
Gradu Amaierako Lana/Trabajo Fin de Grado

Fisikako Gradua/Grado en Física

Classical and Quantum Artificial Life

Asier Izquierdo

Director:
Prof. Enrique Solano

Codirector:
Dr. Mikel Sanz

Department of Physical Chemistry
Faculty of Science and Technology

University of the Basque Country UPV/EHU

Leioa, June 2018

Contents

Contents 2

1 Introduction and objectives 4
1.1 Categorization . 5
1.2 Objectives and relevance . 6

2 Classical artificial life 7
2.1 Definition of cellular automata . 7
2.2 Cellular automata example: the game of life . 8
2.3 Implementation of game of life . 8

2.3.1 Code . 8
2.3.2 Results . 8

2.4 Transition from classical to quantum artificial life . 9
2.4.1 Probabilistic picture of measurements . 10
2.4.2 Quantum implementation of GoL rules (without phase difference eiφ) 10
2.4.3 A more quantum-like implementation of GoL rules (with phase difference eiφ) . . . 13

3 Fundamentals of quantum artificial life 14
3.1 Qubits . 14

3.1.1 Bloch representation . 15
3.1.2 Single qubit quantum logic gates . 17

3.2 Controlled-NOT quantum logic gate (ÛCNOT) . 18
3.3 No-cloning theorem . 19

3.3.1 General no-cloning theorem . 19
3.3.2 No-cloning theorem for approximate cloning . 20

4 Quantum artificial life model 21
4.1 Finite lifetime (〈σ̂z〉ρ̂p (t)), time constant genotype (〈σ̂z〉ρ̂g 6= 〈σ̂z〉ρ̂g (t)) and relative trophic

roles (〈σ̂z〉1 ρ̂g Q 〈σ̂z〉2 ρ̂g) . 21
4.2 Reproduction: self-replication . 22

4.2.1 Quantum partial cloning operator Û as self-replication operator 24
4.2.2 Genotype creation . 26
4.2.3 Phenotype creation . 27
4.2.4 Preservation of 〈σ̂z〉 after self-replications . 28

4.3 Phenotype change . 29
4.3.1 Environment . 30
4.3.2 Inter-individual interaction . 31

4.4 Experimental implementation . 32
4.4.1 Experimental implementation of self-replication . 33
4.4.2 Experimental implementation of environment’s decoherence 34

5 Conclusions 35

Bibliography 37

Appendix A Codes 38

2

A.1 Game of life implementation . 38
A.2 Quantum GoL implementation . 41

A.2.1 Quantum GoL without phase eiφ . 41
A.2.2 Quantum GoL with phase eiφ . 41

A.3 Quantum artificial life code . 44

Appendix B Calculations 50
B.1 Why did we choose t ↑, 〈σ̂z〉ρ̂p ↑ ? . 50
B.2 If σ̂z is the observable whose expectation value in the genotype subspace is chosen to be

preserved by Eq. (4.2), and ρ̂A = |0〉 〈0|, why Û = ÛCNOT? 51
B.3 Calculations of ρ̂g1 , Eq. (4.8), and ÛCNOT, Eq. (4.9) . 53
B.4 Calculations of Eq. (4.15-4.17) . 53
B.5 Why is ρ̂A the steady state of our Lindbladian? . 55
B.6 Calculations of ρ̂p0(t), Eq. (4.21) . 57
B.7 Calculations of Eq. (4.22-4.23) . 59
B.8 Proof of Eq. (4.30) . 59
B.9 Proof of Eq. (4.31) . 60
B.10 Calculations of 〈Ĥk〉ρ̂αg⊗ρ̂βg |k=α, Eq. (4.26) . 61

3

1 Introduction and objectives

Mimicking how classical computers are built from electrical circuits, quantum computers (QC) can be
built from quantum circuits [1, p. 17, l. 30-32]. Regarding the former, classical bits are stored on capac-
itors: uncharged (charged) capacitors register the bit 0 (1). Concerning the latter, in contrast to pure
abstraction’s hegemony in classical computation, QCs process information by patent physical means such
as photons, spins or atoms: respectively, superposition of photons (particle of light) in the arms of an
interferometer1; the two different polarizations of a photon or, more broadly, the alignment of the up |↑〉
and down |↓〉 states of a spin-1/2 particle; or the superposition of two atomic energy levels [1, p. 14, l. 16-17].

For instance, digging into the last physical device, the one based on atomic energy levels, an ion in its
ground, or lowest energy, state |g〉 ≡ |0〉 (in one of its excited states |e〉 ≡ |1〉) can be identified with an
uncharged (charged) capacitor [2, p. 1073, l. 8-19]. Here, independent manipulation of each atom or 2-level
subsystem is accomplished by laser beams.

Quantum computation studies this sort of systems. Combining physics, mathematics and computer
science, it is an abstract paradigm for information processing encoded in quantum mechanical variables
that may have plenty of applications (Section 1.2) in technology [1, p. 50, l. 36-37]. It takes its power
from exploiting the following features, which have no classical analog: quantum superposition and
entanglement2.

Superposition consists on the weighted sum of two or more states. It allows more efficiency in terms
of memory (for example, a 2-level state like the aforementioned ions in paragraph 2 can be represented
by a single quantum bit or qubit3, instead of two classical bits) and time (superposition allows following
various computation paths simultaneously, exploiting what is called quantum parallelism).

Superposition classically corresponds, for instance, to the state of the air when two or more music tones
simultaneously sound, to the classical interference of their waves. However, conventional interferences like
playing n music tones at once can only yield classical superpositions of n states.

On the other hand, a quantum superposition of n quantum bits, is defined by means of 2n complex
numbers or amplitudes, so it takes 2n resources in a classical computer. In other words, if we measure
this quantum state, the output will be one of the 2n possible classical bits. For instance, a 2-qubit pure
state |ψ〉 is described by 2(n=2) = 4 linearly independent complex numbers or, equivalently, 2(n=2) = 4 base
states –basis {|0〉 , |1〉}⊗(n=2)–: |ψ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉.

Then, a conventional computers needs more than a million numbers (220, concretely) to describe only
20 qubits. In a QC, however, performing the evolution of a quantum system with n two-dimensional
systems requires only n quantum bits! [2, p. 1074, l. 1] Thus, although a conventional computer can be
programmed (even when inefficient, as seen) to represent a quantum superposition, this is different from
its classical memory actually being in this quantum superposition of qubits.

Moreover, QCs are able to perform classical logic gates –f functions from some fixed number m of input
1See an example on the author’s web page. Links to the author’s web are meant to help make a more global perspective of

the work, but they can be skipped. However, we earnestly recommend reading the work on a computer, so that hyperlinks to
calculations (Appendix B) and bibliographic references can be employed.

2For additional information the reader is referred to entanglement , on the author’s website.
3For more information about the qubit approach, see Section 3.1.

4

https://github.com/asierizqui/TFG/blob/master/Photon%20Quantum%20Computer.%20Example:%20Mach-Zehnder%20interferometer.pdf
https://github.com/asierizqui/TFG/blob/master/Entanglement.pdf

bits to some fixed number n of output bits, f : {0, 1}m → {0, 1}n– as well as quantum ones. Quantum
logic gates are generalizations of classical logic gates. They use qubits in quantum superposition of classical
bits 0 and 1. Since QCs are capable of using both classical and quantum gates, they are at least as efficient
as conventional computers.

If the advantages pointed so far are not sufficient to persuade you, we can sell it better: Moore’s law
is presumably reaching its asymptote and, at microscopic scale, quantum effects become important and
classical computation theory becomes fundamentally inadequate. The (medium-term) future is quantum!

In particular, let us name, as examples, three main classes of quantum algorithms which excel those
belonging to classical computers: algorithms that provide quantum versions of the Fourier transform,
quantum search algorithms and quantum simulations [1, p. 37, l. 4-10] [2, p. 1073, l. 65-68].

Algorithms are precise recipes for performing particular tasks and constitute the key concept of computer
science. The last type described in the previous paragraph entails mimicking quantum mechanical systems,
by engineering Hamiltonians which effectively resemble the dynamics of the system to emulate, beyond
classical limitations [1, p. 39, l. 6-10], which allows us to manipulate rather than merely observe quantum
phenomena. Engineering Hamiltonians means having one system simulate another directly and classical
limitations refer to the use of amounts of resources, computer time and memory space, that grow as
exponential functions with the number of variables (particles, lattice sites, etc.) required to characterize
the system of interest [2, p. 1073, l. 89-95].

In this bachelor thesis, we will develop the idea of Artificial life (AL) – the study of biological phenomena
by means of simulations –, a prototypical branch of the mentioned quantum simulations. It serves as a
source to gain a deeper understanding about the complex systems which characterize living beings or,
with a wider connotation, living systems (cells -either nerve cells, named neurons, or tumor cells-, tissues,
organisms, ecosystems, human societies or financial markets). [4, p. 47]

1.1 Categorization

We will follow a scheme fitting the two categories into which the field of Artificial Life can be split:

Section 2, Classical Artificial Life (CAL): we introduce John Conway’s popular cellular automaton,
Game of Life (GoL), invented in 1970 [4, p. 40], which provides CAL’s most notable example. It consists
of a 2D grid or lattice of square cells that can be in one of two states: populated (alive) or not (dead). Its
evolution is determined by discrete time step interactions with each cell’s Moore neighborhood.

The importance of Conway’s automaton system resides in the fact that simple individual cells’ interac-
tion rules are able to produce patterns of great complexity. It even has the power to create an universal
Turing machine [6, p. 520, Fig. 26.1], a classical computing device capable of efficiently carrying out any
algorithm –in computational space (memory) and time (steps) that scale polynomially with the input
size–, according to the Church-Turing thesis [1, p. 125, l. 10-13] –in its quantitative or strong form [3, p. 2,
Thesis. 1.1]–.

Roughly speaking, some aspects belonging to the field of deterministic chaos could be identified in this
CAL example. Id est, the laws of the system are well known and strict – besides, straightforward, in the case
of GoL– and its evolution depends only on the initial state (deterministic), but the result of iterating these

5

simple steps many times cannot be precisely determined and, despite the lack of randomness, it recalls chaos.
This special coexistence among order and disorder plays a relevant role in understanding some basic features
of quantum systems, such as entanglement2. Due to the extraordinary complexity of these results, presently,
the computer has become our new telescope [4, p. 17-18], even for the relatively simple code in Appendix A.1.

Section 4, Quantum Artificial Life (QAL), constitutes the second part of this work. It is mainly
based on Ref. [7], where the first experimental realization of a QAL algorithm in a QC [7, p. 1, l. 1-2]
was presented. Here, biological behaviors such as self-replication (used as a reproduction mechanism),
mutation, interaction (feeding on predator-prey ecological subsistence relationships), aging and death (finite
lifetime), consistent with the mechanisms of evolution (Darwinian laws of natural selection, such as partial
preservation of the genetic information and survival of better adapted living beings), were mimicked based
on quantum information protocols.

1.2 Objectives and relevance

Along with the goal proposed in Ref. [7, p. 2, l. 15-16] –reproducing the characteristic processes of natural
selection, adapted to the language of quantum computing and, more precisely, quantum simulation–,
intellectually appealing by itself, we also want to emphasize the importance of AL.

For instance, the cohabitation of predators and preys in the just mentioned QAL example could be
replaced in another seemingly different field such as a medical context by cancerous and healthy cells [4,
p. 49]; within an ecological framework, as polluted and clean air; or even the development of inventions
–why do forks have 4 tines?–, since as the paleobiologist Niles Eldredge proposes, both the evolution of the
species and technology have the propagation of some information as a common point [4, p. 129, l. 12-13].

The value of QAL relies upon the fact that experimental implementation of QAL might notably
contribute to understand quantum mechanics and the emergency of life and complex systems. Although
achievable with current QCs [15, p. 1, l. 6-7], constructing QAL experimental setups constitutes a great
challenge per se, and simulating the described QAL model can only be done for a small number of individuals
and generations, for the moment, which limits the results. As Richard Feynman said [4, p. 69, l. 30-31]:
What I cannot create, I do not understand. In this case, both parts of the quote feedback: knowledge and
an unending number of attempts are needed in order to tackle the technological difficulties that await the
realization of experimental implementation of QCs, and, at the same time, empirical results are expected
to shed new light on the foundations of quantum physics.

In fact, this is exactly one of our objectives: processing information quantum mechanically is a utterly
new field for us, so we hope this work signifies a remarkable widening of scope in the applications of
quantum mechanics seen, so far, in our Physics degree.

Morever, we will argue that quantum computing, based on lifeless microscopic matter (atoms, photons,
etc.) that follows the laws of quantum mechanics, is the most appropriate tool to simulate the evolution of
(here, living or biological, AL) systems with complex outputs. To this end, we compare both Classical
(GoL, here) and Quantum Artificial Life systems. That’s where the title of our essay comes from.

We have considered that the most adequate path is making a gradual transition from CAL to QAL. On
top of this, GoL can be seen as a less abstract representation of classical computation, in a parallelism
with QCs, which have a mathematical perspective, but can also be physically built in experimental setups!

6

2 Classical artificial life

Let us begin from the abstract part of CAL, the mathematical definition of cellular automata:

2.1 Definition of cellular automata

A Cellular Automaton (CA) of dimension d ∈ N−{0} is defined mathematically by a 5-tuple (T, L, S,N(x), f)
where [6, p. 136]

• T is the Timeline. In GoL, T = Z is the discrete timeline.

• L is the d -dimensional grid or Lattice. For continuous CA, L = Rd, where Rd denotes the d-
dimensional Euclidean space of column vectors with d real components, or d-dimensional real vector
space. On the other hand, L = Zd for discrete ones. In GoL, L = Z2 is the two-dimensional (d=2)
discrete (L = Zd) grid.

• S is a finite set of States. In GoL, S = {0, 1} = {unpopulated (dead), populated (alive)} is the set of
each cell’s possible states.

• N(x) = {x + n : x,n ∈ Rd} is the Neighborhood of the site x ∈ L, a finite ordered subset of L. In
GoL, d = 2, and
� x = (x, y) ∈ Zd=2.

� n = {−1, 0, 1}d=2. The notation {−1, 0, 1}2 means the set of two-dimensional vectors with each
component either -1, 0 or 1. [1, p. 16, l. 27-28]

� N(x) is the 8-site Moore neighborhood in the Chebyshev or chessboard metric. The points at
a Chebyshev distance of n =(0,0) from the cell -site x = (x, y) are the site x itself. Any other
combination of n = {−1, 0, 1}2 represents one of the 8 Moore neighbors.

• f : S|N | → S is the deterministic local transition rule or function, space- and time-homogeneous. In
GoL, f : S8+1 → S. The domain is S8+1 due to the 9 possible combinations allowed in the Moore
neighborhood: 8 neighbors + the reference cell –n =(0,0)– itself. Every site’s state, which forms the
codomain S, output of the map f , is updated simultaneously according to the following local rule:

C(t+ ∆t,x) =


1 if C(t,x) = 1 ∧

∑
S(t,x) ∈ {2, 3}, x ∈ N(x) (survival)

1 if C(t,x) = 0 ∧
∑
S(t,x) = 3, x ∈ N(x) (reproduction)

0 otherwise (death by underpopulation/overpopulation)
(2.1)

where we define the mapping C(t,x) : T ∧ L→ S as the Configuration or pattern (i.e., the collection of S
states over the whole L grid) of site n = (0, 0) at time or generation t ∈ T . That is, S(t,x)|n=(0,0) = C(t,x).
In GoL, x = (x, y), T = Z, L = Z2 and S = {0, 1}, so, C(t, (x, y)) : (Z3)→ {0, 1}. [6, p. 136]

7

2.2 Cellular automata example: the game of life

Furthering with our GoL example, as mentioned in Section 1.1, interactions occur at discrete time steps.
These are determined by the following simple set of rules, mathematically defined in Eq. (2.1). n ∈ N is
the number of populated nearest (orthogonally adjacent) and next-nearest (diagonally adjacent) neighbors
or, equivalently, the number of populated cells in a determined Moore neighborhood. All births and deaths
must occur synchronously and together make up a single so-called generation [5, p. 2, l. 16-17] [6, p. 73].

• Death: (Eq. (2.1), line 3)

� by overpopulation: populated cells –C(t,x) = 1– with n > 3 –
∑
S(t,x) ∈ [4, 8], x ∈ N(x)–

at time t depopulate at time t+ ∆t: C(t+ ∆t,x) = 0.

� by underpopulation: populated cells –C(t,x) = 1– with n < 2 –
∑
S(t,x) ∈ {0, 1}, x ∈ N(x)–

at time t depopulate at time t+ ∆t: C(t+ ∆t,x) = 0.

• Survival (for the next generation): populated cells –C(t,x) = 1– with n = 2, 3 –
∑
S(t,x) ∈ {2, 3},

x ∈ N(x)– at time t do not change state at time t+ ∆t: C(t+ ∆t,x) = 1. See Eq. (2.1), line 1.

• Reproduction: unpopulated cells –C(t,x) = 0– with n = 3 –
∑
S(t,x) = 3, x ∈ N(x)– at time t

populate at the next move (time t+ ∆t): C(t+ ∆t,x) = 1. See Eq. (2.1), line 2.

Apart from its conspicuous biological analogies, GoL also bears some resemblance to physical laws
through the concept of maximum attainable velocity [5, p. 4, l. 1-2]. Namely, we can define a speed of
light c, or the upper bound on the speed of any pattern, as one cell-step across Moore’s neighborhood per
generation or time step ∆t. Notwithstanding, no pattern is capable of moving, unassisted, one cell every
generation –at least classically. We shall see what occurs when we implement superposition and a relative
phase eiφ in Section 2.4.3–. Objects can only travel at the defined speed of light through trails (stripes of
populated cells) and not if, reminiscent of vacuum (µr = εr = 1), the medium is an empty space formed
by unpopulated cells, contrary to the situation in nature, where in materials (µr, εr > 1) it is always less:
c = 1√

µ ε = 1√
µ0µr ε0εr

< c0 = 1√
µ0 ε0

.

2.3 Implementation of game of life

Now we will materialize GoL, our CAL example, abstractly described so far:

2.3.1 Code

GNU Octave is a convenient environment for deploying GoL, since its universe is a matrix. Details can be
found in Appendix A.1.

2.3.2 Results

Let us introduce some illustrative results obtained by the corresponding GNU Octave code shown in
Appendix A.1:4

4See the corresponding videos on the author’s page: Glider, Tetromino1 and Tetromino2.

8

https://www.gnu.org/software/octave/
https://raw.githubusercontent.com/asierizqui/TFG/master/Glider.mp4
https://raw.githubusercontent.com/asierizqui/TFG/master/Tetromino1.mp4
https://raw.githubusercontent.com/asierizqui/TFG/master/Tetromino2.mp4

Figure 2.1: Glider , created using the classical GoL code in Appendix A.1. The first 15 generations are
displayed. Notice the implementation of periodic boundary conditions (PBCs).

Figure 2.2: The first 6 generations of an example of the so-called Tetromino (shape formed by 4 connected
populated (black) cells) [5, p. 4, l. 9-10], displayed via the classical GoL code in Appendix A.1. As it can
be observed, it becomes an stable pattern or still-life after the 3rd generation.

Figure 2.3: The first 14 generations of another example of a Tetromino [5, p. 4, l. 10-11], displayed using
the classical GoL code in Appendix A.1. After the 9th generation, it becomes 4 isolated period-2 figures or
oscillators known as traffic lights.

Continuing with our gradual transition from CAL to QAL, we will add some quantum mechanical
characteristics to GoL.

2.4 Transition from classical to quantum artificial life

We will give a semi-classical (with no entanglement, locally quantum) version of GoL. We will use the
Schrödinger picture, in which quantum states –the ensemble of cells in the grid, here– evolve in time
according to time-independent operators acting on them. This operators would be, in our case, the GoL
transition rules, which are, as mentioned, time-homogeneous (Section 2.1). Nevertheless, in practice, two
problems arise: some of this operators will not be unitary and, withal, synchronous update of all cells
cannot be carried in current QCs. However, even if experimental implementation is not possible, this
section is valuable for a better comprehension of the following sections of our work.

9

https://raw.githubusercontent.com/asierizqui/TFG/master/Glider.mp4
https://raw.githubusercontent.com/asierizqui/TFG/master/Tetromino1.mp4
https://raw.githubusercontent.com/asierizqui/TFG/master/Tetromino2.mp4

2.4.1 Probabilistic picture of measurements

Continuing with GoL, quantum mechanical features can be implemented, such as the probability of mea-
suring the system in a particular state, Eq. (2.3-2.4). As it is well known, quantum mechanical algorithms
work with this probability distributions over various states, which come into play due to the impossibility
of making definite predictions.

Suppose that we consider GoL a finite quantum mechanical system that can be exactly imitated by a
physical register that at each point in space-time has solely two possible base states: either occupied (alive
or, e.g., spin 1/2 down |↓〉), or unoccupied (dead or, e.g., spin 1/2 up |↑〉) [8, p. 475, l. 27-31]. Then, the
state of each cell can be represented applying the idea of quantum superposition of states: [9, p. 1, Eq. (1)]

|ψ〉 = a |1〉+ b |0〉 , (2.2)

where |1〉 ≡ |alive〉 and |0〉 ≡ |dead〉, subject to the normalization condition |a|2 + |b|2 = 1. a, b ∈ C are the
complex vectorial amplitudes in each state. In the reverse order computational basis {|∓〉z} ≡ {|1〉 , |0〉}

[1, p. 13, l. 23], |ψ〉 = a |1〉+ b |0〉 .=
(
a
b

)
.

Thus, the probability [10, p. 24, Eq. (1.4.4)] of measuring the cell as alive or dead is, respectively,

Pr|ψ〉(|1〉) = | 〈1|ψ〉 |2 .
= |
(
1 0

)(a
b

)
|2 = |

(
a
0

)
|2 =

(
a∗ 0

)(a
0

)
= a∗a = |a|2, (2.3)

Pr|ψ〉(|0〉) = | 〈0|ψ〉 |2 .
= |
(
0 1

)(a
b

)
|2 = |

(
0
b

)
|2 =

(
0 b∗

)(0
b

)
= b∗b = |b|2, (2.4)

where, 〈φ| = |φ〉†, and the Hermitian conjugate (†) is obtained by transposing and complex conjugating
the operator or matrix [1, p. 18, l. 28]). As usual, due to the normalization of the wave function, the total
probability is 1 [11, p. 107, Eq. (3.48)]: Prtot = Pr|ψ〉(|1〉) + Pr|ψ〉(|0〉) = |a|2 + |b|2 = 1, where the last
equality |a|2 + |b|2 = 1 follows from the normalization condition of Eq. (2.2)5.

2.4.2 Quantum implementation of GoL rules (without phase difference eiφ)

We apply the GoL rules by means of linear combinations of the following birth (B̂), death (D̂) and survival
(Ŝ) operators: [9, p. 2, Eq. (3)]

B̂ |ψ〉 = |1〉 , D̂ |ψ〉 = |0〉 , and Ŝ |ψ〉 = |ψ〉 , (2.5)

with, in the {|1〉 , |0〉} basis,

B̂
.
=

1

a+ b

(
1 1
0 0

)
, D̂

.
=

1

a+ b

(
0 0
1 1

)
, Ŝ

.
=

(
1 0
0 1

)
= 1̂2. (2.6)

Hence, B̂ |ψ〉 .= 1
a+b

(
1 1
0 0

)(
a
b

)
= 1

a+b

(
a+ b

0

)
=

(
1
0

)
.
= |1〉, D̂ |ψ〉 .= 1

a+b

(
0 0
1 1

)(
a
b

)
= 1

a+b

(
0

a+ b

)
=(

0
1

)
.
= |0〉, and Ŝ |ψ〉 .=

(
1 0
0 1

)(
a
b

)
=

(
a
b

)
.
= |ψ〉. Thus, Eq. (2.5) is fulfilled.

5See a more complete study, via the density operator (ρ̂) approach, for Eq. (2.3-2.4) on the author’s page.

10

https://github.com/asierizqui/TFG/blob/master/Density%20operator%20approach%20for%20Eq.%20(2.3-2.4).pdf

In addition, the matrix representation of Ŝ is diagonal when |1〉 and |0〉 are used as the base kets. Then,
we can infer that these are the eigenkets6 of Ŝ [10, p. 22, l. 3-5 & p. 36, l. 5-7]. These two eigenfunctions
share the same eigenvalue (S = 1, degeneration g = 2), so any linear combination of them (|ψ〉 defined in
Eq. (2.2), for instance) is itself an eigenfunction, with the same eigenvalue (obvious from Ŝ |ψ〉 = 1 |ψ〉,
Eq. (2.5)). [11, p. 102, l. 6-8]

B̂ and D̂ are not unitary since their Hermitian conjugate (†) is not equal to their inverse –respectively,
B̂† 6= B̂−1 and D̂† 6= D̂−1–, or, equivalently, [10, p. 36, Eq. (1.5.2)]

B̂B̂†
.
=

1

a+ b

(
1 1
0 0

)
1

a∗ + b∗

(
1 1
0 0

)T
=

1

|a+ b|2

(
1 1
0 0

)(
1 0
1 0

)
=

1

|a+ b|2

(
2 0
0 0

)
6= 1̂2, (2.7)

D̂D̂†
.
=

1

a+ b

(
0 0
1 1

)
1

a∗ + b∗

(
0 0
1 1

)T
=

1

|a+ b|2

(
0 0
1 1

)(
0 1
0 1

)
=

1

|a+ b|2

(
0 0
0 2

)
6= 1̂2. (2.8)

A quantum gate (or, more generally, quantum evolution operator) is said to be feasible if its matrix
representation is unitary (Û Û † = Û †Û = 1, or, equivalently, Û † = Û−1), so that probability, defined in the
same manner as Eq. (2.3-2.4), is conserved,

Pr|ψ〉(|φ〉) =
| 〈φ|ψ〉 |2

〈φ|φ〉 〈ψ|ψ〉
=

| 〈φ|Û †Û |ψ〉 |2

〈φ|Û †Û |φ〉 〈ψ|Û †Û |ψ〉
= PrÛ |ψ〉(Û |φ〉). (2.9)

Then, from Eq. (2.7-2.8), B̂ and D̂ cannot be empirically implemented in a QC, at least if some accuracy
is wanted.

Besides unitary, quantum logic gates must be reversible, with the exception of measurement ones,
but GoL is not: information is lost, input (original state at a certain time t) cannot be fully deduced
from output (state at time t+ ∆t). Nevertheless, not as non-unitarity of B̂ and D̂, irreversibility can be
overcome keeping spare qubits (second lines of Fig. 2.4) in order to divert information that helps recover
the input from the output and otherwise would be lost.

Figure 2.4: Realizing B̂ (blue squares) and D̂ (red squares), Eq. (2.6), reversibly; that is, in a way that,
thanks to the spare qubit |ψ〉, the output can be fully inferred from the input.

Obviously, Ŝ is unitary [10, p. 36, Eq. (1.5.2)], Ŝ = 1̂2 = Ŝ−1 = Ŝ†, so ŜŜ† = Ŝ†Ŝ = 1̂2. Furthermore,
Ŝ is a Hermitian operator (Ŝ = Ŝ† ≡ (Ŝ∗)T) [10, p. 15, Eq. (1.2.25)], so its eigenvalues (S = 1, as we have
already seen) are real [11, p. 101, Theo. 1] (S ∈ R). Notice that, since they do not represent observables or
measurable quantities, they are just used to apply the GoL rules, the birth (B̂), death (D̂) and survival
(Ŝ) operators are not required to be Hermitian [11, p. 97, Eq. (3.18)], which, as just said, would ensure the

6In the 3-dimensional real vector space R3, eigenvectors can be seen as vectors that are transformed into scalar multiples
of themselves by the θ angle rotation about some axis, applied by an operator Û(θ). Exempli gratia, vectors that lie along the
rotation axis do not change at all (Û(θ) |ψ〉 = |ψ〉, eigenvalue= 1), and, for θ = π, if they lie in the equatorial plane of the
rotation axis, Û(π) |ψ〉 = −1 |ψ〉 (eigenvalue= −1).

11

reality of their eigenvalues. But, as we have also exposed, probability conservation in Eq. (2.9), cannot be
ensured because of non-unitarity.

As mentioned, we apply the rules of GoL through linear combinations of the birth (B̂), death (D̂) and
survival (Ŝ) operators defined in Eq. (2.6). These linear combinations –which will also be operators, and we
will call them Ĝ, from Generation– depend on the value of the sum of the a coefficients in the |ψ〉 (Eq. (2.2))
states corresponding to each of the 8 Moore neighbors. If we define this sum as aMoore ≡ aM ≡

∑8
i=1 ai,

[9, p. 2, Eq. (7)]

Ĝ ∝



D̂ if 0 ≤ aM ≤ 1,
C1 (2− aM)D̂ + (aM − 1)Ŝ if 1 < aM ≤ 2,
C2 (3− aM)Ŝ + (aM − 2)B̂ if 2 < aM ≤ 3,
C3 (4− aM)B̂ + (aM − 3)D̂ if 3 < aM ≤ 4,
D̂ if aM > 4.

(2.10)

If Ci = 1, i = 1, 2, 3, we would have continuity of Ĝ on the boundaries. For aM = 1, 2, 3, 4, respectively,

Ĝ(aM− = 1) = D̂ = Ĝ(aM+ = 1) = (2− 1)D̂ + (1− 1)Ŝ = D̂ ,

Ĝ(aM− = 2) = (2− 2)D̂ + (2− 1)Ŝ = Ŝ = Ĝ(aM+ = 2) = (3− 2)Ŝ + (2− 2)B̂ = Ŝ,

Ĝ(aM− = 3) = (3− 3)Ŝ + (3− 2)B̂ = B̂ = Ĝ(aM+ = 3) = (4− 3)B̂ + (3− 3)D̂ = B̂ , and

Ĝ(aM− = 4) = (4− 4)Ŝ + (4− 3)D̂ = D̂ = Ĝ(aM+ = 4) = D̂.

Nevertheless, we want a more logical behavior in the middle of each range in Eq. (2.10). That is, for
aM = 1√

2
+ x : x ∈ [1, 3], we want the contribution of both summands to be the same, 1√

2
. Then, e.g., if

aM = 1 + 1√
2
,

1√
2

(D̂ + Ŝ) = C1

(
2− (1 +

1√
2

)

)
D̂ +

(
(1 +

1√
2

)− 1

)
Ŝ = C1

√
2− 1√

2
D̂ +

1√
2
Ŝ

↔ 1√
2
D̂ = C1

√
2− 1√

2
D̂ ↔ C1 =

1√
2− 1

=
1

(
√

2− 1)

√
2 + 1

(
√

2 + 1)
=

√
2 + 1

(
√

2)2 − 12
=
√

2 + 1.

(2.11)

We would obtain the same for aM = 2 + 1√
2
and aM = 3 + 1√

2
. Thus, Ci =

√
2 + 1. On the other hand,

for aM ∈ N, Ĝ is equal to B̂, D̂ or Ŝ (solely one out of these three operators, not a linear combination of
two of them, as in Eq. (2.10)). Then, the rules of the classical GoL are recovered!

In the new generation or time step, the state of the cell is

|ψ′〉 = Ĝ |ψ〉 .= Ĝ

(
a
b

)
=

(
a′

b′

)
.
= a′ |1〉+ b′ |0〉 , (2.12)

in the {|1〉 , |0〉} basis, where the new state |ψ′〉 requires renormalization so that |a′|2 + |b′|2 = 1. That is,
after applying B̂, D̂, Ŝ, or some mixture of them, the probabilities of being dead or alive must still sum up
to unity. Because of this renormalization, overall factors in Eq. (2.10) have no effect [9, p. 3, Eq. (10)], but

12

relative constants, of course, would matter.

Without phase difference eiφ, we should obtain the same results as in Section 2.3.2. See the code
belonging to this section in Appendix A.2.1.

2.4.3 A more quantum-like implementation of GoL rules (with phase difference eiφ)

We can additionally introduce a phase difference eiφ, φ ∈ R, with the aim of achieving a different behavior
from the classical GoL and allow interference –the reinforcement or cancellation between states of different
relative phases–, which is a fundamental quantum property, along with the uncertainty or probabilistic
picture introduced in Section 2.4.1. The phase has no classical counterpart and it comes about in quantum
mechanics, because amplitudes are complex numbers [12, p. 2, l. 64-67].

Similar to the consequences of renormalizing Eq. (2.12), while relative phase constants (in a superpo-
sition) are important, the global phase factor of the wave function is physically irrelevant; in this case,
however, because it cancels out whenever we measure a quantity [11, p. 39, l. 14-16] [1, p. 15, Eq. (1.3) &
p. 93, l. 10-17], rather than by renormalization. In other words, the overall phase of a quantum state is not
measurable, has no quantum physical significance: |ψ〉 is the same as eiφ |ψ〉, both yield the same density
matrix ρ̂.

Now, instead of Eq. (2.5), we have [9, p. 3]

B̂ |ψ〉 =
a+ beiφ√
|a+ beiφ|2

|1〉 , D̂ |ψ〉 =
aeiφ + b√
|aeiφ + b|2

|0〉 , Ŝ |ψ〉 = |ψ〉 , (2.13)

where

• |a + beiφ|2 = (a + beiφ)(a∗ + b∗e−iφ) = |a|2 + ab∗e−iφ + a∗beiφ + |b|2 = |a|2 + |b|2 + 2Re(a∗beiφ) =
|a|2 + |b|2 + 2Re(a∗b) cosφ.

• |aeiφ + b|2 = (aeiφ + b)(a∗e−iφ + b∗) = |a|2 + ab∗eiφ + a∗be−iφ + |b|2 = |a|2 + |b|2 + 2Re(ab∗eiφ) =
|a|2 + |b|2 + 2Re(ab∗) cosφ.

Therefore, Eq. (2.13) becomes

B̂ |ψ〉 =
a+ beiφ√

|a|2 + |b|2 + 2Re(a∗b) cosφ
|1〉 , D̂ |ψ〉 =

aeiφ + b√
|a|2 + |b|2 + 2Re(ab∗) cosφ

|0〉 , Ŝ |ψ〉 = |ψ〉 . (2.14)

In addition to that, instead of aM ≡
∑8

i=1 ai, we will use aM ≡
∑8

i=1 ai e
iφ [9, p. 3, Eq. (12)]. We

will multiply |0〉 or |1〉 by the same phase (eiφ) which appears in aM (the sum of the a coefficients of the
surrounding nearest 8 cells), but just if the state has changed (|0〉 ↔ |1〉) in the last time step; in other
words, if the current cell is alive (dead) and in the previous generation was dead (alive): B̂ |1〉 = |1〉,
B̂ |0〉 = eiφ |1〉, D̂ |1〉 = eiφ |0〉, D̂ |0〉 = |0〉 and Ŝ |ψ〉 = |ψ〉.

Equation (2.10) is applied in the same way as before, substituting aM with |aM |. Nonetheless, now, the
phase (eiφ) in aM ≡

∑8
i=1 ai e

iφ allows for interference effects! For instance, a cell with ai = e±i(φ=π) = −1

still has a unit probability of being measured in the live state (Pr.|ψ〉(|1〉)
(2.3)
= |ai|2 = | − 1|2 = 1), but its

effect on the aM sum will cancel (destructive interference) that of a cell with ai = ei(φ=0) = 1. See the
associated code in Appendix A.2.2.

13

3 Fundamentals of quantum artificial life

Before describing our QAL model, we will briefly introduce some basic concepts that shall be referenced
later.

3.1 Qubits

Qubits (or quantum bits [1, p. 4, l. 2]) constitute the minimal representative of a quantum mechanical system
[1, p. 80, l. 30-31]. They are 2-level quantum systems (2LS) ∈ H2 ⊂ C2, where H2 is the 2-dimensional
Hilbert subspace [1, p. 43, l. 11-12], a complex vector space over the complex numbers C2, with inner
product defined.

Then, since C2, a qubit takes two real numbers –θ and ϕ in Eq. (3.2)– to fully describe it. Precisely,
they can represent a 0 or 1 state, as classical bits, but also a linear combination of both, which is the
property mentioned in Section 1, known as quantum superposition. More generally, they are named qutrits
for C3 and qudits for Cd. They are usually described in the {|±〉z} ≡ {|0〉 , |1〉} basis, called computational
basis (or standard basis or Z basis, which is the basis that diagonalizes σ̂z), as the following vectors: [1,
p. xxix, l. 20-21]

|0〉 .=
(

1
0

)
and |1〉 .=

(
0
1

)
. (3.1)

Defining basis kets (or measurement directions, in a more quantum physical terminology) is a tool
borrowed from linear algebra. Once the basis is chosen, any other vector can be constructed from a linear
combination of these basis kets or vectors. Another basis examples are the superposition basis or X basis
(because it diagonalizes σ̂x) {|±〉x ≡ |±〉 ≡

1√
2
(|0〉 ± |1〉)}, and the Y basis (because it is formed by the

eigenkets of σ̂y) {|±〉y ≡
1√
2
(|0〉 ± i |1〉)} [10, p. 9, Eq. (1.1.14)].

Nevertheless, quantum computing spans beyond linear algebra: qubits are not to be thought just
abstractly, they are decidedly real! As mentioned in Section 1, they can be realized in diverse physical
apparatus (1/2-spins, photons, ions, etc.).

Qubits or quantum registers can be modified by operations or gates described by unitary operators
Û , being unitarity the only constraint imposed upon valid quantum logic gates [1, p. 18, l. 30][19, p. 76,
l. 19-20]. As a matter of fact, unitarity is the requirement that the norm of the vectors (single qubits) in
the Bloch sphere be preserved –i.e., unitary matrices leave the length of a complex vector unchanged [18,
l. 4]– and then probability is conserved, Eq. (2.9) [1, p. 21, l. 12].

These quantum logic gates are described by 2n × 2n unitary matrices, where n is the number of qubits
they act on [1, p. 18, l. 22]. Since unitary matrices are square (ÛT = Û), logic gates (Û .

=
∑

i |in(i)〉 〈out(i)|)
can only have the same number of inputs (rows, |in〉) as outputs (columns, 〈out|). Quantum gates are also
local, that is, they act on a restricted number of qubits [3, p. 6, l. 11-12] [19, p. 88, l. 1].

On top of this, because of the fact that the inverse of a unitary matrix is also a unitary matrix, unitary
matrices –unitary quantum gates, here– are always invertible [18, l. 10]. That is, a quantum gate Û
can always be inverted by another quantum gate Û−1 [1, p. 21, l. 21-23]. In this sense, as mentioned in
Fig. 2.4, quantum logic gates are reversible because, given the output, the input is uniquely determined
and can be recovered, no information is ever erased during the computation. Hence, we can say gates

14

follow the laws of physics, since they are reversible [3, p. 8, l. 5-6], with the possible exception of quan-
tum measurements that collapse the wave function to the eigenket of the output observable [1, p. 157, l. 1-2].

To sum up, qubits serve as information registers and, on the other hand, logic gates represented by Û
unitary operators process information and, for instance, make up the time-evolution operator Û(t, t0) [10,
p. 67, Eq. (2.1.5)] present in the Schrödinger equation.

A priori, akin to conventional computation, any general n-qubit unitary transformation operation Û
could be constructed as a product of several elements of a universal set of gates. The universal set of
quantum logic gates is formed by the CNOT gate between two qubits (3.2) and 1-qubit rotations (2 bit
transformations) [1, p. 22, l. 5-6] [3, p. 6, l. 25-27]. The latter can be implemented by relatively simple
physical systems [3, p. 6, l. 17]. Nevertheless, in practice, limitations arise by the errors originated from
the fact that qubits and gates are said to be an approximation (closed or totally isolated systems) of open
quantum systems (Section 4.3.1, paragraph 1).

3.1.1 Bloch representation

The state of the quantum system is a point represented by a unit-length (if normalized) vector in the
mentioned d = 2n-dimensional (this is, with 2n basis kets, for n qubits) complex vector space with inner
product defined, known as Hilbert space H ⊂ Cd [3, p. 5, l. 29-30]. Quantum logic gates produce rotations
of these vectors and, measurements, probabilistic projections to the chosen basis.

A simpler geometrical picture useful in thinking about single qubits is the so-called Bloch sphere
representation, a one-to-one correspondence or bijection between pure [mixed] one-qubit states (C3) and
the points on the surface of [inside] a unit sphere (R3) [1, p. 15]. If we suppose that the Bloch sphere
represents a s = 1/2 spin system (or any other 2-state or 2-level quantum system, 2LS), the spin-up state
|↑〉 may represent the |0〉 bit, and, the spin-down state |↓〉, the |1〉 bit. It is a form of representing complex
vectors in a viewable way, Fig. 3.1, but, due to this simplification, misleading interpretations could come
up. For instance, |0〉 and |1〉 might seem antiparallel, whereas they are orthogonal, 〈0|1〉 = 0.

|ψ〉

|+〉x

|+〉y

|+〉z ≡ |0〉

|−〉z ≡ |1〉

ϕ

θ

Figure 3.1: Bloch sphere representation of the qubit |ψ〉, Eq. (3.2), as a function of the angles θ and ϕ.

Any point or state7 |ψ〉 on the Bloch sphere can be defined via the polar, θ, and azimuth, ϕ, angles,
7See the proof for Eq. (3.2) on the author’s page.

15

https://github.com/asierizqui/TFG/blob/master/Proof%20of%20Bloch%20sphere%20representation%2C%20Eq.%201.pdf

[1, p. 15, Eq. (1.4)]

|σ̂ · r̂;±〉 ≡ |ψ(θ, ϕ)〉 = cos(θ/2) |0〉+ sin(θ/2)eiϕ |1〉 .=
(

cos(θ/2)
sin(θ/2)eiϕ

)
, (3.2)

where ϕ ∈ [0, 2π) and θ ∈ [0, π].

• For instance, for ϕ = 0 and θ =

{
0
π

}
we obtain [1, p. xxix, l. 24]

|σ̂z;±〉 ≡ |±〉z ≡ |ψ(

{
0
π

}
, 0)〉 (3.2)

= cos

({
0
π

}
/2

)
|0〉+ sin

({
0
π

}
/2

)
ei0 |1〉

=

{
1
0

}
|0〉+

{
0
1

}
|1〉 =

{
|0〉
|1〉

}
,

(3.3)

which clearly agrees the computational basis {|±〉z} ≡ {|0〉 , |1〉} from Fig. 3.1!

• Another useful example corresponds to θ = π/2 and ϕ =

{
0
π

}
. Taking into account Eq. (3.2),

|σ̂x;±〉 ≡ |±〉x ≡ |ψ(π/2,

{
0
π

}
)〉 (3.2)

= cos((π/2)/2) |0〉+ sin((π/2)/2)e
i

0
π


|1〉 =

|0〉 ± |1〉√
2

≡ |±〉 , (3.4)

which form the mentioned {|±〉x ≡ |±〉} or X basis, whose base kets are the eigenvectors of σ̂x. These
states, as {|±〉y} in the following paragraph, lie in the equator of the Bloch sphere.

• Finally, the base states of the {|±〉y} or Y basis are

|σ̂y;±〉 ≡ |±〉y ≡ |ψ(π/2,

{
π/2
3π/2

}
)〉 (3.2)

= cos(π/4) |0〉+ sin(π/4)e
i

 π/2
3π/2


|1〉 =

|0〉 ± i |1〉√
2

≡ |±〉y . (3.5)

Besides, in the same depiction, an arbitrary density operator ρ̂ for a mixed state8 can be written as

ρ̂ =
1

2
(1̂2 + ~r · ~σ), (3.6)

where ~r = 〈σ̂i〉ρ̂ ~ni is a real three-dimensional vector known as the Bloch vector [16, p. L222, l. 31-32] or
Polarization vector, and ~ni is the unit vector x̂, ŷ, ẑ for i = 1, 2, 3, respectively. Then, given an arbitrary
single qubit, calculating ~r = (〈σ̂x〉ρ̂ , 〈σ̂y〉ρ̂ , 〈σ̂z〉ρ̂) is an easy way of locating it on a point of Fig. 3.1.
Moreover, 0 ≤ |~r| ≤ 1, where the right-hand equality holds for a pure ensemble [1, p. 195, Eq. (2.175)].
Instead, for the left-hand equality ~r = 0, the state is maximally disordered or mixed, ρ̂ = 1̂d

d , for dimension
d = 21 here, because it is a single qubit (n = 1), and lies in the center of the Bloch sphere, in analogy to
maximally unpolarized light in the Poincaré sphere.

8See the proof for Eq. (3.6) on the author’s page.

16

https://github.com/asierizqui/TFG/blob/master/Proof%20of%20Bloch%20sphere%20representation%2C%20Eq.%202.pdf

3.1.2 Single qubit quantum logic gates

In addition, as mentioned (Section 3.1.1, line 3), single qubit gates correspond to rotations (and reflections)
of the Bloch sphere represented in Fig. 3.1. For instance, the action of the Hadamard gate we will later use
in Eq. (4.31),

ÛHad
.
=

1

2

(
1 1
1 −1

)
, (3.7)

can be thought of as a π rotation around the 1√
2
(~x+ ~z) axis, which exchanges ~x and ~z: [1, p. 19, l. 11-14].

Figure 3.2: Hadamard gate acting on the input |0〉 to yield (|0〉+ |1〉)/
√

2, in the Bloch sphere representation.

Even if experimentally we can only physically perform measurements in the OZ axis of the Bloch
sphere –i.e., we can only measure in the the computational basis {|±〉z} ≡ {|0〉 , |1〉}–, we can use ÛHad to
measure as if we could directly access other directions.

For instance, if we apply ÛHad before measuring, what previously pointed along OX –|±〉x, Eq. (3.4)–,
now points along OZ –|±〉z, Eq. (3.3)– and vice versa: M̂x ≡ ÛHad M̂z, where M̂i denotes measurement in
the ~i direction. This OX measuring direction is adequate, for example, to distinguish if the ouput qubit is
either |+〉x or |−〉x. This is because, taking into account Eq. (3.4), they are indistinguishable if measured
in the computational basis, since we would obtain the classical bits 0 or 1 with %50 probability for both
|+〉x or |−〉x.

But how can we experimentally deploy quantum logic gates? We will briefly explain it for the case of
single qubit rotations9 and CNOT gates, which comprise the mentioned universal set of quantum gates.

First, a multiqubit state like |ψ〉 = |0〉⊗n = |000...〉 has to be manufactured. This can be accomplished,
in an atomic physics experimental setup, for instance, putting the spins in a strong magnetic field ~B which
rises all of them to the spin-up state |0〉 ≡ |↑〉 in Fig. 3.1.

Then, the spins can be modified illuminating them with radiation that connects the upper state |0〉 ≡ |↑〉
with the lower state |1〉 ≡ |↓〉 [17, p. 4602, l. 43-52]. In other words, the oscillatory nature of this radiation
induces a cyclic behavior between |1〉 and |0〉 known as Rabi oscillation.

If the pulse illuminates a qubit for t = T/2, where T is the Rabi oscillation period, a π tip is performed:
for example, applying the radiation to the 2nd qubit, |000...〉 → |010...〉. On the other hand, for t = T/4 (a

9An additional example has already been given in footnote 1, for the particular case of the just introduced Hadamard
single qubit rotation ÛHad. Now we give an explanation for general one-qubit rotations, using a setup based on 1/2-spins
rather than photon interferometry.

17

π/2 spin rotation) it evolves as |000...〉 → 1√
2
(|000...〉+ |010...〉) [17, p. 4603, Eq. (2)].

In conjuction with 1-qubit gates, ÛCNOT an be implemented engineering an interaction Hamiltonian
Ĥint = s~σ̂izσ̂

j
z (s = 1/2, here) which couples the control i and target j qubits and is turned on momentarily

when the CNOT gate needs to act. Some experimental constraints can arise: e.g., IBM’s quantum computer
solely allows the CNOT act in the i > j direction10, where (i, j) =(ctrl, target) and |〉n−1 ... |〉2 |〉1 |〉0 in
IBM’s notation11, for n ∈ N− {0} qubits. This can be verified using its editor.

Let us give a summarized explanation of the action of the latter quantum logic gate:

3.2 Controlled-NOT quantum logic gate (ÛCNOT)

The controlled -NOT or CNOT gate (ÛCNOT ≡ ÛCσ̂x) is the quintessential multi-qubit quantum logic gate.
It is an example of a gate that performs the conditional logic (meaning the state of one qubit depends on
the state of another) needed to make use of those the configurations (such as entanglement) that only arise
in the quantum world, giving QCs features unseen on conventional computers.

It has two input qubits: the control qubit and the target [1, p. 20, l. 28-29]. The target qubit is flipped
if the control qubit is 1. In other words, it performs a classical XOR (exclusive or) operation of both input
qubits and stores the result in the output target qubit: if, for instance, we take the qubit on the left as the
control, ÛCNOT |x, y〉 = |x, x⊕ y〉, where ⊕ is addition modulo 2 [1, p. 22, Eq. (1.18)]. Thus, apart from
a two-qubit entangling gate, it can also be considered a non-perturbing measurement gate, in the sense
that, if the target qubit is 0, it performs a perfectly accurate measurement of the control qubit [19, p. 75,
l. 12-14]. In the {|0〉 , |1〉} ⊗ {|0〉 , |1〉} = {|00〉 , |01〉 , |10〉 , |11〉} basis,

ÛCNOT |00〉 .=
(

1̂2
σ̂x

)[(
1
0

)
⊗
(

1
0

)]
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
0
0
0

 =


1
0
0
0

 .
= |00〉 , (3.8)

and, in the same manner, ÛCNOT |01〉 = |01〉 , ÛCNOT |10〉 = |11〉 and ÛCNOT |11〉 = |10〉.

Figure 3.3: Schematic representation of CNOT gate. The control qubit is indicated by the line with the
black dot. ⊕ in the target qubit (second line) means addition modulo 2 and x, y ∈ {0, 1}.

10See the paragraph previous to Eq. (4.31).
11See Eq. (4.29) for the n = 4 case.

18

https://quantumexperience.ng.bluemix.net/qx/editor

3.3 No-cloning theorem

The no-cloning theorem is a no-go theorem that asserts that there are no physical means by which quantum
information encoded in an arbitrary unknown pure quantum state can be copied (3.3.1), if it belongs to a
nonorthogonal set (3.3.2).

It arouse in year 1982, as the most relevant drawback that the quantum nature of information entails.
It is remarkably curious that, given the relevance and simplicity of the no-cloning theorem, it was not
discovered sooner.

3.3.1 General no-cloning theorem

The no-cloning theorem states that there is no unitary (Û Û † = Û †Û = 1̂, or Û † = Û−1) transformation Û
that can perform |Ψ0〉 → |ΨΨ〉 for ∀ |Ψ〉 [20, p. 39, l. 28-31]. This theorem is an immediate consequence
of quantum physics limitation to linearity [7, p. 1, l. 33].

It turns out that the linear behavior is a general property of quantum mechanics. For instance, time-
dependent Schrödinger equation, which describes the evolution of unitary operators Û(t, t0) (= e

i
~ Ĥ(t−t0)

if Ĥ is t independent), is linear [1, p. 429, footnote 12]. Otherwise, furthering with this instance,
we could not write |Ψ〉 quantum states as linear combinations of |n〉 eigenkets of the Ĥ Hamiltonian,
|Ψ(t, t0)〉 =

∑
n Û(t, t0) |n〉, in order to describe their t evolution. Similarly, our cloning device must act

linearly, and its effect is the following: [20, p. 39, Eq. (2.8)]

Û |ψ0〉 = Û |ψψ〉 = Û |ψ〉⊗2 and Û |φ0〉 = Û |φφ〉 = Û |φ〉⊗2 , (3.9)

where |0〉 is the state of the blank qubit used as a register. Taking into account the mentioned linearity,

Û(a |ψ〉+ b |φ〉) |0〉 (lin.)
= aÛ |ψ0〉+ bÛ |φ0〉 (3.9)

= a |ψψ〉+ b |φφ〉 , (3.10)

or, which should be equivalent, taking the whole linear combination of |ψ〉 and |φ〉 as the arbitrary input,
[11, p. 429, Eq. (12.17)]

Û(a |ψ〉+ b |φ〉) |0〉 (3.9)
= (a |ψ〉+ b |φ〉)(a |ψ〉+ b |φ〉) = a2 |ψψ〉+ ab [|ψφ〉+ |φψ〉] + b2 |φφ〉 . (3.11)

Thus, (3.10)=(3.11) ↔ (a, b) = (0,±1) or (a, b) = (±1, 0). That is, if and only if, the input is either
± |φ〉 (if a = 0) or ± |ψ〉 (if b = 0), but no a linear combination of them. Notice that, if they are not
summands of a linear combination, following Section 2.4.3, paragraph 2, ± |ψ〉 = |ψ〉 and ± |φ〉 = |φ〉, since
±1 = eiφ, where, respectively, φ = 0, π ∈ R.

With the aim of illustrating why quantum superpositions like a |ψ〉+ b |φ〉 cannot be cloned by using a
real quantum gate, we may choose the just introduced CNOT gate, Û = ÛCNOT = (3.8). Let us consider
the task of duplicating a qubit in the particular unknown state (a |0〉+ b |1〉). That is, the input state of
Eq. (3.10-3.11), but in the particular case |ψ〉 = |0〉 and |φ〉 = |1〉.

If the target qubit is blank, |0〉, the control qubit can be seemed as cloned into there after applying
the CNOT gate: ÛCNOT |x0〉 = |xx〉, x ∈ {0, 1}. In our example, the input (a |0〉 + b |1〉) contains the
control qubits, and the target is |0〉. Then applying linearly the CNOT gate, ÛCNOT(a |0〉+ b |1〉) |0〉 =
a ÛCNOT |00〉+ b ÛCNOT |10〉 = a |00〉+ b |11〉; i.e., the superposition (a |0〉+ b |1〉) is transformed into the
unnormalized entangled state a |00〉+ b |11〉. On the other had, even if we do not exploit the linearity of
the cloning operator in Eq. (3.9), we should produce the same result as the CNOT, Û(a |0〉+ b |1〉) |0〉 =

19

(a |0〉+ b |1〉)(a |0〉+ b |1〉) = a |00〉+ ab |01〉+ ab |10〉+ b2 |11〉 and we see once again that Û (here, ÛCNOT,
when linearity is applied) does not copy the unknown input quantum state unless (a, b) = (0,±1) or
(a, b) = (±1, 0) [1, p. 24, l. 8-19].

3.3.2 No-cloning theorem for approximate cloning

We will prove that even if we suppose that constraints related to linearity can be roughly overcome
(approximate cloning), it is not possible duplicating nonorthogonal states [20, p. 40, l. 6-7]. Let us suppose
that an unitary operation Û clones approximately both |ψ〉 and |φ〉:

Û(|ψ0〉) ≈ |ψψ〉 and Û(|φ0〉) ≈ |φφ〉 . (3.12)

Let us now introduce the relation between unitary operations Û and inner products (. , .). First, we will
define the latter. They are (. , .) : H×H → C maps, where H is the Hilbert space, the aforementioned
vector space over C (complex vector space) equipped with inner product [1, p. 80, l. 15-16]. Id est, the
inner product is the dot product generalized to the n-dimensional complex vector space Cn.

Unitary operations Û preserve this inner products (. , .), which is a crucial feature for probability
conservation, Eq. (2.9). That is, the inner product of Û |ψ〉 and Û |φ〉 gives the same result as the inner
product of |ψ〉 and |φ〉: respectively, (Û |ψ〉 , Û |φ〉) = (Û |ψ〉)†(Û |φ〉) (1)

= (|ψ〉† Û †)(Û |φ〉) = 〈ψ| Û †Û |φ〉 =

〈ψ| 1̂ |φ〉 = 〈ψ|φ〉 (1)
= (|ψ〉)†(|φ〉) = (|ψ〉 , |φ〉), where in (1) we used the definition of dual correspondence

(DC): X̂ |α〉 DC←−→ |α〉† X̂† ≡ 〈α| X̂† [10, p. 15, Eq. (1.2.24)].

Besides, the inner product of two tensor products (⊗) of states is the (ordinary) product of their inner
products, subsystem by subsystem19 (id est, the inner product of the kets on the left of ⊗,18 multiplied by
the inner product of the kets on the right of ⊗): (|α〉 |ψ〉 , |β〉 |φ〉) = (|α〉 |ψ〉)†(|β〉 |φ〉) (1)

= (〈ψ| 〈α|)(|β〉 |φ〉) (2)
=

〈ψ| 〈α|β〉 |φ〉 = 〈α|β〉 〈ψ|φ〉.12 If we substitute |α〉 = |β〉 = Û , and we replace |ψ〉 → |ψ〉 |0〉 and |φ〉 →
|φ〉 |0〉:

(Û |ψ〉 |0〉 , Û |φ〉 |0〉) = (Û |ψ〉 |0〉)†(Û |φ〉 |0〉) (1)
= (〈0| 〈ψ| Û †)(Û |φ〉 |0〉) = 〈0| 〈ψ| Û †Û |φ〉 |0〉

= 〈0| 〈ψ| 1̂ |φ〉 |0〉 = 〈0| 〈ψ|φ〉 |0〉 = 〈ψ|φ〉 〈0|0〉 (norm.)
= 〈ψ|φ〉 1 = 〈ψ|φ〉 , or, using (3.12),

(3.13)

(Û |ψ〉 |0〉 , Û |φ〉 |0〉) = (Û |ψ〉 |0〉)†(Û |φ〉 |0〉)
(3.12)
≈ (Û |ψ〉 |ψ〉)†(Û |φ〉 |φ〉) (1)

= (〈ψ| 〈ψ| Û †)(Û |φ〉 |φ〉) =

〈ψ| 〈ψ| Û †Û |φ〉 |φ〉 = 〈ψ| 〈ψ| 1̂ |φ〉 |φ〉 = 〈ψ| 〈ψ|φ〉 |φ〉 = (〈ψ|φ〉)2.
(3.14)

Thus, (3.13)≈(3.14) ↔ 〈ψ|φ〉 ≈ (〈ψ|φ〉)2 ↔ 〈ψ|φ〉 ≈ 0, 1 (i.e., almost orthogonal or nearly the same
state, |ψ〉 ≈ |φ〉, respectively) [20, p. 40]. In essence, thus, the no-cloning theorem prevents just nonorthog-
onal states from being copied.

But, if the universe is quantum mechanical [8, p. 468, l. 6] [3, p. 3, l. 25], why can classical information
be copied? If classical information, in the context of correspondence principle, is thought as orthogonal
quantum states, the apparent paradox between the ability to copy classical information bits and the
no-cloning theorem, raised because classical systems must obey quantum mechanics (and its linearity) [1,
p. 29, l. 4-6 & p. 30, l. 1-2 & 8-9] is resolved.

12In equality (2) footnote 19 cannot be used, since |α〉 〈β| would be an operator, but (〈α|) (|β〉) ≡ 〈α|β〉 here is a complex
number in C, that is, the result of the inner product (. , .) ≡ 〈.|.〉 : H×H → C.

20

4 Quantum artificial life model

In the QAL model proposed in Ref. [7] (experimental realization) and Ref. [14] (theoretical fundamentals),
individuals or quantum artificial living entities are composed by two qubits (Fig. 4.1): one of the qubits plays
the role of DNA, it represents its genotype, genetic information which is transmitted throughout generations,
and, the other, its phenotype [7, p. 2, l. 9-12][14, p. 1, l. 35-37], the set of observable characteristics of the
genotype resulting from the individual’s interaction with the environment and other living units, that is,
the creature’s body.

This model corresponds to the research field of QAL because individuals are encoded in the mentioned
two-qubit quantum states and quantum operations are used in order to implement the following natural
selection processes:

• (Section 4.1) Finite lifetime, preservation of the genetic information (genotype) in time and presence
of trophic roles (predator and prey).

• (Section 4.2) Self replication (as asexual reproduction mechanism) that maintains genetic information
partially from generation to generation. Possible presence of mutations due to experimental setup
errors.

• (Section 4.3.1) Aging, via phenotype degradation by the environment.

• (Section 4.3.2) Inter-individual interaction.

4.1 Finite lifetime (〈σ̂z〉ρ̂p (t)), time constant genotype (〈σ̂z〉ρ̂g 6= 〈σ̂z〉ρ̂g (t)) and relative
trophic roles (〈σ̂z〉1 ρ̂g Q 〈σ̂z〉2 ρ̂g)

In the model described in Ref. [14], the expectation value of the Pauli matrix13 σ̂z [10, p. 169, Eq. (3.2.32c)]
in the phenotype (p) qubit, 〈σ̂z〉ρ̂p (t), measures the age (spent lifetime) of the artificial living units. Note
that 〈σ̂z〉ρ̂p = 〈σ̂z〉ρ̂p (t), because the phenotype ρ̂p changes [7, p. 2, l. 13-14] due to the interaction performed
during time t with other individuals and the environment14, as it occurs in nature!

A different observable or set of observables could have been selected, but we have chosen σ̂z just to
make calculations simpler, since its matrix representation is diagonal in {|0〉 , |1〉}, the basis given by the
steady state (ρ̂A = |0〉 〈0|) of the Lindblad master equation we use to simulate the effect of the environment
or bath (Section 4.3.1).

The finite lifetime, characteristic of all living beings, is mimicked by the time elapsed in the evolution
of 〈σ̂z〉ρ̂p (t) from its creation to the vicinity of an asymptotic value; here, 1 − ε, for fixed ε15. In other
words, [14, p. 3, l. 11-12] the death age td is achieved when 〈σ̂z〉ρ̂p (t = td) = 1− ε, so an individual is alive
if and only if 〈σ̂z〉ρ̂p (t) < 1− ε. Then, td can be physically regarded as the decoherence time (Section 4.3.1).

13σ̂i are the Pauli matrices for i = 1, 2, 3 [10, p. 169, Eq. (3.2.32)], or, equivalently, i = x, y, z [1, p. 65, Fig. 2.2]. Additionally,
σ̂0 ≡ 1̂2.

14Precisely, the phenotype qubit degrades towards ρ̂Ancillary ≡ ρ̂A = |0〉 〈0|. See Section 4.3.1.
15See an example in Appendix B.1.

21

On the other hand, 〈σ̂z〉ρ̂g –the expectation value of σ̂z in the genotype (g) qubit– determines, in
addition to its lifetime (implicitly)16, its role (predator or prey) in the tropic chain [14, p. 1, l. 39]. However,
contrary to the phenotype, the genotype remains unchanged in time t under the influence of any
interaction, 〈σ̂z〉ρ̂g 6= 〈σ̂z〉ρ̂g (t), again following the logic of nature!

In nature, predators or preys do not change their trophic role during life, so it is coherent that 〈σ̂z〉ρ̂g
determines it. In our scenario, since predators’ 〈σ̂z〉ρ̂p is greater, closer to the death value 1− ε, and 〈σ̂z〉ρ̂p
increases15 with t in the absence of feeding, they have to hunt preys in order to survive.

Let us suppose that we have 〈σ̂z〉ρ̂αg > 〈σ̂z〉ρ̂βg . As logic dictates, individual α will act as a predator,
since

〈σ̂z〉ρ̂αg > 〈σ̂z〉ρ̂βg
(16)→ 〈σ̂z〉ρ̂αp (tpα) > 〈σ̂z〉ρ̂βp (tpβ), (4.1)

so individual α is closer to death, from its birth time tpα17. Then, individual α is the predator.

The longest-living organisms (in our example, (4.15)|a=0 = 〈σ̂z〉ρ̂g1 |a=0 = −1, see Fig. B.1) are
herbivore. They are well adapted to environmental effects (a reflection of eating plants), but they are
always preys in inter-individual relations. On the other hand, the nearly death ones (in our example,
(4.15)|a≈1 = 〈σ̂z〉ρ̂g1 |a≈1 ≈ 1), are situated on the top of the trophic pyramid.

Obviously, here, trophic roles are relative: they depend on the two individuals that interact, α and β
in Eq. (4.1). The same individual can be a prey for the interaction with some living units but a prey in
relation to some others. This emulates the great diversity of species in nature!

4.2 Reproduction: self-replication

Besides the three biological characteristics described in Section 4.1, reproduction is also an ability common
in all alive –in our formalism, 〈σ̂z〉ρ̂p (t) < 1 − ε– organisms. Here, self-replication will be our repro-
duction mechanism [7, p. 2, l. 16-23], although of asexual nature. It is performed following two steps
based on quantum partial cloning, copying from a given genotype ρ̂g the expectation value of a chosen
observable (σ̂z, here, for reasons presented in Section 4.1, paragraph 2) into a blank or ancillary state
ρ̂A [7, p. 2, l. 16-17] that the environment or bath provides via the closure of the trophic cycle (Section 4.3.1).

Quantum mechanics forbids perfect cloning, but permits solutions for partial cloning. Here, what
is copied is not the whole state, but the expectation value of a set of observables that commute [16].
Commutativity is needed so that all can be written in a common basis [11, p. 111, footnote 18]. Nevertheless,
in our case, as mentioned, rather than a set we just use one observable, σ̂z.

Used as a self-replication protocol, partial cloning establishes a powerful simile with what happens
in biological systems. For instance, in DNA replication, information is not perfectly duplicated into the

16Because 〈σ̂z〉ρ̂gi = 〈σ̂z〉ρ̂pi (tpi), for the i
th generation, i ∈ N, as we will see in Eq. (4.5(2)), where t = tpi is the time when

phenotype ρ̂pi is created.
17You might think that, if the predator is created later, tpα > tpβ , maybe, at some time t, 〈σ̂z〉ρ̂αp (t) < 〈σ̂z〉ρ̂βp (t), but there

is not contradiction in young predators feeding from old preys. The trophic role is determined by the genotype and does not
change with time.

22

following generations, solely sequences of bases are copied [15, p. 1, l. 25-28]. Here, 〈σ̂z〉ρ̂g plays the role of
that part of DNA transmitted via reproduction.

Our quantum partial cloning operation entangles the genotype ρ̂g and the phenotype ρ̂p with the
ancillary state ρ̂A [7, p. 2, l. 17-18], and this entanglement is spread across generations. By this entanglement
implementation, this QAL model goes beyond the straightforward quantization of existing classical models,
in contrast to Section 2.4.

Figure 4.1: (Left) Creation of the 0th individual via ρ̂p0 phenotype creation from genotype ρ̂g0 . (Right)
Creation of the 1st individual via self-replication (4.2): ρ̂g1 genotype creation (4.2.2) from genotype ρ̂g0 +
ρ̂p1 phenotype creation (4.2.3) from the new genotype ρ̂g1 . The pink ellipse represents the information that
is conveyed, in Eq. (4.6), onto the global state of the two outputs of cloning operator Û in Eq. (4.2).

In our model, live begins from an unknown initial genotype ρ̂g0 . It will be taken as the genotype of
the 0th generation individual after the first phenotype creation, (4.10)|i=0 = ρ̂p0 = Û (ρ̂g0 ⊗ ρ̂A) Û †. Here,
from the genotype ρ̂g0 , the phenotype ρ̂p0 is created, cloning 〈σ̂z〉ρ̂g0 to a blank state ρ̂A. With this, the
0th generation living unit is born.

Then, the 0th individual and the forthcoming generations breed via self-replication. Self-replication is
essentially the same mechanism used to create the 0th individual, with the exception that in the formation of
the 0th individual, we used a given genotype, ρ̂g0 . Now, however, we have to create it first. First, we create
the new individual’s genotype (ρ̂g1 , e.g., for self-replication to create the 1st generation individual, right part
of Fig. 4.1) from the progenitor’s genotype (ρ̂g0 , in the chosen example), and then the phenotype (ρ̂p1 , in
the same instance), from the new genotype (ρ̂g1). Thus, as mentioned, two events form the self-replication
process:

• Genotype creation (4.2.2): From the ith individual’s genotype ρ̂gi , i ∈ N, the genotype of the
i + 1 generation’s individual, ρ̂gi+i , is created, duplicating 〈σ̂z〉 to a blank state ρ̂A: ρ̂gi+1

(4.10)
=

Û (ρ̂gi ⊗ ρ̂A) Û † [7, p. 2, l. 19-20].

23

• Phenotype creation (4.2.3): From the new genotype ρ̂gi+1 , the phenotype of the same new individual,
ρ̂pi+1 , is created, copying again 〈σ̂z〉 to a blank state ρ̂A: ρ̂pi+1

(4.10)
= Û

(
ρ̂gi+1 ⊗ ρ̂A

)
Û † [7, p. 2,

l. 20-22].

4.2.1 Quantum partial cloning operator Û as self-replication operator

Quantum partial cloning, the cloning of the expectation value of a chosen single-qubit observable, is
effectuated via the operator Û proposed in Ref. [14, p. 2, Eq. (1b) & (3c)], [15, p. 2, Eq. (7)] and [16,
p. L220, l. 30]:

ρ̂new = Û (ρ̂old ⊗ ρ̂A) Û †, (4.2)

where, since we have chosen σ̂z as the single-qubit observable to partially clone, and ρ̂A = |0〉 〈0| as the
known ancillary qubit, Û (B.9)

= ÛCNOT ≡ ÛCσ̂x [16, p. L221, l. 37-38]. See the proof in Appendix B.2.

Eq. (4.2) has a form reminiscent of the t evolution of density operators ρ̂: [10, p. 181, Eq. (3.4.7)]

ρ̂(t) ≡
∑
i

wi |α(i)(t)〉 〈α(i)(t)| =
∑
i

wi |α(i)(t)〉
(
|α(i)(t)〉

)†
=
∑
i

wi

(
Û(t, t0) |α(i)(t0)〉

)(
Û(t, t0) |α(i)(t0)〉

)†
=
∑
i

wi Û(t, t0) |α(i)(t0)〉
(
|α(i)(t0)〉

)†
Û †(t, t0)

= Û(t, t0)

(∑
i

wi |α(i)(t0)〉 〈α(i)(t0)|

)
Û †(t, t0) = Û(t, t0) ρ̂(t0) Û

†(t, t0).

(4.3)

Nevertheless, in Eq. (4.2), unitary transformation Û 6= Û(t, t0). It acts on an n-dimension initial
quantum state ρ̂old –where n = dim ρ̂old = dimHρ̂g0 = 2k, where k ∈ N is the number of qubits used in
the progeny line from ρ̂g0 , because, as mentioned in Section 1, qubits are 2-level quantum systems and
dimensions grow exponentially–, and copies the expectation value of a chosen set of observables (σ̂z, here)
from ρ̂old to a blank state ρ̂A, in order to create ρ̂new:

ρ̂new ≡
∑
i

wi |α(i)〉new 〈α
(i)|new =

∑
i

wi |α(i)〉new

(
|α(i)〉new

)†
(3.9)
=
∑
i

wi

(
Û |α(i)〉old |0〉

)(
Û |α(i)〉old |0〉

)†
=
∑
i

wi Û |α(i)〉old |0〉
(
|α(i)〉old |0〉

)†
Û †

(1)
=
∑
i

wi Û |α(i)〉old |0〉 〈α
(i)|old 〈0| Û

†

= Û

(∑
i

wi |α(i)〉old |0〉 〈α
(i)|old 〈0|

)
Û †

(2)
= Û

([∑
i

wi |α(i)〉old 〈α
(i)|old

]
⊗ |0〉 〈0|

)
Û †

= Û (ρ̂old ⊗ ρ̂A) Û † = (4.2),

(4.4)

where in equality (1) we used (|a〉 ⊗ |b〉)† = |a〉† ⊗ |b〉† = 〈a| ⊗ 〈b| ≡ 〈a| 〈b|18 [1, p. 74, Eq. (2.53)], and, in
18We use the abbreviated notations |v〉 ⊗ |w〉 ≡ |v〉 |w〉 ≡ |v, w〉 ≡ |vw〉 [1, p. 72, l. 33], where ⊗ is the tensor product.

24

(2), (Â⊗ B̂)(Ĉ ⊗ D̂) = (ÂĈ)⊗ (B̂D̂).19

Thus, using Eq. (4.2), from a precursor qubit ρ̂old, a new qubit ρ̂new is created. For the instance
described in Fig. 4.1, ρ̂old = ρ̂g0 and ρ̂new = ρ̂g1 [ρ̂old = ρ̂g1 and ρ̂new = ρ̂p1], for the genotype creation
[phenotype creation] of the 1st individual.

Besides, as it can be seen in the two arrows that, tantamount to Fig. 1 in Ref. [15, p. 2] and Fig. 1 in
Ref [16, p. L220], branch from ρ̂g0 in Fig. 4.1, each quantum partial cloning operation has two possible
outputs.

Henceforth, so that the quantum partial cloning operator Û can be considered reliable, the expectation
value of the chosen observable –〈σ̂z〉, here– duplicated into the two possible outputs must have the same
value. In other words, a measurement of σ̂z on either the two output qubits ρ̂pi and ρ̂gi+1 ought to the
same as on the input qubit in the unknown input state ρ̂i, i ∈ N: [14, p. 2, Eq. (1a)] [15, p. 1, Eq. (1)]
[16, p. L220, Eq. (1)]

〈σ̂z〉ρ̂gi ≡ 〈σ̂z〉ρ̂i
(1)
= 〈(σ̂z)gi+1

⊗ 1̂pi〉ρ̂i+1
≡ 〈σ̂z〉ρ̂gi+1

(2)
= 〈1̂gi+1 ⊗ (σ̂z)pi〉ρ̂i+1

≡ 〈σ̂z〉ρ̂pi (tpi), i ∈ N, (4.5)

where, tpi is the time, prior to any change provoked by interactions (with the environment and/or other
individuals), when the phenotype ρ̂pi is created from the genotype ρ̂gi .

ρ̂i+1
20 represents the system formed by two output qubits of Û , Eq. (4.10): one subspace is ρ̂pi and,

the other, ρ̂gi+1 . In connection with this, operators’ subscripts in Eq. (4.5) indicate the qubits (ρ̂gi+1 or
ρ̂pi) they act on. In fact, definitions 〈(σ̂z)gi+1

⊗ 1̂pi〉ρ̂i+1
≡ 〈σ̂z〉ρ̂gi+1

and 〈1̂gi+1 ⊗ (σ̂z)pi〉ρ̂i+1
≡ 〈σ̂z〉ρ̂pi (tpi)

in Eq. (4.5) follow from footnote 19. The fact that the left (right) operator acts on gi+1 (pi) fits the result
in Eq. (4.23).

For the particular case i = 0, ρ̂0 = ρ̂g0 ,20 we have 〈σ̂z ⊗ 1〉ρ̂0 = 〈1⊗ σ̂z〉ρ̂0 = 〈σ̂z〉ρ̂0 ≡ 〈σ̂z〉ρ̂g0 . We
can think of the left (right) operator in 〈(σ̂z)g1 ⊗ 1̂p0〉ρ̂1 ≡ 〈σ̂z〉ρ̂g1 and 〈1̂g1 ⊗ (σ̂z)p0〉ρ̂1 ≡ 〈σ̂z〉ρ̂p0 (t0) of
Eq. (4.5) as acting on the qubit located in the top right (bottom left) part of Fig. 4.1.

Equality (1) in Eq. (4.5), genotype creation 〈σ̂z〉ρ̂gi
(1)
= 〈σ̂z〉ρ̂gi+1

, is necessary so that preservation
of the genetic information throughout successive generations (as well as time, obviously) can be
mimicked [14, p. 2, l. 31-32]. On the other hand, equality (2), phenotype creation 〈σ̂z〉ρ̂gi

(2)
= 〈σ̂z〉ρ̂pi (tpi),

ensures we have a phenotype that is a result, at least with respect to the value of 〈σ̂z〉, of its corresponding
genotype, a crucial feature in natural selection! Withal, possible errors in the replication stage would
provide this model’s simile of mutation [7, p. 2, l. 27] [14, p. 2, l. 3-4].

Using Eq. (3.6), ρ̂ = 1
2(1̂2 +~r ·~σ), for interpretation purposes, the action of the exposed cloning protocol

can be regarded as the perfect copying of just the component r3 of the Bloch vector or Polarization vector
~r = (r1, r2, r3) = 〈σ̂i〉ρ̂ ~ni, i = 1, 2, 3, whereas the values of r1 and r2 are completely disregarded, since we
have ~σ = (0, 0, σ̂z) [16, p. L222, l. 33-34]. That is, the no-cloning theorem only allows approximate cloning,

19(Â⊗ B̂)(Ĉ ⊗ D̂) = (ÂĈ)⊗ (B̂D̂) follows from defining Â⊗ 1̂B (1̂A ⊗ B̂) as an operator which acts solely on subspace A
(B): (Â⊗ 1̂B)(1̂A ⊗ B̂) = Â1̂A ⊗ 1̂BB̂ = Â⊗ B̂, in a bipartite system in HA ⊗HB .

20i = 0 is the exception, where ρ̂0 = ρ̂g0 .

25

the cloning of a part of the Bloch vector ~r. This is equivalent to copying classical information, because
there is no quantum superposition in just a component of ~r, and that is why the mentioned no-go theorem
is not contradicted.

Our quantum partial cloning protocol is not solely capable of transmitting classical information (diago-
nal elements of ρ̂gi) like 〈σ̂z〉ρ̂gi . Indeed, quantum information is also disseminated, associated to the
coherences (off-diagonal elements of the density operator in a considered basis) belonging to ρ̂gi .

This quantum information is related to an observable which does not commute with σ̂z, let us say
σ̂x, and it is copied into to the global state of the outputs (ρ̂pi and ρ̂gi+1). The quantum nature of this
statistics resides in the fact that it cannot be determined which part of the information has been copied
into to the output phenotype subspace 〈σ̂x〉ρ̂pi ≡ 〈1̂⊗ σ̂x〉ρ̂i+1

and which one into the output genotype
〈σ̂x〉ρ̂gi+1

≡ 〈σ̂x ⊗ 1̂〉ρ̂i+1
. In other words, there is some information that belongs simultaneously (pink

ellipse in Fig. 4.1) to both outputs of the quantum partial cloning operation, so they are quantumly
correlated or entangled!

By transmitting quantum information from the genotype ρ̂gi to the global state, or common space of
ρ̂pi and ρ̂gi+1 , we mean that the following condition is satisfied: [15, p. 2, Eq. (2)]

〈σ̂x〉ρ̂i = 〈σ̂x ⊗ σ̂x〉ρ̂i+1
. (4.6)

This means that the quantum partial cloning operator Û , apart from duplicating the expectation value
of the 0th generation individual independently to its descendants, also conveys information to the offspring
as a whole. The latter kind of information is related in biological systems to collective behaviors! For
example, self-organization of neurons. [15, p. 2, below Theorem 1]

See an example for the case i = 0 (Fig. 4.1) in Eq. (4.18), which corresponds to transmission onto the
global state of the first cloning operation’s outputs.

4.2.2 Genotype creation

As said, the first step in the reproduction via self-replication is partially cloning –without violating the
no-cloning theorem– the expectation value of a certain set of observables (only 〈σ̂z〉g, in this model)
belonging to a predecessor genotype (ρ̂g0 , for example, in order to start forming the 1st individual, as in
Fig. 4.1) into an ancillary state ρ̂A = |0〉 〈0| originated (see Section 4.3.1) by the environment, so that a
new genotype (ρ̂g1 , in the 1st individual example) is created.

The self-replication process must preserve the expectation value for the chosen observable, Eq. (4.5(1)).
Therefore, 〈σ̂z〉ρ̂g will be constant both in time –〈σ̂z〉ρ̂g 6= 〈σ̂z〉ρ̂g (t), as mentioned in Section 4.1, paragraph
4– and from generation to generation, as said in the second paragraph below Eq. (4.10).

Example: in order to prove that 〈σ̂z〉ρ̂g remains constant, let us suppose that the unknown inaugural

26

genotype state ρ̂0 = ρ̂g0 from which subsequent living units will be created is described by the following
density operator, in the {|±〉z} ≡ {|0〉 , |1〉} computational basis (as we work in a basis in which σ̂z is
diagonal [15, p. 2, l. 20-21]):21

ρ̂0 = ρ̂g0
.
=

(
a b− ic

b+ ic 1− a

)
. (4.7)

where a < 1, as it can be inferred from Fig. B.1.

From this precursor genotype ρ̂g0 , Eq. (4.7), we create the genotype qubit belonging to the new
individual of the 1st generation, ρ̂g1 , via the operator proposed in Eq. (4.10):22

ρ̂1
(4.10)
≡ ρ̂g1 = Û(ρ̂g0 ⊗ ρ̂A)Û †

(B.10)
=


a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a

 , (4.8)

where we have used, in the {|0〉 , |1〉}⊗2 = {|0〉 , |1〉}⊗{|0〉 , |1〉} = {|00〉 , |01〉 , |10〉 , |11〉}18 basis, [1, p. xxxi,
l. 1]

Û
(B.9)
= ÛCNOT

(B.11)
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (4.9)

where Û † ≡ Û †CNOT = ÛCNOT ≡ Û , and Û † ≡ (Û∗)T
(1)
= ÛT . Equality (1) is satisfied because Û ∈ R. Hence,

unitarity condition for quantum logic gates Û † = Û−1 simplifies to orthogonality ÛT = Û−1, here. Then,
ÛT ≡ ÛTCNOT = ÛCNOT ≡ Û . In other words, Û is a symmetric matrix, a square matrix that is equal to its
transpose.

4.2.3 Phenotype creation

Then, the new phenotype is created. As in the genotype creation, the expectation value of σ̂z from the
genotype ρ̂gi , 〈σ̂z〉ρ̂gi , is copied to an ancillary state ρ̂A [14, p. 2, Eq. (3c)], without contradicting the
no-cloning theorem [15, p. 2, l. 17-19]. With this, the ith living unit is completed, i ∈ N.

Genotype’s 〈σ̂z〉ρ̂gi remains constant, 〈σ̂z〉ρ̂gi 6= 〈σ̂z〉ρ̂gi (t), as mentioned in Section 4.1. Conversely,
the phenotype’s 〈σ̂z〉ρ̂pi (t) is prone to change because of interactions. For example, for the case of the
cloning operations i = 0, 1 in Fig. 4.1, since they are not simultaneous (tp0 6= tp1 ; precisely, tp0 < tp1),
〈σ̂z〉ρ̂p0 (t) has already changed by the time p1 is created. Nevertheless, because of 〈σ̂z〉ρ̂g ’s conservation
through generations, phenotypes have the same initial expectation value of σ̂z if they have descended from
a common ancestor, 〈σ̂z〉ρ̂pi (tpi) = 〈σ̂z〉ρ̂pj (tpj), for i 6= j.

21See on the author’s page that ρ̂g0 , Eq. (4.7), satisfies the usual properties of the density operator (ρ̂).
22See calculations of Eq. (4.8-4.9) in Appendix B.3.

27

https://github.com/asierizqui/TFG/blob/master/General%20density%20operator%20properties%20of%20rho_%7Bg_0%7D.pdf

Furthering with Eq. (4.2), it can be defined in this context as

ρ̂i+1 ≡ ρ̂pi(tpi) = ρ̂gi+1

(4.2)
= Û (ρ̂gi ⊗ ρ̂A) Û † ≡ Û (ρ̂i ⊗ ρ̂A) Û †, i ∈ N. (4.10)

The first equality here is the reason why we defined, in Eq. (4.5(2)), 〈1̂gi+1 ⊗ (σ̂z)pi〉ρ̂pi (tpi)
(4.10)
=

〈1̂gi+1 ⊗ (σ̂z)pi〉ρ̂i+1
≡ 〈σ̂z〉ρ̂pi (tpi).

If we wanted perfect copying ∀ρ̂i, that is, satisfying ρ̂pi(tpi) = ρ̂i apart from Eq. (4.10), as it can be
deduced from Eq. (3.6), we would need 〈σ̂k〉pi (tpi) = 〈σ̂k〉gi , for k = 1, 2, 3,13 not just for k = 3. However,
this is not possible since they cannot be expressed in the same basis because they do not form a set of
commuting observables: [σ̂k, σ̂l] = 2i εklmσ̂m [10, p. 169, Eq. (3.2.25)].23 Or, from another perspective, this
would imply copying not just its component r3, but all the Polarization vector ~r = 〈σ̂i〉ρ̂. The latter is not
permitted by the no-cloning theorem.

Because of what has just been explained, ρ̂pi(tpi) 6= ρ̂i ≡ ρ̂gi . For instance, for i = 1, ρ̂p1(tp1) 6= ρ̂g1 =
(4.8). Instead, we have: [15, p. 2, Eq. (8)]

ρ̂p1(tp1)
(4.10)
= ρ̂g2 ≡ ρ̂2 = Û [ρ̂1 ⊗ ρ̂A] Û †

(1)
≡ Û1 [ρ̂1 ⊗ ρ̂A] Û †1

(4.8)
= Û1

[(
Û0(ρ̂0 ⊗ ρ̂A)Û †0

)
⊗ ρ̂A

]
Û †1

(2)
=
(
Û1Û0

)
(ρ̂0 ⊗ ρ̂A ⊗ ρ̂A)

(
Û †0 Û

†
1

)
=
(
Û1Û0

)
(ρ̂0 ⊗ ρ̂A ⊗ ρ̂A)

(
Û1Û0

)†
,

(4.11)

where in (1) we redefined Eq. (4.10) as ρ̂i+1 = Ûi(ρ̂i ⊗ ρ̂A)Û †i , i ∈ N, just to differentiate the Û ≡ Û0

operators that belong to ρ̂1 =(4.8). On the other hand, in (2) we used the remark made in footnote 19.

4.2.4 Preservation of 〈σ̂z〉 after self-replications

Being the condition imposed in Eq. (4.5), we will show that our self-replication protocol maintains 〈σ̂z〉, the
expectation value taken in the two output qubits created by the action of the Û operator on ρ̂i: either the
genotype of the next generation (ρ̂i+1) or the phenotype subspace belonging to the same generation (ρ̂pi(tpi)).

As mentioned, what it is truly conserved, both in time t and from generation to generation, is the
expectation value taken in the ith generation’s genotype subspace, 〈σ̂z〉ρ̂gi . For the same individual, both
the genotype and the phenotype subspace are created using the information of the same predecessor
genotype, which has the same 〈σ̂z〉 that its ancestors, but then the phenotype changes with time t.

Nevertheless, what we want to prove here is that the protocol chosen is effective in the sense that
the expectation value of the chosen observable is copied or preserved during the replication process,
conservation described by Eq. (4.5). We will see as well that 〈σ̂x〉 and 〈σ̂y〉, instead, are not preserved by
our self-replication protocol.

Starting with the 0th generation genotype, the arbitrary initial genotype ρ̂0 ≡ ρ̂g0 = (4.7), using the
definition 〈σ̂k〉ρ̂ = Tr(ρ̂ σ̂k), k = 1, 2, 3, [10, p. 181, Eq. (3.4.10)]

23εklm is the Levi-Civita symbol: ε123 = ε231 = ε312 = 1 = −ε321 = −ε213 = −ε132 and εklm = 0 if k = l, l = m or k = m.

28

〈σ̂z〉ρ̂g0 = Tr(ρ̂g0 σ̂z)
.
= Tr

((
a b− ic

b+ ic 1− a

)(
1 0
0 −1

))
= Tr

(
a ic− b

b+ ic a− 1

)
= 2a− 1, (4.12)

〈σ̂x〉ρ̂g0 = Tr(ρ̂g0 σ̂x)
.
= Tr

((
a b− ic

b+ ic 1− a

)(
0 1
1 0

))
= Tr

(
b− ic a
1− a b+ ic

)
= 2b, (4.13)

〈σ̂y〉ρ̂g0 = Tr(ρ̂g0 σ̂y)
.
= Tr

((
a b− ic

b+ ic 1− a

)(
0 −i
i 0

))
= Tr

(
bi+ c −ai
i− ai c− ib

)
= 2c. (4.14)

Now, in the creation of the corresponding both output qubits: the 1st generation’s genotype and 0th

generation’s phenotype, defined by ρ̂g1 = (4.8) and ρ̂p0 , respectively, Eq. (4.5) ought to be fulfilled.24〈σ̂z〉ρ̂g1 = 〈(σ̂z)g1 ⊗ 1̂p0〉ρ̂1 ≡ 〈σ̂z ⊗ 1̂2〉ρ̂1
(B.12)
= 2a− 1.

〈σ̂z〉ρ̂p0 (tp0) = 〈1̂g1 ⊗ (σ̂z)p0〉ρ̂p0 (tp0)
(4.10)
= 〈1̂g1 ⊗ (σ̂z)p0〉ρ̂1 ≡ 〈1̂2 ⊗ σ̂z〉ρ̂1

(B.13)
= 2a− 1.

(4.15)

As it can be seen, Eq. (4.5) is satisfied: 〈σ̂z〉ρ̂g0
(4.12)
= 2a− 1

(B.12)
= 〈σ̂z〉ρ̂g1

(B.13)
= 〈σ̂z〉ρ̂p0 (tp0). Note that this

results depend on a, the diagonal element (then, classical information) of the precursor genotype ρ̂g0 = (4.7),
which has spread heretofore.

On the other hand, if we replace σ̂z by σ̂x and σ̂y, respectively,〈σ̂x〉ρ̂g1 ≡ 〈σ̂x ⊗ 1̂2〉ρ̂1
(B.14)
= 0.

〈σ̂x〉ρ̂p0 (tp0) ≡ 〈1̂2 ⊗ σ̂x〉ρ̂1
(B.15)
= 0.

(4.16)

〈σ̂y〉ρ̂g1 ≡ 〈σ̂y ⊗ 1̂2〉ρ̂1
(B.16)
= 0.

〈σ̂y〉ρ̂p0 (tp0) ≡ 〈1̂2 ⊗ σ̂y〉ρ̂1
(B.17)
= 0.

(4.17)

Thus, we have proven that our reproduction mechanism conserves only 〈σ̂z〉, the expectation value
of the chosen observable. That is, Eq. (4.5) is not obeyed for 〈σ̂x〉 and 〈σ̂y〉: 〈σ̂x〉ρ̂g0

(4.13)
= 2b 6= 0

(B.14)
=

〈σ̂x〉ρ̂g1
(B.15)
= 〈σ̂x〉ρ̂p0 (tp0) and 〈σ̂y〉ρ̂g0

(4.14)
= 2c 6= 0

(B.16)
= 〈σ̂y〉ρ̂g1

(B.17)
= 〈σ̂y〉ρ̂p0 (tp0).

Furthermore,
(4.6)|i=0 = 〈σ̂x ⊗ σ̂x〉ρ̂1

(B.18)
= 2b

(4.13)
= 〈σ̂x〉ρ̂0 . (4.18)

So, as claimed, quantum information is also conveyed, even if it is duplicated into the global state, not to
the independent subspaces of the output qubits. Notice that the b coefficient in Eq. (4.18) corresponds to a
coherence or off-diagonal element in the initial state ρ̂0 = (4.7).

4.3 Phenotype change

As explained in Section 4.1 (l. 4-5), as in nature, the phenotype –〈σ̂z〉p, here– changes by the interaction
with both the environment (Section 4.3.1) and other individuals (Section 4.3.2):

24See calculations pertaining to Eq. (4.15-4.17) in Appendix B.4.

29

4.3.1 Environment

All physical systems are subjected to external influences to a greater or lesser extent. Uncontrolled
environmental interaction decoheres QCs, and pure states get mixed25. Decoherence destroys quantum
superpositions and entanglement, the cornerstones of QCs (Section 1), thus decreasing the probability of
successful computation.

Most macroscopic systems, for example, decohere so rapidly as to make quantum superposition effects
practically unobservable. The usual aim is to build systems that decohere slowly compared to the time
required to do the computation. Nevertheless, here, we will take advantage of this disturbances in order to
simulate the aging of living units!

Systems that approximately preserve quantum coherence (off-diagonal elements of the density matrix ρ̂)
are treated with Hamiltonian time evolution ρ̂(t) = Û ρ̂(t0) Û †, Û = Û(t, t0) [17, p. 4604, Eq. (8)]. For those
that, because of environmental effects, do not, as in our case, master equations are used [2, p. 1074, l. 55-60].

Precisely, we will model the effect of the environment, the ρ̂pi phenotype qubit’s degradation (aging by
dissipation) until the asymptotic state 〈σ̂z〉p (t = td) = 1− ε (death), using the Lindblad master equation26.
It will describe the environment or bath coupled with each phenotype qubit ρ̂pi : [14, p. 2, Eq. (2)]

˙̂ρpi =
d

dt
ρ̂pi(t) = λ

(
σ̂ ρ̂pi(t) σ̂

† − 1

2

{
σ̂† σ̂, ρ̂pi(t)

})
, (4.20)

where σ̂ ≡ |0〉 〈1| .=
(

0 1
0 0

)
is the Lindblad or jump operator [7, p. 2, l. 24-25] and λ ≥ 0, the eigenvalues.

Its steady state is the ancillary (or blank) state ρ̂A = |0〉 〈0|.

It decoheres living units’ phenotypes towards the Lindbladian’s steady states ρ̂A, as we prove in
Eq. (B.25). This establishes an analogy to the aging process of phenotypes ρ̂pi , and resembles the thermal
dissipation of thermodynamical systems (ρ̂pi , here), which fluctuate until they reach the environment’s
temperature (ρ̂A, in our case), modeled as a thermal reservoir.

These steady states ρ̂A can be said to be the cadavers belonging to the living entities and, at the same
time, the starting point of newborn individuals, the register where information is copied in the two events
that constitute the self-replication process. Such a duality simulates the final link in the trophic chain, the
role decomposers play: the closure of the cycle!

For the particular case i = 0, and initial condition (4.10)|i=0 = ρ̂p0(tp0) = ρ̂g1 ≡ ρ̂1, we obtain from
25Decoherence means losing off-diagonal elements in the matrix representation, for a certain basis, of the corresponding

density matrix ρ̂, known as quantum coherences. Then, ρ̂ states tend to the totally mixed form ρ̂ = 1̂n
n
, for dimension

n ∈ N− {0}.
26The general, diagonal, form of the Lindbladian, for a system described by ρ̂, is

˙̂ρ =
d

dt
ρ̂(t) = L[ρ̂(t)] ≡ − i

~
[Ĥ, ρ̂(t)] +

∑
k

λk

(
σ̂k ρ̂(t) σ̂

†
k −

1

2

{
σ̂†k σ̂k, ρ̂(t)

})
, (4.19)

The part of master equations multiplied by λ describes the action of the environment, so setting λk = 0 means isolating the
system, and we obtain the quantum Liouville equation [10, p. 185, Eq. (3.4.29)]: (4.19)|λk=0 = ˙̂ρ = − i

~ [Ĥ, ρ̂].

30

Eq. (B.29-B.33), [14, p. 3, Eq. (4)]

ρ̂p0(t)
.
=


a 0 0 (b− ic)e−λt/2
0 0 0 0
0 0 (1− a)(1− e−λt) 0

(b+ ic)e−λt/2 0 0 (1− a)e−λt

 . (4.21)

As mentioned and the logic of nature dictates, the expectation value of the selected observable (σ̂z, here)
remains constant in the genotype subspace –Eq. (4.22)–, but it is a function of time t in the phenotype
subspace –Eq. (4.23)–: [14, p. 3, Eq. (5)]

〈σ̂z〉ρ̂g1 = 〈(σ̂z)g1 ⊗ 1̂p0〉ρ̂p0 (t)
≡ 〈σ̂z ⊗ 1̂2〉ρ̂p0 (t)

(B.34)
= 2a− 1

(4.15a)
= 〈σ̂z〉ρ̂g1 (t0) 6= 〈σ̂z〉ρ̂g1 (t), (4.22)

〈σ̂z〉ρ̂p0 (t) = 〈1̂g1 ⊗ (σ̂z)p0〉ρ̂p0 (t)
≡ 〈1̂2 ⊗ σ̂z〉ρ̂p0 (t)

(B.35)
= 1 + 2e−λt(a− 1) 6= 〈σ̂z〉ρ̂p0 (tp0). (4.23)

If we substitute in these equations t = tp0 = 0, the time at when both the phenotype ρ̂p0 and
the genotype qubit ρ̂g1 have just been created from a predecessor genotype ρ̂g0 , we recover Eq. (4.15):
〈σ̂z〉ρ̂p0 (t = 0)

(4.23)
= 1 + 2e−λ0(a− 1) = 1 + 2a− 2 = 2a− 1

(4.22)
= 〈σ̂z〉ρ̂g1 = (4.15).

4.3.2 Inter-individual interaction

This is the last biological feature we will introduce. Interactions between pairs of individuals favor the
predators –individuals with a higher 〈σ̂z〉ρ̂gi , that is, a shorter life, Eq. (4.1)–. This equilibrates the predator
and prey population: the former are better adapted to interaction with other living units, and the latter,
to environmental effects.

We won’t use the inter-individual interaction protocol belonging to Ref. [14]. Although this model,
as described in Ref. [7], can be implemented on current QCs and the one we will expose cannot, with
it, simulation acquires more features like giving the prey a choice to escape from harm when interaction
occurs. See the corresponding code in Appendix A.3.

In both models, living units displace randomly through the grid, provided with PBCs, one cell at a
time. The two individuals that interact sum four qubits, so the implementation is achieved by a 24 × 24

unitary operation –see Ref. [14, p. 4, Eq. (9)]–, which changes both phenotypes contingent upon the
corresponding genotypes. That is, phenotypes are the target qubits, and the genotypes, the control ones [7,
p. 2, l. 29-30]. In our model, living units cannot share the same location, and their interaction range is the
Moore neighborhood.

Let us denote α ≡ predator and β ≡ prey. Interaction is described by a Hamiltonian that depends on
both genotypes (ρ̂αg and ρ̂βg)27 Ĥint =

∑
k Ĥk, where

Ĥk ≡ ak
(
σ̂⊗2z

)
+ bk

{(
σ̂z ⊗ 1̂2

)(
1̂2 ⊗ σ̂z

)} , k =

{
α
β

}
, ak, bk ∈ [−1, 1]. (4.24)

27Both genotypes sum 2 qubits, so dim Ĥint = 22. See, for instance, Eq. (B.39).

31

Ĥint is tunable in the sense that each individual can be assigned a certain a and b coefficient. If
〈Ĥint〉ρ̂gα⊗ρ̂gβ > 0 (< 0) the predator hunts the prey (the prey escapes). However, predators (preys) do not

necessarily have ak and bk values that make 〈Ĥint〉ρ̂gα⊗ρ̂gβ positive (negative), which would be the most
beneficial case for them.

Nevertheless, since predators (preys) have a greater (smaller) 〈σ̂z〉ρ̂g , Eq. (4.1), they will be more likely
to have bigger (smaller) 〈Ĥint〉ρ̂gα⊗ρ̂gβ values. That is why we arbitrarily associated positive (negative)

〈Ĥint〉ρ̂gα⊗ρ̂gβ to the most beneficial interaction for them, attraction (repulsion).

If the expectation value of the interaction Hamiltonian is attractive, the predator feeds from the prey
and gets more life (less age, 〈σ̂z〉ρ̂αp ↓), at prey’s expense (〈σ̂z〉ρ̂βp ↑). Otherwise, the prey escapes and it
does not get any harm.

Now, we will study the expectation value of the interaction Hamiltonian in the state ρ̂gα ⊗ ρ̂gβ as a
function of ak and bk. Let us start by building the genotype of our living units:

|gk〉
(3.2)
=

(
cos(θk/2)

sin(θk/2)eiϕ

)
→ ρ̂kg = |gk〉 〈gk| =

(
cos(θk/2)

sin(θk/2)eiϕ

)(
cos(θk/2) sin(θk/2)e−iϕ

)
=

(
cos2(θk/2) 1

2 sin θke
−iϕ

1
2 sin θke

iϕ sin2(θk/2)

)
, k = α, β.

(4.25)

Then, for k = α.
〈Ĥk〉ρ̂αg⊗ρ̂βg |k=α

(B.41)
= 〈σ̂z〉ρ̂αg

(
aα 〈σ̂z〉ρ̂βg − bα

)
. (4.26)

It is similar for k = β, with the exception that the second row of Eq. (4.24) has to be used.

If 〈σ̂z〉ρ̂αg > 〈σ̂z〉ρ̂βg
28, α is a prey, according to Eq. (4.1). Then, the beneficial attitude for the prey α is

the one that makes interaction attractive, so that it can hunt the prey β. As we defined in the paragraph
below Eq. (4.24), interaction is attractive if

〈Ĥk〉ρ̂αg⊗ρ̂βg |k=α > 0
(4.26)↔

{
If 〈σ̂z〉ρ̂αg > 0 → aα 〈σ̂z〉ρ̂βg > bα

If 〈σ̂z〉ρ̂αg < 0 → aα 〈σ̂z〉ρ̂βg < bα

}
. (4.28)

4.4 Experimental implementation

We have presented a code for our QAL model in Appendix A.3. Nevertheless, it might also be interesting
implementing some aspects of our model in IBM’s cloud QC. Its qubit order is the following

|wxyz〉 ≡
(
|w〉g1 |x〉p1

)(
|y〉g2 |z〉p2

)
≡ (|w〉3 |x〉2) (|y〉1 |z〉0) , w, x, y, z ∈ {0, 1}. (4.29)

28More precisely,
〈σ̂z〉ρ̂αg > 〈σ̂z〉ρ̂βg

(B.40)↔ cos θα > cos θβ ↔ θα < θβ , (4.27)

where the last step follows from the fact that cos θk is a decreasing function for θk ∈ [0, π] (the range for the polar angle θ in
the Bloch sphere, Fig. 3.1), k = α, β.

32

https://www.research.ibm.com/ibm-q/

We will employ the controlled-gate Ûij , where (i, j) = (control, target). For example, using IBM’s
notation, if |x〉1 |y〉0 ≡ |xy〉, Û10 |xy〉 = |x〉 |x⊕ y〉 and Û01 |xy〉 = |x⊕ y〉 |x〉. Our usual definition
ÛCNOT ≡ (B.11), is the one that takes the leftmost qubit as the control. Id est, for the qubit order in
Eq. (4.29),29

ÛCNOT = Ûij , i, j = 0, 1, 2, 3, i > j. (4.30)

As mentioned (last paragraph of Section 3.1.2), IBM’s QC chip solely allows the experimental imple-
mentation of CNOT gates Ûij in the i > j direction! That is, direct implementation of Ûji gates, i > j, is
not allowed. It can be checked in the composer. Nevertheless, the control/target roles can be exchanged in
the following way:

Ûji
(B.9)
= Û⊗2Had Ûij Û

⊗2
Had : i, j = 0, 1, 2, 3 and i > j, (4.31)

where the superscript (⊗2) refers to parallel computation in the corresponding 2 qubits or subsystems.
That is, 2 Hadamard gates operating independently on 2 qubits, in analogy with the remark in footnote 19.
See the right part of Fig. 4.2.

Apart from Ûij , i > j, and ÛHad = (3.7) in Eq. (4.31), the device we will use provides the following
unitary operators: [IBM, Intro, Other single qubit gates]

û2(ϕ, λ)
.
=

1√
2

(
1 −eiλ
eiϕ ei(ϕ+λ)

)
and û3(θ, ϕ, λ)

.
=

1√
2

(
cos θ2 −eiλ sin θ

2

eiϕ sin θ
2 ei(ϕ+λ) cos θ2

)
. (4.32)

4.4.1 Experimental implementation of self-replication

We will know construct the quantum circuit associated to our reproduction mechanism (4.2). From Ref. [7,
p. 3, Fig. 1], we define the initial state as

|ψ(t0)〉 =
(
|0〉g1 |0〉p1

)(
|0〉g2 |0〉p2

)
≡ (|0〉3 |0〉2) (|0〉1 |0〉0) , (4.33)

where the right-hand side refers to IBM’s qubit order (4.29).

• t = t1: We initialize the genotype g1 [g2] in the state (3.2)|(ϕ=0, θ=π/4) = 1√
2
(cos(π/8) |0〉+ sin(π/8) |1〉)

[(3.2)|(ϕ=0, θ=3π/4) = 1√
2
(cos(3π/8) |0〉+ sin(3π/8) |1〉)] by the following operations: [7, p. 3, l. 5]

|ψ(t1)〉 = (û3(π/4, 0, 0) |0〉3 |0〉2) (û3(3π/4, 0, 0) |0〉1 |0〉0)
(4.32)
=

(
1√
2

(
cos π8 sin π

8
sin π

8 cos π8

)
|0〉3 |0〉2

)(
1√
2

(
cos 3π

8 sin 3π
8

sin 3π
8 cos 3π

8

)
|0〉1 |0〉0

)
.
=

(
1√
2

(
cos π8
sin π

8

)
3

|0〉2
)(

1√
2

(
cos 3π

8
sin 3π

8

)
1

|0〉0
)
, or

(4.34)

|ψ(t1)〉
(4.34)
=

1

2

(
cos

π

8
cos

3π

8
|0000〉+ cos

π

8
sin

3π

8
|0010〉+ sin

π

8
cos

3π

8
|1000〉+ sin

π

8
sin

3π

8
|1010〉

)
.

(4.35)

29Proof in Appendix B.8.

33

https://quantumexperience.ng.bluemix.net/qx/editor
https://quantum-computing.ibm.com/support/guides/introduction-to-quantum-circuits?page=5cae6f7735dafb4c01214bbe#other-single-qubit-gates

• t = t2: Afterwards, individual 1 (2) is completed copying the genotype g1 (g2) into ρ̂A: [7, p. 3, l. 5-7]

|ψ(t2)〉
(4.34)
= Û32

(
1√
2

(
cos π8
sin π

8

)
3

⊗
(

1
0

)
2

)
Û10

(
1√
2

(
cos 3π

8
sin 3π

8

)
1

⊗
(

1
0

)
0

)

=




1
1

1
1

 1√
2


cos π8

0
sin π

8
0






1
1

1
1

 1√
2


cos 3π

8
0

sin 3π
8

0




=
1√
2


cos π8

0
0

sin π
8

 1√
2


cos 3π

8
0
0

sin 3π
8


=

1√
2

(
cos

π

8
|0〉3 |0〉2 + sin

π

8
|1〉3 |1〉2

) 1√
2

(
cos

3π

8
|0〉1 |0〉0 + sin

3π

8
|1〉1 |1〉0

)
, or

(4.36)

|ψ(t2)〉
(4.36)
=

1

2

(
cos

π

8
cos

3π

8
|0000〉+ cos

π

8
sin

3π

8
|0011〉+ sin

π

8
cos

3π

8
|1100〉+ sin

π

8
sin

3π

8
|1111〉

)
,

(4.37)

Figure 4.2: (t0 → t2) Creation of the genotypes (4.34) and phenotypes (4.36) in order to create two
individuals. (t2 → t3) Simulation of environmental effects on the phenotypes (4.4.2). (t3) Swap operator
created using Eq. (4.31), as an illustrative example. Figure created using Qiskit.

4.4.2 Experimental implementation of environment’s decoherence

Finally, the environment’s influence, decoherence towards ρ̂A described in Section 4.3.1, cannot be directly
simulated in our device. The alternative is considering projections to |0〉p as rotations along OY , eiσ̂y θ,
[7, p. 2, l. 37-40] in each phenotype’s Bloch sphere per discrete t step, where, obviously, θ is inversely
proportional to decoherence or death time, td.

34

https://github.com/asierizqui/TFG/blob/master/Self_replication_environment_experiment.ipynb

5 Conclusions

We chose the topic of Artificial Life because it can describe a wide range of systems, some of them stated in
Section 1.2, paragraph 2. Besides, we aimed to prove that the behavior of this systems is better described
by QCs rather than conventional ones. Maybe the best approach to describe, for instance, the origin of life
is quantum physics, after all.

To this end, in a nutshell, we first presented, Section 2.2, and programmed, Appendix A.1, GoL. We
later, Section 2.4, showed that including here fundamental principles of quantum mechanics in order to
describe cell’s states and transition rules –along with a relative phase difference eiφ, Section 2.4.3– more
complex AL scenarios, behaviors previously unseen in classical GoL, arise. One of the most remarkable
results is that this semi-classical cells, can move faster than the purely classical ones30.

Then, in our QAL model, we emphasized shallowly the path started by Ref. [7], [14] and [15]. They lead
to minimal but consistent simulations of Darwinian scenarios in quantum platforms, establishing analogies
between the a priori unconnected fields of artificial life and quantum mechanics: living units capable of
reproducing depending on a process of selection that allows the better adapted survive and, thus –since
self-replicating probability is equal for all alive organisms–, produce more offspring.

Apart from that, in the aforementioned QAL model, we implemented not solely superposition, but also
entanglement. This enabled dissemination of not just classical, but also quantum information: respectively,
〈σ̂z〉ρ̂i and 〈σ̂x〉ρ̂i , coherences of ρ̂i transmitted to the global state of the outputs of the quantum partial
cloning operator Û .

We have not included in our work the experimental realization of the inter-individual interaction
protocol described in Ref. [7], due to space and understanding issues. However, we tried to demonstrate, at
least for the self-replication protocol and aging, that a minimal biological behavior can be achieved with
current technology.

By the way, taking our bachelor perspective a bit beyond its horizons, we emphasized the requirement,
usual in research, of adapting theoretical models to experimental constraints. In this case, these limitations
were the uniqueness in the control-target direction of ÛCNOT quantum logic gates and the impossibility of
attaching a quantum channel that gradually, and with high fidelity, projected the system to state |0〉 in
order to simulate aging.

Regarding model’s design, it could be enriched including, for example, spatial information, that is,
implementation of more realistic grids with non-homogeneous effects on individuals: less self-replication
probability and faster decoherence for more rugged zones –e.g. extreme climate ecosystems–. Faster
decoherence would mean a greater coupling constant λ = λ(x, y) in the Lindbladian. Genotype (DNA)
recombinations via sexual reproduction could also be introduced, and the complexity of the model would be
increased by selecting a larger set of observables to transmit into the global state of successive generations
[7, p. 2, l. 30-33]. Nevertheless, σ̂z is the only observable that can be copied in this model, Û = ÛCNOT
and ρ̂A = |0〉 〈0|.

In addition, this thesis covered different approaches: along with pure theoretical work –concepts related
30See the wick’s example in Appendix A.2.2, code line 27. The output is on the author’s page. Here, because of display

problems, death cell’s are represented by black squares.

35

https://raw.githubusercontent.com/asierizqui/TFG/master/Semi_quantum_wick.mp4

to Quantum information and QAL were previously unseen–, numerous calculations (Appendix B), programs
(Appendix A, via GNU Octave) and even experimental implementations, using IBM’s device, subject to
the restrictions mentioned, have been carried out.

With all this, we can claim we have reflected how QCs, due to the exponential growth of the Hilbert
space dimension with the number of individuals, may outperform conventional ones in the field of AL
simulations. At the same time, we have deepened a bit our very basic knowledge relative to the field of
quantum information, a very interdisciplinary topic, carrying out a work more closer to the nature of
research activities we absolutely ignored hitherto.

36

https://www.gnu.org/software/octave/
https://quantumexperience.ng.bluemix.net/qx/editor

Bibliography

[1] M. A. Nielsen & I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University
Press, Cambridge, United Kingdom, 2010).

[2] S. Lloyd, Universal quantum simulators, Science, vol. 273, p. 1073 (1996).

[3] P. W. Shor, Polynomial time algorithms for prime factorization and discrete logarithms on a quantum
computer, SIAM J. Sci. Statist. Comput., vol. 26, p. 1484 (1997).

[4] Ricard Solé, Vidas Sintéticas (Tusquets Editores, Barcelona, Spain, 2012).

[5] M. Gardner, Mathematical games: The fantastic combinations of John Conway’s new solitaire game
Life, Scientific American, vol. 223(10), p. 120 (1970).

[6] A. Adamatzky (Ed.), Game of Life Cellular Automata (Springer-Verlag London Limited, London,
United Kingdom, 2010).

[7] U. Alvarez-Rodriguez, M. Sanz, L. Lamata & E. Solano, Quantum Artificial Life in an IBM Quantum
Computer, Scientific Reports, vol. 8, p. 14793 (2018).

[8] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys., vol. 21, p. 467 (1982).

[9] A. P. Flitney & D. Abbott, A semi-quantum version of the game of Life, arXiv: 0208149 (2002).

[10] J. J. Sakurai & Jim J. Napolitano, Modern Quantum Mechanics (Addison-Wesley Publishing Company,
San Francisco, United States, 2010).

[11] D. J. Griffiths, Introduction to Quantum Mechanics (Pearson Education International, United States,
2004).

[12] L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing (STOC), p. 212 (1996).

[13] R. Shankar, Principles of Quantum Mechanics (Plenum Press, New York, United States, 1994).

[14] U. Alvarez-Rodriguez, M. Sanz, L. Lamata & E. Solano, Artificial Life in Quantum Technologies,
Scientific Reports, vol. 6, p. 20956 (2016).

[15] U. Alvarez-Rodriguez, M. Sanz, L. Lamata & E. Solano, Biomimetic Cloning of Quantum Observables,
Scientific Reports, vol. 4, p. 4910 (2014).

[16] A. Ferraro, A. Galbiati, & M. Paris, Cloning of observables, J. Phys. A: Math. Gen., vol. 39, p. L219
(2006).

[17] D. P. DiVincenzo, Quantum computation and spin physics, J. Appl. Phys. 81, p. 4602 (1997).

[18] T. Rowland, Unitary Matrix, Mathworld – A Wolfram Web Resource,
http://mathworld.wolfram.com/UnitaryMatrix.html.

[19] D. E. Deutsch, Quantum computational networks, Proc. Royal Soc. Lond., vol. A 425, p. 73 (1989).

[20] N. D. Mermin, Quantum Computer Science: An Introduction, (Cambridge University Press, Cambridge,
United Kingdom, 2007).

37

http://science.sciencemag.org/content/273/5278/1073
https://epubs.siam.org/doi/10.1137/S0097539795293172
https://web.stanford.edu/class/sts145/Library/life.pdf
https://www.nature.com/articles/s41598-018-33125-3.pdf
https://link.springer.com/article/10.1007/BF02650179
https://arxiv.org/abs/quant-ph/0208149
https://dl.acm.org/citation.cfm?id=237866
https://dl.acm.org/citation.cfm?id=237866
https://www.nature.com/articles/srep20956.pdf
https://www.nature.com/articles/srep04910.pdf
https://iopscience.iop.org/article/10.1088/0305-4470/39/14/L02/pdf
https://aip.scitation.org/doi/10.1063/1.365176
http://mathworld.wolfram.com/UnitaryMatrix.html
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1989.0099

A Codes

A.1 Game of life implementation

Figures belonging to Section 2.3.2 are obtained from the following code. See an enlightening example for
the module function (mod) in code line 82 on the author’s page.

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− INITIAL CONDITION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Dimensions of the 2−D lattice:

3 n_row= 10;

4 n_column= 12;

5
6 % "steps" = number of steps,

7 steps=30;

8
9 % "grid" = initial grid or lattice. 0="alive" cells and 1="death" ones.

10
11 % Initial condition Example 1:

12 % Uncomment (remove "%") the following to fill the "grid" (matrix) randomly with 0 or 1:

13 %grid = randi([0 1],n_row,n_column);

14
15 % Fill the grid with death(=1) cells, in order to deploy the following examples.

16 for i= 1:n_row

17 for j = 1:n_column

18 grid(i,j)=1;

19 endfor

20 endfor

21
22 % Initial condition Example 2: Glider (fixed shape that moves across the grid). Useful in

order to see the periodic boundary conditions (PBCs)

23 grid(4,2)=grid(5,2)=grid(5,4)=grid(6,2)=grid(6,3)=0;

24
25 % Initial condition Example 3: "Tetromino" (shape formed by four connected alive cells)

that becomes a "beehive" ("still−life" or stable figure) on the fourth generation.

26 %grid(4,4)=grid(5,4)=grid(5,5)=grid(5,6)=0;

27
28 % Initial condition Example 4: "Tetromino" that after the tenth generation becomes four

isolated periodical blinkers.

29 %grid(4,5)=grid(5,4)=grid(5,5)=grid(5,6)=0;

30
31
32 disp(['Grid, in the following ', num2str(steps),' steps'])

33 % where the intrinsic function num2str() converts numerical data to strings.

34
35
36 % −−−−−−−−−−−−−−−−−−−−−−−−−− INITIAL CONDITION DISPLAY −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 colormap gray; % Image traversing black to white in shades of gray.

38 imagesc(grid);

38

https://github.com/asierizqui/TFG/blob/master/Module_function.pdf

39
40 % Notable when n_row >> n_column or n_row << n_column, not to stretch the cells and

keep the square shape, we apply the following:

41 axis equal tight

42 drawnow

43
44 % Intrinsic function that pauses the GIF for (argument) seconds, in order to visualize

each generation:

45 pause(0.1)

46
47
48 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− MAIN PROGRAM −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 % "n_row" and "n_column" will be referenced later by "size(grid,1)" and "size(grid,2)",

respectively, where the intrinsic function size() gives the following array if the

argument is "grid": size(grid) = [n_row n_column].

50 % For a general A matrix: size(A) = [size(A,1) size(A,2)].

51
52 % Originally, we used the concatenated matrix grid_boundary=[grid grid grid; grid grid

grid; grid grid grid] as a reference to apply the PBCs, but it was expensive in terms

of memory.

53
54 for t=1:steps % t indexes the number of time steps.

55
56 % First, we create the environment that will be updated at time t + 1 ("grid_next")

according to the lattice at the previous generation or time t ("grid").

57 grid_next=grid;

58
59 % If we used "grid" both as a reference and as the environment we change for the same

time t, as the analysis of the neighborhood of each cell can only be computed

individually, we would not follow "Conway's Game of Life" rule that states that, at

each generation or time step, all the grid ought to be changed or updated

synchronously, and not cell by cell.

60
61 % We use i and j to index the grid spatially.

62 % i goes from (1) to (n_row); i.e., from (1) to (size(grid,1))

63 % j goes from (1) to (n_column); i.e., from (1) to (size(grid,2))

64
65 % Matrix indexing starts from integer 1 by default. That is why we used i= 1:size(grid

,1) (j= 1:size(grid,2)) instead of i= 0:(size(grid,1)−1) (j= 0:(size(grid,2)−1)).
66
67 for i= 1:size(grid,1) % size(grid,1)=n_row

68 for j= 1:size(grid,2) % size(grid,2)=n_column

69 x=0; % x = counter of alive "Moore neighbors"

70
71
72 % For i=1 or size(grid,1) and/or j=1 or size(grid,2) −id est, when we are analyzing a

cell on the border of the grid− PBCs have to be applied.

73

39

74 % We implement PBCs using the intrinsic function mod(a,b), which gives the reminder

of a/b. Hence, it can be used to create "modulo operation".

75
76 % As stated (code l. 65), since matrix indexing starts from integer 1, in order to

prevent "mod" from starting the period from 0, instead of mod(a,b), we will use

mod(a−1,b)+1, where b=size(grid,1) (b=size(grid,2)) if a=i (a=j).

77
78 % There are 8 cells in the Moore neighborhood, so 8 conditions have to be fulfilled.

This conditions are expressed gradually SIMPLER in Appendix A.2, code lines 54−65,
and Appendix A.3, code line 122!

79
80 if (grid([mod((i+1)−1,size(grid,1))+1],j)==0)
81 x=x+1;

82 endif

83 if (grid([mod((i−1)−1,size(grid,1))+1],j)==0)
84 x=x+1;

85 endif

86 if (grid(i,[mod((j+1)−1,size(grid,2))+1])==0)
87 x=x+1;

88 endif

89 if (grid(i,[mod((j−1)−1,size(grid,2))+1])==0)
90 x=x+1;

91 endif

92 if (grid([mod((i+1)−1,size(grid,1))+1],[mod((j+1)−1,size(grid,2))+1])==0)
93 x=x+1;

94 endif

95 if (grid([mod((i+1)−1,size(grid,1))+1],[mod((j−1)−1,size(grid,2))+1])==0)
96 x=x+1;

97 endif

98 if (grid([mod((i−1)−1,size(grid,1))+1],[mod((j+1)−1,size(grid,2))+1])==0)
99 x=x+1;

100 endif

101 if (grid([mod((i−1)−1,size(grid,1))+1],[mod((j−1)−1,size(grid,2))+1])==0)
102 x=x+1;

103 endif

104
105 % We first used:

106 %if (grid(i+1,j)==1) || (grid(i−1,j)==1) || (grid(i,j+1)==1) || ...

107 % If we use the latter (| = or), or, equivalently, if we use "elif", we won't pass

by all the conditions once one of them is satisfied.

108
109 % GoL rules (see Introduction)

110 if grid(i,j)==0 && (x<2 || x>3) % "&" = "and " ; "==" = "is equal to

111 grid_next(i,j)=1;

112 elseif grid(i,j)==1 && x==3

113 grid_next(i,j)=0;

114 endif

115

40

116 endfor % end the cycle relative to column index "j".

117 endfor % end the cycle relative to row index "i".

118
119 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DISPLAY −−−
120 colormap gray;

121 imagesc(grid_next);

122 axis equal tight

123 drawnow

124 pause(0.1)

125 % −−−
126
127 grid=grid_next; % To use "grid" as the lattice at time t and "grid_next" as the

lattice in the next time step t+1.

128 endfor % end the cycle relative to the number of time steps ("t").

A.2 Quantum GoL implementation

A.2.1 Quantum GoL without phase eiφ

As stated at the end of Section 2.4.2, we obtain the same results as in Section 2.3.2. Because of its similarity
with the code in Sections A.1 and A.2.2, we put it on the author’s page.

A.2.2 Quantum GoL with phase eiφ

Section 2.4.3 can be implemented using the following code. See the wick example’s output on the author’s
page.

1 n_row= 10; % Dimensions of the 2D lattice

2 n_column= 12;

3 steps=30; % "steps" = number of steps,

4
5 % In semiquantum GoL, cell states are not numbers, but 2−level vectors: |\psi>=a\ket{1}+b

\ket{0}=a\ket{alive}+b\ket{dead}

6 % Then, in the {|1>,|0>} basis, |\psi>=[a;b] : |a|^2 + |b|^2 =1.

7
8 for m= 1:n_row % Fill the grid with death cells

9 for n = 1:n_column % m,n instead of i,j to avoid confusion with imaginary number i.

10 % 3D matrix = matrix(row,column,page), where in each "page" there is an ordinary 2D

matrix!

11 grid(m,n,1)=0; % grid(m,n,1) = a (|1> state coef.)

12 grid(m,n,2)=1; % grid(m,n,2) = b (|0> state coef.)

13 phi(m,n)=exp(0); % phi=e^{i\phi}, phase of the cell.

14 endfor

15 endfor

41

https://github.com/asierizqui/TFG/blob/master/quantum_GoL_no_phase.m
https://raw.githubusercontent.com/asierizqui/TFG/master/Semi_quantum_wick.mp4

16
17 % Initial condition Example 1: Glider. To check that, WITHOUT PHASE, we obtain the

CLASSICAL results!

18 %grid(4,2,1)=grid(5,2,1)=grid(5,4,1)=grid(6,2,1)=grid(6,3,1)=1;

19 %grid(4,2,2)=grid(5,2,2)=grid(5,4,2)=grid(6,2,2)=grid(6,3,2)=0;

20
21 % Initial condition Example 2: Destructive interference

22 % A block with a cell with |1> out of phase by \pi.

23 %phi(2,2)=e^(i*pi);

24 %grid(1,1,1)=grid(1,2,1)=grid(2,1,1)=grid(2,2,1)=1;

25 %grid(1,1,2)=grid(1,2,2)=grid(2,1,2)=grid(2,2,2)=0;

26
27 %Initial condition Example 3: a "wick" that burns at the speed of light (one cell per

time step).

28 phi(4,1)=e^(i*pi/2);

29 for m = 3:(n_column−2)
30 if rem(m,2)~=0

31 phi(4,m)=e^(i*pi);

32 endif

33 endfor

34 for l=1:(n_column−2)
35 grid(4,l,1)=1; grid(4,l,2)=0;

36 endfor

37
38 disp(['Grid, in the following ', num2str(steps),' steps'])

39 % −−−−−−−−−−−−−−−−−−−−−−−−−− INITIAL CONDITION DISPLAY −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 colormap gray; % Image traversing black to white in shades of gray.

41 imagesc(grid(:,:,1)); % Only display |1> coef.)

42 axis equal tight % To keep the square shape

43 drawnow

44 pause(0.1) % Pauses the GIF for (argument) seconds

45
46 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− MAIN PROGRAM −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 for t=1:steps

48 % grid at time t + 1 = "grid_next"; grid at the previous generation or time t = "grid".

49 grid_next=grid; % No−cloning theorem forbids this. Hence, synchronous application of

GoL rules is NOT realizable in a QC!

50
51 for m= 1:size(grid,1) % size(grid,1)=n_row

52 for n= 1:size(grid,2) % size(grid,2)=n_column

53 % x = counter of Moore neighbors' "health" = \sum_{i=1}^8 a_i*e^{i\phi} = a_M, with

PBCs

54 x= grid([mod((m+1)−1,size(grid,1))+1],n,1)*phi([mod((m+1)−1,size(grid,1))+1],n) ...

55 +grid([mod((m−1)−1,size(grid,1))+1],n,1)*phi([mod((m−1)−1,size(grid,1))+1],n) ...

56 +grid(m,[mod((n+1)−1,size(grid,2))+1],1)*phi(m,[mod((n+1)−1,size(grid,2))+1]) ...

57 +grid(m,[mod((n−1)−1,size(grid,2))+1],1)*phi(m,[mod((n−1)−1,size(grid,2))+1]) ...

58 +grid([mod((m+1)−1,size(grid,1))+1],[mod((n+1)−1,size(grid,2))+1],1)* ...

59 phi([mod((m+1)−1,size(grid,1))+1],[mod((n+1)−1,size(grid,2))+1]) ...

42

60 +grid([mod((m+1)−1,size(grid,1))+1],[mod((n−1)−1,size(grid,2))+1],1)* ...

61 phi([mod((m+1)−1,size(grid,1))+1],[mod((n−1)−1,size(grid,2))+1]) ...

62 +grid([mod((m−1)−1,size(grid,1))+1],[mod((n+1)−1,size(grid,2))+1],1)* ...

63 phi([mod((m−1)−1,size(grid,1))+1],[mod((n+1)−1,size(grid,2))+1]) ...

64 +grid([mod((m−1)−1,size(grid,1))+1],[mod((n−1)−1,size(grid,2))+1],1)* ...

65 phi([mod((m−1)−1,size(grid,1))+1],[mod((n−1)−1,size(grid,2))+1]);
66
67 % Birth, Death and Survival operators

68 B=[grid(m,n,1),grid(m,n,2)*phi(m,n); 0,0]/[abs(grid(m,n,1)+grid(m,n,2)*phi(m,n))]^2;

69 D=[0,0; grid(m,n,1)*phi(m,n),grid(m,n,2)]/[abs(grid(m,n,1)*phi(m,n)+grid(m,n,2))]^2;

70 S=[1,0; 0,1];

71
72 if (0<=abs(x)) && (abs(x)<=1) % G function

73 G=D;

74 endif

75 if (1<abs(x)) && (abs(x)<=2)

76 G=(sqrt(2)+1)*(2−abs(x))*D+(abs(x)−1)*S;
77 endif

78 if (2<abs(x)) && (abs(x)<=3)

79 G=(sqrt(2)+1)*(3−abs(x))*S+(abs(x)−2)*B;
80 endif

81 if (3<abs(x)) && (abs(x)<=4)

82 G=(sqrt(2)+1)*(4−abs(x))*B+(abs(x)−3)*D;
83 endif

84 if (abs(x)>4)

85 G=D;

86 endif

87
88 cell_next=G*[grid(m,n,1); grid(m,n,2)]; % Apply the rules.

89 % Resulting grid, where cell_next=[cell_next(1,1); cell_next(2,1)]

90 grid_next(m,n,1)=cell_next(1,1); grid_next(m,n,2)=cell_next(2,1);

91
92 endfor % end the loop of column index "j".

93 endfor % end the loop of row index "i".

94
95 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DISPLAY −−−
96 colormap gray;

97 imagesc(grid(:,:,1));

98 axis equal tight

99 drawnow

100 pause(0.1)

101 % −−−
102
103 grid=grid_next; % Resulting grid becomes the reference one in the next time step.

104 endfor % end the cycle relative to the number of time steps ("t").

43

A.3 Quantum artificial life code

Self-replication is not implemented here, they all correspond to the i = 0 generation. See the output of this
code on the author’s page.

1 % Definition of useful expressions:

2 ket_0=[1 0]; % = |0>, in the {|0>,|1>} computational basis.

3 ket_1=[0 1]; % = |1>

4 rho_A= kron(ket_0,ket_0'); % = |0>\otimes<0|= |0><0|, where kron(A,B)= A \otimes B, and

ket_0'= (|0>)^\dagger = <0|.

5 sigma_x=[0 1; 1 0];

6 sigma_z=[1 0; 0 −1];
7 % CNOT = |0><0|\otimes 1_2 + |1><1|\otimes sigma_x :

8 CNOT= kron(kron(ket_0,ket_0'), eye(2)) + kron(kron(ket_1,ket_1'), sigma_x);

9
10 % Variable parameters.

11 n_indiv=3; % Number of individuals.

12 epsilon=0.3; % , for instance. <sigma_z>_p(t_d) = 1−epsilon = "death age", where t_d =

t_death.

13 harm=0.1; % Harm= %10, e.g., of <H_int>_genotypes*prey's life.

14
15
16 alive_labels=[];

17 for i=1:n_indiv;

18 alive_labels(i)=[i];

19 endfor;

20
21
22 % −−−−−−−−−−−−−−−−−−−Initial "age" of n individuals −−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 % Each initial (t=0) individual's pheno. will be described by a density matrix of the

form, for instance, of Eq. (4.7):

24 for i=1:n_indiv % per individual

25 a=(−1:0.1:(2−epsilon)/2)([randi([1 size(−1:0.1:(2−epsilon)/2, 2)])]); % Eq. (4.15b) =

2a−1 = 1−epsilon −> to obtain the maximum value of a.

26 % where, (−1:0.1:1)=[−1 −0.9 ... 0.9 1]; randi([min max])= random integer in [min,

max]; size(A,2) = number of columns of the matrix A.

27 % That is, we randomly choose an element. For example, (−1:0.1:1)(2)=−0.9; (−1:0.1:1)
(3)=−0.8; (−1:0.1:1)(4)=−0.7; ...

28 b=0.7; % For example. For the moment where are interested just in a, because lifetime

depends on it. See Eq. (4.15b)

29 c=0.5; % For example.

30
31 % 3D matrix = matrix(row, column, page), the i th page, for the i th individual. On

each page, there is a conventional 2D matrix.

32 rho_g0(:,:,i)=[a, b−j*c; b+j*c, 1−a]; % j = imaginary number i. Eq. (4.7)

33 rho_p0(:,:,i)= CNOT*kron(rho_g0(:,:,i),rho_A)*CNOT'; % Eq. (4.8). It would be rho_g1

(:,:,i) as well, but we are not implementing self−replication, for now.

44

https://github.com/asierizqui/TFG/blob/master/QAL_output.m

34 expectation_sigma_z_p0(i)=trace(rho_p0(:,:,i)*kron(eye(2),sigma_z)); % Eq. (4.5(2)).

Instead, for the rho_g1 subspace it would be kron(sigma_z,eye(2))).

35 expectation_sigma_z_g0(i)=expectation_sigma_z_p0(i); % At t=0, <sigma_z>_p0=<sigma_z>
_g0.

36 endfor

37
38
39 % For the interaction Hamiltonian H_int:

40 for i=1:n_indiv

41 a_k(i)=(−1:0.01:1)([randi([1 size(−1:0.01:1, 2)])]); % a_k coef. in Eq. (4.24).

42 b_k(i)=(−1:0.01:1)([randi([1 size(−1:0.01:1, 2)])]); % b_k " " " .

43 endfor

44
45
46
47 % Dimensions of the 2−D lattice.

48 n_row= 3;

49 n_column=4;

50 % Fill the grid with 0s. 0 = no indiv.

51 for i=1:n_row;

52 for j=1:n_column;

53 grid(i,j)=0;

54 endfor

55 endfor

56
57
58 % Individuals get born in a random location of the grid.

59 % x_pos= [x position of the 1 st indiv.,, x position of the n th indiv.)]

60 for i=1:n_indiv

61 y_pos(i)=randi(n_row); % randi(max) = random integer from 1 to max.

62 x_pos(i)=randi(n_column);

63 while grid(y_pos(i),x_pos(i))!=0 % 2 indiv. or more cannot be born in the same cell.

64 y_pos(i)=randi(n_row); x_pos(i)=randi(n_column);

65 endwhile

66 grid(y_pos(i),x_pos(i))=i; % We represent the i th individual in the grid by the

integer i.

67 endfor

68
69 disp(['________________________________GRID at t=0______________________________________'

]) %disp() = display string.

70 disp(grid); disp(' '); disp(' '); disp(' '); disp(' '); disp(' '); disp(' '); disp(' ');

71
72
73
74 for t=0:0.1:1 % per time step

75 disp(['−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−At t=',num2str(t),'

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−'])
76 disp(' '); disp(' ')

45

77
78
79 % CHECK if there is any DEAD individual.

80 dead_labels=[]; % Individuals that die at this t step.

81 for i=1:size(alive_labels,2) % per alive individual.

82 if (expectation_sigma_z_p0(alive_labels(i))>= 1−epsilon)
83 disp(['Individual ', num2str(alive_labels(i)),' has DIED! (Death age=',num2str(1−

epsilon),')'])

84 grid(y_pos(alive_labels(i)),x_pos(alive_labels(i)))=0; % The indiv. dissapears from

the grid.

85 disp(['Then, individual ', num2str(alive_labels(i)),' disappears from the grid:']);

disp(grid); disp(' ')

86 % To avoid problems ("index out of bounds") erasing labels from "alive_labels":

87 dead_labels=cat(2,dead_labels,alive_labels(i)); % cat(dim,A,B) concatenates B to the

end of A along dimension dim. dim=2=column.

88 endif

89 endfor

90 % Remove common elements from arrays "alive_labels" and "dead_labels":

91 alive_labels=setdiff(alive_labels,dead_labels); % setdiff(A,B) returns the data in A

that is not in B.

92
93 if size(alive_labels,1)==0%=size([],1), where [] is an empty array.

94 disp('ALL individuals are dead, program ENDS!')

95 break % Program ends.

96 endif

97
98 disp(' ')

99 disp(['____________________________________AGE___________________________________'])

100 eta=1−exp(−t); % Time in \lambda*t units: \lambda*t=t

101 M_0=[1 0; 0 sqrt(1−eta)]; M_1=[0 sqrt(eta); 0 0]; % Eq. (B.22)

102 for i=1:size(alive_labels,2) % per alive individual.

103 % Careful, alive_labels(i) is the label of the alive individual, not i!

104 rho_p0(:,:,alive_labels(i))=kron(eye(2),M_0)*rho_p0(:,:,alive_labels(i))*kron(eye(2),

M_0)'+ kron(eye(2),M_1)*rho_p0(:,:,alive_labels(i))*kron(eye(2),M_1)'; % 1_2

otimes M_1 to act on pheno. subspace.

105 expectation_sigma_z_p0(alive_labels(i))=trace(rho_p0(:,:,alive_labels(i))*kron(eye(2)

,sigma_z));

106 disp([' ',num2str(alive_labels(i)),': <sigma_z>_p0=',num2str(

expectation_sigma_z_p0(alive_labels(i)))])

107 endfor

108 disp(' '); disp(' ');

109
110
111 disp(['____________________________Random MOVEMENT_______________________________'])

112 for i=1:size(alive_labels,2) % per alive individual.

113 if t==0

114 disp(' NO movement at t=0.')

115 break % At t=0 individuals interact, but do not move until the next t step.

46

116 endif

117 x=randi([−1 1]); % movement in x axis.

118 y=randi([−1 1]); % " " y " .

119 disp(['If individual ', num2str(alive_labels(i)),' moves in direction (x,y)=(',

num2str(x),',',num2str(y),'):'])

120 if (x!=0) || (y!=0) % = if the individual moves:

121 % There is a − in ...(y_pos(alive_labels(i))−y)..., because row index y_pos()

increases towards the negative direction of y:

122 if (grid(mod((y_pos(alive_labels(i))−y)−1, n_row)+1, mod((x_pos(i)+x)−1,n_column)
+1)!=0) % Cannot move to a cell where there already is an individual.

123 disp(['Individual ', num2str(alive_labels(i)),' canNOT move there, that cell is

already occupied by individual ', num2str(grid(mod((y_pos(alive_labels(i))−y)
−1, n_row)+1, mod((x_pos(alive_labels(i))+x)−1,n_column)+1)),'.'])

124 else

125 grid(mod((y_pos(alive_labels(i))−y)−1,n_row)+1,mod((x_pos(alive_labels(i))+x)−1,
n_column)+1)=grid(y_pos(alive_labels(i)),x_pos(alive_labels(i)));

126 grid(y_pos(alive_labels(i)),x_pos(alive_labels(i)))=0; % The indiv. dissapears

from the previous position.

127 y_pos(alive_labels(i))=mod((y_pos(alive_labels(i))−y)−1, n_row)+1; % new position

's row index.

128 x_pos(alive_labels(i))=mod((x_pos(alive_labels(i))+x)−1, n_column)+1; % new

position's column index.

129 endif

130 endif

131 disp(grid)

132 endfor

133 disp(' '); disp(' ')

134
135 disp(['____________________________ INTERACTION__________________________________'])

136 disp('(<sigma_z>_p(t=0)=<sigma_z>_g=trophic role)'); disp(' ');

137 pred_prey_total=[]; % = [predator_label, prey_label], to clean later the repeated

interactions. We will add a row per interaction.

138 for i=1:size(alive_labels,2) % per alive individual.

139 for x_interac=−1:1 % Interaction range (Moore) in the x axis.

140 for y_interac=−1:1 % " " " " " y " .

141 if (x_interac!=0) || (y_interac!=0) % Not to include the current indiv., where (

x_interac,y_interac)=(0,0).

142 %disp(['The cell at the (x,y)=(',num2str(x_interac),',',num2str(y_interac),')

part of the ', num2str(i),' th indiv is: ', num2str(grid(mod((y_pos(i)−
y_interac)−1, n_row)+1, mod((x_pos(i)+x_interac)−1,n_column)+1))])

143 % There is a − in ...(y_pos(alive_labels(i))−y_interac)..., because row index

y_pos() increases towards the negative direction of y:

144 if (grid(mod((y_pos(alive_labels(i))−y_interac)−1, n_row)+1, mod((x_pos(

alive_labels(i))+x_interac)−1,n_column)+1)!=0)
145 interac_indiv=grid(mod((y_pos(alive_labels(i))−y_interac)−1, n_row)+1, mod((

x_pos(alive_labels(i))+x_interac)−1,n_column)+1); % label of the

individual that interacts with the i th one.

146 disp(['Individual ', num2str(alive_labels(i)),' interacts with individual ',

47

num2str(interac_indiv),'.'])

147 disp([' ',num2str(alive_labels(i)),': <sigma_z>_p0(t=0)=',num2str(

expectation_sigma_z_g0(alive_labels(i)))])

148 disp([' ', num2str(interac_indiv),': <sigma_z>_p0(t=0)=',num2str(

expectation_sigma_z_g0(interac_indiv))])

149 if (expectation_sigma_z_g0(alive_labels(i)) > expectation_sigma_z_g0(

interac_indiv))

150 disp([' Thus, here: ', num2str(alive_labels(i)),'=predator; ', num2str(

interac_indiv),'=prey.']); disp(' ')

151 pred_prey_total=[pred_prey_total; [alive_labels(i), interac_indiv]];

152 elseif (expectation_sigma_z_g0(alive_labels(i)) < expectation_sigma_z_g0(

interac_indiv))

153 disp([' Thus, here: ', num2str(interac_indiv),'=predator; ', num2str(

alive_labels(i)),'=prey.']); disp(' ')

154 pred_prey_total=[pred_prey_total; [interac_indiv, alive_labels(i)]];

155 else % same level in the trophic pyramid.

156 disp([' Thus, here, both are predators or both preys, they do NOT

interact!.']); disp(' ')

157 % Thus, here, we do not append a row to the matrix pred_prey_total.

158 endif

159 endif

160 endif

161 endfor

162 endfor

163 endfor

164
165 % Clean the repeated interactions.

166 pred_prey_not_repeated=unique(pred_prey_total,'rows'); % Return the unique rows.

167 disp(' '); disp(' '); disp(' '); disp('EFFECTS:'); disp(' ');

168 for i=1:size(pred_prey_not_repeated,1) % Each row is an (unrepeated per t step)

interaction.

169 disp(['If ',num2str(pred_prey_not_repeated(i,1)),'=predator; ',num2str(

pred_prey_not_repeated(i,2)),'=prey:'])

170
171 % Interaction Hamiltonian H_int

172 H_pred=a_k(pred_prey_not_repeated(i,1))*kron(sigma_z,sigma_z)+b_k(

pred_prey_not_repeated(i,1))*kron(sigma_z,eye(2));

173 H_prey=a_k(pred_prey_not_repeated(i,2))*kron(sigma_z,sigma_z)+b_k(

pred_prey_not_repeated(i,2))*kron(eye(2),sigma_z);

174 H_int=H_pred+H_prey;

175 % <H_int>_kron(rho_g_pred,rho_g_prey):

176 expectation_H_int_genotypes=trace(kron(rho_g0(:,:,pred_prey_not_repeated(i,1)),

rho_g0(:,:,pred_prey_not_repeated(i,2))) * H_int);

177 disp([' <H_int>_genotypes = ',num2str(expectation_H_int_genotypes)])

178 if (expectation_H_int_genotypes>0) % The predator HUNTs the prey. Harm is

proportional to <H_int>_genotypes and prey's life:

179 % Predator's age decreases, beneficial for it. Note the abs(), age can be negative.

180 expectation_sigma_z_p0(pred_prey_not_repeated(i,1))= expectation_sigma_z_p0(

48

pred_prey_not_repeated(i,1)) − harm*expectation_H_int_genotypes* abs(

expectation_sigma_z_p0(pred_prey_not_repeated(i,2)));

181 % Prey's age increases by the same amount (feeding) predator's age decreases.

Harmful for the prey.

182 expectation_sigma_z_p0(pred_prey_not_repeated(i,2))= expectation_sigma_z_p0(

pred_prey_not_repeated(i,2)) + harm*expectation_H_int_genotypes* abs(

expectation_sigma_z_p0(pred_prey_not_repeated(i,2)));

183 disp([' The predator (',num2str(pred_prey_not_repeated(i,1)),') HUNTS the prey (

',num2str(pred_prey_not_repeated(i,2)),'): <sigma_z>_p0^pred=',num2str(

expectation_sigma_z_p0(pred_prey_not_repeated(i,1))),'; <sigma_z>_p0^prey=',

num2str(expectation_sigma_z_p0(pred_prey_not_repeated(i,2))),'.'])

184 else % prey escapes

185 disp([' The prey (',num2str(pred_prey_not_repeated(i,2)),') ESCAPES from the

prey (',num2str(pred_prey_not_repeated(i,2)),'), so it does NOT get any harm!'

])

186 endif

187 disp(' ')

188 endfor

189 disp(' '); disp(' '); disp(' '); disp(' '); disp(' '); disp(' '); disp(' '); disp(' ');

disp(' '); disp(' ');

190
191 endfor % End of time t iterations.

49

B Calculations

B.1 Why did we choose t ↑, 〈σ̂z〉ρ̂p ↑ ?

• Example:
(4.23) = 〈σ̂z〉ρ̂p0 (t) = 1 + 2e−λt(a− 1) (B.1)

� 〈σ̂z〉ρ̂p0 (t = 0)
(4.23)
= 1 + 2e−λ0(a− 1) = 1 + 2a− 2 = 2a− 1

(4.22)
= 〈σ̂z〉ρ̂g1 = (4.15).

� 〈σ̂z〉ρ̂p0 (t =∞)
(4.23)
= 1 + 2e−λ∞ = 1 + 0 = 1 = 〈σ̂z〉 (t = td) ↔ ε = 0.

So, 〈σ̂z〉 (t = td) > 〈σ̂z〉ρ̂p0 (t = 0) ↔ 1 > 2a− 1 ↔ a < 1.

• In general, for t =∞, 〈σ̂z〉ρ̂pi (t) |t=∞
(B.25)
= 〈σ̂z〉ρ̂A = Tr(ρ̂A σ̂z) = 1.

Figure B.1: Plot of (4.23) = 〈σ̂z〉ρ̂p0 (t) = 1 + 2e−λt(a− 1) as a function of λt, for several values of a < 1.
a > 1 is forbidden, because 〈σ̂z〉ρ̂pi (t) must be an increasing function. For a1 > a2, td(a1) < td(a2).

50

B.2 If σ̂z is the observable whose expectation value in the genotype subspace is chosen to be
preserved by Eq. (4.2), and ρ̂A = |0〉 〈0|, why Û = ÛCNOT?

Let us suppose we have a unitary operator of the following form, in the {|0〉 , |1〉} basis,

Û
.
=


A e f g
e∗ B h i
f∗ h∗ C j
g∗ i∗ j∗ d

 , A,B,C, d ∈ R. (B.2)

For ρ̂g0 = (4.7), 〈σ̂z〉ρ̂g0
(4.12)
= 2a− 1. We want Eq. (4.5) to be satisfied. Then,{

〈σ̂z ⊗ 1̂2〉ρ̂1 = 2a− 1.

〈1̂2 ⊗ σ̂z〉ρ̂1 = 2a− 1.
, where (B.3)

ρ̂1 = Û (ρ̂g0 ⊗ ρ̂A) Û †
(B.10-B.2)

= Û


a 0 b− ic 0
0 0 0 0

b+ ic 0 1− a 0
0 0 0 0



A e f g
e∗ B h i
f∗ h∗ C j
g∗ i∗ j∗ d



=


A e f g
e∗ B h i
f∗ h∗ C j
g∗ i∗ j∗ D




aA+ f∗(b− ic) ae+ h∗(b− ic) af + C(b− ic) ag + j(b− ic)
0 0 0 0

A(b+ ic) + f∗(1− a) e(b+ ic) + h∗(1− a) f(b+ ic) + C(1− a) g(b+ ic) + j(1− a)
0 0 0 0



=

(
aA2 + 2ARe(f(b+ ic)) + |f |2(1− a); Aae+Ah∗(b− ic) + ef(b+ ic) + fh∗(1− a); Aaf +AC(b− ic) + f2(b+ ic) + fC(1− a); Aag +Aj(b− ic) + fg(b+ ic) + fj(1− a);

e∗aA+ e∗f∗(b− ic) + hA(b+ ic) + hf∗(1− a); a|e|2 + 2Re(he(b+ ic)) + |h|2(1− a); e∗af + e∗C(b− ic) + hf(b+ ic) + hC(1− a); e∗ag + e∗j(b− ic) + hg(b+ ic) + hj(1− a);
f∗aA+ (f∗)2(b− ic) + CA(b+ ic) + Cf∗(1− a); f∗ae+ f∗h∗(b− ic) + Ce(b+ ic) + Ch∗(1− a); a|f |2 + 2CRe(f(b+ ic)) + C2(1− a); f∗ag + f∗j(b− ic) + Cg(b+ ic) + Cj(1− a);
g∗aA+ g∗f∗(b− ic) + j∗A(b+ ic) + j∗f∗(1− a); g∗ae+ g∗h∗(b− ic) + j∗e(b+ ic) + j∗h∗(1− a); g∗af + g∗C(b− ic) + j∗f(b+ ic) + j∗C(1− a); a|g|2 + 2Re(gj∗(b+ ic)) + |j|2(1− a);

)
.

(B.4)

• Normalization condition for density operators, Tr ρ̂1 = 1, is obeyed if, and only if,

1 =
[
aA2 + 2ARe(f(b+ ic)) + |f |2(1− a)

]
+
[
a|e|2 + 2Re(he(b+ ic)) + |h|2(1− a)

]
+
[
a|f |2 + 2CRe(f(b+ ic)) + C2(1− a)

]
+
[
a|g|2 + 2Re(gj∗(b+ ic)) + |j|2(1− a)

]
.

(B.5)

• From Eq. (B.3a),

2a− 1 = 〈σ̂z ⊗ 1̂2〉ρ̂1 = Tr

ρ̂1


1
1
−1

−1




(1)
=
[
aA2 + 2ARe(f(b+ ic)) + |f |2(1− a)

]
+
[
a|e|2 + 2Re(he(b+ ic)) + |h|2(1− a)

]
−
[
a|f |2 + 2CRe(f(b+ ic)) + C2(1− a)

]
−
[
a|g|2 + 2Re(gj∗(b+ ic)) + |j|2(1− a)

]
(B.5)
= 2

[
aA2 + 2ARe(f(b+ ic)) + |f |2(1− a)

]
+ 2

[
a|e|2 + 2Re(he(b+ ic)) + |h|2(1− a)

]
− 1

↔ a =
[
aA2 + 2ARe(f(b+ ic)) + |f |2(1− a)

]
+
[
a|e|2 + 2Re(he(b+ ic)) + |h|2(1− a)

]
.

(B.6)

51

where in (1) we used Eq. (B.4) and the fact that we are only interested in its diagonal elements. We claim
the latter because multiplying by σ̂z ⊗ 1̂2 just makes Eq. (B.4) change in sign and we are evaluating the
trace, the sum of the diagonal elements, of this matrix product.

• From Eq. (B.3b),

2a− 1 = 〈1̂2 ⊗ σ̂z〉ρ̂1 = Tr

ρ̂1


1
−1

1
−1




(B.4)
=
[
aA2 + 2ARe(f(b+ ic)) + |f |2(1− a)

]
−
[
a|e|2 + 2Re(he(b+ ic)) + |h|2(1− a)

]
+
[
a|f |2 + 2CRe(f(b+ ic)) + C2(1− a)

]
−
[
a|g|2 + 2Re(gj∗(b+ ic)) + |j|2(1− a)

]
(B.5)
= 2

[
aA2 + 2ARe(f(b+ ic)) + |f |2(1− a)

]
+ 2

[
a|f |2 + 2CRe(f(b+ ic)) + C2(1− a)

]
− 1

↔ a =
[
aA2 + 2ARe(f(b+ ic)) + |f |2(1− a)

]
+
[
a|f |2 + 2CRe(f(b+ ic)) + C2(1− a)

]
.

(B.7)

• (B.6)−(B.7) = a−a = 0 =
[
a|e|2 + 2Re(he(b+ ic)) + |h|2(1− a)

]
−
[
a|f |2 + 2CRe(f(b+ ic)) + C2(1− a)

]
.

• Then, Eq. (B.5),

1 =
[
aA2 + 2ARe(f(b+ ic)) + |f |2(1− a)

]
+ 2

[
a|e|2 + 2Re(he(b+ ic)) + |h|2(1− a)

]
+
[
a|g|2 + 2Re(gj∗(b+ ic)) + |j|2(1− a)

]
↔ e, f, g, h = 0 (to remove b, c) and A = j = 1.

(B.8)

• Now, from Eq. (B.7), a = a− C2(1− a) ↔ C = 0.

Hence, Eq. (B.2),

Û
.
=


A e f g
e∗ B h i
f∗ h∗ C j
g∗ i∗ j∗ d

 =


1

1
1

1

 (3.8).
= ÛCNOT ≡ ÛCσ̂x . (B.9)

52

B.3 Calculations of ρ̂g1 , Eq. (4.8), and ÛCNOT, Eq. (4.9)

ρ̂g1 ≡ Û(ρ̂g0 ⊗ ρ̂A)Û † = Û(ρ̂g0 ⊗ |0〉 〈0|)Û †
.
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

((a b− ic
b+ ic 1− a

)
⊗
(

1 0
0 0

))
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


T

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 a

(
1 0
0 0

)
(b− ic)

(
1 0
0 0

)
(b+ ic)

(
1 0
0 0

)
(1− a)

(
1 0
0 0

)



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




a 0 b− ic 0
0 0 0 0

b+ ic 0 1− a 0
0 0 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




a 0 0 b− ic
0 0 0 0

b+ ic 0 0 1− a
0 0 0 0



=


a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a

 , where

(B.10)

Û
(B.9)
= ÛCNOT ≡ |0〉 〈0| ⊗ 1̂2 + |1〉 〈1| ⊗ σ̂x

.
=

(
1 0
0 0

)
⊗
(

1 0
0 1

)
+

(
0 0
0 1

)
⊗
(

0 1
1 0

)

=

1

(
1 0
0 1

)
0

(
1 0
0 1

)
0

(
1 0
0 1

)
0

(
1 0
0 1

)
+

0

(
0 1
1 0

)
0

(
0 1
1 0

)
0

(
0 1
1 0

)
1

(
0 1
1 0

)
 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0



=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

(B.11)

where the partial cloning operation for the two qubits implied is the CNOT gate (Û = ÛCNOT) because of
Appendix B.2.

B.4 Calculations of Eq. (4.15-4.17)

• 〈σ̂z〉ρ̂g1 = 〈(σ̂z)g1 ⊗ 1̂p0〉ρ̂1 ≡ 〈σ̂z ⊗ 1̂2〉ρ̂1 = Tr(ρ̂1(σ̂z ⊗ 1̂2))
.
= Tr

(
ρ̂1

((
1 0
0 −1

)
⊗
(

1 0
0 1

)))

= Tr




a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 = Tr


a 0 0 ic− b
0 0 0 0
0 0 0 0

b+ ic 0 0 a− 1

 = 2a− 1.

(B.12)

53

• 〈σ̂z〉ρ̂p0 (tp0) = 〈1̂g1 ⊗ (σ̂z)p0〉ρ̂1 ≡ 〈1̂2 ⊗ σ̂z〉ρ̂1 = Tr(ρ̂1(1̂2 ⊗ σ̂z))
.
= Tr

(
ρ̂1

((
1 0
0 1

)
⊗
(

1 0
0 −1

)))

= Tr




a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 = Tr


a 0 0 ic− b
0 0 0 0
0 0 0 0

b+ ic 0 0 a− 1

 = 2a− 1.

(B.13)

• 〈σ̂x〉ρ̂g1 = 〈(σ̂x)g1 ⊗ 1̂tp0 〉ρ̂1 ≡ 〈σ̂x ⊗ 1̂2〉ρ̂1 = Tr(ρ̂1(σ̂x ⊗ 1̂2))
.
= Tr

(
ρ̂1

((
0 1
1 0

)
⊗
(

1 0
0 1

)))

= Tr




a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 = Tr


0 b− ic a 0
0 0 0 0
0 0 0 0
0 1− a b+ ic 0

 = 0.
(B.14)

• 〈σ̂x〉ρ̂p0 (tp0) = 〈1̂g1 ⊗ (σ̂x)p0〉ρ̂1 ≡ 〈1̂2 ⊗ σ̂x〉ρ̂1 = Tr(ρ̂1(1̂2 ⊗ σ̂x))
.
= Tr

(
ρ̂1

((
1 0
0 1

)
⊗
(

0 1
1 0

)))

= Tr




a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 = Tr


0 a b− ic 0
0 0 0 0
0 0 0 0
0 b+ ic 1− a 0

 = 0.

(B.15)

• 〈σ̂y〉ρ̂g1 = 〈(σ̂y)g1 ⊗ 1̂p0〉ρ̂1 ≡ 〈σ̂y ⊗ 1̂2〉ρ̂1 = Tr(ρ̂1(σ̂y ⊗ 1̂2))
.
= Tr

(
ρ̂1

((
0 −i
i 0

)
⊗
(

1 0
0 1

)))

= Tr




a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a




0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0


 = Tr


0 c+ ib −ai 0
0 0 0 0
0 0 0 0
0 i− ai c− ib 0

 = 0.
(B.16)

• 〈σ̂y〉ρ̂p0 (tp0) = 〈1̂g1 ⊗ (σ̂y)p0〉ρ̂1 ≡ 〈1̂2 ⊗ σ̂y〉ρ̂1 = Tr(ρ̂1(1̂2 ⊗ σ̂y))
.
= Tr

(
ρ̂1

((
1 0
0 1

)
⊗
(

0 −i
i 0

)))

= Tr




a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


 = Tr


0 −ai c+ ib 0
0 0 0 0
0 0 0 0
0 c− ib i− ai 0

 = 0.

(B.17)

• 〈σ̂x ⊗ σ̂x〉ρ̂1 = Tr(ρ̂1(σ̂x ⊗ σ̂x))
.
= Tr

(
ρ̂1

((
0 1
1 0

)
⊗
(

0 1
1 0

)))

= Tr




a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 = Tr


b− ic 0 0 a

0 0 0 0
0 0 0 0

1− a 0 0 b+ ic

 = 2b.

(B.18)

54

B.5 Why is ρ̂A the steady state of our Lindbladian?

Let us substitute in Eq. (4.20) a density operator of the form ρ̂(t)
.
=

(
a b
b∗ 1− a

)
, a = a(t), b = b(t).

d

dt
ρ̂(t) = λ

(
σ̂ ρ̂(t) σ̂† − 1

2

{
σ̂† σ̂, ρ̂(t)

})
.
= λ

(
0 1
0 0

)(
a b
b∗ 1− a

)(
0 0
1 0

)
− λ1

2

{(
0 0
1 0

)(
0 1
0 0

)
, ρ̂(t)

}
= λ

(
0 1
0 0

)(
b 0

1− a 0

)
− λ1

2

(
0 0
0 1

)(
a b
b∗ 1− a

)
− λ1

2

(
a b
b∗ 1− a

)(
0 0
0 1

)
= λ

(
1− a 0

0 0

)
− λ1

2

(
0 0
b∗ 1− a

)
− λ1

2

(
0 b
0 1− a

)
= −λ

(
a− 1 b/2
b∗/2 1− a

)
.

(B.19)

Hence, if we define a(t = 0) ≡ a0 and b(t = 0) ≡ b0,

• d

dt
[ρ̂(t)]11 =

da

dt
= λ(1− a) → da

1− a
= λdt → − ln(1− a) + C1 = λt

t=0−−→

− ln(1− a0) + C1 = 0 → ln

(
1− a
1− a0

)
= −λt → a = a(t) = 1 + e−λt(a0 − 1),

(B.20)

• d

dt
[ρ̂(t)]12 =

db

dt
= −λb/2→ db

b
= −λ

2
dt → ln

(
b

b0

)
= −λ

2
t → b = b(t) = b0e

−λt/2. (B.21)

These solutions –more generally, the behavior of an open quantum system– can be viewed as ρ̂(t) =∑1
k=0 M̂k ρ̂(0) M̂ †k , where η ≡ 1− e−λt and the operation elements31 are [1, p. 388, Eq. (8.144-8.146)]

M̂0
.
=

(
1 0
0
√

1− η

)
, and M̂1

.
=

(
0
√
η

0 0

)
. (B.22)

That is,

ρ̂(t) =
∑
k

M̂k ρ̂(0) M̂ †k = M̂0 ρ̂(0) M̂ †0 + M̂1 ρ̂(0) M̂ †1
.
=

(
1 0
0
√

1− η

)(
a0 b0
b∗0 1− a0

)(
1 0
0
√

1− η

)
+(

0
√
η

0 0

)(
a0 b0
b∗0 1− a0

)(
0 0√
η 0

)
=

(
1 0
0
√

1− η

)(
a0 b0

√
1− η

b∗0 (1− a0)
√

1− η

)
+

(
0
√
η

0 0

)(
b0
√
η 0

(1− a0)
√
η 0

)
=

(
a0 b0

√
1− η

b∗0
√

1− η (1− a0) (1− η)

)
+

(
(1− a0) η 0

0 0

)
=

(
a0 + (1− a0)η b0

√
1− η

b∗0
√

1− η (1− a0) (1− η)

)
.

(B.23)

31(B.22) is said to be a normalized set of so called Kraus operators since∑
k

M̂†k M̂k = M̂†0 M̂0 + M̂†1 M̂1
.
=

(
1 0
0
√
1− η

)(
1 0
0
√
1− η

)
+

(
0 0√
η 0

)(
0
√
η

0 0

)
=

(
1 0
0 1− η

)
+

(
0 0
0 η

)
= 1̂2.

55

• For t = 0 → η = 1− e−λ0 = 1− 1 = 0 we recover the initial state ρ̂(t = 0),

ρ̂(t = 0)
.
=

(
a0 + (1− a0)0 b0

√
1− 0

b∗0
√

1− 0 (1− a0) (1− 0)

)
=

(
a0 b0
b∗0 1− a0

)
. (B.24)

• For t =∞ → η = 1− e−λ∞ = 1− 0 = 1, conversely,

ρ̂(t =∞)
.
=

(
a+ (1− a)1 b

√
1− 1

b∗
√

1− 1 (1− a) (1− 1)

)
=

(
1 0
0 0

)
.
= |0〉 〈0| ≡ ρ̂A. (B.25)

Thus, regardless of the initial state ρ̂(t = 0), the Lindbladian pushes the system towards its steady
state |0〉, by destroying all coherences (off-diagonal elements in the matrix representation of the density
operator ρ̂).

56

B.6 Calculations of ρ̂p0(t), Eq. (4.21)

Here, we use σ̂ = 1̂2 ⊗ |0〉 〈1| instead of σ̂ = |0〉 〈1| in Eq. (4.21) in order to act just on the subspace
corresponding to the phenotype qubit, following footnote 19. Despite dropping the subscripts to avoid
cumbersome notation, rigorously σ̂ = 1̂2 ⊗ |0〉 〈1| would be σ̂p, where subscript p denotes that it acts on
the phenotype subspace.

σ̂ = 1̂2 ⊗ |0〉 〈1|
.
=

(
1 0
0 1

)
⊗
(

0 1
0 0

)
=

1

(
0 1
0 0

)
0

(
0 1
0 0

)
0

(
0 1
0 0

)
1

(
0 1
0 0

)
 =


0 1
0 0

0 1
0 0

 , (B.26)

and σ̂† = (1̂2⊗|0〉 〈1|)†
(1)
= (1̂2)

†⊗(|0〉 〈1|)† (2)
= 1̂2⊗|1〉 〈0|

.
=

(
1 0
0 1

)
⊗
(

0 0
1 0

)
=


0 0
1 0

0 0
1 0

 , (B.27)

where in equality (B.27(1)) we used Ref. [1, p. 74, Eq. (2.53)]: (Â⊗B̂)T = ÂT⊗B̂T , and (Â+B̂)∗ = Â∗⊗B̂∗.
Therefore, since Â† ≡ (Â∗)T ≡ (ÂT)∗, (Â+ B̂)† = Â† ⊗ B̂†. We additionally used, in equality (B.27(2)),

(1̂2)
† .=

(
1 0
0 1

)†
=

(
1 0
0 1

)
.
= 1̂2.

Then,

˙̂ρ1 = λ

(
σ̂ρ̂1σ̂

† − 1

2
σ̂†σ̂ρ̂1 −

1

2
ρ̂1σ̂

†σ̂

)
(4.8)
= λσ̂


a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a




0 0
1 0

0 0
1 0



− λ1

2
σ̂†


0 1
0 0

0 1
0 0




a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a

− λ1

2
ρ̂p0


0 0
1 0

0 0
1 0




0 1
0 0

0 1
0 0



= λ


0 1
0 0

0 1
0 0




0 0 b− ic 0
0 0 0 0
0 0 0 0
0 0 1− a 0

− λ1

2


0 0
1 0

0 0
1 0




0 0 0 0
0 0 0 0

b+ ic 0 0 1− a
0 0 0 0



− λ1

2


a 0 0 b− ic
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a




0 0
0 1

0 0
0 1

 = λ


0 0 0 0
0 0 0 0
0 0 1− a 0
0 0 0 0

− λ1

2


0 0 0 0
0 0 0 0
0 0 0 0

b+ ic 0 0 1− a



− λ1

2


0 0 0 b− ic
0 0 0 0
0 0 0 0
0 0 0 1− a

 = −λ1

2


0 0 0 b− ic
0 0 0 0
0 0 −2(1− a) 0

b+ ic 0 0 2(1− a)

 .

(B.28)

57

Then, we solve Eq. (B.28) element by element in order to obtain Eq. (4.21). We use times a lot sooner
(t� 1) than death or decoherence time td when ρ̂p0(td) = ρ̂A.

• d

dt
(ρ̂p0(t))11 = 0→ (ρ̂p0(t))11 = C1

t=0−−→ (ρ̂p0(t = 0))11 = C1
(4.8)
= a→ (ρ̂p0(t))11 = a. (B.29)

• d
dt

(ρ̂p0(t))14
41


= −λ1

2
(b∓ ic)→(ρ̂p0(t))14

41


= −λ1

2
(b∓ ic)t+ C2

t=0−−→ (ρ̂p0(t = 0))14
41


= C2

(4.8)
= b∓ ic→

(ρ̂p0(t))14
41


= (b∓ ic)(−λ t

2
+ 1)

t�1︷︸︸︷
≈ (b∓ ic)e−λ

t
2 .

(B.30)

• d
dt

(ρ̂p0(t))44 = −λ(1− a)→ (ρ̂p0(t))44 = −λ(1− a)t+ C4
t=0−−→ (ρ̂p0(t = 0))44 = C4

(4.8)
= 1− a→

(ρ̂p0(t))44 = (1− λ t)(1− a) ≈︸︷︷︸
t�1

e−λ t(1− a).
(B.31)

• d
dt

(ρ̂p0(t))33 = λ(1− a)→ (ρ̂p0(t))33 = λ(1− a)t+ C3
t=0−−→ (ρ̂p0(t = 0))33 = C3

(4.8)
= 0→

(ρ̂p0(t))33 = λ(1− a)t = (1− 1 + λ t)(1− a) = (1− (1− λ t))(1− a) ≈︸︷︷︸
t�1

(1− e−λ t)(1− a).
(B.32)

• Otherwise, (for (ρ̂p0(t))ij : ij = 12, 13, 21, 22, 23, 24, 31, 32, 34, 42, 43)

d

dt
(ρ̂p0(t))ij = 0→ (ρ̂p0(t))ij = C5

t=0−−→ (ρ̂p0(t = 0))ij = C5
(4.8)
= 0→ (ρ̂p0(t))ij = 0. (B.33)

58

B.7 Calculations of Eq. (4.22-4.23)

• 〈σ̂z〉g1 = 〈(σ̂z)g1 ⊗ 1̂p0〉ρ̂1 (t) ≡ 〈σ̂z ⊗ 1̂2〉ρ̂1 (t) = Tr(ρ̂1(t) (σ̂z ⊗ 1̂2))
.
= Tr

(
ρ̂1(t)

((
1 0
0 −1

)
⊗
(

1 0
0 1

)))

(4.21)
= Tr




a 0 0 (b− ic)e−λt/2
0 0 0 0
0 0 (1− a)(1− e−λt) 0

(b+ ic)e−λt/2 0 0 (1− a)e−λt




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




= Tr


a 0 0 (ic− b)e−λt/2
0 0 0 0
0 0 (a− 1)(1− e−λt) 0

(b+ ic)e−λt/2 0 0 (a− 1)e−λt


= a+ a− ae−λt − 1 + e−λt + ae−λt − e−λt = 2a− 1 6= 〈σ̂z〉g1 (t).

(B.34)

• 〈σ̂z〉p0 (t) = 〈1̂g1 ⊗ (σ̂z)p0〉ρ̂1 (t) ≡ 〈1̂2 ⊗ σ̂z〉ρ̂1 (t) = Tr(ρ̂1(t) (1̂2 ⊗ σ̂z))
.
= Tr

(
ρ̂1(t)

((
1 0
0 1

)
⊗
(

1 0
0 −1

)))

(4.21)
= Tr




a 0 0 (b− ic)e−λt/2
0 0 0 0
0 0 (1− a)(1− e−λt) 0

(b+ ic)e−λt/2 0 0 (1− a)e−λt




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




= Tr


a 0 0 (ic− b)e−λt/2
0 0 0 0
0 0 (1− a)(1− e−λt) 0

(b+ ic)e−λt/2 0 0 (a− 1)e−λt


= a+ 1− e−λt − a+ ae−λt + ae−λt − e−λt = 1 + 2e−λt(a− 1).

(B.35)

B.8 Proof of Eq. (4.30)

We use the qubit order of IBM’s computer, Eq. (4.29). For example, for i = 2, j = 1: |xy〉 ≡ |x〉2 |y〉1,
x, y ∈ {0, 1}.

• For Ûij , i > j, and i = 2, j = 1,

59

Û21 (a |00〉+ b |01〉+ c |10〉+ d |11〉) = a |00〉+ b |01〉+ c |11〉+ d |10〉 .
=

Û21


a
b
c
d

 =


a
b
d
c

↔ Û21
.
=


1

1
1

1

 =

(
1̂2

σ̂x

)
≡ ÛCσ̂x = ÛCNOT = Ûij . QED

(B.36)

• On the other hand, for Ûji, i > j, and i = 2, j = 1,

Û12 (a |00〉+ b |01〉+ c |10〉+ d |11〉) = a |00〉+ b |11〉+ c |10〉+ d |01〉 .
=

Û12


a
b
c
d

 =


a
d
c
b

↔ Û12
.
=


1

1
1

1

 = Ûji,
(B.37)

B.9 Proof of Eq. (4.31)

For i > j and i, j = 0, 1, 2, 3, in the notation of Eq. (4.29),

Ûji = Û⊗2Had Ûij Û
⊗2
Had =

(
1√
2

(
1 1
1 −1

)
⊗ 1√

2

(
1 1
1 −1

))
ÛijÛ

⊗2
had

(4.30)
=

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1
1

1
1

 Û⊗2Had

=
1

2


1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

 1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =
1

4


4

4
4

4

 =


1

1
1

1

 .

(B.38)

60

B.10 Calculations of 〈Ĥk〉ρ̂αg⊗ρ̂βg |k=α, Eq. (4.26)

〈Ĥα〉ρ̂αg⊗ρ̂βg = Tr
[(
ρ̂αg ⊗ ρ̂βg

)
Ĥα

]
(4.24)
= Tr

[(
ρ̂αg ⊗ ρ̂βg

) (
aα
(
σ̂⊗2z

)
+ bα

(
σ̂z ⊗ 1̂2

))]
= Tr

[(
ρ̂αg ⊗ ρ̂βg

)
aα
(
σ̂⊗2z

)]
+ Tr

[(
ρ̂αg ⊗ ρ̂βg

)
bα
(
σ̂z ⊗ 1̂2

)]
(4.25)
= Tr

[((
cos2(θα/2) 1

2 sin θαe
−iϕ

1
2 sin θαe

iϕ sin2(θα/2)

)
⊗
(

cos2(θβ/2) 1
2 sin θβe

−iϕ
1
2 sin θβe

iϕ sin2(θβ/2)

))
aα
(
σ̂⊗2z

)]
+ Tr

[(
ρ̂αg ⊗ ρ̂βg

)
bα

((
1 0
0 −1

)
⊗
(

1 0
0 1

))]

= aαTr

 (cos2(θα/2) cos2(θβ/2); 1
2 cos2(θα/2) sin θβ e

−iϕ; 1
2 sin θα e

−iϕ cos2(θβ/2); 1
4 sin θα sin θβ e

−2iϕ;
1
2 cos2(θα/2) sin θβ e

iϕ; cos2(θα/2) sin2(θβ/2); 1
4 sin θα sin θβ; 1

2 sin θα e
−iϕ sin2(θβ/2);

1
2 sin θα e

iϕ cos2(θβ/2); 1
4 sin θα sin θβ; sin2(θα/2) cos2(θβ/2); 1

2 sin2(θα/2) sin θβ e
−iϕ;

1
4 sin θα sin θβ e

2iϕ; 1
2 sin θα e

iϕ sin2(θβ/2); 1
2 sin2(θα/2) sin θβ e

iϕ; sin2(θα/2) sin2(θβ/2)

)1 0
0 −1

−1 0
0 1




+ bαTr

 (cos2(θα/2) cos2(θβ/2); 1
2 cos2(θα/2) sin θβ e

−iϕ; 1
2 sin θα e

−iϕ cos2(θβ/2); 1
4 sin θα sin θβ e

−2iϕ;
1
2 cos2(θα/2) sin θβ e

iϕ; cos2(θα/2) sin2(θβ/2); 1
4 sin θα sin θβ; 1

2 sin θα e
−iϕ sin2(θβ/2);

1
2 sin θα e

iϕ cos2(θβ/2); 1
4 sin θα sin θβ; sin2(θα/2) cos2(θβ/2); 1

2 sin2(θα/2) sin θβ e
−iϕ;

1
4 sin θα sin θβ e

2iϕ; 1
2 sin θα e

iϕ sin2(θβ/2); 1
2 sin2(θα/2) sin θβ e

iϕ; sin2(θα/2) sin2(θβ/2)

)1 0
0 1

−1 0
0 −1




= aαTr

(
cos2(θα/2) cos2(θβ/2); −1

2 cos2(θα/2) sin θβ e
−iϕ; −1

2 sin θα e
−iϕ cos2(θβ/2); 1

4 sin θα sin θβ e
−2iϕ;

1
2 cos2(θα/2) sin θβ e

iϕ; − cos2(θα/2) sin2(θβ/2); −1
4 sin θα sin θβ; 1

2 sin θα e
−iϕ sin2(θβ/2);

1
2 sin θα e

iϕ cos2(θβ/2); −1
4 sin θα sin θβ; − sin2(θα/2) cos2(θβ/2); 1

2 sin2(θα/2) sin θβ e
−iϕ;

1
4 sin θα sin θβ e

2iϕ; −1
2 sin θα e

iϕ sin2(θβ/2); −1
2 sin2(θα/2) sin θβ e

iϕ; sin2(θα/2) sin2(θβ/2)

)

+ bαTr

(
cos2(θα/2) cos2(θβ/2); 1

2 cos2(θα/2) sin θβ e
−iϕ; −1

2 sin θα e
−iϕ cos2(θβ/2); −1

4 sin θα sin θβ e
−2iϕ;

1
2 cos2(θα/2) sin θβ e

iϕ; cos2(θα/2) sin2(θβ/2); −1
4 sin θα sin θβ; −1

2 sin θα e
−iϕ sin2(θβ/2);

1
2 sin θα e

iϕ cos2(θβ/2); 1
4 sin θα sin θβ; − sin2(θα/2) cos2(θβ/2); −1

2 sin2(θα/2) sin θβ e
−iϕ;

1
4 sin θα sin θβ e

2iϕ; 1
2 sin θα e

iϕ sin2(θβ/2); −1
2 sin2(θα/2) sin θβ e

iϕ; − sin2(θα/2) sin2(θβ/2)

)
= aα cos2(θα/2)

[
cos2(θβ/2)− sin2(θβ/2)

]
+ aα sin2(θα/2)

[
− cos2(θβ/2) + sin2(θβ/2)

]
+ bα cos2(θα/2)

[
cos2(θβ/2) + sin2(θβ/2)

]
− bα sin2(θα/2)

[
cos2(θβ/2) + sin2(θβ/2)

]
= aα cos2(θα/2) cos θβ + aα sin2(θα/2) (− cos θβ) + bα cos θα = aα cos θα cos θβ − bα cos θα

= cos θα (aα cos θβ − bα) .

(B.39)

• 〈σ̂z〉ρ̂kg = Tr
[
ρ̂kg σ̂z

]
(4.25)
= Tr

[(
cos2(θk/2) 1

2 sin θke
−iϕ

1
2 sin θke

iϕ sin2(θk/2)

)(
1 0
0 −1

)]
= Tr

(
cos2(θk/2) −1

2 sin θke
−iϕ

1
2 sin θke

iϕ − sin2(θk/2)

)
= cos2(θk/2)− sin2(θk/2) = cos θk.

(B.40)

Hence,
〈Ĥα〉ρ̂αg⊗ρ̂βg

(B.39)
= cos θα (aα cos θβ − bα)

(B.40)
= 〈σ̂z〉ρ̂αg

(
aα 〈σ̂z〉ρ̂βg − bα

)
. (B.41)

61

	Contents
	Introduction and objectives
	Categorization
	Objectives and relevance

	Classical artificial life
	Definition of cellular automata
	Cellular automata example: the game of life
	Implementation of game of life
	Code
	Results

	Transition from classical to quantum artificial life
	Probabilistic picture of measurements
	Quantum implementation of GoL rules (without phase difference ei)
	A more quantum-like implementation of GoL rules (with phase difference ei)

	Fundamentals of quantum artificial life
	Qubits
	Bloch representation
	Single qubit quantum logic gates

	Controlled-NOT quantum logic gate (CNOT)
	No-cloning theorem
	General no-cloning theorem
	No-cloning theorem for approximate cloning

	Quantum artificial life model
	Finite lifetime ("426830A z"526930B p(t)), time constant genotype ("426830A z"526930B g="426830A z"526930B g(t)) and relative trophic roles ("426830A z"526930B 1g "426830A z"526930B 2g)
	Reproduction: self-replication
	Quantum partial cloning operator as self-replication operator
	Genotype creation
	Phenotype creation
	Preservation of "426830A z"526930B after self-replications

	Phenotype change
	Environment
	Inter-individual interaction

	Experimental implementation
	Experimental implementation of self-replication
	Experimental implementation of environment's decoherence

	Conclusions
	Bibliography
	Appendix Codes
	Game of life implementation
	Quantum GoL implementation
	Quantum GoL without phase ei
	Quantum GoL with phase ei

	Quantum artificial life code

	Appendix Calculations
	Why did we choose t"3222378 , "426830A z"526930B p"3222378 ?
	If z is the observable whose expectation value in the genotype subspace is chosen to be preserved by Eq. (4.2), and A=|0"526930B "426830A 0|, why =CNOT?
	Calculations of g1, Eq. (4.8), and CNOT, Eq. (4.9)
	Calculations of Eq. (4.15-4.17)
	Why is A the steady state of our Lindbladian?
	Calculations of p0(t), Eq. (4.21)
	Calculations of Eq. (4.22-4.23)
	Proof of Eq. (4.30)
	Proof of Eq. (4.31)
	Calculations of "426830A k"526930B gg|k=, Eq. (4.26)

