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I.1. ORGANOMETALLIC COMPLEXES IN E-H BOND ACTIVATION  

The discovery of the π-sandwich structure of ferrocene in the early 1950s served as a driving 

force for the rapid development that organometallic chemistry has experienced to date, and 

subsequent advances led to deep conceptual changes in our understanding of chemical 

bonding, structural features and reaction mechanisms.1 This multidisciplinary science also laid 

the basis for a number of revolutionary processes in diverse areas, such as in polymer industry, 

pharmaceuticals, refinery, agriculture or medicine.2 The large variety of ligands that can 

coordinate to a metal centre allow organometallic complexes to adopt very different structural 

geometries, and late second and third row transition metals grant the access to multiple stable 

oxidation states, thus enabling the multielectron transformation of a substrate under mild 

conditions.3 Consequently, organometallic compounds have been vastly used as catalysts for 

organic and polymer syntheses to date. 

Industrial catalysis has been dominated by precious metal based complexes for decades, due 

to several unique properties they exhibit as catalysts.4 A great resistance to corrosion or 

oxidation allows them to work under acidic and alkaline conditions or without the strict need 

of an air-free environment in a variety of reactions, and the low ligand lability of these 

complexes also contributes to their overall stability. Moreover, their enhanced activity and 

selectivity for a certain type of transformation or product, and their facile and straightforward 

characterisation by well-established techniques including NMR spectroscopy, an 

extraordinarily helpful tool due to the formation of diamagnetic derivatives, ensures a 

predictable reactivity.  

Among noble metals, ruthenium, palladium and rhodium have by far been the most employed 

as organometallic catalysts both in laboratory and industrial scale, especially in fine chemical 

syntheses. Rhodium-based homogeneous catalysts are known to participate in an enormous 

range of synthetically important organic reactions. The discovery of Wilkinson’s catalyst 

[RhCl(PPh3)3] proved to be a major breakthrough in the 1960s, leading to numerous successful 

applications including the hydrogenation of olefins with molecular hydrogen.5 At present, the 

use of this catalyst and its derivatives is well stablished for the hydroacylation, hydroboration, 

hydrosilylation or isomerisation of olefins.6 In contrast, iridium complexes are not so often 

applied in industrial chemistry as are their rhodium analogues, although they have proved to 

be very efficient in the production of fine chemicals as highly chemo and enantioselective 

catalysts.7 They have also been successfully used as model compounds for the stoichiometric 

study of the steps of numerous transition metal-catalysed reaction mechanisms.8 The 
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iridium(I) square planar [IrCl(CO)(PPh3)2] complex, commonly known as Vaska’s compound, is 

representative of the latter application. First synthesised in 1961, its ability to undergo 

oxidative addition of a range of small molecules such as HCl, H2 or O2 encouraged the study of 

this key process and contributed to the development of many homogeneous catalysts.9 

Despite their numerous advantages, the limited availability of precious metals and the demand 

of a more sustainable chemistry have recently encouraged the development of homogeneous 

catalysts based on first-row transition metals, due to their abundance and less toxic nature. 

However, their sensitivity to oxidising conditions, weak carbon-metal bonding and the 

tendency to generate radical intermediates are still important challenges to overcome.  

While the choice of metal heavily influences the catalyst activity, the role played by the 

different ligands around the metal centre has also proved to be crucial. The formation of a 

metal-ligand bond modulates both the electronic properties of the metal and the steric 

environment of the coordination sphere, which enables some control of the structure and 

reactivity of the complex. It is well known that the formation of a chelate makes the resulting 

complex more stable.10 The use of multidentate ligands with mixed hard and soft donor atoms 

can also enhance the catalytic activity, as the weaker donor atom can often undergo facile 

decoordination to form an unsaturated species and allowing the substrate binding. This 

dynamic ability is known as hemilability.11 Additionally, the coordination environment of a 

complex can also affect the selectivity of a certain reaction. A good example of this is the use 

of chiral ligands to obtain a certain enantiomeric product, commonly known as asymmetric 

catalysis.12 Chiral phosphine ligands play an important role in this catalysis, in which chirality 

can be present in the backbone or in the phosphorus atom.13 In this manner, the selection of a 

particular ligand can directly affect the pathway of catalytic mechanisms.  

Most catalytic pathways for electron-rich transition metals involve the cleavage and formation 

of new bonds in oxidative addition and reductive elimination steps.14 These cycles start with 

the activation of relatively inert non-polar E-E’ and E-H bonds promoted by an organometallic 

complex (e.g. for E = C, Si, B, N, H). The activation of E-H bonds by oxidative addition is a key 

step in numerous important catalytic functionalization processes such as hydroacylation (E = 

acyl group),15 hydrosilylation (E = SiR3),
16 hydroboration (E = BR2),

17 hydroamination (E = NR2),
18 

hydrophosphination (E = PR2)
19 or hydrogenation (E = H).20 These hydroelementation processes 

imply the addition of the E-H bond to an unsaturated bond. A generally accepted mechanism 

for transition-metal centres in low oxidation states involves the oxidative addition of the E-H 

bond, coordination of the substrate by a multiple bond, the migratory insertion of this bond 
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and the reductive elimination of the product and catalyst regeneration (Scheme I1).14 In these 

mechanisms, the activation of the E-H bond by the metal centre leads to a hydride complex.  

 

Scheme I1. Simplified catalytic cycle for a hydroelementation reaction by addition of an E-H bond to a 

double bond. 

In 1965, Wilkinson’s catalyst was found to catalyse the hydrogenation of olefins and acetylenes 

by the initial activation of the H-H bond of molecular hydrogen.21 This publication also 

discussed the attack of the olefin to the formed hydride species and the subsequent insertion 

into the M-H bond. In the same year, Chalk and Harrod described a similar mechanism for the 

hydrosilylation of olefins initiated by the activation of the Si-H bond by the metal centre, and 

followed by the activation of the olefin by coordination.22 In 1982, Milstein proposed the steps 

depicted in Scheme I1 for the intramolecular hydroacylation reaction of 4-pentenal to afford 

cyclopentanone, via the oxidative addition of the C-H bond in the aldehyde.23  

In contrast, the reaction pathway and selectivity of both hydroboration and hydroamination 

processes has proved to be heavily influenced by the type of catalyst.24 Although the oxidative 

addition of the B-H bond in catecholborane to Wilkinson’s catalyst was described in 1975 by 

Kono, Ito and Nagai,25 it was not until the late 1980s that the mechanism involving olefin 

insertion into the M-H bond and product liberation by reductive elimination was proposed.26 

This E-H activation pathway was first proposed by Milstein et al. for the hydroamination 

reaction of norbornene with aniline, catalyzed by an iridium complex.27 However, the most 

common observed mechanism for this reaction involves the initial activation of the olefin by 

coordination to the metal centre, followed by a nucleophilic attack by the N-H containing 

molecule on the olefin. Liberation of the final product then occurs by protonolysis, by direct 
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proton transfer to the M-C bond or by transfer of the proton to the metal centre with 

subsequent reductive elimination to form a C-H bond (Scheme I2).28  

 

Scheme I2. Catalytic cycle for the hydroamination of an alkene by nucleophilic attack. 

The formation of a metal-hydride species by the oxidative addition of the E-H to a metal centre 

can be preceded by a variety of metal-hydrogen interactions, including the η2-coordination of 

the E-H bond as a ligand to give σ-bond complexes (Scheme I3).29 This reactivity has been the 

subject of intense research over the past years,30 as it gives an insight into the E-H bond 

activation process by transition metals. Silane σ-bond complexes were the first to be isolated,31 

and they represent the second largest class of σ-bond complexes apart from molecular 

hydrogen systems. They are currently used as a model for the binding and activation of their 

much more ephemeral alkane σ-analogues.30a,30d Borane σ-complexes have also been recently 

well-characterised, with a coordination chemistry similar to that observed for silanes.30f,30h 

 

Scheme I3. Example of a reaction pathway for oxidative addition via a σ-complex intermediate. 

The ability of E–H bonds to coordinate in a η2-manner also enables other types of reactivity 

such as σ-bond metathesis, where a ligand exchange is produced at the metal centre via a 

four-centre transition state, without a formal oxidative addition occurring (Scheme I4).32 This 

reaction pathway is usually observed with transition metal complexes unable to support an 

oxidation state increase by oxidative addition. 
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Scheme I4. Reaction pathway for a σ-bond metathesis. 

The importance of σ-complexes and transition-metal hydride complexes is well established, as 

they are known to participate in practically all aforementioned catalytic hydroelementation 

reactions, as well as in olefin isomerisations, hydroformylations and in some oligomerisation 

and polymerisation processes. Due to the remarkable lability of the M-H moiety, it can 

participate in a wide range of important catalytic steps, such as migration, insertion or 

reductive elimination reactions, as depicted in Scheme I1. Therefore, the study of the 

formation and reactivity of transition-metal hydride complexes is necessary to give insight into 

the processes where they are involved.   

I.1.1. TRANSITION-METAL CATALYSED C-H ACTIVATION 

The selective functionalization of poorly reactive alkanes and alkyl moieties remains as one of 

the most challenging goals of modern chemistry. The possibility of producing more complex 

molecules by formation of new C-C and C-E bonds from abundant and traditionally inert 

saturated hydrocarbons has attracted considerable interest, although the usually large bond 

dissociation energy of C-H bonds makes it particularly difficult. However, transition-metal 

based catalysts have proved to be a powerful tool for this purpose.     

It was well established that C(sp2)-H bonds in arenes were more readily activated than C(sp3)-H 

bonds in alkanes, due to their more electron-rich nature, and the ability to coordinate more 

strongly to a transition metal. One of the first examples of aryl C(sp2)-H activation was 

reported in 1965 by Chatt and Davidson, who described the oxidative addition of naphthalene 

to a ruthenium zero-valent complex to give the hydride derivative.33 Another early 

contribution in aromatic C-H bond activation was the arylation of olefins by the stoichiometric 

coupling reaction of Pd(II)-olefin complexes with various arenes (Scheme I5), reported in late 

1960s by Moritani and Fujiwara.34 The study was later expanded to palladium-catalysed 

coupling between two benzenes to form biphenyl.35  
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Scheme I5. Example of olefin arylation reported by Moritani and Fujiwara. 

The first example of an alkane addition to a transition-metal complex was reported by 

Bergman and co-workers in 1982.36 This publication describes the C(sp3)-H bond activation by 

oxidative addition of the simple alkane to an iridium complex to form stable alkyl hydrides 

(Scheme I6). Irradiation of the iridium Cp*Ir(PMe3)H2 in neat cyclohexane as a solvent led to 

the loss of dihydrogen to form the reactive [Cp*Ir(PMe3)] species, which readily cleaved the C–

H bond of cyclohexane. Since then, several studies have been reported where the oxidative 

addition of an alkane is promoted by an unsaturated metal complex produced by 

photochemical or thermal loss of H2 from dihydride species, RH from hydridoalkyl precursors 

or CO.37 

 

Scheme I6. C-H oxidation of cyclohexane by an iridium complex reported by Bergman et al. 

The transition-metal mediated activation of C(sp)-H, C(sp2)-H and C(sp3)-H bonds by 

carboxylation has proved to be a powerful method for the synthesis of esters and derivatives, 

extensively used in pharmaceuticals or materials chemistry or as building blocks for numerous 

organic transformations.38 In 1980, the first direct carboxylation of arenes was reported by 

Fujiwara and co-workers,39 which was performed in the presence of stoichiometric amounts of 

Pd(OAc)2. C-H activation in the arene, leading to benzoyl-palladium intermediates and to 

AcOH, allows the final formation of benzoic acid. The first transition-metal catalysed 

carboxylation of alkanes was also reported by Fujiwara et al. in 1989, performed on 

cyclohexane with pressured CO to afford cyclohexanecarboxylic acid (Scheme I7).40 Since then, 

numerous studies using other esterification reagents to substitute carbon monoxide have been 

reported, such as azodicarboxylates,41 alkyl chloroformates,42 glyoxylates,43 α-keto esters,44 

formates,45 or carbon dioxide.46  
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Scheme I7. C-H activation of cyclohexane by carboxylation with CO, reported by Fujiwara et al. 

The aldehydic C-H bond activation is another important method for the synthesis of esters. The 

cleavage of the C-H bond in an aldehyde leads to a hydride-acyl metal species, which can be 

added across a C=O bond in ketones to form an ester product (Scheme I8). The intramolecular 

ketone hydroacylation to form 7-membered lactones is one of the most extensively studied 

application of this reaction.47 The C-H activation of a formate can also yield an ester product 

through alkene hydroesterification, via the oxidative addition to a metal centre and 

subsequent addition to the C=C bond (Scheme I8).  

 

Scheme I8. Synthesis of ester products through aldehyde or ester C-H activation. 

Metal acyl-hydride complexes formed by activation of the C-H bond in aldehydes are of 

particular interest, as they are known to be intermediates in numerous organic 

transformations involving the formation of new C-C bonds, as in olefin hydroacylation, or the 

formation of C-O bonds as in ketone hydroacylation. They can also promote the cleavage of C-

C bonds as in decarbonylation reactions. The activation of aldehyde C-H bonds and the 

reactivity of resulting acyl-hydride metal complexes will be addressed further and discussed in 

this thesis.  

I.1.2. TRANSITION-METAL CATALYSED SI-H ACTIVATION 

The synthesis of the iron Cp(CO)2Fe-SiMe3 compound by Wilkinson and co-workers in 1956 

marked the beginning of the silyl transition-metal chemistry,48 and it has become an area of 

intensive research since then.49 For years, the study of the reactivity and properties of Si-M 

complexes has allowed a comparison with related C-M systems,50 in addition to giving insight 
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into the elementary steps of catalytic reactions for Si-C bond formation, such as 

hydrosilylation,51 or Si-Si bond formation as in dehydrogenative coupling of primary, secondary 

and tertiary silanes.52  

For instance, the binding modes of SiH4 to transition metal complexes have been studied for a 

better understanding of the methane activation and transformations.50a The first examples of 

transition metal η2-SiH4 complexes were synthesised by reaction of silane with 

Mo(CO)(R2PC2H4PR2)2, which were found to be in equilibrium with the hydridosilyl species 

formed by oxidative addition (Scheme I9). 

 

Scheme I9. First reported equilibrium between η2-SiH4 and the hydride species. 

In 1965, Chalk and Harrod proposed the formation of a silyl-hydride complex by oxidative 

addition of the Si-H bond in the substrate to the catalyst, as the first step for the 

hydrosilylation reaction.22 This mechanism derived from the previous studies on chloroplatinic 

acid as an efficient catalytic precursor for alkene hydrosilylation by Speier.53 In the same year, 

they described the formation of a silyl-cobalt compound by activation of the Si-H bond in a 

variety of silanes.54 A later theoretical study on the hydrosilylation reaction of ethylene 

catalysed by Pt(PH3)2 led to the conclusion that this process proceeded through the 

mechanistic steps proposed by Chalk and Harrod.55 In 1973, Ojima and co-workers also 

proposed the initial oxidative addition of a silane to Wilkinson’s catalysts for the silane 

dehydrogenative coupling reaction, with the formation of a silyl-rhodium intermediate 

(Scheme I10).56  

 

Scheme I10. Route for silane dehydrogenative coupling proposed by Ojima et al. 

The early development of silane compounds that can coordinate to the metal centre as ligands 

via oxidative addition has contributed to a better understanding of the activation of Si-H bonds 

and the nature of the Si-M interactions. Chelating silyl ligands have been successfully 
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employed for years, due to their stabilising effect and the versatility they exhibit.57 A broader 

coordination opportunities have resulted in more effective catalysts for reactions involving Si-

H activation. 

The first part of this thesis will be focused on the activation of Si-H bonds in both 

stoichiometric and catalytic reactions. The synthesis of various silyl ligands containing a Si-H 

bond and their reactivity with transition-metal complexes is described, as well as the catalytic 

activity these complexes exhibit in both hydrosilylation and silane dehydrocoupling reactions. 

In a second part, C-H activations will be discussed, with the focus on aldehyde C-H activation 

by rhodium complexes and the synthesis of acyl-hydride compounds. Moreover, the reactivity 

and possible catalytic applications of these acyl-hydride complexes will also be studied. 
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II. 1. ACTIVATION OF THE SILICON-HYDROGEN BOND 

II. 1. 1. INTRODUCTION 

Activation of hydrosilanes by organometallic complexes implies the addition of the Si-H bond 

to the metallic centre in an oxidative addition reaction. In this reaction, the Si-H bond is 

cleaved and both M-Si and M-H bonds are formed, with the consequent increase of the formal 

oxidation state and coordination number of the metal. This process is generally promoted by 

electron-rich and low valent transition metal complexes, such as complexes with metals of 

groups 9 and 10. Along the Si-H activation pathway, several types of bonding interactions can 

be distinguished (Scheme 1), from non-classical to full homolytic cleavage of the Si-H bond.  

 

Scheme 1. Different bonding situations for the Si-H oxidative addition to a transition metal complex. 

Spectroscopic data support the existence of σ-bonded silyl intermediate complexes before the 

insertion, in a η2-SiH coordination mode.1 Isolation of such compounds is not rare. The first 

reported silane σ-complex was synthesised from a rhenium carbonyl compound in 1969,2 and 

numerous examples of (η2-SiH) transition metal σ-complexes are known.3 There are also 

several reports of stable compounds in which the oxidative addition is belated in a stage where 

the Si-H bond is not completely cleaved, and the M-H and M-Si bonds are not fully formed. 

This interaction is described as a three-center-two-electron bond (Scheme 1).4 The relative 

stability of the non-classical binding modes is influenced by electronic properties of the metal 

centre, the auxiliary ligands and by the substituents at the silicon atom. 

It is known that the oxidative addition of Si-H bonds to transition metal centres is a key step in 

multiple metal-catalysed transformations reactions, such as hydrosilylation,5 silane 

alcoholysis,6 silane redistribution7 or dehydrogenative silane oligomerization.8 These reactions 

have been applied to the development of new materials, polymeric synthesis or biomedical 

chemistry.9 Among these processes involving Si-H bond activation, this chapter will be focused 

mainly in alkene hydrosilylation and dehydrogenative silane coupling reactions.  

η1-H-Si
σ-bonding

η2-SiH

3c-2e

bonding
(Si)M(H)
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Hydrosilylation is the addition of the Si-H bond into an unsaturated substrate (e. g. alkenes, 

alkynes, aldehydes or ketones). For alkene and alkyne hydrosilylation, this transformation 

leads to deliverance of alkyl or vinyl silanes as silylated products respectively, with the 

consequent formation of a new Si-C bond. On the other hand, the hydrosilylation of aldehydes 

and ketones and the subsequent hydrolysis of these silyl-ether products has become a 

powerful method for the synthesis of primary and secondary alcohols (Scheme 2).10 Overall, 

hydrosilylation represents one of the most important reactions in the silicon chemistry, and is 

extensively used in industry to produce silicone polymers, such as lubricants, water repellent 

coatings or resins.11 It has also proved to be an efficient method for the formation of new 

organosilicon compounds, which can be used in fine chemical synthesis, as they participate in 

several important organic transformations.12  

 

Scheme 2. Hydrosilylation of different unsaturated substrates. 

The first hydrosilylation reaction was reported in 1947 by Sommer and co-workers.13 This work 

described a free radical chain reaction of 1-octene with trichlorosilane with the use of 

peroxides as catalysts, resulting in poor selectivity to the hydrosilylated product. This 

selectivity was highly improved in 1957 using the transition metal compound [H2PtCl6]·H2O 

(Speier’s catalyst) as catalyst.14 The development of the platinum(0) Pt2[(Me2SiCH=CH2)2O]3 

compound, which is known as Karstedt’s catalyst15 in 1973 led to an important step forward in 

transition metal homogeneus catalysis. These two platinum based complexes (Figure 1) have 

prevailed as the most employed catalysts in industry for decades due to their stability and high 

activity. However, the demand of cheaper catalysts has recently encouraged the study of first 

row transition-metal catalysts as a more accessible and sustainable replacement.16 

Nevertheless, unwanted side reactions and the requirement of high temperatures are 

significant drawbacks for these systems.  
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Figure 1. Classic platinum-based hydrosilylation catalysts. 

To date, apart from platinum compounds, complexes based on other transition precious 

metals have been developed as hydrosilylation catalysts. Rhodium complexes with phosphine 

and carbonyl ligands [RhCl(PR3)3] and [RhCl(CO)(PR3)2] are the most employed in this processes 

due to their high activity.17 For example, the use of Wilkinson’s catalyst [RhCl(PPh3)3] in the 

hydrosilylation of alkenes, alkynes and carbonyl substrates has been well established.18 

Rhodium-carbene complexes have also been extensively studied. Particularly, rhodium 

complexes with strong donating N-heterocyclic carbene ligands (NHCs), which were reported 

by Nile and Hill in 1977.19 Rhodium complexes with these type of ligands are comparable to 

complexes with tertiary phosphines in their bonding characteristics as well as in their activity in 

hydrosilylation processes (Figure 2).20 Other examples of efficient catalysts with NHC ligands 

based on iridium21 have also been reported (Figure 2). In 2004, Chirik and co-workers reported 

a highly effective alkene hydrosilylation catalysed by an iron complex with a bis(imino)pyridine 

bis(dinitrogen) ligand (Figure 2).22 

 

Figure 2. Examples of hydrosilylation catalysts. 

In contrast to platinum and rhodium-based catalysts, examples of hydrosilylation reactions 

catalysed by iridium complexes are scarce. First experiments reported showed the lower 

activity of iridium complexes in hydrosilylation of alkenes compared to similar rhodium 

systems.23 However, recent studies with cationic iridium species containing P,N-indene 

ligands,24 and pincer PNP supported silyl and silylene iridium species25 afforded hydrosilylated 

products efficiently. Moreover, iridium complexes such as [Ir(cod)(μ-X)]2 (X = Cl, OMe) (cod = 

Si O Si
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1,5-cyclooctadiene) appeared to be effective for hydrosilylation reactions. The use of this kind 

of catalysts can also lead to the dehydrogenative silylation reaction.26  

In a dehydrogenative silylation reaction, the elimination of the β-Hydrogen in the silylated 

substrate yields a vinyl or allylsilane product instead of the alkylsilane product (Scheme 3). It is 

proposed that the β-H elimination is the key step for the two competitive reactions, and the 

preference for one of the possible pathways is influenced by the nature of the substrate and 

the catalyst.27 

 

Scheme 3. Representation of alkene hydrosilylation and dehydrogenative silylation reactions. 

Another relevant process involving the catalytic Si-H bond activation is the dehydrogenative 

coupling of primary, secondary and tertiary silanes. In this reaction, the activation of a Si-H 

bond in the substrate leads to the formation of new Si-Si bonds to produce disilanes, 

oligosilanes and polysilanes (Scheme 4).  

 

Scheme 4. Metal-catalysed dehydogenative coupling of a primary silane. 

The transition-metal catalysed silane dehydrocoupling is one of the routes to synthesise 

polysilanes. Using this strategy, it is possible to solve the problems encountered in the Wurtz 

coupling of halosilanes. Some of these problems would be the harsh reaction conditions and 

the use of alkali metals.28 Early transition metals have been extensively studied as catalysts in 

dehydrocoupling of hydrosilanes.29 By contrast, late transition metal complexes have been 

scarcely studied. The lower catalytic activity and the competitive reaction, which yields 

substituents redistribution, are the most important drawbacks for the use of late transition 

metal based compounds in dehydrocoupling reactions.30 However, examples of highly active 

late transition metal catalysts in recent years suggest that these systems are equally valid.31 



37 
 

The first reported late metal-catalysed silane dehydrocoupling involved Wilkinson’s catalyst.32 

In this work, the dehydrogenative condensation of secondary silanes such as Ph2SiH2, 

PhMeSiH2 and Et2SiH2, to yield short chained oligosilanes was reported. Since then, 

[RhCl(PPh3)3] has proved to be effective in the dehydrocoupling of both primary and secondary 

silanes.33 Moreover, rapid removal of hydrogen from the reaction mixture was found to favour 

dehydrocoupling over redistribution, in order to avoid the presence of disproportionation 

products.34 In general, efficiency of late transition-metal catalysts in dehydrogenative silane 

coupling decreases from primary to tertiary silanes. Examples of tertiary silane 

dehydrocoupling are scarce,35 and limited to platinum-based catalysts (Scheme 5).  

 

Scheme 5. Tertiary silane dehydrocoupling reported by Tanaka and Baumgartner. 

This chapter will focus on the synthesis of new silane compounds with thioether moieties 

containing a Si-H bond. The reactivity of these silanes with various rhodium(I) and iridium(I) 

compounds will also be studied. This reactivity will involve the coordination of the silyl-

thioether to the metal complex as a chelate ligand through the activation of the Si-H bond by 

oxidative addition. The catalytic activity of the resulting compounds will also be tested for 

alkene hydrosilylation and silane dehydrocoupling reactions.  

 

  



38 
 

II. 1. 2. SYNTHESIS OF SILYL-THIOETHER MULTIDENTATE PRELIGANDS 

AND THEIR REACTIVITY WITH DIOLEFINIC RHODIUM(I) AND IRIDIUM(I) 

COMPLEXES 

The study of Si-H bond activation in silanes by a metal centre could give an insight into the 

mechanism of important catalytic processes. For example, oxidative addition of a Si-H bond to 

a complex with coordinated olefins would lead to species involved in the hydrosilylation 

reaction. However, the easy M-Si bond cleavage would prevent the isolation of the resulting 

silyl-hydride derivatives. For this reason, the stabilization of the silyl group onto the metal 

centre by the chelating effect in a bidentate,33b,36 tridentate37 or tetradentate38 ligand could be 

necessary. 

The use of disilyl κ2(Si,Si) and trisilyl κ3(Si,Si,Si) ligands has been reported.39 However, most 

examples of silyl multidentate ligands contain pendant phosphane and N-donor groups, PSiP,40 

NSiN,41 or mixed donor PSiN42 ligands. Examples of these ligands are shown in Figure 3. 

 

Figure 3. Examples of PSiP, NSiN and PSiN pincer ligands. 

The presence of the silyl fragment gives unique properties to the ligand, such as a strong σ-

donor character and trans influence. This effect results in elongation of the bond trans to the 

silicon atom, and could help to isolate unsaturated complexes with a vacant coordination 

site.43 Complexes with silyl pincer ligands also show great reactivity towards small molecules 

and inert bond activation induced by chelating effects,44 as well as enhanced catalytic 

performance.  

Research on silyl ligands with thioether moieties is more scarce.45 Examples of these ligands 

are shown in figure 4. The σ-donor and weak π-acceptor nature of the thioether functionalities 

is likely to ease the exchange of these pendant groups with other ligands.46 Hill et al. described 

the synthesis of ruthenium(II) compounds with a new sulphur donor bis(methylmazolyl)silane 
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tridentate ligand.47 Unno and Takeda reported the synthesis of Ir(III) and Pt(II) complexes with 

a coordinated tripodal tetradentate SiS3 ligand. Interestingly, the reaction of this ligand with 

[PdCl2(PhCN)2] results in rare Si-C(sp2) bond cleavage to yield a binuclear palladium(II) 

compound with two [(t-BuSCH2)C6H4]
- units.48 Peters et al. prepared a series of iron complexes 

chelated by hybrid silyl ligands that included thioether moieties, or a mixture of sulphur and 

phosphine donors.49 

 

Figure 4. Selected examples of multidentate silyl ligands containing sulphur moieties. 

In this part, three new silyl multidentate preligands with thioether pendant moieties have 

been synthesised (L1, L2 and L3, Scheme 6) and their reactivity with rhodium(I) and iridium(I) 

compounds has been studied. 

II. 1.2.1. Synthesis of ligands 

The ligands employed in this work were synthesised by reaction of the aryl bromide 2-

MeS(C6H4Br) with n-buthyllithium at 0°C in diethyl ether, and subsequent addition of the 

corresponding chlorosilane (Scheme 6).  
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Scheme 6. Synthesis of the three silyl-thioether ligands employed in this work. 

Addition of an equivalent of dimethylchlorosilane over the lithiated product leads to the 

formation of the bidentate preligand SiMe2H(o-C6H4SMe) (L1) (Scheme 6). The 1H NMR 

spectrum for this preligand shows a doublet at 0.43 ppm corresponding to the two equivalent 

methyl groups bonded to the silicon, and a singlet at 2.48 ppm for the methyl group bonded to 

the sulphur atom. The Si-H bond of the ligand presents a heptet at 4.56 ppm, with a coupling 

constant of 3.8 Hz.  

Tridentate preligand SiMeH(o-C6H4SMe)2 (L2) is obtained after the reaction of half equivalent 

of methyldichlorosilane with one equivalent of the lithiated product (Scheme 6). In the 1H NMR 

spectrum of the compound, the quartet signal at 5.29 ppm indicates the presence of the Si-H 

group. The two -SMe moieties are equivalent in solution, showing a singlet at 2.38 ppm, and 

the methyl group bonded to the silicon atom shows a singlet at 0.78 ppm. 

The third preligand SiMe2(o-C6H4SMe)2 is synthesised by addition of half equivalent of 

dimethyldichlorosilane over one equivalent of the lithiated product (Scheme 6). The 1H NMR 

spectrum indicates the presence of the two SiMe equivalent groups with a relative integral 6 H 

singlet signal at 0.65 ppm, and the other 6 H singlet signal at 2.18 ppm corresponds to the two 

thioether groups, also equivalent in solution. Slow evaporation of the solvent in a 

concentrated ligand solution in Et2O leads to the formation of colourless single crystals that 

allowed the characterisation of the compound by single crystal X-Ray diffraction. The structure 

of L3 in the solid state (Figure 5) is in good agreement with the structure deduced from the 

NMR spectroscopic data in solution. 
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Figure 5. Molecular structure of L3. Displacement ellipsoids are drawn at the 50% probability level. 

Selected bond lengths (Å) and angles (º): Si1–C1 1.893(1), Si1–C8 1.887(1), Si1–C14 1.868(1), Si1–C15 

1.875(1), S1–C2 1.771(1), S1–C7 1.792(1), S2–C9 1.783(1), S2–C00J 1.801(1); C1–Si1–C8 110.45(5), C2–

S1–C7 104.16(6), C9–S2–C00J 101.14(6).   

II. 1.2.2. Reactivity of ligands L1 and L2 with [Rh(cod)Cl]2. Synthesis of Rh(III) 

complexes via Rh(I)/Rh(III) mixed-valent and cyclooctenyl intermediates. 

The reaction of [Rh(cod)Cl]2 with 4 equivalents of the bidentate preligand L1 in CH2Cl2 at room 

temperature gives the dimeric complex [Rh(SiMe2(o-C6H4SMe))2Cl]2 (1) (Scheme 7).  

 

Scheme 7. Formation of complex 1. 

The 29Si{1H} NMR spectrum of 1 confirms the coordination of the ligand to the metal centre. 

This spectrum shows a doublet signal at 44.2 ppm (JRh-Si = 28 Hz), which is in accordance with a 

silicon-rhodium bond. The 1H NMR spectrum of 1 shows a relative integral 12 H signal at 2.97 

ppm corresponding to the four S-CH3 groups in the complex. This fact is indicative of the 

equivalence of all four ligand units in the complex in solution. The presence of two relative 

integral 12 H signals (0.63 ppm and -0.24 ppm) corresponding to two different sets of Si-CH3 

moieties indicate that the methyl groups on each silicon atom are not equivalent as a 

consequence of chelation. A selective NOE experiment was performed in order to confirm this 
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non-equivalence. The experiment and the labelling of the coordinated ligand are shown in 

Figure 6. 

 

Figure 6. Labelling of the coordinated ligand and selective NOE experiments for 1. 

X-ray quality crystals of compound 1 were obtained, and characterization by single crystal X-

ray diffraction could be performed (Figure 7). The resulting molecular structure is in agreement 

with the structure deduced from the spectroscopic data in solution.  

 

Figure 7. Molecular structure of 1. Displacement ellipsoids are drawn at the 50% probability level. 

Selected bond lengths (Å) and angles (º): Rh1–Cl1 2.5846(9), Rh1–Cl1’ 2.5760(9), Rh1–S1 2.3025(10), 

Rh1–S2 2.3071(10), Rh1–Si1 2.3154(11), Rh1–Si2 2.3104(10); S1–Rh1–Si1 85.52(4), S2–Rh1–Si2 85.66(4).  
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The crystal structure of dinuclear complex 1 consists of two chloride bridges between the two 

rhodium(III) centres. The geometry around each rhodium atom is a slightly distorted 

octahedron. The equatorial plane of the dimer is formed by the bridging chloride ligands in 

trans position to the silicon atoms, and the axial positions are occupied by the sulphur atoms, 

also mutually trans. Both Rh–Cl bond lengths of 2.5846(9) and 2.5760(9) Å fall in the range of 

μ-chlorido–Rh(III) bond lengths found in related compounds.50 The Rh–Si bond lengths of 

2.3154(11) and 2.3104(10) Å are also consistent with other observed Rh(III)–Si distances.51 The 

Rh···Rh separation of 3.9027(6) Å excludes any significant intermetallic interaction.  

With the aim to understand the formation process of complex 1, the reaction of [Rh(cod)Cl]2 

with 4 equivalents of L1 was performed in a sealed NMR tube and was monitored by 1H NMR 

spectroscopy. 1H NMR spectra were acquired every 30 minutes. A total reaction time of 16 

hours was required for the complete transformation of the starting material into 1. After 8 

hours of reaction, the 1H NMR spectrum (Figure 8) shows the presence of three multiplets at 

4.77, 4.61 and 3.68 ppm with a relative integral of 3 H, which are characteristic of (η3-

cyclooctenyl)-Rh(III) compounds.52 The presence of free cyclooctene (coe) can also be 

observed in this spectrum. This could suggest the formation of η3-cyclooctenyl intermediates 

(Ia and Ib in Figure 8) that would afterwards afford cyclooctene.  

Additionally, after 8 hours of reaction we were able to isolate by crystallisation the unusual μ-

dichlorido bridged Rh(I)/Rh(III) mixed valent compound [(cod)Rh(μ-Cl)2Rh(SiMe2(o-C6H4SMe))2] 

(2) from the reaction mixture. This compound can also be observed in the 1H NMR spectra 

(Figure 8). The presence of this compound allows us to propose that the formation of complex 

1 could start with a Si-H bond activation of two molecules of the L1 ligand on the same 

rhodium centre, leading to the mixed valent complex 2 as an intermediate via (η3-

cyclooctenyl)-Rh(III) species.  
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Figure 8. 
1H NMR spectrum of the formation of 1 after 8 hours of reaction in a sealed NMR tube, in 

CDCl3. 

Compound 2 was isolated by crystallization, and therefore the molecular structure could be 

determined by X-ray diffraction (Figure 9). The binuclear Rh(I)/Rh(III) complex 2 is bridged by 

two μ-chlorine atoms. Complex 2 consists of a Rh(I) square planar centre and a Rh(III) pseudo 

octahedral centre. In the coordination sphere of the Rh(III) centre there are two ligand units 

derived from L1, where the sulphur atoms are disposed mutually trans, and the silicon atoms 

form the equatorial plane along with the chlorine bridging atoms. A molecule of 

cyclooctadiene is π2-coordinated to the Rh(I) centre. The Rh(I)–Cl distances (2.3888(8) and 

2.3789(8) Å) are significantly shorter than the Rh(III)–Cl distances (2.6504(8) and 2.6300(8) Å), 

a consequence of the differing oxidation states of the metal centres. 
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Figure 9. Molecular structure of 2. Displacement ellipsoids are drawn at the 50% probability level. 

Selected bond lengths (Å) and angles (º): Rh1–Cl1 2.6504(8), Rh1–Cl2 2.6300(8), Rh2–Cl1 2.3888(8), 

Rh2–Cl2 2.3789(8), Rh1–Si1 2.2992(9), Rh1–Si2 2.3030(8), Rh1–S1 2.2946(8), Rh1–S1 2.2977(8); S1–

Rh1–S2 174.41(3), Si1–Rh1–S1 87.47(3), Si2–Rh1–S2 87.33(3). 

Compound 2 was also characterised by NMR spectroscopy (Figure 10). The 1H NMR spectrum 

of the isolated compound shows two broad singlets at -0.18 and 0.58 ppm, corresponding to 

two unequivalent SiMe groups in the molecule. As in complex 1, this would be due to 

magnetically different methyl moieties on each silicon atom as a consequence of chelation. 

Multiplets at 4.24, 2.47 and 1.77 ppm indicate the presence of the coordinated cyclooctadiene 

ligand.  

 

Figure 10. 
1H NMR spectrum of complex 2 in CDCl3. 
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In an attempt to allow a single Si-H bond activation on the Rh centre, which could afford a 

cyclooctenyl species, we performed the reaction of [Rh(cod)Cl]2 with the tridentate ligand L2. 

This reaction was carried out at room temperature in CH2Cl2, and using 2 equivalents of L2, to 

yield the neutral complex [Rh(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2Cl] (3) (Scheme 8). The 

formation of this complex can be explained by a chelate-assisted oxidative addition of the Si-H 

bond of the ligand to the metal to give the unobserved silyl-hydrido-cyclooctadiene-

rhodium(III) compound. This would be followed by the insertion of the double bond of the 

olefin into the Rh-H bond, and the subsequent rearrangement of the σ-alkyl or σ,π-

cyclooctenyl into the η3-allyl cyclooctenyl species, which is thermodynamically more stable.53 

 

Scheme 8. Formation of complex 3. 

Complex 3 was characterised by NMR spectroscopy. The coordination of the ligand is 

confirmed by 29Si{1H} NMR with the presence of a doublet at 44.2 ppm (JRh-Si = 24 Hz), indicative 

of a Rh-silyl bond. The SMe groups show magnetic equivalence in solution with a unique 

singlet signal at 2.90 ppm in the 1H NMR spectrum. The coordination of the η3-cyclooctenyl 

ligand is suggested by the presence a double triplet signal at 5.14 ppm, with a 1 H relative 

integral, and a quartet signal at 3.78 ppm with a 2 H relative integral. These signals are 

characteristic of the η3-allyl fragment in the molecule,52 and evidence the equivalence of two 

C-H groups in the moiety. The two-dimensional HSQC experiment correlates these signals with 

peaks at 96.7 and 66.8 ppm respectively in the 13C{1H} NMR spectrum. The ESI-MS 

spectroscopy shows a molecular ion at m/z = 501.06, which is in accordance with the [Rh(η3-

cyclooctenyl)(SiMe(o-C6H4SMe)2]
+ ion. 
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X-ray quality crystals of 3 were obtained from a CDCl3 solution layered with pentane at -4 ˚C. 

Complex 3 in the solid state (Figure 11) shows a slightly distorted octahedral arrangement 

around the Rh(III) centre, with the tridentate ligand L2 located on one of the faces of the 

octahedron. The ligand is bounded via the silicon atom (Si1–Rh1 2.406(1) Å) and the two SMe 

fragments (S1–Rh1 2.3733(5) Å and S2–Rh1 2.3524(5) Å). The chlorine atom is located trans to 

the silicon, and the long Rh–Cl distance of 2.6216(6) Å evidences the trans-labializing effect of 

the silyl group. The η3-cyclooctenyl ligand occupies two coordination positions in the 

compound. In the allyl fragment of this ligand, the Rh-C distance of the central carbon atom is 

shorter (C16–Rh1 2.1109(19) Å) than the terminal carbon distances (C17–Rh1 2.1982(19) Å and 

C20–Rh1 2.2008(19) Å). 

 

Figure 11. Molecular structure of 3. Displacement ellipsoids are drawn at the 50% probability level. The 

solvent molecule is omitted for clarity. Selected bond lengths (Å) and angles (º): Rh1–C16 2.1109(19), 

Rh1–C17 2.1982(19), Rh1–C20 2.2008(19), Rh1–Si1 2.3063(5), Rh1–Cl1 2.6216(5); S1–Rh1–S2 

100.051(18), Si1–Rh1–S1 85.009(18), Si1–Rh1–S2 85.533(18). 

The isolation and characterisation of the η3-cyclooctenyl complex 3 and the evidences of η3-

cyclooctenyl species observed in the reaction mixture leading to complex 1 enables us to 

propose a mechanism for the formation of 1 (Scheme 9). The reaction of the first equivalent of 

L1 with [Rh(cod)Cl]2 would lead to the formation of an unobservable rhodium-hydrido-

cyclooctadiene complex. Then the insertion of the cyclooctadiene into the Rh-H bond gives the 

Rh(I)/Rh(III) cyclooctenyl intermediate (Ia). The addition of a second molecule of L1 results in 

another Si-H activation by the Rh(III) centre, with the subsequent cyclooctene dissociation and 

the formation of the mixed-valent Rh(I)/Rh(III) compound 2. This second activation would 

presumably occur via an σ-complex assisted metathesis (or σ-CAM) process. This is supported 

by the isolation of compound 2 from the reaction mixture. The second Rh(I) atom would follow 

the same process with the addition of another unit of L1, leading to a Rh(III)/Rh(III) 
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cyclooctenyl intermediate (Ib). The addition of the last equivalent of L1 to this intermediate 

would lead to the final product 1.  

 

Scheme 9. Proposed mechanism for the formation of complex 1. 

 

II. 1.2.3. Reactivity of ligand L2 with [Rh(cod)Cl]2, [Ir(cod)Cl]2 and [Rh(nbd)Cl]2 

dimers. Study of the olefin insertion and β-hydride elimination processes. 

II. 1.2.3a. Reactivity of L2 with [Rh(cod)Cl]2 and [RhCl(PPh3)3] 

The reaction of complex 3 with the sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate salt 

(NaBArF
4) in dichloromethane results in the formation of the cationic compound [Rh(η3-

cyclooctenyl)(SiMe(o-C6H4SMe)2)]BArF
4 (4) (Scheme 10), which contains a coordinative 

vacancy. Unsaturated complex 4 is stable in solution and in solid state.   

 

Scheme 10. Formation of compound 4 from complex 3. 
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The 16 electron compound 4 was characterised by NMR spectroscopy (Figure 12). The 

tridentate ligand shows signals at 0.78 ppm for the SiMe group, and at 2.58 ppm for the two 

equivalent SMe groups in the 1H NMR spectra. The coordination of the η3-cyclooctenyl is 

confirmed with the presence of two doublet of triplets at 5.26 and 4.40 ppm, with 1 H and 2 H 

relative integrals respectively, corresponding to the η3-allyl fragment. 2D experiments 

correlate these two signals with the two doublets at 105.6 and 75.6 ppm in the 13C{1H} NMR 

spectrum. In the ESI-MS spectroscopy, the existence of a molecular ion at m/z = 501.06 also 

evidences the formation of this complex.  

 

Figure 12. 1H NMR spectrum of complex 4 in CD2Cl2. 

An X-ray analysis of single crystals of compound 4 confirms the proposed structure. Although 

the low quality of the data did not permit the discussion of bond distances and angles, the 

disposition of the ligands and the geometry adopted around the metal centre can be analysed 

(Supporting Information). The solid state structure shows a distorted square pyramidal 

geometry, with the silyl fragment of the tridentate ligand located in the apical position. The 

base of the pyramid is occupied by the two SMe moieties and the η3-allyl fragment of the 

cyclooctenyl ligand. The stability showed by this unsaturated compound could be due to the 

strong trans influence displayed by the silicon atom.  

Unsaturated rhodium(III) complex 4, containing a cyclooctenyl ligand was obtained from a 16e 

cyclooctadiene-rhodium(I) starting material. The possibility of obtaining compound 4 by the 

addition of an external cyclooctadiene molecule to rhodium(III) species was also studied. For 
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that purpose, we synthesised an olefin-free unsaturated hydride-rhodium(III) compound from 

Wilkinson’s catalyst [RhCl(PPh3)3] (Scheme 11).  

 

Scheme 11. Formation of compounds 5 and 6 from Wilkinson’s catalyst. 

The reaction of [RhCl(PPh3)3] with an equivalent of the tridentate preligand L2 in 

dichloromethane led to the formation of a neutral hydride compound [RhClH(SiMe(o-

C6H4SMe)2)(PPh3)] (5) after the oxidative addition of the Si-H bond to the rhodium centre. The 

1H NMR spectrum shows the hydride signal at -12.76 ppm. The SiMe group on the ligand 

presents a signal at -0.07 ppm, and the SMe moieties show two different singlet signals at 3.21 

and 2.47 ppm. In the 31P{1H} NMR spectrum, a doublet at 46.8 ppm (JRh-P = 138.3 Hz) confirms 

the presence of the PPh3 molecule coordinated to a Rh(III) centre. 

With the aim of producing a vacant coordination site, complex 5 was treated with an 

equivalent of NaBArF
4 salt in dichloromethane, to yield the cationic and unsaturated 16 

electron compound [RhH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4 (6) (Scheme 11). The signal of the 

hydride ligand of 6 appears at -10.91 ppm in the 1H NMR spectrum, and the 31P{1H} NMR 

spectrum shows a doublet at 47.3 ppm that corresponds to PPh3. 

Compounds 5 and 6 were also characterised in the solid state by single-crystal X-ray structural 

determination (Figure 13). The resulting molecular structures are in good agreement with the 

structures deduced from the spectroscopic data in solution. Complex 5 in figure 13a shows a 

pseudo octahedral structure around a Rh(III) centre. The tridentate ligand, which is bonded to 

the metal via the silicon atom (Si1–Rh1 2.277(2) Å) and the two sulphur moieties (S1–Rh1 

2.350(2) Å and S2–Rh1 2.439(2) Å) is located in one of the faces of the octahedron. The 

hydride and the triphenylphosphine ligands occupy the positions trans to the two SMe groups 

in the equatorial plane. The chlorine atom is located trans to the silyl fragment. The elongated 

Rh–Cl bond length of 2.536(2) Å is due to the high inductive trans effect of the silicon atom. 
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gives the thermodynamically more stable η3-cyclooctenyl ligand via successive C–H 

activation/insertion steps.57 

 

Scheme 12. Synthetic path of formation of compound 4 from complexes 3 and 6. 

However, the treatment of the coordinatively saturated chloride-hydrido-Rh(III) compound 5 

with cyclooctadiene under the same reaction conditions failed to promote the insertion 

reaction of the olefin (Scheme 13). This fact evidences that a previous coordination of the 

cyclooctadiene ligand to the metal centre is necessary for the olefin insertion to occur, and this 

coordination failed due to the absence of a coordinative vacancy in the coordination sphere of 

neutral compound 5.  

 

Scheme 13. Attempted reaction of the saturated compound 5 with 1,5-cyclooctadiene. 

II. 1.2.3b. Reactivity of L2 with [Ir(cod)Cl]2 

While diolefinic rhodium complexes containing a Rh-H bond are rare,58 stable η4-cod-hydride 

iridium(III) compounds are well known. In the synthesis of η4-cod-hydride iridium (III) 

compounds, 1-σ,4,5-η2-cyclooctenyl insertion products have also been observed.59 An 

equilibrium between species containing both 1-σ,4,5-η2 and η3-cyclooctenyl isomers has been 
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observed in solutions of some iridacarboranes.60 Based on previously reported results, we 

decided to study the reactivity of the [Ir(cod)Cl]2 dimer with the tridentate preligand L2, and 

thus determine the influence of the metal centre, rhodium or iridium, in the course of these 

reactions. 

Treatment of [Ir(cod)Cl]2 with two equivalents of L2 in dichloromethane at room temperature 

yielded compound [IrCl(η3-cyclooctenyl)(SiMe2(o-C6H4SMe)2)] (7). The formation of this 

compound implies the oxidative addition of the Si-H bond to give the unobserved silyl-hydrido-

cyclooctadiene species. The insertion of the cyclooctadiene into the Ir-hydride would lead to 

an unobserved σ- or σ,π-cyclooctenyl intermediate, and the rearrangement of the ligand in the 

latter results in the η3-cyclooctenyl-Ir(III) complex in 7 (Scheme 14).  

 

Scheme 14. Formation of the saturated compound 7. 

The NMR spectra of complex 7 are consistent with a η3-cyclooctenyl species. The signals at 

5.15 and 3.68 ppm in the 1H NMR spectrum, with relative integrals of 1H and 2H, correlate to 

the 86.9 and 49.0 ppm doublets in the 13C{1H} NMR spectrum and correspond to the η3-allyl 

fragment of the ligand. The structure is also supported by ESI-MS spectroscopy, with the 

presence of a molecular ion at m/z = 591.12 corresponding to the [Ir(η3-cyclooctenyl)(SiMe2(o-

C6H4SMe)2)]
+ species.  

X-ray quality crystals were obtained by layering a CDCl3 solution of this complex with pentane 

at room temperature. The structure in the solid state is in agreement with the one proposed 

from the spectroscopic data in solution (Figure 14). The geometry around the Ir(III) centre is 

pseudo-octahedral. The S,S,Si tridentate ligand is bonded to the metal via the Si and S atoms 
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effect of the silicon is evidenced by the longer distance of Cl1
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equatorial plane. While the C atoms in the terminal positions show almost identical distanc
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Molecular structure of complex 7. Displacement ellipsoids are drawn at 50% probability level. 

omitted for clarity. Selected bond lengths (Å) and angles (º): Ir1

-C1 2.112(3), Ir1-C2 2.197(3), Ir1-C3 2.176(3); Ir1-Cl1 2.579(1)

S1 85.63(3), Si1-Ir1-S2 85.34(3). 

Reaction of the saturated compound 7 with the NaBArF
4 salt in dichloromethane causes the 

extraction of the chloride ligand, and yields a 16 electron cationic compound 

SMe)2)]BArF
4 (8) (Scheme 15). Unlike η3-cy

, product 8 exhibited low stability in solution at room temperature. For 

that reason, characterisation by NMR spectroscopy was performed at -25 °C.  

Scheme 15. Formation of the unsaturated compound 8. 
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The presence of the η3-cyclooctenyl fragment is supported by 1H NMR spectroscopy with the 

presence of two signals at 5.20 and 4.41 ppm, with a relative integral of 1H and 2H 

respectively. X-ray crystallography also confirmed the proposed structure for 8 (Supporting 

Information), but unfortunately collection of angles and bond lengths was not possible due to 

the poor quality data of the crystal. However, the relative disposition of the ligands around the 

metal centre implies a distorted square planar pyramid with the silyl fragment occupying the 

apical site. 

As mentioned above, compound 8 is not stable in solution at room temperature, as stirring in 

CDCl3 induces a slow transformation into the saturated and cationic hydride species [Ir(H)(η4-

cod)(SiMe2(o-C6H4SMe)2)]BArF
4 (9). This transformation was monitored by 1H NMR (Figure 15).  

 

Figure 15. 
1H NMR of compound 8 in CDCl3 after 18 hours at room temperature. The slow formation of 

compound 9 can be observed. 

The formation of compound 9 was also possible by direct reaction of the [Ir(cod)Cl]2 dimer 

with the tridentate L2 ligand and the NaBArF
4 salt in dichloromethane (Scheme 16). The 

formation of the η4-cyclooctadiene ligand is evidenced by the multiplets observed in the 1H 

NMR at 5.29, 4.87 and 3.50 ppm, with a relative integral of 1H, 2H and 1H respectively. These 

signals correlate with the singlets at 101.9, 97.1, 79.9 and 75.8 ppm found in the 13C{1H} NMR 

spectrum. The hydride shows a singlet at -12.75 ppm in the 1H NMR spectrum.  
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Scheme 16. Formation of the hydrido

The determination of the structure of 

quality single crystals (Figure 16). The geometry around the Ir(III) centre is pseudo octahedral, 

with the pincer ligand in one of the faces of the octahedron. The 

atom is evidenced in the different bond lengths of the diolefin carbon atoms (C1, C2, C6 and C7 

in Figure 16) bonded to the metal, as the distances between the carbon atom
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Figure 16. Molecular structure of the cationic unit of com
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87.13(14). 

Formation of the hydrido-η4-cyclooctadiene compound 

The determination of the structure of 9 in the solid state was possible by obtaining X

quality single crystals (Figure 16). The geometry around the Ir(III) centre is pseudo octahedral, 

cer ligand in one of the faces of the octahedron. The trans influence of the silicon 

atom is evidenced in the different bond lengths of the diolefin carbon atoms (C1, C2, C6 and C7 

in Figure 16) bonded to the metal, as the distances between the carbon atom

Ir1 2.19(3) Å and C2–Ir1 2.12(2) Å) are shorter than the distances between 

the carbon atoms trans to the silyl fragment (C6–Ir1 2.46(2) Å and C7–Ir1 2.43(2) Å). 

 

Molecular structure of the cationic unit of compound 9. Displacement ellipsoids are
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cyclooctadiene compound 9. 

in the solid state was possible by obtaining X-Ray 

quality single crystals (Figure 16). The geometry around the Ir(III) centre is pseudo octahedral, 

influence of the silicon 

atom is evidenced in the different bond lengths of the diolefin carbon atoms (C1, C2, C6 and C7 

in Figure 16) bonded to the metal, as the distances between the carbon atoms trans to the 

Ir1 2.12(2) Å) are shorter than the distances between 

Ir1 2.43(2) Å).  

Displacement ellipsoids are drawn at 

Si1 2.236(3), Ir1-S1 2.357(4), Ir1-S2 

S1 87.41(14), Si1-Ir1-S2 
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The evolution of 8 into 9 implies a higher stability of 18 electron species for iridium 

compounds, in contrast with the stability shown by analogous 16 electron rhodium(III) 

compound 4. There are some examples of these transformations involving the coordinated 

cyclooctadiene ligand in iridium complexes that involve a series of β-hydride elimination and 

olefin insertion steps.61 That is therefore the more feasible pathway to reach the hydride-

cyclooctadiene-iridium(III) complex 9. Another option is that the process takes place through 

Ir(V) intermediates.62 As the olefin insertion and β-hydride elimination are key processes 

present in numerous catalytic cycles for alkene functionalization reactions, we considered the 

importance of studying this transformation further. For that reason, DFT calculations were 

used to unravel this reaction mechanism.  

Multiple reaction pathways were analysed that would transform compound 8 into the more 

stable 9 (-12.2 kcal/mol) via either Ir(III) or Ir(V) intermediates. Finally, the most plausible route 

found implies Ir(III) intermediate species and occurs through a series of successive ß-hydride 

elimination and olefin insertion steps. The energetic profile of this process is shown in Figure 

17.  

 

Figure 17. Free energy profile (kcal/mol) of the reaction mechanism from compound 8 to 9 through 

successive ß-hydride elimination and olefin insertion steps. The effects of the solvents have been 

corrected. 
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Internal rearrangement of the η3-cyclooctenyl fragment in compound 8 leads to energetically 

higher (0.4 kcal/mol) conformer 8_I1. In this intermediate, proton H4 is released to form the 

η2-1,3-cyclooctadiene-hydride-iridium species 8_I2 after the first β-hydride elimination 

process, by overcoming a kinetic barrier of ca. 15.5 kcal/mol associated to transition state 

8_TS1. 

A counter clockwise rotation of 1,3-cyclooctadiene in 8_I2 yields intermediate 8_I2b (13.0 

kcal/mol higher in energy). The first olefin insertion into the hydride-iridium bond causes the 

hydride migration from iridium to atom C2 generating the σ-cyclooctenyl-iridium intermediate 

8_I3. In this species, two simultaneous agostic interactions (C8–H···Ir and C5–H···Ir) are 

established between the cyclooctenyl and the Iridium centre. Transformation of 8_I2b into 

8_I3 occurs through transition state 8_TS2 with a barrier of ca. 11.4 kcal/mol. Since the two 

step conversion of 8_I2 into 8_I3 requires a total kinetic barrier of 24.4 kcal/mol, it might 

therefore be the rate limiting step of the mechanism. 

The second β-hydride elimination step proceeds via proton (H8) transfer from C8 in 8_I3 to the 

iridium centre, generating η2-1,4-cyclooctadiene-hydride-iridium intermediate 8_I4 through 

the transition state species 8_TS3, with a barrier of ca. 10.3 kcal/mol. A clockwise rotation of 

the η2-1,4-cyclooctadiene ligand in 8_I4 yields the thermodynamically more stable conformer 

8_I4b, which is involved in a second olefin insertion step, giving σ,π-cyclooctenyl-iridium 

intermediate 8_I5. Finally, 8_I5 promotes a third β-hydride elimination step that yields the 

final product 9 upon overcoming an associated small kinetic barrier of ca. 1.7 kcal/mol via 

transition structure 8_TS5.  

Altogether, the proposed mechanism includes three successive ß-hydride elimination and two 

olefin insertion steps, with all kinetic barriers manageable at experimental conditions, 

including the rate limiting step with a barrier of 24.14 kcal/mol that might be responsible for 

the modest reaction rate observed experimentally. Interestingly, the reverse reaction from 9 

to 8 would imply overcoming a first barrier of ca. 32.24 kcal/mol with an olefin insertion step 

to generate intermediate 8_TS5. This kinetic barrier would be too large to be overcome at 

room temperature.  

II. 1.2.3c. Reactivity of L2 with [Rh(nbd)Cl]2 

In order to extend this research, we envisaged then to study the reactivity of L2 with a 

norbornadiene-rhodium(I) complex [Rh(nbd)Cl]2. Treatment of [Rh(nbd)Cl]2 with two 
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equivalents of L2 in dichloromethane at room temperature resulted in neutral complex 

[RhCl(ntyl)(SiMe2(o-C6H4SMe)2)] (ntyl = σ-nortricyclyl-C7H9) (10) as represented in Scheme 17.  

It has been established that activation of C-H bonds via oxidative addition to rhodium(I) 

complexes with a coordinated norbornadiene ligand results into the formation of σ-nortricyclyl 

species, after the insertion of the olefin into the Rh-H bond.63 Formation of 16 electron 

complex 10 implies the oxidative addition of L2 to the rhodium(I) dimer, to reach the 

unobserved hydride-η2-norbornadiene-rhodium(III) intermediate. The insertion of one of the 

double bonds in the norbornadiene ligand into the Rh-H bond gives the σ-norbornenyl (σ-nbyl) 

species, which then undergoes a double bond shift with a ring closure to yield product 10. In 

rhodium(III) complexes with a coordinative vacancy, the transformation of the σ-norbornenyl 

fragment into the σ-nortricyclyl derivative is thermodynamically favoured.64 

 

Scheme 17. Formation of the saturated compound 10. 

Characterisation of complex 10 was performed by NMR spectroscopy and ESI-MS. The σ-

nortricyclyl ligand shows various multiplet signals from 0.13 to 2.37 ppm in the 1H NMR 

spectrum (Figure 18), and there are no signals in the olefin region. The nortricyclyl proton 

signal at 2.37 ppm correlates to a doublet signal at 44.0 ppm in the 13C{1H} NMR spectrum, 

which corresponds to the carbon atom bonded to the rhodium centre (JRh-C = 22 Hz). The SiMe 

moiety in the silyl-thioether ligand shows a singlet signal at 1.01 ppm in the 1H NMR spectrum, 

and the two non-equivalent SMe groups show different resonances at 2.42 and 2.88 ppm. The 

presence of the molecular ion at m/z = 485.03 in the ESI-MS corresponds to the 

[Rh(ntyl)(SiMe2(o-C6H4SMe)2)]
+ fragment, and confirms the pentacoordinated structure 

proposal for 10.  
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Figure 18. 1H NMR spectrum of complex 10 in CD2Cl2. 

The extraction of the chloride ligand from 10 by addition of the NaBArF
4 salt in 

dichloromethane leads to a cationic 14 electron compound, and induces the reverse 

rearrangement of the nortricyclyl group to form a norbornenyl species. This transformation 

implies the cleavage of the cyclopropyl fragment, and the formation of a carbon-carbon 

double bond that would be coordinated to the rhodium(III) centre, to yield complex [Rh(σ,π-

nbyl)(SiMe2(o-C6H4SMe)2)]BArF
4 (11) (Scheme 18). To the best of our knowledge, this would be 

the first observed transformation of a metal bonded nortricyclyl fragment into a norbornenyl 

derivative. 

 

Scheme 18. Reaction of formation of compound 11.  

The presence of the σ,π-norbornenyl ligand is supported by the 1H NMR spectrum with the 

relative integral 1H signals at 5.50 and 4.45 ppm corresponding to the double bond, which 

correlate to the resonances at 107.9 and 73.4 ppm in the 13C{1H} NMR. The proton NMR signal 

at 2.29 ppm correlates to the carbon NMR doublet at 20.1 ppm (JRh-C = 11.2 Hz), and 

corresponds to the carbon atom σ-bonded to the metal in the norbornenyl.  



 

The determination of the solid structure of 

(Figure 19). The geometry adopted around the rhodium(III) centre is a distorted octahedron, 

with the tridentate ligand located in one of the faces. This ligand is bonded 

(Rh1–Si1 2.92(2) Å) and both sulphur atoms (Rh1

equatorial plane is occupied by the two SMe groups and the norbornenyl ligand. The hydrogen 

atom (H02) of a C-sp3 (C2) of the norbornenyl occupies the last coordination site 

silicon via a weak Rh···H–C inte

(Rh1–H02 = 2.23(9) Å, Rh1–C2 = 2.5

agostic interaction.65 

Figure 19. Molecular structure of compound 

omitted for clarity. Displacement ellipsoids are drawn at 50% probability level. Selected bond lengths (Å) 

and angles (º): Rh1-Si1 2.292(2), Rh1

Rh1-H02 2.23(9), C1-C2 1.537(9

93.2(6), S2-Rh1-S3 96.14(6), Si1-

(4). 

The agostic interaction shown in Figure 19

coupled experiment (Supporting Information

constants observed for the two protons bonded to C2 (

imply one of these hydrogen atoms 

centre, although a ring strain could also cause a decrease in a J

examples of Pd(II) complexes with a coordinated norbornene ligand that show a similar agostic 

interaction, which also present a differenc

proton-carbon coupling constants.

H01 

The determination of the solid structure of 11 by single crystal X-ray diffraction

). The geometry adopted around the rhodium(III) centre is a distorted octahedron, 

ligand located in one of the faces. This ligand is bonded via

Si1 2.92(2) Å) and both sulphur atoms (Rh1–S2 2.460(1) Å and Rh1–S3 2.312(2) Å). The 

equatorial plane is occupied by the two SMe groups and the norbornenyl ligand. The hydrogen 

(C2) of the norbornenyl occupies the last coordination site 

C interaction. The bond distances and angles of the atoms implied 

C2 = 2.504(7) Å, Rh1–H02–C2 = 93.2(6) °) suggest this could be an 

 

Molecular structure of compound 11. The anion and a molecule of sol

omitted for clarity. Displacement ellipsoids are drawn at 50% probability level. Selected bond lengths (Å) 

Si1 2.292(2), Rh1-S2 2.460(1), Rh1-S3 2.312(2), Rh1-C1 2.047(6), Rh1

C2 1.537(9), C2-H02 1.03(10), Rh1-C6 2.216(6), Rh1-C7 2.271(6); Rh1

-Rh1-S2 83.51(3), Si1-Rh1-S3 86.32(6), C1-C2-H02 116(5), Rh1

shown in Figure 19 could also be noticed in solution by 

Supporting Information). The different value of the C

constants observed for the two protons bonded to C2 (JC-H = 144 Hz and JC-

imply one of these hydrogen atoms being involved in a weak interaction with the rhodium 

centre, although a ring strain could also cause a decrease in a JC-H coupling constant. There are 

examples of Pd(II) complexes with a coordinated norbornene ligand that show a similar agostic 

interaction, which also present a difference of 20 Hz between the two agostic and nonagostic 

carbon coupling constants.66 
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diffraction was possible 
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The novelty of the transformation of the σ-nortricyclyl into the σ,π-norbornenyl species 

motivated a more thorough study of the reaction mechanism. It is usually accepted that the 

nortricyclyl species are the thermodynamically favoured products, due to the release of strain 

of the double bond in a rigid bicyclic molecule when the cyclopropyl fragment is formed. 

However, the free energy difference between the free nortricyclane and norbornene 

molecules is only 0.9 kcal/mol.67 Recent studies on the reaction of hydridoaryltin(II) 

compounds with norbornadiene propose the formation of σ-norbornenyl or nortricyclyl 

derivatives depending on the transition states involving only one or both carbon-carbon 

double bonds, respectively.68 In the present case, the removal of the chloride ligand from 10 

could have allowed the interaction between the rhodium(III) centre and a carbon-hydrogen 

bond in the nortricyclyl ligand, and this interaction would promote the cleavage of the 

cyclopropyl to finally reach the norbornenyl species. The coordination of the double bond to 

the metal centre and the agostic interaction would then allow the coordinative saturation of 

compound 11.  

This assumption is reinforced by the study of the reaction mechanism by DFT calculations 

(Figure 20). This study proposes a two-step mechanism from 10 to 11, in which a succession of 

β-hydride elimination and olefin insertion processes are also involved.  

 

Figure 20. Free energy profile (kcal/mol) of the reaction mechanism from compound 10 to 11 through ß-

hydride elimination and olefin insertion steps. The effects of the solvents have been corrected. 
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After the chlorine removal, the new cationic compound 10[BArF
4] experiments a counter-

clockwise rotation to form the more stable 10b conformer (-9.4 kcal/mol). A hydrogen 

migration from the C3 atom in the nortricyclyl to the rhodium(III) centre leads to the 

norbornadiene-hydride-rhodium(III) intermediate 10_I1 after the cyclopropyl rupture and the 

formation of two double bonds. This is possible through the six membered transition state 

10_TS1, by overcoming an energy barrier of 18.7 kcal/mol. In the second step, the insertion of 

the C3-C4 double bond into the Rh-H bond generates the norbornenyl-rhodium(III) complex 

11, and the agostic interaction is then formed between this migrating hydrogen and the metal 

(C3-H···Rh). This last transformation presents a barrier of 21.7 kcal/mol via the four-membered 

transition state 10_TS2. 

II. 1.2.4. Reactivity of ligand L3 with [Rh(cod)Cl]2, [Rh(nbd)Cl]2, [Ir(cod)Cl]2 and 

[Rh(coe)2Cl]2 dimers. 

The activation of the Si-H bond in the L1 and L2 preligands permits the formation of hydride-

metal species, which can lead to insertion reactions in the presence of olefins, yielding alkyl-

metal complexes. The importance of the alkyl-metal compounds as intermediates in numerous 

catalytic cycles for alkene functionalization (hydrosilylation69, hydroboration70 or 

hydroamination71) is well known. Up to this point, we have studied the reactivity promoted by 

the oxidative addition of these ligands to rhodium(I) and iridium(I) complexes with coordinated 

cyclooctadiene and norbornadiene. Therefore, we considered of interest to study the 

reactivity derived from a similar ligand incapable of a silicon-hydrogen bond addition. 

For this reason, we decided to study the reactivity of rhodium(I) and iridium(I) complexes 

containing coordinated olefins with the tridentate preligand SiMe2(o-C6H4SMe)2 (L3), whose 

structure is similar to that of L2, but with two methyl substituents bonded to the silicon atom.  

II. 1.2.4a. Reactivity of L3 with [Rh(cod)Cl]2, [Rh(nbd)Cl]2 and [Ir(cod)Cl]2 

The addition of the preligand L3 to [Rh(cod)Cl]2 in dichloromethane at room temperature 

failed to cleave the chloride bridges of the dimer. The extraction of the chloride by treatment 

of this mixture with the NaBArF
4 salt was necessary to initiate the reaction. The reaction of L3 

with [Rh(cod)Cl]2 in the presence of NaBArF
4 leads to the formation of the cationic 16 electron 

Rh(I) compound [Rh(cod)SiMe2(o-C6H4SMe)2]BArF
4 (12) (Scheme 19).  
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Scheme 19. Formation of cationic compound 12.  

The characterisation of this compound was performed in solution by NMR spectroscopy and 

ESI-MS, and in solid state by X-ray diffraction. The coordination of the L3 ligand can be 

determined by 1H NMR (Figure 21), in which the presence of a 6H relative integral singlet at 

2.31 ppm corresponds to the two SMe groups. The singlet at 0.47 ppm, with a relative integral 

of 6H, corresponds to the two methyl groups bonded to the silicon atom. The signals assigned 

to the double bonds in the cyclooctadiene ligand are two multiplets at 4.75 and 4.23 ppm, 

which correlate with the doublet signals at 86.8 and 91.0 ppm in the 13C{1H} NMR spectrum 

(Figure 21), due to the coordination to the rhodium centre. Broad signals at 2.48, 2.20 and 1.91 

ppm in 1H NMR correspond to the CH2 groups in the cyclooctadiene. The ESI-MS shows a 

strong molecular ion at m/z = 515.09, which corresponds to the [Rh(cod)SiMe2(o-C6H4SMe)2]
+ 

unit. 

 

 

 



65 
 

 

 

Figure 21. 1H (top) and 13C{1H} NMR spectra of complex 12 in CD2Cl2. 

Determination of the solid state structure of 12 was also possible by X-ray diffraction, after 

growing crystals from a dichloromethane solution layered with pentane at room temperature. 

The resulting structure is in agreement with the one deduced from the spectroscopic data in 

solution (Figure 22). The Rh(I) centre is in a distorted square planar geometry. L3 is only 

coordinated via the two SMe moieties (Rh1–S1 2.3967(7) Å and Rh1–S2 2.41(1) Å) to form an 

eight-membered ring chelate, showing a S1–Rh1–S2 bite angle of 83.3(2)°. The silicon atom is 

located in the same coordination plane, with the aromatic rings above and below the plane. 

The cyclooctadiene ligand occupies the two remaining coordination sites trans to the sulphur 

atoms. All bond distances between rhodium and the diolefin carbon atoms are equal (Rh1–C17 

2.141(4) Å, Rh1–C18 2.173(4) Å, Rh1–C21 2.148(3) Å, Rh1–C22 2.160(3) Å).  
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Figure 22. Molecular structure of the cationic unit of compound 12. Displacement ellipsoids are drawn 

at 50% probability level. Selected bond lengths (Å) and angles (º): Rh1-S1 2.3967(7), Rh1-S2 2.41(1), Rh1-

C17 2.141(4), Rh1-C18 2.173(4), Rh1-C21 2.148(3), Rh1-C22 2.160(3), C21-C22 1.379(6), C17-C18 

1.373(5), S1-Rh1-S2 83.3(2). 

The presence of the NaBArF
4 salt was also necessary for the reaction of the [Rh(nbd)Cl]2 and 

[Ir(cod)Cl]2 dimers with L3. Treatment of [Rh(nbd)Cl]2 with the S,S,Si preligand in the presence 

of NaBArF
4, in dichloromethane at room temperature leads to 16 electron cationic 

[Rh(nbd)SiMe2(o-C6H4SMe)2]BArF
4 (13) (Scheme 20). 

 

Scheme 20. Formation of cationic compound 13.  

The 1H NMR spectrum of this compound shows a singlet at 2.16 ppm for the two SMe 

fragments in the chelate ligand, and a singlet at 0.44 ppm corresponding to the methyl groups 

on the silicon. The broad signal at 4.19 ppm with a 4H relative integral corresponds to the 

olefinic protons of the norbornadiene fragment. This signal is correlated to two doublet signals 

at 64.3 and 53.1 ppm in the 13C{1H} NMR spectrum, due to coordination to the metal centre. 

The 2H relative integral signal at 3.92 ppm in the 1H NMR spectrum corresponds to the non-

olefinic CH groups in the norbornadiene, and the CH2 moiety shows a signal at 1.44 ppm. In the 

ESI-MS, the molecular ion at m/z = 499.06 coincides with that calculated for the 

[Rh(nbd)SiMe2(o-C6H4SMe)2]
+ species.  
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Compound 13 was also characterised by single-crystal X-ray diffraction (Figure 23). As in 

compound 12, 13 shows a slightly distorted square-planar geometry around the rhodium(I) 

centre. The L3 ligand forms an eight-membered chelate-ring, with a S1–Rh1–S2 bite angle of 

87.87(1)°, bonded only through the two thioether moieties (Rh1–S1 2.3687(7) Å and Rh1–S2 

2.367(1) Å), with the uncoordinated silyl fragment in the same plane. The norbornadiene 

group occupies the two last coordination sites in the plane. Bond distances between rhodium 

and the norbornadiene carbon atoms are equal (Rh1–C17 2.145(2) Å, Rh1–C18 2.145(2) Å, 

Rh1–C20 2.139(2) Å, Rh1–C21 2.138(2) Å). 

 

Figure 23. Molecular structure of the cationic unit of compound 13. Displacement ellipsoids are drawn 

at 50% probability level. Selected bond lengths (Å) and angles (º): Rh1-S1 2.3687(7), Rh1-S2 2.367(1), 

Rh1-C17 2.145(2), Rh1-C18 2.145(2), Rh1-C20 2.139(2), Rh1-C21 2.138(2), C21-C20 1.392(3), C17-C18 

1.392(3), S1-Rh1-S2 87.87(1). 

In the same way, the reaction of the L3 ligand with [Ir(cod)Cl]2 in the presence of NaBArF
4 in 

dichloromethane gives the 16 electron complex [Ir(cod)SiMe2(o-C6H4SMe)2]BArF
4 (14) (Scheme 

21). This compound was characterised in solution by NMR spectroscopy. 

 

Scheme 21. Formation of cationic compound 14.  

In the 1H NMR spectrum, the 6H relative intergral singlet signals at 2.55 ppm and 0.51 ppm 

correspond to the SMe fragments and the two methyl groups in the silicon atom respectively. 
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The cyclooctadiene ligand exhibits two 2H relative integral multiplets at 4.58 and 3.91 ppm for 

the olefinic hydrogen atoms in the molecule. The broad signals at 2.32, 2.04 and 1.59 ppm 

correspond to the remaining CH2 groups in the cyclooctadiene.  

With the aim of testing the catalytic potential of these complexes, we attempted the 

substitution of the coordinated olefin with a more labile ligand. Hydrogenation of the alkene 

fragment would lead to the decoordination of the reduced species. For this reason, solutions 

of compounds 12, 13 and 14 in fluorobenzene, toluene-d8 and dichloromethane-d2 were 

treated with 4 atm of hydrogen gas (Procedure in experimental section). Rhodium(I) 

compounds 12 and 13 showed no signs of hydrogenation after 7 days in solution. Iridium(I) 

compound 14 reached an equilibrium of unidentified products after 24 hours in solution. 

Heating these solutions at 50 °C resulted in decomposition. The inability of these compounds 

containing the L3 ligand to undergo the hydrogenation of the coordinated olefin contrasts with 

the behaviour observed for similar Rh(I) and Ir(I) complexes with phosphine ligands.72 

The decoordination of the diolefin by substitution was then attempted by introducing a 

coordinating solvent. Compounds 12, 13 and 14 were dissolved in acetonitrile and stirred for 

an hour at room temperature. Though rhodium(I) compounds experimented no reaction, 

iridium(I) complex 14 showed a shift of the cyclooctadiene signals in the 1H NMR spectrum, 

along with a singlet at 1.83 ppm that could correspond to a coordinated acetonitrile molecule 

(Figure 24). The five multiplets corresponding to the diolefin evolved into three broad signals 

in an intermediate position. This could be a consequence of the coordination of a molecule of 

acetonitrile to the metal centre to afford a fluxional iridium(I) species. 
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Figure 24. 
1H NMR of compound 14 in CD2Cl2 before (top) and after treatment with acetonitrile 

(bottom).  

II. 1.2.4b. Reactivity of L3 with [Rh(coe)2Cl]2 

Since attempts of olefin decoordination on cyclooctadiene complexes 12 and 14, and on 

norbornadiene complex 13 proved unsuccessful, the use of the rhodium(I) cyclooctene dimer 

[Rh(coe)2Cl]2 (coe = cyclooctene) was considered. Treatment of [Rh(coe)2Cl]2 with two 

equivalents of L3 in dichloromethane at room temperature gives a yellow precipitate that 

resulted to be insoluble in several solvents (dichloromethane, benzene, acetone, methanol) 

but completely soluble in dimethylsulfoxyde. The reaction product was therefore dissolved in 

DMSO-d6 for its characterisation by NMR spectroscopy (Figure 25). The 1H NMR spectrum 

shows two singlet signals at 0.59 and 0.82 ppm, both with a relative integral of 3H, which could 

correspond to the two methyl groups bonded to the silicon atom in L3. Two singlet signals at 

2.69 and 2.77 ppm correspond to the two non-equivalent SMe moieties. This would indicate 

the coordination of the L3 ligand to the rhodium centre. The absence of signals corresponding 

to coordinated or free cyclooctene indicates that the loss of coe is produced in the formation 

of the insoluble product by reaction of [Rh(coe)2Cl]2 with L3. 
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Figure 25. 
1H NMR of compound 15 in DMSO-d6 (*dichloromethane). 

For this reason, the insoluble solid is thought to be an oligomeric compound with a repeated 

unit of [RhCl(Si(Me)2(o-C6H4SMe)2)]n bonded through a chloride bridge, which is soluble in 

DMSO most likely due to chloride bridge cleavage by the solvent and formation of compound 

15 (Scheme 22). 

 

Scheme 22. Formation of the proposed polymeric compound and compound 15.  

Reaction of preligand L3 with [Rh(coe)2Cl]2 in the presence of NaBArF
4 salt in dichloromethane 

at room temperature leads to the formation of uncharacterized products, which resulted 

unstable in solution. However, the presence of acetonitrile in the reaction mixture promoted 

the unusual75-77 Si-CH3 bond activation in the silyl-thioether ligand, allowing the coordination of 

the silicon to the metal centre and the formation of a stable 18 electron product, with 

cyclooctene displacement. The cationic complex [Rh(Me)(Si(Me)(o-C6H4SMe)2)(MeCN)2]BArF
4 

(16) was obtained via the C-Si oxidative addition, involving one of the methyl groups bonded to 

* 
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the silicon atom, and coordination of two molecules of acetonitrile to the metal centre 

(Scheme 23).  

 

Scheme 23. Formation of compound 16 after the activation of the Si-C bond in L3. 

Characterisation of 16 in solution was performed by NMR spectroscopy. Moreover, the 

characterization of 16 in the solid state through X-ray diffraction was possible due to the 

isolation of a single crystal. In the 1H NMR spectrum, the methyl group bonded to the 

rhodium(III) centre shows a broad signal at 0.80 ppm which is correlated to a broad signal at -

1.3 ppm in the 13C{1H} NMR spectrum. The terdentate ligand exhibits a singlet signal at 0.61 

ppm for the methyl bonded to the silicon atom, and two 3H relative integral singlets at 2.66 

and 2.60 ppm for the non-equivalent SMe groups. A broad signal with a relative integral of 6H 

at 2.25 ppm is assigned to the coordinated acetonitrile molecules.  

Single crystals of 16 were obtained from a dichloromethane solution layered with pentane at 

room temperature. The structure in the solid state (Figure 26) consists of a Rh(III) centre in a 

pseudo-octahedral geometry. The terdentate ligand occupies one of the faces of the 

octahedron, and is bonded to the metal through the silyl fragment (Rh1–Si1 2.2676 Å) and the 

SMe moieties (Rh1–S1 2.4309 Å and Rh1–S2 2.2782 Å). The acetonitrile molecules are bonded 

through the nitrogen atom, and are located trans to the Si (Rh1–N1 2.2255 Å) and one of the 

sulphur atoms (Rh1–N2 2.0996 Å). The Rh-N bond distance for the MeCN group trans to the 

silyl fragment is significantly longer, which evidences the trans labilizing effect of the silicon 

atom. The methyl group coordinated to the rhodium centre via Si-C activation occupies the last 

coordination site, trans to a thioether moiety (Rh1–C1 2.0882 Å).  
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Figure 26. Molecular structure of the cationic unit of compound 16. Displacement ellipsoids are drawn 

at 50% probability level. Selected bond lengths (Å) and angles (º): Rh1-Si1 2.2676(), Rh1-S2 2.2782(), 

Rh1-S1 2.4309(), Rh1-N1 2.2255(), Rh1-N2 2.0996(), Rh1-C1 2.0882(); Si1-Rh1-N1 178.05(), S2-Rh1-N2 

176.62(), C1-Rh1-S1 174.09(), S1-Rh1-S2 93.59(), C1-Rh1-N2 91.90(), C1-Rh1-S2 90.74(), S1-Rh1-N2 

83.62(). 

The silicon-carbon bond cleavage to yield compound 16 is remarkable considering the robust 

nature of a Si-C(sp3) bond, with a dissociation energy of ca. 90 kcal/mol. Further studies on this 

Si-C(sp3) bond cleavage and the formation of this silyl-(η1-methyl)-rhodium(III) product are of 

interest, due to its possible involvement in important reaction mechanisms relevant for Si-C 

bond catalytic transformations. The activation of the Si-C bond by a direct transition metal 

insertion under mild temperatures has gained attention recently as an attractive strategy for 

the functionalization of organosilanes.73 The addition of an external or internal nucleophile to 

form a hypercoordinate silicon species is an alternate well known method for the silicon-

carbon bond cleavage,74 although the usual requirement of harsh reaction conditions in these 

routes has made them less appealing.  

Examples of activation of the Si-C(alkyl) bond within the coordination sphere of a transition 

metal complex are more limited75 due to the low reactivity exhibited by the non-polar 

unstrained Si-C(sp3) bond when compared to Si-C(sp2) or Si-C(allyl) bonds. Moreover, the 

usually low stability of the yielded metal-(η1-alkyl) derivative prevents the isolation of these 

compounds. Turculet et al. reported a rearrangement of a Cy-PSiP ligand from prepared nickel 

and palladium [(Cy-PSiP)M(Me)] complexes in solution, involving Si-C(sp3) and Si-C(sp2) bond 

cleavage processes.76 A subsequent publication by Takaya and Iwasawa described a related Si-

C(sp3) bond cleavage in Ph-PSiP ligated Pd complexes. In this study, reaction of an allene with 

Rh1 

S2 
S1 

Si1 

N1 
N2 

C1 



73 
 

the Pd0 complex leads to the reversible transformation between {(Ph2P)2-Si}Pd(η1-allyl) and 

{(Ph2P)2-Si(allyl)}Pd0 species.77 
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II. 1. 3. SYNTHESIS AND CATALYTIC APPLICATIONS OF SILYL-HYDRIDE 

RHODIUM(III) AND IRIDIUM(III) COMPLEXES DERIVED FROM L1 AND L2 

As already mentioned, Si-H bond activation is a key step in both dehydrogenative Si-Si coupling 

and alkene hydrosilylation reactions. Si-H activation by oxidative addition of a silane to a metal 

centre results in the formation of hydrido-silyl-metal species, which are present as 

intermediates in numerous accepted catalytic cycles for these transformations.  

In the case of silane dehydrocoupling reactions, which leads to the formation of new Si-Si 

bonds, the reaction mechanism has been widely studied, and several modes and pathways 

have been proposed. The first generally accepted mechanism was the σ-bond metathesis, 

initially proposed by Tilley et al. in 1992 using group 4 metal catalysts.78 Successive concerted 

four-centre transition states are the key steps in this transformation.79 Addition of a silane 

substrate to a metal-hydride catalyst forms a silyl-metal species though a σ-bond metathesis 

mechanism, with a concomitant loss of a dihydrogen molecule. The second addition of silane 

leads to another four-centre transition state, with the formation of the Si-Si bond and 

regeneration of the catalytically active metal-hydride species (Scheme 24). 

 

Scheme 24. σ-bond metathesis mechanism proposed by Tilley and co-workers. 

The Si-Si bond formation is usually accepted as the rate determining step (RDS) in this type of 

processes. Therefore steric effects due to bulky sustituents in the silane substrate may play an 

important role in RDS. This is in agreement with the reactivity decrease from primary to 

secondary silanes, and the preference in linear chain formation over branching in the 

polymeric products.80 

While the σ-bond metathesis is accepted mostly for early transition metals,81 the proposed 

catalytic pathway for late transition metals is composed of a series of classic oxidative addition 

and reductive elimination steps.82 However, some studies do not exclude the possibility of σ-
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bond metathesis steps in the catalytic cycle for late transition metals.83 Most recently, 

involvement of silylene intermediates in the process involving primary and secondary silanes 

has also been proposed.84 

It is well established that metal hydride compounds are also present in the catalytic route of 

hydrosilylation. Transition metal catalysed alkene hydrosilylation is generally assumed to 

follow the Chalk-Harrod mechanism.85 This route implies oxidative addition of the silane 

substrate to give a silyl-hydride-metal complex. The π-coordination of the olefin to the metal 

centre and subsequent olefin insertion into the M-H bond gives a silyl alkyl species. Finally, a 

Si-C reductive elimination gives the alkylsilane product. In an alternative route, generally 

referred to as modified Chalk-Harrod mechanism,86 the olefin inserts into the M-Si bond. The 

hydrosilylated product is then formed via C-H reductive elimination. Both mechanisms are 

depicted in Scheme 25. 

 

Scheme 25. The Chalk-Harrod (right) and modified Chalk-Harrod (left) mechanism schemes for alkene 

hydrosilylation. 

Alkene hydrosilylation can often be accompanied by side reactions such as dehydrogenative 

silylation, leading to competitive allyl- or vinylsilane products. It was recently suggested that 

formation of the dehydrogenative silylation product involves a variation of the modified Chalk-

Harrod catalytic route, in which a competitive β-hydride elimination step in the hydride-alkyl-

metal intermediate would lead to the formation of an unsaturated product (Scheme 26).87 

These studies also propose the subsequent formation of a dihydride metal complex. The 

hydrogenation of a sacrificial substrate molecule would lead to the regeneration of the catalyst 

(Scheme 26). The β-hydride elimination from the hydrido-alkyl-metal intermediate is proposed 

as the rate determining step of this process. Taken into account the proposed mechanism and 
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rate determining step, steric and electronic factors of the silanes would contribute to the 

allyl/vinyl product ratio.88 Being a competitive reaction, there are limited examples of selective 

catalysts to yield vinyl- or allylsilanes by dehydrogenative silylation,89 as in most cases these 

catalytic pathways lead to a mixture of both hydrosilylation and dehydrogenative silylation 

products. 

 

Scheme 26. Proposed catalytic cycle for dehydrogenative silylation. 

One important challenge for catalytic systems in alkene hydrosilylation and dehydrogenative 

silylation is the formation of terminal silylated products from internal olefins or olefin 

mixtures.90 The importance of this reaction is that internal olefin mixtures are more readily 

accessible and cheaper than pure terminal alkenes. For most common catalysts, the use of a 

terminal olefin is necessary to obtain a terminal silylated product. Therefore, final conversion 

of the substrate is reduced whenever there is concomitant α-olefin isomerisation. This 

limitation could be solved by a catalyst capable of tandem isomerisation-hydrosilylation of an 

internal alkene (Scheme 27), in which the previous isomerisation from internal to terminal 

olefins and subsequent α-olefin hydrosilylation is promoted by the same metal complex 

(Scheme 27). 
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Scheme 27. Scheme of tandem isomerisation-hydrosilylation pathway. 

Examples of efficient tandem isomerization-hydrosilylation of internal alkenes catalysed by 

first row transition metals such as iron,91 nickel92 or cobalt88b,93 complexes, or even nickel 

nanoparticles94 have recently been reported. In most of these cases, large metal loadings or 

dual catalyst systems were necessary to achieve good results. Moreover, the hydrosilylation of 

trans- or remote internal olefins require in most cases additives or harder reaction conditions. 

In 1970, Chalk reported the slow isomerisation and subsequent hydrosilylation of cis-2-

pentene by Wilkinson’s catalyst, to give the linear pentylsilane in a low conversion (20 %).95 In 

this context, Chalk and Harrod96 proposed the formation of a rhodium(III) hydrido-silyl complex 

by oxidative addition of the silane to the catalyst (Scheme 28). This silyl-hydride intermediate 

would be responsible for the isomerisation of the cis-2-pentene to 1-pentene, enabling the 

subsequent hydrosilylation of the terminal species to the pentylsilane product.  

 

Scheme 28. Hydrosilylation of cis-2-pentene catalysed by RhCl(PPh3)3. 

Considering these precedents, we thought it interesting to study the activity of Wilkinson´s 

catalyst for dehydrocoupling of our silane ligands and also the catalytic activity of rhodium and 

iridium complexes derived form L1 or L2 and containing triphenylphosphine in 

dehydrocoupling of silanes and hydrosilylation of alkenes. Therefore various silyl-hydride 

rhodium and iridium compounds were synthesised from Wilkinson’s catalyst [RhCl(PPh3)3] and 

iridium dimer [Ir(cod)Cl]2, by oxidative addition of the Si-H bond in ligands L1 and L2. 
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II. 1.3.1. Synthesis of rhodium and iridium catalysts 

Earlier in this chapter, the synthesis of silyl-hydride complexes [RhClH(SiMe(o-

C6H4SMe)2)(PPh3)] (5) and [RhH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4 (6), derived from the oxidative 

addition of tridentate preligand L2 to Wilkinson’s catalyst [RhCl(PPh3)3], has been described. 

The same route was followed with the bidentate preligand L1. Treatment of [RhCl(PPh3)3] with 

one equivalent of L1 and the equimolar amount of NaBArF
4 salt in dichloromethane at room 

temperature leads to the oxidative addition of the bidentate ligand and extraction of the 

chlorine, to yield the cationic complex [RhH(SiMe2(o-C6H4SMe))(PPh3)2]BArF
4 (17) (Scheme 29). 

This unsaturated hydride compound was characterised by NMR spectroscopy and ESI-MS. 

 

Scheme 29. Formation of unsaturated complex 17. 

The presence of the hydride is confirmed with a doublet of triplets at -9.65 ppm in the 1H NMR 

spectrum (JRh-H = 22.9, JP-H = 13.5 Hz) (Figure 27). Other two signals are observed at 2.02 and 

0.21 ppm, with a relative integral of 3H and 6H, corresponding to the SMe and SiMe2 moieties 

respectively. In the 31P{1H} spectrum, the two equivalent triphenylphosphine groups show a 

unique doublet signal at 44.4 ppm (JRh-P = 118 Hz). A 1H-29Si HMQC experiment was also 

performed, in which a signal at 51.2 ppm proves the coordination of the silicon atom to the 

metal centre. This formulation is supported by ESI-MS with the presence of a molecular ion at 

m/z = 809.15, corresponding to the [Rh(H)(SiMe2(o-C6H4SMe))(PPh3)2]
+ fragment. Similarity of 

these spectroscopic data with the already described related complex [RhH(SiMe(o-

C6H4SMe)2)(PPh3)]BArF
4 (6), with terdentate L2 ligand, suggests a square-pyramidal structure 

for 17, with the strong σ-donor silyl fragment trans to the vacant coordination site. 



 

Figure 27. 1H (top) and 

Preparation of analogous silyl

also attempted, with the aim of studying the influence of the metal centre in the catalytic 

processes. Treatment of [Ir(cod)Cl]

triphenylphosphine in dichloromethane allowed the decoordination of the ole

formation of the hydride neutral complex [IrCl

via oxidative addition of the Si

(top) and 31P{1H} (bottom) NMR spectra of complex 17 in CD

Preparation of analogous silyl-hydride iridium(III) compounds with tridentate preligand 

attempted, with the aim of studying the influence of the metal centre in the catalytic 

processes. Treatment of [Ir(cod)Cl]2 dimer with two equivalents of L2 and two equivalents of  

triphenylphosphine in dichloromethane allowed the decoordination of the ole

formation of the hydride neutral complex [IrClH(SiMe(o-C6H4SMe)2)(PPh3)] (

oxidative addition of the Si-H bond to the metal centre. 
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the stronger trans influence of the hydride compared to the phosphorus in the 

triphenylphosphine ligand, located in the remaining equatorial positions. The chloride ligand is 

located trans to the silyl group, with an Ir(III)-Cl bond distance of 2.5330(10) Å similar to that 

observed for complex 7.  

With the purpose of exchanging the chloride by another hydride ligand, compound 18 was 

treated with LiAlH4, in diethyl ether at room temperature. This reaction yielded neutral 

dihydride complex [Ir(H)2(SiMe(o-C6H4SMe)2)(PPh3)] (19), represented in Scheme 31. On the 

other hand, removal of the chlorine ligand by treatment with the NaBArF
4 salt led to a 

coordinative vacancy, to yield the cationic compound [IrH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4, 

equivalent to the unsaturated rhodium(III) complex 6. However, unlike the Rh(III) analogue, 

this Ir(III) compound was unstable in solution, and thus was easily degraded. Therefore, 

saturation of the complex by coordination of a tetrahydrofuran (THF) solvent molecule was 

attempted. Addition of NaBArF
4 to compound 18 was done in dichloromethane, and 

subsequent removal of CH2Cl2 and dissolution in THF caused the coordination of a solvent 

molecule as a labile ligand, and allowed the formation of the cationic compound [IrH(SiMe(o- 

C6H4SMe)2)(PPh3)(THF)]BArF
4 (20) (Scheme 31), stable in solution. 

 

Scheme 31. Formation of dihydride neutral complex 19 and cationic compound 20 from 18. 

Characterisation of compound 19 was performed in solution by NMR spectroscopy and in solid 

state by X-ray diffraction. This complex showed a doublet signal at -15.44 ppm in the 1H NMR 

spectrum corresponding to the two equivalent hydride ligands, with a coupling constant of  JP-H 

= 14.2 Hz. The SMe moieties, also equivalent in solution, present a singlet signal at 2.15 ppm, 
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Figure 30. 1H NMR spectra of complex 20 in THF-d8. 

II. 1.3.2. Dehydrogenative coupling of L2 using Wilkinson’s catalyst 

The tridentate preligand HSiMe(o-C6H4SMe)2 (L2) was used as a silane substrate for the 

dehydrogenative coupling reaction. Initially, Wilkinson’s complex [RhCl(PPh3)3] was used as the 

catalyst for this process. The tertiary silane L2 was dissolved in 1 mL of toluene at 110 °C with a 

catalytic amount of [RhCl(PPh3)3] (5 mol %). The formation of the dehydrocoupling product, (o-

C6H4SMe)2MeSi-SiMe(o-C6H4SMe)2, was quantitatively determined by NMR spectroscopy after 

24 hours of reaction (Scheme 32).  

 

Scheme 32. Formation of the disilane by dehydrogenative coupling catalysed by [RhCl(PPh3)3].  

The formation of the disilane can be confirmed by 1H NMR. The spectroscopic data show the 

signals for the two SiMe groups and four SMe moieties at 1.29 and 2.51 ppm respectively. In 

the 19Si NMR spectrum, the disilane exhibits a multiplet at -31.0 ppm (JH-Si = 7 Hz), in a similar 

position to that showed by the L2 monosilane (δ = -31.1 ppm, JH-Si = 202 Hz, JH-Si = 7 Hz). The 

lack of a JH-Si coupling costant in the 19Si NMR spectrum for the disilane product indicates the 

absence of a Si-H bond (Figure 31). The ESI-MS of the disilane shows a molecular ion at 579.16 

m/z, corresponding to the [Disilane + -H+]± fragment. The IR spectrum of the product excludes 
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the formation of the disiloxane product (o-C6H4SMe)2MeSi-O-SiMe(o-C6H4SMe)2, as the 

characteristic ν(SiO) band around 1000 cm-1 is not observed. Observation of disiloxanes as 

products or side products in dehydrogenative coupling of silanes is relatively common.97 

 

Figure 31. Comparation of 19Si NMR spectra of L2 and the disilane product. 

Monitoring of the catalytic reaction by NMR spectroscopy allowed the identification of 

intermediate organometallic species. The reaction was stopped after 16 hours in solution, and 

the organic phase containing the disilane product was separated by extraction with pentane. 

The 1H NMR spectrum of the organic phase showed a mixture of the L2 substrate and the 

disilane product in a 75 % of conversion. The organometallic phase revealed the presence of 

the neutral [RhClH(SiMe(o-C6H4SMe)2)(PPh3)] (5) complex, already described in this work, 

along with other unidentified species in a minor proportion (Figure 32). It is known that 

complex 5 is synthesised by oxidative addition of the tertiary L2 silane to the rhodium(I) centre 

of the [RhCl(PPh3)3] complex. This fact suggests the involvement of a Si-H activation step in the 

reaction mechanism.  

 

 

29Si{1H} of L2

29Si of L2

29Si of the disilane
product (P)

1JH-Si = 202 Hz
2JH-Si = 7 Hz 

no 1JH-Si
2JH-Si = 7 Hz 
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Figure 32.
 1H NMR spectra of the organic (top) and organometallic (bottom) phases after 16 hours of 

catalysis with [RhCl(PPh3)3]. 

Therefore, we decided to evaluate this silyl-hydride rhodium(III) complex 5 as a catalyst for the 

dehydrocoupling of tertiary silane L2. The performance of the unsaturated rhodium(III) 

compound [RhH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4 (6) was also tested, with the purpose of 

studying the effect of a coordinative vacancy in the catalytic activity of the complex. The 

results obtained with these two rhodium(III) complexes were compared to the activity 

exhibited by Wilkinson’s catalyst under the same catalytic conditions. Table 1 shows the 

collection of these results. As a control reaction, a solution of L2 in toluene was heated at 110 

°C in the absence of a catalyst, and silane coupling products were not observed (Table 1, entry 

1).  
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When using Wilkinson’s catalyst (Table 1, entry 2), a 95 % of conversion was reached. The use 

of neutral compound 5 as a catalyst for the dehydrogenative coupling of L2 afforded similar 

results, with a conversion of >99 % (Table 1, entry 3). With cationic compound 6, however, a 

decrease in the catalytic activity was observed, reaching only a 60 % of conversion (Table 1, 

entry 4). This reduction could indicate a deactivation of the catalyst when the rhodium 

complex is unsaturated. To give insight into the possible deactivation mechanism, rhodium(III) 

complexes 5 and 6 were treated with L2 in an equimolecular reaction.  

Unsaturated compound 6 reacts with an equivalent of L2 in toluene at 110 °C for 2 hours, to 

yield the stable rhodium(III) compound [Rh(SiMe(o-C6H4SMe)2)2]BArF
4 (21), with two units of 

the tertiary silane derived from L2 coordinated as a tridentate ligand, with the loss of 

dihydrogen and PPh3 (Scheme 33). The disilyl-rhodium(III) species 21 showed no activity as a 

catalyst for the dehydrocoupling of L2 (Table 1, entry 5). The formation of this inactive species 

would consequently be the cause of the decrease in the catalytic activity of compound 6. The 

reaction of neutral complex 5 with an extra equivalent of L2 failed to afford 21. 

 

Scheme 33. Formation of compound 21.   

Cationic complex 21 was characterised in solution by NMR spectroscopy and ESI-MS. The two 

[SiMe(o-C6H4SMe)2]
– units are equivalent in solution, and showed three singlet signals in the 1H 

NMR spectrum at 0.27, 2.46 and 2.90 ppm, with a relative integral of 6H, corresponding to the 

two SiMe and the four SMe groups. The presence of a molecular ion at m/z = 681.01 in the ESI-

MS corresponds to the [Rh(SiMe(o-C6H4SMe)2)2]
+ fragment.  

Isolation of single crystals of 21 allowed the determination of the solid state structure by X-Ray 

diffraction. Although the low quality of the data did not permit the discussion of bond 

distances and angles, the disposition of the ligands and the geometry adopted around the 

metal centre can be analysed and confirm the proposed structure (Supporting Information). 

The geometry around the Rh(III) centre is pseudo octahedral, with the two terdentate ligand 
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units coordinated through the silicon and sulphur atoms, each with a facial disposition. The 

two silicon atoms are located mutually cis.  

To prove the importance of the additional donor functions exhibited by the L2 hydrosilane in 

the catalysis, an alkyl tertiary hydrosilane without an additional functional group was also 

tested as substrate under the same reaction conditions. Entries 6 and 7 in Table 1 show 

treatment of Et3SiH with [RhCl(PPh3)3] and complex 5 respectively, which resulted in no 

conversion to the disilane product.  

Table 1. Rhodium catalysed dehydrocoupling of silanes.  

Entry [Rh] Catalyst Substrate[a] Conversion to disilane [%][b] 

1 - L2 0 

2 [RhCl(PPh3)3] L2 95 

3 5 L2 >99 

4 6 L2 60 

5 21 L2 0 

6 [RhCl(PPh3)3] Et3SiH 0 

7 5 Et3SiH 0 

[a] Catalytic conditions: Silane substrate (0.1 mmol), [Rh] catalyst (0.005 mmol) in 1 mL of toluene at 110 

°C for 24 h. [b] Conversions were determined by 1H RMN spectroscopy.   

On the basis of these results, a simplified mechanism and a deactivation process for the 

rhodium catalysed dehydrocoupling of L2 has been proposed. Addition of the L2 substrate to 

[RhCl(PPh3)3] allows the Si-H activation of the silane, leading to the formation of silyl-hydride 

compound 5 by chelate assisted oxidative addition. Compound 5 can be considered to be the 

active species in the catalysis. In a second step, we propose a σ-bond metathesis route after 

the formation of 5, with the involvement of a four-centre transition state that would allow the 

formation of the Si-Si bond.98 The presence of the chloride ligand in the saturated complex 

would prevent formation of the inactive species 21 via a second Si-H activation and the 
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subsequent inhibition of the disilane product formation by reductive elimination under these 

catalytic conditions.99 Finally, the reaction of a new molecule of L2 with the dihydride-Rh(III) 

compound resulting in the previous step would result in the regeneration of the catalytic 

species 5. Unsaturated compound 6 would follow the same σ-bond metathesis pathway for 

the formation of the disilane product, but the reaction of 6 with a second L2 molecule would 

result into the inactive species 21 (Scheme 34). 

 

Scheme 34. Proposed mechanism for the disilane product formation and deactivation process.  

II. 1.3.3. Tandem isomerisation-hydrosilylation of alkenes  

II. 1.3.3a. Rhodium-catalysed alkene tandem isomerisation-hydrosilylation  

As it was commented at the beginning of this chapter, in 1970 Chalk reported the tandem 

isomerisation-hydrosilylation of cis-2-pentene to yield the pentylsilane, catalysed by 

Wilkinson’s catalyst.95 The formation of a silyl-hydride-rhodium(III) intermediate by oxidative 

addition of the substrate to the catalyst was also described. In this report, Chalk proposed this 

intermediate as responsible for the isomerisation of the internal alkene to the terminal 

species. For this reason, we thought the silyl-hydride rhodium(III) compounds, derived from 
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the oxidative addition of L1 or L2 to [RhCl(PPh3)3], would serve as active catalysts for the 

tandem process of isomerisation of an internal olefin to the terminal one, and the subsequent 

hydrosilylation to form linear alkylsilanes. The compounds tested for this process were 

[RhH(SiMe2(o-C6H4SMe))(PPh3)2]BArF
4 (17), [RhH(SiMe(o-C6H4SMe)2)Cl(PPh3)] (5) and 

[RhH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4 (6). Their catalytic performance was compared to the 

activity shown by Wilkinson’s catalyst under the same reaction conditions.  

A first set of experiments was performed with various pre-dried hexene isomers (1-hexene, 

trans-2-hexene, trans-3-hexene and cis-2-hexene) and Et3SiH as substrates, adding 1 mol % of 

the corresponding rhodium precatalyst. The reactions were carried out in 0.5 mL of CDCl3, at 

room temperature, and under an atmosphere of N2. Products were analysed by NMR 

spectroscopy. The conversion was calculated by 1H NMR from the reaction crude without any 

previous treatment. Finally, the mixture was filtered over silica to remove the metal catalyst, 

and removal of the solvent and the alkene remaining by vacuum allowed the determination of 

the reaction selectivity. These results are collected in Table 2.  
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Table 2. Rhodium catalysed tandem isomerisation-hydrosilylation of hexene isomers with Et3SiH.  

 

 

Entry[a] Hexene isomer [Rh] Catalyst Solvent Time (h) Conversion[b] (Select.)[c] [%] 

1 Trans-2- [RhCl(PPh3)3] CDCl3 12 0 

2 Trans-2- 5 CDCl3 12 0 

3 Trans-2- 6 CDCl3 12 70 (>99) 

4 Trans-2- 17 CDCl3 12 70 (>99) 

5 1- 17 CDCl3 4 90 (>99) 

6 Cis-2- 17 CDCl3 12 70 (>99) 

7 Trans-3- 17 CDCl3 12 55 (>99) 

8 1- 17 Neat 4 99 (>99) 

9 Trans-2- 17 Neat 12 97 (>99) 

10 Cis-2- 17 Neat  12 98 (>99) 

11 Trans-3- 17 Neat 12 92 (>99) 

[a] Catalytic conditions: Hexene isomer (0.25 mmol), Et3SiH (0.25 mmol), 1 % mol [Rh] catalyst (0.002 

mmol) in 0.5 mL of CDCl3, or solvent-free at room temperature. [b] Conversions were determined by 1H 

RMN spectroscopy, by alkene remaining. [c] Linear selectivity was determined by 1H RMN. In all cases, 

(Et3Si)2O appears as a byproduct.  
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The mixture of trans-2-hexene with Et3SiH in CDCl3 in the presence of [RhCl(PPh3)3], or neutral 

complex 5, gave no conversion to the hydrosilylated product (Table 2, entries 1 and 2). By 

contrast, unsaturated cationic complexes 6 and 17 efficiently catalysed the hydrosilylation of 

trans-2-hexene under the same reaction conditions, to give the anti-Markovnikov 

hexyltriethylsilane product selectively (Table 2, entries 3 and 4).  

Complex 17 was then used to catalyse the hydrosilylation of other hexene isomers with Et3SiH. 

In all cases, the hexylsilane product was obtained as the only hydrosilylation product. Entries 4 

to 7 in Table 2 show the catalysis of hexene isomers with 17 in CDCl3 as a solvent. The 1H NMR 

spectra of the reaction crude showed a total disappearance of the initial hydrosilane, even 

though a percentage of remaining alkene was still observed. The fraction of the hydrosilane 

which was not added to the alkene to form the hydrosilylated product was converted into the 

disiloxane byproduct (Et3Si)2O.100 A solution of Et3SiH with 1 mol % of compound 17 in CDCl3 in 

absence of alkene was monitored by 1H NMR in an attempt of explaining the formation of 

disiloxane in the previous reactions (Figure 33). The spectrum showed the formation of a small 

amount of the chlorosilane species Et3SiCl (Scheme 35),101 which increased with longer 

reaction times. The formed chlorosilane is then transformed into (Et3Si)2O by the atmospheric 

moisture.102 

 

Figure 33. The chlorination reaction of Et3SiH in CDCl3 promoted by 17. 
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Scheme 35. Hydrosilylation of 1-hexene and competitive formation of the disiloxane. 

Conversions of these experiments in CDCl3 varied from 55 % for the trans-3-hexene, to 90 % 

for the 1-hexene isomer. In the case of 1-hexene (Table 2, entry 5), this conversion was 

reached in only 4 hours of reaction. Other hexanes required longer reaction times (Table 2, 

entries 4, 6 and 7), but all reactions were completed in 12 hours. Longer reaction times led to a 

higher amount of the disiloxane side product, resulting into poorer conversions. In order to 

avoid this competitive reaction derived from the use of chloroform, experiments catalysed by 

compound 17 were performed without added solvent (Table, entries 8 to 11). These reactions 

reached almost complete conversion, and led to the formation of the hexylsilane product 

selectively. 

On the basis of these initial results, the faster hydrosilylation of 1-hexene compared to other 

internal isomers suggests a tandem process in which an isomerisation reaction is followed by a 

selective faster hydrosilylation of the terminal alkene. With the purpose of studying the 

isomerisation process catalysed by the silyl-hydride complex 17, a solution of 1-hexene in 

CDCl3 with 1 mol % of 17 was monitored by 1H NMR. This solution was prepared in a sealed 

NMR tube at room temperature. After 45 minutes, the isomerisation reached an equilibrium, 

in which a mixture of hexene isomers was observed. This isomerisation is shown in Figure 34, 

along with the alkene ratio in the equilibrium. After completion of the reaction, although the 

termodinamically more stable103 trans species reached a 73 % of the hexene isomer mixture, 

significant amounts of cis species and 1-hexene are also observed.  
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DISTRIBUTION OF HEXENE ISOMERS 

     

Figure 34. 1H NMR monitored isomerisation of 1-hexene and distribution of isomers. 

The same experiment was carried out with other hexene isomers in the presence of 17. After 

24 hours, the presence of the 1-hexene isomer is observable in all isomer mixtures in 

equilibrium (Figure 35). This is important considering that 1-hexene is the only active isomer 

for the hydrosilylation reaction.  

 

Figure 35. 1H NMR of the isomerisation of various hexene isomers after 24 hours. 
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The high activity shown by the silyl-hydrido-Rh(III) compound 17 in the catalysis of the hexene 

isomerisation and hydrosilylation encouraged the extension of the study to other internal 

olefins. Table 3 collects the results of the reaction of these olefins with Et3SiH catalysed by 1 

mol % of 17. The initial isomerisation-hydrosilylation reactions of trans-2-heptene (Table 3, 

entry 1) and trans-2, trans-3 and trans-4-octenes (Table 3, entries 2 to 4) were performed in 

CDCl3 as a solvent, yielding the linear anti-Markovnikov product selectively with conversion 

rates between 44 and 55 %, due to the formation of disiloxane (Et3Si)2O as a byproduct. These 

reactions were repeated in neat olefin (Table 3, entries 5 to 8), based on the good results 

achieved in the solvent-free experiments with hexene isomers. For trans-2-heptene (Table 3, 

entry 5), this reaction gave the linear heptylsilane as the only hydrosilylation product, with an 

improved conversion of 94 %. Octene isomers also gave the octyltriethylsilane product 

selectively with an excellent conversion of 94-95 %, including the remote isomer trans-4-

octene (Table 3, entry 8). Finally, the reaction of Et3SiH with a cyclic olefin such as cyclooctene 

(Table 3, entry 9) gave no reaction, which evidences that internal olefins are not internally 

hydrosilylated.104 

An additional experiment was carried out to confirm this system being capable of the 

hydrosilylation of a mixture of various isomers to obtain a single product. This reaction 

consisted in the addition of 0.3 mmol of 1-hexene, 0.3 mmol of cis-2-hexene, 0.3 mmol of 

trans-2-hexene and 0.3 mmol of trans-3-hexene to 1.2 mmol of Et3SiH under the previous 

catalytic conditions of 1 mol % of 17, solvent-free and at room temperature, and yielded the 

linear hexyltriethylsilane product selectively, in an almost complete conversion (Scheme 36). 

 

Scheme 36. Hydrosilylation of a mixture of various hexene isomers with Et3SiH catalysed by 17. 
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Table 3. Tandem isomerisation-hydrosilylation of alkenes with Et3SiH catalysed by 17.  

Entry[a] Alkene Solvent Time (h) Conversion[b] (Select.)[c] [%] 

1  CDCl3 12 
 

55 (>99) 

2  CDCl3 12  
56 (>99) 

3  CDCl3 12  
45 (>99) 

4  CDCl3 12  
43 (>99) 

5  Neat 12  
94 (>99) 

6  Neat 12  
95 (>99) 

7  Neat 12  
95 (>99) 

8  Neat 12  
94 (>99) 

9 
 

Neat or 
CDCl3 

12 No reaction 

[a] Catalytic conditions: Alkene (0.25 mmol), Et3SiH (0.25 mmol), 1 % mol catalyst 17 (0.002 mmol) in 0.5 

mL of CDCl3, or solvent-free at room temperature, after 12 hours of reaction. [b] Conversions were 

determined by 1H RMN spectroscopy, by alkene remaining. [c] Linear selectivity was determined by 1H 

RMN.  

To complete this study, the hydrosilylation of other non-linear alkenes was performed with 17 

under the same reaction conditions. Table 4 shows these results. The hydrosilylation of tert-

buthylethylene (tbe) and allyltrimethylsilane led to the formation of anti-Markovnikov 

products (3,3-dimethylbutyl)triethylsilane and triethyl(3-(trimethylsilyl)propyl)silane (table 4, 

entries 1 and 2), with remarkable yields of 97 and 94 % respectively, after 4 hours of reaction. 

In the case of styrene (table 4, entry 3), a 48 % conversion of the initial substrate was reached 

in 4 hours, and a mixture of the hydrosilylated product triethyl(phenethyl)silane and the 

dehydrogenative silylation product triethyl(styryl)silane was obtained in a 76:24 ratio. The 

reaction of α-methylstyrene and 4-chloro-α-methylstyrene (Table 4, entries 4 and 5) with 



 

Et3SiH, however, gave the hydrosilylation products selectively, with a 67 and 62 % of 

conversion.  

Table 4. Tandem isomerisation-hydrosilylation of 

Entry[a] Alkene 

1 
 

2 

3 

4 

5 

[a] Catalytic conditions: Alkene (0.25 mmol), Et

solvent-free at room temperature, after 4 hours of reaction. [b] Conversions were determined by 

RMN spectroscopy, by alkene remaining

A final experiment was performed to test the activity of silyl

in the hydrosilylation of internal olefins using another tertiary silane. A reaction of 0.25 mmol 

of trans-2-octene with the equimolar amount of triethoxysilane

quantitative formation of the hydrosilylated anti

selectively, in only 3.5 hours of reaction (Scheme 37). 

Scheme 37. Hydrosilylation of 

SiH, however, gave the hydrosilylation products selectively, with a 67 and 62 % of 

hydrosilylation of non-linear alkenes with Et3SiH catalysed by 

Solvent Time (h) Conversion[b] (Select.)

 
Neat 4 

97 (>99)

 
Neat 4 

94 (>99)

 
Neat 4 

48 (76)

 

Neat 4 

67 (>

 

Neat 4 

62 (>99)

ene (0.25 mmol), Et3SiH (0.25 mmol), 1 % mol catalyst 

free at room temperature, after 4 hours of reaction. [b] Conversions were determined by 

RMN spectroscopy, by alkene remaining. [c] Linear selectivity was determined by 1H RMN

A final experiment was performed to test the activity of silyl-hydrido-rhodium(III) complex 

in the hydrosilylation of internal olefins using another tertiary silane. A reaction of 0.25 mmol 

octene with the equimolar amount of triethoxysilane (EtO)3

quantitative formation of the hydrosilylated anti-Markovnikov product triethoxy(octyl)silane 

selectively, in only 3.5 hours of reaction (Scheme 37).  

Hydrosilylation of trans-2-octene with triethoxysilane catalysed by 

96 

SiH, however, gave the hydrosilylation products selectively, with a 67 and 62 % of 

SiH catalysed by 17. 

(Select.)[c] [%] 

 

97 (>99) 

 

94 (>99) 

 

48 (76) 

 

>99) 

 

62 (>99) 

SiH (0.25 mmol), 1 % mol catalyst 17 (0.002 mmol), 

free at room temperature, after 4 hours of reaction. [b] Conversions were determined by 1H 

H RMN 

rhodium(III) complex 17 

in the hydrosilylation of internal olefins using another tertiary silane. A reaction of 0.25 mmol 

3SiH allowed the 

Markovnikov product triethoxy(octyl)silane 

 

with triethoxysilane catalysed by 17. 
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II. 1.3.3b. Rhodium and iridium catalysed alkene tandem isomerisation-hydrosilylation or 

dehydrogenative silylation  

The high activity shown by cationic catalyst [RhH(SiMe2(o-C6H4SMe))(PPh3)2]BArF
4 (17) in the 

tandem isomerisation-hydrosilylation reaction of internal olefins in a solvent-free system at 

room temperature, prompted the extension of this study using hydrido-silyl rhodium(III) or 

iridium(III) complexes derived from L2 as precatalysts. Initial experiments (Table 4) were 

performed with an equimolar amount of pre-dried trans-2-octene and Et3SiH, with a catalyst 

load of 1 mol %. The tested precatalysts included the cationic Rh(III) complex [RhH(SiMe(o-

C6H4SMe)2)(PPh3)]BArF
4 (6), the neutral silyl-hydride-chloride Ir(III) complex 18, the neutral 

silyl-dihydride Ir(III) complex 19 and the cationic Ir(III) compound 20 (Scheme of Table 4). 

These experiments were carried out in neat alkene, at room temperature under an 

atmosphere of N2.  

Table 4. Tandem isomerisation-hydrosilylation of trans-2-octene with Et3SiH.  

 

Entry[a] Catalyst Temperature (°C) Conversion[b] (Select.)[c] [%] 

1 6 Room T 80 (>99) 

2 18 50 30 

3 19 50 No reaction 

4 20 50 72 

[a] Catalytic conditions: Trans-2-octene (0.25 mmol), Et3SiH (0.25 mmol), 1 % mol [Rh] or [Ir] catalyst 

(0.002 mmol), solvent-free, after 12 hours of reaction. [b] Conversions were determined by 1H RMN 

spectroscopy, by silane remaining. [c] Linear selectivity was determined by 1H RMN. 
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Compound 6 was able to catalyse the reaction of trans-2-octene with Et3SiH at room 

temperature (Table 4, entry 1), yielding an 80 % conversion to the hydrosilylated anti-

Markovnikov product triethyl(octyl)silane selectively. However, the low or no activity exhibited 

by all iridium(III) precatalysts at room temperature led us to perform the hydrosilylation 

reactions at 50 °C. When heated at this temperature, reaction with analogue cationic Ir(III) 

compound 20 reached a 72 % conversion (Table 4, entry 4), but the observed main silylated 

product was the unsaturated allylic triethyl(2-octen-1-yl)silane, present in a 60 % amount. The 

main occurring process is therefore the catalytic dehydrogenative silylation reaction (Scheme 

38). The variation on the nature of the metal centre would be the only factor to favour one of 

these competitive reactions, as the two catalysts are structurally analogous.  

 

Scheme 38. Tandem isomerisation-hydrosilylation (top) or dehydrogenative silylation (bottom) of trans-

2-octene with Et3SiH depending of the catalyst. 

While cationic Rh(III) and Ir(III) compounds with the coordinative vacancy catalyse the 

silylation of trans-2-octene efficiently, neutral compounds show a poor catalytic activity in the 

same process. Chloride-Ir(III) complex 18 led to a 30 % conversion at 50 °C (Table 4, entry 2), 

yielding a mixture in which the dehydrogenative silylation product prevails. The lower activity 

of the neutral chloride-Ir(III) compound 18 when compared to the cationic Ir(III) 20 could be 

due to the difference in the lability of the chloride and the tetrahydrofurane ligands. Finally, 

dihydride-Ir(III) complex 19 gave no conversion for this process (Table 4, entry 3). The inability 

of this complex to generate a coordinative vacancy during the reaction due to the presence of 

a second hydride ligand would explain this lack of activity. 

The ability of cationic Rh(III) and Ir(III) complexes to efficiently catalyse the reaction of trans-2-

octene with Et3SiH encouraged us to test their activity with a wider olefin scope. These results 

are collected in table 5. Rhodium catalyst 6 promoted the formation of hydrosilylation 

products in all cases at room temperature, after 12 hours or reaction. The use of Iridium 

compound 20, on the other hand, leads to both hydrosilylation and dehydrogenative silylation 
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products. The allylic species is the main unsaturated product obtained by dehydrogenative 

silylation, with a mixture of the E and Z isomers.  

Table 5. Tandem isomerisation-hydrosilylation or dehydrogenative silylation of various linear alkenes 

with Et3SiH using 6 and 20 as catalysts.[a]
 

Cat = [Rh] (6) 

Conversion[b] (Select.)[c] [%] 
Alkene 

Cat = [Ir] (20) 

Conversion[b] (Select.)[c] [%] 

 

 

80 (>99) 
  

72 (60) 

 

55 (80) 
 

 

73 (59) 

 

65 (95) 
 

 

70 (58) 

 

90 (93) 
 

 

70 (50) 

 

85 (98) 
 

 

75 (36) 

 

80 (>99) 
 

 

66 (50) 

 

89 (>99)  
 

67 (47) 

[a] Catalytic conditions: Alkene (0.25 mmol), Et3SiH (0.25 mmol), 1 % mol 6 or 20 (0.002 mmol), solvent-

free, after 12 hours of reaction. [b] Conversions were determined by 1H RMN spectroscopy, by silane 

remaining. [c] Linear selectivity was determined by 1H RMN. 

With rhodium complex 6 as a catalyst, the reaction of 1-octene with Et3SiH gave the linear 

octylsilane product with a conversion of 90 %, and with a high selectivity. The conversion for 

internal octene isomers varied from a 55 % for trans-3-octene, to an 80 % for trans-2-octene, 
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also yielding the octylsilane product with good selectivity. Trans-2 and trans-3-hexene yielded 

the linear hexylsilane selectively to reach conversions of 85 % and 80 % respectively, and 

terminal isomer 1-hexene reached a higher conversion percentage of almost 90 %.  

Results of the reactions catalysed by iridium complex 20 are represented on the right side of 

Table 5. Treatment of all octene isomers with Et3SiH gave similar conversions of 70-73 %, in 

which the main product was the allylsilane compound triethyl(2-octenyl)silane. The vinylsilane 

product, also obtained by dehydrogenative silylation, was present in less than 1 %. Reaction 

with hexene isomers also reached conversions close to 70 %, with the unsaturated triethyl(2-

hexenyl)silane as the main product in all cases. The ratio of the vinylsilane product increases 

for hexene isomers, to reach 7%, 16% and 14% of the product triethyl(1-hexenyl)silane in 

trans-3-, trans-2- and 1-hexene respectively. The variation in the allyl-/vinylsilane product ratio 

could be attributed to the chain length difference in substrates, as steric factors would lead 

towards selective β-hydride elimination in the reaction intermediate.105 

Experiments with non-linear alkenes were also performed with rhodium(III) and iridium(III) 

compounds 6 and 20. Results of these reactions with Et3SiH are shown in Table 6. 
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Table 6. Hydrosilylation or dehydrogenative silylation of various non-linear alkenes with Et3SiH using 6 

and 20 as catalysts.[a]  

Cat = [Rh] (6) 

Conversion[b] (Select.)[c] [%] 
Alkene 

Cat = [Ir] (20) 

Conversion[b] (Select.)[c] [%] 

 

 

90 (93) 
 

 

90 (>99) 

 

91 (>99) 
 

 

75 (90) 

 

65 (81) 
 

 

31 (69) 

 
11 (>99)  

 
56 (>99) 

 

25 (>99) 
 

 

51 (98) 

[a] Catalytic conditions: Alkene (0.25 mmol), Et3SiH (0.25 mmol), 1 % mol 6 or 20 (0.002 mmol), solvent-

free, after 12 hours of reaction. [b] Conversions were determined by 1H RMN spectroscopy, by silane 

remaining. [c] Linear selectivity was determined by 1H RMN. 

Rhodium catalysed reactions for tert-butylethylene and allyltrimethylsilane, both terminal 

alkenes, led to the selective formation of (3,3-dimethylbutyl)triethylsilane and triethyl(3-

(trimethylsilyl)propyl)silane respectively, with almost complete conversion. The reaction with 

styrene afforded 65% conversion under the same reaction conditions, with 81% selectivity to 

the linear hydrosilylation product triethyl(styryl)silane, whereas styrene derivatives such as α-



 

methylstyrene and 4-chloro-α

hydrosilylated product, with excellent linear selectivity.

In the case of iridium catalysed reactions, a

conversion to the allylic dehydrogenative silylation product. For

chloro-α-methylstyrene and 

allylsilane product is not possi

hydrosilylated products. Experiments with these olefins 

conditions, with the purpose of studying

iridium catalyst 20. These reactions exhibited great selectivity towards the hydrosilylated 

linear product, except styrene, which afforded a 69 % 

the reaction with Et3SiH. This could also be explained by steric effects of methyl group

methylstyrene, 4-chloro-α-methylstyrene, and tbe in the β

would favour the elimination away from the bulky substituent.

successfully yielded linear product to reach 90% of conversion. Notably

4-chloro-α-methylstyrene yielded hydrosilylation products in a higher conversion (>50%) with 

iridium(III) catalyst 20 than with the rhodium(III) analogue.

These experiments confirm that the nature of the metal centre in the catalyst i

silylation reaction pathway. Iridium(III) catalyst 

route in the reaction of these internal olefins with Et

product, whereas a rhodium(III) centre leads to hy

39).  

Scheme 39. General reaction scheme for remote alkenes with Et

 

α-methylstyrene gave 11% and 25% conversion

, with excellent linear selectivity. 

In the case of iridium catalysed reactions, allyltrimethylsilane afforded a 

the allylic dehydrogenative silylation product. For styrene, α-

methylstyrene and tert-butylethylene (tbe) substrates, the formation of the 

is not possible, as they can only yield the vinylsilane species

. Experiments with these olefins were performed 

, with the purpose of studying the selectivity of the hydrosilylation reaction with 

These reactions exhibited great selectivity towards the hydrosilylated 

linear product, except styrene, which afforded a 69 % selectivity for the vinylsilane product in 

SiH. This could also be explained by steric effects of methyl group

methylstyrene, and tbe in the β-hydride elimination step, which 

would favour the elimination away from the bulky substituent.89a Hydrosilylation of tbe 

successfully yielded linear product to reach 90% of conversion. Notably, α-methylstyrene and 

methylstyrene yielded hydrosilylation products in a higher conversion (>50%) with 

than with the rhodium(III) analogue. 

that the nature of the metal centre in the catalyst i

silylation reaction pathway. Iridium(III) catalyst 20 promotes the dehydrogenative silylation 

route in the reaction of these internal olefins with Et3SiH, yielding the allylsilane as the main 

product, whereas a rhodium(III) centre leads to hydrosilylation products selectively (Scheme 

General reaction scheme for remote alkenes with Et3SiH catalysed by analogue Rh(III) and 

Ir(III) compounds 6 and 20. 
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methylstyrene gave 11% and 25% conversions to the terminal 

a selective 75 % 

methylstyrene, 4-

substrates, the formation of the 

they can only yield the vinylsilane species or 

 under the same 

ylation reaction with 

These reactions exhibited great selectivity towards the hydrosilylated 

the vinylsilane product in 

SiH. This could also be explained by steric effects of methyl groups in α-

hydride elimination step, which 

Hydrosilylation of tbe 

methylstyrene and 

methylstyrene yielded hydrosilylation products in a higher conversion (>50%) with 

that the nature of the metal centre in the catalyst influences the 

promotes the dehydrogenative silylation 

SiH, yielding the allylsilane as the main 

drosilylation products selectively (Scheme 

 

SiH catalysed by analogue Rh(III) and 
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II. 2. ACTIVATION OF THE CARBON-HYDROGEN BOND IN 

ALDEHYDES 

II.2.1. INTRODUCTION 

The transition-metal promoted activation and functionalization of C-H bonds has been the 

subject of extensive research for years.1 Although C-H bonds exhibit a generally low reactivity, 

associated to the non-polar nature of the bond,2 aldehydes are versatile substrates and can 

undergo a variety of transformations. Activation of the OC-H bond in aldehydes by a transition 

metal complex in a low oxidation state is accepted to occur via oxidative addition, leading to 

the formation of acyl hydrido derivatives. These species are considered intermediates in 

reactions involving the construction of new C-C and C-O bonds, as in hydroacylation3 or ester 

formation4 reactions respectively (Scheme 40). They also participate in decarbonylation5 

reactions, with a subsequent C-C bond cleavage and removal of the CO group in the aldehyde, 

without affecting other functionalities in the molecule (Scheme 40). Subsequent reductive 

elimination from the alkyl-hydride species leads to the formation of an alkane and a metal 

carbonyl compound as the final products. Transition metal decarbonylation of aldehydes 

represents an important synthetic route in organic chemistry, and it has recently proved to be 

a safe source of CO for other reactions.6 

 

Scheme 40. Examples of reaction pathways involving acyl hydride metal intermediates. 
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Aldehyde decarbonylation represents an important competing side reaction of the 

hydroacylation process7 and most likely is a consequence of the lower stability showed by the 

acyl hydride complex, in contrast to metal carbonyl derivatives. However, there are some 

examples of stable complexes with phosphine ligands derived from the addition of simple 

aldehydes.8 The first reported rhodium examples were compounds [RhClH(COR)(PMe3)3] (R = 

Me, Ph, p-FC6H4, p-MeOC6H4) (I-1), which were synthesised from the oxidative addition of the 

aldehyde (RCHO) to [RhCl(PMe3)3].
9 These complexes were stable at room temperature, but 

experienced competitive decarbonylation or intramolecular reductive elimination reactions 

when heated above 60 °C (Scheme 41). Abstraction of a ligand accelerated these reactions by 

formation of a common unsaturated intermediate (I-2), and an excess of phosphine resulted in 

retardation of the process. 

 

Scheme 41. Competitive reductive elimination and decarbonylation reactions from an unsaturated 

hydride-acyl intermediate. 

The formation of a five or six membered chelate by the use of tethered aldehydes has been 

established as a useful method for the stabilisation of acyl-hydrido metal intermediates, as the 

metallacycle arrangement would be kinetically or thermodynamically favoured, and the 

chelating group blocks the free coordination site necessary for the carbonyl deinsertion to 

occur. Furthermore, decarbonylation would lead to a strained four-membered metallacycle 

that contributes to a higher barrier for the decarbonylation pathway.10 Aldehydes featuring P-, 

N-, O-, and S-based chelating groups have been employed as substrates in transition-metal 

catalysed intermolecular hydroacylation reactions.10a-d First isolation of stable cyclometalated 

acyl-metal complexes were derived from 8-quinolinecarboxaldehyde11 (C9H6NCHO) and 2-

(diphenylphosphino)benzaldehyde12 (PPh2(o-C6H4CHO)) (Figure 33), and made an important 

breakthrough in chelation-assisted hydroacylation.  
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Figure 33. Structures of chelating aldehydes C9H6NCHO and PPh2(o-C6H4CHO). 

In the mentioned work with the 8-quinolinecarboxaldehyde,11 Suggs reported the reaction of 

C9H6NCHO with Wilkinson’s catalyst [RhCl(PPh3)3], which allowed the isolation of the stable 

[RhH(κ2-C9H6NCO)Cl(PPh3)2] (I-3) complex. In this compound, the aldehyde leads to a 

coordinated bidentate ligand with the formation of a five-membered chelate. Heating this I-3 

complex at 130 °C caused the decarbonylation reaction, leading to the quinoline product 

(Scheme 42).  

 

Scheme 42. Decarbonylation reaction involving rhodium complex I-3 derived from 8-

quinolinecarboxaldehyde. 

Chloride extraction in complex I-3 gave the unsaturated species [RhH(κ2-C9H6NCO)(PPh3)2]
+ (I-

4), which promoted the hydroacylation reaction of 1-octene with C9H6NCHO with the 

formation of the 8-quinolinyl(octyl)ketone (Scheme 43). Isolation of this cationic compound I-4 

confirmed the presence of acyl hydride metal intermediates in olefin hydroacylation reactions.  

 

Scheme 43. Hydroacylation of 1-octene with 8-quinolinecarboxaldehyde, promoted by unsaturated 

compound I-4. 

A mechanism for the olefin hydroacylation was later proposed by Suggs et al.13 based on the 

intermediates isolated from reaction of 8-quinolinecarboxaldehyde with [RhCl(C2H4)2]2 in the 
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presence of pyridine (Scheme 44). This reaction leads to compound [RhCl(κ2-

C9H6NCO)(CH2CH3)(Py)] (I-5), formed by oxidative addition of the aldehyde to the rhodium 

centre, and the subsequent insertion of the olefin ligand into the Rh-H bond. The 

hydroacylation product 8-quinolinyl(ethyl)ketone was obtained by addition of two equivalents 

of triphenylphosphine, which stabilised the rhodium(I) centre and favoured the ketone 

formation via reductive elimination to afford I-6. Coordination of another PPh3 molecule 

allowed the dissociation of the ethylene hydroacylation product. 

 

Scheme 44. Hydroacylation of ethylene with C9H6NCHO reported by Suggs and co-workers. 

Reaction of the quinoline C9H6NCHO with various dimeric rhodium [RhCl(diolefin)]2 complexes 

allowed the formation of acyl-η3-allyl rhodium(III) derivatives.14 The reactions were performed 

with 1,4-pentadiene (Scheme 45) and 1,5-hexadiene as coordinated diolefins. Activation of the 

aldehyde C-H bond by the metal centre and insertion of the diolefin into the Rh-H bond led to 

an acyl-(η1-alkylolefin) species (I-7), and the allyl fragment was formed by migration of the 

double bond, to give [Rh(C9H6NCO)(η3-allyl)(μ-Cl)]2 (I-8) complexes. 

 

Scheme 45. Formation of η3-allyl derivatives with C9H6NCHO. 

Hydroxyalkyl complexes derived from C9H6NCHO have been obtained by reaction with a 

platina-β-diketone, which contains an acyl-hydroxycarbene fragment stabilized by an 
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intramolecular O−H···O hydrogen bond.
15

 This reaction leads to the water-assisted carbon to 

oxygen proton transfer, formally between the two aldehyde fragments, yielding an 

acyl(hydroxyalkyl)platinum(IV) species [Pt(COMe)Cl(κ
2
-C9H6NCO)(κ

2
-C9H6NCHOH)] (I-9) that 

also shows a strong O···H-O hydrogen bond (Scheme 46).  

 

Scheme 46. Synthesis of the acyl(hydroxyalkyl)platinum(IV) complex I-9 from a platina-β-diketone. 

Reactions with o-(diphenylphosphino)benzaldehyde also involve the stabilisation of the acyl 

hydride intermediate by formation of a metallacycle. First reported reaction of this ligand with 

iridium complex [Ir(cod)Cl]2 led to the saturated compound [IrClH(κ
2
-PPh2(o-C6H4CO))(Cod)] (I-

10) (Figure 34) through oxidative addition of the aldehyde to the metal.
12

 The same paper 

described the reaction of trans-[IrCl(CO)(PPh3)2] with PPh2(o-C6H4CHO) to give the acyl hydride 

product [IrClH(κ
2
-PPh2(o-C6H4CO))(CO)(PPh3)] (I-11). Heating this I-11 complex at 130 °C 

promoted the decarbonylation of the bidentate PPh2(o-C6H4CO) ligand, which affords PPh3 and 

CO, leading to the starting complex trans-[IrCl(CO)(PPh3)2] (Scheme 47). 

 

Scheme 47. First reported reaction of [IrCl(CO)(PPh3)2] with PPh2(o-C6H4CHO). 

Treatment of the iridium(I) complex [IrCl(CO)2(p-NH2C6H4CH3)] with two equivalents of PPh2(o-

C6H4CHO) allows the coordination of the phosphine as a bidentate and a monodentate 

ligand.
16

 In the resulting compound [IrH(PPh2(o-C6H4CO)-κP,κC)Cl(CO)(PPh2(o-C6H4CHO)-κP)] (I-

12), the second PPh2(o-C6H4CHO) unit is coordinated through the phosphorus atom, 

maintaining a pendant aldehyde group. Other reported examples of this phosphine-aldehyde 

as a bidentate ligand include P,O coordination, as in the ruthenium compound [RuCl(η
6
-
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arene)(κ
2
-PPh2(o-C6H4CHO))]SbF6 (I-13),17 and P,π-aldehyde coordination as in cobalt and 

tungsten compounds [Co(Cp*)(PPh2(o-C6H4CHO)-κP,η2-CO)]18 (I-14) and [W(CO)2(PPh2(o-

C6H4CHO)-κP,η2-CO)2] (I-15).19 Examples of the coordination modes of this tethered aldehyde 

are shown in Figure 34. 

 

Figure 34. Examples of PPh2(o-C6H4CHO) coordination modes reported by Rauchfuss et al.,13,16 Gimeno 

et al.,17 White et al.18 and Lee et al.19 

Additionally, o-(diphenylphosphino)benzaldehyde has been widely used as a precursor in the 

synthesis of hemilabile ligands by reaction with amines.20 Condensation of the aldehyde with a 

primary amine forms an imine group, leading to potentially bidentate PN,21 terdentate PNN,22 

or tetradentate PNNP23 ligands. The mixture of a soft donor atom such as phosphorus and hard 

nitrogen donor atoms confers unique properties to the ligand. While one coordinating group is 

firmly bound to the metal centre, the other can easily dissociate to create a vacant site for the 

binding of a potential substrate. Thus, the behaviour of these ligands has proved to increase 

catalytic activity. The reaction of PPh2(o-C6H4CHO) with rhodium complexes containing 

chelating amino ligands, such as 8-aminoquinoline and o-phenylendiamine, would allow the 

formation of tridentate hemilabile PNN ligands in [RhH(PPh2(o-C6H4CO))(PNN)]Cl (I-16, I-17) 

compounds (Figure 35).24 The reaction with coordinated biacetyldihydrazone would lead to the 

formation of the PNN terdentate ligand with an hemiaminal group (I-18) (Figure 35),25 which is 

an intermediate in the imination reaction.  
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Figure 35. Examples of PNN ligands formed by reaction of PPh2(o-C6H4CHO) with coordinated 8-

aminoquinoline (I-16), o-phenylendiamine (I-17) and biacetyldihydrazone (I-18). 

Reaction of the rhodium diolefinic dimer [Rh(cod)Cl]2 with four equivalents of PPh2(o-C6H4CHO) 

gives the neutral acyl hydride complex [RhClH(κ2-PPh2(o-C6H4CO))(κ2-PPh2(o-C6H4CHO))] (I-19), 

with olefin displacement and the phosphine ligands coordinated as a P,C- and a P,O-chelate 

(Scheme 48).26  

 

Scheme 48. Formation of the acyl hydrido compound RhClH(κ2-PPh2(o-C6H4CO))(κ2.-PPh2(o-C6H4CHO)) (I-

19). 

When the reaction of [Rh(cod)Cl]2 with PPh2(o-C6H4CHO) is performed in the presence of a 

monomeric N-donor ligand such as pyridine, complex [RhClH(PPh2(o-C6H4CO))(py)2] (I-20) is 

formed (Scheme 49). This compound was found to undergo hydride exchange in chlorinated 

solvents to reach the dichloride neutral compound [Rh(PPh2(o-C6H4CO))Cl2(py)2] (I-21).27 The 

reaction of [Rh(cod)Cl]2 with two equivalents of PPh2(o-C6H4CHO) and pyridine would lead to 

neutral complex [RhClH(PPh2(o-C6H4CO))(κ1-PPh2(o-C6H4CHO))(py)] (I-22) (Scheme 49), which 

has only been characterised in solution due to its high reactivity. In a benzene solution, I-22 

reacts readily to afford the hydroxyalkyl derivative [RhCl(PPh2(o-C6H4CO))(κ1-PPh2(o-

C6H4CHOH))(py)] (I-23) as a mixture of two geometric isomers. I-23 is formed by insertion of 

the aldehyde group into the Rh-H bond and coordination of the hydroxyalkyl moiety by an sp3 

carbon, to give a five-membered metallacycle.27 
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Scheme 49. Synthesis of acyl hydride- and acyl hydroxyalkyl- rhodium(III) complexes with 2-

(diphenylphosphino)benzaldehyde and pyridine. 

The same kind of complexes can be formed in the presence of diimines, such as 2,2’-bipyridine 

(bipy). Treatment with one or two equivalents of the phosphine leads to neutral [RhClH(κ2-

PPh2(o-C6H4CO))(bipy)] (I-24) or cationic [RhH(κ2-PPh2(o-C6H4CO))(bipy)(k1-PPh2(o-C6H4CHO))]+ 

(I-25) compounds respectively. In the latter cationic compound I-25, the pendant aldehyde 

group undergoes insertion into the Rh-H bond to give the acyl hydroxyalkyl species [Rh(κ2-

PPh2(o-C6H4CO))(bipy)(κ2-PPh2(o-C6H4CHOH))]+ (I-26).28  

Formation of the mentioned acyl hydride rhodium(III) neutral complexes with o-

(diphenylphosphino)benzaldehyde occurs with displacement of the olefin. However, cationic 

rhodium(I) compounds [Rh(cod)2]ClO4 or [Rh(cod)(PR3)2]ClO4 (R = C6H5, p-FC6H4, p-ClC6H4, p-

MeOC6H4) afford cyclooctenyl derivatives by reaction with the phosphine.29 Treatment of these 

complexes with two equivalents of PPh2(o-C6H4CHO) led to [Rh(η3-cyclooctenyl)(κ2-PPh2(o-

C6H4CO))(κ2-PPh2(o-C6H4CHO))]ClO4 (I-27) complexes via oxidative addition of one of the 

aldehydes, followed by insertion of the 1,5-cyclooctadiene into the Rh-H bond and 

rearrangement to give the η3-allyl species. Cyclooctenyl I-27 complex reacts with another unit 

of [Rh(cod)(PR3)2]ClO4, with the P,O-chelate opening and oxidative addition of the aldehyde to 

the Rh(I) centre (Scheme 50), to form two units of compound [Rh(η3-cyclooctenyl)(κ2-PPh2(o-

C6H4CO))(PR3)]ClO4 (I-28).  
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Scheme 50. Synthesis of η3-cyclooctenyl complexes derived from PPh2(o-C6H4CHO). 

The diolefinic [Rh(nbd)Cl]2 complex also reacts with PPh2(o-C6H4CHO) in the presence of N-

donor ligands, such as pyridine or 2,2’-bypiridine, to give σ-nortricyclyl (I-29) or σ-norbornenyl 

(I-30) derivatives selectively, depending on the solvent.30 These derivatives are formed by 

activation of the aldehydic C-H bond and insertion of norbornadiene into the formed Rh-H 

bond. The use of an ionising solvent such as methanol would favour the σ-norbornenyl 

formation in I-30, via a proposed cationic [Rh(η2-C7H8)H(κ2-PPh2(o-C6H4CO))(bipy)]Cl 

intermediate, while the use of benzene leads to the σ-nortricyclyl species in I-29 via a 

proposed neutral [Rh(η4-C7H8)H(κ2-PPh2(o-C6H4CO))Cl] intermediate that would allow the 

required rearrangement (Scheme 51). 

 

Scheme 51. Synthesis of σ-nortricyclyl and σ-norbornenyl complexes with PPh2(o-C6H4CHO). 

Recent examples of σ-norbornenyl transformation into σ-nortricyclyl involves the reaction of 

the [Rh(nbd)Cl]2 complex with C9H6NCHO, in the presence of P-donor PR3 (R = C6H5, p-FC6H4) 

co-ligands.31,32 These reactions led to the σ-norbornenyl unsaturated complexes 

[RhCl(C9H6NCO)(nbyl)(PR3)] (I-31) by chelate-assisted oxidative addition of the aldehyde, and 

subsequent insertion of the norbornadiene into the Rh-H bond. Complexes I-31 showed low 
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stability in solution due to the coordinative vacancy, and underwent rapid isomerisation to the 

thermodynamically favoured σ-nortricyclyl species (I-32) by a double bond shift and a ring 

closure reaction (Scheme 52).  

 

Scheme 52. Formation of σ-norbornenyl compounds and isomerisation into the σ-nortricyclyl species in 

dichloromethane solution. 

Norbornenyl-acyl complex I-31 with P(p-FC6H4)3 as a co-ligand also promoted the formation of 

the quinolinylnorbornenyl-ketone, in the presence of an additional equivalent of both 

C9H6NCHO and phosphine (Scheme 53). The reductive elimination of the ketone is promoted 

by the phosphine and allows the liberation of the diolefin hydroacylation product, and the 

oxidative addition of another C9H6NCHO molecule gave the hydrido-acyl complex 

[RhClH(C9H6NCO)(P(p-FC6H4)3)2] (I-33). Both norbornenyl-acyl I-31 and hydrido-acyl I-33 Rh(III) 

species were found active in the catalytic hydroacylation of norbornadiene with C9H6NCHO.32 

 

Scheme 53. Formation of the hydroacylation product of norbornadiene with C9H6NCHO promoted by a 

norbornenyl-acyl-Rh(III) complex. 

When the reaction of the chloronorbornadienerhodium(I) dimer with C9H6NCHO is performed 

in benzene, using Rh:C9H6NCHO = 1/2 stoichiometric ratios, the chelate-assisted oxidative 

addition of one aldehyde-quinoline is produced, with the subsequent Rh-H insertion of the 

norbornadiene, while a second quinoline-aldehyde is κ2-N,O coordinated to form a six-

membered metallacycle (Scheme 54).31 The resulting mononuclear [RhCl(C9H6NCO)(nbyl)(κ2-

C9H6NCHO)] (I-34) compound is unstable in dichloromethane, and undergoes C-H activation of 
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the coordinated quinoline-aldehyde to form dimeric [Rh(μ-Cl)(C9H6NCO)]2 (I-35) complex, and 

the liberation of norbornene by transfer of hydrogen from the aldehyde (Scheme 54). 

 

Scheme 54.  Formation of [Rh(μ-Cl)(C9H6NCO)]2 and liberation of norbornene. 

The reaction of the aforementioned hydrido-acyl complex [RhClH(PPh2(o-C6H4CO))(py)2] (I-20), 

derived from o-(diphenylphosphino)benzaldehyde, with 8-quinolinecarboxaldehyde affords a 

mixed diacyl neutral species, via C-H activation of the aldehyde. Displacement of a pyridine 

and proton transfer from the coordinated C9H6NCHO to the hydride allows the formation of 

complex [RhCl(py)(C9H6NCO)(PPh2(o-C6H4CO))] (I-36) as a mixture of two geometric isomers, 

and hydrogen release (Scheme 55).33 Treatment of I-36 with bidentate N-donor ligands (NN) 

such as 2,2’-bipyridine and 2-(aminomethyl)pyridine leads to cationic diacyl mixed 

[Rh(NN)(C9H6NCO)(PPh2(o-C6H4CO))] (I-37) derivatives, by displacement of chloride and 

pyridine (Scheme 55).33 

 

Scheme 55. Formation of mixed neutral and cationic diacyl compounds I-36 and I-37. 

This chapter describes a study on the aldehydic carbon-hydrogen activation in tethered 

phosphine-alkyl-aldehyde PPh2CH(Ph)CH2CHO promoted by rhodium(I) diolefinic [Rh(cod)Cl]2 

and [Rh(nbd)Cl]2 complexes, in the presence of N-donor monodentate and bidentate ligands. 

Most of these studies have been devoted to arylic aldehydes, while reports on tethered 

alkylaldehydes are scarce. The reactivity of the formed species to undergo a variety of 

reactions such as insertions, iminations or dehydrogenations is also presented. The use of a 
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racemic mixture of the phosphinoalkylaldehyde, allows a discussion on the diastereoselectivity 

of the reactions performed. The aldehydic carbon-hydrogen activation in quinoline-8-

carbaldehyde in the presence of pyrazole allows the synthesis of efficient homogeneous 

catalysts for the hydrolysis of ammonia-borane in air for the release of hydrogen, and these 

results are also discussed. 
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II.2.2. REACTIVITY OF PHOSPHINE-ALDEHYDE PPh2CH(Ph)CH2CHO WITH 

DIOLEFINIC RHODIUM(I) COMPLEXES 

The extensive use of o-(diphenylphosphino)benzaldehyde when compared to other phosphine-

aldehydes is due to the high stability exhibited by this ligand, conferred by an arylic structure. 

An alkyl chain to bond the aldehyde group to the phosphorus would lead to more flexible 

metal-ligand structures. However, examples of chelating phosphine-alkylaldehydes remain 

scarce, as a result of difficult preparation methods and low yields. Such phosphines containing 

electrophilic aldehyde groups are highly reactive, as they can easily undergo unselective 

polymerisation with the formation of carbon-phosphorus bonds.34 

The reaction of phosphinopropionaldehyde (PPh2CH2CH2CHO) with (CO)5MnH was reported,35 

but at variance with related PPh2(o-C6H4CHO), it fails to undergo any C-H activation and only 

leads to the κ1-P-coordinated complex with a pendant aldehyde group, without the formation 

of a metallacycle. A recent publication by James et al.36 described the reaction of [3-

(diphenylphosphino)-3-phenyl-2-methyl]propionaldehyde (PPh2CH(Ph)CH(Me)CHO) with Rh(I) 

and Ir(I) complexes. Treatment of [Rh(cod)Cl]2 and [Ir(cod)Cl]2 with this ligand in MeOH 

afforded acyl hydride complexes via the oxidative addition of an aldehyde to form a five 

membered κ2-P,C chelate. A second phosphino-aldehyde undergoes conversion into the 

hemiacetal species to form a six membered κ2-P,OH chelate (Scheme 56a). In dichloromethane 

solution, the rhodium complex shows a slow rearrangement of the hemiacetal group to form 

the aldehyde species, reaching an equilibrium (Scheme 56b). This phosphine-aldehyde 

contains two chiral centres in the two carbon atoms of the aliphatic chain, and a new chiral 

centre is generated with the hemiacetal formation. Although these metal complexes contain 

five chiral carbons located in ligands, along with a newly formed stereogenic metal centre, only 

three preferred diasteromers are observed in solution by NMR spectroscopy.  
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Scheme 56. a) Synthesis of Rh(I) and Ir(I) acyl hydride complexes with PPh2CH(Ph)CH(Me)CHO. b) 

Equilibrium between the hemiacetal and aldehyde rhodium species in CD2Cl2. 

The coordination of a ligand with a chiral centre to an octahedral complex allows the 

formation of diastereomeric species, by generation of a metal stereocentre. By all means, 

chiral metal complexes synthesised from racemic or achiral ligands would be formed as 

racemates. However, the chirality of a metal complex may be predetermined, when a certain 

absolute configuration at the ligand chiral centre (S or R) corresponds to a determined 

absolute configuration at the metal (A or C).37 In this manner, predetermination of the metal 

chirality yields products of one absolute configuration preferentially. This ensures a 

diastereoselective synthesis of chiral metal compounds by the use of enantiopure chiral 

ligands. Interest in such diastereopure complexes has escalated greatly in recent years due to 

their potential in asymmetric catalysis. Relevant examples include half-sandwich compounds 

with the formula [(ηn-ring)M(LL*)L]n+ (where LL* represents a chiral bidentate ligand).38 

However, the use of bidentate chiral ligands for the diastereoselective synthesis of octahedral 

complexes with non-half-sandwich metal precursors has received less attention.39 Also, many 

compounds containing tetradentate N4, N2O2 or N2P2 ligands, useful as catalysts for 

enantioselective reactions, have been prepared.40  

Due to the low stability of phosphine-alkyl aldehyde ligands, a succesfull strategy for the 

preparation of complexes of chiral PNN or PNNP ligands has been the use of phosphonium 

dimers as precursors of the required phosphine-alkylaldehyde.41 Scheme 57 shows the one-pot 

synthesis of a Fe(II) complex containing a tetradentate PNNP ligand, starting from an air-stable 

dimeric phosphonium compound, via a multicomponent template reaction. The phosphine-

alkylaldehyde is first generated in situ by deprotonation of the phosphonium dimer under 

basic conditions, and in conjunction with a diamine and a metal precursor, the tetradentate 

PNNP Fe(II) complex is then formed. The role of the metal is to facilitate the condensation 
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reaction between the diamine and the aldehyde by coordination of the chelating ligand. In the 

absence of the Fe(II) complex, the direct reaction of the phosphine-aldehyde with amines did 

not lead to isolated PNNP ligands.41a 

 

Scheme 57. Formation of a PNNP tetradentate complex from a phosphonium dimer in a 

multicomponent template synthesis. 

In the absence of diimine this strategy may afford phosphine-enolate complexes. Morris and 

co-workers described the syntheses of Rh(I) and Ir(I) chelating κ2-P,O enolate complexes 

derived from the phosphine-alkylaldehyde PCy2CH2CHO (Cy = cyclohexyl), also formed by 

treatment of the correspondent phosphonium dimer with base.42 The addition of the 

[M(cod)Cl]2 complex to the reaction mixture and the subsequent treatment with additional 

base allowed the enolization of the aldehyde functionality, to give neutral Rh(I) and Ir(I) 

compounds.  

 

Scheme 58. Formation of Rh(I) and Ir(I) phosphino-enolate complexes from reaction with phosphonium 

dimer and base.  

In this work, we decided to study the reactivity of the chiral bidentate phosphine-alkyl-

aldehyde PPh2CH(Ph)CH2CHO with diolefinic rhodium(I) compounds. The reaction of 

diphenylphosphine with cinnamaldehyde affords a racemic mixture of the R and S enantiomers 

of the phosphine (Figure 36).43 The formation of a chelate by treatment of rhodium 

compounds with the enantiomeric mixture of this ligand would generate metal centrochirality, 

leading to two diasteromeric forms. 
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Figure 36. Representation of the enantiomers S (left) and R (right) of the phosphine-alkyl-aldehyde 

PPh2CH(Ph)CH2CHO. 

This chapter will also describe the reactivity of rhodium complexes derived from 

PPh2CH(Ph)CH2CHO with the above mentioned tethered phosphine-arylaldehyde PPh2(o-

C6H4CHO), or with 8-quinolinecarboxaldehyde C9H6NCHO. Reactions will be also performed in 

the presence of various N-donor bidentate ligands, such as aromatic diimines (1,10-

phenantroline and 2,2’-bipiridine) or amino-imines (8-aminoquinoline and 2-

aminomethylpyridine) that can afford new PNN coordinated ligands. DFT calculations have also 

been employed in collaboration with Dr. Eider San Sebastián, to predict the 

diastereoselectivity of the reactions involving the chiral phosphine ligand. Results of these 

calculations are compared to the experimental diastereoselectivity determined by solution 

NMR spectroscopy.  

II. 2.2.1. Reactivity with [Rh(cod)Cl]2 

II. 2.2.1a. Synthesis, characterization and reactivity of neutral acylhydridorhodium(III) 

complexes.  

The reaction of [Rh(cod)Cl]2 with the racemic mixture of the phosphine PPh2CH(Ph)CH2CHO 

and pyridine in a Rh:P:py = 1:1:2 ratio in dichloromethane at room temperature gives the acyl-

hydride complex [RhClH(PPh2CH(Ph)CH2CO)(py)2] (22). The displacement of the diolefin and 

the chelate assisted oxidative addition of the phosphine-aldehyde to the rhodium centre allow 

the formation of this complex (Scheme 59).  

 

Scheme 59. Chelate-assisted formation of complex 22. 
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Complex 22 was characterised in solution by ESI-MS and NMR spectroscopy. The ESI-MS 

spectroscopy shows a molecular ion at m/z = 534.02, which is in accordance with the [M -py -

H]+ ion, [RhCl(PPh2CH(Ph)CH2CO)(py)]+. NMR spectra show high diastereoselectivity for this 

reaction. The 1H NMR spectrum (Figure 37) shows the presence of two hydride signals at -

16.00 and -16.20 ppm, indicating the existence of two isomers of 22 in solution, in a 95:5 ratio 

respectively. The chemical shift is consistent with a hydride trans to an electronegative atom, 

such as chloride.44 However, the possibility of the hydride being trans to pyridine cannot be 

excluded, as both exhibit a similar trans influence.45 A two-dimensional COSY experiment 

allows the assignment of the multiplet signals at 3.86 and 3.06 ppm to the CHPh and CH2 

moieties in the aliphatic chain of the phosphine. The 31P{1H} NMR spectrum (Figure 37) shows 

two doublet signals (JRh-P = 170 Hz) at 97.9 and 93.9 ppm, the characteristic low field due to the 

formation of a five-membered ring.46  

 

Figure 37. 1H (left) and 31P{1H} (right) NMR of complex 22 in CDCl3. 

The spectroscopic data agree with three possible geometric isomers of 22, in which the 

hydride is located trans to chloride or pyridine (Figure 38). In addition, the oxidative addition 

of the phosphine leads to a chiral rhodium centre, which allows the formation of two 

diastereomers for each geometric isomer. Each diastereomer also includes a pair of 

enantiomeric species, named CRhRC / ARhSC and CRhSC / ARhRC. 
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Figure 38. Possible geometric isomers for 22 in agreement with experimental data. 

DFT calculations indicate the presence in solution of the diastereomeric pair of the geometric 

isomer with hydride trans to chloride (trans-H,Cl-22a and trans-H,Cl-22a’), with the CRhRc / 

ARhSc species (trans-H,Cl-22a) as the major species in solution (Figure 39). The calculated 

diastereomeric ratio is in excellent agreement with the experimentally determined proportion. 

 

Figure 39. Enantiomeric species for diastereomers trans-H,Cl-22a and trans-H,Cl-22a’. 

A NOE experiment confirmed trans-H,Cl-22a as the major species in solution (Supporting 

Information). Upon irradiation of the resonance at -16.00 ppm, no enhancement of the proton 

at the stereogenic centre was observed, while enhancement of the signal due to CH2 was 

certainly observed. 

As observed in similar hydride-rhodium(III) complexes with tethered phosphine PPh2(o-

C6H4CO),27 mentioned in the introduction of this chapter, complex 22 shows low stability in 

chlorinated solvents, and in chloroform solution exchange of hydride ligand by chloride is 

produced. This allows the formation of compound [RhCl2(PPh2CH(Ph)CH2CO)(py)2] (23) as a 

mixture of three isomeric species with a higher proportion of one of them (cis-Cl-23b), as 

shown in Scheme 60.  
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Scheme 60. Formation of 23 by chlorination in CHCl3 solution, as a mixture of geometric isomers trans-

py-23a and cis-Cl-23 as a mixture of two diastereoisomers (cis-Cl-23b and cis-Cl-23b’). 

This proposal is supported by ESI-MS spectroscopy, with the presence of a molecular ion at 

m/z = 534.02 corresponding to the [M - py - Cl]+ ion [RhCl(PPh2CH(Ph)CH2CO)(py)]+. The 1H 

NMR spectrum of 23 shows the presence of three groups of signals due to the aliphatic chain 

in the phosphine ligand, corresponding to three species in solution, in the 3-5.5 ppm range. 

The absence of a hydride signal confirms the chlorination of the compound. The 31P{1H} NMR 

spectrum shows two doublet signals at 74.4 and 72.5 ppm, assigned to two diastereoisomers 

of the species with both chloride and pyridine ligands mutually cis (cis-Cl-23b and cis-Cl-23b’). 

A third doublet signal at 66.4 ppm is assigned to a geometric isomer in which pyridines are 

located in a trans position (trans-py-23a), and therefore achiral at metal. This assignment was 

supported by DFT calculations, which indicate that these three isomers may coexist in solution, 

which would contain cis-Cl-23b as the major species and similar amounts of minor cis-Cl-23b’ 

and trans-py-23a. Both cis-Cl-23b and cis-Cl-23b’ exist as a mixture of two enantiomeric 

species (Figure 40). 

 

Figure 40. Enantiomeric species for diastereomers cis-Cl-23b and cis-Cl-23b’. 

Formation of 23 in CDCl3 was monitored by NMR (Figure 41). The fast formation of a kinetically 

favoured species (trans-py-23a) is observed in the first steps of the reaction. A slow 

concomitant isomerisation affords the geometric isomer cis-Cl, cis-py with chloride trans to 
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acyl as a mixture of two diastereomers (cis-Cl-23b and cis-Cl-23b’). Equilibrium between these 

three species is reached after 24 hours of reaction, with the total disappearance of the starting 

material 22 and a cis-Cl-23b/cis-Cl-23b’/trans-py-23a ratio of 48:24:28. The 1H NMR spectra 

show the appearance of a signal due to CHDCl2. 

 

Figure 41. Monitoring of the formation of 23 by 31P{1H} NMR.  

Repeated crystallisation of 23 allowed the formation of single crystals identified by NMR as the 

major species cis-Cl-23b, which was also characterised by X-ray diffraction (Figure 42). The 

crystal consists of pairs of ARhSC and CRhRC enantiomers. The geometry around the Rh(III) centre 

is pseudo octahedral, with the phosphorus atom (Rh1-P1 2.2776(9) Å) and the nitrogen of one 

pyridine ligand (Rh1-N1 2.151(3) Å) in the apical positions. The equatorial plane is occupied by 

the two chlorides (Rh1-Cl1 2.3528(8) Å and Rh1-Cl2 2.5673(6) Å) mutually cis, a second 

pyridine molecule (Rh1-N2 2.084(2) Å) and the carbon atom of the acyl-phosphine ligand (Rh1-

C1 1.993(2) Å). The Rh-Cl and Rh-N distances evidence the acyl > phosphine > chloride ≈ 

pyridine trans influence order of the ligands.47 
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Figure 42. Molecular structure of compound cis-Cl-23b. Displacement ellipsoids are drawn at 50% 

probability level. Selected bond lengths (Å) and angles (º): Rh1–Cl1, 2.3528(8); Rh1–Cl2, 2.5673(6); Rh1–

N1, 2.151(3); Rh1–N2, 2.084(2); Rh1–P1, 2.2776(9); Rh1–C1, 1.993(2); C1–O1, 1.195(4); Cl1–Rh1–N2, 

177.37(6); P1–Rh1–N1, 170.42(6); C1–Rh1–Cl2, 175.76(8). 

Reaction of the mixture of isomers of complex 22 with an additional molecule of the acyl-

phosphine PPh2CH(Ph)CH2CHO in dichloromethane leads to the formation of compound 

[RhClH(PPh2CH(Ph)CH2CO)(PPh2CH(Ph)CH2CHO)(py)] (24) by displacement of one pyridine 

ligand. The second phosphine coordinates as P-monodentate and maintains a pendant 

aldehyde group, which neither undergoes insertion into the Rh-H bond nor promotes a second 

oxidative addition. Complex 24 can also be reached by direct reaction of [Rh(cod)Cl]2 with the 

racemic phosphine PPh2CH(Ph)CH2CHO and pyridine in a Rh:P:py = 1:2:1 ratio in 

dichloromethane at room temperature (Scheme 61), which affords a mixture of two isomers in 

a 24a/24a’ = 80:20 mixture.  

 

Scheme 61. Formation of 24 from [Rh(cod)Cl]2 or from compound 22. 
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Formation of 24 is supported by ESI-MS, which shows a molecular ion at m/z = 739.14 

corresponding to the [M - py - Cl]+ ion [RhH(PPh2CH(Ph)CH2CO)(PPh2CH(Ph)CH2CHO)]+. The 

31P{1H} NMR spectrum shows an AMX spin system with two doublets of doublets for each 

isomer, which confirm the coordination of the two phosphine ligands. Each phosphine couples 

with the rhodium centre and with the other phosphorus atom. Resonances in the 80.5-79.5 

ppm range correspond to the chelating acyl-phosphine, and signals in a lower range of 55.0-

52.0 ppm are due to the P-monodentate phosphine. The JP-P coupling constants (360 and 370 

Hz) are characteristic of two phosphorus atoms mutually trans. The 13C{1H} NMR spectrum also 

shows the expected two doublets at 242.5 and 242.6 ppm (JRh-C = 32-30 Hz) corresponding to 

the coordinated acyl groups in the chelating ligand.  

In the 1H NMR spectrum, doublet signals corresponding to the free aldehyde HC=O group can 

also be observed at 9.54 (24a) and 9.43 ppm (24a’), with JP-H coupling constants of 5 and 3 Hz. 

A 2D HSQC experiment correlates these signals with doublets at 203 and 202 ppm in the 

13C{1H} NMR spectrum, with JP-C constants of 21 and 11 Hz respectively. Two hydride signals at -

14.75 and -15.02 ppm, corresponding respectively to the two isomeric species 24a and 24a’ in 

solution are also observed. The chemical shift values for hydride ligands suggest an 

electronegative atom in a trans position. The two isomeric species could therefore be 

geometric, due to exchange of the chloride and nitrogen relative position trans to hydride, or 

they could be diastereomers. A related complex derived from o-

(diphenylphosphino)benzaldehyde with coordinated pyrazole was reported as only one 

isomer, with the chloride ligand trans to the acyl moiety and the N-donor ligand trans to the 

hydride.48 Similarities with this compound and spectroscopic data enables us to propose 

compound 24 as a mixture of two diastereomers of the species shown in Scheme 61, with the 

hydride trans to pyridine and the two phosphine ligands mutually trans.  

A remarkable diastereoselectivity is thus observed in the formation of complex 24, containing 

three stereogenic centres, which leads to only two diastereomers in an 80:20 ratio.   

Consecutive reductive elimination and oxidative addition steps of the phosphine-aldehyde may 

allow the transformation of 24a’ into 24a to reach the final proportion of the mixture. At 

variance with phosphino-arylaldehyde examples I-22 and I-25 mentioned in the introduction of 

this chapter,27-28 the formation of a hydroxyalkyl species by insertion of the pendant aldehyde 

into the Rh-H appears to be inhibited. This behaviour was previously observed in the reaction 

of (CO)5MnH with alkylaldehyde PPh2CH2CH2CHO, in which the phosphine ligand remains κ1-P-

coordinated without the formation of a five-membered metallacycle.35 
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The reaction of the hydrido complex 22 with an arylaldehyde was then performed, with the 

aim of preparing a hydroxyalkyl derivative. However, treatment of complex 22 with an 

equivalent of PPh2(o-C6H4CHO) in dichloromethane affords compound [RhClH(PPh2(o-

C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))(py)] (25), in which the insertion into the Rh-H bond neither 

occurs. Instead, an exchange between the alkylacyl and the arylaldehyde occurs (Scheme 62). 

The reductive elimination of the alkyl aldehyde and subsequent oxidative addition of the aryl 

aldehyde C-H to the Rh(I) centre would lead to the formation of 25, with displacement of one 

pyridine ligand. Alternatively, the C-H activation of PPh2(o-C6H4CHO) by oxidative addition or σ-

bond metathesis promoted by rhodium(III) can precede the reductive elimination of the alkyl-

aldehyde.49 The lower steric hindrance in the metallacycle formed by arylic phosphines would 

explain the preferred oxidative addition of o-(diphenylphosphino)benzaldehyde.50 Product 25 

can also be formed by reaction of complex [RhH(PPh2(o-C6H4CO))Cl(py)2]
27 (I-20) with one 

equivalent of alkyl phosphine PPh2CH(Ph)CH2CHO, which displaces a pyridine ligand (Scheme 

62). 

 

Scheme 62. Formation of 25 from compounds 22 or [RhH(PPh2(o-C6H4CO))Cl(py)2], in dichloromethane 

at room temperature. 

The ESI-MS spectroscopy of 25 shows a molecular ion at m/z = 711.11, which is in accordance 

with the [M - py - Cl]+ ion, [RhH(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))]+. The 1H NMR 

spectrum shows the presence of two isomers in an equimolar amount, with two hydride 

signals at -14.70 and -15.06 ppm as doublet of doublets of doublets (ddd), due to coupling to 

the rhodium centre and to the two coordinated phosphorus atoms. Two doublet signals at 

9.44 and 9.56 ppm corresponding to the pendant aldehyde fragment are also observed, which 
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correlate to doublets at 202.0 and 203.0 ppm in the 13C{1H} NMR in a 2D HSQC experiment. In 

the 31P{1H} NMR spectrum, two doublet of doublets are observed for each isomer. The 

chelating aryl phosphine shows signals in the 63.5-63.0 ppm range while, as in 24, the P-

monodentate alkyl phosphine shows signals in the 55.0-52.0 ppm range. The JP-P coupling 

constants of 360 and 370 Hz agree with two phosphorus atoms in a trans disposition. A 

mixture of two diastereomeric species 25a and 25a’ is therefore proposed, based on 

similarities with compound 24 and on spectroscopic data.  

DFT calculations are in agreement with our proposal of 25 as shown in Scheme 62. 

Nevertheless, according to theoretical calculations a diastereomeric 25a/25a’ = 89:11 ratio is 

to be expected, with the major species 25a corresponding to the CRhSC and ARhRC diastereomer. 

Our experimental 25a/25a’ = 50:50 ratio represents most likely a kinetic product that requires 

an isomerisation from 25a’ to 25a to reach the estimated proportions, which could entail the 

reductive elimination of the arylaldehyde. The existence of kinetic barriers that hamper the 

transformation could explain the observed behaviour. The difference in diastereomeric ratios 

observed for 24 (80:20) and 25 (50:50) suggests a lower activation barrier for the 

diastereoisomerisation reaction to take place when involving alkylaldehydes (24) than when 

involving arylaldehydes (25). 

II. 2.2.1b. Synthesis and characterization of cationic acylhydridorhodium(III) complexes with 

NN bidentate or PNN-terdentate ligands. 

The reaction of compound 25 with aromatic diimines such as 1,10-phenantroline (phen) and 

2,2’-bipyridine (bipy) afforded acylhydride cationic compounds in which N-donor ligands are 

coordinated in a bidentate fashion, by displacement of chloride and pyridine. These 

compounds were isolated in methanol as tetraphenylborate salts [RhH(NN)(PPh2(o-

C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))]BPh4 (NN = phen, 26; bipy, 27) (Scheme 63), in which the 

two posphine ligands maintain a trans position. Spectroscopic data show the presence of two 

isomeric species in solution for 26 and 27 in a 50:50 and a 60:40 ratio respectively. As there are 

no possible geometric isomers with two phosphines mutually trans, these species can only be 

diastereomers. This confirms the proposal of complex 25 as a mixture of two diastereomeric 

species of a unique geometric isomer.  
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Scheme 63. Formation of compounds [RhH(NN)(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))]BPh4 26 (NN 

= phen) and 27 (NN = bipy). 

Isolation of these compounds with tetraphenylborate as a counter anion allowed the 

separation of diastereomers due to their difference of solubility in chloroform. From the 

26/26a’ equimolar mixture, 26a’ was isolated by precipitation, while 26a remained in solution 

(Figure 44). Characterisation of the isomer 26a’ was carried out in dimethylsulfoxide. The 1H 

NMR spectra showed signals corresponding to the pendant aldehyde and hydride at 9.56 and -

12.85 ppm for species 26a, and at 9.50 and -13.25 ppm for isomer 26a’. From the solution of 

27a/27a’ = 60:40 in chloroform, the precipitation of an equimolar mixture enabled the 

isolation of pure isomer 27a in a low yield in the remaining solution. The 1H NMR spectrum of 

27a showed a doublet for the pendant aldehyde at 9.52 ppm and a hydride signal at -13.21 

ppm. For isomer 27a’, the aldehyde shows a doublet at 9.47 ppm and the hydride appears at -

13.53 ppm. 

 

Figure 44. 1H (left) and 31P{1H} (right) NMR of isolated complex 26a in CDCl3. 

The 31P{1H} NMR spectra of compounds 26 and 27 shows a set of two doublet of doublets, with 

signals corresponding to the chelating acylphosphine in the 64-66 ppm range and in the 51-54 
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ppm range for the monodentate alkylphosphine. The JP-P coupling constants of 320-330 Hz 

confirm the trans position of the two phosphine ligands in the molecule.   

Single crystals of 26a suitable for X-ray diffraction were isolated from a chloroform solution of 

26. This complex crystallises as a mixture of CRhRC and ARhSC enantiomers. The structure of 26a 

in the solid state (Figure 45) consists of a Rh(III) centre in a pseudo-octahedral geometry. The 

two phosphorus atoms occupy the apical positions trans to each other, with a P1–Rh1–P2 

angle of 168.40(3)°. The Rh1–P1 bond distance (2.2721(8) Å) is shorter than the Rh1–P2 bond 

distance (2.3592(9) Å) due to P1 being part of a five-membered chelate, while P2 belongs to a 

monodentate phosphine.36,48 The equatorial plane includes the two nitrogen atoms of the 

phenantroline ligand trans to the hydride and the coordinated acyl moiety in the aryl-

phosphine. The longer Rh1-N1 bond distance (2.193(3) Å) than the Rh1–N2 bond distance 

(2.157(3) Å) evidences a slightly larger trans effect of the acyl group than that of the hydride. 

The C20–O2 bond distance (1.199(6) Å) in the pendant aldehyde is slightly shorter than the 

C1–O1 bond distance of the acyl moiety bonded to the rhodium centre (1.235(4) Å), which may 

be due to the π-acceptor ability of the coordinated acyl group. 

 

Figure 45. Molecular structure of the cationic unit of compound 26a. Displacement ellipsoids are drawn 

at 50% probability level. Selected bond lengths (Å) and angles (º): Rh1–H1, 1.22(6); Rh1–C1, 1.993(4); 

Rh1–N1, 2.193(3); Rh1–N2, 2.157(3); Rh1–P1, 2.2721(8); Rh1–P2, 2.3592(9); C1–O1, 1.235(4); C20–O2, 

1.199(6); P1–Rh1–P2, 168.40(3); C1–Rh1–N1, 169.6(1); N2–Rh1–H1, 179(2). 

Reaction of compound 25 with bidentate aromatic and aliphatic amino-imines such as 8-

aminoquinoline (aqui) and 2-aminomethylpyridine (ampy) yielded imination products by 

condensation of the free aldehyde and amine groups. Condensation reactions led to the 

formation of terdentate PNN hemilabile ligands that generate a six-membered metallacycle by 
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displacement of chloride and pyridine (Scheme 64). The resulting cationic compounds were 

isolated as tetrafluoroborate salts [RhH(PPh2(o-C6H4CO))(PNN)]BF4 (PNN = κ3-

PPh2(CH(Ph)CH2CNC9H6N, 28; κ3-PPh2(CH(Ph)CH2CNCH2C5H4N, 29).  

 

Scheme 64. Formation of compounds [RhH(PPh2(o-C6H4CO))(PNN)]BF4 28 (NNH2 = aqui) and 29 (NNH2 = 

ampy) in dichloromethane. 

Final products are a mixture of two diastereomers in a 28a/28a’ = 55:45 and 29a/29a’ = 60:40 

ratio. Attempts to separate these isomeric species proved to be unsuccessful. The 1H NMR 

spectra (Figure 46) of these compounds show two hydride signals as doublet of doublets of 

doublets (ddd) due to coupling to rhodium and to both phosphorus atoms in each phosphine 

ligand. Singlet signals observed in the 8.7-9.4 ppm range correspond to the newly formed 

imine HC=N group. 2D HSQC experiments correlate these singlets to signals in the 173-177 

ppm range in the 13C{1H} NMR spectra. Coordinated acyl groups show doublet signals in the 

239-242 ppm range in the 13C{1H} NMR, with a JRh-C coupling constant of 30 Hz. The 31P{1H} 

NMR spectra (Figure 46) show resonances in the 56-62 ppm range corresponding to the 

chelating acyl phosphine, while the phosphorus atom in the PNN ligand shows signals at lower 

frequency, varying from 55 to 45 ppm.  
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Figure 46. 
1H (top) and 31P{1H} (bottom) NMR of the mixture of 28a and 28a’ in CDCl3. 

Isolation of single crystals of 28a allowed the characterisation of this compound by X-ray 

diffraction (Figure 47). The crystals contain a mixture of ARhSC and CRhRC enantiomers. The solid 

state structure shows the rhodium(III) centre in a distorted octahedron, where the terdentate 

PNN ligand adopts a facial disposition, with the formation of a six-membered metallacycle. The 

P2 phosphorus atom of the hemilabile PNN ligand and the P1 atom of the arylphosphine are 

located mutually trans in the apical positions, with a P1–Rh1–P2 angle of 164.13(5)°. The P1-

Rh1 bond distance of 2.2802(12) Å is shorter than the P2–Rh1 bond distance (2.3213(12) Å), 

which could be due to P1 being part of a five-membered metallacycle.25 The acyl group trans 

to the nitrogen N1 atom of the new C=N imino moiety, and the hydride ligand trans to the 

heterocyclic N2 atom form the equatorial plane. The formation of the imine is confirmed by 
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the N1–C20 bond distance of 1.294(6) Å and the N1–C20–C21 angle of 120.3(4)°. Both Rh-N 

distances are equal, indicating a similar trans influence for the hydride and the acyl fragment 

in the arylphosphine. A similar structure was reported for a complex derived from o-

(diphenylphosphino)benzaldehyde and 8-aminoquinoline,24 mentioned in the introduction of 

this chapter (I-16), in which the terdentate PNN ligand was generated by condensation of the 

aldehyde group in PPh2(o-C6H4CHO) with the amino-imine. 

 

Figure 47. Molecular structure of the cationic unit of compound 28a. Displacement ellipsoids are drawn 

at 50% probability level. Selected bond lengths (Å) and angles (º): Rh1–H1, 1.4392; Rh1–C1, 2.006(4); 

Rh1–N1, 2.163(4); Rh1–N2, 2.166(4); Rh1–P1, 2.2802(12); Rh1–P2, 2.3213(12); C1–O1, 1.201(5); C20–

N1, 1.294(6); P1–Rh1–P2, 164.13(5); C1–Rh1–N1, 172.05(16); N2–Rh1–H1, 175.8; N1–C20–C21, 

120.3(4). 

A previous publication described the reaction of a complex related to 25, derived from o-

(diphenylphosphino)benzaldehyde, and 2-aminomethylpyridine leading to a complex related 

to 29 but containing a stable hemiaminal -CH(OH)NH- fragment. Hemiaminals are 

intermediates in the imination reactions that usually loose water readily to afford the imine.51 

However, this result is not repeated in the presence of the alkyl-phosphine 

PPh2(CH(Ph)CH2CHO, where the condensation reaction leads to the final imine product 29. The 

higher flexibility of the aliphatic chain in the present phosphine could explain this behaviour, as 

it would facilitate the final step in the condensation between the pendant aldehyde and the 

amine groups.  
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II.2.2.2. Reactivity with [Rh(nbd)Cl]2. Alkyl(phosphinoacyl)- and 

alkyl(phosphinoester)- rhodium(III) complexes 

As previously reported for o-(diphenylphosphino)benzaldehyde,26-28 the results discussed in 

this chapter showed that the oxidative addition of PPh2CH(Ph)CH2CHO to neutral [Rh(cod)Cl]2 

complex also led to the displacement of the cyclooctadiene. The reaction of tethered 

aldehydes with (norbornadiene)rhodium derivatives, on the other hand, can yield σ-

norbornenyl or nortricyclyl derivatives by oxidative addition of the aldehyde, followed by the 

insertion of the olefin into the Rh-H bond.30-32 Treatment of complex [Rh(nbd)Cl]2 with alkyl-

phosphine PPh2CH(Ph)CH2CHO led to the same outcome. Subsequent addition of N-donor 

diimines such as 1,10-phenantroline and 2,2’-bipyridine, in dichloromethane at room 

temperature, yielded σ-norticyclyl derivatives [RhCl(NN)(ntyl)(PPh2CH(Ph)CH2CO)] (NN = phen, 

30; bipy, 31) (Scheme 65). The σ-nortricyclyl ligand is formed by a ring closure reaction from 

the σ-norbornenyl species.  

 

Scheme 65. Formation of compounds [RhCl(NN)(ntyl)(PPh2CH(Ph)CH2CO)] (NN = phen, 30; bipy, 31). 

Spectroscopic NMR data of 30 and 31 in solution show two isomers in a 75:25 mixture. We 

propose the presence of two diastereomers of a single geometric isomer, with a preference for 

one particular species. In reported complexes synthesised from the reaction of [Rh(nbd)Cl]2 

with o-(diphenylphosphino)benzaldehyde,30 (I-29 and I-30) a single geometric isomer is also 

described. Computational DFT calculations confirm the proposal in Scheme 65, but reveal a 

complete selectivity for one diastereomer. Our experimental results show a kinetic ratio and 

lack of isomerisation to obtain the thermodynamic ratio. 

In the 31P{1H} NMR spectra two doublets can be observed at 77.2 and 80.9 ppm for 30a and 

30a’, and at 78.9 and 80.6 ppm for 31a and 31a’ respectively. 1H NMR spectra confirm the 

presence of the coordinated σ-nortricyclyl with a group of signals in the 1.77 to -1.17 ppm 

range. These include multiplets at 1.10 and 1.25 ppm corresponding to the proton of the 

carbon atom coordinated to the rhodium centre, which correlate with doublets at 39.0 and 
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40.0 ppm respectively in the 13C{1H} NMR spectra. Multiplets from 0.3 to -1.2 ppm correspond 

to the cyclopropyl moiety in the ligand. The coordinated acyl group shows resonances in the 

244-247 ppm range in the 13C{1H} NMR spectrum. Figure 48 shows the 1H and 31P{1H} NMR 

spectra of compound 30. 

 

Figure 48. 1H (left) and 31P{1H} (right) NMR of the mixture of 30a and 30a’ in CDCl3. 

Compound 31 was also characterised by X-ray diffraction analysis (Figure 49). Isolated single 

crystals correspond to diastereomer 31a, and are formed by the pair of ARhSC and CRhRC 

enantiomers, predicted as the most stable by DFT calculations. The structure in the solid state 

is in good agreement with the structure deduced from spectroscopic data in solution. The 

rhodium(III) centre is in a pseudo octahedron, in which axial positions are occupied by the 

phosphorus atom and one of the nitrogen atoms of the bypiridine ligand, with a P1–Rh–N1 

angle of 179.06(9)°. The equatorial plane is formed by nortricyclyl trans to the chloride ligand, 

and the acyl moiety of the phosphine trans to the other N atom of the bipyridine. The larger 

trans influence of the acyl group is again evidenced in the slightly larger Rh–N2 distance 

(2.193(3) Å) compared to the Rh–N1 bond distance (2.146(3) Å), which is located trans to 

phosphorus. The Rh1–C1(nortricyclyl) bond distance (2.103(5) Å) is significantly longer than 

the distance observed for the Rh1–C8(acyl) distance (1.997(4) Å). This could be due to the 

different hybridization of C1(sp3) and C8(sp2) carbon atoms, and to C8 being part of a five-

membered metallacycle. All carbon-carbon distances in the nortricyclyl moiety agree with 

single bond distances. 
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Figure 49. Molecular structure of compound 31a. Displacement ellipsoids are drawn at 50% probability 

level. Selected bond lengths (Å) and angles (°): Rh1–P1, 2.270(1); Rh1−Cl1, 2.520(1); Rh1–C1, 2.103(5); 

Rh1–N1, 2.146(3); Rh1–N2, 2.193(3); Rh1–C8, 1.997(4); C8−O1, 1.218(5); C1−C2, 1.538(6); C2−C3, 

1.515(7); C2−C4, 1.518(7); C3−C4, 1.506(8); C4−C5, 1.518(8); C1−Rh1−P1, 90.5(1); C8−Rh1−C1, 97.4(1); 

C8−Rh1−N1, 98.4(1); C1−Rh1−N1, 90.4(1); N1−Rh1−N2, 76.0(1); C8−Rh1−N2, 174.0(1); C1−Rh1−Cl1, 

172.4(1); P1-Rh-N1, 179.06(9). 

The reaction of the (norbornadiene)rhodium(I) dimer with the phosphine-alkylaldehyde and 

other tethered aldehydes was also attempted. Treatment of [Rh(nbd)Cl]2 with two equivalents 

of PPh2CH(Ph)CH2CHO and 8-quinolinecarboxaldehyde in methanol led to the formation of the 

neutral compound [RhCl(ntyl)(C9H6NCO)(k2-PPh2CH(Ph)CH2CO(OCH3)] (32), as a single 

diastereomer. In this complex, the quinoline ligand forms a five-membered metallacycle by 

aldehyde C-H oxidative addition to the rhodium centre. The insertion of norbornadiene into 

the Rh-H bond and subsequent rearrangement leads to the σ-nortricyclyl species. Interestingly, 

the phosphine coordinates as a chelate via the phosphorus and oxygen atoms by formation of 

an ester (Scheme 66). When the reaction was performed in an aprotic solvent such as 

dichloromethane, a complex product mixture was obtained.  

 

Scheme 66. Formation of compound [Rh(Cl)(ntyl)(C9H6NCO)(k2-PPh2CH(Ph)CH2CO(OCH3)] (32). 
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The formation of 32 was monitored by 31P{1H} NMR in CD3OD (Figure 50). Dissolution of 

PPh2CH(Ph)CH2CHO in methanol promotes the transformation into the hemiacetal species, 

with the generation of two diastereomers by formation of a second chiral carbon (Scheme 67). 

This behaviour was also observed in reported examples with phosphino-aldehyde 

PPh2CH(Ph)CH(Me)CHO in methanol solution.36 

 

Scheme 67. Hemiacetal formation in a methanol solution of PPh2CH(Ph)CH2CHO. 

Upon addition of [Rh(nbd)Cl]2 to the mixture, the phosphine-hemiacetal coordinates to the 

rhodium centre to give a mixture of two isomers of an intermediate 

[RhCl(nbd)(PPh2(CH(Ph)CH2CH(OMe)(OH))], which exhibit doublet signals at 37.1 (JRh,P = 173 Hz) 

and at 35.7 ppm (JRh,P = 173 Hz) in the 31P{1H} NMR spectrum. Evidences of a metallacycle 

formation by oxidative addition of the phosphine are not observed. When 8-

quinolinecarboxaldehyde is added, it coordinates to rhodium by chelate-assisted oxidative 

addition, with the subsequent Rh-H insertion and rearrangement of the olefin to yield the σ-

nortricyclyl ligand. Dehydrogenation of the hemiacetal to form the ester fragment allows the 

coordination of the oxygen atom to form a six-membered metallacycle. Dehydrogenation of 

hemiacetals to give ester derivatives is proposed as an intermediate step in the transition 

metal catalysed esterification of alcohols.52 Hydrogen gas is released in these transformations, 

which in some cases is accepted by a sacrificial molecule. The high yield (91%) obtained for 32 

implies this to be an acceptorless dehydrogenation.  

As shown in Figure 50, 32 is originally formed as a mixture of two diastereomers that evolves 

into a single species. The transformation of one isomeric species to another may occur through 

a pentacoordinated intermediate formed by opening of the ester-phosphine chelate. Metal 

inversion in five-coordinated complexes has been reported.53 



 

Figure 50. Monitoring of the formation of 

The 31P{1H} NMR spectrum of 

184 Hz. Coordination of the nortricyclyl ligand can be observed by 

multiplet signals from 2.11 to 

carbon atom coordinated to the 

ppm (JRh-C = 28 Hz) in the 13C{

the 1H NMR spectrum correspond to the cyclopropyl fragment. The meth

moiety shows a signal at 4.01 ppm, which correlates to a singlet signal at 53.6 ppm in the 

13C{1H} NMR. The acyl group in the ester fragment shows a singlet at 180.2 ppm, whereas the 

coordinated acyl on the quinoline can be observed at 222.9 ppm in the 

with a JRh-C coupling constant of 39 Hz. The ESI

700.15, in accordance with the [M 

Compound 32 was also characterised by X

ARhSC and CRhRC enantiomers, with the phenyl group of the chiral carbon atom furthest away 

from the nortricyclyl ligand, as expected on DFT calculations. The structure of 

state is in good agreement with the 

geometry adopted around the rhodium(III) centre is pseudo

atom trans to the nitrogen in the quinoline ligand with a N1

equatorial plane is formed by the chloride 

in the quinoline trans to the coordinated oxygen in the newly formed ester fragment. The 

Monitoring of the formation of 32 by 31P{1H} NMR in CD3OD.

of 32 shows a doublet at 52.4 ppm, with a JRh-P coupling

184 Hz. Coordination of the nortricyclyl ligand can be observed by 1H NMR

multiplet signals from 2.11 to -0.49 ppm. The resonance at 1.05 ppm corresponds to the 

carbon atom coordinated to the rhodium centre, which correlates to a doublet signal at 

{1H} NMR spectrum, and multiplets at -0.49, 0.06 and 0.35 ppm 

correspond to the cyclopropyl fragment. The methyl group in the ester 
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coupling constant of 39 Hz. The ESI-MS of 32 shows a a molecular ion at 
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was also characterised by X-ray diffraction. Single crystals consist of a mixture of 

, with the phenyl group of the chiral carbon atom furthest away 

from the nortricyclyl ligand, as expected on DFT calculations. The structure of 

state is in good agreement with the one proposed from spectroscopic data (Figure 51). The 

geometry adopted around the rhodium(III) centre is pseudo-octahedral, with the phosphorus 

to the nitrogen in the quinoline ligand with a N1–Rh1–P1 angle of

formed by the chloride trans to the nortricyclyl moiety, and the acyl group 
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solid-state structure confirms the bidentate coordination of the phosphino-ester ligand to the 

metal through the phosphorus atom and the oxygen of the carbonyl group. This coordination 

leads to a six-membered metallacycle in a distorted chair conformation, whereas the five-

membered ring formed by the quinoline adopts a quasi-planar geometry. The carbonyl 

moieties in both chelating ligands show equal bond distances (C8–O1 1.219(3) Å and C38–O2 

1.224(3) Å). All carbon-carbon distances in the nortricyclyl ligand are equal and agree with 

single bond distances. 

 

Figure 51. Molecular structure of compound 32 (50% probability ellipsoids). Selected bond lengths (Å) 

and angles (º): Rh1–Cl1, 2.5371(6); Rh–C1, 2.105(2); Rh–C8, 1.941(2); Rh–N1, 2.105(2); Rh–O2, 2.365(2); 

Rh–P1, 2.2929(7); C8–O1, 1.219(3); C38–O2, 1.224(3); C38–O3, 1.334(3); C1−C2, 1.527(63); C2−C3, 

1.519(3); C2−C4, 1.518(4); C3−C4, 1.521(4); C4−C5, 1.516(4); C5−C6, 1.545(4); C6−C7, 1.536(3); Cl1–Rh1–

C1, 173.96(6); C8–Rh1–O2, 173.59(7); N1–Rh1–P1, 178.63(6). 
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II.2.3. THE REACTION OF [Rh(nbd)Cl]2 WITH 8-

QUINOLINECARBOXALDEHYDE AND PYRAZOLE. REACTIVITY AND 

CATALYTIC APPLICATIONS. 

In the previous section we have described the C-H activation of the alkylaldehyde in 

PPh2CH(Ph)CH2CHO by diolefinic rhodium complexes that leads to the chelate-assisted 

formation of hydrido- or alkyl-acyl rhodium(III) derivatives. We have also observed that the C-

H activation of potentially chelating arylaldehydes such as PPh2(o-C6H4CHO) or C9H6CHO is 

competitive with that of the alkylaldehyde, so that the C-H activation of the former is usually 

preferred. 

It is known that the reaction of [Ir(cod)Cl]2 with PPh2(o-C6H4CHO) allows the formation of the 

acyl-hydride-diolefin iridium(III) chelate complex [IrClH(κ2-PPh2(o-C6H4CO))(cod)] (I-10).12 The 

addition of a second molecule of the phosphine PPh2(o-C6H4CHO) to this complex in a polar 

solvent leads to the displacement of the diolefin, to afford the hydridoirida-β-diketone 

derivative [IrClH((κ2-PPh2(o-C6H4CO))2H)] (I-38).54 A mixed [IrClH((κ2-PPh2(o-C6H4CO))(κ2-

C9H6NCO)H)] (I-39) species has also been prepared by reaction of I-10 with the quinoline 

C9H6NCHO (Scheme 68).55  

 

Scheme 68.  Formation of hydridoirida-β-diketone complexes with PPh2(o-C6H4CHO) and C9H6NCHO 

chelating aldehydes. 

Metalla-β-diketones are species that contain an acyl and a hydroxycarbene group, which are 

stabilised by the presence of a strong intramolecular O⋯H⋯O hydrogen bond. They were first 

synthesised by Lukehart et al. by protonation of diacylmetalate anions [LxM(COR)(COR’)]− (M = 

Mo, W, Mn, Re, Fe, Os).56 It has been proposed that the formation of the hydridoirida-β-
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diketone species I-38-39 would be preceded by chelate-assisted oxidative addition of aldehyde 

leading to a cationic diacyl-dihydride iridium(V) [Ir(H)2(κ
2-PPh2(o-C6H4CO))2]Cl intermediate, 

which would undergo Ir-to-O hydrogen transfer to generate the final product.54,55 

The reaction of neutral complex I-38 with KOH in refluxing methanol leads to a new 

dihydridoirida-β-diketone [IrH2((κ
2-PPh2(o-C6H4CO))2H)] (I-40) by formal exchange of chloride 

by hydride (Scheme 69).57 Dehydrodechlorination of I-38 by base to afford a pentacoordinated 

Ir(III) intermediate that would allow the coordination of methoxide is proposed in the 

formation of this compound. Subsequent β-H transfer would give a dihydride, with liberation 

of formaldehyde, and protonation of the diacyl fragment could lead to the β-diketone I-40 

species.58 Treatment of I-40 with HCl gas affords the I-38 starting product. 

 

Scheme 69.  Formation of neutral dihydridoirida-β-diketone. 

Hydridoirida-β-diketone species proved to be efficient homogeneous catalysts for the 

hydrolysis of amine- or ammonia-boranes to release hydrogen gas, at room temperature, in 

the presence of air and in THF-H2O mixtures, according to scheme 70.59 Complex I-38 was 

reported as the first metal-based homogeneous catalyst for this reaction.  

 

Scheme 70.  Hydrolysis reaction of amine-boranes to generate hydrogen gas. 

The search for a clean and available source of energy as an alternative for fossil fuels 

encourages the study of these reactions. Hydrogen is considered a feasible emission-free 

alternative. However, safe handling and storage of hydrogen gas are still unsolved problems.60 

Hydrogen storage materials, such as amine-boranes, allow a controlled evolution of hydrogen 

gas through a chemical reaction and can be used as a hydrogen source for portable cells.61 A 

large number of heterogeneous systems are known to efficiently catalyse the hydrogen release 

from amine-borane substrates, in anhydrous systems and by hydrolysis.62,63 In contrast, 

homogeneous systems for the hydrolysis reaction have been less studied, and examples are 
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scarce. A few efficient catalysts based on iridium64,65 or ruthenium66-68 have been reported. 

Efficient rhodium-based homogeneous catalytic systems have also been recently developed in 

our laboratory.69,70 These rhodium catalysts present a common feature with hydridoirida-β-

diketones. They consist of hydrido-acyl rhodium(III) complexes with ligands capable of 

intramolecular hydrogen bond interactions, such as diphenylphosphinous acid (O-H···O) or 

pyrazoles (N-H···O).  

Secondary phosphine oxides (SPOs), such as PPh2(O)H, are capable of intra- and intermolecular 

hydrogen bond interactions when they are κ1-P-coordinated to a metal centre. These ligands 

exist as two tautomeric isomers in equilibrium, the pentavalent oxide form RR’P(O)H, and the 

phosphinous acid form RR’P-OH (Scheme 71).71 Aromatic and aliphatic R substituents favour 

the pentavalent form, which is not capable of P-coordination. However, transition metals 

promote tautomerisation and stabilise the trivalent form by P-coordination (Scheme 71).72 

 

Scheme 71. Tautomerisation of diphenylphosphine oxide and stabilisation by coordination of the 

trivalent form.  

The coordination of SPO ligands to transition metals enables the formation of [LnM((R2PO)2H)] 

complexes, in which one of the SPO fragments is deprotonated. In these complexes, a strong 

R2PO−H⋯OPR2 intramolecular hydrogen bond between the cis located diphenylphosphinite 

and hydroxydiphenylphosphine ligands leads to a quasi-six-membered chelate (Scheme 72).73 

In reported examples of acetyl-diphenylphosphinous platinum complexes, the formation of an 

intramolecular hydrogen bond between the acyl and the phosphinous acid moieties is 

observed.74 Intermolecular O−H⋯Cl or O−H⋯O hydrogen interactions have also been 

described in platinum [Pt(C≡C-tBu)((PPh2O)2H)(PPh2OH)] complexes to form infinite one-

dimensional chains.75  

 

Scheme 72. Canonical forms of the hydrogen bond between diphenylphosphinite and 

hydroxydiphenylphosphine coordinated ligands.  
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The reaction of diphenylphosphine oxide PPh2(O)H with acyl-hydride rhodium(III) complexes 

derived from o-(diphenylphosphino)benzaldehyde affords neutral (acyl-diphenylphosphinous 

acid)rhodium(III) [RhClH((PPh2(o-C6H4CO))(PPh2O)H)(L)] (I-41) (L = N-donor ligand) derivatives 

containing intramolecular O⋯H⋯O hydrogen bonds between the oxygen atoms in the 

diphenylphosphinous acid and the acyl moieties (Scheme 73).69 The presence of these 

hydrogen interactions generates a new PCP pincer ligand with trans phosphorus atoms. The 

reaction of neutral I-41 complexes with N-donor bidentate ligands leads to the displacement of 

the chloride and N-ligands, to give cationic [RhH((PPh2(o-C6H4CO))(PPh2O)H)(LL)]+ (I-42) 

compounds (Scheme 73). 

 

Scheme 73.  Formation of neutral and cationic [(acyl)(diphenylphosphinous acid)]-rhodium(III) 

complexes with a O···H⋯O hydrogen bond. 

Pyrazoles (Hpz), with the formula C3HR3N2, have planar five-membered heterocyclic structures 

with two adjacent nitrogen atoms. A pyridine-type nitrogen has a non-bonding electron pair, 

and is able to coordinate to a metal centre. This lone electron pair confers weak base and 

nucleophilic properties to the ligand. The adjacent N-H group has a rather acidic character.76 

The acid-base functionality of pyrazoles promotes the formation of both inter- and 

intramolecular hydrogen bonding between the N-H moiety and another electronegative group. 

Intermolecular interactions are responsible for the formation of diverse supramolecular 

structures containing pyrazole ligands.77 Intramolecular bonds between pyrazole N-H groups 

and halide, acyl or other pyrazolate moieties in transition metal complexes are also known.78 

Pyrazoles exhibit diverse chemical and biological properties, and are found in numerous 

compounds in agricultural and pharmaceutical industries, or polymer chemistry.79 

The reaction of diolefinic [Rh(cod)Cl]2 with o-(diphenylphosphino)benzaldehyde and pyrazole 

leads to a neutral acylhydride compound [RhClH(PPh2(o-C6H4CO))(Hpz)2] (I-43) (Scheme 74). In 

these complexes, the formation of hydrogen N-H···O and N-H···Cl bonds between pyrazole and 

acyl or chloride moieties is observed.70 
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Scheme 74.  Synthesis of acylhydriderhodium(III) complex with pyrazoles containing intramolecular 

hydrogen bonds. 

Upon dissolution in chloroform compound I-43 undergoes exchange of hydride by chloride to 

afford dichlorideacyl [RhCl2(PPh2(o-C6H4CO))(Hpz)2] (I-44) complex, which also exhibits 

intramolecular hydrogen bonds between pyrazole and chloride ligands (Scheme 75). In this 

case, N-H···Cl hydrogen bonding is preferred to N-H···O involving the oxygen atom of the acyl 

group. Treatment of I-43 with diphenylphosphine oxide PPh2(O)H leads to the formation of 

[RhHCl(PPh2(o-C6H4CO))((PPh2O)H)(Hpz)] (I-45) complex by displacement of one pyrazole 

molecule (Scheme 75). This compound displays a hydrogen bond between the oxygen atom of 

the diphenylphosphinous acid and the oxygen atom of the coordinated acyl group. 

 

Scheme 75.  Formation of dichloride-acylrhodium(III) I-44 and acylhydriderhodium(III) I-45 complexes. 

The high activity showed by acylrhodium(III) compounds with diphenylphosphinous acid and 

pyrazole ligands in ammonia-borane hydrolysis encouraged the study of new rhodium 

complexes containing intramolecular hydrogen interactions as catalysts for this reaction. It was 

considered interesting to prepare acylrhodium compounds by reacting norbornadiene 

derivatives with 8-quinolinecarboxaldehyde in the presence of pyrazole or PPh2(O)H, with the 
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aim of preparing various acyl chelate complexes containing N-H⋯O or N-H⋯Cl hydrogen bond 

intramolecular interactions.  

It is known that the reaction of norbornadienerhodium(I) dimer with C9H6NCHO in the 

presence of other monodentate N-donors, such as pyridine or isoquinoline, leads to the 

chelate-assisted oxidative addition of the quinoline-aldehyde followed by the insertion of the 

norbornadiene into the Rh-H bond to afford dimeric σ-norbornenyl [Rh(μ-

Cl)(C9H6NCO)(nbyl)L]2 (I-46) derivatives (Scheme 76).31 Treatment with bidentate N-donor 

ligands leads to the cleavage of the chloride bridge and allows the formation of mononuclear 

σ-norbornenyl [RhCl(C9H6NCO)(nbyl)(NN’)] (I-47) compounds (NN’ = 8-aminoquinoline, 2-

aminomethylpyridine, 2,2’-bipyridine, biacetyldihydrazone), as a mixture of two geometric 

isomers (Scheme 76). 

 

Scheme 76.  Formation of acylrhodium [Rh(μ-Cl)(C9H6NCO)(Nbyl)L]2 and [RhCl(C9H6NCO)(Nbyl)(NN’)] 

compounds. 

As mentioned above, the reaction of [Rh(nbd)Cl]2 with 8-quinolinecarboxaldehyde and 

pyrazole are described in this work. The reactivity of the obtained alkyl-acylrhodium 

derivatives with monodentate ligands such as the N-donor pyrazole or the P-donors 

triphenylphosphine and diphenylphosphine oxide was also studied. These compounds have 

been tested as catalysts for the hydrolysis of ammonia-borane in air for hydrogen generation.   

II. 2.3.1. Synthesis of alkyl-quinolineacyl-pyrazole rhodium(III) complexes 

Compound [Rh(nbd)Cl]2 reacted with 8-quinolinecarboxaldehyde and pyrazole in methanol at 

room temperature, to afford the immediate precipitation of the dimer complex 

[RhCl(C9H6NCO))(Hpz)(C7H9)]2. A major species [RhCl(C9H6NCO))(Hpz)(nbyl)]2 (nbyl = σ-

norbornenyl) (33a) is formed via a chelate-assisted C-H activation of the aldehyde, with a 

subsequent insertion of the norbornadiene into the Rh-H bond to give the norbornenyl species 

(Scheme 77). A minor species [RhCl(C9H6NCO))(Hpz)(ntyl)]2 (ntyl = σ- nortricyclyl) (33b) was 
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also observed in solution in a 33a/33b = 85:15 ratio. This species would be formed by 

rearrangement of the norbornenyl ligand, which undergoes a double bond shift with a ring 

closure to give the nortricyclyl derivative. 

 

Scheme 77. Chelate-assisted formation of a mixture of dimeric complexes 33a and 33b. 

Complex 33 was characterised in solution by NMR spectroscopy. The low solubility of this 

product mixture in several deuterated solvents led to a characterisation in dimethylsulfoxide. 

NMR spectra showed compound 33a as the main species in solution (Figure 52). A singlet 

signal at 14.12 ppm in the 1H NMR corresponds to the N-H group in the pyrazole ligand. The 

low field position of this signal can be attributed to the presence of an intramolecular N-H⋯O 

hydrogen bond between the nitrogen in the pyrazole and the oxygen atom of the coordinated 

acyl group. The pyrazole CH groups exhibit three sharp signals at 8.47, 8.13 and 6.55 ppm, 

indicating the absence of metallotropic tautomerization with the pyrazole firmly bonded to the 

rhodium centre.80 Two doublet of doublets at 5.27 and 4.13 ppm would correspond to the 

uncoordinated olefinic fragment of a norbornenyl ligand. A two-dimensional HSQC experiment 

correlates these signals with peaks at 134.2 and 133.1 ppm respectively in the 13C{1H} NMR 

spectrum. The signal corresponding to the norbornenyl CH group bonded to the rhodium atom 

appears at 3.30 ppm in the 1H NMR spectrum, which is correlated to a doublet at 36.6 ppm (JRh-

C = 28 Hz) in the 13C{1H} NMR. The coordinated acyl group in the quinoline shows a doublet in 

the 13C{1H} NMR at 232.6 ppm (JRh-C = 39 Hz).  

The presence of the minor 33b species can be observed with signals at -0.40 and 1.10 ppm that 

could correspond to the C-H moieties located in the cyclopropyl ring of the nortricyclyl. A 

singlet at 14.31 ppm corresponds to the N-H moiety in the pyrazole, which could be also 

involved in a N-H···O intramolecular interaction with the acyl group coordinated to the metal 

centre. 
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Figure 52. 
1H NMR spectrum of the mixture of 33a (red) and 33b (blue) species in DMSO-d6. 

The 1H NMR spectrum of very dilute solutions of 33 in CDCl3 also shows a mixture of 33a and 

33b. The latter is identified by the signals at -0.28 and 0.22 ppm that could correspond to the 

cyclopropyl ring. After 48h in solution, further isomerisation of the coordinated σ-norbornenyl 

into the nortricyclyl derivative is not observed. Instead, decomposition of 33 occurs. 

Isolation of single crystals from a chloroform solution allowed the determination of the 

structure of this product by X-ray diffraction. The structure in the solid state of the obtained 

crystals corresponds to the minor nortricyclyl species 33b (Figure 53).   
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Figure 53. Molecular structure of the nortricyclyl species 33b. Displacement ellipsoids are drawn at 50% 

probability level. Selected bond lengths (Å) and angles (º): Rh1–Cl1, 2.562(1); Rh1–Cl1’, 2.611(8); Rh1–

N1, 2.051(4); Rh1–N2, 2.062(4); Rh1–C10, 1.929(3); C10-O1, 1.231(4); Rh1–C14, 2.074(4); Rh1–Rh1’, 

3.860(5); N3-O1, 2.649(5); N3-H3A, 0.860; O1-H3A, 1.936; N1–Rh1–N2, 177.6(1); Cl1–Rh1–C10, 173.9(1); 

Cl1’–Rh1–C14, 171.2(1); N3-H3A-O1, 139.4.  

This compound consists of a centrosymmetric dinuclear C40H38N6O2Cl2Rh2 molecule with two 

chloride bridges between the two rhodium(III) centers. The geometry around the metal atoms 

is distorted octahedral, in which the pyrazole and quinoline ligands occupy apical positions. 

The equatorial plane is formed by bridging chloride ligands, in trans position to the η1-

coordinated nortricyclyl and acyl groups. The Rh–N bond distances are equal (Rh1–N1 2.051(4) 

Å and Rh1–N2 2.062(4) Å), but the nortricyclyl-rhodium (Rh1–C14) distance of 2.074(4) Å is 

longer than the acyl-rhodium (Rh1–C10) distance of 1.929(3) Å. As in complexes 31a and 32 

previously discussed, this can be a consequence of the different hybridization of C14 (sp3) and 

C10 (sp2), and to the latter being part of a five-membered metallacycle.81 All the carbon-carbon 

distances in the nortricyclyl group are equal, and agree with single bond distances. The Rh1-

Rh1’ distance of 3.860(5) Å excludes any metal-metal interaction. 

The pyrazole ligand forms a moderately strong intramolecular N-H···O hydrogen bond 

interaction with the oxygen atom in the acyl moiety.82 The H3A···O1 distance of 1.936 Å, the 

N3–H3A distance of 0.860 Å and the donor-acceptor N3-O1 bond distance of 2.649(5) Å are in 

agreement with the established values for a hydrogen bond.82 The small N3-H3A···O1 angle of 

139.4° is similar to the observed angles for other reported complexes with these hydrogen 

interactions involving pyrazoles.83 The dihedral angle between two planes can also be 

indicative of a hydrogen bond. The plane including the pyrazole ligand with the N-H group and 
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the plane formed by the coordinated acyl atoms C10 and O1, the metal centre Rh1 and the 

coordinated atoms N1, N2 and Cl1’ should be close to 0°, indicating that the N-H group in the 

pyrazole would be oriented towards the acyl moiety.78c The measured angle between those 

planes is 8.4°, which is consistent with the existence of an intramolecular hydrogen bond.  

The reaction of compound 33 with pyrazole in dichloromethane allowed the cleavage of the 

chloride bridge and led to the neutral complex [RhCl(C9H6NCO))(Hpz)2(nbyl)] (34). The 

formation of 34 was also possible by a chelate-assisted oxidative addition of 8-

quinolinecarboxaldehyde to [Rh(nbd)Cl]2, in the presence of two equivalents of pyrazole per 

rhodium, in dichloromethane at room temperature (Scheme 78). 

 

Scheme 78. Formation of 34 from complex 33a and from [Rh(nbd)Cl]2. 

Characterisation of compound 34 in solution was done by NMR spectroscopy. A sharp singlet 

in the 1H NMR at 14.50 ppm would indicate the presence of a N-H⋯O hydrogen bond between 

a pyrazole and the acyl moiety. The CH signals for this pyrazole are observed at 7.62, 6.28 ppm 

and 6.00 ppm. A broad signal at 12.80 ppm corresponds to the N-H group of the second 

pyrazole ligand, which could be involved in a N-H⋯Cl hydrogen bond with the cis located 

chloride. 30,78c-d Two of the CH groups of this second pyrazole ligand also appear as notably 

broad signals at 7.20 and 8.40 ppm. The broadness of the signals corresponding to the second 

pyrazole ligand suggests a metallotropic tautomerism of the pyrazole (Scheme 79). The ligand 

would exist in two identical tautomeric forms at room temperature, by fast exchange of the 

metal and the proton bonded to the nitrogen atoms.77b,84 



 

Scheme 79

The temperature was lowered in an attempt to slow down the tautomeric exchange. As shown 

in figure 54, signals corresponding to the pyrazole in this equilibrium become sharper at 233 K, 

and three singlets can be observed for the CH groups at 

12.80 and 10.25 ppm also sharpen, which correspond to the N

the CH group in the quinoline adjacent to the nitrogen atom, respectively. The lack of 

tautomerism in one of the pyrazole ligan

N-H···O bond that would hamper the pyrazole dissociation. This could also indicate the 

absence, at room temperature, of an N

equilibrium. 

Figure 54. 1H NMR spectra of 34

the signals due to the pyrazole ligand undergoing metallotropic tautomerism at room temperature.

* 

 

Scheme 79. Metallotropic tautomerism of pyrazole ligands. 

The temperature was lowered in an attempt to slow down the tautomeric exchange. As shown 

in figure 54, signals corresponding to the pyrazole in this equilibrium become sharper at 233 K, 

and three singlets can be observed for the CH groups at 8.50, 7.20 and 6.80 ppm. Singlets at 

12.80 and 10.25 ppm also sharpen, which correspond to the N-H moiety in the pyrazole and to 

the CH group in the quinoline adjacent to the nitrogen atom, respectively. The lack of 

tautomerism in one of the pyrazole ligands could be due to the presence of the intramolecular 

H···O bond that would hamper the pyrazole dissociation. This could also indicate the 

absence, at room temperature, of an N-H···Cl interaction in the pyrazole involved in the 

4 at room temperature (top) and at 233 K (bottom) in 

the signals due to the pyrazole ligand undergoing metallotropic tautomerism at room temperature.

* * 
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Signals corresponding to the norbornenyl fragment can also be observed in the 1H NMR 

spectrum. The uncoordinated olefinic fragment exhibits two doublets of doublets at 5.40 and 

4.11 ppm, which are correlated to signals at 135.3 and 133.6 ppm in the 13C{1H} NMR 

spectrum, respectively. The CH group bonded to the rhodium centre shows a resonance at 

3.44 ppm in the 1H NMR spectrum, and correlates to a doublet carbon signal at 32.2 ppm (JRh-C 

= 27 Hz). A doublet in the 13C{1H} NMR spectrum at 237.8 ppm (JRh-C = 27 Hz) confirms the 

coordination of the quinoline ligand by the acyl moiety. 

Finally, addition of the NaBPh4 salt to complex 34 in the presence of pyrazole promoted the 

chloride extraction and formation of the cationic compound [Rh(C9H6NCO))(Hpz)3(nbyl)]BPh4 

(35), which contains three coordinated pyrazole molecules (Scheme 80).  

 

Scheme 80. Formation of cationic compound 35. 

Compound 35 was characterised in solution by NMR spectroscopy. The norbornenyl olefinic 

fragment exhibits signals in the 1H NMR spectrum at 5.45 and 3.90 ppm, which are correlated 

to resonances at 136.1 and 133.5 ppm in the 13C{1H} NMR spectrum. The CH group coordinated 

to the rhodium centre shows a singlet at 2.98 ppm in the 1H NMR, and is correlated to a 

doublet signal at 33.4 ppm (JRh-C = 26 Hz) in the 13C{1H} NMR. A doublet signal at 238.5 ppm (JRh-

C = 30 Hz) in the 13C{1H} NMR spectrum confirms the coordination of the quinoline via the acyl 

fragment. At room temperature, a broad signal at 15.00 ppm in the 1H NMR spectrum 

corresponds to the N-H bond of pyrazole. The low field position of the signal suggests a N-H···O 

hydrogen bond between pyrazole and the quinoline acyl moiety. A singlet at 6.38 ppm can also 

be adscribed to a CH group of pyrazole, but other signals also corresponding to pyrazole 

molecules cannot be found. This could be due to the metallotropic tautomerism experimented 

by these ligands, in which the rapid exchange between tautomeric forms in solution results 

into broadness or inexistence of signals in the NMR spectrum. Unfortunately, the low solubility 

of this compound did not allow the performance of a low temperature 1H NMR experiment. 
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II. 2.3.2. Reactivity of alkyl-quinolineacyl-pyrazole rhodium(III) complexes 

with monodentate P-donor ligands, PPh3 or PPh2OH   

It is known that reactions of [Rh(nbd)Cl]2 with C9H6NCHO and triarylphosphines lead to the 

formation of stable pentacoordinated (alkyl)(acyl)-rhodium(III) compounds or to the reductive 

elimination of the hydroacylation product, depending on the stoichiometric ratios 

employed.30,31 On the other hand, the addition of phosphine ligands to (alkyl)(acyl)-rhodium 

complexes containing N-donor ligands also results in the formation of ketone.13,14,31,32 The 

addition of triphenylphosphine to complex 34 in dichloromethane led to the latter outcome, 

causing the reductive elimination of the quinolinylnorbornenyl-ketone C9H6NC(O)nbyl (Scheme 

81). The formation of a triphenylphosphine-rhodium compound can also be observed, which 

exhibits a doublet at 42.2 ppm, with a coupling constant of JRh-P = 184 Hz in the 31P{1H} NMR. 

These resonance values are similar to those reported for rhodium-phosphine dimer complexes 

such as [RhCl(P(p-tolyl)3)2]2,
85 which exhibits a doublet at 49.5 ppm (JRh-P = 196 Hz), and this 

enables us to propose [RhCl(PPh3)2]2 as an additional reaction product. 

 

Scheme 81. Formation of the quinolinylnorbornenyl-ketone from compound 34. 

Alternatively, treatment of complex 34 with one equivalent of diphenylphosphine oxide in 

dichloromethane gives the unsaturated compound [RhCl(C9H6NC(nbyl)OH))(Hpz)(Ph2PO)] (36a) 

after the decoordination of one pyrazole molecule (Scheme 82). The coordination of the 

trivalent hydroxydiphenylphosphine form promotes the migration of the σ-norbornenyl to the 

carbon atom in the quinoline acyl moiety. This migration leads to the formation of a new C-C 

bond, with a consequent hybridization change of the acyl carbon atom from sp2 to sp3. A 

ligand-assisted outer-sphere hydrogen transfer from the hydroxydiphenylphosphine to the 

oxygen atom in the quinoline allows the formation of the phosphinito and a stable quinolinyl-

(norbornenylhydroxyalkyl) moiety, connected by a hydrogen bond, which prevents the release 

of the ketone product observed in the reaction of 34 with triphenylphosphine.  
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Complex 36a can be also formed by reaction of the dinuclear compound 33 with 

diphenylphosphine oxide in a Rh:P = 1:1 ratio, in dichloromethane and at room temperature 

(Scheme 82). The cleavage of the chloride bridge would generate a coordinative vacancy, 

allowing the coordination of the hydroxydiphenylphosphine ligand. The subsequent 

nucleophilic attack of the alkyl fragment to the quinolineacyl group, and the hydrogen 

migration from the phosphine hydroxyl group generates the final product. This transformation 

has been observed previously in our laboratory upon reaction of the related [Rh(μ-

Cl)(C9H6NCO)(nbyl)L]2 (L = picoline, isoquinoline) (I-35) with PPh2(O)H.86 

 

Scheme 82. Formation of complex 36a from reaction of compounds 33 or 34 with diphenylphosphine 

oxide.  

This unsaturated complex was characterised in solution by NMR spectroscopy, which 

confirmed the formation of a quinolinyl-(norbornenylhydroxyalkyl) ligand, and by ESI-MS. In 

the 13C{1H} NMR spectrum (Figure 55), a doublet at 92.6 ppm with a coupling constant of 26 Hz 

suggests the presence of a hydroxyalkyl C-OH fragment coordinated to the rhodium atom. This 

feature, along with the absence of a signal for the acyl group in the 220-230 ppm region of the 

13C{1H} NMR spectrum confirms the transformation of sp2 into sp3 for the carbon atom. 

Accordingly, the norbornenyl CH group, whose migration is responsible for the hybridization 

change, shows a signal at 3.10 ppm in the 1H NMR spectrum (Figure 56), which is correlated to 

a singlet signal at 49.8 ppm in the 13C{1H} NMR spectrum. This indicates that the norbornenyl is 

no longer coordinated to the metal centre. The protons in the olefinic fragment of the 

norbornenyl show two signals at 5.88 and 5.19 ppm. The displacement of these values to a 

lower field when compared to complexes 33, 34 and 35, in the range of 5.45-5.27 and 4.13-
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3.90 ppm, also suggests the migration of the norbornenyl from the rhodium to the quinoline 

substituent. The olefinic 1H NMR signals correlate to resonances at 139.0 and 130.4 ppm in the 

13C{1H} NMR spectrum. The pyrazole ligand shows a broad signal at 13.14 ppm in the 1H NMR 

spectrum that corresponds to the N-H group in the pyrazole. The low field position of this 

resonance would indicate the formation of a N-H···Cl hydrogen bond with the chloride ligand. 

The three CH groups in the pyrazole exhibit sharp signals at 8.41, 7.41 and 6.02 ppm. The 

31P{1H} NMR spectrum (Figure 56) shows a doublet at 80.3 ppm (JRh-P = 150 Hz) due to the 

coordination of the phosphinito ligand to the rhodium. The presence of a molecular ion at m/z 

= 622.11 in the ESI-MS corresponds to the fragment [Rh(C9H6NC(nbyl)OH))(Hpz)(Ph2PO)]+ or {M 

- Cl}+, and confirms the proposed formulation for 36a. The IR spectrum shows a band at 1100 

cm-1 due to ν(P=O).87 

 

Figure 55. 
13C{1H} NMR spectrum of 36 in CDCl3 at room temperature. 
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Figure 56. 
1H NMR (left) and 31P NMR (right) spectra of 36 in CD2Cl2 at room temperature. 

The determination of the structure of compound 36a by single-crystal X-ray diffraction was 

also possible (Figure 57). The resulting structure of 36a in the solid state is in good agreement 

with the structure deduced from spectroscopic data in solution. The geometry adopted around 

the rhodium(III) centre is a distorted trigonal bipyramid. The pyrazole and quinoline ligands are 

located in the apical positions of the bipyramid, bonded to the rhodium centre via N2 and N1 

nitrogen atoms respectively. The equatorial positions are occupied by the chloride, 

diphenylphosphinito and the sp3 carbon C10 atom of the C-OH moiety in the quinoline ligand. 

Both Rh-N bond distances are equal (Rh1–N1 2.039(7) Å and Rh1–N2 2.041(7) Å). The Rh1–C10 

bond distance is 2.090(7) Å, which is longer than the Rh-C bond distance found in the 

coordinated quinoline-acyl group in compound 33 (1.929(3) Å), confirms the hybridization 

variation from sp2 to sp3 produced in C10 by migration of the norbornenyl group. The C10–C11 

and C10–O1 bond distances of 1.56(1) and 1.397(9) Å respectively correspond to single bonds, 

and confirm the formation of a new C-C bond and a hydroxy group after the nucleophilic attack 

of the alkyl fragment. However, the C10–O1 bond distance is slightly shorter than the C-O 

distances in the range of 1.440 to 1.411 Å observed in complexes with hydroxy groups involved 

in intramolecular hydrogen interactions.15,25,88 
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Figure 57. Molecular structure of complex 36a. Displacement ellipsoids are drawn at 50% probability 

level. Selected bond lengths (Å) and angles (º): Rh1–Cl1, 2.464(2); Rh1–N1, 2.039(7); Rh1–N2, 2.041(7); 

Rh1–C10, 2.090(7); Rh1–P1, 2.213(2); P1-O2, 1.516(6); C10-O1, 1.397(9); O1-H1O, 1.045; O2-H1O, 1.596; 

O1-O2, 2.599(7); C10-C11, 1.56(1); N3-H3A, 0.859; N2-Cl1, 3.121(7); Cl1-H3A, 2.572; N1–Rh1–N2, 

176.7(3); Cl1–Rh1–C10, 145.6(2); Cl1–Rh1–P1, 125.66(7); P1-Rh1-C10, 88.3(2); O1-H1O-O2, 158.9; N3-

H3A-Cl1, 122.7. 

The formation of an O-H···O hydrogen bond can be observed between the 

diphenylphosphinito and the quinoline-hydroxyalkyl group, resulting in the formation of a 

pseudo-pincer PCN ligand. The O1-H1O (1.045 Å) and O2···H1O (1.596 Å) distances, and the 

donor-acceptor O1-O2 distance of 2.599(7) Å agree with the formation of this hydrogen bond 

interaction. The O1-H1O-O2 bridge is almost linear, with an angle of 158.9°. The Rh1-P1 bond 

distance (2.213(2) Å) is shorter than Rh-P distances measured in reported 

diphenylphosphinous acid-rhodium complexes with O-H···O intramolecular bonds,69 and closer 

to those observed for diaryl-phosphinous acid ligands with electron-withdrawing properties.89 

The P1-O2 bond distance (1.516(6) Å) agrees with the formation of a P=O double bond.90 

The formation of an intramolecular N-H···Cl hydrogen bond is also observed, with a donor-

acceptor N3–Cl1 bond distance of 3.121(7) Å, a H3A···Cl1 distance of 2.572 Å and an N3-H3A-

Cl1 angle of 122.7°, similar to those found in other metal complexes containing these pyrazole-

chloride hydrogen bond interactions.91 The dihedral angle between the plane including the 

pyrazole N-H group and the plane containing the chloride Cl1, the rhodium centre and the 

nitrogen N2 and N1 atoms is 12.12°, which indicates that the N-H group is oriented towards 

the chloride ligand.78c,91d 
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The presence of a broad signal for the N-H bond in the 1H NMR spectrum, and the absence of a 

resonance for the newly formed hydroxyl group in the quinolinyl-(norbornenylhydroxyalkyl) 

ligand at room temperature motivated a low temperature multinuclear NMR study (Figures 58 

and 59). At 263 K, the appearance of a new signal at 9.85 ppm can be noticed in the 1H NMR 

spectrum (Figure 58). This signal is attributed to the proton in the hydroxyl moiety, which 

would be involved in an O-H···O hydrogen bond with the adjacent phosphinito ligand. By 243 K, 

this resonance and the signal corresponding to the N-H···Cl group at 13.14 ppm are sharp. At 

this temperature, the sharp doublet observed at 80.3 ppm in the 31P{1H} NMR spectrum at 

room temperature (Figure 59) is displaced towards lower field and becomes broader, 

indicating the existence of an additional equilibrium. After coalescence, the signal is resolved 

by 193 K into two doublets revealing the presence of a major species 36a (84.6 ppm, JRh-P = 150 

Hz) and a minor species 36b (83.0 ppm, JRh-P = 152 Hz) in solution.  

 

Figure 58. 
1H NMR spectra of 36 in CD2Cl2 in the 193K to 283K range. 
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Figure 59. 
31

P{
1H} NMR spectra of 36 in CD2Cl2 in the 193K to 283K range. 

The spectroscopic data of 36a are similar to those of our recently reported related 

pentacoodinated (norbornenylhydroxyalkyl)rhodium(III) complex containing 4-picoline (pic) as 

a N-donor ligand, with formula [RhCl((C9H6NC(nbyl)OH)(Ph2PO)(pic)] (a-pic). This compound 

was obtained as a kinetic product of the reaction between Ph2P(O)H and a dinuclear 

(acylquinolinyl)(norbornenyl)(pic)-rhodium(III) complex [Rh(μ-Cl)(C9H6NCO)(nbyl)(pic)]2 and 

transformed into a thermodynamic pseudo-octahedral isomer (c-pic) containing a weak η1-C 

anagostic interaction between the Rh(III) centre and the norbornenyl ligand. DFT calculations 

allowed the proposal of a distorted trigonal bipyramidal structure for compound a-pic and a 

very small energy difference (2.5 kcal·mol-1) between a-pic and c-pic. These calculations also 

proposed that the transformation of a-pic into c-pic may occur by isomerisation of the trigonal 

bipyramid to attain a distorted square-planar pyramidal structure with apical phosphinito (b-

pic), lower in energy than a-pic by only 0.7 kcal·mol-1.86 

The present results confirm the trigonal bipyramidal structure (a) for the 

(norbornenylhydroxyalkyl)rhodium(III) complex first formed in these reactions. Furthermore, 

we believe that the minor species 36b, found at 193 K in the 31P{1H} NMR spectrum, could also 

correspond to the unsaturated 16e species with a square pyramidal arrangement (Scheme 83). 

Examples of both trigonal bipyramid and square pyramidal geometries are known for 

rhodium(III) pentacoordinated complexes,30,31,92 and it is established that the trigonal 
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T = 243 K 
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bipyramid structure is generally favoured when the ligand trans to the acute angle in the 

equatorial plane is a π-donor, such as chloride.93 

 

Scheme 83. (i) Equilibrium between pentacoordinated trigonal bipyramidal 36a and square-pyramidal 

36b. (ii) Inhibited transformation into octahedral 36c. 

In the present case a final transformation of 36b into pseudo-octahedral species 36c appears 

inhibited, and this may be due to the presence of a N-H···Cl hydrogen bond involving the 

pyrazole. 

II. 2.3.3. Catalytic activity of alkyl-quinolineacyl-pyrazole rhodium(III) 

complexes in the hydrolysis of ammonia-borane for hydrogen liberation 

Hydrogen is considered a feasible alternative to fossil fuels in the near future. Although 

hydrogen gas does not naturally exist on earth in large quantities, it is widely distributed in 

numerous compounds, and it could be produced on an industrial scale with the appropriate 

technology. It is also viewed as a clean energy source, with water and heat as the only 

products of its combustion. However, the safe storage and delivery of hydrogen gas remains 

an issue that needs to be solved for its consolidation as a capable option. This has encouraged 

the research on chemical ‘hydrogen storage’ materials, which exhibit high hydrogen weight 

percentage and allow its controlled generation by a chemical reaction.60 Ammonia or amine-

borane N-B compounds are among these materials. Ammonia-borane (H3N-BH3) contains a 

19.6 wt % of hydrogen and shows high thermal and water stability at room temperature. It 

provides a stable source of transportable hydrogen for subsequent consumption.61 Main uses 

of these materials include vehicles powered by fuel cells, which convert chemical energy from 

a fuel into electricity. 

Hydrogen liberation from ammonia-borane (AB) by thermolysis has been widely studied, both 

in solid state and in solution. Nevertheless, release of one hydrogen equivalent per mole of 
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substrate by thermolysis requires relative high temperatures.94 The use of homogeneous 

transition-metal based catalyst to produce the dehydrogenation of ammonia– or amine–

boranes has gained attention in recent years.95 A large number of transition metals are known 

to promote hydrogen release from amine-boranes, such as Ti, Zr, Ru, Rh, Pd or Pt.96 The 

dehydrogenation reaction catalysed by these metal complexes affords up to one equivalent of 

hydrogen gas under mild conditions, and requires an inert atmosphere (Scheme 84).  

 

Scheme 84.  Dehydrogenation reaction of amine-boranes to generate hydrogen gas. 

There are examples of catalysts for ammonia-borane dehydrogenation capable of liberating up 

to two hydrogen equivalents per mole of substrate. These examples include Pd complexes,97 

Ni-carbenes98, Ru-PN99 species and tripodal polyphosphine-Co compounds.100 More recent 

examples describe the use of air stable Ru compounds that afford the production of more than 

two equivalents of hydrogen gas per mole of ammonia-borane,101 without loss of catalytic 

activity under air and water exposure.  

Hydrolysis reactions, on the other hand, provide an additional method for hydrogen liberation 

from ammonia- and amine-borane compounds, and can afford up to three equivalents of 

hydrogen per mole of substrate (Scheme 85). 

 

Scheme 85.  Hydrolysis reaction of amine-boranes to generate hydrogen gas. 

Various reported transition-metal heterogeneous systems are known to efficiently catalyse 

hydrogen release by hydrolysis at room temperature,62 although they often require an inert 

atmosphere. Rhodium nanoparticles are among the most active heterogeneous catalysts for 

this hydrolysis reaction to date.63 Efficient water and air-stable Ni, Pd, or Au nanoparticles have 

also been described,102 and more recently nanoparticles involving other non-noble transition 

metals such as Fe, Co or Cu have been reported to catalyse these hydrolytic reactions, though 

with lower activity.103 The efficient homogeneous version of this ammonia-borane hydrolysis 

reaction was first reported in 2010 using the afore-mentioned hydridoirida-β-diketones,59a and 

more recently using acyl-hydride rhodium(III) compounds containing diphenylphosphinous 

acid (I-48) and pyrazole (I-49) ligands.69-70 Both these rhodium catalysts contain intramolecular 



165 

 

hydrogen bonds, and are capable of liberating up to three equivalents of hydrogen gas in air 

under mild conditions (Figure 60).  

 

Figure 60. Acyl-hydride rhodium(III) catalysts for amine-borane hydrolysis containing 

diphenylphosphinous acid (left) or pyrazole (right). 

Other reported homogeneus catalysts for the amine-borane hydrolysis include highly active 

14e, 16e or saturated iridium(III)-carbene species,64 and pincer type iridium(III)-PNP 

compounds65 (Figure 61).  

 

Figure 61. Reported homogeneus iridium(III) catalysts for the hydrolysis of ammonia-borane. 

Ruthenium p-cymene66,68 and dicarbonyl67 complexes have also been studied. A mechanistic 

study on the hydrolysis of AB catalysed by ruthenium p-cymene complexes points to B-H 

coordination of AB to Ru and formation of a solvent-stabilized borenium cation formulated as 

[H3N-BH2(S)]+ (S = THF or H2O) as key intermediate, common to dehydrogenation and 

hydrolytic competitive reactions. In the hydrolytic path, interaction of [H3N-BH2(OH2)]
+ with Ru 

leads to the release of amine-hydroxyborane that undergoes a fast hydrolysis.68 

Dicarbonylruthenacyclic compounds also promote the anhydrous release of hydrogen, though 

at a much lower rate. These catalysts are represented in Figure 62. 
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Figure 62. Reported homogeneus ruthenium catalysts for the hydrolysis of ammonia-borane. 

The efficiency of reported rhodium-based homogeneous systems containing strong 

intramolecular hydrogen bonds for the hydrolysis of ammonia-borane led us to study the 

catalytic activity of the previously described compounds 33-36, which also exhibit hydrogen 

bond interactions.  

II. 2.3.3a. Optimization of reaction conditions 

The optimization of the hydrolysis reaction conditions was performed with 1.38 mmol of 

ammonia-borane (AB) NH3-BH3 as a substrate (0.46 M) and 0.1 mol % of compound 

[RhCl(C9H6NCO))(Hpz)(nbyl)]2 (33) as a catalyst, at 30°C. This reaction was carried out in a 

THF/H2O mixture, as the insolubility of rhodium complexes in H2O inhibits their catalytic 

activity. Figure 63 shows ammonia-borane hydrolysis experiments using different proportions 

of THF/H2O. 

 

Figure 63. Hydrogen liberation from 0.46 M of AB at 30°C with 0.1 mol % of catalyst 33 in different 

THF/H2O mixtures: 50/50 (○), 90/10 (Δ) and 25/75 (□). 
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The THF/H2O mixture of 50/50 was found optimal, as it allowed the liberation of almost 3 

equivalents of hydrogen gas in the minimum amount of time. Performance of this hydrolysis 

with higher amounts of water led to the precipitation of the catalyst, and the efficiency of the 

reaction is therefore reduced. A higher amount of tetrahydrofurane also leads to a lower 

hydrogen release rate.  

The hydrolysis reaction was performed in a THF/H2O mixture of 50/50 under the same 

conditions (with an AB concentration of 0.46 M and a 0.1 mol % of 33 catalyst loading at 30°C) 

in the presence of Hg. A decrease in the hydrogen release rate would imply a heterogeneous 

catalytic process, as Hg is a well-known heterogeneous catalyst poison.104 Similar results 

afforded by this experiment confirm the homogeneous nature of the catalytic reaction. 

II. 2.3.3b. Hydrolysis of ammonia-borane catalysed by [RhCl(C9H6NCO))(Hpz)(nbyl)]2 (33), 

[RhCl(C9H6NCO))(Hpz)2(nbyl)] (34), [Rh(C9H6NCO))(Hpz)3(nbyl)]BPh4 (35) or 

[RhCl(C9H6NC(nbyl)OH))(Hpz)(Ph2PO)] (36). 

The catalytic activity of complexes 33-36 was studied for the homogeneous hydrolysis of 

ammonia-borane in a THF/H2O mixture of 50/50 in the presence of air. Hydrolysis experiments 

for these complexes were carried out at 30°C with 1.38 mmol of AB (0.46 M) and 0.2 mol % of 

compounds 34, 35 and 36, and 0.1 mol % of compound 33, to compare equal rhodium 

concentrations in solution. A blank test under the same reaction conditions was also 

performed in absence of catalyst. Figure 64 shows collected data of the hydrogen release from 

AB in the presence of these complexes. 
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Figure 64. Hydrogen liberation from THF/H2O mixtures of 50/50 at 30°C, with 0.46 M of AB and 0.1 mol 

% of catalyst 33 (○), or 0.2 % mol of catalysts 34 (Δ), 35 (□), 36 (◊) and a blank test in absence of a 

catalyst (×). 

Experimental data show similar reaction rates in hydrolysis catalysed by alkyl-acyl rhodium 

complexes 33, 34 and 35, which proved to be efficient homogeneous catalysts for this 

reaction. These compounds afforded the generation of almost three hydrogen equivalents per 

mole of AB. The highest reaction rate corresponds to dimeric complex 

[RhCl(C9H6NCO))(Hpz)(nbyl)]2 (33), affording the release of 97% of the maximum hydrogen 

content within 9 minutes. Neutral and cationic compounds [RhCl(C9H6NCO))(Hpz)2(nbyl)] (34) 

and [Rh(C9H6NCO))(Hpz)3(nbyl)]BPh4 (35) showed slightly lower reaction rates, affording the 

liberation of 98-99% of the hydrogen content within 13 and 15 minutes respectively. Complex 

[RhCl(C9H6NC(nbyl)OH))(Hpz)(Ph2PO)] (36) also leads to the generation of all three hydrogen 

equivalents per mole of substrate, but exhibits a lower activity, affording the complete 

hydrolysis of ammonia-borane within 24 minutes. A blank test, performed under the same 

reaction conditions, shows a poor uncatalysed hydrolysis of AB, leading to the liberation of an 

8 % of the total amount of hydrogen content after 25 minutes.  

Due to the higher efficiency showed by complex 33, it was chosen to perform a kinetic study. A 

simple first-order kinetic model would not properly explain the behavior of the catalytic 

system. The experimental data of hydrogen gas evolution catalysed by 33 includes the 

hydrogen liberation of catalysed and uncatalysed hydrolysis processes. The uncatalyzed 

reaction is significant during the first stages of reaction, until equilibrium is reached (Figure 
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64), whereas the catalyzed reaction practically allows the maximum hydrogen evolution in the 

presence of all tested catalysts. Attempts of obtaining a suitable rate law to explain the global 

process as a sum of catalysed and uncatalysed reactions were unsuccessful. Nevertheless, a 

first-order approach can be applied for comparison purposes to the AB hydrolysis catalysed by 

33, leading to fairly good results.  

The dependence of the hydrogen release rate with the catalyst loading was studied. Figure 65 

collects results obtained from hydrolysis of 1.38 mmol of ammonia-borane in THF/H2O 

mixtures of 50/50 at 30 °C, in the presence of various concentrations of 33. Catalyst loadings 

vary from 0.05 to 0.025 mol %, due to the insolubility exhibited by the rhodium compound in 

the solvent mixture at concentrations higher than 0.1 mol %. Experimental data show the 

increase of the hydrogen liberation rate with the catalyst concentration. 

 

Figure 65. Hydrogen liberation from THF/H2O mixtures of 50/50 at 30°C, with 0.46 M of AB and various 

concentrations of catalyst 33: 0.05 % (○), 0.04 % (Δ), 0.032 % (□) and 0.025 mol % (◊). 

Assuming first-order dependence with respect to AB, the reaction rate would be given by 

equation 1. The observed reaction rate (vexp) collects both catalysed (vcat) and uncatalysed 

(vuncat) reaction rates.  

vexp = (kuncat + kcat[catalyst]0)[substrate]                                           Eq 1 

where:  (kuncat + kcat[catalyst]0) = kobs 
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Table 7 collects maximum conversion data, time required and rate constants (kobs) calculated 

for each concentration of catalyst 33 in the hydrolysis of ammonia-borane. The kobs values for 

each catalyst loading were calculated from lineal representation of the hydrolysis reactions. 

Figure 66 shows first order linear representation of hydrogen liberation experimental data up 

to 3 half-lives catalysed by compound 33.  

Table 7. Influence of catalyst [RhCl(C9H6NCO))(Hpz)(nbyl)]2 (33) loading in the AB hydrolysis reaction rate 

at 30°C. 

% Cat  % Conversion Time (s) 10
3
 kobs (s

-1
) 

0.05 98 1300 2.65 ± 0.05 

0.04 95 1800 1.83 ± 0.03 

0.032 92 1950 1.39 ± 0.01 

0.025 95 4500 0.98 ± 0.01 

 

 

Figure 66. Lineal representation of the generated hydrogen from THF/H2O mixtures of 50/50 at 30°C, 

with 0.46 M of AB and various concentrations of catalyst 33: 0.05 % (○), 0.04 % (Δ), 0.032 % (□) and 

0.025 (◊) mol %. 

Representation of the rate constant (kobs) versus the corresponding catalyst loading 

([catalyst]0) allows the determination of kcat and kuncat values as the slope and the intercept of 

the resultant plot, according to equation 1. Figure 67 shows the plot of kobs versus [catalyst]0 in 

the range of 0.69 x 10-3 to 0.345 x 10-3 range (0.05 to 0.025 mol %) for compound 33. From this 

plot, values of kcat = 4.63 ± 0.34 M-1 s-1 and kuncat = 0.65 ± 0.18 M-1 s-1 were obtained.  
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Figure 67. Influence of [catalyst]0 on kobs for the hydrogen release from AB catalysed by 33. 

The behaviour of catalyst 33 was compared with that of previously mentioned acylrhodium(III) 

complexes [RhClH(PPh2(o-C6H4CO))(PPh2O)H)(4-pic)] (I-48) or [RhClH(PPh2(o-C6H4CO))(Hmpz)2] 

(I-49) containing diphenylphosphinous acid or pyrazole ligands respectively, which were 

developed in our laboratory. These data are collected in table 8. 

Table 8. Comparison of the behaviour of catalysts [RhClH(PPh2(o-C6H4CO))(PPh2O)H)(4-pic)] (I-48), 

[RhClH(PPh2(o-C6H4CO))(Hmpz)2] (I-49) and [RhCl(C9H6NCO))(Hpz)(nbyl)]2 (33) in the AB hydrolysis 

reaction in THF/H2O mixtures of 50/50. 

CATALYST % Cat % Rh T (°C) % Conversion 10
3
 kobs (s

-1
) 

I-48 0.5 0.5 25 89.5 1.54 ± 0.07 

I-49 0.5 0.5 25 90.0 1.89 ± 0.06 

33 0.05 0.1 25 86.7 1.57 ± 0.09 

I-48 0.5 0.5 30 91.2 2.6 ± 0.10 

33 0.05 0.1 30 98.0 2.65 ± 0.05 

 

With a rhodium loading as low as 0.1 mol %, compound 33 displays a rate constant of 2.65x10-3 

s-1 at 30 °C, with an almost total conversion, while catalysts I-48 and I-49 require a 0.5 mol % 

catalyst loading, reaching a maximum of a 91 % of the total hydrogen release. At 25 °C, the 

performance of 33 is also similar to that showed by I-48 and I-49 but with a five times lower 

rhodium concentration.  
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1.- Three new silyl-thioether multidentate preligands formulated as SiMe2H(o-C6H4SMe) (L1), 

SiMeH(o-C6H4SMe)2 (L2) and SiMe2(o-C6H4SMe)2 (L3) have been synthesised by reaction of 2-

MeS(C6H4Br) with n-buthyllithium, and subsequent treatment with the corresponding 

chlorosilane. These silanes are suitable to study Si-X (X = H or C) activation reactions promoted 

by rhodium(I) and iridium(I) compounds. 

2.- The reaction of [Rh(cod)Cl]2 with four equivalents of L1 yields the dinuclear neutral 

Rh(III)/Rh(III) complex [Rh(SiMe2(o-C6H4SMe))2Cl]2 (1). The mechanism proposed for the 

formation of 1 starts with a first Si-H activation of L1 by a Rh(I) centre, which would lead to an 

unobservable rhodium-hydrido-cyclooctadiene complex, followed by the insertion of the 

cyclooctadiene into the Rh-H bond to give a Rh(I)cyclooctadiene/Rh(III)cyclooctenyl dimer. A 

second Si-H activation of L1 allows the formation of the Rh(I)cyclooctadiene/Rh(III)bis(silane) 

intermediate [(cod)Rh(μ-Cl)2Rh(SiMe2(o-C6H4SMe))2] (2). The second Rh(I) atom would follow 

the same process with the addition of another unit of L1, leading to a 

Rh(III)cyclooctenyl/Rh(III)bis(silane) compound, and a fourth Si-H activation of L1 to form the 

final product 1. This mechanism is supported by the isolation of a mononuclear 

Rh(III)cyclooctenyl complex [Rh(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2Cl] (3) by reaction of 

[Rh(cod)Cl]2 with terdentate preligand L2. 

3.- The removal of chlorine from complex 3 with NaBArF
4 yields the cationic cyclooctenyl 16e 

compound [Rh(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2]BArF
4 (4), which can also be synthesised by 

coordination and insertion of 1,5-cyclooctadiene into the Rh-H bond of the unsaturated Rh(III) 

compound [Rh(H)[SiMe(o-C6H4SMe)2](PPh3)]BArF
4 (6), with a subsequent rearrangement. This 

reaction, unobserved for saturated [RhCl(H)[SiMe(o-C6H4SMe)2](PPh3)] (5) is possible for 

unsaturated complex 6 because of its vacant coordination site. The analogous 16e Ir(III) 

compound [Ir(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2]BArF
4 (8), obtained as 4, is unstable and 

transforms into the hydrido species [Ir(H)(η4-cod)(SiMe2(o-C6H4SMe)2)]BArF
4 (9), thus attaining 

coordinative saturation. According to DFT calculations the transformation of 8 into 9 occurs by 

consecutive ß-hydride elimination and olefin insertion steps involving Ir(III) intermediates.  

4.- The reaction of L2 with [Rh(nbd)Cl]2 allows the formation of 16e complex 

[RhCl(ntyl)(SiMe2(o-C6H4SMe)2)] (10) by the chelate-assisted oxidative addition of the Si-H 

bond. The insertion of the norbornadiene into the Rh-H bond yields the σ-norbornenyl species, 

and the subsequent rearrangement leads to the formation of the thermodynamically favoured 

σ-nortricyclyl derivative. The abstraction of chloride fails to afford a 14e species. Instead, it 
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promotes a reverse rearrangement with cleavage of the cyclopropyl fragment to allow the 

novel isomerisation from the σ-nortricyclyl to the σ,π-norbornenyl ligand in a 16e [Rh(σ,π-

nbyl)(SiMe2(o-C6H4SMe)2)]BArF
4 (11) complex, via successive ß-hydride elimination and olefin 

insertion processes proposed by theoretical calculation.  

5.- The treatment of [Rh(cod)Cl]2, [Rh(nbd)Cl]2 and [Ir(cod)Cl]2 with the preligand SiMe2(o-

C6H4SMe)2 (L3) and NaBArF
4 leads to the formation of cationic M(I) 16 electron 

[M(diolefin)SiMe2(o-C6H4SMe)2]BArF
4 compounds by coordination of the two thioether 

moieties. However, the reaction of L3 with [Rh(coe)2Cl]2 and NaBArF
4 in the presence of 

acetonitrile results into the unusual activation of the Si-CH3 bond to form the Rh(III) 18e 

compound [Rh(Me)(Si(Me)(o-C6H4SMe)2)(MeCN)2]BArF
4 (16). 

6.-  The dehydrogenative coupling of the tertiary silane SiMeH(o-C6H4SMe)2 (L2) is catalysed by 

[RhCl(PPh3)3] to give the disilane (o-C6H4SMe)2MeSi-SiMe(o-C6H4SMe)2 product. We propose a 

simplified mechanism involving the formation of complex [RhClH(SiMe(o-C6H4SMe)2)(PPh3)] (5) 

as the active species in the catalytic cycle, followed by σ-bond metathesis and reductive 

elimination of the disilane product. The formation of an inactive species [Rh(SiMe(o-

C6H4SMe)2)2]BArF
4 (21) is observed and explains the lower activity as catalyst of the cationic 

compound [Rh(H)[SiMe(o-C6H4SMe)2](PPh3)]BArF
4 (6), which forms readily 21 in the presence 

of L2. 

7.- Complex [RhH(SiMe2(o-C6H4SMe))(PPh3)2]BArF
4 (17) has proved to be an efficient pre-

catalyst in the solvent-free tandem isomerisation-hydrosilylation reaction of internal olefins 

with Et3SiH at room temperature, showing a complete selectivity to linear alkylsilanes. This 

complex is also able to catalyse the dehalogenation of CDCl3 in the presence of Et3SiH to form 

the chlorosilane species Et3SiCl and CHDCl2.  

8.- Analogous compounds [RhH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4 (6) and [IrH(SiMe(o-

C6H4SMe)2)(PPh3)(THF)]BArF
4 (20) are precatalysts for solvent-free tandem reactions of internal 

olefins with Et3SiH. While Rh(III) complex 6 selectively promotes the tandem isomerisation-

hydrosilylation reaction to yield linear hydrosilylation products at room temperature, Ir(III) 

compound 20 promotes the tandem isomerisation-dehydrogenative silylation of internal 

olefins to give the allylsilane as the main product.  



183 

 

9.- Activation of the C-H aldehyde bond in a racemic mixture of phosphinoalkylaldehyde 

PPh2CH(Ph)CH2CHO by [Rh(cod)Cl]2 in the presence of pyridine led to the chelate-assisted 

oxidative addition and formation of a unique hydrido(diphenylphosphino)alkylacyl 

[RhClH(PPh2CH(Ph)CH2CO)(py)2] (22) species with high diastereoselectivity. At variance with 

related phosphinoarylaldehydes, insertion of alkylaldehyde into the Rh-H bond to afford 

hydroxyalkyl derivatives fails to occur. Reaction of 22 with an additional molecule of 

PPh2CH(Ph)CH2CHO does not promote a second oxidative addition, leading to the formation of 

compound [RhClH(PPh2CH(Ph)CH2CO)(PPh2CH(Ph)CH2CHO)(py)] (24) with remarkable 

diastereoselectivity, which maintains a pendant aldehyde group. On the other hand, the 

addition of the arylaldehyde PPh2(o-C6H4CHO) to 22 promoted the reductive elimination of the 

alkylaldehyde and led to the formation of a preferred arylacyl metallacycle, in complex 

[RhClH(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))(py)] (25) as an equimolar mixture of two 

diastereomers. These results suggest a lower activation barrier for the diastereoisomerisation 

reaction to take place when involving alkylaldehydes (24) than when involving arylaldehydes 

(25). 

10.- The reaction of the (acylhydrido)rhodium(III) compound [RhClH(PPh2(o-C6H4CO))(κ1-

PPh2(CH(Ph)CH2CHO))(py)] (25) with aromatic diimines such as 1,10-phenantroline and 2,2’-

bipyridine afforded cationic [RhH(NN)(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))]BPh4 

compounds, with trans phosphorus atoms,  as a mixture of two diastereomers, whose physical 

separation was possible due to their different solubility in chloroform. The P-monodentate 

alkylaldehyde in 25 undergoes complete imination in the presence of both amino imines 8-

aminoquinoline and 2-aminomethylpyridine to afford PNN terdentate hemilabile ligands in 

[RhH(PPh2(o-C6H4CO))(PNN)]BF4 compounds. This reaction with 2-aminomethylpyridine is in 

contrast with that observed for the related complex derived from arylaldehyde PPh2(o-

C6H4CHO), which led to a stable hemiaminal -CH(OH)NH- fragment. This could be explained by 

the higher flexibility of the aliphatic chain in the phosphinoalkylaldehyde, as it would facilitate 

the final condensation step in the reaction between the pendant aldehyde and the amine 

groups. 

 11.- The oxidative addition of PPh2CH(Ph)CH2CHO to [Rh(nbd)Cl]2 yielded σ-norticyclyl 

derivatives [RhCl(NN)(Ntyl)(PPh2CH(Ph)CH2CO)] in the presence of N-donor diimines, by 

insertion of the norbornadiene into the Rh-H bond and subsequent rearrangement. In all 

cases, kinetic 75:25 mixtures of diastereomers of a single geometric isomer were obtained. 

Performing the reaction in methanol in the presence of 8-quinolinecarboxaldehyde allowed 
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the transformation of the alkylaldehyde into an alkylester and the oxidative addition of the 

arylaldehyde to afford complex [RhCl(Ntyl)(C9H6NCO)(k2-PPh2CH(Ph)CH2CO(OCH3)] (32), via a P-

coordinated (diphenylphosphine)hemiacetal intermediate. The hemilabile P,O ligand allows an 

isomerisation reaction leading to complete diatereoselectivity. 

12.- Treatment of [Rh(nbd)Cl]2 with 8-quinolinecarboxaldehyde and pyrazole led to the 

formation of coordinatively saturated 18e dinuclear neutral, and mononuclear neutral of 

cationic alkyl-quinolineacyl-pyrazole rhodium(III) complexes with one and two or three 

coordinated pyrazole molecules, by insertion of the norbornadiene into the Rh-H bond to form 

preferably σ-norbornenyl species or low amounts of σ-norticyclyl species. These compounds 

are stabilised by the formation of hydrogen N-H···O and N-H···Cl bonds between the pyrazole 

and the acyl or the chloride moieties.  

13.- The addition of triphenylphosphine to complex [RhCl(C9H6NCO))(Hpz)(nbyl)]2 (33) led to 

the reductive elimination of the quinolinylnorbornenyl-ketone C9H6NC(O)Nbyl product. 

However, the reaction with diphenylphosphine oxide allowed the formation of a stable 

quinolinyl-(norbornenylhydroxyalkyl) moiety in the unsaturated compound 

[RhCl(C9H6NC(nbyl)OH))(Hpz)(Ph2PO)] (36a), with a trigonal bipyramid structure, by migration 

of the σ-norbornenyl to the carbon atom in the quinoline acyl moiety and formation of a new 

C-C bond and an O-to-O outer sphere hydrogen transfer from coordinated phosphinous acid to 

coordinated carboxy. Lowering the temperature reveals an equilibrium between the 

unsaturated species with trigonal bipyramidal and square pyramidal structure. 

14.- The four alkyl-quinolineacyl-pyrazole rhodium(III) complexes were tested as homogeneous 

catalysts for the hydrolysis of ammonia-borane in THF/H2O, at 30 °C and in the presence of air. 

All compounds showed high activity in this reaction and afforded the generation of almost 

three hydrogen equivalents per mole of substrate, with the highest reaction rate 

corresponding to the dimeric complex [RhCl(C9H6NCO))(Hpz)(nbyl)]2 (33). 
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IV. 1. INSTRUMENTAL TECHNIQUES  

General working conditions 

All manipulations, unless otherwise stated, were performed under an atmosphere of nitrogen, 

using standard Schlenk techniques. Glassware was oven dried at 120ºC overnight. Solvents 

were previously distilled under nitrogen, degassed by successive freeze-pump-thaw cycles1 and 

stored over 3 Å molecular sieves. 

Hydrogenation reactions 

Hydrogenation reactions were performed in a high pressure NMR tube equipped with a J. 

Young’s valve. The dissolved compound of interest was cooled to 77K. The tube was evacuated 

and H2 admitted (1 atm). The tube was then sealed and warmed to 298K, resulting in a 

pressure of approximately 4atm (298/77 ≈ 4). 

Elemental analysis 

Mass percentages of carbon, nitrogen, sulphur and hydrogen in the synthesised complexes 

were determined by elemental microanalysis. The analysis was carried out with a LECO 

Truspec Micro CHNS microanalyser.  

Conductivity 

Conductivity measures were performed at room temperature with a Metrohm-Herisau 712 

electrical conductivity meter. The system was equipped with a 0.8 cm-1 constant Metrohm 

00450920 conductivity cell. Measures were carried out in 2.5x10-4 M acetone solutions. 

Infrared spectroscopy 

IR spectra were obtained between a wavenumber range of 4000-500 cm-1 with a Nicolet FTIR 

510 spectrometer. Measures were performed in a KBr disc. 

Nuclear magnetic resonance spectroscopy  

1H, 13C{1H}, 31P{1H} and 29Si{1H} RMN spectra were recorded on Bruker AVD 500,  400 or 300 

MHz spectrometers at room temperature unless otherwise stated. 1H and 13C{1H} NMR spectra 

were referenced to the solvent residual signal, or with TMS as internal standard. 29Si NMR 

spectra were referenced with TMS as internal standard. In 31P{1H} NMR spectra H3PO4 (85%) 

was used as an external standard. 

 



188 

 

Electrospray ionization mass spectrometry (ESI-MS) 

ESI-MS were recorded on a Bruker MicrOTOF-Q instrument. For complexes 12 and 13, spectra 

were carried out using a Bruker MicrOTOF instrument directly connected to a modified 

Innovative Technology glovebox. In all ESI-MS spectra there was a good fit to both the principal 

molecular ion and the overall isotopic distribution.  

X-Ray diffraction 

Obtained crystals were mounted on a glass fibre and used for data collection on a Bruker D8 

Venture with Photon detector equipped with graphite monochromated MoKα radiation 

(λ=0.71073 Å). Lorentz-polarisation and empirical absorption corrections were applied. The 

structures were solved by direct methods and refined with full-matrix least-squares 

calculations on F2 using the program SHELXS-97 and SHELXS-2013. Crystallographic data are 

collected in Supporting Information. 
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IV. 2. SYNTHESIS OF STARTING MATERIAL  

Synthesis of [Rh(cod)Cl]2 

Compound [Rh(cod)Cl]2 was synthesised as previously described by Chatt and Venazi,1 by 

reaction of RhCl3·xH2O with 1,5-cyclooctadiene in an ethanol reflux.  

Synthesis of [Rh(nbd)Cl]2 

Compound [Rh(nbd)Cl]2 was synthesised as previously described by Abel et al.2 by reaction of 

RhCl3·xH2O with 2,5-norbornadiene in ethanol at room temperature.  

Synthesis of [Ir(cod)Cl]2 

Compound [Ir(cod)Cl]2 was synthesised as previously described by Cushing et al.3 by reaction of 

IrCl3·xH2O with 1,5-cyclooctadiene in a 2-propanol and H2O mixture at 120°C.  

Synthesis of [Rh(coe)2Cl]2 

Compound [Rh(cod)Cl]2 was synthesised by reaction of 2 g of RhCl3·xH2O with 6 mL of 

cyclooctene in a 2-propanol (40 mL) and H2O (10 mL) mixture at room temperature for 5 days.4 

Synthesis of C9H6NCHO 

8-quinolinecarboxaldehyde was prepared by the method reported by Anklin and Pregosin.5  

Synthesis of PPh2(o-C6H4CHO) 

Diphenylphosphine(o-benzaldehyde) was prepared by the method reported by Liese and co-

workers.6  

Synthesis of PPh2CHPhCH2CHO 

The alkylphosphine-aldehyde PPh2CHPhCH2CHO was prepared by the method reported by 

Moiseev, Patrick and James.7  

Synthesis of [RhHCl(PPh2(o-C6H4CO))(py)2] 

Compound [RhHCl(PPh2(o-C6H4CO))(py)2] was synthesised by reaction of [Rh(cod)Cl]2 with 

pyridine and diphenylphosphine(o-benzaldehyde) in benzene at room temperature.8  

Synthesis of SiHMe2(o-C6H4SMe) 

Compound SiHMe2(o-C6H4SMe) was prepared by an adaptation of the published route by using 

nBuLi.9 
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To a Schlenk charged with 2-Bromothioanisole (0.47 mL, 0.0035 mol) in Et2O (10 ml) an excess 

of 1.1 of nBuLi (2.4 mL of a 1.6 M solution in hexane, 0.0038 mol) was added slowly, at a 

temperature of 0°C. The mixture was stirred for 1 hour and an equivalent of ClSiMe2 was 

added dropwise (0.39 mL, 0.0035 mol). After being stirred at room temperature overnight, the 

reaction mixture was quenched with water and extracted with diethyl ether. The solvent was 

removed under vacuum to give the product as a colorless oil. Yield 71 %. 

1H NMR (500 MHz, CDCl3): δ 7.53-7.17 (m, 8 Haromatic), 4.60 (hpt, JH-H = 3.9, with satelites JSi-H = 

192.1 Hz, Si-H), 2.52 (s, 3 H, S-CH3), 0.45 (d, JH,H = 3.9, 6 H, Si-CH3). 

13C{1H} NMR (125 MHz, CDCl3): δ 144.9 (s, Caromatic), 138.2 (s, Caromatic), 135.3 (s, HCaromatic), 130.2 

(s, HCaromatic), 127.6 (s, HCaromatic), 125.2 (s, HCaromatic), 17.7 (s, S-CH3), -3.4 (s, 2 Si-CH3). 

29Si{1H} NMR (99 MHz, CDCl3): δ -18.7 (s). 

Synthesis of SiHMe(o-C6H4SMe)2 

To a Schlenk flask charged with a solution of 2-bromothioanisole (0.47 mL, 0.0035 mol) in 

diethyl ether (10 mL) an excess of 1.1 of nBuLi (2.4 mL of a 1.6 M solution in hexane, 0.0038 

mol) was added at 0 °C. The reaction mixture was stirred for 1 hour, and half an equivalent of 

Cl2SiMeH was added dropwise (0.18 mL, 0.0018 mol). After being stirred at room temperature 

overnight, the reaction mixture was quenched with water and extracted with diethyl ether. 

The solvent was removed under vacuum to give the product as a colorless oil. Yield 76 %.  

1H NMR (500 MHz, CDCl3): δ 7.55-7.18 (m, 8 Haromatic), 5.29 (q, JH-H = 3.8, with satelites JSi-H = 

191.4 Hz, Si-H), 2.38 (s, 6 H, S-CH3), 0.78 (d, JH-H = 3.8, 3 H, Si-CH3). 

13C{1H} NMR (125 MHz, CDCl3): δ 145.1 (s, Caromatic), 136.7 (s, Caromatic), 136.5 (s, HCaromatic), 130.4 

(s, HCaromatic), 127.9 (s, HCaromatic), 125.3 (s, HCaromatic), 18.0 (s, 2 S-CH3), -4.2 (s, Si-CH3). 

29Si{1H} NMR (99 MHz, CDCl3): δ -31.1 (s). 

Synthesis of SiMe2(o-C6H4SMe)2 

To a Schlenk charged with 2-Bromothioanisole (0.50 mL, 0.0037 mol) in Et2O (10 ml) an excess 

of 1.1 of nBuLi (2.6 mL of a 1.6 M solution in hexane, 0.0041 mol) was added slowly, at a 

temperature of 0°C (ice bath). The mixture was stirred for 1 hour. After that time half an 

equivalent of dichlorodimethylsilane (Cl2Me2Si) was added dropwise (0.23 mL, 0.0019 mol) and 

was left to stir overnight at room temperature. The mixture was then quenched with water 
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and the product was extracted with diethyl ether. Evaporation of the solvent under vacuum 

gave product [Si(Me)2(o-C6H4SMe)2] as a crystalline white solid. Yield 62 %. 

1H NMR (500 MHz, CD2Cl2): δ 7.60-7.40 (m, 8 Haromatic), 2.18 (s, 6 H, S-CH3), 0.65 (s, 6 H, Si-CH3). 
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IV. 3. SYNTHESIS AND CHARACTERISATION OF COMPLEXES  

Synthesis of [RhCl(SiMe2(o-C6H4SMe))2]2 (1) 

To a Schlenk flask charged with [Rh(cod)Cl]2 (50 mg, 0.10 mmol) and 4.4 equivalents of 

SiMe2H(o-C6H4SMe) (81 mg, 0.44 mmol,) 10 mL of CH2Cl2 were added. The solution was stirred 

overnight (16 h.) at room temperature. The mixture was concentrated under vacuum, pentane 

(20 mL) was added, and it was stored at -20 °C overnight to complete the crystallization of the 

product. Yield 73 %. 

1H NMR (500 MHz, CDCl3): δ 7.63 (d, JH-H = 7.4 Hz, 4 Haromatic), 7.45 (d, JH-H = 6.6 Hz, 4 Haromatic), 

7.36 (m, 8 Haromatic), 2.97 (s, 12 H, S-CH3), 0.62 (s, 12 H, Si-CHa
3), - 0.24 (s, 12 H, Si-CHb

3). 

13C{1H} NMR (125 MHz, CDCl3): δ 150.5 (s, Caromatic), 141.9 (s, Caromatic), 132.8 (s, HCaromatic), 129.7 

(s, HCaromatic), 129.5 (s, HCaromatic), 128.4 (s, HCaromatic), 27.8 (s, S-CH3), 7.3 (s, Si-CH3), 0.1 (s, Si-

CH3). 

29Si{1H} NMR (99 MHz, CDCl3): δ 44.2 (d, JSi-Rh = 28 Hz). 

ESI-MS (CH3CN): calculated for {M - Cl}+ or {C18H26RhS2Si2}
+ 465.01; found 465.01. 

Elemental Analysis: C36H52Cl2Rh2S4Si4·0.25(CH2Cl2) Calculated C 42.54, H 5.17, S 12.53. Found C 

42.55, H 5.97, S 12.23. 

Synthesis of [(cod)Rh(μ-Cl)2Rh(SiMe2(o-C6H4SMe))2] (2) 

To a Schlenk flask charged with [Rh(cod)Cl]2 (50 mg, 0.10 mmol) and 4.4 equivalents of 

SiMe2H(o-C6H4SMe) (81 mg, 0.44 mmol,) 10 mL of CH2Cl2 were added. The solution was stirred 

at room temperature for 8 h. The mixture was concentrated under vacuum, layered with 

pentane (20 mL), and stored at -20 °C overnight. A small amount of compound 2 crystallized 

from the reaction mixture.  

1H NMR (500 MHz, CDCl3): δ 7.75-7.42 (8 Haromatics), 4.24 (m, 4 H, cod), 3.39 (sbroad, 3 H, S-CH3), 

2.97 (sbroad, 3 H, S-CH3), 2.47 (m, 4 H, cod), 1.77 (m, 4 H, cod), 0.58 (sbroad, 6 H, Si-CH3), -0.18 

(sbroad, 6 H, Si-CH3). 
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Synthesis of [RhCl(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2] (3) 

To a Schlenk flask charged with [Rh(cod)Cl]2 (25 mg, 0.05 mmol) and 2 equivalents of SiMeH(o-

C6H4SMe)2 (30 mg, 0.10 mmol) 10 mL of CH2Cl2 were added. The solution was stirred at room 

temperature for 30 min. The mixture was concentrated under vacuum, pentane (20 mL) was 

added, and it was stored at -20 °C overnight to complete the crystallization of the product. 

Yield 72 %. 

1H NMR (500 MHz, CDCl3): δ 7.50 (dd, JH-H = 7.0, 4JH-H = 1.8 Hz, Haromatic), 7.45 (dd, JH-H = 6.6, JH-H = 

2.4 Hz, Haromatic), 7.24 (m, 2 H, aromatics), 5.14 (dt, JRh-H = 7.9, JH-H = 3.4 Hz, 1 H, η3-cyclooctenyl), 

3.78 (q, JRh-H = 8.5, JH-H = 8.5 Hz, 2 H, η3-cyclooctenyl), 2.90 (s, 6 H, S-CH3), 2.74 (m, 2 H, 

cyclooctenyl), 2.05 (m, 2 H, cyclooctenyl), 1.71 (m, 2 H, cyclooctenyl), 1.41 (m, 4 H, 

cyclooctenyl), 0.70 (s, Si-CH3). 

13C{1H} NMR (125 MHz, CDCl3): δ 147.5 (s, Caromatic), 142.9 (s, Caromatic), 132.8 (s, HCaromatic), 129.9 

(s, HCaromatic), 129.5 (s, HCaromatic), 128.5 (s, HCaromatic), 96.7 (d, JRh-C = 6Hz, η3-cyclooctenyl), 66.8 

(d, JRh-C = 9Hz, 2 C, η3-cyclooctenyl), 30.2 (s, cyclooctenyl), 28.1 (s, 2 C, S-CH3), 27.4 (s, 2 C, 

cyclooctenyl), 23.9 (s, 2 C, cyclooctenyl), 1.3 (s, Si-CH3). 

29Si{1H} NMR (99 MHz, CDCl3): δ 47.0 (d, JSi-Rh = 24 Hz). 

ESI-MS (CH3CN): calculated for {M - Cl}+ or {C23H30RhS2Si}+ 501.06; found 501.06. 

Elemental Analysis: C23H30ClRhS2Si Calculated C 51.44, H 5.63, S 11.94. Found C 50.76, H 4.95, S 

11.94. 

Synthesis of [Rh(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2)]BArF
4 (4) 

Method a: To a Schlenk charged with complex [RhCl(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2)] (3) 

(30 mg, 0.06 mmol) and 1.1 equivalents of NaBArF
4 (55 mg, 0.06 mmol) 2 mL of CH2Cl2 were 

added. The solution was stirred for 30 minutes at room temperature and filtered off to 

another schlenk. The mixture was concentrated under vacuum, 20 mL of pentane were added 

and the mixture was stored at -20 °C overnight to complete the crystallization of the product. 

Yield 89 %. 

Method b: To a Schlenk charged with compound {Rh(H)[SiMe(o-C6H4SMe)2](PPh3)}[BArF
4] (6) 

(50 mg, 0.03 mmol) and 1.2 equivalents of 1,5-cyclooctadiene (5 μl, 0.04 mmol) 5 mL of 

toluene were added. The solution was refluxed for 2 h. The mixture was concentrated under 

vacuum. Addition of 20 mL of pentane gave a white precipitate that was washed with pentane 

and dried under vacuum. Yield 75 %.  
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1H NMR (500 MHz, CDCl3): δ 7.73 (s, 8H, BArF
4), 7.56 (s, 4H, BArF

4), 7.70-7.41 (m, 8 Haromatic), 

5.26 (dt, JH-H = 7.8 Hz, 2.6 Hz, 1 H, CH, cyclooctenyl), 4.40 (dt, JH-H = 4.4 Hz, 2 H, CH, 

cyclooctenyl), 2.58 (s, 6 H, S-CH3), 2.40 (m, 2 H, CH2, cyclooctenyl), 1.70 (m, 4 H, CH2, 

cyclooctenyl), 1.45 (m, 2 H, CH2, cyclooctenyl), 1.33 (m, 2 H, CH2, cyclooctenyl) 0.78 (s, 3 H, Si-

CH3). 

13C{1H} NMR (125 MHz, CDCl3): δ 162.1 (q, JF-C = 50 Hz, BArF
4), 134.9 (s, BArF

4), 129.3 (q, JF-C = 12 

Hz, BArF
4), 125.9 (q, JF-C = 273 Hz, CF3), 117.5 (s, BArF

4), 130.0-135.0 (s, Caromatic), 105.6 (d, JRh-C= 

6.0 Hz, HC, cyclooctenyl), 75.6 (d, JRh-C= 8.0 Hz, HC, cyclooctenyl), 31.4 (s, H2C, cyclooctenyl), 

28.5 (s, H2C, cyclooctenyl), 28.5 (s, S-CH3), 22.4 (s, H2C, cyclooctenyl), 0.8 (s, Si-CH3). 

ESI-MS (CH3CN): calculated for {C23H30RhS2Si}+ 501.06; found m/z 501.06.  

Elemental Analysis: C55H42RhS2SiBF24 Calculated: C 48.40, H 3.10, S 4.70. Found: C 49.15, H 

3.18, S 4.36. 

Synthesis of [RhClH(SiMe(o-C6H4SMe)2)(PPh3)] (5) 

To a Schlenk charged with [RhCl(PPh3)3] (100 mg, 0.11 mmol) in CH2Cl2 (5 mL) and excess of 1.5 

equivalents of ligand SiMeH(o-C6H4SMe)2 (L1) (50 mg, 0.17 mmol) was added. The mixture was 

stirred for 60 min and concentrated under vacuum. Addition of 20 mL of pentane gave a white 

precipitate that was washed with pentane and dried under vacuum. Yield 84 %. 

1H NMR (500 MHz, CDCl3): δ 7.80-7.10 (m, 23 Haromatic), 3.13 (s, 3 H, S-CHa
3), 2.46 (s, 3 H, S-

CHb
3), -0.09 (s, 3 H, Si-CH3), -12.83 (t, JH-Rh = 16.0, JH,P = 18.3 Hz, H-Rh). 

13C{1H} NMR (125 MHz, CDCl3): δ 151.7-125.9 (Caromatic), 32.2 (s, S-CHa
3), 22.1 (s, S-CHb

3), -0.3 (s, 

Si-CH3). 

31P{1H} NMR (202 MHz, CDCl3): δ 46.8 (d, JP-Rh = 138.3 Hz). 

ESI-MS (CH3CN): calculated for {M - Cl}+ or {C33H33PRhS2Si}+: 655.06; found m/z 655.06. 

Elemental Analysis: C33H33ClPRhS2Si Calculated C 57.26, H 4.95, S 9.26. Found C 57.18, H 4.79, S 

9.13. 

Synthesis of [RhH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4 (6) 

To a Schlenk charged with complex [RhClH(SiMe(o-C6H4SMe)2)(PPh3)] (5) (60 mg, 0.09 mmol) in 

CH2Cl2 (5 mL) an equivalent of NaBArF
4 (77 mg, 0.09 mmol) was added. The mixture was stirred 
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for 30 min, filtered off to another Schlenk and concentrated under vacuum. Addition of 20 mL 

of pentane gave a pale yellow precipitate that was washed with pentane and dried under 

vacuum. Yield 61 %.  

1H NMR (500 MHz, CDCl3): δ 7.85-6.95 (m, 35 Haromatics), 2.97 (s, 3 H, S-CHa
3), 2.28 (s, 3 H, S-

CHb
3), 0.66 (s, 3 H, Si-CH3), -10.91 (dd, JH-Rh = 13.7, JH-P = 23.4 Hz, Rh-H). 

13C{1H} NMR (125 MHz, CDCl3): δ 162.1 (q, JF-C = 50 Hz, BArF
4), 135.1 (BArF

4), 129.3 (q, JF-C = 12 

Hz, BArF
4), 125.9 (q, JF-C = 273 Hz, CF3), 117.9 (s, BArF

4), 134.3-128.1 (Caromatics), 33.6 (s, S-CHa
3), 

23.6 (s, S-CHb
3), 2.5 (s, Si-CH3). 

31P{1H} NMR (202 MHz, CDCl3): δ 47.3 (d, JP-Rh = 136 Hz). 

ESI-MS (CH3CN): calculated for {C33H33PRhS2Si}+: 655.06; found m/z 655.06. 

Elemental Analysis: C65H45BF24PRhS2Si Calculated C 51.36, H 3.05, S 4.22. Found C 51.17, H 

3.31, S 4.24. 

Synthesis of [IrCl(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2)] (7) 

To a Schlenk charged with [Ir(cod)Cl]2 (50 mg, 0.07 mmol) and 2.2 equivalents of SiMeH(o-

C6H4SMe)2 (44 mg, 0.16 mmol) 5 mL of CH2Cl2 were added. The solution was stirred at room 

temperature overnight (16 h). The mixture was concentrated under vacuum, 20 mL of pentane 

were added and the mixture was stored at -20 °C overnight to complete the crystallization of 

the product. Yield 67 %. 

1H NMR (500 MHz, CDCl3): δ 7.61 (m, 4 Haromatic), 7.29 (m, 4 Haromatic), 5.15 (t, JH-H = 7.3 Hz, 1 H, 

CH, cyclooctenyl), 3.68 (dt, JH-H = 8.3 Hz, 8.4 Hz, 2 H, CH, cyclooctenyl), 3.17 (s, 6 H, S-CH3), 2.59 

(m, 2 H, CH2, cyclooctenyl), 1.99 (m, 2 H, CH2, cyclooctenyl), 1.90 (m, 2 H, CH2, cyclooctenyl), 

1.55 (m, 2 H, CH2, cyclooctenyl), 1.38 (m, 2 H, CH2, cyclooctenyl), 0.70 (s, 3 H, Si-CH3). 

13C{1H} NMR (125 MHz, CDCl3): δ 133.0 (s, HCaromatic), 130.0 (s, HCaromatic), 128.9 (s, HCaromatic), 

87.0 (s, HC, cyclooctenyl), 49.3 (s, HC, cyclooctenyl), 29.0 (s, H2C, cyclooctenyl), 28.4 (s, H2C, 

cyclooctenyl), 27.0 (s, SCH3), 25.6 (s, H2C, cyclooctenyl), -1.3 (s, Si-CH3). 

ESI-MS (CH3CN): calculated for {M - Cl}+ or {C23H30IrS2Si}+: 591.12; found m/z 591.12. 

Elemental Analysis: C23H30IrClS2Si·0.5(CH2Cl2) Calculated: C 42.20, H 4.67, S 9.59. Found: C 

41.63, H 4.49, S 9.52. 
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Synthesis of [Ir(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2)]BArF
4 (8) 

To a Schlenk charged with [IrCl(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2)] (7) (50 mg, 0.08 mmol) 

and 1.1 equivalents of NaBArF
4 (78 mg, 0.09 mmol) 2 mL of CH2Cl2 were added. The mixture 

was stirred for 30 minutes at room temperature, filtered off to another schlenk and 

concentrated under vacuum. Addition of 5 mL of pentane gave a white precipitate that was 

washed with pentane and dried under vacuum. Yield 65 %. 

1H NMR (500 MHz, CD2Cl2): δ 7.76 (s, 8 H, BArF
4), 7.59 (s, 4 H, BArF

4), 7.70-7.20 (m, 8 Haromatic), 

5.20 (t, JH-H= 7.0 Hz, 1 H, CH, cyclooctenyl), 4.41 (m, 2 H, CH, cyclooctenyl), 3.33 (s, 3 H, S-CH3), 

2.43 (s, 3 H, S-CH3), 2.33 (m, 2 H, CH2, cyclooctenyl), 1.70 (m, 3 H, 2 CH2, cyclooctenyl), 1.25 (m, 

1 H, CH2, cyclooctenyl), 0.99 (m, 2 H, CH2, cyclooctenyl), 0.88 (m, 2 H, CH2, cyclooctenyl), 0.65 

(s, 3 H, Si-CH3). 

13C{1H} NMR (125 MHz, CD2Cl2): δ 161.7 (q, JF-C = 50 Hz, BArF
4), 134.7 (s, BArF

4), 128.7 (q, JF-C = 31 

Hz, BArF
4), 124.5 (q, JF-C = 273 Hz, CF3), 117.5 (s, BArF

4), 145.5-129.5 (s, Caromatic), 97.6 (s, HC, 

cyclooctenyl), 66.9 (s, HC, cyclooctenyl), 62.3 (s, HC, cyclooctenyl), 34.5 (s, SCH3), 32.5 (s, H2C, 

cyclooctenyl), 31.5 (s, H2C, cyclooctenyl), 29.9 (s, H2C, cyclooctenyl), 28.5 (s, H2C, cyclooctenyl), 

24.1 (s, S-CH3), 14.1 (s, H2C, cyclooctenyl), -2.0 (s, Si-CH3). 

Elemental Analysis: C55H42IrS2SiBF24·0.25(CH2Cl2) Calculated: C 44.54, H 2.90, S 4.29. Found: C 

44.05, H 3.12, S 4.78. 

Synthesis of [IrH(η4-cod)(SiMe(o-C6H4SMe)2)]BArF
4 (9) 

Method a: To a Young NMR tube charged with [Ir(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2)]BArF
4 (8) 

(20 mg, 0.013 mmol) 0.5 mL of CDCl3 were added. The solution was monitored by 1H NMR 

during 18 h. Yield 50% (calculated by 1H NMR).  

Method b: To a Schlenk charged with [Ir(cod)Cl]2 (30 mg, 0.04 mmol), 2.2 equivalents of 

SiMeH(o-C6H4SMe)2 (29 mg, 0.10 mmol) and 2.1 equivalents of NaBArF
4 (83 mg, 0.09 mmol) 5 

mL of CH2Cl2 were added. The solution was stirred at room temperature for 30 minutes and 

filtered off to another schlenk. The mixture was concentrated under vacuum, 20 mL of 

pentane were added and the mixture was stored at -20 °C overnight to allow the crystallization 

of the product. Yield 81 %. 
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1H NMR (500 MHz, CDCl3): δ 7.73 (s, 8 H, BArF
4), 7.56 (s, 4 H, BArF

4), 7.80-7.20 (m, 8 Haromatics), 

5.29 (dd, JH-H= 5.0 Hz, 2.8 Hz, 2 H, CH, cod), 4.87 (ddd, JH-H= 8.8 Hz, 6.4 Hz, 2.3 Hz, 1 H, CH, cod), 

3.50 (m, 1 H, CH, cod), 3.07 (s, 3 H, S-CH3), 3.06 (m, 1 H, CH2, cod), 2.81 (m, 1 H, CH2, cod), 2.75 

(m, 1 H, CH2, cod), 2.61 (m, 1 H, CH2, cod), 2.55 (m, 1 H, CH2, cod), 2.42 (m, 1 H, CH2, cod), 2.40 

(s, 3 H, S-CH3), 2.15 (m, 1 H, CH2, cod), 2.06 (m, 1 H, CH2, cod), 0.90 (s, 3 H, Si-CH3), -12.75 (s, 1 

H, IrH). 

13C{1H} NMR (125 MHz, CDCl3): δ 162.1 (q, JF-C = 50 Hz, BArF
4), 134.9 (s, BArF

4), 129.3 (q, JF-C= 12 

Hz, BArF
4), 125.9 (q, JF-C = 273 Hz, CF3), 117.5 (s, BArF

4), 128.0-132.0 (s, Caromatics), 101.7 (s, HC, 

cod), 96.9 (s, HC, cod), 79.7 (s, HC, cod), 75.6 (s, HC, cod), 37.5 (s, H2C, cod), 35.1 (s, S-CH3), 

29.8 (s, H2C, cod), 28.1 (s, H2C, cod), 27.8 (s, H2C, cod), 21.9 (s, S-CH3), 1.4 (s, Si-CH3). 

ESI-MS (CH3CN): calculated for {C23H30IrS2Si}+: 591.12; found m/z 591.12. 

Elemental Analysis: C55H42IrS2SiBF24·0.5(CH2Cl2) Calculated: C 44.54, H 2.90, S 4.29. Found: C 

44.05, H 3.26, S 4.13. 

Synthesis of [RhCl(ntyl)(SiMe(o-C6H4SMe)2)] (10) 

To a Schlenk charged with [Rh(nbd)Cl]2 (50 mg, 0.11 mmol) and 2 equivalents of SiMeH(o-

C6H4SMe)2 (L2) (64 mg, 0.22 mmol) 2 mL of CH2Cl2 were added. The solution was stirred at 

room temperature for 45 minutes. The mixture was concentrated under vacuum. Addition of 5 

mL of pentane gave a white precipitate that was washed with pentane and dried under 

vacuum. Yield 72 %. 

1H NMR (500 MHz, CD2Cl2): δ 7.76-7.06 (8 Haromatics), 2.88 (s, 3 H, S-CH3), 2.42 (s, 3 H, S-CH3), 

2.37 (m, 1 H, RhCH, nortriciclyl), 1.93 (m, 1 H, CH2, nortriciclyl), 1.32 (m, 2 H, CH, nortriciclyl, 

CH2, nortriciclyl), 1.25 (m, 1 H, CH, nortriciclyl), 1.08 (m, 1 H, CH2, nortriciclyl), 1.01 (s, 3 H, Si-

CH3), 0.91 (m, 1 H, CH2, nortriciclyl), 0.88 (s, 1 H, CH, nortriciclyl) 0.13 (m, 1 H, CH, nortriciclyl). 

 13C{1H} NMR (125 MHz, CD2Cl2): δ 124.7-148.3 (s, Caromatics), 44.0 (d, JRh-C= 23 Hz, RhHC, 

nortriciclyl), 35.4 (s, HC, nortriciclyl), 33.4 (s, H2C, nortriciclyl), 26.4 (s, S-CH3), 22.3 (s, HC, 

nortriciclyl), 21.3 (s, S-CH3), 16.0 (s, HC, nortriciclyl), 13.9 (s, H2C, nortriciclyl), 12.3 (s, HC, 

nortriciclyl), -0.03 (s, Si-CH3). 

ESI-MS (CH3CN): calculated for {M - Cl}+ or {C22H26RhS2Si}+: 485.03; found m/z 485.03. 

Elemental Analysis: C22H26RhClS2Si Calculated: C 50.72, H 5.03, S 12.31. Found: C 50.13, H 5.75, 

S 12.74. 
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Synthesis of [Rh(ntyl)(SiMe(o-C6H4SMe)2)]BArF
4 (11) 

To a Schlenk charged with [Rh(ntyl)(SiMe2(o-C6H4SMe)2)Cl] (10) (25 mg, 0.05 mmol) and 1.1 

equivalents of NaBArF
4 (47 mg, 0.05 mmol) 2 mL of CH2Cl2 were added. The solution was 

stirred at room temperature for 30 minutes and filtered off to another schlenk. The mixture 

was concentrated under vacuum, 10 mL of pentane were added and the mixture was stored at 

-20 °C overnight to complete the crystallization of the product. Yield 55 %. 

1H NMR (500 MHz, CDCl3): δ 7.73 (s, 8 H, BArF
4), 7.56 (s, 4 H, BArF

4), 7.65-7.38 (m, 8 Haromatics), 

5.50 (m, 1 H, CH, norbornenyl), 4.45 (m, 1 H, CH, norbornenyl), 3.77 (m, 1 H, CH, norbornenyl), 

3.24 (m, 1 H, CH, norbornenyl), 2.61 (s, 3 H, SCH3), 2.29 (m, 1 H, RhCH, norbornenyl), 1.87 (s, 3 

H, S-CH3), 1.81 (s, 1 H, CH2, norbornenyl) 1.76 (m, 1 H, CH2, norbornenyl), 1.58 (m, 1 H, CH2, 

norbornenyl), 1.48 (m, 1 H, CH2, norbornenyl), 1.19 (s, 3 H, Si-CH3). 

 13C{1H} NMR (125 MHz, CDCl3): δ 162.1 (q, JF-C = 50 Hz, BArF
4), 134.9 (s, BArF

4), 129.3 (q, JF-C = 12 

Hz, BArF
4), 125.9 (q, JF-C = 273 Hz, CF3), 117.5 (s, BArF

4), 133.5-128.6 (s, Caromatic), 107.9 (d, JRh-C= 

6.7 Hz, HC, norbornenyl), 73.4 (sbroad, HC, norbornenyl), 56.9 (s, H2C, norbornenyl), 48.9 (s, HC, 

norbornenyl), 45.8 (s, HC, norbornenyl), 26.5 (s, S-CH3), 22.6 (s, S-CH3), 20.1 (d, JRh-C= 11.2 Hz, 

HC, norbornenyl), 9.5 (s, H2C, norbornenyl), 1.80 (s, Si-CH3). 

ESI-MS (CH3CN): calculated for {C18H26RhS2Si}+: 485.03; found m/z 485.03. 

Elemental Analysis: C54H38RhS2SiBF24 Calculated: C 48.08, H 2.83, S 4.75. Found: C 47.62, H 

2.91, S 4.71. 

Synthesis of [Rh(cod)SiMe2(o-C6H4SMe)2]BArF
4 (12) 

To a Schlenk charged with [Rh(cod)Cl]2 (30 mg, 0.06 mmol) in CH2Cl2 (5 ml) two equivalents of 

Me2Si(o-C6H4SMe)2 (L3) (37 mg, 0.12 mmol) and NaBArF
4 (108 mg, 0.12 mmol) were added. The 

mixture was stirred for 60 minutes, filtered into another schlenk and concentrated under 

vacuum. Addition of 20 mL of pentane gave a light orange precipitate that was washed with 

pentane twice and dried under vacuum. Yield 72 %. 

1H NMR (500 MHz, CD2Cl2): δ 7.64, 7.47 (m, 12 H, BArF
4), 7.60-7.40 (m, 8 Haromatics), 4.75 (m, 2 H, 

CH, cod), 4.23 (m, 2 H, CH, cod), 2.48 (m, 2 H, CH2, cod), 2.31 (s, 6 H, S-CH3), 2.20 (m, 4 H, CH2, 

cod), 1.91 (m, 2 H, CH2, cod), 0.47 (s, 6 H, Si-CH3). 

13C{1H} NMR (125 MHz, CDCl3): δ 161.7 (q, JF-C = 50 Hz, BArF
4), 135.1 (s, BArF

4), 129.5 (q, JF-C = 31 

Hz, BArF
4), 124.5 (q, JF-C = 273 Hz, CF3), 117.8 (s, BArF

4), 136.0-129.0 (12 Caromatics), 90.1 (d, JRh-C = 
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10.8 Hz, 2 CH, cod), 86.8 (d, JRh-C = 10.2 Hz, 2 CH, cod), 32.3 (s, 2 CH2, cod), 29.7 (s, 2 CH2, cod), 

16.2 (s, 2 S-CH3), -0.51 (s, 2 C, Si-CH3). 

ESI-MS (CH3CN): calculated for {C24H32RhS2Si}+: 515.08; found m/z 515.09. 

Elemental Analysis: C56H44RhS2SiBF24 Calculated: C 48.78, H 3.22. Found: C 48.86, H 3.18. 

Synthesis of [Rh(nbd)SiMe2(o-C6H4SMe)2]BArF
4 (13) 

To a Schlenk charged with [Rh(nbd)Cl]2 (15 mg, 0.03 mmol) in CH2Cl2 (5 ml) two equivalents of 

Me2Si(o-C6H4SMe)2 (L3) (21 mg, 0.066 mmol) and NaBArF
4 (58 mg, 0,066 mmol) were added. 

The mixture was stirred for 60 minutes, filtered into another schlenk and concentrated under 

vacuum. Addition of 20 mL of pentane gave an orange precipitate that was washed twice with 

pentane and dried under vacuum. Yield 56 %. 

1H NMR (500 MHz, CD2Cl2): δ 7.64, 7.47 (m, 12 H, BArF
4), 7.60-7.40 (m, 8 Haromatics), 4.19 (m 

broad, 4 H, CH, nbd), 3.92 (m, 2 H, CH, nbd), 2.16 (s, 6 H, S-CH3), 1.44 (m, 2 H, CH2, nbd), 0.44 

(s, 6 H, Si-CH3). 

13C{1H} NMR (500 MHz, CDCl3): δ 161.7 (q, JF-C = 50 Hz, BArF
4), 134.5 (s, BArF

4), 129.5 (q, JF-C = 31 

Hz, BArF
4), 124.5 (q, JF-C = 273 Hz, CF3), 117.8 (s, BArF

4), 136.0-127.0 (12 Caromatics), 70.0 (m, 2 CH, 

nbd), 65.3 (m, CH2, COD), 64.3 (d, JRh-C = 6.3 Hz, 2 CH, nbd), 53.1 (d, JRh-C = 2.3 Hz, 2 CH, nbd), 

16.0 (s, 2 S-CH3), -0.66 (s, 2 C, Si-CH3). 

ESI-MS (CH3CN): calculated for {C23H28RhS2Si}+: 499.05; found m/z 499.06. 

Elemental Analysis: C55H40RhS2SiBF24 Calculated: C, 48.47; H, 2.96; Found: C, 48.53; H, 2.93. 

Synthesis of [Ir(cod)SiMe2(o-C6H4SMe)2]BArF
4 (14) 

To a Schlenk charged with [Ir(cod)Cl]2 (30 mg, 0.05 mmol) in CH2Cl2 (5 ml) two equivalents of 

Me2Si(o-C6H4SMe)2 (L3) (27 mg, 0.09 mmol) and NaBArF
4 (80 mg, 0.09 mmol) were added. The 

mixture was stirred for 60 minutes, filtered into another schlenk and concentrated under 

vacuum. Addition of 20 mL of pentane gave an orange precipitate that was washed with 

pentane and dried under vacuum. Yield 64 %. 

1H NMR (500 MHz, CD2Cl2): δ 7.64, 7.47 (m, 12 H, BArF
4), 7.50-7.35 (m, 8 Haromatics), 4.58 (m, 2 H, 

CH, cod), 3.91 (m, 2 H, CH, cod), 2.32 (m, 2 H, CH2, cod), 2.04 (m, 2 H, CH2, cod), 2.55 (s, 6 H, S-

CH3), 1.59 (m, 2 H, CH2, cod), 0.51 (s, 6 H, Si-CH3). 
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Elemental Analysis: C56H44IrS2SiBF24 Calculated: C 45.81, H 3.02. Found: C 45.69, H 2.81. 

Synthesis of [Rh(Si(Me)2(o-C6H4SMe)2)Cl(DMSO)] (15) 

To a schlenk charged with [Rh(coe)2Cl]2 (50 mg, 0.07 mmol) in CH2Cl2 (5 ml) two equivalents of 

Me2Si(o-C6H4SMe)2 (L3) (42.4 mg, 0.14 mmol) and an excess (60 μL) of dimethylsulfoxyde were 

added. Stirring the mixture for 2 hours gave a yellow precipitate. This precipitate was washed 

with 20 mL of pentane and dried under vacuum. Yield 81 %. 

1H NMR (500 MHz, DMSO-d6): δ 7.80-7.10 (m, 16 Haromatics), 2.69 (s, 6 H, 2 S-CH3), 2.77 (s, 6 H, 2 

S-CH3), 2.50 (s, 6H, DMSO), 0.82 (s, 6 H, 2 Si-CH3), 0.59 (s, 6 H, 2 Si-CH3). 

Synthesis of [Rh(Me)(Si(Me)(o-C6H4SMe)2)(MeCN)2]BArF
4 (16) 

To a schlenk charged with [Rh(coe)2Cl]2 (30 mg, 0.042 mmol) in 5 mL of CH2Cl2 two equivalents 

of Me2Si(o-C6H4SMe)2 (L3)  (26 mg, 0.084 mmol) and NaBArF
4 (75mg, 0.084 mmol), and an 

excess of acetonitrile (60 μL) were added. The solution was stirred at room temperature for an 

hour and filtered off to another schlenk. The mixture was concentrated under vacuum and 10 

mL of pentane were added. The resultant light yellow powder was washed with pentane and 

dried under vacuum. Yield 61 %. 

1H NMR (500 MHz, CDCl3): δ 7.85-6.95 (m, 8 Haromatics), 2.66 (s, 3 H, S-CH3), 2.60 (s, 3 H, S-CH3), 

2.25 (m, 6 H, 2 CH3, ACN), 0.80 (m, 3 H, Rh-CH3), 0.61 (s, 3 H, Si-CH3). 

13C{1H} NMR (500 MHz, CDCl3): δ 161.7 (q, JF-C = 50 Hz, BArF
4), 134.5 (s, BArF

4), 129.5 (q, JF-C = 31 

Hz, BArF
4), 124.5 (q, JF-C = 273 Hz, CF3), 117.8 (s, BArF

4), 136.0-127.0 (12 Caromatics), 70.0 (m, 2 CH, 

cod), 65.3 (m, CH2, cod), 64.3 (d, JRh-C = 6.3 Hz, 2 CH, cod), 53.1 (d, JRh-C = 2.3 Hz, 2 CH, cod), 16.0 

(s, 2 S-CH3), -0.66 (s, 2 C, Si-CH3). 

Elemental Analysis: C52H38RhS2N2SiBF24 Calculated: C 46.17, H 2.83, N 2.07. Found: C 46.54, H 

2.93, N 2.86. 

Synthesis of [RhH(SiMe2(o-C6H4SMe))(PPh3)2]BArF
4 (17) 

To a Schlenk charged with [RhCl(PPh3)3] (100 mg, 0.11 mmol) in 5 mL of CH2Cl2, an equivalent 

of SiMe2H(o-C6H4SMe) (L1) (20 mg, 0.11 mmol) and NaBArF
4 (98 mg, 0.11 mmol) were added. 

The mixture was stirred for 30 minutes, filtered of via cannula to another schlenk and 
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concentrated under vacuum. Addition of 20 mL of pentane gave a pale yellow precipitate that 

was washed with pentane and dried under vacuum. Yield 70 %. 

1H NMR (500 MHz, CD2Cl2): δ 7.73 (s, 8 H, BArF
4), 7.56 (s, 4 H, BArF

4), 7.61-7.10 (m, 34 H 

aromatics), 2.02 (s, 3 H, S-CH3), 0.21 (s, 6 H, Si-CH3), -9.65 (dt, JH-Rh= 22.9 Hz, JH-P= 13.5 Hz, HRh) 

13C{1H} NMR (125 MHz, CD2Cl2): δ 162.1 (q, JF-C = 50 Hz, BArF
4), 135.1 (BArF

4), 129.3 (q, JF-C = 12 

Hz, BArF
4), 125.9 (q, JF-C = 273 Hz, CF3), 117.9 (s, BArF

4), 147.4-128.2 (42 Caromatics), 21.9 (S-CH3), 

10.6 (Si-CH3) 

31P{1H} NMR (202 MHz, CD2Cl2): δ 44.4 (d, JP-Rh= 118 Hz) 

29Si{1H} NMR (99 MHz, CD2Cl2): δ 51.2 (obtained from correlation 1H/29Si) 

ESI-MS (CH3OH): calculated for {C45H44RhSP2Si}+: 809.15; found m/z 809.15. 

Elemental Analysis: C77H56RhSP2SiBF24 Calculated: C 55.28, H 3.37, S 1.92. Found: C 55.33, H 

3.41, S 1.75. 

Synthesis of [IrClH(SiMe(o-C6H4SMe)2)(PPh3)](18) 

To a Schlenk charged with [Ir(Cod)Cl]2 (50 mg, 0.07 mmol) in CH2Cl2 (5 mL), 2 equivalents of 

ligand SiMe(o-C6H4SMe)2 (L2) (44 mg, 0,15 mmol) and 2 equivalents of PPh3 (40 mg, 0.15 

mmol) were added. The mixture was stirred for 1 hour and concentrated under vacuum. 

Addition of 20 mL of pentane gave a pale yellow precipitate that was washed with pentane 

and dried under vacuum. Yield 87 %. 

1H NMR (500 MHz, CDCl3): � 7.70-7.05 (m, 8 Haromatics), 3.41 (s, 3 H, S-CHa
3), 2.65 (s, 3 H, S-CHb

3), 

0.07 (s, 3 H, Si-CH3), -14.13 (dd, JP-H= 17.6 Hz, Ir-H) 

13C{1H} NMR (125 MHz, CDCl3): � 127-153 (30 Caromatics), 34.4 (s, S-CH3
a), 21.6 (s, S-CH3

b), 1.6 (s, 

Si-CH3) 

31P{1H}  NMR (202 MHz, CDCl3): � 13.3 (s) 

ESI-MS (CH3OH): Calculated for {M - Cl}+ or {C33H33IrPS2Si}+: 745.12; found m/z 745.12. 

Elemental analysis: C33H33IrClPS2Si Calculated: C 50.78, H 4.26, S 8.22. Found: C 50.75, H 3.92, S 

7.98.   
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Synthesis of [IrH2(SiMe(o-C6H4SMe)2)(PPh3)] (19) 

To a Schlenk charged with complex [IrClH[SiMe(o-C6H4SMe)2](PPh3)] (18) (80 mg, 0.12 mmol) in 

5 mL of CH2Cl2 an excess of 4 equivalents of LiAlH4 (152 mg, 0.48 mmol) was added. The 

mixture was stirred overnight, concentrated to dryness and resuspended in benzene (5 mL). 

The mixture was filtered off to another schlenk and concentrated under vacuum. Addition of 

20 mL of pentane gave a white precipitate that was washed with pentane and dried under 

vacuum. Yield 47 %. 

1H NMR (500 MHz, CDCl3): � 8.00-7.05 (m, 8 Haromatics), 2.15 (s, 6 H, S-CH3), 1.09 (s, 3 H, Si-CH3), -

15.44 (d, JP-H= 14.2 Hz, Ir-H) 

13C{1H} NMR (125 MHz, CDCl3): � 154-127 (30 Caromatics), 30.7 (s, S-CH3), 3.4 (s, Si-CH3) 

31P{1H} NMR (202 MHz, CDCl3): � 13.6 (s) 

ESI-MS (CH3OH): Calculated for {M - H}+ or {C33H33IrPS2Si}+: 745.12; found m/z 745.12. 

Elemental analysis: C33H34IrPS2Si Calculated: C 53.13, H 4.59, S 8.60. Found: C 52.87, H 4.41, S 

7.94.  

Synthesis of [IrH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4 (20) 

To a Schlenk charged with complex [Ir(H)[SiMe(o-C6H4SMe)2]Cl(PPh3)] (18) (40 mg, 0.05 mmol) 

in CH2Cl2 (3 ml) an equivalent of NaBArF
4 (46 mg, 0.05 mmol) was added. The mixture was 

stirred for 5 minutes, filtered off to another schlenk and concentrated to dryness under 

vacuum. To the resultant solid 5 mL of THF were added, and the mixture was stirred for 20 

minutes. Addition of 20 mL of pentane gave a pale yellow precipitate that was washed with 

pentane and dried under vacuum. Yield 60 %. 

1H NMR (500 MHz, THF-d8): � 8.00-7.00 (m, 20 Haromatics), 3.57 (s, 4H, THF), 3.30 (s, 3 H, S-CHa
3), 

2.60 (s, 3 H, S-CHb
3), 1.72 (s, 4H, THF), -0.06 (s, 3 H, Si-CH3), -14.25 (d, JP-H= 14.8 Hz, Ir-H) 

13C{1H} NMR (125 MHz, THF-d8): � 162.1 (q, JF-C = 50 Hz, BArF
4), 134.9 (s, BArF

4), 129.3 (q, JF-C = 

12 Hz, BArF
4), 125.9 (q, JF-C = 273 Hz, CF3), 117.5 (s, BArF

4), 152.5-126.7 (30 Caromatics), 32.7 (s, S-

CH3
a), 20.0 (s, S-CH3

b), -2.7 (s, Si-CH3) 

31P{1H} NMR (202 MHz, THF-d8): � 11,9 (s) 

ESI-MS (CH3OH): Calculated for {C33H33IrPS2Si}+: 745.12; found m/z 745.12. 
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Elemental analysis: C65H45BF24PRhS2Si Calculated: C 48.54, H 2.82, S 3.99. Found: C 48.11, H 

3.01, S 4.24.    

Synthesis of [Rh(SiMe(o-C6H4SMe)2)2]BArF
4 (21) 

To a Schlenk charged with complex [RhH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4 (6) (50 mg, 0.033 

mmol) in 5 mL of toluene, an excess of SiMe(o-C6H4SMe)2 (L2) (15 mg, 0.05 mmol) was added. 

The mixture was refluxed for 2 h. Concentration under vacuum and addition of 20 mL of 

pentane gave a pale yellow precipitate that was washed with pentane and dried under 

vacuum. Yield 81 %. 

1H NMR (500 MHz, CD2Cl2): � 7.95-7.00 (m, 28 Haromatics), 2.90 (s, 6 H, S-CHa
3), 2.46 (s, 6 H, S-

CHb
3), 0.27 (s, 6 H, Si-CH3) ppm. 

13C{1H} NMR (125 MHz, CD2Cl2): � 162.1 (q, JF-C = 50 Hz, BArF
4), 135.2 (BArF

4), 129.3 (q, JF-C = 12 

Hz, BArF
4), 125.1 (q, JF-C = 273 Hz, CF3), 117.9 (s, BArF

4), 147.8-128.0 (24 Caromatics), 26.7 (s, S-

CHa
3), 23.9 (s, S-CHb

3), -1.7 (s, Si-CH3) ppm. 

ESI-MS (CH3CN): calculated for {C30H34PRhS2Si}+: 681.01; found m/z 681.01. 

Elemental analysis: C62H46BF24RhS2Si Calculated; C 48.19, H 3.00, S 8.30. Found: C 48.45, H 3.20, 

S 8.09. 

Synthesis of [RhClH(PPh2(CH(Ph)CH2CO))(py)2] (22) 

To a Schlenk charged with complex [Rh(cod)Cl]2 (50 mg, 0.10 mmol) in CH2Cl2 (5 ml) 4 

equivalents of pyridine (32 mg, 0.40 mmol) and a slight excess of PPh2(CH(Ph)CH2CHO (75 mg, 

0.25 mmol) were added. The mixture was stirred for 15 minutes and concentrated under 

vacuum. Addition of 20 mL of diethyl ether gave a pale yellow precipitate that was washed 

with diethyl ether and dried under vacuum. Yield 76 %. 

1H NMR (500 MHz, CDCl3): � -16.00 (dd, JRh-H = JP-H = 20.0 Hz, RhH, trans-H,Cl-22a); -16.20 (m, 

RhH, trans-H,Cl-22a’); 8.80-6.73 (m, 25 Haromatics); 3.86 (m, 1H, PhCH); 3.06 (m, 2H, CH2). 

31P{1H} NMR (202 MHz, CDCl3): � 97.9 (d, JRh-P = 166 Hz, trans-H,Cl-22a); 93.9 (d, JRh-P = 169 Hz, 

trans-H,Cl-22a’). 

IR (KBr, cm–1): 2075 (m), ν(Rh-H); 1618 (s), ν(C=O). 
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ESI-MS (CH3CN): Calculated for [M - py - H]+ or {C26H23ClNOPRh}+: 534.02; found m/z 534.02. 

Elemental analysis: C31H29ClN2OPRh Calculated: C 60.55, H 4.75, N 4.56. Found: C 61.06, H 4.82, 

N 4.14.    

Synthesis of [Rh(Cl)2(PPh2(CH(Ph)CH2CO))(py)2] (23) 

A chloroform solution of 22 (153 mg, 0.25 mmol) was left to stir for 24 hours at room 

temperature and concentrated under vacuum. Addition of 20 mL of diethyl ether gave a yellow 

precipitate that was washed with diethyl ether and dried under vacuum. Yield 61 %.  

1H NMR (500 MHz, CDCl3): � 9.05-6.75 (m, Haromatics); 5.19 (m, PhCH); 4.87 (m, PhCH); 4.58 (m, 

CH2); 4.25 (m, PhCH); 3.93 (m, CH2); 3.80 (m, CH2); 3.54 (m, CH2); 3.45 (m, CH2). 

31P{1H} NMR (202 MHz, CDCl3): � 74.4 (d, JRh-P = 135 Hz, cis-Cl-23b); 72.5 (d, JRh-P = 135 Hz, cis-Cl-

23b’); 66.4 (d, JRh-P = 131 Hz, trans-py-23a).  

13C{1H} NMR (125 MHz, CDCl3): � 241.2 (d, JRh-C = 28 Hz) and 239.6 (d, JRh-C = 30 Hz) (C=O); 63.3 

(d, JP-C = 23 Hz), 57.3 (d, JP-C = 16 Hz) and 57.0 (d, JP-C = 19 Hz) (CH2); 45.6 (d, JP-C = 26 Hz), 44.1 (d, 

JP-C = 25 Hz); 41.4 (d, JP-C = 25 Hz) (PhCH). 

IR (KBr, cm−1): 1660 (s), ν(C=O). 

ESI-MS (CH3CN): Calculated for {M - py - Cl}+ or {C26H23ClNOPRh}+: 534.02; found m/z 534.02. 

Elemental analysis: C31H28Cl2N2OPRh Calculated: C 57.02, H 3.95, N 4.06. Found: C 56.67, H 

3.80, N 3.87.    

Synthesis of [RhClH(PPh2(CH(Ph)CH2CO))(κ1-PPh2(CH(Ph)CH2CHO))(py)] (24) 

To a Schlenk charged with [Rh(cod)Cl]2 (30 mg, 0.06 mmol) in CH2Cl2 (5 ml), pyridine (19 mg, 

0.24 mmol) and PPh2CH(Ph)CH2CHO (117 mg, 0.37 mmol) were added. The mixture was stirred 

for 1 hour and concentrated under vacuum. Addition of 20 mL of diethyl ether gave a white 

precipitate that was washed with diethyl ether and dried under vacuum. Yield 82 %.  

1H NMR (500 MHz, CDCl3): � 8.30-6.30 (m, Haromatics); 5.24 (m, PhCH); 4.30 (m, CH2); 3.70 (m, 

PhCH); 3.13 (m, CH2); 2.78 (m, CH2); 2.60 (m, CH2). Data for 24a: � -14.75 (dd,  JRh-H = 19.6 Hz, 

JP-H = 10.9 Hz, 1H, RhH); 9.54 (d, JP-H = 5 Hz, 1H, CH=O). Data for 24a’: � -15.02 (dd, JRh-H = 18.8 

Hz, JP-H = 13.4 Hz, 1H, RhH); 9.43 (d, JP-H = 3 Hz, 1H, CH=O). 



205 

 

31
P{

1H} NMR (202 MHz, CDCl3): Data for 24a: � 80.5 (dd, JRh-P = 136 Hz, P~CO); 54.2 (dd, JRh-P = 

124 Hz, JP-P = 360 Hz, P~CHO). Data for 24a’: � 79.9 (dd, JRh-P = 138 Hz, P~CO); 52.0 (dd, JRh-P = 

126 Hz, JP-P = 370 Hz, P~CHO). 

13C{1H} NMR (125 MHz, CDCl3): � 66.1 (d, JP-C = 8 Hz, CH2); 45.9 (d, JP-C = 9 Hz, CH2); 41.1 (d, JP-C = 

20 Hz, PhCH); 36.7 (d, JP-C = 17 Hz, PhCH). Data for 24a: � 242.5 (d, JRh-C = 32 Hz, P~C=O); 202.9 

(d, JP-C = 21 Hz, CH=O). Data for 24a’: � 242.6 (d, JRh-C = 30 Hz, P~C=O); 201.9 (d, JP-C = 11 Hz, 

CH=O). 

IR (KBr, cm−1): 2037 (m), ν(Rh-H); 1718 (s), ν(CHO); 1638 (s), ν(C=O). 

ESI-MS (CH3CN): Calculated for {M - py - Cl}+ or {C42H38O2P2Rh}+: 739.14; found m/z 739.14. 

Elemental analysis: C47H43ClNO2P2Rh Calculated: C 66.09, H 5.07, N 1.64. Found: C 66.26, H 

5.39, N 1.33.    

Synthesis of [RhClH(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))(py)] (25) 

To a schlenk charged with compound [RhCl(H)(PPh2(o-C6H4CO))(py)2] (35 mg, 0.26 mmol) in 

CH2Cl2 (5 ml) PPh2(CH(Ph)CH2CHO) (120 mg, 0.38 mmol) was added. This solution was left to 

stir for 1 hour at room temperature and concentrated under vacuum. Addition of 20 mL of 

hexane gave a yellow precipitate that was washed with hexane and dried under vacuum. Yield 

86 %.  

1H NMR (500 MHz, CDCl3): � -14.70 (ddd, JRh-H = 19.4 Hz, JP-H = 9.5 Hz, JP-H = 4.9 Hz, RhH); -15.06 

(ddd, JRh-H = 18.3 Hz, JP-H = 11.9 Hz, JP-H = 2.3 Hz, RhH); 8.40-6.30 (m, Haromatics). Data for 25a: 9.44 

(d, JP-H = 3 Hz, 1H, CH=O); 5.73 (m, 1H, PhCH); 3.05 (m, 1H, CH2); 2.77 (m, 1H, CH2). Data for 

25a’: 9.56 (d, JP-H = 5 Hz, 1H, CH=O); 5.32 (m, 1H, PhCH); 4.28 (m, 1H, CH2); 2.59 (m, 1H, CH2). 

31P{1H} NMR (202 MHz, CDCl3): � 63.3 (dd, JRh-P = 137 Hz, JP-P = 363 Hz, P~CO) and 55.2 (dd, JRh-P 

= 125 Hz, JP-P = 363 Hz, P~CHO); 63.2 (dd, JRh-P = 140 Hz, JP-P = 372 Hz, P~CO) and 53.2 (dd, JRh-P = 

126 Hz, JP-P = 372 Hz, P~CHO). 

13C{1H} NMR (125 MHz, CDCl3): � 237.1 (d, JRh-C = 33 Hz, P~C=O); 229.4 (d, JRh-C = 32 Hz, P~C=O). 

Data for 25a: � 201.8 (d, JP-C = 21 Hz, CH=O); 44.0 (s, CH2); 34.9 (d, JP-C = 16 Hz, PhCH). Data for 

25a’: � 203.0 (d, JP-C = 11 Hz, CH=O); 45.9 (d, JP-C = 9 Hz, CH2); 36.7 (d, JP-C = 16 Hz, PhCH). 

IR (KBr, cm−1): 2046 (m), ν(Rh-H); 1718 (s), ν(CHO), 1621 (s), ν(C=O). 

ESI-MS (CH3CN): Calculated for {M - py - Cl}+ or {C40H34O2P2Rh}+: 711.11; found m/z 711.11. 
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Elemental analysis: C45H39ClNO2P2Rh Calculated: C 65.41, H 4.76, N 1.70. Found C 64.99, H 4.71, 

N 1.92. 

Synthesis of [RhH(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))(NN)]BPh4 (NN = 1,10-

phenantroline, 26; NN = 2,2’-bipyridine, 27) 

To a methanol suspension of compound 25 (50 mg, 0.06 mmol) a slight excess of the 

corresponding NN ligand (0.07 mmol) was added. The mixture was left to stir for an hour (26) 

or 5 hours (27) at room temperature. The solution was concentrated under vacuum, and 

addition of the stoichiometric amount of NaBPh4 (24 mg, 0.07 mmol) gave a pale yellow 

precipitate that was filtered off, washed with diethyl ether and dried under vacuum.  

- Data for 26. Yield 73 %. 

1H NMR (500 MHz): Data for 26a (DMSO-d6): � -13.25 (ddd, JRh–H = 14.8 Hz, JP–H = 7.2 Hz, JP–H = 

6.2 Hz, 1H, RhH); 9.50 (s, 1H, CH=O); 8.90-5.50 (m, 57 Haromatics); 4.87 (m, 1H, PhCH); 3.30 (m, 

1H, CH2); 2.74 (m, 1H, CH2). Data for 26a’ (CDCl3): � -12.85 (ddd, JRh–H = 18.0 Hz, JP-H = 9.8 Hz, JP–

H = 7.0 Hz, 1H, RhH); 9.56 (s, 1H, CH=O); 8.40-5.70 (m, 57 Haromatics); 5.40 (m, 1H, PhCH); 3.35 (m, 

1H, CH2); 2.86 (m, 1H, CH2). 

31P{1H} NMR (202 MHz): Data for 26a (DMSO-d6): � 238.8 (d, JRh–C = 34 Hz, C=O); 201.2 (d, JRh–C 

= 12 Hz, C=O); 44.7 (s, CH2); 33.9 (d, JP–C = 19 Hz, PhCH). Data for 26a’ (CDCl3): � 64.5 (dd, JRh–P = 

129 Hz, P~CO); 54.0 (dd, JRh–P = 117 Hz, JP–P = 321 Hz, P~CHO). 

13C{1H} NMR (125 MHz): Data for 26a (DMSO-d6): � 237.1 (d, JRh–C = 33 Hz, P~C=O); 229.4 (d, 

JRh–C = 32 Hz, P~C=O � 201.8 (d, JP–C = 21 Hz, CH=O); 44.0 (s, CH2); 34.9 (d, JP–C = 16 Hz, PhCH). 

Data for 26a’ (CDCl3): � 240.9 (d, JRh–C = 31 Hz, C=O); 199.6 (d, JP–C = 19 Hz, CH=O); 45.8 (d, JP–C = 

12 Hz, CH2); 34.0 (d, JP–C = 19 Hz, PhCH). 

IR (KBr, cm−1): 2028 (m), ν(Rh–H); 1719 (s), ν(C=O), 1622 (s), ν(C=O). 

ESI-MS (CH3CN): Calculated for {C52H42N2O2P2Rh}+: 891.18; found m/z 891.18. 

Elemental analysis: C76H62N2O2P2BRh Calculated: C 75.38, H 5.16, N 2.31. Found C 74.93, H 

5.20, N 2.60. 

- Data for 27. Yield 83 %. 

1H NMR (500 MHz): � 8.70-5.90 (m, Haromatics). Data for 27a (CDCl3): � -13.21 (ddd, JRh–H = 18.3 

Hz, JP–H = 10.2 Hz, JP–H = 8.4 Hz, 1H, RhH); 9.52 (s, 1H, CH=O); 5.27 (m, 1H, PhCH); 3.20 (m, 1H, 
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CH2); 2.79 (m, 1H, CH2). Data for 27a’ (DMSO-d6): � -13.53 (ddd, JRh–H = 15.5 Hz, JP–H = 7.5 Hz, JP–

H = 7.5 Hz, 1H, RhH); 9.47 (s, 1H, CH=O); 4.78 (m, 1H, PhCH); 3.22 (m, 1H, CH2); 2.67 (m, 1H, 

CH2).  

31P{1H} NMR (202 MHz): Data for 27a (CDCl3): � 64.1 (dd, JRh–P = 130 Hz, P~CO); 54.3 (dd, JRh–P = 

118 Hz, JP–P = 324 Hz, P~CHO). Data for 27a’ (DMSO-d6): � 65.0 (dd, JRh–P = 131 Hz, P~CO); 51.1 

(dd, JRh–P = 122 Hz, JP–P = 329 Hz, P~CHO). 

13C{1H} NMR (125 MHz): Data for 27a (CDCl3): � 241.6 (d, JRh–C = 26 Hz, P~C=O); 199.8 (d, JP–C = 

20 Hz, CH=O); 45.9 (d, JP–C = 11 Hz, CH2); 34.3 (d, JP–C = 20 Hz, PhCH). Data for 27a’ (DMSO-d6): � 

239.2 (d, JRh–C = 29 Hz, P~C=O); 200.6 (d, JP–C = 19 Hz, CH=O); 44.7 (s, CH2); 33.8 (d, JP–C = 19 Hz, 

PhCH). 

IR (KBr, cm−1): 2028 (m), ν(Rh-H); 1719 (s), ν(C=O), 1622 (s), ν(C=O). 

ESI-MS (CH3CN): Calculated for {C50H42N2O2P2Rh}+: 867.17; found m/z 867.17. 

Elemental analysis: C74H62N2O2P2BRh Calculated: C 74.88, H 5.26, N 2.36. Found C 74.47, H 

5.10, N 2.31. 

Separation of the mixture of [RhH(PPh2(o-C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO)) 

(Phen)]BPh4 diastereomers 26a and 26a’ 

A CHCl3 solution (3 mL) of compound 26 (20 mg) containing an equimolar mixture of 26a and 

26a’ was stirred for 12 hours. The quantitative precipitation of 26a occurred, which was 

washed with diethyl ether and dried under vacuum. The remaining solution was evaporated to 

dryness, washed with diethyl ether and dried under vacuum to afford 26a’. 

Synthesis of [RhH(PPh2(o-C6H4CO))(PNN)]BF4 (PNN = κ3-PPh2(CH(Ph)CH2CNC9H6N, 28; 

κ3-PPh2(CH(Ph)CH2CNCH2C5H4N, 29) 

To a dichloromethane solution of compound 25 (50 mg, 0.06 mmol) a slight excess of the 

corresponding NNH2 ligand (0.07 mmol) was added. The mixture was left to stir for 3 hours 

(28, NNH2 = aqui) or 24 hours (29, NNH2 = ampy) at room temperature. The addition of the 

stoichiometric amount of Et3OBF4 (13 mg, 0.07 mmol) gave a pale yellow precipitate that was 

concentrated under vacuum, filtered off, washed with diethyl ether and dried under vacuum.  

- Data for 28. Yield 73 %. 



208 

 

1H NMR (500 MHz, CDCl3): � 9.00-5.90 (m, Haromatics); 4.75 (m, PhCH); 4.20 (m, PhCH); 4.00 (m, 

CH2); 3.60 (m, CH2). Data for 28a: � - 13.55 (ddd, JRh–H = 20.2, JP–H = 12.9 Hz, JP–H = 6.8 Hz, RhH); 

9.06 (s, CH=N). Data for 28a’: � -13.79 (ddd, JRh–H = 22.4, JP–H = 16.8 Hz, JP–H = 6.2 Hz, RhH); 9.36 

(s, CH=N). 

31P{1H} NMR (202 MHz, CDCl3): Data for 28a: � 59.4 (dd, JRh–P = 129 Hz, P~CO); 52.6 (dd, JRh–P = 

119 Hz, JP–P = 326 Hz, P~NN). Data for 28a’: � 61.4 (dd, JRh–P = 125 Hz, P~CO); 45.7 (dd, JRh–P = 

120 Hz, JP–P = 331 Hz, P~NN). 

13C{1H} NMR (125 MHz, CDCl3): � 47.5 (d, JP–C = 22 Hz, PhCH); 42.9 (d, JP–C = 10 Hz, CH2); 41.8 (d, 

JP–C = 5 Hz, CH2); 39.0 (d, JP–C = 22 Hz, PhCH). Data for 28a: � 239.9 (d, JRh–C = 30 Hz, C=O); 176.6 

(s, C=N). Data for 28a’: � 239.2 (d, JRh–C = 29 Hz, C=O); 175.5 (d, JP–C = 8 Hz, C=N). 

IR (KBr, cm–1): 2020 (m), ν(Rh-H); 1624 (s), ν(C=N). 

ESI-MS (CH3CN): Calculated for {C49H40N2OP2Rh}+: 837.16; found m/z 837.16. 

Elemental analysis: C49H40N2OP2BF4Rh Calculated: C 63.66, H 4.36, N 3.03. Found C 63.31, H 

4.09, N 3.18. 

- Data for 29. Yield 74 %. 

1H NMR (500 MHz, CDCl3): � 8.30-6.40 (m, Haromatics); 4.85 (m, PhCH); 3.91 (m, PhCH); 3.60 (m, 

CH2); 3.29 (m, CH2). Data for 29a: � -13.85 (ddd, JRh–H = 19.6 Hz, JP–H = 10.4 Hz, JP–H = 9.2 Hz, 1H, 

RhH); 8.79 (s, CH=N); 5.30 (d, JH–H = 16.2 Hz, 1H, CH2-N); 4.74 (d, JH–H = 16.2 Hz, 1H, CH2-N). 

Data for 29a’: � -14.08 (ddd, JRh–H = 21.2 Hz, JP–H = 15.2 Hz, JP–H = 7.2 Hz, 1H, RhH); 9.09 (s, 

CH=N); 5.35 (d, JH–H = 17.0 Hz, 1H, CH2-N); 4.83 (d, JH–H = 17.0 Hz, 1H, CH2-N). 

31P{1H} NMR (202 MHz, CDCl3): Data for 29a: � 56.8 (dd, JRh–P = 125 Hz, P~CO); 55.1 (dd, JRh–P = 

120 Hz, JP–P = 328 Hz, P~NN). Data for 29a’: � 56.6 (dd, JRh–P = 125 Hz, P~CO); 48.0 (dd, JRh–P = 

118 Hz, JP–P = 333 Hz, P~NN). 

13C{1H} NMR (125 MHz, CDCl3): � 46.1 (d, JP–C = 20 Hz, PhCH); 40.7 (d, JP–C = 8 Hz, CH2); 39.8 (d, 

JP–C = 6 Hz, CH2); 38.7 (d, JP–C = 17 Hz, PhCH). Data for 29a: � 239.9 (d, JRh–C = 30 Hz, C=O); 175.0 

(s, C=N); 67.7 (s, CH2-N).  Data for 29a’: � 241.2 (d, JRh–C = 30 Hz, C=O); 173.9 (d, JP–C = 8 Hz, 

C=N); 68.8 (s, CH2-N). 

IR (KBr, cm−1): 2029 (m), ν(Rh-H); 1621 (s), ν(C=N). 

ESI-MS (CH3CN): Calculated for {C46H40N2OP2Rh}+: 801.16; found m/z 801.16. 
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Elemental analysis: C46H40N2OP2BF4Rh Calculated: C 62.18, H 4.54, N 3.15. Found C 61.81, H 

4.40, N 3.20.  

Synthesis of [RhCl(ntyl)(PPh2(CH(Ph)CH2CO))(NN)] (NN = 1,10-phenantroline, 30; NN 

= 2,2’-bipyridine, 31) 

To a Schlenk charged with [Rh(nbd)Cl]2 (30 mg, 0.07 mmol) in CH2Cl2 (5 ml), a slight excess of 

phosphine PPh2CH(Ph)CH2CHO (47 mg, 0.15 mmol) was added. The solution was stirred for 45 

min, and a stoichiometric amount of the corresponding NN ligand (0.15 mmol) was added. The 

mixture was stirred further for 15 min and concentrated under vacuum. Addition of diethyl 

ether gave red solids that were washed with diethyl ether and dried under vacuum. 

- Data for 30. Yield 75 %. 

1H NMR (500 MHz, DMSO-d6): Data for 30a: � 10.60-6.80 (m, 23 Haromatics); 4.50 (m, 1H, PhCH); 

3.92 (m, 1H, CH2); 3.02 (m, 1H, CH2); 1.77 (d, JH–H = 9.4 Hz, 1H, CH2); 1.10 (m, 2H, CH and RhCH); 

0.44 (d, JH–H = 9.4 Hz, 1H, CH2); 0.36 (d, JH–H = 9.4 Hz, 1H, CH2); 0.00 (m, 1H, CH, cyclopropyl); - 

0.24 (d, JH–H = 9.4 Hz, 1H, CH2); -0.36 (m, 1H, CH, cyclopropyl); -1.17 (m, 1H, CH, cyclopropyl).   

31P{1H} NMR (202 MHz, DMSO-d6): Data for 30a: � 77.2 (d, JRh–P = 177 Hz). Data for 30a’: � 80.9 

(d, JRh–P = 178 Hz). 

13C{1H} NMR (125 MHz, DMSO-d6): Data for 30a: � 244.0 (dd, JRh–C = 22 Hz, JP–C = 7 Hz, C=O); 

58.0 (d, JP–C = 23 Hz, CH2); 45.5 (d, JP–C = 22 Hz, PhCH); 39.0 (d, JRh–C = 6 Hz, RhCH); 38.0 (s, CH); 

34.2 (s, CH2); 31.7 (s, CH2); 17.6 (s, CH, cyclopropyl); 12.5 (s, CH, cyclopropyl); 11.8 (s, CH, 

cyclopropyl).  

IR (KBr, cm−1): 1631 (s), ν(C=O) 

ESI-MS (CH3OH): Calculated for {M - Cl}+ or {C40H35N2OPRh}+: 693.15; found m/z 693.15. 

Elemental analysis: C40H35N2OClPRh Calculated: C 65.90, H 4.84, N 3.84. Found C 65.52, H 4.70, 

N 3.70. 

- Data for 31. Yield 76 %. 

1H NMR (500 MHz, CDCl3): Data for 31a: � 10.50-6.70 (m, 23 Haromatics); 4.80 (m, 1H, PhCH); 3.62 

(m, 1H, CH2); 3.48 (m, 1H, CH2); 1.65 (m, 1H, CH2); 1.25 (m, 2H, RhCH and CH); 0.65 (m, 1H, 

CH2); 0.60 (m, 1H, CH2); 0.27 (m, 1H, CH, cyclopropyl); 0.09 (m, 1H, CH, cyclopropyl); 0.03 (m, 

1H, CH2); -0.64 (m, 1H, CH, cyclopropyl).  
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31
P{

1H} NMR (202 MHz, CDCl3): Data for 31a: � 78.9 (d, JRh–P = 177 Hz). Data for 31a’: � 80.6 (d, 

JRh–P = 176 Hz). 

13C{1H} NMR (125 MHz, CDCl3): Data for 31a: � 245.8 (dd, JRh–C = 32 Hz, JP–C = 7 Hz, C=O); 58.2 (d, 

JP–C = 22 Hz, CH2); 45.0 (d, JP–C = 23 Hz, PhCH); 40.5 (d, JRh–C = 28 Hz, RhCH); 37.9 (s, CH); 34.3 (s, 

CH2); 31.5 (s, CH2); 17.6 (s, CH, cyclopropyl); 12.7 (s, CH, cyclopropyl); 12.1 (s, CH, cyclopropyl). 

Data for 31a’: � 247.0 (dd, JRh–C = 27 Hz, JP–C = 9 Hz, C=O). 

IR (KBr, cm−1): 1632 (s), ν(C=O). 

ESI-MS (CH3CN): Calculated for {M - Cl}+ or {C38H35N2OPRh}+: 669.15; found m/z 669.15. 

Elemental analysis: C38H35N2OClPRh Calculated: C 64.74, H 5.00, N 3.97. Found C 64.43, H 4.87, 

N 3.63. 

Synthesis of [RhCl(C9H6NCO)(ntyl)(PPh2(CH(Ph)CH2CO)(OCH3))] (32) 

To a suspension of [Rh(nbd)Cl]2 (30 mg, 0.07 mmol) in methanol (5 mL) the phosphine 

PPh2CH(Ph)CH2CHO (41.5 mg, 0.13 mmol) was added. The mixture was stirred for 30 minutes 

at room temperature until total dissolution was obtained. An excess of C9H6NCHO (25 mg, 0.16 

mmol) was then added and the mixture was stirred for 1 hour. The solution was evaporated to 

dryness, redissolved in dichloromethane (1 mL) and precipitated by addition of diethyl ether 

(10 mL). This led to a yellow solid that was filtered of, washed with diethyl ether and dried 

under vacuum. Yield 91 %. 

1H NMR (500 MHz, CDCl3): � 9.40-6.60 (m, 21 Haromatics); 4.48 (m, 1H, CH2); 4.29 (m, 1H, PhCH); 

4.01 (s, 3H, OCH3); 2.92 (m, 1H, CH2); 2.11 (d, JH-H = 10 Hz, 1H, CH2); 1.85 (m, 1H, CH); 1.05 (m, 

1H, RhCH and 1H, CH2); 0.83 (d, JH-H = 9 Hz, 1H, CH2); 0.35 (m, 1H, CH2 and 1H, CH, cyclopropyl); 

0.06 (m, 1H, CH, cyclopropyl); - 0.49 (dd, JH-H = 5 Hz, 1H, CH, cyclopropyl). 

31P{1H} NMR (202 MHz, CD3OD): � 52.4 (d, JRh-P = 184 Hz). 

13C{1H} NMR (125 MHz, CDCl3): � 222.9 (d, JRh-C = 39 Hz, N~C=O); 180.2 (s, C(CH3)=O); 53.6 (s, 

OCH3); 42.6 (dd, JRh-C = 28 Hz, JP-C = 4 Hz, RhCH); 38.4 (d, JP-C = 5 Hz, CH2); 37.8 (d, JP-C = 15 Hz, 

PhCH); 37.5 (s, CH); 34.4 (s, CH2);  32.7 (s, CH2); 18.4 (s, CH, cyclopropyl); 13.5 (s, CH, 

cyclopropyl); 12.0 (s, CH, cyclopropyl). 

IR (KBr, cm−1): 1673 (s), ν(C=O); 1642 (s), ν(C=O). 

ESI-MS (CH3OH): Calculated for {M - Cl}+ or {C39H36NO3PRh}+: 700.15; found m/z 700.15. 
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Elemental analysis: C39H36NO3ClPRh·0.5(CH2Cl2) Calculated: C 60.94, H 4.79, N 1.80. Found C 

60.86, H 4.86, N 1.82. 

Synthesis of [RhCl(C9H6NCO)(Hpz)(nbyl)]2 (33) 

To a suspension of [Rh(nbd)Cl]2 (50 mg, 0.108 mmol) in methanol (5 mL) pyrazole (15 mg, 

0.217 mmol) and C9H6NCHO (34 mg, 0.217 mmol) were added. Stirring for 2 hours at room 

temperature gave a yellow precipitate that was filtered off, washed with methanol and dried 

under vacuum. Yield 78 %. 

1H NMR (500 MHz, DMSO-d6): Data for 33a: � 14.12 (s, 2 H, NH, Hpz); 10.16-7.85 (m, 12 

Haromatics); 8.47 (m, 2 H, CH, Hpz); 8.13 (m, 2 H, CH, Hpz); 6.55 (d, JH-H = 2 Hz, 2 H, CH, Hpz); 5.27 

(dd, JH-H = 3 Hz, 6 Hz, 2 H, =CH, nbyl), 4.13 (dd, JH-H = 3 Hz, 6 Hz, 2 H, =CH, nbyl), 3.30 (m, 2 H, 

RhCH, nbyl), 2.41 (m, 2 H, CH, nbyl), 2.30 (m, 2 H, CH, nbyl), 0.92 (ddd, JH-H = 4 Hz, 9 Hz, 12 Hz, 2 

H, CH2, nbyl), 0.86 (m, 4 H, CH2, nbyl), 0.20 (dd, JH-H = 5 Hz, 12 Hz, 2 H, CH2, nbyl). 

13C{1H} NMR (125 MHz, DMSO-d6): Data for 33a: � 232.6 (d, JRh-C = 39 Hz, C=O), 155-122 (s, 

Caromatics), 141.2 (s, CH, Hpz), 134.2 (s, =CH, nbyl), 133.1 (s, =CH, nbyl), 131.0 (s, CH, Hpz), 106.8 

(s, CH, Hpz), 50.0 (s, CH2, nbyl), 48.2 (s, CH, nbyl), 40.3 (s, CH, nbyl), 36.6 (d, JRh-C = 28 Hz, RhCH, 

nbyl), 30.6 (s, CH2, nbyl). 

IR (KBr, cm−1): 1623 (s), ν(C=O); 3439 (s), ν(N-H). 

ESI-MS (CH3OH): Calculated for {M - Cl - Hpz}+ or {C37H34ClN4O2Rh2}
+: 807.48; found m/z 807.49. 

Elemental analysis: C40H38N6O2Cl2Rh2 Calculated: C 52.71, H 4.20, N 9.22. Found C 51.56, H 

3.97, N 9.34. 

Synthesis of [RhCl(C9H6NCO)(nbyl)(Hpz)2] (34) 

Method a: To a dichloromethane (5 mL) suspension of complex 33 (35 mg, 0.038 mmol) 

pyrazole (5.5 mg, 0.08 mmol) was added, affording a yellow solution. The mixture was stirred 

for 2 hours, and concentrated under vacuum. Addition of pentane (10 mL) afforded a yellow 

solid that was filtered off, washed with pentane and vacuum-dried. Yield 68 %.  

Method b: To a solution of complex [Rh(nbd)Cl]2 (50 mg, 0.108 mmol) in dichloromethane (5 

mL) pyrazole (30 mg, 0.434 mmol) and 8-quinolinecarbaldehyde (34 mg, 0.217 mmol) were 

added. The resultant yellow solution was stirred for 2 hours, and concentrated under vacuum. 
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Addition of pentane (10 mL) gave a yellow precipitate that was filtered off, washed with 

pentane and dried under vacuum. Yield 76 %. 

1H NMR (500 MHz, CDCl3, 293 K): � 14.50 (s, 1 H, NH, Hpz), 12.80 (s, 1 H, NH, Hpz), 10.25-7.50 

(m, 6 Haromatics), 8.35 (m, broad, CH, Hpz), 7.62 (m, 1 H, CH, Hpz), 7.20 (m, broad, CH, Hpz), 6.28 

(m, 1 H, CH, Hpz), 6.00 (m, 1 H, CH, Hpz), 5.40 (dd, JH-H = 3 Hz, 5 Hz, 1 H, CH, nbyl), 4.11 (dd, JH-H 

= 3 Hz, 6 Hz, 1 H, CH, nbyl), 3.44 (m, 1 H, RhCH, nbyl), 2.45 (m, 1 H, CH, nbyl), 2.34 (m, 1 H, CH, 

nbyl), 1.10 (m, 1 H, CH2, nbyl), 1.03 (m, 1 H, CH2, nbyl), 0.94 (m, 1 H, CH2, nbyl), 0.26 (m, 1 H, 

CH2, nbyl). 

1H NMR (500 MHz, CDCl3, 233 K): � 14.50 (s, 1 H, NH, Hpz), 12.65 (s, 1 H, NH, Hpz), 10.40-7.50 

(m, 6 Haromatics), 8.50 (m, 1 H, CH, Hpz), 7.66 (m, 1 H, CH, Hpz), 7.28 (m, 1 H, CH, Hpz), 6,89 (m, 1 

H, CH, Hpz), 6.32 (m, 1 H, CH, Hpz), 5.96 (m, 1 H, CH, Hpz), 5.40 (dd, JH-H = 3 Hz, 5 Hz, 1 H, =CH, 

nbyl), 3.91 (dd, JH-H = 3 Hz, 6 Hz, 1 H, =CH, nbyl), 3.49 (m, 1 H, RhCH, nbyl), 2.45 (m, 1 H, CH, 

nbyl), 2.34 (m, 1 H, CH, nbyl), 1.20 (m, 1 H, CH2, nbyl), 1.03 (m, 1 H, CH2, nbyl), 0.91 (m, 1 H, 

CH2, nbyl), 0.26 (m, 1 H, CH2, nbyl). 

13C{1H} NMR (125 MHz, CDCl3, 293 K): � 237.8 (d, JRh-C = 42 Hz, C=O), 155-122 (s, Caromatics), 141.4 

(s, CH, Hpz), 135.3 (s, =CH, nbyl), 133.6 (s, =CH, nbyl), 128.5 (s, CH, Hpz), 106.6 (s, CH, Hpz), 

105.9 (s, CH, Hpz), 50.5 (s, CH2, nbyl), 49.8 (s, CH, nbyl), 41.3 (s, CH, nbyl), 32.2 (d, JRh-C = 27 Hz, 

RhCH, nbyl), 32.1 (s, CH2, nbyl). The missing carbon signals corresponding to a pyrazole 

molecule cannot be found most likely due to the metallotropic tautomerism experimented by 

the ligand at room temperature.  

IR (KBr, cm−1): 1632 (s), ν(C=O);  3365 (m), ν(N-H). 

ESI-MS (CH3OH): Calculated for {M - Cl - 2Hpz}+ or {C17H15NORh}+: 352.02; found m/z 352.02. 

Elemental analysis: C23H23N5OClRh Calculated: C 52.74, H 4.43, N 13.37. Found C 52.24, H 4.43, 

N 13.39. 

Synthesis of [Rh(C9H6NCO))(Hpz)3(nbyl)]BPh4 (35) 

To a methanol (5 mL) suspension of complex 34 (30 mg, 0.057 mmol) stoichiometric amounts 

of pyrazole (4 mg, 0.057 mmol) and NaBPh4 (19.5 mg, 0.057 mmol) were added. The mixture 

was stirred for 2 hours, evaporated to dryness and redissolved in dichloromethane (5 mL). The 

resultant suspension was then filtered off to another schlenk, concentrated under vacuum and 
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pentane was added (10 mL) for precipitation. The resultant yellow solid was filtered off, 

washed with pentane and dried under vacuum. Yield 75 %. 

1H NMR (500 MHz, CDCl3, 293 K): � 15.00 (s, NH, Hpz), 8.22-6.88 (m, 6 Haromatics), 7.80 (m, CH, 

Hpz), 6.38 (m, CH, Hpz), 5.45 (m, 1 H, =CH, nbyl), 3.90 (m, 1 H, =CH, nbyl), 2.98 (m, 1 H, RhCH, 

nbyl), 2.44 (m, 1 H, CH, nbyl), 2.27 (m, 1 H, CH, nbyl), 1.06 (m, 3 H, CH2, nbyl), 0.30 (dd, JH-H = 5 

Hz, 12 Hz, 1 H, CH2, nbyl). 

13C{1H} NMR (125 MHz, CDCl3, 293 K): � 238.5 (d, JRh-C = 30 Hz, C=O), 152-125 (Caromatics), 136.1 

(s, =CH, nbyl), 133.5 (s, =CH, nbyl), 107.3 (s, CH, Hpz), 51.0 (s, CH2, nbyl), 50.1 (s, CH, nbyl), 41.5 

(s, CH, nbyl), 33.4 (d, JRh-C = 26 Hz, RhCH, nbyl), 31.7 (s, CH2, nbyl).  

IR (KBr, cm−1): 1640 (s), ν(C=O); 3229 (m), ν(N-H). 

ESI-MS (CH3OH): Calculated for {M - 2H}+ or {C26H25N7ORh}+: 554.12; found m/z 554.12. 

Elemental analysis: C50H47N7OBRh Calculated: C 68.58, H 5.41, N 11.20. Found C 67.88, H 5.45, 

N 10.43. 

Reaction of [RhCl(C9H6NCO)(nbyl)(Hpz)2] (34) with triphenylphosphine 

To a suspension of complex 34 (40 mg, 0.076 mmol) in dichloromethane a stoichiometric 

amount of triphenylphosphine (20 mg, 0.076 mmol) was added. The resultant yellow solution 

was stirred for 20 minutes and concentrated under vacuum. Addition of pentane (10 mL) gave 

a precipitate that was washed with pentane and dried under vacuum. The precipitate contains 

a mixture of quinolinylnorbornenyl-ketone and [RhCl(PPh3)2]2. 

Synthesis of [RhCl(C9H6N(C(nbyl)OH))(Hpz)(Ph2PO)] (36) 

Method a: To a dichloromethane (5 mL) solution of complex 34 (30 mg, 0.057 mmol) 

diphenylphosphine oxide Ph2P(O)H (13 mg, 0.063 mmol) was added. The mixture was stirred 

for 16 hours, and concentrated under vacuum. Addition of pentane (10 mL) gave a yellow solid 

that was filtered off, washed with pentane and vacuum-dried. Yield 78 %.  

Method b: To a suspension of complex 33 (70 mg, 0.077 mmol) in dichloromethane (5 mL) 

diphenylphosphine oxide Ph2P(O)H (19 mg, 0.092 mmol) was added. The resultant solution 

was stirred for 16 hours. The mixture was then concentrated under vacuum, and addition of 
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pentane (10 mL) afforded a yellow precipitate that was filtered off, washed with pentane and 

dried under vacuum. Yield 85 %.  

1H NMR (500 MHz, CD2Cl2, 293 K): � 9.74-6.62 (m, 12 H, Haromatics), 8.38 (m, 1H, CH, Hpz), 7.49 

(m, 1 H, CH, Hpz), 6.10 (m, 1 H, CH, Hpz), 5.87 (dd, JH-H = 6 Hz, 3 Hz, 1 H, =CH, nbyl), 5.19 (m, 1 

H, =CH, nbyl), 3.15 (m, 1 H, CH, nbyl), 2.60 (m, 1 H, CH, nbyl), 2.56 (m, 1 H, CH, nbyl), 1.83 (m, 1 

H, CH2, nbyl), 1.18 (m, 2 H, CH2, nbyl), 0.84 (m, 1 H, CH2, nbyl).  

1H NMR (500 MHz, CD2Cl2, 243 K): � 13.18 (s, 1 H, NH, Hpz), 9.83 (m, OH), 9.63-6.61 (m, 12 H, 

Haromatics), 8.31 (m, 1H, CH, Hpz), 7.49 (m, 1 H, CH, Hpz), 6.09 (m, 1 H, CH, Hpz), 5.90 (m, 1 H, 

=CH, nbyl), 5.22 (m, 1 H, =CH, nbyl), 3.10 (m, 1 H, CH, nbyl), 2.52 (m, 2 H, CH, nbyl), 1.72 (m, 1 

H, CH2, nbyl), 1.11 (m, 2 H, CH2, nbyl), 0.66 (m, 1 H, CH2, nbyl). 

31P{1H} NMR (202 MHz, CD2Cl2, 293 K): � 80.29 (d, JRh-P = 150 Hz, 36a). 

31P{1H} NMR (202 MHz, CD2Cl2, 243 K): � 81.92 (d, JRh-P = 150 Hz, 36a). 

31P{1H} NMR (202 MHz, CD2Cl2, 193 K): � 84.58 (d, JRh-P = 150 Hz, 36a), 82.96 (d, JRh-P = 152 Hz, 

36b). 

13C{1H} NMR (125 MHz, CDCl3, 293 K): � 155-121 (s, Caromatics), 143.9 (s, CH, Hpz), 139.0 (s, =CH, 

nbyl), 130.4 (s, =CH, nbyl), 129.9 (s, CH, Hpz), 106.7 (s, CH, Hpz), 92.6 (d, JRh-C = 26 Hz, C-OH), 

51.3 (s, CH2, nbyl), 49.8 (s, CH, nbyl), 46.6 (s, CH, nbyl), 42.2 (s, CH, nbyl), 29.5 (s, CH2, nbyl). 

IR (KBr, cm−1): 1126 (m), ν(P=O); 1625 (s), ν(C=O); 3286 (m), ν(N-H). 

ESI-MS (CH3OH): Calculated for {M - Cl}+ or {C32H30N3O2PRh}+: 622.11; found m/z 622.11. 

Elemental analysis: C32H30N3O2PClRh Calculated: C 58.42, H 4.60, N 6.39. Found C 57.97, H 4.45, 

N 5.88. 
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IV. 4. CATALYTIC PROCEDURES  

IV. 4. 1. DEHYDROCOUPLING OF SILANES 

To a boiling flask a solution of the silane (L2, 30 mg, 0.1 mmol or Et3SiH, 16 μL, 0.1 mmol) in 1 

mL of toluene was added. To this the [Rh] catalyst (0.005 mmol) was added. 

The system was immediately sealed and heated at 110 °C for 24 h. Toluene was evaporated, 

and the silanes (organic phase) was extracted with pentane and filtered through silica. Pentane 

was removed under vacuum and the crude was checked by NMR spectroscopy. 
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IV. 4. 2. TÁNDEM ISOMERISATION-HYDROSILYLATION OR TÁNDEM 

ISOMERISATION-DEHYDROGENATIVE SILYLATION 

Catalytic studies on the rhodium-catalysed alkene tandem isomerisation-hydrosilylation  

General procedure for the hydrosilylation of hexene and octene isomers in CDCl3. A Schlenck 

tube was charged with the catalyst (Wilkinson’s, 2 mg, 0.002 mmol; 17, 5 mg, 0.002 mmol; 5, 2 

mg, 0.002 mmol; 6, 4 mg, 0.002 mmol), hexene (trans-2-, 32 μL, 0.25 mmol, 1-, 32 μL, 0.25 

mmol; cis-2-, 32 μL, 0.25 mmol; trans-3-, 32 μL, 0.25 mmol) or octene (trans-2-, 39 μL, 0.25 

mmol; trans-3-, 39 μL, 0.25 mmol; trans-4-, 39 μL, 0.25 mmol), Et3SiH (40 μL, 0.25 mmol) and 

0.5 mL of CDCl3. The solution was stirred at room temperature (4 hours, 1-hexene; 12 hours, 

trans-2, cis-2- and trans-3- hexene). 1H NMR of the reaction crude without previous treatment 

was carried out to calculate the conversion. Finally the reaction was filtered over silica to 

remove the catalyst and the solvent and the alkene remaining were removed under vacuum to 

obtain clean spectra to characterize the mixture of HexSiEt3 and (Et3Si)2O. 

General procedure for the hydrosilylation of alkenes without solvent. A Schlenck tube was 

charged with the catalyst (17, 5 mg, 0.002 mmol), alkene (1-hexene, 32 μL, 0.25 mmol; trans-2-

hexene, 32 μL, 0.25 mmol; cis-2-hexene, 32 μL, 0.25 mmol; trans-3-hexene, 32 μL, 0.25 mmol; 

trans-2-heptene, 35 μL, 0.25 mmol; trans-2-octene, 39 μL, 0.25 mmol; trans-3-octene, 39 μL, 

0.25 mmol; trans-4-octene, 39 μL, 0.25 mmol; cyclooctene, 33 μL, 0.25 mmol; tert-

butylethylene, 32 μL, 0.25 mmol; allyltrimethylsilane, 40 μL, 0.25 mmol; styrene, 30 μL, 0.25 

mmol; α-methylstyrene, 32 μL, 0.25 mmol; 4-chloro-α-methylstyrene, 36 μL, 0.25 mmol) and 

Et3SiH (40 μL, 0.25 mmol). The solution was stirred at room temperature (4 hours: 1-hexene, 

tert-butylethylene, allyltrimethylsilane, styrene, α-methylstyrene, 4-chloro-α-methylstyrene; 

12 hours: trans-2, cis-2- and trans-3- hexene, trans-2-, trans-3- and trans-4- octenes). 1H NMR 

of the rection crude without previous treatment was carried out to calculate the conversion. 

Finally the reaction was filtered over silica to remove the catalyst and the solvent and the 

alkene remaining were removed under vacuum to obtain clean spectra to characterize the 

products. 

1H NMR monitoring of the chlorination of Et3SiH 

A Young NMR tube was charged with Et3SiH (40 μL, 0.25 mmol), 17 (5 mg, 0.002 mmol) and 0.5 

mL of CDCl3. The reaction was monitored by 1H NMR. After 16 hours, the NMR tube was 

opened during 30 minutes and another 1H NMR was carried out. 
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Catalytic studies on the isomerization of hexenes 

1-hexene studies: In a NMR tube, 1-hexene (32 μL, 0.25 mmol) and 17 (5 mg, 0.002 mmol) 

were dissolved in 0.5 mL of CDCl3. The reaction was monitored by 1H NMR during 2 hours. 

After 45 minutes the reaction was stabilized in an equilibrium mixture of hexene isomers. 

Catalytic hydrosilylation of trans-2-octene using (EtO)3SiH. Formation of Oct(EtO)3Si 

A Schlenck tube was charged with the catalyst (17, 5 mg, 0.002 mmol), trans-2-octene (39 μL, 

0.25 mmol), (EtO)3SiH (46 μL, 0.25 mmol) without any solvent. The solution was stirred for 3,5 

hours at room temperature. 1H NMR of the reaction crude without previous treatment was 

carried out to calculate the conversion. Finally the reaction was filtered over silica to remove 

the catalyst and the solvent and the alkene remaining were removed under vacuum to obtain 

clean spectra to characterize the hydrosilylation product. 

Catalytic studies on the rhodium and iridium catalysed alkene tandem isomerisation-

hydrosilylation or dehydrogenative silylation 

General procedure for hydrosilylation of trans-2-octene. A Schlenk tube was charged with the 

catalyst (6, 3.8 mg, 0.0025 mmol; 18, 2 mg, 0.0025 mmol; 19, 1.9 mg, 0.0025 mmol; 20, 4.2 mg, 

0.0025 mmol), trans-2-octene (39 μL, 0.25 mmol) and Et3SiH (40 μL, 0.25  mmol). The solution 

was stirred for 12 hours at room temperature (catalyst 6) or 50 °C (catalysts 18, 19 and 20). 1H 

NMR was carried out of the reaction crude without previous treatment to calculate the 

conversion. Finally the reaction was filtered over the silica to remove the catalyst and the 

solvent and the alkene remaining were removed under vacuum to obtain clean spectra to 

characterize the mixture of products. The conversion was determined by 1H NMR of the crude 

of the reaction, by silane remaining. Selectivity was determined by 1H NMR after being filtered 

over silica and removed the volatiles, by integration of the signals corresponding to the 

alkylsilane and allylsilane or vinylsilane products. 

General procedure for hydrosilylation of alkenes with catalyst 6 and 20. A Schlenk tube was 

charged with the catalyst (6, 3,8 mg, 0,0025 mmol); alkene (1-octene, 39 μL, 0.25 mmol; trans-

3-octene, 39 μL, 0.25 mmol; trans-4-octene, 39 μL, 0.25 mmol; 1-hexene, 32 μL, 0.25 mmol; 

trans-2-hexene, 32 μL, 0.25 mmol; trans-3-hexene, 32 μL, 0.25 mmol; tert-butylethylene, 32 

μL, 0.25 mmol; allyltrimethylsilane, 40 μL, 0.25 mmol; 4-bromo-1-butene, 26 μL, 0.25 mmol; 

styrene, 30 μL, 0.25 mmol; α-methylstyrene, 32 μL, 0.25 mmol; 4-chloro-α-methylstyrene, 36 

μL, 0.25 mmol) and Et3SiH (40 μL, 0.25  mmol). The solution was stirred for 12 hours at room 
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temperature (catalyst 6) or at 50 °C (catalyst 20). 1H NMR was carried out of the reaction crude 

without previous treatment to calculate the conversion. Finally the reaction was filtered over 

the silica to remove the catalyst and the solvent and the alkene remaining were removed 

under vacuum to obtain clean spectra to characterize the mixture of the silylated product and 

(Et3Si)2O. The conversion was determined by 1H NMR of the crude of the reaction, by silane 

remaining. Selectivity was determined by 1H NMR after being filtered over silica and removed 

the volatiles, by integration of the signals corresponding to the alkylsilane and allylsilane or 

vinylsilane products. 
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IV. 4. 3. DEHYDROGENATION OF AMMONIA-BORANE  

Experiments were carried out in round bottom 40 ml flasks fitted with a gas outlet, with a side 

arm sealed with a tight-fitting septum cap. The flask was connected to a water-filled gas 

burette and warmed in a thermostatic bath to the required temperature. All experiments were 

performed at atmospheric pressure (1 atm), at a temperature of 303 K and in the presence of 

air, with the following proportions:  

- Solvent: A 50/50 mixture of distilled THF and H2O 

- Total volume = 3 ml 

- [Substrate] = 1.38 mmol (42.5 mg) 

Both catalyst and substrate were weighted in tin boats, which were added into the reaction 

flask. Finally, the solvent mixture was syringed through the septum into the sealed flask, 

magnetic stirring was performed and timing started. Gas evolution began immediately and the 

amount of gas evolved was determined periodically by measuring the displacement of water in 

the burette.  
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Los compuestos organometálicos de rodio e iridio participan como catalizadores en una gran 

variedad de procesos de transformación de moléculas orgánicas. Entre estos procesos se 

encuentran las reacciones de funcionalización por adición de enlaces E-H a un enlace 

insaturado, tales como la hidroacilación (donde E = grupo acilo), la hidrosililación (E = SiR3), la 

hidroboración (E = BR2), la hidroaminación (E = NR2), la hidrofosfinación (E = PR2) o la 

hidrogenación (E = H). Estas reacciones de hidroelementación implican la activación previa del 

enlace E-H mediante adición oxidativa al centro metálico. Este primer paso conlleva, por lo 

general, la formación de un hidruro-compuesto.  

Aunque la activación del enlace C-H en alcanos supone todavía un gran reto debido a su 

carácter inerte, el aldehído es un sustrato versátil que participa en un gran número de 

transformaciones. La adición oxidativa del enlace C-H de un aldehído a un complejo 

organometálico genera un derivado acilhidruro, el cual se considera intermedio en reacciones 

de formación de nuevos enlaces C-C como la hidroacilación. Los complejos acilhidruro 

presentan una baja estabilidad ya que pueden llevar a cabo la decarbonilación del aldehído, 

con la eliminación reductiva de un alcano. Un método que ha resultado muy útil frente a la 

descomposición del compuesto acilhidruro es la formación de un metalaciclo de cinco o seis 

miembros mediante el uso de ligandos quelantes. La 8-quinolinacarbaldehído C9H6NCHO y la o-

(difenilfosfino)benzaldehído PPh2(o-C6H4CHO) son dos ejemplos de aldehídos quelantes (Figura 

R1), los cuales quedarían coordinados al centro metálico a través del carbono del grupo acilo y 

de los átomos de nitrógeno y fósforo, respectivamente. 

 

Figura R1. Estructuras de los aldehídos quelantes C9H6NCHO y PPh2(o-C6H4CHO). 

Por otro lado, la adición oxidativa del enlace Si-H a un centro metálico es un paso fundamental 

en reacciones de hidrosililación, sililación deshidrogenativa o acoplamiento deshidrogenativo 

de silanos. La hidrosililación es una de las reacciones más importantes en la química del silicio, 

e implica la adición del enlace Si-H a un enlace insaturado formando nuevos enlaces Si-C 

(Esquema R1). La reacción de sililación deshidrogenativa también implica la adición oxidativa 

del enlace Si-H, llegando a un producto alíl o vinílsilano mediante un paso previo de 

eliminación de un átomo de hidrógeno en posición β (Esquema R1). 
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Esquema R1. Representación de las reacciones de hidrosililación y sililación deshidrogenativa de 

alquenos. 

Las reacciones de acoplamiento deshidrogenativo de silanos primarios, secundarios o 

terciarios implican la activación del enlace Si-H por un centro metálico para la posterior 

formación de nuevos enlaces Si-Si (Esquema R2).  

 

Esquema R2. Representación de acoplamiento deshidrogenativo de un silano primario. 

El estudio de la activación de estos enlaces Si-H y los derivados sililhidruro generados ayuda a 

elucidar los mecanismos implicados en este tipo de reacciones. Para ello, el uso de ligandos 

multidentados con enlaces Si-H capaces de formar quelatos ayuda a estabilizar el grupo sililo 

unido al centro metálico.  

El objetivo de esta tesis es el del estudio de las activaciones de los enlaces C-H en aldehídos y 

Si-H en silanos por complejos organometálicos de rodio e iridio. Se describe la síntesis de 

varios preligandos sililo multidentados y su reactividad con varios compuestos de rodio(I) e 

iridio(I), así como la actividad catalítica que presentan los compuestos sililhidruro obtenidos en 

las reacciones de hidrosililación o acoplamiento deshidrogenativo de silanos. A su vez, se 

describe tanto la síntesis de compuestos acilhidruro por acivación del enlace C-H en aldehídos 

quelantes como PPh2CH(Ph)CH2CHO y la 8-quinolinacarbaldehído C9H6NCHO como su 

reactividad en presencia de varios ligandos nitrogenados, además del estudio de sus posibles 

aplicaciones catalíticas.  
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ACTIVACION DEL ENLACE Si-H  

SINTESIS DE PRELIGANDOS MULTIDENTADOS SILIL-TIOETER Y REACTIVIDAD CON COMPLEJOS 

DIOLEFINICOS DE RODIO(I) E IRIDIO(I)  

Se han sintetizado tres nuevos preligandos multidentados de tipo silano-tioeter, de 

formulación SiMe2H(o-C6H4SMe) (L1), SiMeH(o-C6H4SMe)2 (L2) y SiMe2(o-C6H4SMe)2 (L3), 

mediante la reacción de 2-MeS(C6H4Br) con n-butillitio y la posterior adición del clorosilano 

correspondiente (Esquema R3). La reacción de estos preligandos con compuestos de rodio(I) e 

iridio(I) permiten estudiar reacciones de activación de enlaces Si-H o Si-C. 

 

Esquema R3. Síntesis de ligandos multidentados silil-tioeter. 

La reacción de [Rh(cod)Cl]2 con cuatro equivalentes de L1 lleva a la formación de un complejo 

neutro dinuclear Rh(III)/Rh(III) de formulación [Rh(SiMe2(o-C6H4SMe))2Cl]2 (1). Para la 

formación de 1 se propone un mecanismo que comienza con una primera activación del enlace 

Si-H por un centro de Rh(I), lo que generaría un compuesto de rodio-hidruro-ciclooctadieno no 

observable, seguido de la inserción de la diolefina en el enlace de Rh-H para dar un dímero 

mixto de Rh(I)ciclooctadieno/Rh(III)ciclooctenilo. La adición de otra unidad de L1 permite una 

segunda activación de Si-H para dar el intermedio Rh(I)ciclooctadieno/Rh(III)bis(silano) 

[(cod)Rh(μ-Cl)2Rh(SiMe2(o-C6H4SMe))2] (2). El segundo rodio, que sigue en estado de oxidación 

+1, seguiría el mismo proceso con la adición de una tercera molécula de L1, generando un 

compuesto de Rh(III)ciclooctenilo/Rh(III)bis(silano), y una última activación de Si-H en L1 

llevaría a la formación del producto final, Rh(III)bis(silano)/Rh(III)bis(silano) 1 (Esquema R4). 

Además del aislamiento del intermedio 2 de la mezcla de reacción de L1 con [Rh(cod)Cl]2, la 

propuesta de mecanismo se apoya en la obtención de un complejo mononuclear de Rh(III)-
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ciclooctenilo [Rh(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2Cl] (3) por reacción de [Rh(cod)Cl]2 con el 

preligando terdentado L2. 

 

Esquema R4. Mecanismo propuesto para la formación de 1. 

La extracción del ligando cloruro del compuesto neutro 3 por reacción de éste con la sal, 

NaBArF
4, lleva a la formación del compuesto catiónico de 16e Rh(III)-ciclooctenilo, [Rh(η3-

cyclooctenyl)(SiMe(o-C6H4SMe)2]BArF
4 (4).  

Con el objetivo de estudiar la posible obtención del mismo compuesto mediante la adición 

externa de una molécula de ciclooctadieno a un complejo de Rh(III), se han sintetizado el 

compuesto neutro [RhCl(H)[SiMe(o-C6H4SMe)2](PPh3)] (5) por reacción de L2 con [RhCl(PPh3)3], 

y el catiónico [Rh(H)[SiMe(o-C6H4SMe)2](PPh3)]BArF
4 (6) por extracción de cloruro con NaBArF

4. 

La reacción del complejo insaturado 6 con 1,5-ciclooctadieno lleva a la coordinación y a la 

posterior inserción de la diolefina en el enlace Rh-H, para dar el compuesto ciclooctenilo 4 

después de un reordenamiento. Esta reacción, la cual no se observa para el complejo saturado 

5, es posible gracias a la vacante coordinativa presente en el compuesto 6. 

El compuesto análogo de Ir(III) de 16e [Ir(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2]BArF
4 (8) se ha 

sintetizado de la misma manera que 4 por reacción de [Ir(cod)Cl]2 con L2, obteniéndose el 

complejo neutro [IrCl(η3-cyclooctenyl)(SiMe(o-C6H4SMe)2] y su posterior reacción con NaBArF
4. 

El compuesto 8 es inestable y se transforma en la especie hidruro [Ir(H)(η4-cod)(SiMe2(o-

C6H4SMe)2)]BArF
4 (9) obteniendo la saturación coordinativa. Mediante cálculos DFT hemos 

podido estudiar teóricamente la transformación de 8 a 9, la cual transcurre mediante 
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consecutivos pasos de eliminación de ß-hidruro e inserción de olefina en el enlace Ir-H, en los 

que participan intermedios de Ir(III). La síntesis del compuesto 9 también ha sido posible por 

reacción directa de [Ir(cod)Cl]2 con L2 y NaBArF
4. 

La reacción de [Rh(nbd)Cl]2 con L2 permite la formación de un compuesto de 16e 

[RhCl(ntyl)(SiMe2(o-C6H4SMe)2)] (10) por adición oxidativa del enlace Si-H. La inserción del 

ligando norbornadieno en el enlace Rh-H lleva a una especie σ-norbornenilo, la cual da lugar a 

un compuesto σ-nortricilcilo termodinámicamente favorecido mediante un reordenamiento. 

La extracción de cloruro no lleva a un compuesto de 14e, sino que promueve la isomerización 

del ligando σ-nortricilcilo a σ,π-norbornenilo mediante un reordenamiento inverso por la 

ruptura del fragmento ciclopropilo, obteniéndose el complejo de 16e [Rh(σ,π-nbyl)(SiMe2(o-

C6H4SMe)2)]BArF
4 (11). Cálculos DFT revelan que esta transformación ocurre mediante una 

serie de sucesivos pasos de eliminación de ß-hidruro e inserción de olefina. 

La reacción de [Rh(cod)Cl]2, [Rh(nbd)Cl]2 y [Ir(cod)Cl]2 con el preligando SiMe2(o-C6H4SMe)2 (L3) 

y NaBArF
4 lleva a la formación de compuestos catiónicos de 16 electrones de formulación 

[M(diolefina)SiMe2(o-C6H4SMe)2]BArF
4 por la coordinación del ligando únicamente mediante 

los dos fragmentos tioeter. Sin embargo, la reacción de [Rh(coe)2Cl]2 con L3 y NaBArF
4 en 

presencia de acetonitrilo permite la inusual activación del enlace Si-CH3 del ligando, generando 

el complejo Rh(III) de 18 electrones [Rh(Me)(Si(Me)(o-C6H4SMe)2)(MeCN)2]BArF
4 (16). 

SINTESIS Y APLICACIONES CATALITICAS DE COMPUESTOS SILIL-HIDRURO DE RODIO(III) E 

IRIDIO(III)  

La reacción de acoplamiento deshidrogenativo del silano terciario SiMeH(o-C6H4SMe)2 (L2) es 

catalizada por el complejo neutro [RhClH(SiMe(o-C6H4SMe)2)(PPh3)] (5) para dar el producto 

disilano (o-C6H4SMe)2MeSi-SiMe(o-C6H4SMe)2. Se ha propuesto un mecanismo de reacción con 

la formación de 5 como la especie activa del ciclo catalítico, por la adición de una unidad del 

sustrato L2 al compuesto [RhCl(PPh3)3]. Continúa con una metátesis de enlace σ, en el que 

intervendría un estado de transición de cuatro centros que permite la formación del enlace Si-

Si, y el producto disilano se generaría mediante eliminación reductiva. El compuesto 

insaturado [Rh(H)[SiMe(o-C6H4SMe)2](PPh3)]BArF
4 (6) seguiría la misma ruta catalítica de 

metátesis de enlace σ para la formación del producto disilano, pero se observa una menor 

actividad catalítica por la formación de una especie inactiva de fórmula [Rh(SiMe(o-

C6H4SMe)2)2]BArF
4 (21) por reacción de 6 con una segunda unidad de L2 (Esquema R5).   
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Esquema R5. Mecanismo propuesto para la formación del product disilano y el proceso de 

desactivación.  

El complejo catiónico [RhH(SiMe2(o-C6H4SMe))(PPh3)2]BArF
4 (17), preparado por reacción 

directa de [RhCl(PPh3)3] con el preligando bidentado L1 y NaBArF
4, ha resultado ser un 

catalizador eficiente en la reacción tándem de isomerización e hidrosililación de olefinas 

internas con Et3SiH a temperatura ambiente y sin disolvente, en la que muestra una completa 

selectividad hacia el producto alquilsilano lineal. De esta manera, es posible la obtención de un 

solo producto de hidrosililación partiendo de una mezcla de varios isómeros de un mismo 

alqueno. El mismo complejo es capaz de catalizar la reacción de deshalogenación de CDCl3 en 

presencia de Et3SiH para dar lugar al clorosilano Et3SiCl y a CHDCl2. 

Por otra parte, se ha preparado el compuesto de Ir(III) [IrH(SiMe(o-

C6H4SMe)2)(PPh3)(THF)]BArF
4 (20), estructuralmente análogo a la especie de Rh(III) 

[RhH(SiMe(o-C6H4SMe)2)(PPh3)]BArF
4 (6), por reacción de [Ir(cod)Cl]2 con L2 y PPh3 y la 

posterior extracción del ligando cloruro con NaBArF
4 y coordinación de una molécula de THF. 

Los compuestos 6 y 20 también han sido utilizados como pre-catalizadores en reacciones en 

tándem de olefinas internas con Et3SiH sin disolvente. El complejo de Rh(III) 6 promueve la 

reacción en tándem de isomerización e hidrosililación para obtener productos lineales a 

temperatura ambiente, mientras que el compuesto de Ir(III) 20 lleva a una reacción en tándem 



 

de isomerización y sililación deshidrogenativa de las olefinas internas, para dar el producto 

alilsilano de forma mayoritaria (Esquema R6). 

Esquema R6. Esquema general de la reacción de alquenos remotos con Et

compuestos análogos de Rh(III) e Ir(III) 

ACTIVACION DEL ENLACE C

REACTIVIDAD DE LA FOSFINA

DE RODIO(I)  

Se ha visto que la reacción de 

PPh2CH(Ph)CH2CHO en presencia de piridina lleva a la activación del enlace C

aldehído mediante adición oxidativa ayudada por la formación de un quelato acilfosfina, 

generando el complejo Rh(III)

(22) como una única especie, con una alta diastereoselectividad. Este comportami

del mostrado por fosfinoarilaldehydos similares, con los que se observa la inserción del grupo 

aldehído en el enlace Rh-

acilcomplejo 22 con una molécula adicional de 

adición oxidativa, sino que genera un compuesto conteniendo un grupo aldehído libre

los dos átomos de fósforo mutuamente 

PPh2CH(Ph)CH2CHO)(py)] (24

arilaldehído PPh2(o-C6H4CHO)

formar un metalaciclo arilacilo de mayor estabilidad en el complejo 

PPh2(CH(Ph)CH2CHO))(py)] (25

resultados sugieren una barrera de activación menor para la reacción de 

diastereoisomerización en el caso de alquilaldehídos (

Isomerización e 

hidrosililación

Silanos terminales

de isomerización y sililación deshidrogenativa de las olefinas internas, para dar el producto 

lano de forma mayoritaria (Esquema R6).  

Esquema general de la reacción de alquenos remotos con Et3SiH catalizado por los 

compuestos análogos de Rh(III) e Ir(III) 6 y 20.  

ACTIVACION DEL ENLACE C-H EN ALDEHÍDOS 

REACTIVIDAD DE LA FOSFINA-ALDEHIDO PPh2CH(Ph)CH2CHO CON COMPLEJOS DIOLEFINICOS 

Se ha visto que la reacción de [Rh(cod)Cl]2 con la mezcla racémica del fosfinoalquilaldehído 

en presencia de piridina lleva a la activación del enlace C

o mediante adición oxidativa ayudada por la formación de un quelato acilfosfina, 

generando el complejo Rh(III)-hidrido(difenilfosfino)alquilacilo [RhClH(PPh2CH(Ph)CH

como una única especie, con una alta diastereoselectividad. Este comportami

del mostrado por fosfinoarilaldehydos similares, con los que se observa la inserción del grupo 

-H para generar derivados hidroxialquílicos. La reacción del 

con una molécula adicional de PPh2CH(Ph)CH2CHO no lleva a una segunda 

adición oxidativa, sino que genera un compuesto conteniendo un grupo aldehído libre

los dos átomos de fósforo mutuamente trans, de formulación [RhClH(PPh2

24), con notable diastereoselectividad. Sin embargo, la adición del 

CHO) a 22 provoca la eliminación reductiva del alquilaldehído para 

formar un metalaciclo arilacilo de mayor estabilidad en el complejo [RhClH(PPh

25), como una mezcla equimolecular de dos diastereómeros. Estos 

resultados sugieren una barrera de activación menor para la reacción de 

diastereoisomerización en el caso de alquilaldehídos (24) que en el de arilaldehídos (
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de isomerización y sililación deshidrogenativa de las olefinas internas, para dar el producto 

 

SiH catalizado por los 

CHO CON COMPLEJOS DIOLEFINICOS 

émica del fosfinoalquilaldehído 

en presencia de piridina lleva a la activación del enlace C-H del grupo 

o mediante adición oxidativa ayudada por la formación de un quelato acilfosfina, 

CH(Ph)CH2CO)(py)2] 

como una única especie, con una alta diastereoselectividad. Este comportamiento difiere 

del mostrado por fosfinoarilaldehydos similares, con los que se observa la inserción del grupo 

H para generar derivados hidroxialquílicos. La reacción del 

no lleva a una segunda 

adición oxidativa, sino que genera un compuesto conteniendo un grupo aldehído libre y con 

2CH(Ph)CH2CO)(κ1-

vidad. Sin embargo, la adición del 

eliminación reductiva del alquilaldehído para 

[RhClH(PPh2(o-C6H4CO))(κ1-

una mezcla equimolecular de dos diastereómeros. Estos 

resultados sugieren una barrera de activación menor para la reacción de 

) que en el de arilaldehídos (25). 

Isomerización y 

deshidrogenativa

Alilsilanos
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Se ha estudiado la reactividad del complejo 25 con las diiminas aromáticas 1,10-fenantrolina y 

2,2’-bipiridina, con las que se consiguen complejos catiónicos de tipo [RhH(NN)(PPh2(o-

C6H4CO))(κ1-PPh2(CH(Ph)CH2CHO))]BPh4 como mezclas de dos diastereoisómeros, cuya 

separación física ha sido posible debido a la diferencia de solubilidad que presentan en 

cloroformo. En presencia de las amino-iminas, 8-aminoquinolina y 2-aminometilpiridina la 

fosfina P-monodentada en el complejo 25 experimenta una iminación completa para dar 

ligandos terdentados hemilábiles PNN en compuestos de tipo [RhH(PPh2(o-C6H4CO))(PNN)]BF4. 

El comportamiento de 25 con la 2-aminometilpiridina difiere del mostrado por un compuesto 

similar derivado del arilaldehído PPh2(o-C6H4CHO), el cual llevaba a la formación de un grupo 

hemiaminal -CH(OH)NH- estable. Esto puede ser debido a la mayor flexibilidad que presenta la 

cadena alifática de la alquilfosfina PPh2CH(Ph)CH2CHO, la cual facilitaría la última etapa de 

condensación en la reacción entre el aldehído libre y los grupos amino.  

Por último, se ha estudiado la reactividad de la fosfina PPh2CH(Ph)CH2CHO con [Rh(nbd)Cl]2, 

consiguiéndose derivados σ-norticiclilo de tipo [RhCl(NN)(Ntyl)(PPh2CH(Ph)CH2CO)] cuando la 

reacción se lleva a cabo en presencia de diiminas N-dadoras, mediante la inserción del ligando 

norbornadieno en el enlace Rh-H y una posterior reorganización. En todos los casos se 

consigue una mezcla de diastereoisómeros de un solo isómero geométrico, en una proporción 

de 75:25. Si la reacción entre la fosfina y [Rh(nbd)Cl]2 se realiza en metanol y en presencia de 

8-quinolinacarboxaldehído, se produce la transformación del alquilaldehído en alquilester y la 

adición oxidativa del arilaldehído generando el complejo [RhCl(Ntyl)(C9H6NCO)(k2-

PPh2CH(Ph)CH2CO(OCH3)] (32), pasando por un intermedio (difenilfosfino)hemiacetal con la 

fosfina coordinada como P-monodentada. El nuevo ligando hemilábil P,O permite una 

completa isomerización consiguiendo un único diastereoisómero.  

REACTIVIDAD DE [Rh(nbd)Cl]2 CON 8-QUINOLINACARBOXALDEHIDO Y PIRAZOL. 

APLICACIONES CATALITICAS. 

El acilaldehído C9H6NCHO reacciona con [Rh(nbd)Cl]2 en presencia de pirazol para formar el 

compuesto dinuclear [RhCl(C9H6NCO))(Hpz)(nbyl)]2 (33), y los compuestos mononucleares 

neutro y catiónico [RhCl(C9H6NCO))(Hpz)2(nbyl)] (34) y [Rh(C9H6NCO))(Hpz)3(nbyl)]BPh4 (35) 

respectivamente, formados por inserción del norbornadieno en el enlace Rh-H para dar el 

derivado σ-norbornenilo, o el σ-norticiclilo en una menor proporción. La formación de enlaces 

de hidrógeno N-H···O y N-H···Cl entre el ligando pirazol y el grupo acilo o el ligando cloruro 

estabilizan estabilizan estos compuestos.  
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La adición de trifenilfosfina al compuesto dinuclear 33 lleva a la eliminación reductiva del 

producto quinolinilnorbornenil-cetona C9H6NC(O)Nbyl. Sin embargo, con la adición del óxido 

de difenilfosfina se genera un fragmento quinolinil(norbornenilhidroxialquilo) en el compuesto 

insaturado [RhCl(C9H6NC(nbyl)OH))(Hpz)(Ph2PO)] (36a), el cual presenta una estructura de 

bipirámide trigonal. Esto ocurre por la migración del ligando σ-norbornenilo hacia el átomo de 

carbono en la acilquinolina, con la formación de un nuevo enlace C-C y una transferencia de 

hidrógeno de esfera externa desde el ácido fosfínico hasta el fragmento carboxi coordinado. Al 

bajar la temperatura se revela un equilibrio entre la especie insaturada de estructura de 

bipirámide trigonal y una especie de estructura de pirámide de base cuadrada (36b) (Esquema 

R7). 

Esquema R7. Equilibrio entre la especie bipirámide trigonal 36a y la pirámide de base cuadrada 36b. 

Los cuatro compuestos Rh(III)-alquil(acilquinolina) han demostrado ser catalizadores 

homogéneos eficientes en la reacción de hidrólisis del aducto de amoniaco-borano en una 

mezcla de THF/H2O, a 30 °C en presencia de aire. Con todos los complejos se genera casi el 

total de tres equivalentes de hidrógeno por mol de sustrato, siendo el compuesto dinuclear 33 

el que muestra una mayor actividad catalítica.  


