditional R

2
 = .93; Model with Pseudoword repetition: marginal 5 

R
2
= .44; conditional R

2
 = .96). 6 

 7 

Table 6. Results of the ANOVAs comparing the models with and without the score in 8 

the Pseudoword repetition task at T1 (upper part) and T2 (bottom part)  9 

 
Df AIC BIC LogL Deviance χ

2
 p 

  T1 

Without PWRep T1 17 380.92 418.65 -173.46 346.92     

With PWRep T1 22 384.65 433.48 -170.32 340.65 6.27 0.28 

 
T2 

Without PWRep T2 21 366.11 411.45 -162.06 324.11 
  

With PWRep T2 22 367.82 415.32 -161.91 323.82 0.29 0.59 

LogL = Log likelihood; PWRep = Pseudoword repetition 10 

 11 

4. Discussion 12 

 13 

The aim of this study was to assess the relation between pre-readers’ rhythm 14 

sensitivity and two indexes of reading readiness related to orthographic sensitivity: 15 

LNK and the N170 response to print. Our results show that rhythmic abilities are tightly 16 

related to both indexes, providing further evidence that rhythmic abilities could be a 17 

valid measure to assess reading readiness at very young ages, and therefore to aid in the 18 

detection of children at risk of developing reading difficulties.  19 

Rhythm sensitivity and behavioural orthographic sensitivity (Letter name knowledge) 20 

The performance of the children in the Beat synchronisation and in the Letter 21 

name knowledge (LNK) tasks was tightly related across the two testing times of the 22 

current study, but especially when children were older. At T1, Beat synchronisation and 23 

LNK performance did not correlate, while they did notably in T2. This result goes in 24 
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line with previous proposals suggesting that the development of a unitary construct of 1 

reading predictors could be progressive, such that the relation between predictors is 2 

expected to remain modest at very young ages (four years old, in our case) and increase 3 

with age (e.g. Schatschneider et al., 2004). Moreover, LNK at T1 significantly predicted 4 

Beat synchronisation at T2, while Beat synchronisation at T1 predicted LNK at T2, 5 

although only marginally (R = 0.36; p = 0.06). Overall, this evidence confirms our 6 

hypothesis that rhythmic abilities are not only related to phonological reading predictors 7 

(Lundetræ & Thomson, 2017; Moritz et al., 2013; Carr et al., 2014), but that this 8 

relation extends to more orthographic predictors of future reading skills such as letter 9 

knowledge. Moreover, our longitudinal data complement previous cross-sectional 10 

results showing that rhythm sensitivity predicts letter knowledge in pre-readers 11 

(Ozernov-Palchik et al., 2018).  12 

Rhythm sensitivity and neural reading readiness (N170) 13 

Before addressing the question of the relation between rhythm sensitivity and the N170, 14 

we will discuss why the negative ERP elicited by the linguistic stimuli in our task is a 15 

valid neural measure of print sensitivity in pre-readers. First and most importantly, 16 

syllables elicited a negative ERP response as opposed to control stimuli, in line with 17 

previous studies (Bach et al., 2013; Brem et al., 2013; Lochy et al., 2016; cf. Brem et 18 

al., 2005; Mauer et al., 2006). Second, although the N170 response was different from 19 

the typical adult N170 response since it was delayed (around 200 ms in the present 20 

study vs. the typical 170 ms latency in adults) and prominently bilateral (Bentin et al., 21 

1999; Brem et al., 2005; Maurer et al., 2006; Maurer, Brandeis, et al., 2005), it is in line 22 

with studies that report different topographies and latencies for the same EEG 23 

components in children as compared to adults (Grossi, Coch, Coffey-Corina, Holcomb, 24 

& Neville, 2001; Holcomb, Coffey, & Neville, 1992; Maurer, Brem, et al., 2005; Taylor 25 

& Keenan, 1999). Whereas the absence of a left-hemispheric specialization for print fits 26 

with the idea that left-lateralised responses develop after the acquisition of reading (e.g. 27 

Schlaggar & McCandliss, 2007; see Shaywitz et al., 2004 for a review), our result 28 

contrasts with previous studies in pre-readers that found either a left-lateralised (e.g. 29 

Bach et al., 2013) or a right-lateralised response to print in pre-readers (Maurer, Brem, 30 

et al., 2005). We cannot discard that these inconsistencies might be due to the use of 31 

distinct paradigms across studies. Overall, we believe that our novel passive paradigm 32 

was able to capture N170 responses reflecting pre-reading neural print sensitivity (or 33 
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linguistic awareness for print). In addition, it is noteworthy that this paradigm was 1 

particularly suited for young children since it required no memory load, low visual 2 

perceptual demands (consonant-vowel syllables), and little time to be completed 3 

(approximately four minutes).   4 

One of the main questions of the present study was whether this early neural 5 

marker of orthographic sensitivity could be predicted by rhythm sensitivity even before 6 

children started to be taught formally how to read. We showed that Beat 7 

synchronisation performance measured at four years old was able to predict N170 8 

responses one year later, such that children with better rhythmic abilities at T1 showed a 9 

larger negativity only for syllables and in the left hemisphere at T2. This relation 10 

between rhythmic sensitivity and N170 responses was not only found across phases, but 11 

also within T2, although this result did not survive the post-hoc correction for multiple 12 

comparisons. Overall, our results show that performance on the Beat synchronisation 13 

task might be a good index of future neural sensitivity to orthographic precursors of 14 

reading in pre-readers.  15 

It was interesting to see that LNK knowledge did not predicted N170 responses 16 

one year later (whereas Beat synchronization did). This is at odds with our hypothesis 17 

that both LNK and N170 reflect two measures of one same construct, namely pre-18 

reading orthographic sensitivity. Nevertheless, at T2, LNK explained variance in N170 19 

response to syllables in both hemispheres, beyond the variance explained by Beat 20 

synchronisation. These results are in line with studies showing that stable and consistent 21 

LNK performance is reported no earlier than five years of age (Mason, 1980; McBride-22 

Chang, 1999; Treiman et al., 2008; Worden & Boettcher, 1990). This would support our 23 

result that variance of N170 responses were best captured by LNK later in development 24 

(T2). Interestingly, Beat synchronization predicted N170 responses from T1 on, 25 

possibly because this ability develops very early in life and is relatively well established 26 

at three or four years of age (Drake et al., 2000; Droit-Volet, 1998; Fraisse, Pichot, & 27 

Clairouin, 1969; McAuley, Jones, Holub, Johnston, & Miller, 2006; Pouthas, Droit, 28 

Jacquet, & Wearden, 1990; Provasi & Bobin-Bègue, 2003).  29 

 30 

The mediation of phonology-related skills in the rhythm-orthographic sensitivity 31 

relation 32 
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Our results showed that the relation between rhythmic abilities and our 1 

behavioural and neural measures of pre-reading orthographic sensitivity was not 2 

mediated by the phonological short-term memory skills of the children. In principle, this 3 

result is at odds with recent theories of developmental reading disorders claiming that 4 

the rhythm sensitivity-reading relation should be mediated by phonological abilities 5 

(Goswami, 2011; Lallier et al., 2017; Moritz et al., 2013). Nevertheless, it is in line with 6 

studies showing that the phonological skills of the children might not be able to explain 7 

the relation between rhythm sensitivity and letter knowledge in pre-readers (Ozernov-8 

Palchik et al., 2018), and also with a recent research line suggesting that the 9 

contribution of rhythmic abilities to reading at very early stages might not be mediated 10 

by phonological skills (e.g. Calet et al., 2015; Calet et al., 2019; González-Trujillo et al., 11 

2014; Holliman et al., 2010). Some have suggested that this non-phonological route 12 

could be rooted in the development of written prosody knowledge such as punctuation 13 

marks (Calet et al., 2019). In fact, it is noteworthy that the orthographic lexical accent 14 

(i.e., “tilde”) is an important orthographic prosodic feature of Spanish, one of the 15 

languages known by the children of the present study. Interestingly, the development of 16 

pre-reading written prosody knowledge might rely on the implicit extraction of prosodic 17 

visual rules from “out-of-school” home literacy experiences, whose effect on reading 18 

development was shown to be relatively independent from phonological skills (see 19 

below). However, we can barely speculate on this point at present since our study was 20 

not designed to directly address this issue and no study to date has examined this 21 

question.  22 

In addition, it is important to note that the only phonological measure available 23 

for our analyses was phonological short-term memory, whereas previous studies have 24 

mostly used phoneme awareness. In fact, we tried, but could not analyse the phoneme 25 

awareness data due to floor effects. Interestingly, the fact that children were not able to 26 

complete the phonemic awareness task in pre-reading stages is in line with the idea that 27 

the relation between phonological skills and reading acquisition is reciprocal rather than 28 

unidirectional (Castles & Coltheart, 2004; Stuart & Coltheart, 1988), and goes in line 29 

with proposals suggesting that the development of phonological skills and orthographic 30 

sensitivity might be independent at very early reading stages (Wood, 2004). A follow-31 

up analysis testing the relation between letter knowledge and phonological short-term 32 

memory in our sample showed that these were not related at any of the testing times 33 



28 
 

(T1: n = 41, r = .18; T2: n = 34, r = .25) suggesting that, at pre-reading stages, these 1 

skills might be still rather independent (Wood, 2004). As noted before, children may 2 

develop rudimentary phonological skills from birth through the perception of speech, 3 

whereas early orthographic and print sensitivity would develop through a possibly 4 

independent pathway rooted in inter-individual differences regarding the exposure to 5 

written material in pre-reading stages. Accordingly, Evans, Shaw & Bell (2000) showed 6 

that home activities involving letters with pre-readers predicted their LNK but not their 7 

phonological sensitivity. In addition, Levy, Gong, Hessels, Evans, & Jared (2006) 8 

showed that home literacy experiences did not predict the phonological sensitivity of 4 9 

years-old children. Overall, this could support the proposal that during pre-reading 10 

stages, the contribution of rhythm sensitivity to orthographic sensitivity and to 11 

phonological sensitivity may follow independent developmental pathways.  12 

 13 

Limitations of the present study and future directions 14 

We are aware that the rationale supporting the hypothesis that rhythm sensitivity could 15 

predict orthographic precursors of reading independently of phonological skills is still 16 

weak and needs further theoretical investigation. Since our study was the first testing 17 

the relation between rhythm and both behavioural and brain orthographic sensitivity in 18 

very young children, further research is needed to conclude on the possible mediation of 19 

phonological and non-phonological factors in this relation. Also, we acknowledge that 20 

only one phonological index was available in the present study, limiting our conclusions 21 

on these aspects. Future studies should thrive collecting a large range of phonological 22 

(i.e., phonological awareness, phonological short-term memory, phonological access) as 23 

well as potential non-phonological (e.g., written prosody or home literacy experiences) 24 

measures to characterize further the relationship between rhythm sensitivity and reading 25 

development. Lastly, it is important to note that our sample size was reduced, especially 26 

for the analyses including EEG data. Although we tried to compensate for this using a 27 

robust statistical method such as mixed effects models, further studies with larger 28 

sample sizes are needed to draw more definite conclusions on the results reported here. 29 

 30 

Conclusions 31 



29 
 

Our results show that pre-readers’ rhythmic sensitivity as assessed in a beat 1 

synchronization task could be an early marker of behavioural (LNK) and neurological 2 

(N170 amplitude) orthographic sensitivity in children that have still not received formal 3 

reading instruction. Importantly, these relations were not mediated by the phonological 4 

short-term memory skills of the children. Thanks to its longitudinal design, our study 5 

offers new insights into the power that rhythm sensitivity might have to predict future 6 

brain activity related to reading, specifically the neural sensitivity to print. Due to the 7 

difficulties of testing young children with neuropsychological techniques, discovering 8 

behavioural markers that predict neural activity at later stages of reading development is 9 

of high scientific and clinical interest. Further research confirming the robustness of this 10 

relation could offer a child-friendly way to predict sensitivity to print in children, and 11 

hence increase the probability of detecting children at risk of future reading problems. 12 
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 1 

Appendix 2 

1. Supplementary analysis: Syllable versus False font analysis in the 3 

individual electrodes of interest 4 

The FDR-corrected multiple point-by-point paired t-tests analysis in the window 5 

between -200 ms and 190 ms confirmed that there was no difference between the waves 6 

neither in any time point nor in any of our electrodes of interest (all ps > 0.05). For our 7 

window of interest (from 190 to 325), we found that the waves started being 8 

significantly different at variable time points depending on electrode and hemisphere. In 9 

left posterior electrodes the significant effect between conditions started in a range 10 

between 194 and 204 ms (P3onset: 204 ms; P7 onset: 194 ms; O1 onset: 200 ms; all ps 11 

< 0.05), while in right electrodes it started later, in a range between 218 and 236 ms (P4 12 

onset: 236 ms; P8 onset: 218 ms; O2 onset: 222 ms; all ps < 0.05). Regardless of 13 

electrode, the difference between waves was sustained until the end of our window of 14 

interest (325 ms; all ps < 0.05). Although the effect between conditions was apparently 15 

still present after 325 ms, we deemed that this could reflect a carry-over of the 16 

differences observed in the N170 interval and did not consider for further analysis any 17 

activity occurring after this time point (see main text for full justification). 18 

2. Supplementary results 19 

Due to the longitudinal character of our design and to the high rate of 20 

experimental mortality in studies testing young children, the data used to feed the linear 21 

mixed models including only the EEG was different to the data used to feed the models 22 

including both the EEG and the behavioural tasks. Hence, our models were not directly 23 

comparable in statistical terms. This led us to fit two supplementary models for the EEG 24 

data including only the children that had also completed the behavioural tasks in T1 and 25 

in T2 (n = 17) to obtain statistical support for the fact that adding our behavioural data 26 

increased the model’s captured variance by the original EEG models for T1 and T2, 27 

respectively. Regarding the selection of the fixed effects of the optimal model, we used 28 

maximum likelihood (ML) estimation to fit the models to be able to compare across fits 29 

with identical random effects but different nested fixed effects (Zuur, Ieno, & Elphick, 30 



39 
 

2010). Model selection was then based on visual inspection of the coefficients and of 1 

the Akaike information criterion (AIC), and on the results of a χ
2 

test across models. 2 

 3 

Supplementary Table 1 shows the output of the new EEG-only model for T1 (n 4 

= 17, total observations = 68) for both the fixed and the random effect. Despite the 5 

coefficients change due to the difference in the sample size and the number of 6 

observations, the effects significance was identical to the original EEG model, so they 7 

will not be discussed further. Our interest with this analysis was to obtain statistical 8 

support for the hypothesis that adding our behavioural predictors at T1 improved the 9 

model’s fit, and hence we proceeded to compute an analysis of variance (χ
2 

test) to 10 

compare the models without and with the behavioural predictors at T1. The result of this 11 

analysis confirmed that the models differed significantly (new EEG model: AIC = 12 

359.94, deviance = 333.94; EEG + behavioural model: AIC = 357.25, deviance = 13 

315.25; χ
2
 = 18.69, p = 0.02). As indicated by the AIC values and by the visual 14 

inspection of the coefficients of the two models, the model including the behavioural 15 

data seemed to represent a better fit of the data as compared to the new EEG model. 16 

Supplementary table 1. Output of the EEG model including only the children that also 17 

completed the behavioural tasks at T1 18 

Fixed effects structure Estimate ( ) SE t P 

Intercept -45.88 17.68 -2.60 0.02 

Condition (FF [reference] vs Syllables) -5.80 1.03 -5.63 <0.001* 

Hemisphere (Left [reference] vs. Right) -1.20 0.80 -1.50 0.14 

Age 0.60 0.24 2.47 0.03 

IQ 1.30 0.40 3.28 <0.01 

Condition * Hemisphere 1.51 0.83 1.82 0.09 

     

Random effects’ SD By-subject 

Intercept 

3.32   

 By-subject 

slope for 

3.38   
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Condition 

 By-subject 

slope for 

Hemisphere 

2.17   

 Residual 1.66   

FF = False fonts 1 

We followed the same procedure for the model comparison at T2. The output of 2 

the new EEG model for T2 (n = 17, total observations = 68) can be seen in 3 

Supplementary table 2. Again, the effects significance was identical to the original EEG 4 

model, so they will be not further discussed. The χ
2 

test comparing the models without 5 

and with the behavioural predictors at T2 confirmed that these models also differed 6 

significantly (new EEG model: AIC = 385.93, deviance = 359.93; behavioural + EEG 7 

model: AIC = 376.37, deviance = 334.37; χ
2
 = 25.55, p = 0.001), such that the model 8 

with the behavioural predictors improved the data’s fit. 9 

Supplementary table 2. Output of the EEG model including only the children that also 10 

completed the behavioural tasks at T2 11 

Fixed effects structure Estimate ( ) SE t P 

Intercept -60.07 18.08 -3.32 <0.01 

Condition (FF [reference] vs Syllables) -5.53 1.10 -5.02 <0.001* 

Hemisphere (Left [reference] vs. Right) -0.69 0.78 -0.89 0.38 

Age 0.81 0.25 3.23 <0.01 

IQ 1.12 0.33 3.42 <0.01 

Condition * Hemisphere 0.96 0.88 1.09 0.29 

     

Random effects’ SD By-subject 

Intercept 

3.13   

 By-subject 

slope for 

Condition 

3.75   

 By-subject 1.91   
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slope for 

Hemisphere 

 Residual 1.82   

FF = False fonts 1 

Supplementary table 3. Least square means for the interaction Beat synchronization 2 

T1 by Condition by Hemisphere based on pairwise contrasts between the levels of 3 

Condition (Syllables and False fonts) and Hemisphere (Left and Right) for varying 4 

trends of Beat synchronization T1. Group numbers indicate the group of the slope. 5 

Different slope groups indicate significant differences between the slopes after 6 

multiplicity adjustment (Tukey HSD). 7 

Left hemisphere 

Condition BSynch T1 

trend 

SE Lower CL Upper CL Group 

Syllables -4.24 1.66 -7.72 -0.76 1* 

False fonts -0.73 1.45 -3.76 2.31 2 

Right hemisphere 

Condition BSynch T1 

trend 

SE Lower CL Upper CL Group 

Syllables -1.88 2.14 -6.38 2.61 1 

False fonts -125º 2.12 -5.70 3.20 1 

* Significant difference at alpha = 0.05 8 

BSynch = Beat synchronization 9 

 10 

Supplementary table 4. Least square means for the interaction Beat synchronisation 11 

T2 by Condition by Hemisphere based on pairwise contrasts between the levels of 12 

Condition (Syllables and False fonts) and Hemisphere (Left and Right) for varying 13 

trends of Beat synchronisation T2. Group numbers indicate the group of the slope. 14 

Different slope groups indicate significant differences between the slopes after 15 

multiplicity adjustment (Tukey HSD). 16 

Left hemisphere 
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Condition BSynch T2 

trend 

SE Lower CL Upper CL Group 

Syllables -1.08 0.96 -3.10 0.93 1 

False fonts -0.08 0.93 -1.87 2.02 1 

Right hemisphere 

Condition BSynch T2 

trend 

SE Lower CL Upper CL Group 

Syllables -0.40 1.14 -2.78 1.98 1 

False fonts -0.07 1.05 -2.26 2.13 1 

BSynch = Beat synchronization 1 

 2 

Supplementary table 5. Least square means for the interaction Letter name knowledge 3 

T2 by Condition based on pairwise contrasts between the levels of Condition (Syllables 4 

and False fonts) for varying trends of Letter name knowledge T2. Group numbers 5 

indicate the group of the slope. Different slope groups indicate significant differences 6 

between the slopes after multiplicity adjustment (Tukey HSD) 7 

 8 

Condition LNK T2 

trend 

SE Lower CL Upper CL Group 

Syllables -5.67 2.07 -10.00 -1.34 1* 

False fonts -0.46 2.13 -4.93 4.00 2 

LNK = Letter name knowledge 9 

 10 

 11 


