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Chapter 1

Introduction and Objectives

1.1 Introduction

Microwave and RF amplifiers are prone to undesired oscillations of different nature due to multiple
parasitic feedback loops [1], [2]. Therefore, it is convenient to predict these instabilities in simulation,
during the design process of the mentioned devices.

Several stability analysis methods can be found in the literature for the above-mentioned purpose [3]-[8];
however, since its first application to microwave amplifiers in 2001, pole-zero identification [8] has proved
to be a very useful and simple tool for the given problem. Its simplicity provides a quick graphical
evaluation of the stability: a system is said to be stable when the totality of its poles lies in the Left-Half
Plane (LHP) of the complex plane, i.e., when all the real parts of the poles are strictly negative.

To analyze the poles and zeros of the system, pole-zero identification requires the linear (or linearized)
transfer function of the system, preferably defined as the ratio of two polynomials. In the current
scenario, the transfer function of the circuit will be fitted from the frequency response, using optimization
techniques such as least squares, maximum likelihood estimation, vector fitting etc [9]. How to obtain
this frequency response will be later detailed, nevertheless, in this essay we will mainly focus on the fitting
technique itself. Indeed, quality and reliability of the stability assessment rely substantially on the fitted
transfer function.

The foremost problem encountered is guessing the order of the transfer function, which is a priori un-
known. If the system is under-modeled, part of the dynamics will be missing. On the other hand, if the
system is over-modeled, too many parameters will be added to the model and some misleading conclusions
could be drawn regarding the stability; non-physical unstable poles could be added to the model, making
designers believe a true instability exists in the circuit. Under-modeling is a problem easily controlled with
a correct error criteria; over-modeling, however, can be more complex to avoid and it is essentially the prin-
cipal issue addressed in this essay.

1.2 Objectives

As stated in the precedent section, over-modeling can be a critical problem for microwave circuit designers
when doing a pole-zero stability analysis. Hence, in this project we will aim to develop a new technique
and strategy to overcome this troublesome issue, or, to the extent possible, minimize its effects. To
that end, we will create an automatic algorithm based on the state-of-the-art automatic Vector Fitting

1



algorithm for stability analysis [10] and a paper authored by S. Grivet-Talocia and M. Bandinu [11].

Moreover, we will implement it in Matlab, where —once the transfer function identified— the correspond-
ing pole-zero diagram will be displayed in order to facilitate the interpretation of the results regarding
the stability of the device under test.

As an attempt to improve the state-of-the-art method, we will compare thoroughly the identifications
carried out by both automatic algorithms. Thus, we will be able to determine the possible advantages
of our contribution regarding over-modeling. Furthermore, bearing in mind the general scenario of this
project, we will specifically assess the validity of these benefits for the stability analysis of microwave and
RF amplifiers.

Lastly, we will conclude by evaluating the limitations of the developed technique and by proposing ideas
for a further work.
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Chapter 2

Theoretical Framework

In this chapter we will briefly set the theoretical framework of this project: pole-zero stability analysis of
microwave and RF amplifiers and the identification method Vector Fitting.

2.1 Pole-Zero Stability Analysis of Microwave and RF Ampli-
fiers

Pole-zero identification consists in the obtaining and the study of the poles and zeros of a linear (or
linearized) system’s frequency response. In fact, the information regarding the stability of the system
underlies the own nature of the poles [8], [12]:

• Poles with negative real part, i.e., laying in the Left-Half Plane (LHP), are stable and give rise
to signals that decay in time.

• Poles with positive real part, i.e., laying in the Right-Half Plane (RHP), are unstable and give
raise to signals that grow in time.

• Poles with null real part, i.e., laying in the imaginary axis, give rise to purely oscillatory signals.

Returning to the matter in hand —stability analysis of microwave and RF amplifiers— two main steps
have to be carried out in order to perform the pole-zero identification [13].

First of all, a closed-loop frequency response of the circuit linearized about its steady state must be
calculated. The cited steady state can be either a DC bias point or a large-signal periodic regime forced
by the input drive. Moreover, the closed-loop frequency response is obtained ”probing” the circuit and
sweeping the frequency along the band of examination, either by a small-signal voltage source inserted in
series into a circuit branch or by a small-signal current source branched at a circuit node. The frequency
response provided by the current source is the impedance seen by the probe at the connection node,
whereas the one obtained with the voltage source is the total admittance presented to the probe1.

Furthermore, having a linear or linearized system, all closed-loop frequency responses will share the same
set of poles. Consequently, the discussed frequency response can be either Single-Input Single-Output

1Other responses such as trans-impedances, trans-admittances or voltage and current transfers are also valid, as long
as they are closed-loop and describe the linearized system.
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(SISO) or Multiple-Input Multiple-Output (MIMO), since any node or branch of the circuit will render
the same stability information. Nonetheless, some nodes and branches of the circuit might be electrically
isolated from part of the circuit’s dynamics, which materializes in a pole-zero cancellation [10], [13], [14].

Secondly, the frequency response must be fitted to a transfer function, defined as the ratio of two poly-
nomials. For this purpose, several optimization techniques can be used, such as least squares, maximum
likelihood estimation, vector fitting etc. As stated earlier, the order of the transfer function is a priori un-
known and therein lies the fundamental challenge of the identification [9]. Precisely, both under-modeling
and over-modeling need to be avoided in the approximation to prevent misleading or partial conclusions
concerning the stability [15].

2.2 Vector Fitting Method

As discussed in the former section, the procured frequency response of the system must be fitted to
a transfer function by means of an optimization technique. Vector Fitting (VF) [16]-[18] is a general
methodology for the fitting of frequency domain responses with rational function approximations, and
since it has proved to be very suitable for stability analysis of microwave circuits [10], it will be the one
employed in this work. The technique goes as follows: [16]-[18]

The transfer functions are described using a rational function approximation:

Hm(s) ≈
N∑

n=1

rm,n

s− pn
+Dm , (2.1)

where Hm is the mth component of a vector of transfer functions, {pn}Nn=1 the poles of the system,
{rm,n}Nn=1 the residues, Dm the direct gain and N the order of the transfer function2.

The approximation is to be computed starting from a set of frequency samples {Hm(jωi)}Ns
i=1 and an

initial estimation of the N poles, {qn}Nn=1. Hereunder, we multiply (2.1) with an unknown function σ(s)
and set the following problem:

σ(s)Hm(s) ≈
N∑

n=1

r̂m,n

s− qn
+ D̂m where σ(s) ≈

N∑
n=1

r̃m,n

s− qn
+ 1 . (2.2)

This linear system is solved as a Least Squares problem using the available data {Hm(jwi)}Ns
i=1, leading

to the determination of {r̂m,n}, D̂m and {r̃m,n}.

We notice from (2.2) that the poles of the best rational approximation of Hm(s) must be equal to the
zeros of σ(s), {zm,n}, which can be easily calculated from D̂m and {qn}. Taking those as the new set
of poles, a new linear problem is appointed to determine the residues {rm,n} and direct gain Dm of the
transfer function. Thus, this realization gives way to a rational function approximation of the transfer
function, whose fitting error might depend in the initial guess of the set of poles.

Moreover, these steps can be repeated setting the final poles determined on the previous iteration as the
initial poles for the next one, improving consequently the approximation of the transfer function.

2Note that both the residues and the direct gain depend on the transfer function, while the set of poles is common for
all of them.
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Chapter 3

Automatic Identification with Vector
Fitting

In this chapter we will firstly describe the state-of-the-art regarding the use of Vector Fitting (VF) (fitting
method presented in Section 2.2) in the context of stability analysis of microwave circuits. Secondly, we
will expound our contribution to the aforementioned state-of-the-art.

3.1 State-of-the-Art Automatic Vector Fitting Algorithm for
Stability Analysis

VF is an iterative algorithm that takes an initial estimate set of poles and, by means of successive simple
VF identifications (see Section 2.2), returns an approximation of the transfer function once a desired
accuracy is reached or a certain number of iterations is performed. The selection of the order of the
transfer function, i.e., number of poles, can be either manual or automatic.

In case of the manual order selection, once the order has been selected by the user, the poles are usually
linearly spread in the bandwidth under study, following the instructions in [16]-[18]. Then, a sequence
of the above-mentioned iterations is conducted, resulting in an approximation of the transfer function of
the chosen order.

Conversely, when the selection of the order is automatic, a more fine algorithm has to be implemented.
That is the case of the stability analysis tool MM stab [10], [19], created by L. Mori in Matlab based on
VF, which computes the minimum order required to satisfy the fitting goal demanded by the user. This
goal is determined by the desired phase tolerance of the user, θtolerance; that is, the maximal absolute
phase error (for all the frequency points) between the identified transfer function and the frequency
response. Briefly summarizing the algorithm:

1. The lowest order possible for fitting the transfer function is assumed to be two times the number
of resonances in the frequency response; that is to say, Nmin = 2r, where r is the number of
resonances. To avoid over-modeling in the event of noisy responses, a minimal distance of 5 data
points is imposed between the resonances.

2. The initial poles are selected to be complex conjugate poles with weak attenuation and imaginary
parts that cover the entire frequency band under study, as indicated by [16]-[18].

3. A first VF identification is carried out, composed by 15 iterations.
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4. If the resulting phase error is below the selected phase tolerance θtolerance for all the frequencies
under study, the identification is stopped.

5. If the phase tolerance is exceeded, the order is increased by two, N → N + 2, and two complex
conjugate poles are added in the center of the frequency band.

6. A new identification is carried out and so on, increasing the order iteratively until the maximum
error criteria is attained or until the order reaches its maximum allowed value, Nmax = 10r.

A flow diagram that summarizes the automatic identification algorithm is shown in Figure 3.1.

Figure 3.1: Flow diagram of the state-of-the-art automatic VF algorithm for stability analysis.

In addition, to minimize the visualization of mathematical poles caused by over-modeling and improve
the interpretation of the results, only resonant poles with magnitude peaks greater than 0.5 dB and
resonant frequencies inside the bandwidth are plotted in the pole-zero map. That is to say, only pairs of
complex conjugate poles p = a± bj meeting these conditions are plotted:

δ =
− a

√
a2 + b2

< 0.5785 and wmin ≤ wr =
√
b2 − a2 ≤ wmax , (3.1)

where δ is the damping factor, wr the resonant frequency and wmin and wmax the lower and upper limits
of the frequency band under study.
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3.2 Proposed Contribution to the State-of-the-Art Automatic
Vector Fitting Algorithm for Stability Analysis

Owing to the problematic of over-modeling, a new automatic VF-based identification algorithm has been
proposed in this project, grounded on the cited work of L. Mori [10], [19] and a paper authored by S.
Grivet-Talocia and M. Bandinu [11]. Certainly, order estimation constitutes the most difficult stage when
intending a fully automated identification process and it is expressly what we have attempted to improve.

The main modifications and contributions to the basic VF algorithm introduced in this project are divided
in two categories: placing of the added poles and elimination of spurious poles. Additionally, an extra
stopping condition has been included in the main iteration loop —along with the phase tolerance and
the maximum order— to avoid both convergence issues and over-modeling: a threshold error variation
between successive iterations.

δθerror < α〈θerror〉 (3.2)

Here above δθerror = |θierror− θi−1
error| and 〈θerror〉 = 1

2 (θierror + θi−1
error) denote the absolute phase error

difference between the current and the previous iterations and the average phase error between those two
iterations, respectively. The phase error θerror is taken to be the maximum of the absolute phase error.

Likewise, α is a free parameter to delimit the threshold, set by default to 0.001. Indeed, when the error
variation between successive iterations reaches this threshold, that is, when equation (3.2) is satisfied, it
can be considered that θerror is stalling. Therefore, in order to avoid continuing to increase the order of
the transfer function, the identification is stopped.

3.2.1 Placing of the added poles

A modified placing of the added poles has been essentially intended to contribute a valid guess of the
placement of the poles before the standard VF pole relocation. It has been implemented both in the
determination of the initial set of poles and between the iterations of the standard VF algorithm.

For the determination of the initial set of poles, firstly, just as indicated in Section 3.1, the number of
resonances in the frequency response is computed (r) and then, each resonant peak is associated to a pair
of complex conjugate poles in the following way:

p2n−1
initial = (−0.01 + j)ωn , p2n

initial = (−0.01− j)ωn

for n ∈ {1, ..., r} ,
(3.3)

where {wn}rn=1 are the angular frequencies of the peaks. That is to say, the lowest order possible for
fitting the transfer function is established as twice the number of resonances, just as in [10], but instead of
spreading the imaginary parts of the poles linearly along the bandwidth, we place each complex conjugate
pair in a resonant frequency.

On the other hand, the addition of poles in each iteration is slightly trickier. The basic steps were
proposed by the mentioned work of S. Grivet-Talocia and M. Bandinu [11] in the context of convergence
improvement for noisy frequency responses, but we have found them to be equally effective to prevent
over-modeling. They go as follows:

• We calculate the frequency-dependent error of the actual fitting of each frequency response and its
mean value:

∆(ωi) = max
1≤m≤M

{
‖Hfit

m (jωi)−Hm(jωi)‖
}
, (3.4)
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〈∆(ωi)〉 =
1

Ns

Ns∑
i=1

∆(ωi) , (3.5)

where M is the total number of transfer functions and Ns the total number of frequencies.

Thereupon, we determine the subsequent set of frequencies from our data {ωi}Ns
i=1 for which the

error is greater than the mean value:

Ψ = {ωi : ∆(ωi) > 〈∆(ωi)〉} . (3.6)

• In parallel we define a safety zone around each pole of the actual fitting model where no new poles
will be allowed to be placed1:

Θ =

N⋃
n=1

Θn =

N⋃
n=1

{s : |Re(s)− Re(pn)| < ν|Re(pn)|

and |Im(s)− Im(pn)| < ν|Im(pn)|} ,

(3.7)

where ν is the minimum distance delimiter, a free parameter of the algorithm set by default to 0.01
after several tests.

• Thereafter, we will construct the set of possible poles to be added:

Π = {p = (0.01± j)ω : ω ∈ Ψ and p /∈ Θ} . (3.8)

Hence, when adding new poles within the algorithm —before VF relocation— we will select them
only from this set. For this selection, we will start by choosing those placed in error peaks or regions
with higher error and then, if necessary, continue with others placed as far apart as possible.

3.2.2 Elimination of spurious poles

Elimination of spurious poles is probably the most powerful addition to the state-of-the-art VF identifi-
cation algorithm to counteract our ongoing over-modeling problem. It can be conducted in a variety of
ways, but once again, we have employed the method proposed by S. Grivet-Talocia and M. Bandinu [11]:

• For each pair of complex conjugate poles {pn, p∗n} with residues {rm,n, r
∗
m,n} of the fitted model,

we calculate their contribution to the entire transfer function Hm:

Hm,n(s) =
rm,n

s− pn
+

r∗m,n

s− p∗n
n ∈ {1, ..., N} . (3.9)

• Afterwards, we compute the p-norm for each Hm,n over a bandwidth Ωm,n, defined by the -10 dB
level of the resonant peak:

µ(p)
m,n =

( ∑
ωi∈Ωm,n

|Hm,n(jωi)|p
) 1

p

, (3.10)

where p ∈ [1,+∞) is another free parameter of the algorithm, which, as suggested in [11], has been
set by default to p = 2.

1It must be clarified that the standard VF relocation could place few poles close to each other; this constraint is only
applied to the addition of the poles before VF relocation.
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• We next calculate the mean value of µ
(p)
m,n and the ratio dm,n:

〈µ(p)
m,n〉 =

1

N

N∑
n=1

µ(p)
m,n , dm,n =

µ
(p)
m,n

〈µ(p)
m,n〉

. (3.11)

• Once these values computed, the following poles pn are considered to be spurious:

max
1≤m≤M

{dm,n} < γ � 1 , (3.12)

where M is the total number of transfer functions, in case of a MIMO response, and γ the spurious
poles discriminator, parameter of the algorithm set by default to γ = 0.01.

These poles make a negligible contribution to the total fitting and therefore they will be eliminated.
Note that we consider the maximum value of dm,n over all m to avoid the effect of low controllability
and/or observability of different nodes.

Having described the kernel of these modifications we will now proceed to explain how to introduce them
in the standard VF identification algorithm:

1. We first compute the number of resonances r (with at least 5 data points) and associate a pair of
complex conjugate poles with weak attenuation to each peak, as described in Subsection 3.2.1. If
no peaks are found, two conjugate poles are placed with their imaginary parts in the middle of the
bandwidth under study, as suggested in [16]-[18].

2. We then enter the main iteration loop and initiate the VF identification, composed by Niter itera-
tions, a free parameter to be chosen by the user and set by default to Niter = 15.

3. Once these identifications are finished, we will search the number of spurious poles Nsp among the
recently relocated ones. If no spurious poles are found (Nsp = 0) we will proceed to check the
stopping conditions of the main iteration loop:

θerror < θtolerance , N = Nmax = 10r or δθerror < α〈θerror〉 .

4. On the contrary, if Nsp > 0 spurious poles are found, we will eliminate those poles and carry out
a new VF identification process (fixing the remaining poles) just to obtain the new fitting model.
Once these poles have been removed, we verify whether the phase tolerance chosen by the user is
respected. If so, the overall identification is terminated and otherwise, Nsp new poles from Π are
added (see Subsection 3.2.1).

5. Right after, we conduct another VF identification and, once finished, we check the stopping condi-
tions of the main iteration loop.

6. Just as in the standard identification algorithm, if none of these conditions are respected, the order
will be increased by two —adding two poles from Π, following the criteria thoroughly explained in
Subsection 3.2.1— and the same process will be repeated successively.

7. When any of the stopping requirements is satisfied, the overall identification will be terminated and
an ultimate cleaning of spurious poles will be conducted among the final ones.

We present in Figure 3.2 a flow diagram to summarize the created automatic identification algorithm2.

2The add-ons to the state-of-the-art algorithm are represented in orange boxes, whereas the usual elements are contained
in yellow ones.
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Figure 3.2: Flow diagram of the VF based automatic algorithm developed in this project.

The entire algorithm has been implemented in Matlab under the name of main stab, using the Vector
Fitting package developed by Bjørn Gustavsen [16]-[18]. In the main interface, presented in Figure 3.3,
the user can choose the values of the different parameters to conduct the automatic identification.

Figure 3.3: Capture of the initial interface of the created tool.
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After several tests we suggest the following setting to use by default:

• Number of iterations: Niter = 15 .

• P-norm parameter: p = 2 .

• Spurious poles discriminator: γ = 0.01 .

• Phase tolerance: θtolerance = 0.5

• Minimum distance delimiter: ν = 0.01 .

• Error variation threshold: α = 0.001 .

Nevertheless, it is interesting to point out that setting γ = 0, ν = 0 and α = 0, we recover the state-of-
the-art automatic VF identification algorithm, same one as in Section 3.1.

Furthermore, as a supplement, the created tool offers the opportunity to visualize the last result before
and after the last cleaning of spurious poles, as shown in Figures 3.4 and 3.5. If no spurious poles are
found a single pop-up window will appear.

Figure 3.4: Result of the automatic identification before the cleaning of spurious poles.
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Figure 3.5: Result of the automatic identification after the cleaning of spurious poles.
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Chapter 4

Comparative Analysis of the Two
Automatic Vector Fitting
Identification Algorithms

In this chapter we will perform an automatic Vector Fitting Identification with each of the methods
explained in Chapter 3 on several frequency responses. We will then compare those results and try to
extract the possible advantages and drawbacks of our proposed method (see Section 3.2), mainly regarding
over-modeling, the main issue tackled in this project.

4.1 Analytical Frequency Responses with Added Gaussian Noise

First of all, to ensure the validity of our algorithm and provide a more reliable comparison, we have
created a set of transfer functions in Matlab to serve as a reference, choosing manually the position of
their poles, their zeros and the gain. Knowing the actual result of the identifications, we will be able
to discern for each case the finest fitting between the two methods and, furthermore, estimate their
limitations.

To generate this set, we have started by creating 4 different transfer functions with the same poles but
different zeros. They all have a quasi-cancellation between a pole and a zero, i.e., they all have a complex
conjugate couple of pole-zeros placed very close in the complex plane. In fact, the only characteristic dif-
ferentiating one transfer function from the other is that distance. Thus, we have created 4 distinct samples
of the same transfer function, each with a particular level of pole-zero quasi-cancellation. Then, we have
added different levels of Gaussian noise to these 4 samples (option provided by Matlab) to hinder the iden-
tification of the transfer functions.

Due to the limited length of this report, after analyzing a vast quantity of the generated frequency
responses, we will only present the most illustrative and significant results, that are the extreme situations.
Therefore, we will examine a very noisy and a barely noisy frequency response for both the set with the
weakest pole-zero quasi-cancellation (first set) and the set with the strongest one (second set). That
way, we will be able to study how these automatic VF identification algorithms respond in the event of
physical quasi-cancellations (not numerical), noise and a combination of them.

The ideal identification —if noise were not fitted— should provide the same result for both responses of
the same set, as they only differ in their level of Gaussian noise. The exact pole-zero maps for set 1 and
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set 2 are depicted in Figures 4.1 and 4.2 respectively1. In addition, these maps show clearly the different
level of pole-zero quasi-cancellation between the first set and the second one.

Figure 4.1: Exact poles and zeros of Set 1. Order
of the transfer function N = 6.

Figure 4.2: Exact poles and zeros of Set 2. Order
of the transfer function N = 6.

Before the beginning of the comparative analysis, it must be pointed out that all the identifications will
be carried out with the default settings fixed in Subsection 3.2.2.

Among those parameters, it must be emphasized that the phase tolerance θtolerance will determine to a
large extent the results obtained in the analysis of the different frequency responses. In particular, the
default value θtolerance = 0.5o might be troublesome when identifying the frequency responses of Set 2,
as the phase shift due to the quasi-canceled pole is of approximately 0.4o.

Case 1a:

If we perform the automatic identification on the noisiest response of the first set, Case 1a, a substantial
number of quasi-canceled poles and zeros is obtained in the pole-zero map of Figure 4.1 (the exact result
if noise were not fitted). For instance, if we perform the automatic identification with the mentioned
MM stab (see Section 3.1), we obtain a large amount of spurious poles, as shown in Figure 4.3. In fact,
the order of the identified transfer function is 6 times the actual one: Nidentified = 36 and N = 6.

Likewise, if we perform the same identification with our algorithm main stab (with default parameters),
we also obtain a substantial number of spurious poles before the last cleaning, as presented in Figure 4.4.
Specifically, we obtain a transfer function of order Nidentified = 32, whereas if noise were not fitted, we
should ideally obtain N = 6.

However, after the last cleaning, all these quasi-canceled poles and zeros are suppressed and we obtain the
expected poles, as shown in Figure 4.5. From the same figure, one can also remark that the fitting error
is considerably increased and that the fitting goal θtolerance = 0.5o is no longer achieved. This is mainly
due to the difference in the zeros; they are less resonant and correspond to a region of high frequency
where the magnitude is lower and, hence, more sensitive to the noise. Still, it must be kept in mind that
it is an identification of a noisy response2 and that our algorithm has been able to identify no more and
no less than the actual poles, an indispensable condition for a proper stability analysis.

1Poles are represented by ’X’-s and zeros by ’O’-s.
2When trying to fit a noisy response it is suggested to relax the fitting goal by increasing the phase tolerance.
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In addition, as it will be later detailed, the maximum phase error obtained after the last cleaning of
spurious poles can serve as a warning of the presence of noise and to suggest a less strict θtolerance.

Figure 4.3: Result of the identification of Case 1a with MM stab. Nidentified = 36.

Figure 4.4: Result of the identification of Case 1a with our tool before the last cleaning of spurious
poles. Nidentified = 32.
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Figure 4.5: Result of the identification of Case 1a with our tool after the last cleaning of spurious poles.
Nidentified = 6.

Case 1b:

If we carry out the identification of a less noisier response of the first set, Case 1b, we notice that over-
modeling is drastically diminished with either of the methods. This can be seen from Figures 4.6 and 4.7,
where the result of the identification with MM stab and our tool before the last cleaning of spurious poles
are depicted, respectively. Hence, in this case, the enhancements of our algorithm are not that obvious,
as both methods provide similar results. Nevertheless, even before the last cleaning of spurious poles, we
remark from these same figures that our algorithm fits the response with a lower order than MM stab,
all respecting the phase tolerance.

Indeed, in both cases the iteration loop has been stopped once the phase tolerance has been reached, but
thanks to the novel placing of the added poles, our algorithm has been able to reach this goal by fitting
the noisy response with a lower order. Thus, we can already state that even before the last cleaning,
our automatic algorithm can decrease over-modeling due to a more appropriate placing of the poles (see
Subsection 3.2.1).

Moreover, after the last cleaning, just as with the noisier response, all the spurious poles are suppressed,
as seen in Figure 4.8. It must be noted that after the elimination, the fitting goal is no longer respected.
Still, θerror ≈ 1.5o is a coherent fitting error for a noisy response, since a lower one would fit the noise.
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Figure 4.6: Result of the identification of Case 1b with MM stab. Nidentified = 12.

Figure 4.7: Result of the identification of Case 1b with our tool before the last cleaning of spurious
poles. Nidentified = 10.
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Figure 4.8: Result of the identification of Case 1b with our tool after the last cleaning of spurious poles.
Nidentified = 6.

Case 2a:

We then continue with the set of transfer functions with the strongest quasi-cancellation, the second set.
If we perform the automatic identification to a very noisy frequency response of this set, Case 2a, the
fitted models are strongly over-modeled, similarly to Case 1a. This can be seen from Figures 4.9 and 4.10,
where the identification carried out with MM stab and by our tool before the last cleaning of spurious
poles are respectively depicted.

The quasi-cancellation between the pole and the zero being so strong (see Figure 4.2) and the Gaussian
noise so high, it is hardly detected by neither of the methods. Certainly, due to over-modeling, there is
a large amount of poles and zeros near that region; therefore, it is difficult to state whether the actual
quasi-canceled pole has been detected or whether it is ”hidden” inside the noise. Nonetheless, some other
valuable remarks and conclusions can be drawn regarding the differences between the two algorithms.
For instance, we can notice that the identification carried out by our algorithm does not meet the fitting
goal, as θerror ≈ 2.5o. In fact, the iteration process has been stopped due to the implemented novel
condition (3.2): the threshold error variation between successive iterations. As a consequence, the order
of the fitted model is Nidentified = 30, whereas the one obtained with MM stab is 36. Indeed, even if
both fitting models are extremely over-modeled, we can state that this extra condition can help, in a way,
to mitigate the effect of our problem in hand.

On the other hand, after the last cleaning of spurious poles, we obtain the result presented in Figure
4.11. As before, all of the spurious poles have been eliminated, even seemingly the quasi-canceled pole
and zero or, at least, the large amount of quasi-canceled poles near it.
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Figure 4.9: Result of the identification of Case 2a with MM stab. Nidentified = 36.

Figure 4.10: Result of the identification of Case 2a with our tool before the last cleaning of spurious
poles. Nidentified = 30.
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Figure 4.11: Result of the identification of Case 2a with out tool after the last cleaning of spurious
poles. Nidentified = 4.

Case 2b:

If we carry out the identification of a less noisier response of this same set, Case 2b, we first notice that
the number of spurious poles is greatly reduced with either methods. This can be seen from Figures 4.12
and 4.13, where the identification carried out with MM stab and by our algorithm before the last cleaning
of spurious poles are depicted, respectively. Moreover, from these same figures, we can also observe that
before the last cleaning of spurious poles, both identifications are identical.

Figure 4.12: Result of the identification of Case 2b with MM stab. Nidentified = 8.
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Figure 4.13: Result of the identification of Case 2b with our tool before the last cleaning of spurious
poles. Nidentified = 8.

Figure 4.14: Result of the identification of Case 2b with our tool after the last cleaning of spurious
poles. Nidentified = 4.
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Having reduced the noise level, significantly fewer poles are detected compared to Case 2a. Precisely,
before the last cleaning of spurious poles only 8 poles are identified: all the original 6 plus another 2
quasi-canceled. Nonetheless, after the last cleaning of spurious poles, the numerical quasi-cancellation is
removed alongside the physical one, as showed in Figure 4.14. After this removal, as it can be observed
from this last figure, the phase error has increased just up to 0.25o, which is coherent with the fact that
the phase shift produced by the physical quasi-cancellation is lower than 0.5o.

In fact, when a pole and a zero are extremely close, as in this case, our algorithm is not able to distinguish
a physical quasi-cancellation of that kind from a numerical one; they both make a negligible contribution
to the total transfer function and therefore they are both equally dispensable. However, if we make our
algorithm display the dn factor (presented in Subsection 3.2.2) of this pole, we observe that it is of the
order of 10−4, whereas the one relative to the spurious pole is of the order of 10−7. In other words, the
physical quasi-cancellation has a dn factor several orders of magnitude greater than the numerical one:
10−4 � 10−7.

Consequently, when a similar situation is encountered —when the nature of a quasi-cancellation is
uncertain— we can make our algorithm display the values of dn for all the quasi-canceled poles and
check whether it is of several orders of magnitude greater for this pole than for the other ones. In such
event, we can consider it to be physical, assuming that the noise is lower than this presumed physical
quasi-cancellation.

Before bringing this analysis to a conclusion, we will make a brief digression regarding the effect of the
chosen phase tolerance for both algorithms. It must be emphasized that all of the identifications have
been carried out with the default settings of both algorithms; parameters that have been carefully chosen
in order to guarantee convergence and reduce over-modeling. However, what would be the effect of
changing those values? Specially, phase tolerance is the most sensitive one.

In the event of a really high phase tolerance, the fitting model might be under-modeled, i.e., part of the
dynamics will be missing. On the other hand, if a very low phase tolerance is requested, the fitting model
might be over-modeled and too many parameters will be added, for instance, the fitting of the noise.
Nevertheless, finding a middle ground can be complex and sometimes, even impossible. In fact, even
though θtolerance is set by default to 0.5o for both algorithms, it might not be adequate for the frequency
response under study3.

With the state-of-the-art algorithm, the most suitable value of θtolerance for a certain type of frequency
response is to be found in a slightly intuitive way, mainly by trial-error. This can be tricky for designers,
as they might not have an in-depth knowledge of identification methods. Conversely, the last fitting error
of our algorithm —after the last cleaning of spurious poles— provides an estimated value of the most
suitable θtolerance for frequency responses of the same kind. Indeed, due to the extra stopping condition
(3.2) and the last cleaning of spurious poles, the final phase error must not satisfy the phase tolerance
and as a consequence, its maximum value can be taken as an estimator of a θtolerance coherent with that
level and type of noise. As an example, from Figure 4.5 we can consider that the most reasonable value
of θtolerance for that certain type of frequency responses is 15o, instead of the default value 0.5o.

This is certainly observed in Figures 4.15 and 4.16, where the identification of Case 1a has been carried
out for θtolerance = 15o. Before the last cleaning of spurious poles, a single numerical quasi-cancellation
is observed, which, in addition, is stable. Besides, the identification order is significantly reduced from
Nidentified = 32 to Nidentified = 8. Moreover, after the last cleaning of spurious poles (Figure 4.16), this
complex conjugate couple of quasi-canceled pole-zeros is suppressed and we obtain the same result of
Figure 4.5.

3Adequate in the sense of avoiding both under-modeling and over-modeling.
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Figure 4.15: Result of the identification of Case 1a with our tool and θtolerance = 15o before the last
cleaning of spurious poles. Nidentified = 8.

Figure 4.16: Result of the identification of Case 1a with our tool and θtolerance = 15o after the last
cleaning of spurious poles. Nidentified = 6.

Finally, to conclude this section, we can state that these identifications have revealed the main problems
encountered with noisy frequency responses and strong physical quasi-cancellations, but specially, when
these quasi-cancellations become imperceptible inside the noise.

With regards to the possible improvements introduced by our algorithm, first of all, we have confirmed
the crucial role of the last cleaning regarding the suppression of spurious poles in the event of noise.
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Furthermore, we have also observed that both the novel placing of the poles introduced in Subsection
3.2.1 and the stopping condition (3.2) contribute to reduce over-modeling, as deduced when comparing
the identified orders in MM stab and our algorithm before the last cleaning.

On the other hand, we have also detected the limitations encountered by both methods when a highly
noisy response contains a strong physical quasi-cancellation. As formerly mentioned, in that event, neither
of the methods is able to detect clearly the couple of quasi-canceled pole-zeros. However, even if they are
indeed detected, due to the almost negligible distance between the pole and the zero, they are suppressed
during the last cleaning introduced in our algorithm. That is, our tool struggles to distinguish a strong
physical quasi-cancellation from a numerical one.

Accordingly, as mentioned, we suggest for our algorithm to compare the dn factors of the quasi-canceled
poles. Indeed, a single SISO response has limited resources to differentiate a physical quasi-cancellation
from a numerical one. Ideally, we should perform a MIMO or a parametric analysis, to see whether that
pole is clearly detected in another node or whether it follows a deterministic path versus a relevant circuit
parameter.

4.2 Realistic Frequency Responses of RF Amplifiers

In the former section, we have made a comparative analysis of the two algorithms for analytical frequency
responses with Gaussian noise. However, frequency responses of RF amplifiers are of a different nature;
they correspond to a linearized steady state and are generally obtained from a numerical simulation or, in
some cases, from experimental characterization. Therefore, they are much more complex and challenging
to identify.

Hence, in order to verify the validity of our algorithm for the stability analysis of RF and microwave
amplifiers, in this last section we will analyze realistic frequency responses of a RF amplifier, obtained
both by numerical simulations and experimental characterization. The device under test (DUT) is a
hybrid L-band three-stage amplifier built in microstrip technology and based on GaAs FET transistors
(FLU17XM). Its picture and schematic are depicted in Figures 4.17 and 4.18 respectively.

Figure 4.17: Photograph of the GaAs FET-based L-band three-stage amplifier in microstrip technology.
Figure obtained from [21].
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With a pumping signal of f0 = 1.2 GHz and biased at VGG = −2.1 V and VDD = 7 V, the amplifier
presents a low frequency oscillation for input powers greater than Pin > −11 dBm [21]. This is clearly
shown in Figure 4.19, where the measured output power spectrum is depicted for Pin = −5 dBm. This
spectrum shows mixing terms of type mf0±nfs (m,n ∈ N), where fs ≈ 135 MHz is the frequency of the
oscillation.

Figure 4.19: Measured output power spectrum showing the mixing terms around f0 = 1.2 GHz for
Pin = −5 dBm.

This instability is due to a pair of complex conjugate poles with an imaginary part of fs ≈ 135 MHz and
a shifting real part versus the input power Pin. In fact, this evolution is depicted in Figure 4.20, obtained
varying the input power from −30 dBm to −5 dBm 4. From this figure, we observe that the real part of
the pole shifts from negative to positive, causing the pole to become unstable for a certain threshold of
input power, which confirms the instability found experimentally.

Figure 4.20: Evolution of the low frequency pole vs. the input power, with a pumping signal at
f0 = 1.2 GHz and biased at VGG = −2.1 V and VDD = 7 V. For sake of clarity, only the positive

frequencies (positive imaginary part) have been plotted.

This pair of complex conjugate poles is from the second stage [21], thus, it will be more clearly detected in
the second stage. Likewise, quasi-canceled repetitions of this pair of poles (physical) appear at frequencies
mf0 ± fs (m ∈ N).

4This evolution has been computed with our algorithm performing an identification for each Pin value.

26



To begin to evaluate the validity and reliability of our algorithm for this type of amplifiers, we will
proceed to identify several frequency responses with a non-zero input power Pin at f0 = 1.2GHz (for
the mentioned bias point VGG = −2.1 V and VDD = 7 V). These frequency responses correspond thus
to a periodic large-signal steady state. Indeed, we know from [21] that we must obtain stable poles for
Pin < −11 dBm and otherwise, a set of complex conjugate unstable poles with frequencies mf0 ± fs
(m ∈ N).

The frequency responses have been obtained introducing a current probe sequentially at the gate of each
transistor (see Figure 4.18) and ranging the input power from −30 dBm to −5 dBm. For all three nodes
and input powers, every identification has shown the expected outcomes. Furthermore, we have not
observed significant differences between the state-of-the-art algorithm and our own. Due to the limited
length of this report, we can not present the totality of the results. However, we will show the results
obtained for Pin = 6 dBm introducing a current probe at the gate of the transistor of the second stage and
obtaining the impedance seen by the probe (see Section 2.1). The results of the automatic identification
(with default settings) have been depicted in Figures 4.21 and 4.22, before and after the last cleaning of
spurious poles, respectively.

From Figure 4.21, we observe that three unstable pairs of complex conjugate poles appear, with fre-
quencies fs and f0 ± fs as expected, two being quasi-canceled and one clear5. On the left-half-plane,
however, we notice a large number of quasi-canceled poles and zeros; that is, the identification might be
over-modeled.

Figure 4.21: Identification results of the frequency response simulated in the second stage of the L-band
amplifier with input power Pin = −6 dBm, carried out by our algorithm and before the last cleaning.

From Figure 4.22 we notice that a considerable number of quasi-canceled pole-zeros are eliminated after
the last cleaning, but specially, that the physical quasi-cancellation at frequencies fs± f0 are unaffected.
Actually, the phase error has increased after this last step, nevertheless, considering the stable nature of
the suppressed pole-zero quasi-cancellations, the conclusions regarding the stability are not altered.

5As previously stated, the unstable complex conjugate poles correspond to frequencies mf0± fs (m ∈ N). Nevertheless,
for the finite frequency band under analysis, only poles with frequencies fs and f0 ± fs will appear.
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Figure 4.22: Identification results of the frequency response simulated in the second stage of the L-band
amplifier with input power Pin = −6 dBm, carried out by our algorithm and after the last cleaning.

From Figure 4.22 we observe that after the last cleaning of spurious poles the maximum phase error
raises up to 2o. Therefore, as stated in the Section 4.1, this value can be taken as a more suitable phase
tolerance for the identification in hand. Indeed, if we perform once again the identification of Figures
4.21 and 4.22 with our algorithm and θtolerance = 2o, we obtain te following results:

Figure 4.23: Result of the identification of the
simulated frequency response with input power
Pin = −6 dBm, before the last cleaning of
spurious poles and with θtolerance = 2o.

Figure 4.24: Result of the identification of the
simulated frequency response with input power
Pin = −6 dBm, after the last cleaning of spurious

poles and with θtolerance = 2o.
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From the previous Figures 4.23 and 4.24, we can state that θtolerance = 2o is a more suitable phase
tolerance for this type of frequency responses, since all the unstable poles are clearly detected and the
number of quasi-canceled poles on the left-hand-side of the plane is considerably decreased (compared to
Figures 4.22 and 4.21, obtained with default θtolerance = 0.5o).

These identifications have been performed with simulated frequency responses, that is, they have only
been influenced by the numerical noise of the simulation. Hence, both MM stab and our tool have shown
similar outcomes. Nevertheless, the identification of measured frequency responses is more critical and
indeed, noise from experimental measures causes the differences between the two algorithms to emerge.

For this reason, we will finish the section by analyzing a number of frequency responses (of this same
amplifier) that have been obtained by an experimental technique based on the use of a high-impedance
probe and proposed in [21]. They have been measured with no input power and accordingly, correspond
to the DC steady state. For no input power, no oscillations are encountered. However, it has been
observed that with fixed VGG = −2.1 V, the pair of complex conjugate poles at frequency fs approaches
the imaginary axis as VDD is increased [21]. Therefore, the stability margin is decreased and they become
critical poles. Their evolution is represented in Figure 4.25, obtained varying VDD from 1 V to 15 V.

Figure 4.25: Evolution of the critical pair of poles vs. VDD, varied from 1 V to 15 V. For sake of clarity,
only the positive frequencies (positive imaginary part) have been plotted.

Obviously, considering that these responses are obtained from a measured DC stable steady state, only
stable poles ought to be identified. In order to gather a significant sample of responses, we will vary VDD

from 1 V to 15 V, in steps of 1 V. Likewise, to complete the examination of the validity of our algorithm,
we will perform the same identifications with the state-of-the-art automatic algorithm6.

For high values of VDD —when the pole is closer to the imaginary axis— and default phase tolerance
θtolerance = 0.5o, both algorithms identify unstable poles or zeros, as it is a more critical situation. In
fact, in order to only obtain stable poles, the phase θtolerance must be increased7 up to 2o. Nevertheless,
for lower values of VDD our algorithm excels. For instance, for VDD = 2 V, MM stab identifies one couple
of quasi-canceled unstable pole-zeros, whereas our algorithm only identifies stable poles after the last
cleaning. This is shown in Figures 4.26, 4.27 and 4.28, where the results of the identifications carried out
by MM stab and by our tool (before and after the last cleaning) are depicted, respectively.

6All the identifications will be carried out in the second stage and with default setting for both algorithms, specially
θtolerance = 0.5o.

7It must be considered that measured frequency responses contain noise and that θtolerance = 0.5o might not be the
most adequate value for all of them.
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Figure 4.26: Result of the identification of the measured frequency response corresponding to the DC
steady state with VDD = 2 V, carried out by MM stab.

Figure 4.27: Result of the identification of the measured frequency response corresponding to the DC
steady state with VDD = 2 V, carried out by our tool and before the last cleaning.
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Figure 4.28: Result of the identification of the measured frequency response corresponding to the DC
steady state with VDD = 2 V, carried out by our tool and after the last cleaning.

From Figure 4.27, we observe that our algorithm has identified an unstable numerical quasi-cancellation.
Still, after the last cleaning of spurious poles (as seen in Figure 4.28), this false instability is suppressed
and only two pairs of stable complex conjugate poles remain. In addition, we can notice that the phase
error is increased up to 0.7o; that is, the fitting goal is no longer respected. However, as detailed in
Section 4.1, this can serve as an estimated value of a more suitable phase tolerance for the identification
of this type of frequency responses. Indeed, performing these same identifications with θtolerance = 0.7o

for low VDD values, we have evidenced significant improvements with both algorithms.

To conclude, we can state that this study has proved the validity and reliability of our algorithm regarding
the stability analysis of a real RF amplifier. For simulated responses, no substantial differences have been
found between the two automatic algorithms. However, for measured responses, our algorithm has proved
to provide better results in certain cases. Furthermore, it has provided an estimation of a more adequate
phase tolerance for this certain type of frequency responses.
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Chapter 5

Conclusions

In this last chapter, we will conclude the report by recapitulating the improvements introduced by our
algorithm to the state-of-the-art automatic VF identification for stability analysis. Likewise, we will
outline its limitations and propose different ideas for further work.

The main innovation of this project has been the introduction of three novel steps conceived for the
convergence improvement —in the event of noise— to the context of over-modeling of pole-zero identifi-
cation: a meticulous placing of the added poles, a threshold relative error between successive iterations
and a cleaning of spurious poles.

As evidenced in the analytical comparison carried out in Chapter 4, these contributions to the state-of-
the-art algorithm have resulted in an overall decrease of the order of identification. In the first place,
we have proved that the meticulous placing of the added poles and the extra stopping condition of the
identification loop can help to reduce the order of the transfer function. Moreover, the last cleaning of
spurious poles has proved to be very powerful in the detection and elimination of numerical pole-zero
quasi-cancellations, as we have clearly seen in Section 4.1.

Furthermore, the display of the results both before and after the last cleaning of spurious poles provides
useful information regarding the identification and its limitations. For instance, as previously explained,
the maximum value of the phase error after the last cleaning can serve as an estimation of a more suitable
phase tolerance for that type of frequency responses.

Therefore, our algorithm implemented in Matlab has resulted in a pole-zero identification stability analysis
tool as reliable and efficient as the commercial ones and, in addition, generally less sensitive to over-
modeling. It must be emphasized that although we have not precisely analyzed MIMO responses, our
method is also able to perform pole-zero identifications to these kind of responses. Most importantly,
we have verified that it is equally reliable for the identification and stability analysis of real RF and
microwave amplifiers. In fact, the method proposed in [11] was only tested with analytical frequency
responses, created ad hoc, and with our tool we have corroborated the validity of this technique for more
realistic frequency responses.

Nevertheless, even though it has proved to reduce over-modeling, some limitations have been detected re-
lated to noise and physical quasi-cancellations. As proved in Section 4.1, in the event of a very strong phys-
ical quasi-cancellation in a highly noisy response, our algorithm suppresses the physical quasi-cancellation
after the last cleaning of spurious poles. As a consequence, together with the analysis of the dn factor
formerly explained, a MIMO or parametric analysis is suggested in that event, in order to distinguish a
true physical quasi-cancellation from a numerical one. However, it must be emphasized that the quasi-
cancellation being so strong and the noise so high, the quasi-canceled pole-zero are “hidden” inside the
noise and therefore, this identification problem is not a limitation of our algorithm per se.
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In addition, due to its more complex structure, the identification carried out by our algorithm can
sometimes be slower and more troublesome regarding convergence. In such cases, it is only necessary
to relax the error variation threshold α, the spurious poles discriminator γ and the minimum distance
delimiter ν.

However, to sum up, we can state that it is a rather promising work and that it has accomplished the
objectives proposed in the Section 1.2. In addition, further work could involve the study of the weighting
in the identification and a deeper examination regarding the influence of the proposed parameters. In
fact, for each type of noise some kind of weighting function and parameters can be more suitable than
others. The algorithm could also be formalized and implemented for MIMO and parametric analysis.
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