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ABSTRACT: In the first part of the article, a semiotic reading of the embodied approach to mathematics will be pre-
sented. From this perspective, the role of the sensorimotor in mathematics will be considered, by looking at 
some work in experimental psychology on the segmentation of formulas and at an analysis of the practice of to-
pology as involving manipulative imagination. According to the proposed view, representations in mathematics 
are cognitive tools whose functioning depends on pre-existing cognitive abilities and specific training. In the sec-
ond part of the paper, the view of cognitive tools as props in games of “make-believe” will be discussed; to bet-
ter specify this claim, the notion of affordance will be explored in its possible extension from concrete objects to 
representations.

Keywords: embodied cognition, embodied mathematics, cognitive tools, manipulative imagination, games of “make-be-
lieve”, affordances.

RESUMEN: En la primera parte del artículo, se presenta una lectura semiótica del enfoque corporeizado de las matemá-
ticas. Desde esta perspectiva, se considera el papel de lo sensoriomotor en matemática, considerando algunos 
trabajos en psicología experimental sobre la segmentación de fórmulas y el análisis de la práctica de la topología 
en términos de imaginación manipulativa. De acuerdo con la perspectiva propuesta, las representaciones en ma-
temáticas son herramientas cognitivas cuyo funcionamiento depende de capacidades cognitivas pre-existentes 
y entrenamiento específico. En la segunda parte del artículo, se discute la visión de las herramientas cognitivas 
como ‘apoyos’ o ‘puntales’ (props) en juegos de como-si; para especificar mejor esta afirmación se explora la no-
ción de ‘affordance’ en su posible extensión de objetos concretos a representaciones.

Palabras clave: cognición corporeizada, matemática corporeizada, herramientas cognitivas, imaginación manipulativa, jue-
gos de como-si, ‘affordances’

1. Introduction: how cognition (and mathematics) gets embodied

Core knowledge representations in cognition are amodal data structures that get processed 
independently of the brain’s modal systems devoted to perception, action and introspec-
tion.1 This claim has been standard in cognitive science; only recently, some views have 
tried to challenge it. Several labels besides embodied cognition (or embodiment) have been 
introduced in the literature to define approaches seeking to embody cognition: embedded 

* I would like to thank the participants to the Workshop “From Basic Cognition to Mathematical Prac-
tices” at the University of Seville in 2016, where I delivered a first version of this article, for their ques-
tions and comments. I also thank José Ferreirós and María de Paz for their editorial work, and two 
anonymous referees for their useful suggestions.

1 This sentence is a paraphrase of Barsalou (1999)’s characterization of the matter.
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cognition, extended mind, enactivism, situated cognition, grounded cognition, and so on 
and so forth. Indeed, these views are not equivalent; however, what they have in common 
is that they all maintain that the standard claim is to some extent wrong: perception, action 
and even introspection may play a part in our cognitive processes.2

Looking back to the history of cognitive science, there are reasons to believe that the 
standard claim is mistaken. Already in 1990, the great psychologist Jerome Bruner warned 
his readers against the wrong route that the so-called cognitive revolution of the 50s had 
taken. According to him, the cognitive revolution began by focusing on the symbolic ac-
tivities involved in humans’ making sense of the world and of themselves; in his words, “its 
aim was to prompt psychology to join forces with its sister interpretative disciplines in the 
humanities and in the social science” (Bruner 1990, 2). However, the emphasis gradually 
shifted from questions about the construction of meaning to attention towards informa-
tion processing, which are “profoundly different matters” (Bruner 1990, 4). In Bruner’s 
reconstruction, “computing became the model of the mind, and in place of the concept of 
meaning there emerged the concept of computability […]. So long as there was a comput-
able program, there was ‘mind’” (Bruner 1990, 6-7). Along the same line of thought, an-
other psychologist, Lawrence Bersalou, stressed a very similar point, by claiming that af-
ter the cognitive revolution, radically new approaches to representation were developed in 
contrast to pre-twentieth century thinking: “modern cognitive scientists began working 
with representational schemes that were inherently nonperceptual. To a large extent, this 
shift reflected major developments outside cognitive science in logic, statistics, and compu-
ter science” (Barsalou 1999, 578). Interestingly, in Barsalou’s view, the very same practices 
that were brought about by the cognitive revolution were so successful that they ended up 
becoming the focus of research, with the initial questions that set off the revolution being 
forgotten.

Nonetheless, the positive claims of embodied cognition views are not always that 
sharply defined. Let us assume that it is in fact wrong to consider cognition as disembod-
ied. What is then the role of perception, or action, or introspection for cognition? What 
does the new big picture about the mind as finally —or maybe once again— embodied 
amount to?

An interesting suggestion is to assume a moderate approach to embodied cognitive sci-
ence as proposed by Goldman (2012). In the author’s view, human cognition is for the 
most part embodied because information obtained from proprioception —the awareness of 
the relative position of one's own parts of the body— and kinesthesis —the ability to feel 
movements of the limbs and body— happens to be often reused for other more abstract 
tasks. The idea is that the brain redeploys cognitive processes having different use at their 
origin to solve new tasks in new contexts, which might also happen to be abstract; when it 
comes to bodily representational codes, they appear to be very pervasive.3 This view is partic-
ularly interesting for the present purpose precisely because it aims to explain how informa-
tion obtained from proprioception and kinesthesis and thus deploying previous bodily ex-

2 For a survey of such views, see Wilson (2002) or Barsalou (2008).
3 According to Goldman and de Vignemont (2009), bodily representational codes are a subset of mental 

codes that are primarily or fundamentally applied in forming interoceptive or directive representations 
of one’s own bodily states and activities; their existence is a matter of empirical investigation. 
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perience can be a genuine part of cognitive processes. We will go back to this issue later in 
the paper in dealing in particular with cognitive tools in mathematics.

So far for cognition, but what about mathematics? Can mathematics as well be con-
sidered as embodied? There is here a nice parallel to make, which is not surprising since 
mathematics is a very important and ancient human activity that has been more or less 
stable across centuries. Recently, a plethora of studies are inscribed under the label of em-
bodied mathematics (EM from now on). As for cognition, the standard assumption is very 
clear. According to a common claim, mathematics is an abstract science dealing with ab-
stract objects that are occasionally described by signs but do not share any properties with 
the ordinary objects that an agent interacts with every day. EM views question the exist-
ence of such a sharp distinction between the concrete world on the one hand and abstract 
knowledge on the other; in fact, even when working with supposedly abstract objects, hu-
mans seem to recruit some competences and abilities that are typical of their relation with 
the world (the parallel with a possibly moderate approach to embodied cognition is evident 
here). However, also in the case of embodied mathematics, the implications of the positive 
claims are not that straightforward. Let us accept that the standard approach to mathemat-
ics is wrong, and previous and more spontaneous competences as developed in our interac-
tion with the concrete world matter for doing mathematics. How does it happen? How can 
mathematics show itself to be in fact an embodied cognitive activity?

I propose to distinguish here between two different readings of EM: the conceptual 
reading and the semiotic reading. In saying that these readings are not the same, I am not 
claiming that they are incompatible, since there are some commonalities; still, they repre-
sent two distinct points of view regarding how to consider mathematics as embodied. In 
the conceptual reading, mathematical notions are conceptualized by means of grounding 
metaphors that are based on bodily experience; in the semiotic reading, mathematics makes 
use of signs that are to be perceived and acted upon (and thus sensorimotor considerations 
may matter). In my view, the second reading is more promising, and I will devote the rest 
of the paper to it. However, I will first discuss the conceptual reading so as to clarify its 
limits.

For what concerns the conceptual reading of EM, I refer to the by now classic work by 
Lakoff and Núñez (2000). Building on previous research about language (Lakoff and John-
son, 1980), the authors claim that abstract scientific concepts as well as ordinary ones are 
understood in terms of metaphors. To clarify, everyone —no matter if being an expert or 
not— would normally say that natural numbers “grow” indefinitely, or that points “lay” 
on a line, or that functions “move” to 0 and so on and so forth, even if it is certainly not the 
case that numbers literally grow bigger, or points lay on anything, or functions move any-
where. According to the authors, this is explained by the main cognitive mechanisms that 
are at stake when it comes to conceptualizing mathematical objects: conceptual metaphors 
and conceptual blending;4 in both cases, the source is bodily experience. A discussed case of 
conceptual metaphor is the image-schema of sets as containers. In order to understand what 
sets are, an agent builds the image-schema based on the metaphor according to which sets 
are containers: like containers, they have an interior, a boundary, and an exterior; moreo-

4 A conceptual blending allows connecting different domains through a metaphor so as to obtain a third 
one that is a projection of both.
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ver, the elements of the set are analogous to what is inside the container. Lakoff and Núñez 
claim that metaphors such as this are grounding metaphors, frequently only implicit, used 
to conceptualize the mathematical notion of set as determined by ZFC (the Zermelo-
Fraenkel axioms together with the axiom of choice).

However, this reading of EM has some limits, as Schlimm (2013) has recently 
pointed out. According to him, Lakoff and Núñez’s work surely deserves philosophical 
attention, because it has been the first comprehensive account of mathematical cognition 
that also addresses advanced mathematics and its history: mathematical ideas should be 
analyzed so as to provide a cognitive science theory that is about mathematics as a whole 
and not only about elementary mathematics. Nonetheless, a discussion from a perspec-
tive taking mathematical practice and the history of mathematics seriously into account 
is needed. To go back to the metaphor of sets as containers, Lakoff and Núñez suggest 
that there exists an “intuitive pre-mathematical notion of classes,” which are “usually” 
and “normally” conceptualized as container schemas, and that this would be “our natu-
ral, everyday unconscious conceptual metaphor for what a class is” (Lakoff and Núñez 
2000, 122-123, quoted in Schlimm 2013). However, according to Schlimm, even if it is 
true that the metaphor of sets as containers is found on the first pages of some introduc-
tory textbooks, later it gets quickly discarded. Moreover, mathematical practice is charac-
terized by a back and forth of various intellectual activities: a vague metaphor can surely 
suggest one idea, but then a hunch or an accidental feature of the chosen notation would 
suggest another (we will go back to the issue of accidental features of the notation when 
discussing the semiotic reading of EM). In the history of a notion such as that of set, fur-
ther elaborations are given by trials and errors and possibly also as a result of the interac-
tions with other mathematicians, thus leading in turn to more sophisticated metaphors, 
new notations, and so on and so forth. If one wants to look at these things from the per-
spective of a philosophy of mathematical practice, a more fine-grained and nuanced anal-
ysis of the cognitive processes involved is needed. For example, textbook mathematics 
and research mathematics should be carefully distinguished (and such distinction dis-
cussed and motivated). As Schlimm sums up, such an approach should lead to a histori-
cally informed cognitive science of mathematics and a cognitive history of mathematics as 
it is actually practiced.

The conceptual reading of EM seems thus to be too exclusive —when it comes to 
mathematical conceptualization, more than one intellectual activity needs to be consid-
ered— and too strong —there is no guarantee that all mathematical concepts might be em-
bodied this way. In the next section, I will define the semiotic reading of EM and give argu-
ments in favor of its greater plausibility.

2. The semiotic reading of EM: a role for the sensorimotor in mathematics

In the semiotic reading of EM, the attention is devoted to the use of signs in mathematics, 
by considering whether perception or action might play a role in reasoning with them. In 
the following, I will present two cases in which perception and action appear to be relevant 
for mathematical reasoning: parsing a notational form and the practice of relying on knot 
diagrams in topology.
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2.1. Parsing a notational form
In an interesting experimental study, Landy and Goldstone (2007) considered how physi-
cal layout might affect the segmentation of simple equations. As everyone with little com-
petence in algebra knows, when reading a notational form, one has to segment it into its 
formal components; for example, a formula displaying additions and multiplication has to 
be parsed in such a way that multiplication is performed before addition. This is a difficult 
albeit routine part of mathematical reasoning. From the point of view of the standard ac-
count of mathematics, this segmentation is cognitively executed through the mere applica-
tion of formal rules to individual notational symbols. According to the authors, this brings 
to the “appealing and tempting assumption” (Landy and Goldstone 2007, 721) that the 
cognitive agent —the parser— trivially extracts abstract symbol sequences from physical 
notations. However, to challenge this claim, they ask participants to evaluate the validity 
of equations containing multiplications and additions, to which visual cues such as spacing, 
lines, or circles have been added. The hypothesis is that such signals would influence the 
application of perceptual grouping mechanisms and consequently the participants’ capacity 
for symbolic reasoning (see Figure 1).

a + b * c + d = c + d * a + b
a + b * c + d = c + d * a + b

Figure 1
An example of a manipulation where spaces are added between the two factors to multiply;  

in this case, the visual grouping is not in line with the correct order of the operators

The results show that validity-judgments are more likely to be correct if visual groupings 
are in line with valid operator precedence (multiplication coming before addition); the 
physical layout of the equation seems thus to have an influence on performance. Of course, 
there is a trivial sense in which the physical layout would matter. For example, the charac-
ters of a formula can be written so small that it would not be possible for the human eye to 
decipher them and as a consequence to access the meaning of the formula. However, what 
is at stake here is less trivial: the results of the experiment show that signs happen to be tar-
gets for spontaneous sensorimotor mechanisms, analogously to other kinds of percepts. 
However, since signs are not simply objects but objects that are used to refer to something 
else, in this case to some algebraic relations, the fact that they become such targets may have 
an influence on our capacity to access their meaning: the manipulations applied by the au-
thors happen to facilitate or vice versa to hinder the application of formal rules, thus show-
ing that the layout of the formula may have an impact on its parsing. The control of such 
grouping mechanisms matters for the effective design of the formula and for its success in 
making mathematical content and operations available.

Based on these and similar results, in a more recent paper, Landy, Allen and Zednik 
(2014) put forward a Perceptual Manipulations Theory, according to which most of sym-
bolic reasoning emerges from the ways in which notational formalisms are perceived and 
manipulated; in their view, notations serve as targets for powerful perceptual and sensorim-
otor systems. Other scholars as well have underlined the importance of perception and ac-
tion for reading a mathematical notation. For example, Kellman, Massey and Sona (2010) 
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explicitly talk of perceptual learning in mathematics, referring to the improvements that are 
produced by experience in the extraction of information. This would open the way to new 
strategies for teaching mathematics: in line with these findings, students should be trained 
in recognizing algebraic expressions by using standard perceptual learning techniques and 
this might lead to lasting gains in equation reading and comprehension, as well as in alge-
braic problem-solving. This is not to say that mathematical reasoning only involves percep-
tion, or that the possible actions on the notation are driven only by perceptual groupings, 
but to point at a crucial aspect of mathematical reasoning that has been neglected by stand-
ard accounts and that adds up to more complex cognitive and symbolic processes.

2.2. Epistemic actions and manipulative imagination (in topology)
The second example for a possible role for perception and action in mathematics concerns 
some previous work with De Toffoli on the practice of topology, a part of geometry dealing 
with those properties of space that remain unchanged under continuous deformations (one 
can think of topology as “rubber sheet geometry”). In particular, we took into account knot 
theory, a branch of topology that studies the properties of topological knots, and the prac-
tice of reasoning by means of knot diagrams (De Toffoli and Giardino 2014).

A topological knot is an embedding of a circle in 3-dimensional Euclidean space. A 
novice can think of topological knots as an abstraction of physical knots, where their ends 
are glued and their metric proprieties are not relevant: what matters is only their “knot-
tedness”, that is, the way in which they are knotted (or not). In order to study topological 
knots, mathematicians rely on knot diagrams, which are projections of topological knots 
following some specific constraints (for example, the information at crossings must be pre-
served) (see Figure 2).

Figure 2
A knot diagram of the trefoil knot

In our study, we argued that knot diagrams are not only visual illustrations but dynamic 
tools: when looking at them, experts learn to perceive their possible moves, and thanks 
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to that they are able to infer something about the properties of the knot. To clarify, we 
claimed that such diagrams trigger in the agents a specific form of imagination that we de-
fined manipulative: experts have learnt how to perform or how to imagine performing 
some actions on the diagrams. For example, by looking at the diagram in Figure 2, one can 
imagine picking one of the threads and pull it down, so as to see that this move would not 
change the knottedness of the knot (it corresponds to a continuous transformation). This 
case shows the plausibility of the idea of a moderate embodied approach to cognition, since 
some kind of bodily experience seems to be redeployed when relating to more abstract tasks 
such as working with a topological knot. However, such competences, originating in our 
relation with concrete objects, are modulated by expertise. In fact, not all the possible con-
ceivable changes of the diagram would be permitted: only some of these actions are allowed 
by the practice, that is, they are recognized as meaningful in relation to the specific mathe-
matical context. Moreover, these actions can become epistemic, that means that they might 
lead to new inferences about some mathematical properties of the topological knot.

The term “epistemic actions” is taken from the study presented by Kirsh and Maglio 
(1994) on the performance of Tetris players.5 In their observations, the authors noticed 
that players act on the pieces of the game not only to directly achieve the final goal but also 
to understand what the best move will be. As a consequence, they distinguished between 
pragmatic actions, which aim to bring the agent closer to their physical goal, and epistemic 
actions, which use world to improve cognition: they are “physical actions that make mental 
computation easier” (Kirsh and Maglio 1994, 514) and are performed outside on the avail-
able physical objects, with the result of enhancing inference and reasoning. Despite the very 
elementary context of a computer game, the idea can be extended to mathematical tools, 
such as knot diagrams. Some transformations that are allowed by the practice can be imag-
ined on the diagram or actually performed by rewriting it, and this would bring to experi-
mentation and to the definition of new inferences and new results.

In the last section of the article, I will go back to a more precise definition of these ac-
tions.

2.3. One claim and two research directions
In view of what has been said so far, the semiotic reading of EM seems to put forward one 
claim and two research directions. The claim is that the functioning of cognitive tools in 
mathematics —diagrams, notation or writing, if intended in a broad sense— and their in-
fluence on the inferences and possibly on the obtained results is crucial in mathematics.6 

5 Tetris is a popular videogame from the 1980s, where some pieces that are shaped as geometric figures 
and composed of four squared blocks fall one after the other down the playing field. The objective of 
the game is to create a horizontal line below, composed of ten blocks presenting no gaps. Once a whole 
line is created, it disappears, and any block that is above the deleted line will fall down. The game is 
over if the stack of pieces reaches the top of the playing field; however, if a certain number of lines is 
cleared, then the game enters a new level (in which the pieces will go down faster). In order to create 
the line below to the aim of having it cleared, the player can move the pieces sideways and rotate them 
by 90-degree units.

6 Notice that I use here signs and cognitive tools alternatively; however, signs are a subset of cognitive 
tools. 
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These tools are perceived and acted upon, and in this sense mathematics can be thought of as 
embodied: proprioception and kinesthesis are here recruited for more abstract uses for the 
very reason that these tools serve as targets for them.

Such a functioning of cognitive tools might lead to:
1. unintended effects of sensorimotor considerations on mathematical reasoning, 

which might become a source of notational artifacts;7

2. intended effects of sensorimotor considerations on mathematical reasoning, be-
cause these tools may serve as imagination-triggers.

If we consider the example above of the formula with spaces added between the elements 
to add or multiply, the grouping effects hinder the parsing when they are not in line with 
the correct groupings; therefore, the signs happen to be targets of sensorimotor consid-
erations, but they are not intended to be as such. On the contrary, the physical features of 
knot diagrams are useful and effective precisely because they trigger manipulative imagina-
tion in such a way that it enhances reasoning and inference. Such a distinction defines two 
complementary research directions in looking at case studies and possibly in defining ex-
perimental settings where such effects can be evaluated. This of course runs counter to the 
standard claim about mathematics, since the physical features of the signs may indeed have 
an influence on mathematical reasoning.

3. How to characterize manipulative imagination and epistemic actions

In this section, I will try to specify more my claim about manipulative imagination as trig-
gered by some particular representations. Firstly, I will look at a possible general framework 
about imagination; secondly, I will focus on the epistemic actions that are the results of this 
form of imagination.

3.1. Cognitive tools as props in games of make-believe
What possible general framework about the workings of imagination will be appropriate 
for mathematics? In this section, I will consider an application of Kendall Walton (1990)’s 
theory about the nature of representations to cognitive tools in mathematics.

According to Walton’s “make-believe” theory, representations are props in games of 
make-believe, that is, they are supports for imagination analogously to objects such as dolls 
or toy tracks in the games played by children. To clarify, if a child imagines that a doll is a 
baby, depending on what happens to the doll, she will imagine various things happening 
to the baby as well: cradling the doll would be cradling the baby, or singing a lullaby to the 
doll would be singing it to the baby. However, there are rules by which props prescribe im-
aginings, which are called principles of generation. Such principles are normative: they say 
what participants should imagine, given the state of the props, if they are playing the game 
correctly. However, these principles are often implicit and not explicitly stated. Imaginings 

7 As in experimental science, “artifact” is intended here as error resulting from flaws in the deployed 
technique or equipment —or, in this case, in a particular tool. 
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that are prescribed within the game are fictional and such a normative approach preserves 
an account of truth in the fiction.

Adam Toon (2010a, 2010b, 2011) has recently proposed to rely on Walton’s view in 
philosophy of science, in particular to give an account of the use of physical as well as theo-
retical models (these latter being aimed at constructing a simplified or idealized version of 
some system). In most cases, models are false of the system they want to represent: even if 
they look like a description of some actual, concrete object, no such system would satisfy 
this description. However, in Toon’s reconstruction, they are still representations because, 
analogously to dolls or toy trucks for children, they serve as props in games of make-be-
lieve. In the case of a physical model, for example in chemistry, scientists do imagine plas-
tic balls and connecting rods to be molecules in much the same way that children imagine 
a doll to be a baby; in a theoretical model, for example the model of a bouncing spring as a 
simple harmonic oscillator used to predict the motion of a bob bouncing on the end of a 
spring, scientists would of course realize that such a description is false of the world (there 
is no reference to air resistance or to the mass of the bob), but they would still be required 
to imagine things as the model prescribes, for example, that the bob is a point mass or that 
the spring exerts a linear restoring force, and so on and so forth. Also in the case of models, 
the principles of generations, in most cases implicit, are normative: the scientist knows that 
she cannot misinterpret the model. Moreover, there must be an understanding among us-
ers that various imaginings are prescribed depending on the features of the model: the im-
aginings about its object as prescribed by the model are conditional on those properties. 
Such an approach may also address the ontological difficulties that are posed by theoreti-
cal modeling. In fact, in Toon’s interpretation, to claim that a model is a representation in 
Walton’s sense does not amount to assume anything about the existence of the entities it 
invokes. Models function as props in games of make-believe and need not prescribe imagin-
ings about any actual system; however, they are still representational because they prescribe 
imaginings about the modeled system and make propositions about it fictional. Such a view 
does not incur any ‘ontological commitments’: Walton’s theory is antirealist with regard to 
fictional entities.8

It seems then that Walton’s “make-believe” theory can be useful for an account of 
models in science. What about cognitive tools in mathematics? Can they be consid-
ered as well as props in games of make-believe? To some extent, this view seems very 
plausible.

Take again the case of knot diagrams, and assume that they are props in make-believe 
games. Indeed, mathematicians do imagine knot diagrams to be the knots—as it is evident 
in the ambiguous way they speak alternatively of “knots” or “knot diagrams” —in much 
the same way that children imagine a doll to be a baby or toy tracks to be real tracks; fur-
thermore, they imagine themselves as viewing and manipulating knots and sometimes even 
‘living’ in the depicted topological object—therefore, not only they are required to imag-
ine things about the knots but also they learn what further propositions these imaginings 

8 Frigg (2010) also suggests that the descriptions presented in theoretical modeling should be under-
stood as props in Walton’s sense; however, in his view these descriptions prescribe the user to imagine 
‘model systems’ understood as imagined physical systems, that is, as hypothetical entities. Toon criti-
cizes Frigg’s view by claiming that it is not clear how this would not incur any ontological commit-
ment.
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entail. For knot diagrams as for models, principles of generations are normative: the math-
ematician knows that she cannot misinterpret the diagram and that only some of all the 
possible actions that can be performed on them are meaningful in relation to the practice. 
However, these principles are in most cases implicit and not explicitly defined. This ap-
proach may also be of help to deal with ontological issues regarding the object of mathe-
matics. In fact, a Walton-inspired view of cognitive tools as props in games of make-believe 
is antirealist: the propositions that can be inferred by the representation are considered as 
fictional, but this does not imply taking any stance about the existence of the represented 
objects.

However, some difficulties emerge. First, this approach seems to apply very easily to 
representations such as knot diagrams but less conveniently to other kinds of cognitive 
tools such as the equations that were presented in Landy and Goldstone’s study. Can a for-
mula be intended as a prop for some game of make-believe? Concerning this question, it 
seems to me that there are two possible ways out. First, one could think that it is simply 
not possible to give a unified account for cognitive tools in mathematics as a whole; for ex-
ample, further distinctions such as between iconic and symbolic representations should 
be introduced. However, there is an alternative, which is to reply positively to the ques-
tion whether an equation can serve as well as a prop, and to claim that also when work-
ing with formulas mathematicians are required to have some imaginings, for example they 
form propositions about algebraic relations or imagine applying transformations on them. 
The distinction between knot diagrams and formulas can be thought of as not being so dis-
tant from that between physical models and theoretical models in science: in all cases, these 
tools serve as props to prescribe imaginings; for knot diagrams and physical models, their 
physical features take part in the imaginings; for formulas and theoretical models, the re-
quired imaginings involve relations that are expressed by the signs displayed in the equa-
tions. In any case, the fact that they are props prescribing imaginings does not imply the ex-
istence of the objects they represent.

However, another difficulty in assuming a Waltonian approach to cognitive tools in 
mathematics concerns the definition of principles of generations in this specific context. In 
the case of representational art, principles of generations, which are often implicit, depend 
on conventions and cultural constraints. For models in science, they may even more impor-
tantly vary from case to case. What about cognitive tools in mathematics?

Before trying to reply to this question, let me sum up what I have got so far. I proposed 
that cognitive tools in mathematics can be considered as representations in Walton’s terms, 
analogously to what Toon suggests for models in science: they serve as props for games of 
make-believe. However, in order for them to be as such, the users must agree on the various 
prescribed imaginings depending on the physical features of the props, despite the fact that 
principles of generation are in most cases implicit and most likely vary from case to case. In 
order to clarify how these principles are characterized, in the next section I will focus on the 
epistemic actions that these tools make accessible for the competent user.

3.2. From external rules to representational affordances
Cognitive tools are external and material tools that are used in cognitive tasks. In the previ-
ous section, I claimed that they are props for imagining, but their use has to be constrained 
in order to be effective. How are these constraints defined?
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In a relatively old paper, Zhang and Norman (1994) proposed that many cognitive 
tasks require the processing of information to be distributed across the internal mind and 
the external environment; in other words, such tasks are distributed between internal and 
external representations, which, taken together, define the abstract structure of the prob-
lem. Internal representations are in the mind: they may take the form of propositions, 
schemas, mental images, connectionist networks, and so on and so forth. External repre-
sentations are instead in the world: they might be physical symbols —no matter if written 
symbols or beads of abacuses— external rules, constraints, or relations embedded in physi-
cal configurations. Think for example of the spatial relations between written digits, or of 
the visual and spatial layouts of diagrams, or of physical constraints in abacuses, and so on 
and so forth. In any distributed cognitive task, there are in general one or more internal and 
external representations involved.

As a case study, the authors consider the task of the Tower of Hanoi.9 This cognitive 
task involves a problem space that is composed by all the possible states and moves con-
strained by the rules. Two factors contribute to difficulty: working memory and problem 
structure. In the experiment, participants are presented with several versions of the task, in-
volving each time a variation of internal and external rules. As the authors explain, internal 
rules are “memorized rules that are explicitly stated as written propositions in the instruc-
tions of the experiment”, while external rules “are not stated in any form in the instructions 
but are the constraints that are embedded in or implied by physical configurations and can 
be perceived and followed without being explicitly formulated” (93). The results show that 
the more the rules are distributed in the external representation, the easier the problem gets 
and the fewer errors are made. The authors’ hypothesis is that an excessive load of working 
memory causes internal errors, while external rules are ‘built-in’ in the external representa-
tions, that is, they are either perceptually available or physically constrained. To clarify, the 
disks are perceived as bigger or smaller and this reduces memory loads, for example when 
applying the rule that only the bigger disk on a pole can be transferred to another pole.

If this is the case, do cognitive tools in mathematics embody external rules analogously 
to the disks in the Tower of Hanoi task? Some external rules might be built-in in them, 
so that they become perceptually available or physically constrained. It is true indeed that 
mathematicians do act upon the cognitive tools at their disposal, of which they have to 
consider the physical features in order to apply transformations to them; it seems therefore 
that some external rules might really be built-in in them, because they are determined by 
their material constraints.10

9 In this task, the participant is presented with three rods; on the first rod, three disks of different size 
are arranged in a stack, with the bigger disk being at the bottom and the smaller disk at the top. The 
objective of the puzzle is to move the entire stack to another rod. In the standard version of the task, 
this must be done by obeying the following simple rules: (i) only one disk can be moved at a time; 
(ii) each move consists of taking the upper disk from one of the stacks and placing it on top of another 
stack, i.e. a disk can only be moved if it is the uppermost disk on a stack; (iii) no disk may be placed on 
top of a smaller disk. Note that, in this standard case, rule (i) and rule (ii) are internal rules, while rule 
(iii) is external.

10 From this point of view, according to Manders (2008)’s definition, co-exact properties in Euclid proofs 
could be interpreted as defining external rules, since they identify the physical features of the diagram 
that would not be changed after deforming the diagram, and are thus “built-in” in it.
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However, this approach has some limits. The first problem is that in the case of the 
Tower of Hanoi task, external rules are considered in relation to external concrete objects 
with which one directly interacts —the disks— while mathematical objects such as knot 
diagrams, because of their nature of representations, require a particular reading in order to 
understand to which objects they refer to. Not all the material features of the tool but only 
a selection of them are relevant, depending on the correct interpretation as defined by the 
practice. In fact, a representation has to be correctly interpreted, and the correct interpreta-
tion requires background knowledge and/or the understanding of the accompanying text. 
This leads to a second and even more serious difficulty, which is that if interpretation mat-
ters so much, then in the case of cognitive tools it is very hard to draw a sharp line between 
internal and external rules. How much of what is claimed in Zhang and Norman’s paper 
about distributed cognitive tasks can be then applied to external ‘representational’ objects 
such as signs in mathematics?

Despite these limitations, the very authors seem to suggest a possible way out, by men-
tioning that external rules provide affordances. To clarify, the term “affordances” refers to 
the actionable properties between the environment and an agent (a person or an animal) 
and was introduced by James J. Gibson (1979) when presenting his ecological approach to 
visual perception. Affordances are what the environment offers the animal, “what it pro-
vides or furnishes, either for good or ill. The verb to afford is found in the dictionary, but 
the noun affordance is not. I have made it up. I mean by it something that refers to both 
the environment and the animal in a way that no existing term does. It implies the comple-
mentarity of the animal and the environment” (Gibson 1979, 127).

To give an example, a surface that is horizontal, flat, extended and rigid affords support. 
The interesting point here is that the world of physics is not as important for us as our en-
vironment of affordances. Of course, a surface would afford support because it possesses 
these specific and appropriate physical properties, but what counts for us is the affordance 
it provides. To focus on the notion of affordance means to avoid a sharp distinction be-
tween a subject on the one hand and an object on the other hand. As Gibson explains, an 
affordance is “neither an objective property nor a subjective property; or it is both if you 
like. An affordance cuts across the dichotomy of subjective-objective and helps us to under-
stand its inadequacy. It is equally a fact of the environment and a fact of behavior. It is both 
physical and psychical, yet neither. An affordance points both ways, to the environment and 
to the observer” (Gibson 1979, 129, emphasis added). If this is the case, then there is no 
need to distinguish sharply between internal and external rules; thanks to some physical 
features, concrete objects afford some actions and not others; by their affordances, such ob-
jects might influence the behavior of the agent and, in this particular case, facilitate or not 
the cognitive task. However, affordances in the context of the Tower of Hanoi task are still 
pertaining to external concrete objects such as the disks that are part of a problem-solving 
task. What about affordances offered by cognitive tools?

Gibson discusses the natural environment; however, artifacts may be designed as offer-
ing particular affordances, with the intention of triggering some particular behavior. Think 
for example of a door with a handle. Such a feature, the handle, affords pulling; however, if 
the door only opens by pushing, then the affordance would not be in accordance with what 
it offers the agent’s behavior. As a consequence, one might think in terms of good design 
—the door has a handle and opens if one pulls it—, and bad design —the door has a han-
dle and opens if one pushes it. If the notion of affordance can be extended from the natural 



Theoria 33/2 (2018): 345-360

 Manipulative imagination: how to move things around in mathematics 357

environment to artifacts, would it possible to extend it even further, from artifacts to rep-
resentational tools such as notation or diagrams in mathematics? Cognitive tools do afford 
some actions on them. In their case, we can think in terms of representational affordances. 
Of course, not all possible actions that are afforded by the tool are also mathematically 
meaningful: only a selection of them corresponds to a legitimate and therefore an epistemic 
operation, because of other constraints depending on their specific function or the specific 
practice for which these tools are introduced.11 Here as well it is possible to think in terms 
of good or bad design: if the tool is well-designed, epistemic actions should be easily avail-
able and allow for relevant inferences.

To give an example, the knot diagram in Figure 2 shows occlusions at crossings; thanks 
to grouping laws of perception such as good continuation,12 these occlusions are directly in-
terpreted as threads passing one under the other. Therefore, these diagrams trigger imagina-
tion by affording transformations on them that are immediately available, such as imagin-
ing pulling down one or more threads in sequence so as to obtain equivalent knot diagrams. 
Other representations containing the same information but presenting different physical 
features, for example by using dots to indicate a crossing as in Figure 3, would not offer the 
same affordances and might hinder relevant transformations.13

Figure 3
An alternative knot diagram of the trefoil knot

11 I take the term “legitimate operations” from Alexander (1923, 94).
12 Good continuation is one of the Gestalt laws of groupings, thanks to which in an intersection between 

two or more lines one of which is interrupted, people tend to perceive each line as a single uninter-
rupted one. 

13 Alexander (1928) uses these diagrams, and explains as follows: “At each crossing point, two of the 
four corners will be dotted to indicate which of the two branches through the crossing point is to be 
thought of as the one passing under, or behind the other. The convention will be to place the dots in 
such a manner that an insect crawling in the positive sense along the «lower» branch through a cross-
ing point would always have the two dotted corners on its left” (Alexander 1928, 276-277).
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However, another important feature of affordances for cognitive tools is that they are 
highly context-dependent. The same notation or diagram might afford different actions 
and transformations when having different functions —for example of discovery or of 
proof—, or across different disciplines —think of two (dotted) parallel lines in the context 
of Euclidean or projective geometry. Therefore, I will distinguish between perceptual rep-
resentational affordances and context-dependent representational affordances. On the one 
hand, cognitive tools spontaneously afford some actions because of the functioning of our 
cognitive system: for example, it is thanks to good continuation, which applies to other per-
cept as well, that one sees the threads in a knot diagram as uninterrupted lines even if they 
are interrupted in the diagram. On the other hand, cognitive tools also afford actions that 
are determined by expertise: this second kind of affordances defines the principles of gen-
eration that are at each time at stake and determine what is correct and what is not. How-
ever, these principles are still implicit and depend on the specific make-believe games that 
the user is engaged in.

If this is the case, then two general consequences can be drawn. First, a design principle 
can be defined, according to which it is commendable to prevent the perceptual representa-
tional affordances of cognitive tools from being sources of errors. This is the case of the ma-
nipulations applied to the equations in Landy and Goldstone’s experiment: adding spaces 
or lines trigger features of our cognitive systems, such as perceptual groupings, and this may 
lead to unintended and in some cases damaging effects of sensorimotor considerations on 
mathematical reasoning. On the contrary, it would be very convenient to exploit percep-
tual representational affordances to facilitate the relevant and correct operations and make 
them correspond to legitimate actions that are meaningful also in the mathematical con-
text. This is the case of displaying occlusions in a knot diagram, so as to trigger continuous 
transformations. Second, the context-dependence of some representational affordances has 
to be recognized and seriously taken into account: different contexts or functions can make 
different context-dependent representational affordances emerge, but these affordances are 
still conditional on the physical features of the tool and keep interacting with the percep-
tual representational ones. One might also envisage cases where a perceptual affordance is 
so much forcing on us, that it contributes at identifying new meaningful and epistemic ac-
tions (think for example of the potential role of symmetries, to which we very spontane-
ously attend).

To sum up, my proposal is that cognitive tools in mathematics are props for manipu-
lative imagination, and they are well designed when they spontaneously afford the mean-
ingful transformations that lead experts —who are able to correctly interpret the represen-
tation and who know the implicit principles of generation for the specific game of make 
believe they are playing— to epistemic and inferential actions. The introduction of such 
cognitive tools presents several advantages. Firstly, they are material objects and therefore 
in order to be used they recruit proprioception and kinesthesis, which are now deployed in 
a new more abstract cognitive context. There is thus a —semiotic— sense in which math-
ematics can be (moderately) embodied. Cognitive tools offer representational affordances, 
some of which directly depend on the perception of some of the physical features of the 
tool (perceptual representational affordances), and others that more strongly require inter-
pretation (context-dependent representational affordances). Secondly, if representational af-
fordances are constrained by the practice, they facilitate common imaginings: users under-
stand that various imaginings are prescribed depending on the physical features of the tools. 



Theoria 33/2 (2018): 345-360

 Manipulative imagination: how to move things around in mathematics 359

Thirdly, by referring to the notion of representational affordance, it is possible to bypass 
the problematic distinction between internal —propositional—, and external —built-in 
in the material object— rules. Finally, both unintended and intended effects of sensorimo-
tor considerations in the use of several mathematical signs can be reframed as having to do 
with bad versus good design.

4. Conclusions

To recapitulate, in this article I have proposed a semiotic reading of EM, according to 
which mathematics makes use of signs that are to be perceived and acted upon (and thus 
sensorimotor considerations may matter). My attempt is to make sense and clarify the 
functioning of the practice involving the use of cognitive tools such as notation or dia-
grams.

The theoretical framework that I have sketched here refers to the activity of make-be-
lieve as based on props that offer some specific affordances, in line with the practice: from 
this perspective, an accommodated version of Walton’s theory of representation meets 
Gibson’s view according to which affordances are provided by the environment —in this 
case, a very special kind of environment in which mathematicians move, which is popu-
lated by the diverse representational cognitive tools that are at their disposal. Specific ac-
tions on cognitive tools happen to be crucial for mathematical reasoning, and cognitive 
tools trigger these actions by offering representational affordances; as a consequence, they 
promote imagination as make-believe. These actions —just imagined or carried out by re-
writing— conform to some constraints: by “moving things around”, we actually perform 
on the material signs legitimate and therefore meaningful operations, thus enhancing 
mathematical reasoning.
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