Las matemáticas y la sistematización de las ciencias experimentales y de observación

Por Juan Belgrano
Ingeniero del Instituto Técnico de la Construcción

En la primera parte de su conferencia de apertura de esta Sección de Filosofía e Historia de la Ciencia, el profesor Rey Pastor trató ya algunos de los puntos esenciales de este tema y tomó que las breves consideraciones que siguen parezcan muy pobres al lado de la brillante disertación de nuestro ilustre presidente. Sin embargo, como estas líneas han de servir de base de discusión, pensé que no se debía destruir la unidad del tema en que, aunque brevemente, debía seguir mencionando aquellos puntos. No entraré en conside-

raciones filosóficas y ambitonasamente exponer puntos de vista sobre un problema de frontera entre matemática y ciencia experimental, que deberían ser comunes a todos los que cultivan estas ciencias y también a todos los filósofos metodólogos.

Consideraremos sucesivamente los puntos siguientes:

A) Fases de la sistematización o matemización de las ciencias experimentales.

B) Forma moderna, perfecta de las matemáticas.

C) Problemas propios de las ciencias experimentales y de observación irreductibles a las matemáticas.

A) FASES DE LA MATEMATIZACION

El profesor Rey Pastor estableció en su conferencia una clasificación histórica de estas fases, basada en las teorías matemáticas que se utilizan para sistematizar las ciencias experimentales y de observación. Creo que resulta también de interés clasificar independientemente del tiempo, según el grado de sistematización alcanzado, considerando la naturaleza de las leyes que se establecen:

1) Leyes descriptivas. — Toda ciencia, incluso las matemáticas para el niño y los pueblos primitivos, empieza con una ordenación más o menos arbitraria y más o menos creciente de conceptos (quizá singular-plural del lenguaje, botánica de Linné, etc.) y por el enunciado de leyes entre estos conceptos que no son susceptibles de formulación lógica precisa por la naturaleza de los conceptos y de las relaciones consideradas y que llamamos, a falta de otro nombre, Leyes descriptivas. En la filosofía actual se encuentran abundantes ejemplos de tales leyes: leyes de tendencias, con excepciones.

2) Leyes empíricas. — En la etapa siguiente se manejan conceptos susceptibles de medida o de interpretación matemática. Se multiplican entonces las leyes o recetas empírico-matemáticas, cada una de las cuales equivale al enunciado de un axioma.

Si el se propone el conjunto de condiciones (A), las magnitudes \(z_1, z_2, \ldots, z_n \) están ligadas por las relaciones:

\[f'(z_1, z_2, \ldots, z_n) = 0 \]

\[f''(z_1, z_2, \ldots, z_n) = 0 \]

Como ejemplos de ciencia en esta etapa creo que pueden mencionarse:

La astronomía de los Tolomeos (muy avanzada),
La geometría pre-griega de los antiguos egipcios (agrimensura),
La psicología experimental actual,
La aritmética de los pueblos primitivos y de los analfabetos.

Las leyes empíricas son meras recetas de acción sin nexo entre sí. Los progresos de la ciencia conducen a leyes más generales, permitiendo la deducción lógica de numerosas otras y se suele dar a estas leyes generales el nombre de principios, que consideramos como una nueva fase.

3) Principios.— Las leyes empíricas aparecen con gran profusión; en cambio, los llamados principios, queden siempre en número muy reducido y no suelen formar de la media docena.

Ejemplos de tales principios se encuentran en:

La astronomía de Kepler y la mecánica de Galileo y Newton.
La física y la química actuales.
La termodinámica (Joule, Carnot, Nernst, Clausius).
Posiblemente se enuncian igualmente principios en la geometría griega antes de Euclides.

Puede decirse que los principios son una forma seudonumerativa; al enumerarlos la ciencia progresa rápidamente sin preocuparse de darles una forma lógica perfecta. Son en número reducido, pero ocultan el enunciado de otros principios o axiomas que se sobreentienden por estimulantes evidentes.

Por ejemplo, el principio de inercia en mecánica clásica, sobreentiende un axioma afirmando la existencia de un sistema de relojes que permita definir la secuencia de sucesos referidos a sistemas de ejes distintos; es decir, la existencia del tiempo universal negada por la relatividad.

Análogamente, los principios de la termodinámica, de la química, de la mecánica cuántica, sobreentienden numerosas otras leyes.

En resumen, los llamados principios en número reducido, de varias ciencias experimentales y de observación, presuponen en rigor el enunciado de varias otras leyes elementales que se admiten como evidentes. Al descomponer estos principios en leyes elementales se llega al enunciado de axiomas, que constituyen la fase siguiente de matemización, cuyo modelo es la geometría de Euclides, durante largo tiempo considerada como matemática, pero que más bien, como veremos, constituye una fase de transición hacia las matemáticas en su forma moderna, tal y como se presenta en los trabajos de Peano, Hilbert, Rey Pastor, etcétera.

4) Axiomas. — Durante mucho tiempo la sistematización alcanzada en los «Elementos» de Euclides pareció perfecta, y hubo poca preocupación de extenderla a otras ramas. En la misma aritmética, si no me equivoco, antes de Peano se enunciaban solamente las leyes de conmutatividad, asociatividad y distributividad de las operaciones fundamentales de adición y multiplicación, además de las de indudación completa y de continuidad, y creo que las modificaciones introducidas por Peano en la axiomática aritmética han sido más profundas que las introducidas por Hilbert en la axiomática euclidiana. Esto nos conduce directamente al estudio de lo que es matemáticas modernas, en donde veremos en que se diferencia ésta de la concepción de Euclides.
B) FORMA MODERNA PERFECTA DE LAS MATEMÁTICAS

1) LAS MATEMÁTICAS MODERNAS SE DIFERENCIAN DE LA DE EUCLIDES POR LAS PREOCUPACIONES SIGUIENTES:

a) Introducción de conceptos primitivos no susceptibles de definición. Por ejemplo, muchas definiciones de Euclides no son matemáticas:

La recta es el camino más corto de un punto a otro. En cambio, se reconoce actualmente la imposibilidad de definición lógica extensiva o comprensiva de todos los conceptos, siendo necesario introducir conceptos primitivos, que son elementos y relaciones.

Por ejemplo, en la aritmética de Peano:

Conceptos primitivos

<table>
<thead>
<tr>
<th>Elementos</th>
<th>número natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>cero</td>
<td></td>
</tr>
</tbody>
</table>

en la geometría de Hilbert

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Rectas</th>
<th>Planos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertenecer</td>
<td>Entre</td>
<td>Congruente</td>
</tr>
</tbody>
</table>

limitándose a la geometría proyectiva, Rey Pastor utiliza:

<table>
<thead>
<tr>
<th>Elementos</th>
<th>Puntos</th>
<th>Segmentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertenecer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Preocupaciones metamatemáticas de: compatibilidad del sistema de axiomas: no se puede llegar a una contradicción.

Independencia de cada axioma, ningún axioma es consecuencia de otros; ejemplo conocido es la negación del postulado de Euclides por la geometría de Riemann y Lobatchewski, complejidad, posibilidad de deducir la verdad o falsedad de cualquier proposición enunciada en los términos de una ciencia.

Recordemos que la compatibilidad, hasta ahora, sólo se puede demostrar admitiendo los axiomas de la lógica y de la teoría de conjuntos o de la aritmética de los números reales. La independencia de cada axioma se reduce a la compatibilidad del sistema en el cual este axioma se reemplaza por su negación. En cuanto a la complejidad, este problema parecía difícilísimo de resolver. Hilbert postuló la complejidad como axioma final en aritmética y geometría (no en su forma más exigente de la imposibilidad de agregar otro axioma compatible con los preexistentes, sino en la forma más restringida de categoricidad, pero cuya definición precisa en lógica matemática resulta bastante delicada).

2) POSIBILIDADES DE MATEMATIZACIÓN PERFECTA EN LAS CIENCIAS ACTUALES

Hasta la fecha tan sólo han sido puestas en forma lógica la aritmética o el sistema equivalente de la teoría de conjuntos y las distintas geometrías. Algun esfuerzo de investigación permitiría fácilmente conseguir el mismo resultado para la mecánica y la termodinámica clásica, y probablemente sin grandes dificultades para las teorías de física moderna: relatividad, mecánica cuántica y ondulatoria, atomística.

Se señala esto propósito con la esperanza de que investigadores españoles se adelanten a los extranjeros en esta tarea. Para la termodinámica, por ejemplo, los excelentes tratados de los señores Palacios y Gurgelhein exponen esta ciencia en una forma de transición entre la de los principios de la aritmética. Nuevos progresos en este sentido sólo pueden conseguirse mediante una estrecha colaboración entre matemáticos, físicos, químicos, astrofísicos, biólogos, etc., que quedarán siempre las dificultades siguientes:

- Establishir a partir de percepciones los conceptos primitivos (elementos y relaciones). Es necesario encontrar una familiarización experimental con los conceptos que se definen, así como con «consecuencias» de estos principios que llamaremos «preceptos».

Asimismo, las experiencias que antes de enunciar los «principios» hubieran sido necesarias para influir en consecuencias de estos principios, se hacen innecesarias. Por ejemplo, en la Geometría no se piensa actualmente en influir en la ley $c^2 = a^2 + b^2$, mientras que ésta hubiera sido necesaria para los antiguos egipcios (al parecer no llegaron a generalizar los casos particulares que conocían).

A las ciencias de las percepciones (evitando la palabra matemáticas, que, por ejemplo, en el caso de los astrónomos, biología, etc., les quedarán siempre las dificultades siguientes:

- Establecer a partir de percepciones los conceptos primitivos (elementos y relaciones). Es necesario encontrar una familiarización experimental con los conceptos que se definen, así como con «consecuencias» de estos principios que llamaremos «preceptos».

Es evidente que a medida que va avanzando la sistemática de ciencias y principalmente a partir de la introducción de un número general de percepciones, se van haciendo más numerosos e importantes los casos particulares que conocen.

C) PROBLEMAS PROPIOS DE LAS CIENCIAS EXPERIMENTALES Y DE OBSERVACIÓN

Es evidente que a medida que va avanzando la sistemática de ciencias y principalmente a partir de la introducción de un número general de percepciones, se van haciendo más numerosos e importantes los casos particulares que conocen.
dentro de ciertos límites de los conceptos fundamentales. Por ejemplo, Pasch, Rey Pastor y, en menor medida, región finita, y Pasch deja otra cuestión de saber si cualquier segmento contiene infinitos puntos. El axioma \(A = B \), \((A = C) \) o \((B = C) \) es físicamente falso cuando se llega al límite de precisión de los instrumentos. La ley macroscópica de variación monótona de la entropía no es válida para sistemas microscópicos; la mecánica clásica no lo es para grandes velocidades... Ya es sabido que las teorías fundadas en tales principios de la mecánica y la termodinámica clásicas. Cuando, después de asimilar estas nociiones, se quiere entrar en el estudio de la teoría de la relatividad, cuantas, los nuevos conceptos obsoletos y su asimilación cuesta será probablemente que habrá sido posible ahorrar eliminando ya, aunque de manera imprecisa, el campo de validez de las teorías clásicas. Esta eliminación es importante para la inducción cuando se trata de extender nuestro conocimiento a fenómenos que no están a nuestra escala: el mundo atómico o el universal. Creo que siempre han de establescecarse, primero, las leyes de los fenómenos a nuestra escala y que cualquier extrapolación debe ser cuidadosamente comprobada antes de formular una ley. Por ejemplo, la energía cinética de una bola esferica del dispositivo indicado para «no muy pequeño» w = k d sen, para «pequeño» hay rozamiento y cesa de existir esta proporcionalidad. Problemas análogos se plantean constantemente, por ejemplo, al justificar una fórmula de fuerzas pequeñas por el principio de torsión, y la justificación satisfactoria de estas medidas es más delicada de lo que a primera vista parece. Las precauciones a tomar para tener en cuenta que se ha de considerar el sentido del fenómeno y no la derivar de la inducción constante. Cualquier problema aparentemente difícil que pertece a la Física, Química, Biología, etc., de perpetuamente, aunque imperfectamente. En resumen: 1) La sistematización permite deducir cada vez más hechos experimentales de un número reducido de leyes, principios o axiomas. 2) En su estado perfecto el axioma, conceptos y axiomas (programa de Peano, Hilbert, Rey Pastor), la matemática es un molde, un clasificador o dotar sin contenido; se puede prever en corto plazo la axiomatización de gran parte de la Física actual. 3) Una vez axiomatizada, se considera a la Física, o a cualquier otra ciencia, desde sus fundamentales: a) Mostrar cómo la experiencia sugiere los conceptos fundamentales. b) Inducir los axiomas a partir de hechos experimentales convenientemente elegidos. c) Limitar el dominio de validez de los axiomas enunciados.