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Introduction and Objectives

In the early 20th century, quantum mechanics arose aiming at explaining
some phenomena in disagreement with the predictions given by the classical
theories. This led to the so-called first quantum revolution, where sev-
eral technologies, for which the quantum theory is essential, such as lasers,
semiconductor-based transistors, superconducting magnets, etc. were devel-
oped. These devices, which have certainly revolutionized the world, require
quantum physics to explain how they work, but the codified information is
classical.

The emergence and rapid development of quantum technologies due to
the increasing interest leads us towards the second quantum revolution. A
much more precise control of the technology allows us to manipulate quan-
tum states of matter and employ quantum effects such as superposition and
entanglement to develop practical applications. We can roughly divide these
technologies into three main pillars: computation, communication and sens-
ing. This work will mainly focus on the last one, namely, quantum sensing.

In quantum sensing, we take advantage of the peculiar properties of
quantum mechanics to develop more precise measurement devices. Paradig-
matic examples are atomic clocks or atom interferometers, which do not
make use of entanglement and are already commercial devices. There are
also entanglement-based metrology devices, which promise much higher pre-
cision than the limit classically obtainable. The quantum radar is a re-
markable example of a technology which could improve the detection of the
presence of an object in space making use of quantum entanglement as a
resource, and it is based on quantum illumination [1]. The objective of this
work is to explain the concept of quantum illumination, showing its fun-
damental elements and the advantage over classical protocols for different
quantum states, both with Gaussian and non-Gaussian ones. In Chapter
1, we introduce the fundamentals of quantum illumination. After explain-
ing the phase-space formulation of quantum optics, we introduce Gaussian
states, fundamental in these protocols.

In Chapter 2, the optimal protocols in classical and quantum illumination
are explained and compared by making use of a figure of merit called signal-
to-noise ratio (SNR). In this Chapter, the quantum protocol is realized with
a particularly relevant Gaussian state called two-mode squeezed state. We
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also present the concept of quantum radar and its relation with quantum
illumination.

Finally, after showing the advantage of the quantum Gaussian protocol,
we introduce in Chapter 3 a new tool called photon subtraction, an operation
that takes the Gaussian state out of this set of quantum states, which is
supposed to improve the quantum protocol’s performance [2]. Gaussian and
non-Gaussian protocols are carefully compared in order to check whether
the photon subtraction technique provides a real benefit or not.

To sum up, in this work I have understood what Gaussian states are and
the fundamentals of quantum illumination with them as the resource, as well
as to compute the performance of different protocols and to compare them.
In this process, I have deepen in the use of Mathematica, with which I have
computed the SNR of the protocols and depicted all the graphics in this
work. All the written Mathematica programs are exposed in the Appendix.



Chapter 1

Fundamentals of Gaussian
Quantum Illumination

Quantum illumination is a detection scheme which takes advantage of quan-
tum entanglement to achieve enhancement, either in the error probability
or in the resources employed, over the classical protocol [3]. A remarkable
feature shown by this paradigm when compared against other quantum in-
formation applications, such as superdense coding or quantum teleportation,
is that the quantum advantage survives even in highly noisy environments,
in which quantum entanglement is a fragile property [4].

In Section 1.1, we introduce Gaussian quantum states of the quantum
harmonic oscillator, a family of quantum states commonly utilized in quan-
tum information, and specially in quantum illumination [5]. Quantum states
and observables are commonly presented as Hilbert space operators but, in
order to properly define Gaussian quantum states, we will need an alterna-
tive description, called phase-space formulation.

Finally, in Section 1.2, we present the beam splitter, a key device in
quantum optics for the generation of entanglement.

1.1 Gaussian Quantum States

Gaussian quantum states are a family of states of the quantum harmonic os-
cillator, and a essential class of quantum states in quantum information with
continuous variables, i.e. with systems with continuous physical observables.
Their relevance in quantum information is due to the fact that they are easy
to experimentally prepare and manipulate. Furthermore, their mathemati-
cal definition only depends on its first and second canonical moments, as we
will see later in its definition.

In order to properly define Gaussian states, an understanding of their
phase-space formulation is needed. This representation of states is achieved
through the Wigner-Weyl transform.
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1.1.1 Wigner-Weyl Transform

The Wigner-Weyl transform (after Eugene Wigner and Hermann Weyl)
is the relation required to depict quantum states and operators in phase-
space [6]. Characterizing operators and states in phase space implies the
conversion of an operator to a function dependent on x and p, and this is
performed through the Weyl transform.

The Weyl transform is the representation of an operator in phase-space,
and, for the 1-dimensional case, it is defined as

A(z.p) = / U (5 4 /2| Al — y/2) dy
= [y aj2ldlp — a/2) do (L1)

Quantum states are represented in the same manner as operators, but re-
placing the operator A by the density operator p divided by the Planck
constant. For a pure state p = |®) (®|, the Wigner function is defined by

W (x.p) = / eV (0 1y /2 (3D — y/2) dy

= }11/6—ipy/h<x+y/2|q>> (®|z—y/2) dy
- % /eipy/h‘b(x +y/2)0" (x — y/2)dy. (1.2)

The definition of the Wigner function is easily generalized to mixed states.

As p=3; P |Pi) (P,

W(x,p) = ;L/e_ipy/hZPi@(x +y/2)®; (z —y/2)dy = ZPsz(x,p)

(1.3)

One of the most important properties of the Weyl transform is that Tr [AB] ,
the trace of the product of two operators, is given by the expression

Tr AB // z,p)B(z, p)dzdp. (1.4)

From Eq. 1.4, obtaining the expectation value of an observable A is
straightforward,

(A) = / W (z,p)A(x, p)dzdp. (1.5)
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The Wigner function also provides a simple technique to obtain the prob-
ability distribution for the position as well as for the momentum. This is
achieved by projecting W (x, p) on the p-axis and z-axis respectively:

wmﬁzwwmwz/wwm@, (1.6)

W@F:wwam=/wu@m. (1.7)

1.1.2 Gaussian State Description

Let us now define Gaussian states using the recently learnt phase-space
formulation. Given a quantum state p, the vector of first moments (r) and
the covariance matrix o;; are respectively defined as

(r), = Trlpf], (1.8)

oij = {risri}), = 2(ri), (5, (1.9)

where r is defined as the vector of quadratures. Its dimension is 2n, with n
the number of modes in our system, i.e. the number of harmonic oscillators
involved and 2 for the quadratures x and p of each mode. In the case
of a single-mode state, + = (Z&,p). Then, (r) represents a vector whose
components are the expectation values of both quadratures, (r) = ({(x), (p)).
A quantum state of a harmonic oscillator whose Wigner function has the
form

_ e
W,(r) WQ\/(W[O'](B . (1.10)
is called Gaussian quantum state [7].

The evolution of a density operator under a given Hamiltonian H is
given by the relation p(t) = e~*H*peHt. In particular, we are interested in
characterizing the Hamiltonians which preserve the Gaussian structure, i.e.
which evolve Gaussian states into Gaussian states. The most general form
of a Hamiltonian which conserves the Gaussian form of the Wigner function,
in other words, which is Gaussian-preserving, is [7]

n n n

2 1) 2) At 3) At A

H = E 915; )az + E gl(gl)azaz + E g,(d)azazr +H.c., (1.11)
k=1 k>l=1 k=1

where H.c. means Hermitian conjugate and n is the number of modes of the
system. Any Gaussian state can be obtained by evolving unitarily a thermal
state through a Hamiltonian given in Eq. 1.11, as it is shown in Ref. [8]. For
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single-mode Gaussian states, a thermal state, which is already Gaussian, is
described with the density matrix

pin = (1=2) Y A" [n)n], (1.12)
n=0

where A is a real positive parameter smaller than 1. This parameter is
determined by the temperature of our system and the frequency of the pho-
tons. Thermal states are usually defined by the expected number of photons
ngn = (V) = A/(1 — A). In the case of a single mode, Eq. 1.11 transforms
into

o= gWal + ¢®at2 4+ He (1.13)

This means that, from a thermal state (Eq. 1.12), we can generate any
single-mode Gaussian state by applying a unitary evolution given by Eq. 1.13.
The term ¢(Maf 4+ H.c. corresponds to the evolution given by the so-called
displacement operator

D(a) = exp (adT - a*&), (1.14)

while the term ¢®at? + H.c. corresponds to the evolution described by the
squeezing operator

2

with both o and £ complex parameters. Then, a general Gaussian state in
the operator representation can be written as [8]

5(6) = exp(1<§*a2 - éd”)>7 (1.15)

ﬁGaussian = b(a)g(‘g)ﬁthS’T(§>bT(Q) (1'16)

To sum up, any single-mode Gaussian state can be determined by two
complex numbers, « and &, corresponding to the displacement and the
squeezing respectively, and the number of thermal photons, ny.

1.1.3 Graphic Representation of Gaussian States

It is very interesting and clarifying to represent different Gaussian states in
phase-space. This allows us to understand the effect of the unitary opera-
tions of displacement and squeezing when acting on any Gaussian state.

The Wigner function of the thermal state is obtained by substituting
Eq. 1.12 in Eq. 1.3, which results in

1-a) _0n0e?)
Wi (z,p) = ue eEsa (1.17)
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The thermal state is represented in Fig. 1.1a.

The width and height of the Gaussian distribution depends on the num-
ber of thermal photons, and it is centred in the origin. From now on, we will
apply unitary operations on the vacuum state |0)0|, which is a particular
case of a thermal state with A = 0. Its representation in phase-space is
therefore the narrowest among thermal states.

Applying the displacement operator given in Eq. 1.14 to a thermal
state results in a displacement of the Wigner function in phase-space in the
direction given by «. Starting from the vacuum state, we generate an state
called coherent state, given by

Wol(z,p) = ie_ VAL , (1.18)
wh
which is represented in phase-space in Fig. 1.1b.

Regarding the squeezing operator (Eq. 1.15), it expands the distribu-
tion in a certain direction and stretches it in the perpendicular one. The
squeezing operator acting on a vacuum state generates a squeezed vacuum
state, given by

1 ‘(ip+z) cosh(r)+e2i0(—ip+z) sinh(r)’2
We(,p) = —e~ o , (1.19)
wh
where r and ¢ are the modulus and phase of & respectively. It is represented

in Fig. 1.1c.

1.2 Beam Splitter

Quantum entanglement is a resource to exploit for different purposes, in our
case, for quantum illumination. Until now, we have focused on single-mode
operations. Let us now discuss entangling operations in two-mode systems.
There are available a wide variety of entanglement-generating devices, but
the beam splitter is the most paradigmatic device in quantum optics. We
will consider a lossless beam splitter, therefore characterized by a unitary
evolution. The transformation generated by this device can be described
in the Heisenberg picture by a linear transformation of the annihilation

operators of the modes,
by tr 1\ (@
o ) 1.20
<b2> (7“2 t2> <a2> (1:20)

where ¢, ¢ and r, r’ are complex transmission and reflection amplitude
coefficients. They obey the constrains |r1|>+|t1]* = 1, |r1] = |ra|, [t1] = |tal.

The Gaussian-preserving Hamiltonian of Eq. 1.11 for our two-mode
system contains two additional terms which were not present in the single-
mode case. One of them is o afa, which causes a phase shift. However, the
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(d) () (f)

Figure 1.1: Representation in phase space (x,p) of the Wigner function of dif-
ferent states. The top graphics are 3-dimensional representations of different functions
and the bottom ones are their respective contour plots. In (a), we have plotted the Wigner
functions of a thermal state (Eq. 1.17) (orange) and a vacuum state (red), which is a ther-
mal state with A = 0. It can be seen that the distribution widens and the height decreases
as X increases. They are centred in the origin, (z,p) = (0,0). Figure (d) represents the
contour plot of the Wigner function of a general thermal state. Figure (b) shows the
Wigner function of a coherent state (Eq. 1.18). It is similar to the distribution for the
vacuum state but its centre is displaced from the origin, (z,p) = (Re(a),Im(«)). The
contour plot of the function is shown in (e). The last distribution, (c), corresponds to a
squeezed vacuum state (Eq. 1.19). It is centred in the origin and its width is reduced in
a direction and increased in the perpendicular one with respect to the vacuum state. Its
contour plot is represented in Fig. (f).

interesting term is the mode mixing one, d{&g + H.c., which is precisely a
beam splitter interaction, as we will see.

In Fig. 1.2, a schematic representation of a beam splitter is shown. The
input fields are described by their respective annihilation operators a; and
as, and the output fields are described by I;l and 132.

The transformation held by 1.20 can be also expressed as

b = Ba;BY, i=1,2, (1.21)
where the unitary beam splitter operator Bis

N 0 . .
B =exp 5(&{@6“’ —ajale )| . (1.22)

The beam splitter transformation is then described by 2 parameters.
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Figure 1.2: Representation of the inputs (@1, @2) and outputs (b1, b2) of a beam
splitter. The unitary transformation generated by this device in the inputs is given by
Eq. 1.22

0 € [0,7/2] is related with the amplitude coefficients of reflection (r =
sin(6/2)) and transmission (¢ = cos(0/2)) and ¢ € [0, 7] gives the phase
difference introduced by the beam splitter between the reflected fields and
the transmitted ones.






Chapter 2

Quantum Illumination
Protocol

In this Chapter, we explain the quantum entanglement-assisted protocol to
detect the presence of an object. Indeed, we describe the quantum state
preparation, the modelling of the interaction with the hypothetical object
and the selection of an appropriated observable to be measured which pro-
vides an advantage with respect to the best classical protocol.

Additionally, we demonstrate the advantages of a quantum illumination
protocol. For this aim, we firstly describe the classical protocol in Sec-
tion 2.1 and the quantum one in Section 2.2. The states of quantum state
preparation and measurement will be different in both protocols, since they
are chosen in order to achieve the optimal classical and quantum protocols.
Otherwise, the comparison would not be fair. A figure of merit, the signal-
to-noise ratio (SNR), is calculated for both cases to have an idea of their
efficiencies. Finally, both protocols are compared in Section 2.3 identify-
ing the region of parameters in which the quantum protocol overcomes the
classical one.

The SNR, is defined as the ratio of the power of the signal received and
the power of the noise, so this gives us an idea of how much our signal
stands out against the background. There is an alternative mathematical
definition,

9 A2
SNR = £ — ﬂoi)@ ,
7 (0% =(0)
which is the ratio of the mean or expected value squared, 12, to the variance,
o2. In the second equality, it is expressed with respect to a given observable

0.

Finally, in Section 2.4, we will briefly introduce the quantum radar tech-
nology, a generalization quantum illumination, and perform a qualitative
comparison between the use of photons in the optical and microwave regimes.

(2.1)

15
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Figure 2.1: Scheme of the classical protocol for target detection. First, a coherent
state is mixed with a thermal state through a low reflectivity beam splitter. Then, the
measurement of the quadrature # (Eq. 2.4) is realized. The orange arrow represents
the change produced by the beam splitter on the fields (Eq. 2.3), represented by their
respective annihilation operators.

2.1 Classical Protocol

An illumination protocol consists of three clearly distinguishable stages: the
preparation of the quantum states (resource), the interaction with the envi-
ronment and the object, and the measurement. In this Section, we describe
them in detail. For a global and schematic overview of the classical protocol,
see Fig. 2.1.

For the classical protocol, our resource is a coherent state

)=y, (2.2)

which is the application of the displacement operator (Eq. 1.14) to a vacuum
state |0). Even though the coherent state is a quantum state, it can be
considered as a classical state because the dynamics of its quadratures is
described by Maxwell equations, among other reasons [9].

Once the state is prepared in the lab, the next step is to make it interact
with the environment and the object. We model this interaction by using a
beam splitter of low reflectivity, since the target is expected to be hard to
detect, i.e. to show low reflectivity. In this step, the signal is mixed with the
environment, which is described by a thermal state (Eq. 1.12). In the case
of a highly noisy environment, our signal is surrounded by a large amount
of thermal photons (ng, = A/(1 — A) > 1).

Then, we will rewrite Eq. 1.20 for our problem. Let us consider as in-
coming states the signal (@) and the environment (as,). Among the outgoing
beams, only one of them is accessible, the one corresponding to the reflection
of the signal and the transmission of the thermal state (b). Its annihilation
operator is represented as b. The relation between annihilation operators is

b=ra+tam = /7 a+ /1 — 1, (2.3)
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where 7 is the reflectivity (n = |r|* = 1 — [¢[*).

Finally, we have to choose the observable for the measurement. Need-
less to say that we aim at obtaining the maximum quantity of information
from the system. In the classical case, the measurement corresponds to the
expectation value of the quadrature & = %(5 + b [10].

As we can work in both the Schrodinger and the Heisenberg pictures,
we will apply the change produced by the beam splitter (Eq. 2.3) to the
operator & instead of to |«) for convenience. The operator results in

- %(\/ﬁ(d+dT)+ T 7 (4o + 1)), (2.4)

where @ and a' act on the coherent state and a, and &Ih on the thermal
state.

In order to obtain the SNR, we need to calculate the expectation value
of the quadrature # and of #2. For the calculation of (&), the following
quantities are needed:

e (a) = (a]a]a) =«
e (al) = (alal]a) = a*
e (afa) = (alafala) = |al?.

*

o (o) = (al,)" = Tr(agmpm) = Tr ((1 -0 Mg, \n><n\> .
n=0

= Tr<(1 — N> A"Wnln - 1><n|> =0.
n=0

where |a) is the coherent state (Eq. 2.2) and py, is the thermal density
matrix (Eq. 1.12). Replacing the obtained results in (Z), we obtain

(@) = (o +a*) = iia = VN, 2.5)

where we have assumed without loss of generality that o € ®. N = |a|? is
the expected number of photons of the coherent state.

For the calculation of (22), we need to obtain different quantities com-
prising products of the operators @, af, ay, and &Ih. We can see that the
mean value of any product of operators containing an odd number of oper-
ators in the thermal Hilbert space is 0, which simplifies the calculation. Let
us now add the remaining results:

e (a%) = (alaala) = a?.

o (aT2) = (alatal|a) = a*2.
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e (aa") = (a|(ata+1)]a) = |a]* + 1.
oo

o (af am) = Tr (&Ihdthﬁth> = Tr ((1 — A Aal a, \n><n\>
n=0

= Tr<(1 —X)> A |n><n|)
n=0

o (o ¢] 8
_ . n—1 — o Y yn
=(1=X)A> nx A=) 53X
o 1 A
= 1 — —_—— = = .
M =N Ta ~ 1o e

o <&th&1h> =Tr (&thdihﬁth> =Tr (ﬁth(&zhdth + 1)) =ng + 1.
By considering again a € R, (2?) is given by

(@) = $(@%) + (a1 + (a1a) + (@a) + (1 n) (@l aan) + (Gady)

= L (n(da +1) + (1= 1) 2na + 1)
= (N +1/4) + (1= ) (nn + 1/2). (26)

Finally, we can calculate the SNR for the classical protocol by replacing
Egs. 2.5 and 2.6 in Eq. 2.1,

I O 2N
SNRe = (2) — ()2 (1 —n)nm +1/2° (27)

2.2 Quantum Protocol

Let us now analyse the quantum protocol to afterwards compare it with the
classical one. The main steps are the same: quantum state preparation,
interaction and measurement. The key difference between both protocols
is the use of entangled states, as described below. A schematic view of the
whole quantum illumination protocol is depicted in Fig. 2.2.

Instead of using a coherent state, our resource for the quantum protocol is
the two-mode squeezed state (TMSS), since it offers an optimal performance
and the experimental generation is simple [10]. Its general form is

o0
€10) = € §HAFE MR 0, 0)) = sech(r) S [~¢™ tanh(r)]” i, n2), (2.8)

n=0
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f)th

1£) o
(b1by + bIbS)

<€) U

a——— b

Figure 2.2: Scheme of the quantum illumination protocol. First, two vacuum states
squeezed in orthogonal directions are mixed through a 50:50 beam splitter. This results
in a two-mode squeezed state (TMSS) (Eq. 2.9). Then, one of the entangled modes
(signal beam) is mixed with a thermal state through a low reflectivity beam splitter,
simulating the interaction. The other one (idler beam) is kept in the lab. Finally, a joint
measurement, biby + IA)J{B; is realized, where 1 and 2 refer to each of the beams. The
orange arrow represents the change produced by the beam splitter on the fields (Eq. 2.3),
represented by their respective annihilation operators. The subindexes 1 and 2 correspond
to the signal and idler modes respectively.

where r = [£| and ¢ = Arg(£). In particular, we chose one experimentally
generated by mixing two squeezed vacuum states |£1) and |£3) with a 50:50
beam splitter, i.e. with the same reflection and transmission coeflicients,
where & and & have the same modulus (r; = r3) and are squeezed in
perpendicular directions (¢ — ¢1 = m/2). The global phase ¢ can be set to
—m without loss of generality, so the state results in

M2) = V1=XD> X"|n,n), (2.9)
n=0

where A = tanh(r) is a real positive parameter smaller than 1. Once the
state is prepared, one of the modes, that we call ”signal” (a,), is sent towards
the object, whereas the other entangled mode, known as ”idler” (as), is kept
in the laboratory. The interaction with the object is once again modelled
by a low reflectivity beam splitter, exactly as in the classical protocol. The
generated transformation is the same that the one given by Eq. 2.3, but
replacing @ by ai, to make it clear that it acts on the signal mode.

Finally, we need to choose an observable to measure and obtain the
SNR of the quantum protocol. The measurement providing us the most
information about the reflectivity, n, is the expectation value of 129 —
p1p2 = biby + IA)I IA); [10], where b represents an annihilation operator after the
interaction with the object, and the subindexes 1 and 2 correspond to the
signal and idler modes respectively.

In the case of the mode 1 (signal), it suffers the transformation held by
Eq. 2.3. On the other hand, the idler mode is not changed at all, so by = do.
Applying these two transformations to the desired observable, we express it
in terms of the annihilation operators of the initial states:
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biby + 10} = (/a1 + /1 — nawm)as + (Vial + /1 —nal,)al
= /7 (@az + alad) + /1 =1 (amas + al, ab). (2.10)
For the calculation of the expectation value of Eq. 2.10, we will use again

that the expectation value of a thermal annihilation or creation operator is
0. Below, different needed calculations are shown:

o (ala1) = (ahas) = (Mizfalar| A1)

= (1= A (m,mlalar > A" [n,n)
m=0 n=0

o0 o0 a
_ 2 2n _ \2 2 2n
_(1A)T;)m _)\(1)\);6)\2)\

o 1 A2
_ )2 2 — —
A e T e TN

o (a102) = (afa}) = (1= N%) > A" (m,m|aaz Y A" |n,n)
m=0 n=0
=(1=X)) N (m,m|Y n\"|n—1,n-1)
m=0 n=1

= A(l—)\z)iAZ"(nJrl) = ﬁ = /N(N +1).

n=0

Replacing these expressions in the expectation value of Eq. 2.10, we obtain

(b1by + bib) = 2/PN(N + 1). (2.11)

Notice that, in this case, N is the number of photons both of the idler and
the signal beams, and it is given by the parameter A of the TMSS.

Similarly to the classical protocol, we also have to find ((b1by + BIB;)%
For this goal, we will divide again the calculation into:

o (a3ad) = (a}%al®)" = (1-2?) S A" (m,m| Y n(n—1)A" |n — 2,n — 2)

m=0 n=2

=(1-)?) i A (m, m| i(k +2)(k + D)N*2 |k, k)
m=0 k=0

o] 00 82
—(1_)2 2(n+1) —22(1_)2 2(n+2)
(1 A)nZOA (n+1)(n+2) = X(1 )\)7;)(8)\2)2/\

= A2(1 - )%

2 2
0 A :2[ A

2
(@221 — A2 1—>\2] = 2N(N+1).
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o (afanabio) = (1=X%) 30 X" (mm| 3_n®A" [n,n) = (1-3) 37 A%
m=0 n=0 n=0
=(1=X%) [A4 Y nn =N 4Ny nwn]
n=0 n=0

2
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Now we can compute <(1;11;2 + 8133)2%

((brba + b16Y)?) = (V77 (a1d2 + alal) + /T — 1 (amaz + aly,ab))?)
= n((a3ad) + (al%al?) + 2 (Aufa) + (A1) + (Ra) + 1)+
(1 —n)(2 ("gnng) + (Aen) + (R2) + 1)

=n(6N2+ 7N +1) + (1 — ) (2Nng +N+ ng, + 1). (2.12)

Therefore, the quantum SNR is easily calculated by replacing Eqs. 2.11 and
2.12 in Eq. 2.1:

AnN (N +1)

SNRq = .
Q NE2N(N —ngn + 1) — ngn) + 2Nnen + N + gy + 1

(2.13)

2.3 Comparison

Finally, in this Section, we will compare the classical and quantum SNR. For
the sake of fairness in the comparison, we will consider the same number
of signal photons (V) in both cases. We are interested in the region of
parameters where the performance of the quantum protocol overcomes the
classical one, SNRq > SNRc. This can be expressed with the condition

SNRq _ (N +1D@2nm(1—n) +1) o1 (2.14)
SNRe (N+1)@2nN+1)+ (1 —n)2N + Dng, ~ '
Analysing this relation, we notice that in the limit N > 1, the quantum
protocol does not offer any improvement. All this can also be observed in
Fig. 2.3. Solving the inequality for N, we get that it holds when

1—
27777% <. (2.15)

N2 4 N -

This equation is a parabola and it describes the crossing between surfaces
observed in Fig. 2.3. As it is convex, we are interested in the region between
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1450

Figure 2.3: Representation of the inequality given by Eq. 2.14 (R) in terms of
the signal photons (V) and the thermal ones (n¢n). The orange surface represents
the ratio between the quantum and classical protocols for a low reflectivity value (n = 0.1)
and the blue surface represents the value 1 as a reference. The quantum protocol gives
better resolution when the orange surface is above the blue one.

its roots. Given that N must be positive, we find that there is always a region
of N in which the quantum protocol improves the classical one,

—1+ /1420y 50
0<N <

2 )

(2.16)

—n > 0 V7, and nyy, is also a positive

which is always positive, since

parameter. The maximum advantage is achieved in the limit N < 1 and
in a very noisy environment, ny, > 1. Computing the limit of Eq. 2.14
when ny, — oo and N — 0, we obtain that the gain given by the quantum
protocol over the classical is a factor of 2.

The physical interpretation of this result is that a quantum protocol can
overcome the performance of the optimal classical one when the signal is
weak in comparison with the thermal noise.

2.4 Quantum Radar

A quantum radar is a detection technology based on quantum illumination.
It can be understood as a generalization, since quantum illumination consists
in deciding whether an object is or not in a particular point in space, whereas
in the quantum radar problem we do not know the position of the object a
priori.
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Figure 2.4: Attenuation caused by the atmosphere (dB/km) as a function of the
frequency [11]. The blue area correspond to the frequencies of propagating quantum
microwaves. The green line separates microwaves from infrared, and the red line, infrared
from visible frequencies.

The difference between the conventional radar and the quantum one
would be the amount of resources in therms of photons needed to detect the
object with a certain probability. The classical radar uses light to enhance
its sensitivity, while the quantum radar uses entanglement to reduce the
signal photons. This would be useful, for example, in case that we do not
want that the ”enemy” aircraft knows that we are detecting it or when we
want to detect a stealth aircraft, specifically designed to reflect a low amount
of photons.

In order to detect an object with photons, the wavelength of the radiation
used to detect it must be of the same order as the size of the target. This
implies that the photons sent must be in the microwave regime, because
its wavelength is of the order of centimetres. Besides, the atmosphere is
almost transparent for microwaves (See Fig. 2.4), which also supports the
use of microwaves for radar detection. Nevertheless, the manipulation of the
beams and measurement can be done both in the microwave and the optical
regimes. Let us now briefly describe the advantages and disadvantages of
using each frequency.

2.4.1 Optical vs Microwave Regime

Due to the fact that it is essential to utilize microwaves in the target de-
tection, it is a clear candidate to be used in quantum radar. The reason
for thinking in using photons in the optical regime is because of the already
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developed technology for this frequency range. In particular, the existence
of efficient photodetectors of single photons, currently under development
in the microwave regime, is the main reason for developing this technology
for the optical range.

Nowadays, strong efforts are performed to create an efficient photodetec-
tor in microwaves. This would avoid microwave-to-optical photon transduc-
ers. The fact of not having to transform the frequency of the signal could
considerably raise the overall detection efficiency.



Chapter 3

Photon Subtraction

Gaussian states are particularly convenient for quantum illumination, due
to their experimental feasibility, their resilience and relatively straightfor-
ward theoretical description and manipulation. Nevertheless, non-Gaussian
states have been studied in the framework of quantum information, demon-
strating that a stronger entanglement can be achieved compared to Gaussian
states [2]. This fact makes them look promising candidates to overcome the
performance of protocols based on Gaussian quantum states, but we have
to keep in mind that higher entanglement does not necessarily mean better
results [10].

One of the main methods for transforming a Gaussian state into a non-
Gaussian one is known as photon subtraction (PS). It consists in applying an
annihilation operator a to our Gaussian state. This technique is employed
for other various purposes, such as the creation of cat states (a superposition
of two coherent states)[12].

Notice that, despite its name, the mean number of photons after the
photon subtraction may be equal or greater than before. This fact can be
straightforwardly appreciated in a coherent state; as it is an eigenvector of
the annihilation operator, the number of photons is the same. This fact
turns out to be key in quantum illumination, since two different protocols,
with different signal states, must be always compared by fixing the same
number of resources in terms of photons for both protocols.

In this Chapter, we will study the effect of the photon subtraction op-
eration (PS) in a quantum illumination protocol. Firstly, in Section 3.1, we
compare the performances of the already seen TMSS with and without PS.
We prove that the PS protocol does not improve the Gaussian protocol so, in
Section 3.2, we consider an arbitrary single-mode Gaussian state and study
how photon subtraction affects the number of photons. We obtain a family
of Gaussian states for which the number of photon maximally decreases.
Finally, in Section 3.3, we generate a particular two-mode Gaussian state
that, after tracing out the idler mode, results in a single-mode Gaussian state

25
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that belongs to the family of Gaussian states found in the previous Section.
Then, the SNR is calculated and compared with the Gaussian protocol, in
order to determine whether photon subtraction improves the result.

3.1 PS on a Two-Mode Squeezed State

It is known that non-Gaussian states show higher computational power in
continuous variable quantum computing than Gaussian states. A logical
question consequently arisen is whether we can improve the results shown by
the quantum illumination protocol developed in Section 2.2 with squeezed
states by employing photon subtraction. In this Section, we are going to
compute the SNR of the new quantum protocol and compare it with Eq. 2.13.

For the sake of simplicity, we will apply the annihilation operator only
to the signal beam, and not to the idler one, i.e. to the mode 1 of Eq. 2.9.
This results in the state

ay | A\i2) —2 &

(Ma] @ [Mr2) A
which has been normalized. The measured operator will be the one of Eq.

2.10, the same as for the previous quantum protocol. We divide again the
calculation of the expectation value in parts, presenting the results below,

|Aps) = N'nln —1,n), (3.1)

Z Z)\m)\nn\/ﬁfém 1,n— 2(5mn 1

m=0n=1

(1_A22 - — myk+1
_7ZZ>\ ALk + D)VEmOm i

m=0 k=0

—\%)? Z/\Q” Unn+1) =

b <&1d2>PS =

)\2 A s
=A(1-— )\2)21 = =N WD) = (@lal) pg

where N’ is the mean number of photons defined for the TMSS without
photon subtraction. N is used for the number of photons of the signal mode
of each protocol. Now, we replace the addends in the expectation value of
the operator, obtaining the expression

(biby + b1B) by = 4/NN'(N" 4 1). (3.2)

We follow the same process than for the previous protocols, calculating
the expectation value of the operator squared:
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In order to calculate the expected number of photons of both modes, 1
and 2, we have used results obtained for the TMSS, which are not labelled
with the subindex PS (photon subtraction). The obtained result for <dJ{&1>PS
is of the greatest importance, since it shows that photon subtraction has
doubled the number of photons with respect to the TMSS. The expression
for ((bibs + b1B1)?) g is

((baba + b1BY)*)pg = ((v/7 (a1d2 + alal) + /T =1 (amaz + a,a}))?)
=2n (12N? +12N" + 1) + (1 — ) (2N + (4N’ + 3)ng, +2).  (3.3)

Substituting Egs. 3.2 and 3.3 in Eq. 2.1, we obtain an expression for the
SNR of this protocol,
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16nN'(N"+1)
2(N"+1) + (4N" + 3)(2nN" — nnen + n4n)
B AnN (N + 2)
N+ (2N +3)(nN — nng, +ne) +2°

In the first equality, the SNR depends on the number of photons of a TMSS
(N'). Since we want the SNR to depend on the number of photons of the
signal (IV), we have made the change N’ = N/2. This is done to be able to
compare both protocols employing the same number of photons.

Finally, the comparison between Gaussian and non-Gaussian protocols
is performed via SNR, and is given by

SNRps =

(3.4)

SNRps (N +2)2n(N +1)N + N — (n—1)(2N + 1)ng, + 1)
SNRq (N +1)(N+ (2N +3)(nN — nngy, + nen) +2)

and represented in Fig. 3.1. There is a region of parameters for which the
non-Gaussian protocol gives a better performance than the Gaussian one.
Specifically, for ny, = 0 thermal photons, the ratio reaches a maximum value
of 1+ m for N = n~1/2 expected signal photons. This fact may seem

(3.5)

relevant but, comparing with Fig. 2.3, we see that the PS protocol is better
than the one without it only in a region where both are worse than the
classical protocol. We can understand this by observing Fig. 3.2, where
we have compared both the quantum Gaussian protocol and the PS one
with the classical protocol. We observe that, even though the non-Gaussian
protocol overcomes the classical one for small values of N, the Gaussian
protocol is still better in the region of interest. This lets us conclude that
the PS state of Eq. 3.1 performs worse than the TMSS of Eq. 2.9, even
though the former could show a stronger entanglement.

3.2 PS on Single-Mode Gaussian States

In the previous Section we have observed that, far from reducing the number
of photons, photon subtraction doubles it for a two-mode squeezed state,
making the non-Gaussian state useless for our purpose. In this Section,
we address the question whether this technique also increases the number of
photons for a general single-mode Gaussian state (Eq. 1.16). This is relevant
since, if we trace out the idle of an arbitrary two-mode Gaussian state, the
reduced density matrix of the signal is a single-mode Gaussian state. We will
see that this is not generaly true, and find the relation between squeezing and
displacement that achieves the largest reduction in the number of photons.

The quantity we want to compute is the difference between the expecta-
tion number of photons of a general Gaussian state before and after applying
an annihilation operator, which are expressed by
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A0

Figure 3.1: Representation of the ratio between quantum protocols’ SNRs with
and without photon subtraction (R), given by Eq. 3.5 (orange surface), in terms of
the signal and thermal photons (N and nyy, respectively) for a reflectivity value of n = 0.1.
The blue surface value is 1, and serves as a reference. The photon subtraction protocol
(non-Gaussian) gives better performance than the Gaussian one when the orange surface
is above the blue one.

Figure 3.2: Representation of the ratio between the quantum Gaussian protocol
and the classical protocol (orange surface) and the ratio between the PS protocol
and the classical protocol (yellow surface), in terms of the signal photons (N) and
thermal photons (n¢n). The blue surface serves as a reference, and takes the value 1. The
quantum protocols give better performance than the classical one when their respective
surfaces lie above the blue one.
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Neauss = Tr(a'aD(@)S(€)unS' (€)' (). (3.6)

(3.7)

respectively, where the denominator of the second formula comes from the
normalization process.

In order to calculate these expressions, we need the commutation re-
lations between the displacement and squeezing operators (Eqgs. 1.14 and
1.15) and the ladder operators. The relation between the operators obeys
the equations

~ N

aD(a) = D(a)(a+a),  a'D(a) = D(a)@a" + o), (3.8)

and the squeezing operator,

~

aS(€)=258(¢)[acoshr—ale’ sinhr],

S(€)=5(&)[a’ coshr—ae™* sinh 7). (3.9)
Let us firstly compute Ngauss, using the relations given by Eqgs. 3.8 and

3.9 and the cyclic property of the trace. This is useful due to the unitarity

of the displacement and squeezing operators. Then, the number of photons
of a general Gaussian state (Eq. 3.6) is

Neaus = Tr( (@' +a*)(a + a)$puST)
- ﬂ((&*& +ata+ aal + \a|2)§ﬁth§T)
— Ty (aT &SﬁthS’T) + Tr(\a|25'ﬁth§T )
= |a|® + Tr ((dT cosh r—éae ™™ sinh ) (a cosh r—a' e’ sinh r),f)th>
= |af* + T ((f cosh? r + (7 + 1) sinh® ) oy, )

= |a|® + (2cosh? r — 1)ngy, + sinh?r, (3.10)

where « defines the displacement, r the absolute value of the squeezing, and
n¢n the number of photons of the thermal state.

Notice that the denominator of Eq. 3.7 coincides with Eq. 3.10. The
calculation of the numerator of Npg gives
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Numpg = Tr( (af + o*) T+a*)(&+a)(d+a)gﬁthS’T>

((aT2 02 4 oa'? + a*2a? 4 4la*d’a + | )SpthST)
. 2
=Tr (‘cosh2 ra'? + sinh? ra? — e sinh r cosh (27 + 1)‘ ﬁth>
— Tr((aQe_i¢ + o*2e™®) sinh r cosh (27 + l)ﬁth>
n Tr(4|a|2(cosh2 rfi + sinh? (7 + 1))ﬁth) + ot
= |a|* — |o*(2nen + 1) sinh(2r) cos(20 — ¢) + 2(ng, + 1)% sinh*(r)
+ 2n2, cosh?(r) + 2|a)?((2nen + 1) cosh(2r) — 1)
+ (8n4n (ngn + 1) 4 1) sinh?(r) cosh?(r), (3.11)

where ¢ and 6 are respectively the squeezing and displacement phases. Npg,
obtained by replacing Eqgs. 3.11 and 3.10 in Eq. 3.7, which results in

la|* = |2 ((2nen + 1) (sinh(2r) cos( — 2¢) — 2 cosh(2r)) + 2))
|a|? + 2n4, cosh?(r) — ng, + sinh?(r)
n 2n2 cosh*(r) + 2(ny, + 1)2sinh*(r) + (8n2, + 8ny, + 1) sinh?(r) cosh?(r)
la? + 2n, cosh?(r) — ng, + sinh?(r) '

Nps =

(3.12)

In order to compare the number of photons before and after the opera-
tion, we calculate the difference of photons. Since the equation depends on
five parameters, namely, |«|, r, ny, ¢, 0, we focus on the relation between
phases that give the smallest number of photons for the PS case, that is,
20 = ¢. The difference between Eq. 3.12 and Eq. 3.10 (Nps — NGaussian) 1S

2 (a® +nd, + nwm) + 20%(2ng, + 1) sinh(2r)
202 + (2ngp + 1) cosh(2r) — 1 ’
(3.13)

AN = (2ny, + 1) cosh(2r) —

which is depicted in Fig. 3.3. We have plotted the surface for small values
of squeezing and displacement since we are interested in the regime of small
photon number, which implies low values for r and «.

By observing Fig. 3.3, we conclude that it possible to decrease the num-
ber of photons of certain Gaussian states by photon subtraction. We are
interested in the relation between squeezing and displacement which opti-
mizes the photon number reduction. This relation is achieved by computing
the gradient of Eq. 3.13. Specifically, the component corresponding to the
derivative in r has been chosen, and the resulting equation is
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(a)

Figure 3.3: Representation of the difference in the number of photons (AN)
given by Eq. 3.13, in terms of the absolute values of squeezing (r) and dis-
placement (a) of the Gaussian state for ngn = 0 (a) and ng, = 0.1 (b). The
orange surface represents de difference of photons and the blue surface takes value 0, to
serve as a reference. When the orange surface is greater than 0, the photon subtraction
operation increases the number of photons but, when it is less than 0, the number of pho-
tons decreases. The yellow line (Eq. 3.14) represents the optimal combination of squeezing
and displacement for a reduction in the photon number for a given ngy.

(2n4n + 1) (—8@2 + (2ngn + 1) sinh(6r) + (8042 — 4) sinh(4r))

+ (8 (1 — 207) + 12 (ngy + 1) + 5) sinh(2r) + 8 (0% — 207) cosh(2r) = 0.
(3.14)

It can be expressed parametrically and it is represented graphically in Fig. 3.3,
in which it is clear that the line actually corresponds to the minimum.

However, notice that, in the case of ny, > 0 (Fig. 3.3b), there is a region
for the optimal relation where photon subtraction increases the number of
photons. Therefore, we must find another relation between the parameters
to define the region for the optimal relation where the number of photons
decrease. This is achieved by isolating one parameter in Eq. 3.14 and re-
placing it in Eq. 3.13. The obtained relation in the limit of high squeezing
ris

1 3
r>g ln<2(2nth + 1)>, (3.15)
and, in the limit of low squeezing,
> 5 ( 2 e + 1> (3.16)
r>—Iln[ ——n . .
3\ g

The calculation of these inequalities is written down in the Appendix A.1
(Eq. A.1).
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3.3 PS with Optimal Displacement and Squeezing

In Section 3.1, we have proven that photon subtraction does not provide any
advantage when acting on a two-mode squeezed state, and that it doubles
the number of photons for that state. Then, in Section 3.2, we have found a
relation between squeezing and displacement for which photon subtraction
actually reduces the number of photons of a single-mode Gaussian state.
In this Section, we want to apply photon subtraction to a quantum state
whose partial trace is the state found in the previous Section. There are
infinite possible two-mode Gaussian states which fulfil this constraint, thus
we will focus on the case which can be experimentally generated in a simplest
manner. Indeed, we use a TMSS in order to entangle the signal and idler
modes. Then, we apply the displacement ﬁ(a) and the squeezing S (&) given
by Eq. 3.14 and, finally, the photon subtraction operation, a. This state is
of the form

O ha)
aD(@)3(€) \iz)’

aD
|SD)) = ¥ (3.17)

()S(¢
(M2| S1(&) Dt (ov)at

(a

where [A12) is given by Eq 2.9 and the normalization constant is a? +
N’ (2cosh?(r) — 1) + sinh?(r), where N’ is the number of photons defined
for the TMSS. Afterwards, we need to fix the number of photons sent to the
object. In the previous Section, we also concluded that the optimal relation
between the phases of displacement and squeezing is 20 = ¢.

The calculation of the SNR follows the same steps as in the previous
cases. Equations 3.8 and 3.9 are necessary, as well as the expectation values
calculated in Sections 2.2 and 3.1. This time, the calculations will not
be displayed here, but the needed expectation values will be written down
in Appendix A.2. The expectation value of Eq. 2.10, depending on the
parameters «, &, 6 and ¢, results in

2/nN'(N'+1)
a2 — N’ + 2N cosh?(r) 4 sinh?(r)
—a?sinh(r) + (202 — 4N’ — 3) cosh(r)) (3.18)

(biba + bibh) )\ = ((6N’ + 3) cosh®(r)

where N’ is the photon number for a TMSS. Notice that, after replacing
20 = ¢, the result does not depend on the direction of squeezing ¢. This is
because ¢ and 6 depend on the choice of the coordinate system (z,p), so the
result can only depend on the relation between the phases. The expected
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number of photons for the state given in Eq. 3.17 is

202((2N' 4+ 1) cosh(2r) — 1) — (2N’ + 1) sinh(2r)
a? — N’ 4+ 2N’ cosh?(r) + sinh?(r)
n 2(N' 4 1)2sinh*(r) 4+ (8N'? + 8N’ + 1) sinh?(r) cosh? ()
a2 — N’ 4+ 2N’ cosh?(r) + sinh?(r)
N 2N cosh(r) + o
a2 — N’ + 2N’ cosh?(r) 4 sinh?(r)

<&J{&1>SD)\ =

=N (3.19)

The equation obtained for ((b1by + By);)% is

NN 8at(2nN' +n) + 1602 (n (BN? + N/ — 1) + 1)
{(brb2 + bib;) Jspa = 4(202 + (2N’ + 1) cosh(2r) — 1)
N 8 cosh(2r) (n (a?(22N'(N' +1) 4+ 2) + 2N'(N' +1)(3N' —4) — 1))
4(2a2 + (2N’ + 1) cosh(2r) — 1)
4cosh(2r)((n—1) (BN"? + 6N’ + 3) ng, — 2n((2N'(N' + 1) + 1))
4 (202 4+ (2N’ + 1) cosh(2r) — 1)
n(N'(24N"? +12N" —2) + 5) — 12 (2a* = 1) (n — 1)ngn
4 (202 + (2N’ 4+ 1) cosh(2r) — 1)
8a’n(14N'(N’ + 1) + 1) sinh(2r)
4(202 + (2N’ 4+ 1) cosh(2r) — 1)
3n(2N’' 4+ 1)(20N'(N" + 1) + 1) cosh(4r) — 8
4 (202 4+ (2N’ + 1) cosh(2r) — 1)

(3.20)

By replacing Egs. 3.18 and 3.20 in Eq. 2.1, we obtain the SNR for the
signal (Eq. 3.17). Let us remember that we must compare the protocols
using the same resources, so we have made a similar change in the number
of photons performed for Eq. 3.4, but taking into account that now the
number of photons of the signal is expressed by Eq. 3.19. This process is
written down in Appendix A.2, along with the SNR (Eq. A.3).

It should be clarified that the parameter called N’ in this Section, rep-
resents n, in the previous one, since the thermal state of the Section 3.2
of single-mode photon subtraction is the resultant of tracing out the idler
beam of a TMSS. In this Section, ni, comes from the interaction with the
object.

The comparison will be done with the protocol exposed in Section 2.2,
the quantum protocol with a Gaussian state with SNR given by Eq. 2.13.
By computing the ratio between Eqs. A.3 (after replacing N’ with Eq. A.6)
and 2.13, we obtain the comparison between the Gaussian and the dis-
placed squeezed photon subtracted TMSS, which is graphically represented
in Fig. 3.4 for a single-mode squeezing value of + = 0.1 and a reflectivity of
n=0.1.
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Figure 3.4: Representation of the ratio (R) between the SNRs of the quantum
non-Gaussian protocol, with a signal expressed by Eq. 3.17, and the quantum
Gaussian protocol with a signal state of the form of Eq. 2.9, in terms of the signal
photons (N) and thermal photons (n¢). The values chosen for the reflectivity n and the
single-mode squeezing r are n = r = 0.1.

As it can be clearly seen, the surface stays below 1 for every signal and
thermal photons in the studied range, which means that the non-Gaussian
protocol developed in this Section is worse than the Gaussian one with a
two-mode squeezed state. This result is fairly reasonable, since photons
have been added to the state at the expense of the entanglement level in the
process of squeezing and displacement. Indeed, the squeezing of the TMSS,
represented by N’, has been reduced to compensate de number of photons.
Additionally, this increment in the number of photons is not compensated
by the photon subtraction operation.

In light of the results obtained in this Chapter, we can conclude that
making the states non-Gaussian does not seem to provide any advantage in
quantum illumination problems. Nevertheless, we have compared the best
Gaussian protocol with a particular non-Gaussian protocol. This does not
provide any general prove, since the employed state is only one of the infinite
possible states that fit the conditions imposed in Section 3.2. Although a
comparison with a general two-mode Gaussian state should be performed,
we do not expect it to change the result for the aforementioned reasons.






Conclusions

In this work, we have introduced the fundamentals of quantum illumination,
with special emphasis on Gaussian states as a resource. We have shown that,
indeed, the quantum Gaussian protocol outperforms the best classical one
in the studied detection scheme. Photon subtraction is a common technique
to de-Gaussianize quantum states in continuous variables. Motivated by
an enhancement over the quantum Gaussian protocol using this technique
reported in Ref. [2], we have studied it in detail, concluding that photon
subtraction does not provide any advantage when the number of photons is
fixed.
Below, the main results obtained throughout this work are described.

e We have compared the performance of the best quantum illumina-
tion protocol with Gaussian states against the best classical one by
means of their respective signal-to-noise ratios. We have shown that
the quantum protocol provides an enhancement in the limit of weak
signal (small number of signal photons) with respect to the environ-
mental noise photons. In this region of interest, the ratio reaches up
to a maximum of 2.

e We have demonstrated that a protocol based on photon subtraction
acting on a TMSS, does not overcome the aforementioned quantum
protocol in the region of interest. The reason is that the growth of the
number of photons of the signal that this operation generates must be
compensated by reducing the squeezing level.

e We have studied the effect of photon subtraction in the photon number
when applied to an arbitrary single-mode Gaussian state. We have
found that, far from always increasing the number of photons, there
exists a region of parameters (o, & and nyy,) for which the photon
number is reduced. We have calculated the optimal relation between
squeezing, displacement and thermal photons of a state for photon
number reduction.

e We have used the aforesaid optimal relation to try to find a regime in
which photon subtraction is advantageous. Indeed, we have applied
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the annihilation operator to the signal mode of a TMSS, which we
have previously displaced and squeezed an amount corresponding to
the optimal relation among «, & and ny,. We have demonstrated that
the new state still performs worse than the TMSS. This result can
be understood based on the fact that the displacement and squeezing
applied before the photon subtraction actually increase the photon
number in comparison with the reduction caused by the photon sub-
traction. Therefore, for a given number of photons of the signal, the
photons of the initial TMSS are reduced, which consequently decreases
the entanglement.

The obtained results in this work concerning photon subtraction are a
starting point for a more general study on its effects in quantum illumination
protocols. In particular, a comparison between the TMSS and a general two-
mode Gaussian state with photon subtraction should be carried out in order
to definitely prove or deny the advantages given by this operation.
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Appendix A

Intermediate Calculations

A.1 Optimal Photon Reduction

In this Section, we present the photon number difference achieved by replac-
ing o in Eq. 3.13 using the expression given in Eq. 3.14. This operation
results in
m (y* +2y* — 1) — 2y
2y (y* — 1)
Vm?2 (Y8 — 2y + 8yt — 2y2 — 1) — dmy (y* + 292 — 1) + 4y*
2y (y> = 1)

where the parameters y and m are

ANypt =

(A1)

y =exp(2r), m =2n — 1.

The relation in Eq. 3.14 is valid when the expression given in Eq. A.1
is less than 0, i.e. when photon subtraction reduces the number of photons.
Isolating the variable m we get

e 2 VY O 2 20—yt 2y
3yt —1 '

(A.2)

The high squeezing limit (Eq. 3.15) is obtained by taking the highest
order component, and the low squeezing limit (Eq. 3.16) by generating a
power series expansion around y =1 (r = 0) to order 1.

A.2 Optimal PS Protocol Expectation Values

In this Section, we write down the expectation values involved in the calcu-
lation of Eqs. 3.18 and 3.20, as well as the procedure we have followed to
find the SNR of the optimal PS protocol.

First, the expectation values needed to compute the SNR are:
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(@1G2)gpy = VN (N + 1) (a?(2cosh(r) — sinh(r) cos(20 — ¢)))
N(N + 1) (cosh(r) (—4N + 3(2N + 1) cosh?(r) — 3))

(a ;d dspa = @ + N(2N + 1) (2 cosh?(r) — 1) + sinh?(r)

o (afa3)gpy = 60> N (N + 1) cosh(r)(cosh(r) — sinh(r) cos(20 — ¢))
+6N?(N + 1) cosh?(r) (2 cosh?(r) — 1) 4+ 2N (N + 1) sinh?(r) cosh?(r)
+(2N(N +1) = +4N(3N + 2)(N + 1)) sinh?(r) cosh?(r)

(&idldgfzﬁsm\ = a*N—-2a%(2(2N+1)N+N) sinh(r) cosh(r) cos(20 — ¢)
+4a® (N sinh®(r) + N(2N + 1) (2 cosh?(r) — 1))

+ (8(3N +2)N? + 8(2N + 1)N + N) sinh?(r) cosh?(r)

+2N?%(3N +2) cosh?(r) + 6N(N + 1)*sinh*(r)

Using the obtained expectation values, we find Egs. 3.18 and 3.20. The
SNR obtained via Eq. 2.1 is

SNRgpy = —4n ((8a” + 2N’ — 3) cosh(r) — 4a? sinh(r) + (6N’ + 3) cosh(3r))2

N'(N"+1)[4(n — 1) (2a* + (2N’ + 1) cosh(2r) — 1) ((2a* = 1) (3n, + 2)

+ (AN'(N" + 1) + (8N + 6N’ + 3) ngp, + 2) cosh(2r))

+4nN'(N' + 1) ((8a* + 2N’ — 3) cosh(r) — 4a” sinh(r)

+ (6N’ +3) cosh(37"))2 — 1 (2a% + (2N’ + 1) cosh(2r) — 1)

(8a" +12 (40® + 1) N? +2 (8 (o' + 0®) — 1) N’ + 24N"

+16 (@®(1LN'(N'" + 1) + 1) + 3N’ (N"? — 1)) cosh(2r)

— 8a%(14N'(N' + 1) + 1) sinh(2r)

+3(2N + 1)(20N" (N’ 4 1) + 1) cosh(4r) — 3)] 7. (A.3)
Now, we isolate o in Eq. 3.14 and replace it in the number of photons

of the signal (Eq. 3.19). This leads to the optimal number of photons of the
signal, now dependent on two parameters, N’ and 7,

or (2N +1)e!?" + (6N’ + B + 3)e®” — 10e%” + (18N’ — 5B + 9)et

N =e"
c 8 (et —1)
2e?" — 52N’ + 1)
e A4
te (err —1) 7 (A-4)
where (A.5)

= [4(8N'(N’" +1) +3) + 2(2N’ + 1)?sinh(8r) + 4(2N’ 4 1) sinh(2r)
—12(2N’ + 1) cosh(2r) + 4(2N" + 1) cosh(6r)
— 4(2N’ 4 1) sinh(6r) — 4(2N" + 1) cosh(4r)]"/2.
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From this equation, we isolate N’, which results in two solutions. The
positive solution, which is the physically valid one, is

4[e'" (2 cosh(2r) — 3sinh(2r))? (8N? sinh(8r) — 4(2N + 3)? cosh(4r)
2 (€8 (—4etr + 9eBr 4 84) — 25)
4€'%7(16N + 17) cosh(8r) + 32(N + 1)N + 19)]
2 (€87 (—4detr + 9e8 + 84) — 25)
N 4(N + 1)e — 10(2N + 3)e?” + 2(6N + 13)e'0" + 4(9N + 16)e’”
2 (e8r (—4etr + 9eBr 4 84) — 25)

4e'?r — 848" — 9elbr 4 25

2 (8 (—de* + 9e8" + 84) — 25)°

N' =

+

(A.6)

We replace it in the SNR (Eq. A.3), so the SNR now depends on the photons
of the signal N, and not N’. The comparison with the Gaussian protocol is
depicted in Fig. 3.4.






Appendix B

Mathematica Programs

B.1 Representation in Phase Space of different Wigner
Functions

In this program, we plot the Wigner functions for different Gaussian states
(Egs. 1.17, 1.18 and 1.19). The graphics are the ones depicted in Fig. 1.1.

47



Thermal[x_,p_, A_] :=(1-A) / (wh (1 +A)) Exp[-1/A ((1-A)/ (1+A)) (x*2+p*2)]
Coherent[x_, p_, a_] :=
(1/ (;vh)) Exp[-1/h ((x-Re[a] / (Sqrt[2h]))*2+ (p-Im[a] / (Sqrt[2A])) *2)]
Squeezed([x_,p_,a_, r_, 6_] :=
(1/ (wh)) Exp[-Abs[Cosh[r] Exp[-1 6] ((x-Re[a] +1 (p-Im[a])) / (Sqrt[2A])) +
Sinh[r] Exp[1 6] ((x-Re[a] -1 (p-Im[a])) / (Sqrt[2h]))]"2]

h=1;

plotl = Plot3D[Coherent[x, p, 1.5 (1 + 1)], {x, -4, 4}, {p, -4, 4},
PlotRange -» All, PlotPoints » 70, Mesh -> None, AxesLabel - {"x", "p"},
Boxed » False, Axes » False, BoundaryStyle -» Directive [Orange, Thick]]

plot2 := Plot3D[Thermal[x, p, 0.4], {x, -4, 4}, {p, -4, 4}, PlotRange -» All,
PlotPoints » 50, Mesh -> None, AxesLabel » {"x", "p"}, Boxed » False,
Axes -» False, BoundaryStyle -» Directive [Orange, Thick]]

plot3 := Plot3D[Thermal [x, p, O], {x, -4, 4}, {p, -4, 4}, PlotRange -» All,
PlotPoints » 50, Mesh -> None, AxesLabel » {"x", "p"}, Boxed » False,
Axes -» False, PlotStyle » Directive[Red, Opacity[0.5]]]

Show[plot2, plot3]

plot4 = Plot3D[Squeezed[x, p, 0, 0.5, -7/ 8], {x, -5, 5}, {p, -5, 5},
PlotRange » All, PlotPoints » 70, Mesh -> None, AxesLabel -» {"x", "p"},
Boxed -» False, Axes -» False, BoundaryStyle - Directive [Orange, Thick]]

GO

cplotl = ContourPlot[Coherent[x, p, 1.5 (1 + 1)], {x, -4, 4}, {p, -4, 4},
PlotRange » All, PlotPoints » 80, ContourStyle -» None, Frame -» False]
cplot2 = ContourPlot[Thermal[x, p, 0.4], {x, -4, 4}, {p, -4, 4},
PlotRange -» All, PlotPoints -» 80, ContourStyle -» None, Frame -» False]
cplot3 = ContourPlot[Squeezed[x, p, 0, 0.5, -7/ 8], {x, -4, 4}, {p, -4, 4},
PlotRange » All, PlotPoints -» 50, ContourStyle -» None, Frame -» False]

Printed by Wolfram Mathematica Student Edition
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B.2 Representation of SNR Comparisons

In this program, we represent the ratio between the SNR of different pro-
tocols. First, we compare the classical protocol with the quantum Gaus-
sian protocol (Fig. 2.3). Then, the Gaussian protocol with the PS proto-
col (Fig. 3.1) and, finally, both quantum protocols with the classical one
(Fig. 3.2).



In[1]:=

In[15]:=

out[15]=

In[20]:=

In[53]:=

In[28]:=

out[28]=

In[29]:=

out[31]=

In[39]:=

In[55]:=

xcua=7n (N+1) (6N+1)+(1-n) (2Nt+N+t+1);
Xx=28Sqrt[nN (N+1)];

SNRQ1 = (x*2) / (xcua-x"2) // FullSimplify
4nN (1+N)

1+N+2nN (1+N) -t (-1+n) (1+2N)

(2Nn) / ((1-7n) t+1/2)
4NN (1+N)

SNRC[n_, N_, t_] :

SNRQ[n_, N_, t_] :

1+N+2nN(1+N)-t(-1+n) (1+2N)
ComparisonQC[n_, N_, t_] :=SNRQ[n, N, t] /SNRC[n, N, t]

Plotl :=
Plot3D[1, {n, O, 50}, {t, 0, 150}, PlotPoints -» 150, PlotRange -» All, Mesh - None,
AxesLabel -» {"N", Subscript["n", "th"], "R"}, PlotStyle » Directive[Blue]]
PlotQC := Plot3D[ComparisonQC[0.1, n, t], {n, O, 50}, {t, O, 150}, PlotPoints -» 150,
PlotRange -» All, Mesh -» None, AxesLabel -» {"N", Subscript["n", "th"], "R"},
PlotStyle -» Directive[Orange, Opacity[0.85]]]

Show [Plotl, PlotQC]

Now with photon subtraction:

ps =4Sqrt[nN (N+1)];
pscua=2n (12N*2+12N+1) + (1-n) (t (4N+3) +2N+2);
SNRQp = ps*2 / (pscua-ps”2) // FullSimplify

16N (1+N)

2 (1+N)+ (3+4N) (t-tn+2nN)

16 NN (1 +N)

SNRQPS[n_, N_, t_] :=
2 (1+N) +(3+4N) (t-tn+2nN)

ComparisonPSQ[n_, N_, t_] := SNRQPS[n, N/ 2, t] /SNRQ[n, N, t]

Plot2 :=
Plot3D[1, {n, 0, 10}, {t, 0, 50}, PlotPoints » 150, PlotRange » All, Mesh -» None,
AxesLabel - {"N", Subscript["n", "th"], "R"}, PlotStyle - Directive [Blue] ]
PlotPSQ := Plot3D[ComparisonPSQ[0.1, n, t], {n, O, 10},
{t, 0, 50}, PlotPoints » 150, PlotRange -» All, Mesh - None,
AxesLabel » {"N", Subscript["n", "th"], "R"},
PlotStyle -» Directive[Orange, Opacity[0.85]]]

Printed by Wolfram Mathematica Student Edition



2 | 2-CvsQGauss_QGaussVsPS.nb

ins8= Show[Plot2, PlotPSQ]

out[58]=

8= ComparisonPSC[n_, N_, t_] := SNRQPS[n, N/ 2, t] /SNRC[n, N, t]

9= PlotPSQ := Plot3D[ComparisonPSQ[0.1, n, t],
{n, 0, 10}, {t, 0, 50}, PlotPoints » 150, PlotRange - All,
Mesh -» None, AxesLabel -» {"N", Subscript["n", "th"], "R"},
PlotStyle » Directive[Orange, Opacity[0.85]]]

PlotPSC := Plot3D[ComparisonPSC[0.1, n, t], {n, O, 10},

{t, 0, 50}, PlotPoints -» 150, PlotRange -» All, Mesh - None,
AxesLabel » {"N", Subscript["n", "th"], "R"},
PlotStyle » Directive[Yellow, Opacity[0.85]]]

Plot2QC := Plot3D[ComparisonQC[0.1, n, t], {n, O, 10}, {t, O, 50}, PlotPoints -» 150,
PlotRange -» All, Mesh -» None, AxesLabel -» {"N", Subscript["n", "th"], "R"},
PlotStyle » Directive[Orange, Opacity[0.85]]]

Plot3 := Plot3D[1, {n, 0, 10}, {t, 0, 50}, PlotPoints » 150, PlotRange - All,
Mesh -» None, AxesLabel -» {"N", Subscript["n", "th"], "R"},

PlotStyle » Directive[Blue, Opacity[0.6]]]

ine4:= Show[Plot2QC, P1lotPSC, Plot3]

out[64]=

Printed by Wolfram Mathematica Student Edition
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B.3 Optimal Displacement and Squeezing Calcu-
lation and Graphic Representation

In this program, we represent the difference of photons generated by photon
subtraction (Eq. 3.13) and find the optimal relation between the parameters
r, c and ng,. We choose ng, = 0 and ny, = 0.1 just for graphic representation
(Fig. 3.3).



num = Cosh[r]*4*2*n”*2 +Sinh[r]*4 % (2n*2+4n+2) +
Sinh[r]“2Cosh[r]*2 (8n*2+8n+1) -2a”2Sinh[r] Cosh[r] (2n+1) Cos[6-2¢] +
4a”2 ((2Cosh[r]”*2-1) n+Sinh[r]*2) +a”*4;

np=a”*2+ (2Cosh[r]*2-1) n+Sinh[r]*2;

npp = num / np;

dif = FullSimplify[npp - np] ;

dif
(1-4a®+2 (1+2n) (-1+2a®) Cosh[2x] + (1+2n)?Cosh[4r] -4 (1+2n) o® Sinh[21]) /
(2(-1+20a®+ (1+2n) Cosh[2r])) // FullSimplify

-2 (n+n?+0®) -2 (1+2n) &®Sinh[2r]
(l+2n) Cosh[2r] +

-1+20?+ (1+2n) Cosh[2r]

ReplaceAll[(1-4a®+2 (1+2n) (-1+20®) Cosh[2x] + (1L+2n)?Cosh[4 ] -
4 (1+2n)a®Cos[6-2¢] Sinh[2r]) /(2 (-1+2a®+ (1+2n) Cosh[2x])), {6 > 2¢}]

(1-40”°+2(1+2n) (-1+2a?) Cosh[2r] + (1+2n)?Cosh[4r] -4 (1+2n)a’Sinh[21]) /
(2(-1+2a®+ (1+2n) Cosh[2r]))

n«- Animate [Plot3D[(1-40a%*+2 (1+2n) (-1+2a®) Cosh[2r] + (1+2n)%?Cosh[4 1] -
4 (1+2n)a® sinh[2r]) /(-2+40®+ (2+4n) Cosh[2r]), {r, 0, 1},
{a, 0, 1}, AxesLabel -» Automatic] , {n, 0, 1}, AnimationRunning - False]

Out[4]=

Since there exists a minimum, we compute the gradient of the function. In particular, the derivative
inr:

Printed by Wolfram Mathematica Student Edition
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FullSimplify|
8- ((1-40®°+2(1+2n) (-1+2a®) Cosh[2r] + (1+2n)?Cosh[4r] -4 (1+2n)
o® sinh[2r]) / (-2+40®+ (2+4n) Cosh[2r]))]
2 (1+2n)

202 (1+2n+ (-1+20a?) Cosh[2r]) 2 (n+n?+a?)
- + |1+
(-1+2a?+ (1+2n) Cosh[2r])’

Sinh[2 r]

(-1+2a%+ (1+2n) Cosh[2r])’
Numerator:

(-8a*Cos[6-2¢] (L+2n+ (-1+2a®) Cosh[2r]) + (5+12n (1+n) -8a’+16a*)
Sinh[2r] + (1+2n) ((-4+8a®) Sinh[4r] + (1+2n) Sinh[61])) /. {n>0, 6> 2¢}

-80a” (1+(-1+20”) Cosh[2r]) +
(5-80°+16a*) sinh[2r] + (-4+80a”) Sinh[4 ] +Sinh[6 r]
The numerator must be 0, so we can solve for a*2

Solve [ReplaceAll[-8a” (1+ (-1+2a?) Cosh[2r]) + (5-8a’+16a’) Sinh[2 ] +
(-4+8a®) sinh[4r] +Sinh[6 ], {a"2 > x, a*4 > x*2}] =0, x|

{{x-
(—1+Cosh[2 r] -Sinh[2 r] + Sinh] \/—\/( 2Sinh[r]?+2Cosh[2r] Sinh[r]?+2
Cosh[4 r] Sinh[r]?-Sinh[r]?Sinh[2r] +Sinh[r]?Sinh[6r])) /
(4 (Cosh[2r] -Sinh[2 r]))}, {xe (—1+COSh[2 r] -Sinh[2 r] +Sinh[4 r] +
\/_\/( 2Sinh[r]?+2 Cosh[2r] Sinh[r]?+2 Cosh[4 r] Sinh[r]?-
Sinh[r]?Sinh[2 r] +Sinh([r]?Sinh[6r])) / (4 (Cosh[2r] -Sinh[2r]))}}

We plot both results for a*2 to see which of them is the correct one

Plot[
{(-1 +Cosh[2r] - Sinh[2r] +Sinh[4 1] - V2 +/ (-2 Sinh[r]? +2 Cosh[2 r] Sinh[r]?
2Cosh[4 r] Sinh[r]? - Sinh[r]? Sinh[2 r] + Sinh[r]® Sinh[6 r]) ) /
(4 (Cosh[2r] -Sinh[21])), (-1 +Cosh[2r] -Sinh[2r] +Sinh[4r] +V2
4/ (-28inh[r]?+2Cosh[2 r] Sinh[r]? +2Cosh[4 r] Sinh[r]? - Sinh[r]® Sinh[2 r] +
Sinh[r]2 Sinh[6 r]))/ (4 (Cosh[2 r] - Sinh[2 r]))}, {r, 0, 0.5}]
30f
25]
20f

1.0F

T T T T S ST S S N S TN T S N S SO SR SO |

0.1 0.2 0.3 0.4 0.5

Notice that the first solution (blue) is negative, which is not possible for a*2. We plot the line paramet:

Printed by Wolfram Mathematica Student Edition
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rically along with the surface, to see if it is the minimum or not:

line := ParametricPlot3D[{r, Sqrt[
(-1 +Cosh[2r] -Sinh[2r] +Sinh[4r] +V2 4/ (-28inh[r]?+2Cosh[2 r] Sinh[r]?+
2Cosh[4r] Sinh[r]?-Sinh[r]?Sinh[2r] + Sinh[r]? Sinh[61]) ) /
(4 (Cosh[2 r] - Sinh[2 r]))], o}, {r, 0, 1}, PlotStyle - {Thick, Yellow}]
2a? (1+Sinh[2])

surface := Plot3D[Cosh[2 r] - , {r, 0,1}, {a, 0, 2},
-1+2a?+Cosh[2r]

AxesLabel -» Automatic, PlotPoints -» 100, PlotRange -» Automatic,

Mesh -» None, PlotStyle -» Directive [Orange, Opacity[0.85]] ]

zero := Plot3D[0, {r, 0, 1}, {a, O, 2}, AxesLabel » Automatic, PlotPoints -» 100,
PlotRange -» Automatic, Mesh » None, PlotStyle - Directive[Blue]]

Show[surface, zero, line]

Solve [ReplaceAll [
(-8a® (1+2n+ (-1+20a?) Cosh[2r]) + (5+12n (1+n) -8a’+16a*) Sinh[2 1] +
(L+2n) ((-4+80a”) Sinh[4r] + (1+2n) Sinh[6r])),

{n>0.1, a*2 > x, a*4 > x"2}] =0, x|

. Solve was unable to solve the system with inexact coefficients. The

answer was obtained by solving a corresponding exact system and numericizing the result. >

{{x-> (0.05 (-6.+5.Cosh[2.r]-5.8Sinh[2. r] +6. Sinh[4. r] -
1. \/(97. -90. Cosh[2. r] -36. Cosh[4. r] +30. Cosh[6. r] +30. Sinh[2. r] -
30. Sinh[6. r] +18. Sinh[8. r]))) / (Cosh[2. r] -1. Sinh[2. r])},
{x—-> (0.05 (-6.+5.Cosh[2.r]-5.8Sinh[2. r] +6. Sinh[4. r] +
\/(97. -90. Cosh[2.r] -36.Cosh[4. r] +30. Cosh[6.r] +30. Sinh[2. r] -
30. Sinh[6. r] +18. Sinh[8. r]))) / (Cosh[2. r] -1. Sinh[2. r])}}

Printed by Wolfram Mathematica Student Edition
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Surf :=
Plot3D[{Rep1aceAll[(1—4a2+2 (1+2n) (—1+2a2) Cosh[2r] + (1+2n)2Cosh[4r] -
4 (1+2n)a® sinh[2r]) /(-2+40®+ (2+4n) Cosh[2r]), n>0.1]},
{r, 0, 1}, {a, O, 2}, AxesLabel » {"r", "a", "AN"}, PlotPoints -» 100,
PlotRange -» Automatic, Mesh - None,
PlotStyle » Directive[Orange, Opacity[0.85]] ]
1i := ParametricPlotBD[
{r, sqrt[(0.05 (-6.  +5. Cosh[2.  r]-5." Sinh[2. r] +6. Sinh[4. r]+
—\/(97. ©-90.  Cosh[2.  r] -36. Cosh[4. r] +30. Cosh[6. r]+
30.' Ssinh[2.' r] -30." Sinh[6.  r] +18.  Sinh[8. r])))/
(Cosh[2.  r]-1."Sinh[2. r])], 0}, {r, 0, 4}, PlotStyle » {Thick, Yellow}]

Show[Surf, 1i, zero]
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B.4 Comparison between the Gaussian and Squeezed
Displaced PS Protocols

In this program, we find the SNR of the squeezed displaced PS protocol
(Eq. A.3), and then we compare it with the Gaussian protocol (Eq. 2.7).



In[8]:=

In[14]:=

In[20]:=

In[21]:=

In[23]:=

These are the needed expectation values for the calculation of the SNR

norm[N_, a_, r_] :=Sinh[r]*2+ (2Cosh[r]*2-1) N+a*2
nl[N_,a_,r_,6_,¢_] :=2Cosh[r]*4N"*2+
28inh[r]~4 (N+1)~2+Sinh[r]*2Cosh[r]*2 (4N (2N+1) +4N+1) +a*4+
40”2 ((2Cosh[r]*2-1) N+Sinh[r]”*2) -2a”2Cos[26-¢] Sinh[r] Cosh[r] (2N+1)
n2[N_, a_, r_] :=Sinh[r]*2+ (2Cosh[r]*2-1) N (2N+1) +a”*2
ala2[N_, a_, r_,6_, ¢_] :=Sqrt[N (N+1)]
(Cosh[r] (3Cosh[r]”*2 (2N+1) -4N-3) +a”2 (2Cosh[r] -Sinh[r] Cos[26-¢]))
nln2[N_, a_,r_,6_, ¢_] :=Cosh[r]*4 (2N*2 (3N+2)) +Sinh[r]"*4 (6N (N+1)"2) +
Sinh[r]*2Cosh[r]*2 (8 N*2 (3N+2) +8N (2N+1) +N) +
Na*4+4a”2 ((2Cosh[r]*2-1) N(2N+1) +NSinh[r]*2) -
2a”2Cos[26-¢] Sinh[r] Cosh[r] (2N (2N+1) +N)
alala2a2[N_,a_,r_,6_, ¢_] :=
6a”“2N (N+1) Cosh[r] (Cosh[r] -Sinh[r] Cos[26-¢]) +
Cosh[r]*2 (2Cosh[r]*2-1) 6 N*2 (N+1) +Sinh[r]*2Cosh[r]*22N (N+1) +
Cosh[r]~2Sinh[r]*2 (2 (2N (3N+2) (N+1)) +2N (N+1))

Operador([n_, N_, a_, r_] :=8Sqrt[n] (2ala2[N, a, r, 0, 0] / norm[N, a, r])
Operador2([n_, N_, nth_, a_, r_] :=
n (2 alala2a2[N, a, r, 0, 0] /norm[N, a, r] +2nln2[N, a, r, 0, 0] / norm[N, a, r] +
nl[N, a, r, 0, 0] /norm[N, a, r] +n2[N, a, r] /norm[N, a, r] +1) +
(1-7n) (2nthn2[N, a, r] /norm[N, a, r] +nth+n2[N, a, r] /norm[N, a, r] +1)

The following relation gives the OPTIMAL displacement in terms of the thermal photons of a single-
mode gaussian state and the squeezing.

Alfa[nth_, r_ ] :=
Sqrt[ (-2 —4nth+2Cosh[2r] -2Sinh[2r] +2 Sinh[4 r] + 4 nth Sinh[4 r] +
V2 4/ (6 +16nth + 16 nth® - 6 Cosh[2 r] - 12 nthCosh[2 r] -2 Cosh[4 r] -

8 nth Cosh[4 r] - 8 nth? Cosh[4 r] + 2Cosh[6 r] + 4 nth Cosh[6 r] +
2Sinh[2r] +4nthSinh[2r] -2 Sinh[6r] -4nthSinh[6r] +Sinh[8 ] +

4nthSinh[8 r] + 4 nth? Sinh[8 r]))/ (8 (Cosh[2 r] - Sinh[2 r]))]
Op[n_, N_, nth_, r_] := Operador[n, N, Alfa[N, r], r]*2
Op2([n_, N_, nth_, r_] := Operador2[n, N, nth, Alfa[N, r], r]
SNR[n_r N_, nth_r r_] :=0p[n, N, nth, r] / (0P2[T7r N, nth, r] -Op[n, N, nth, r])

The SNR depends, among other things, depends on the photon number of the TMSS. We want it to
depend on the photon number of the signal.

The number of photons of the signal is:
NFot[N_, a_, r_] :=nl[N, a, r, 0, 0] / norm[N, a, r]

The number of photons of the TMSS in terms of the ones of the signal:
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2 | 4-0OptPS.nb

Solve [NFot[N, Alfa[N, r], r] ==n, N]

out[118]= {{N» (25—3Oe2r+64 e’ -84e®T+26e!07 4

4ePTi4eT -9 -20e’ " n+36e’ " n+12e’*n+d4e¥n-

V2 /(425€**-1070 e®F +1327 €27 - 1316 €'°% + 823 €20F - 206 €24 ¥ + 17 e2* % +
400e**n-1360e®" n+2096e'?*n-1888e'® n+944e?°*n-208e?*n~+
16 e’ n-200e**n?-320e®"n?+1752€'?*n?-1056e'®* n?+
424 ezornZ—96e24rn2+8e28rn2))/(2 <725+84 e8r74e12r+9e16r)>},

(N> (25-30e**+64e’ -84’ +26e 0" +4e 4T -0e' " -

20€’"n+36e® n+12e " n+d4ettn+

V2 /(425€**-1070 e® ¥+ 1327 27 - 1316 e!°F + 823 e?°F - 206 €% +
17e*®*+400e*" n-1360e’ " n+2096e'* n-1888e' " n+944 e’ n-
208e** " n+16e**"n-200e**n’-320e’ n”*+1752e?" n”-1056€"°* n” +
424 e20rn2—96e24rn2+8e28rn2))/(2 <—25+84 eSr—4el2r+9e16r)>}}

inf22= NTMSS[n_, r_] := (25 84T+ 42T -9elfT,
4e™* (1+n)-10e?* (3+2n) +2e'%% (13+6n) +4e°% (16+9n) +
4 +/(e'®* (2Cosh[2r] -38Sinh[2r])? (19+32n (1+n) -4 (3+2n)?Cosh[4 ] +
(17+16n) Cosh[8r] +8n®Sinh[8<r]))) /(2 (-25+e®" (84-4e**+9e"")))

4nN (1+N)
nf23= SNRQ1[n_, N_, t_] :

) 1+N+2nN (1+N) -t (-1+n) (1+2N)
SNRC[n_, N_, t_] := (2Nn)/ ((1-n) t+1/2)

ine1= CompFin[n_, N_, t_, r_] := SNR[n, NTMSS[N, r], t, r] /SNRQl[n, N, t]

in109)= Comp := Plot3D[{CompFin[0.1, n, t, 0.1]},
{n, NFot[O, Alfa[0O, 0.1], 0.1], 10}, {t, O, 50}, PlotPoints - 50,
PlotRange -» All, Mesh -» None, AxesLabel -» {"N", Subscript["n", "th"], "R"},
PlotStyle -» Directive[Orange, Opacity[0.85]]]
Zero := Plot3D[1, {n, 0, 10}, {t, 0, 50}, PlotPoints » 50, PlotRange - All,
Mesh -» None, AxesLabel -» {"N", Subscript["n", "th"], "R"},
PlotStyle -» Directive[Blue, Opacity[0.5]1]1]

in111:= Show [Comp]

out[111]=
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