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ABSTRACT
We state and comment our recent results on the
.incompleteness of elementary real analysis and their relevance for
the axiomatized sciences.

K. Godel of Vienna Seems to have proved

that a specific contradiction could be deduced from any
proof of the impossibility of the occurrence of contradictions
in mathematics. It seems, in fact, that systems like

pure mathematics cannot be completely symbolized (...)

This is a very important result, if correct {(...)

Max Black, The Nature of Mathematics (1933).
§1

Chaos theory has been a fast-growing research area since the early 70’s, a
decade after the discovery of (an apparently) chaotic behaviour in a
deterministic nonlinear dynamical system by E. Lorenz (for references see [3]).
Chaos scientists usually proceed in one of two ways: whenever they wish to
know if a given physical process is chaotic the usual starting point is to write
down the equations that describe the process and out of them to check whether
the process satisfies some of the established mathematical criteria for chaos and
randomness. .

However those equations are in most cases intractable nonlinear
differential equations; moreover, they in general have no analytical solutions.
Therefore, chaos theorists turn to computer simulations. Usually a Mac or a PC
will do the trick: the simulation is easily done and for most nonlinear systems
one sees a confusing, tangled pattern of trajectories on the screen. The system
looks random, chaotic. Better: there are statistical tests such as the Grassberger-
Proccacia criterion that guarantee the existence of randomness in a computer-
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simulated system given certain presuppositions and within a margin of error.
Yet statistical tests furnish no mathematical proof of the existence of chaos in
a dynamical system. There is always the chance that the system is undergoing
a very long and complicated transient state, before it settles down to a nice and
regular behaviour. Therefore how can we prove that a dynamical system that
looks chaotic is, in fact, chaotic?

This problem has been around for some time since the discovery and
early exploration of what is now called «deterministic chaos». Researchers in
the area either try to explore (as we have just explained) through computer
simulations well-known systems that can be mathematically described, to see
if they have the looks of a random system, or try to develop finely-tuned formal
criteria for chaos that can be mathematically checked in a system, not just
inferred out of a disordered appearance of the system’s trajectories.

In a 1983 conference (published in 1985) Morris Hirsch stated that time
was ripe for a marriage between the «experimental» and «theoretical» sides of
chaos research: after discussing the Lorenz equations, Hirsch remarks [17]:

(...) By computer simulation Lorenz found that trajectories seem to
wander back and forth between two particular stationary states, in a
random, unpredictable way. Trajectories which start out very close
together eventually diverge, with no relationship between long run
behaviours.

But this type of chaotic behaviour has not been proved. As far as I am
aware, practically nothing has been proved about this partlcular system

(.-

A major challenge to mathematicians is to determine which dynamical
systems are chaotic and which are not. Ideally one should be able to tell
from the form of the differential equations.

More recently, in a 1990 conference, S. Smale formulated a closely
related problem about the Lorenz system and general chaotic dynamical systems
[23]:

Are the dynamics of the Lorenz equations described by the geometric
Lorenz attractor of Williams, Guckenheimer and Yorke?

Also, the general problem of establishing and analyzing strange
attractors of differential equations of physics and engineering is still wide
open.



MATHEMATICS IS DRAMATICALLY INCOMPLETE

Smale asks for a proof that the Lorenz system has an attractor related to
the Williams-Guckenheimer-Yorke (WGY) attractor; he also asks for a general
characterization of chaos in «concrete» (or «naturally occurring») dynamical
systems. Hirsch asks for a decision procedure to test for chaos in a system. If
such a procedure were available, given the WGY attractor one would
immediately solve Smale’s problem for the Lorenz equations just by applying
it.

However we showed [3] that no such a decision method exists.
Moreover, for any nontrivial characterization of chaos in a dynamical system
there will always be systems where proving the existence of chaos is
unattainable within reasonable standard axiomatizations. Chaos theory (and
dynamical systems theory) is both undecidable—there is no general algorithm
to test for chaos in an arbitrary dynamical system—and incomplete—there are
infinitely many dynamical systems that will look chaotic on a computer screen,
for they are chaotic in an adequate class of standard models for axiomatized
mathematics, but such that no proof of that fact will be found within the usual
formalizations of dynamical systems theory. Similarly, there are systems whose
properties are (formally) equivalent to the proof of intractable problems such
as Fermat’s Conjecture, or Riemann’s Hypothesis, or the P?NP question, and
those systems are densely dispersed in a natural topology among all dynamical
systems. Classical mathematics is dramatically incomplete in the sense of
Godel, and full of extremely difficult problems, that can arise in innocent-
looking contexts.

Worse yet: all our first examples for undecidability and incompleteness
within axiomatized physics could be formally reduced to elementary arithmetic
problems [3] [11]. However we later discovered that that reduction cannot
always be made, as we can obtain examples of intractable problems in the
axiomatized sciences which are not elementary number-theoretic problems in
disguise. They stand beyond the pale of arithmetic; they are much more
difficult than any arithmetical problem, and yet they look like ordinary
mathematical statements.

There are even weirder situations: we can obtain formal expressions that
describe physical systems such that nothing but trivialities can be proved about
them. And again those systems may be shown to lie fully outside the
arithmetical hierarchy, since they belong to the non-arithmetical portion of set
theory (if we are working, say, within Zermelo-Fraenkel set theory). Those are
truly faceless systems, very much like generic sets in forcing models; however
their construction shows no relation to the usual forcing tools and can be
proved to be outside the reach of the usual forcing techniques.

Our results are consequences of general incompleteness theorems that are
to be found in our papers [3] [4] [5] [6] [7] [8] [11] [12] [13] [14] [15]; other
references are [19] [24]. In the present paper we summarize and state without
proofs our chief results, with a few comments to clarify their meaning.
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§2

Mathematical sentences that are undecidable with respect to sensible axiomatic
systems are known since the 19th century proof of the independence of the
Parallel Postulate from the remaining axioms and postulates of geometry. Here
we have a meaningful and «intuitively true» assertion, in a «natural» model for
geometry which cannot be deduced from the then available axiom system for
that discipline. So, nothing new here.

However Euclid’s system is notoriously inadequate according to our
current criteria for mathematical rigor. The main surprise that stemmed from
Godel’s 1931 incompleteness theorems is the conclusion that, even if we adhere
to contemporary standards in the formulation of mathematical proofs, all the
usual axiom systems strong enough for most of mathematics turn out to be
incomplete; it is enough that they include arithmetic for undecidable sentences
to creep up within them. :

Yet, due to Godel’s weird examples of undecidable sentences, the hope
remained that undecidability and incompleteness would always be peripheral to
mainstream mathematics. That is to say, everyday mathematics, as practiced by
the professional mathematician, would be untouched by Gddel’s stormy results.
(In a recent interview René Thom expressed that same hope, when he said that
Godel’s results were to be seen as «road signs,» «warning posts,» meaning that
one shouldn’t go further in that direction, but that they had no meaning for the
practicing mathematician [27].)

Cohen’s independence proof of the continuum hypothesis from the
axioms of Zermelo-Fraenkel set theory shattered that hope, since the continuum
hypothesis affects innumerable important results in topology, analysis and even
algebra. As it is well known, forcing techniques led to the independence proof
of several open questions in mathematics, such as Whitehead’s problem in the
theory of abelian groups [12], but the application of forcing demands high
mathematical ingenuity, while being restricted to nonabsolute assertions in set
theory. Thus, finite objects remained outside the scope of forcing, while its
success strengthened the feeling that the domain of the finite should be regarded
as the ground plan from which arose the whole of mathematics.

§3

Around 1987 the authors started a research program whose main goal was to
fully axiomatize physics and to apply modern techniques from mathematical
logic to problems in physics. The starting point was a venerable one: the 1900
list of 23 problems that David Hilbert presented to the Second International
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Congress of Mathematicians in Paris. The sixth problem in Hilbert’s list asks
for an axiomatic formulation of physics; the tenth problem asks for a decision
procedure to verify whether a polynomial Diophantine equation with integral
coefficients does have solutions. Both problems are fused in our results.

We had a twofold goal in that program. First, we wished to place
physics (and, if possible, any mathematically-formulated areas in other
empirical sciences) in a firm and rigorous footing (according to current
conceptions). Second, we wished to obtain «meaningful» undecidable sentences
within those theories. Somehow we hoped that formally undecidable assertions
in an empirical science might turn out to be, let us say, «empirically» decidable.
In order to proceed we drew up a list of a few problems that might lead to our
goal. We believed that classification schemes for spacetimes in general relativity
might allow the construction of unsolvable problems and of undecidable
sentences within the corresponding theory, and we had the feeling that Hirsch’s
decision problem for chaos theory [17] was algorithmically unsolvable, and that
its investigation might prove fruitful. As our tool we only had forcing at the
beginning of our efforts, and forcing was applied with modest results to the
first question and related areas [7] [12]. The breakthrough came out of a
suggestion of P. Suppes who told us about Richardson’s [21] examples of
unsolvable problems in analysis.

We immediately noticed that Richardson’s constructions were in fact
realizations of a functor from the theory of formal systems (here coded in
Diophantine equations) into classical elementary analysis. We had some
previous intuition that such a fully algorithmic functor might exist, one that
would translate metamathematics into questions about elementary functions and
their properties. However we had no example of such a functor before we
learned of Richardson’s results [9] [10].

§4

Out of Richardson’s examples we immediately obtained almost by chance
something that had seemed impossible, an expression for the halting function
within a rather simple mathematical language, the language of classical
analysis: let M, (g) be the Turing machine of index 7 that acts upon the natural
number g [22]. Granted that 0(n,q) be the halting function for M (q),
8(n,q) = 1 if and only if M,(q) stops over g, and f(n,q) = 0 if and only M,(q)
doesn’t stop over q.

' We suppose that our theories T are arithmetically consistent, that is, that
the model we are interested in represents arithmetical assertions by the standard
model for arithmetic. (One might take T 2 ZFC.) Let p, _(x, X;,...,X,) be a
universal Diophantine polynomial [18]. Let o be ’t?le sign function,
o(+x) = +1, o(0) = 0. Then:
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Proposition 4.1 (The Halting Function.) If T is arithmetically consistent, then:

0(n,q) =0 (G,, ),

_ G g e
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Ch,g(X) = ADy o (X, v X))
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(A is one of Richardson’s maps from the Diophantine polynomials into
elementary real analysis [3].)

Out of that we proved a first general undecidability and incompleteness
theorem: we say that a predicate P in our language is nontrivial if there are
term-expressions £, G in our theory T such that T — P (§) and T — — P (C).
Then we have proved a 3-step undecidability and incompleteness theorem for
any nontrivial P in theories that included the language of analysis:

1. In those theories, given any nontrivial predicate P there is a
countably infinite family of term-expressions £, such that there is
no general algorithm to decide, for an arbitrary m, whether or not

P(,).

2. Evenif we can prove that T — P(%, ), the function g(m) that bounds
those proofs (whenever they can be done) isn’t recursive. Therefore
those proofs may be arbitrarily difficult.

3. There are (denumerably) infinite many term-expressions £ in our
language so that, in an adequate model M it is true that P(¢), while
our theory T neither proves nor disproves that assertion.

Things go much farther; as an example we now quote a recent result on
the incompleteness of the theory of finite noncooperative games with Nash
equilibria, a result that has immediate relevance for neoclassical economics
[14].

(As it is well-known, the theory of games was developed by John von
Neumann out of some ideas and a major conjecture by Emile Borel with a view
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towards its applications in economics; in the early 50’s Kenneth Arrow and
Gérard Debreu translated the theory of competitive markets into the language
of game theory, which allowed them to prove the central result of Walrasian
neoclassical economics: every competitive market has a set of equilibrium
prices. So, when one talks about games, one is talking about competitive
markets.)

Proposition 4.2 If T is arithmetically consistent then:

1. Given any nontrivial property P of finite noncooperative games,
there is an infinite denumerable family of finite games T, such that
for those m with T + «P (T',,),» for an arbitrary total recursive
function g: w - w, there is an infinite number of values for m such
that the length of the proof of P, from the axioms of T is strictly
larger than g( || PT Iy, where PT,, | is the length of the formal
expression that describes PT, in the language of T.

2. Given any nontrivial property P of finite noncooperative games,
there is one of those games T" such that T + «P (I')» if and only if
T +— «Fermat’s Conjecture.»

3. There is a noncooperative game I where each strategy set S; is finite
but such that we cannot compute its Nash equilibria.

4. There is a noncooperative game I where each strategy set S; is finite
and such that the computation of its equilibria is T-arithmetically
expressible as a 11, ; problem, but not to any £, problem, k<m

5. There is a noncooperative game I where each strategy set S, is finite
and such that the computation of its equilibria isn’t arithmetically
expressible.

Everything turns out to be undecidable; each nontrivial property, even
the simplest one, leads to an incompleteness proof. There are natural problems
that turn out to be as difficult as Fermat’s problem; there are natural problems
that are equivalent to arithmetic problems as high as one wishes in the
arithmetical hierarchy; and there are natural problems that lie outside the
arithmetical hierarchy.

Our constructions essentially arise from the existence of expressions for
the halting function and for characteristic functions in all arithmetic degrees of
unsolvability within elementary analysis. No forcing is required; in fact we still
wonder why those results weren’t discovered earlier. The main constructions
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are pretty straightforward; however in order to obtain them we had to believe
from the very beginning that incompleteness is something that belongs to the
way we conceive mathematics. Incompleteness is a natural phenomenon
according to our current views about mathematics. And yet everybody seemed
to shy away from that fact of mathematical life.

§5

The following problems have been dealt with our methodé:

The integrability problem in classical mechanics. There is no general
algorithm to decide, for a given hamiltonian, whether or not it is
integrable. Also there will be both integrable and nonintegrable
hamiltonians in M but such that 7 is unable to prove it [3].

The Hirsch problem. Is there an algorithm to check for chaos given
the expressions of a dynamical system? No: there is no such a
general algorithm, and there will be systems that look chaotic on a
computer screen (that is to say, they are chaotic in our model M)

but such that proving their chaotic behaviour is impossible in 7' [3]
[17].

Penrose’s thesis. Penrose conjectured that classical physics offers no
examples of noncomputable phenomena. We gave a counterexample
to that assertion [4] [24].

«Smooth» problems equivalent to hard number-theoretic problems.
We gave an explicit example of a dynamical system where there will
be chaos if and only if Fermat’s conjecture is provable. We also
showed that (given some conditions) those ’nasty’ problems are
dense in the space of all dynamical systems [11].

Arnol’d’s  problem. Arnol’d formulated in the 1974 AMS
Symposium on the Hilbert Problems [1] a question dealing with
algorithmic decision procedures for polynomial dynamical systems
over Z. We showed that again there is no general algorithm
available, and that their theory is incomplete [8] [13].

Problems in mathematical economics. Lewis [19] pointed out that
our results entail the incompleteness of the theory of hamiltonian
models in economics. They also entail the incompleteness of the
theory of Arrow-Debreu equilibria and (what is at firs sight
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surprising) the incompleteness of the theory of finite games with
Nash equilibria [8] [14].

e Problems worse than any number-theoretic problem. They can be
constructed (and look «natural») with our techniques [8].

§6

Let’s reduce our ideas and techniques to their bare essentials. Suppose that we
start from classical axiomatic set theory, which is a framework big enough to
contain all of everyday mathematics within it. Let’s look at set theory as an
abstract construction, a collection of strings of symbols from an alphabet—the
collection of all sentences of set theory. We know that we have here 2a
recursively enumerable sequence of objects which can be effectively mapped
onto the natural number sequence, so that we can get the whole of our
axiomatic sequence coded (through a Godel numbering) into an infinite
recursively enumerable subset of the natural number sequence. Such a sequence
can be embedded into several continuous mathematical structures within set
theory itself! One of those maps is Richardson’s, which we have just exploited,
but there are infinitely many others.

Once we have thus coded the whole of mathematics into itself, a whole
new family of questions appears: say, since we have mapped an axiomatic
system into a much larger structure, can we now go back and define out of our
embedding some «hyperaxiomatic» structure with brand-new (and sensible)
truths and theorems? Do we get something really new here, or can we reduce
our hyper-extensions to the traditional setting of first-order recursively
enumerable theories?

We know the answer: there definitely are several new results to be found
in those maps of mathematics redrawn over its own belly.

§7

However we would like to emphasize a more modest albeit very important point
here. We do it by repeating the conclusion in the first of our papers [31:

What can we make out of all [those manifold incompleteness theorems]?
We cautiously suggest that the trouble may lie not in some essential
inner weakness or flaw of mathematical reasoning, but in a too narrow,
too limited concept of formal system and of mathematical proof. There
is a strongly mechanical, machinery-like archetype behind our current
formalizations for the idea of algorithmicity that seems to stem from an
outdated 17th century vision & la Descartes (even if our current notion
of proof is traced back to Greek mathematics). Also a first-order
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language such as the one for Zermelo-Fraenkel theory is too weak: even
if we can prove all of classical mathematics within it, it is marred by the
plethora of undecidability and incompleteness results that we can prove
about it, and which affect interesting questions that are also relevant for
mathematically-based theories such as physics.

The authors certainly do not know how to, let us say, safely go beyond
the limits of the presently available concepts of computability,
algorithmicity, and formal system, but they feel that if there are so many

- quite commonplace things that ’should’ somehow be provable or
decidable within a sensible mathematical structure, and which however
turn out to be algorithmically undecidable or unprovable, then one
cannot blame the whole of mathematics for that. Mathematics isn’t at
fault here. The problem lies in our current ideas about formalized
mathematics. They are too weak.

We must look beyond them.
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