A GENERAL THEORY OF STRUCTURED
CONSEQUENCE RELATIONS!

Dov M. GABBAY~*

ABSTRACT

There are several areas in logic where the monotonicity of the
consequence relation fails to hold. Roughly these are the
traditional non-monotonic systems arising in Artificial
Intelligence (such as defeasible logics, circumscription,
defaults, etc), numerical non-monotonic systems (probabilistic
systems, fuzzy logics, belief functions), resource logics (also
called substructural logics such as relevance logic, linear logic,
Lambek calculus), and the logic of theory change (also calied
belief revision, see Alchourron, Géardenfors, Makinson [22-
24]). We are seeking a common axiomatic and semantical
approach to the notion of consequence which can be specialised
to any of the above areas. This paper introduces the notions of
structured consequence relation, shift operators and structural
connectives, and shows an intrinsic connection between the
" above areas.

1. Introduction

We want to give an answer to the following question: What is a logical system?
Obviously our starting point should be a language which allows us to express
declarative statements and we need to give a formal definition of when we accept a
reasoning system based on the language as a logical system.

The traditional answer to that (say in 1975) was that to present a logical
system we need to define the well formed formulas of the language, say L, and
further define a consequence relation for L. This is a relation between finite sets of
formulas A, T" of L, written A = T', satisfying the properties of Reflexivity,
Monotonicity and Cut.

Reflexivity: A TIHANT # @
Monotonicity: A = T implies A, A' +— T',T"
Cutz: A A;A AT impyAr—T

The consequence relation may be defined in various ways. Either through an
algorithmic system S,—, or implicitly by postulates on the properties of I—.

Thus a logic is obtained by specifying L. and . Two algorithmic systems 8¢ and
S, which give rise to the same  are considered the same logic.

It soon became apparent, through the applications of logic in the analysis of
language and in Artificial Intelligence, that there are many reasoning systems
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which we would intuitively like to admit into the family of logics, which are not
covered by the above definition. These include a variety of non-monotonic systems,
families of resource logics and a large class of probabilistic and network systems.

These reasoning systems are mostly presented algorithmically, as proof
systems S, and the majority of them give rise to a consequence relation which does
not satisfy the postulates above. Further, there are many different proof systems
for the same consequence relation, which are of such different motivation,
mathematical presentation and intuitions, that one does not feel it is correct to
identify them as the same logical systems.

It was obvious that we needed to modify our concept of a logical system in
response to current reasoning practices.

The first attempt in this direction was in 1985, in [1], where we proposed
that a consequence relation should only be required to satisfy Restricted
Monotonicity and not full monotonicity, namely:

Restricted Monotonicity: A~ A, A+~ T imply A, A+ T.

The above weakening on the conditions of the notions of a consequence relation
allows one to accept more reasoning systems as logical systems.

This idea was further developed in the literature by several authors, thus
creating the new area of axiomatic non-monotonic reasoning.

Makinson [2] proposed a semantics for the above basic logic (i.e. the smallest
consequence relation satisfying the above three conditions) and proved a
completeness result. Kraus, Lehmann and Magidor [3] studied a variety of
extensions of the basic system, providing them with preferential semantics in the
spirit of Shoham [4, 5]. Several other authors continued to develop this area,
among them Woijcicki [6, 7], Lehmann [8], Lehmann and Magidor [9], Besnard
[10] and Akama [11]. A general survey is available in Makinson [12].

The above notion of consequence, although general enough to cover many non-
monotonic systems such as circumscription and negation by failure, does exclude,
unfortunately, such non-monotonic systems as probabilistic systems, resource
logics such as linear logic and other such systems such as inheritance networks.
Obviously a more general notion is required, a notion which can unify the
probabilistic approach with the rule based approach; to name one important need.

On the algorithmic front, we have no alternative but to accept that different
proof systems should be considered as different logics, even though they give rise to
the same consequence relation. This view was put forward in 1983, and supported
at length in [13,16 and 31].

Thus the situation in 1988-89 was that although we were able to accept more
systems into the family of logics we still had to exclude many well known reasoning
systems.

Furthermore, there was no unifying framework and a satisfactory general
answer to what is a logical system. In 1989, we turned to proof theory [13] and
introduced the notion of Labelled Deductive Systems (LDS).

This is a systematic framework where the logical units are labelled formulas
(of the form t:A, where t is a term in some algebra) and where the logical rules are

50



STRUCTURED CONSEQUENCE RELATIONS

rules for manipulating both formulas and their labels. The intuition behind LDS is
that in t: A, A carries declarative information and the label t, represents further
information of a different nature which we do not want to "code" into A. It turns out
that many monotonic, non-monotonic and probabilistic systems can be presented as
LDS systems. An LDS database A is a constellation of labelled formulas with
additional structure on the labels. For example A may be an algebra T with a
function 8(x), x € T, assigning formulas A, = &(x), for each x € 1.

Proof rules are given to define the notion A — s: B. This approach is developed
in detail in [13]. It is possible to have A — s;: B for several labels s;, for example
si may show from which part of A the formula B is proved. In many applications
one is interested in the notion of A - B, where we want to ignore the label and just
give a yes or no answer to the query "Does B follow from A". This can be done in
several ways. The process of extracting (through some proof method) a decision of
the form A — B or A - ~B or neither, from the set {t | A+~ t: B} { {t | A — t:~B}
is called Flattening. Obviously the flattening process is functionally dependent on
the structure of A (as induced by the labels). The flattening process is actually
hiding the labels and all it really uses is a structured database A proving or not
proving a formula B. We can in this case define axiomatically the properties of the
consequence A I~ B. We thus end up with a notion of consequence between A and B,
where A is structured and the labels in A are hidden, and used only in the proof
system. It turns out that this simplified notion is very useful and can be developed
on its own as a direct extension of the notion of monotonic consequence relation. We
call our studies the area of structured consequence relations. It can be developed
independently of LDS, as a direct contribution to the abstract area of axiomatic
non-monotonic reasoning. ’ '

The purpose of this paper is to develop the notion of structured consequence
relation and further refine the notion of a non-monotonic consequence relation to
relate to non monotonic systems arising from resource boundedness, and controlled
inference. The refinement is in the direction of structuring the assumptions. Some
pioneering work in the direction of looking at structural connectives can already be
found in [19].

Many non-monotonic’ databases are naturally structured. The database may be,
for example, a list of assumptions, or a partially ordered set of assumptions, and
consequences are proved from the database using an inferential (logical) discipline
which takes into account such a structure. Non-monotonicity may arise because of
these "resource" considerations and inferential restrictions.

We begin our study with two motivating examples.

Example 1. (Concatenation Logic). A database in this logic is a sequence of
formulas (A1,...,Ap). The inference rule is modus ponens. To derive B from the
database we must use all the assumptions in the order shown. Further, when we use
modus ponens A, A —> B B, the implication A — B must be supported by
assumptions earlier in the database sequence than all those which support the
minor premise A. Thus, for example

(a1) A— (B— O)
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(az) B
(az) A

does not prove C because we have to start by using (a;) and (as)"jumping over"
(ap). However, ' :

(by) A— (B— C)
(b2) A
(b3) B

does prove C because (bq) and (by) give (B—> C) then (b3) is used and we get C.
Another example is:

(c1) A= (A= B)
(c2) A

This database does not prove B because (cp) needs to be used twice. However,
the database:

(d{) A= (A— B)
(d2) A
(d3) A

does prove B.
Another example is:

(eq1) A=> (A— B)
(e2) A
(e3) A
(eq) C

This database does not prove B because (e4) is not used. Even if (e4) were B
(i.e. C = B) we still could not derive B because if we use (e4) we are not using all
the assumptions and we are not starting our proof at the first one. The alternative,
using (eq)-(es) is also not valid because (e4) is not used.

Concatenation logic has applications in any area where the database is
perceived as a list, either for conceptual reasons or for computational reasons.

As an example we consider its applications to Prolog. Consider the database

1.9—q
2.q

and the query 7q.

Prolog implementations will store the database as a list and compute the query
from the top of the list. This query will therefore loop. In concatenation logic, the
body of clause 1 needs to be asked from clause 2. Thus concatenation logic gives a
discipline for the Prolog pointer.
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Example 2. (Defeasible Logic). This important approach to non-monotonic
reasoning was introduced by Nute [15]. The idea is that rules can prove either an
atom q or its negation —q. If two rules are in conflict, one proving q and one proving
—q, the deduction that is stronger is from a rule whose antecedent is logically more
specific. Thus the database:

Bird(x) — Fly(x)

Big(x) A Bird(x) = —Fly(x)
Big(a)

Bird(a)

will entail =Fly(a) because the second rule is more specific.

We can view the above as a structured database A in which the ordering of the
rules is done by the logical strength of their antecedents relative to some
background theory © (which can be a subtheory of A of some form). Deduction pays
attention to the strength of rules. '

We now introduce the new notion of a non-monotonic consequence relation,
which we call S-consequence relation (Structured Consequence Relation). A precise
definition will be given in a later section. We need three auxiliary notions for our
definition:

1. We have already indicated that we need to deal with structured databases. We
thus have to specify precisely what structures are allowed as databases, for the
consequence relation to be defined. These must include the one formula database (A)
and the empty database J.

2. The notion of a structured database must also include the concept of
structured addition of data. By this we mean the notion of how to combine two -
databases together. The traditional way is to take their union but when the databases
are already structured, the union has to be structured as well. We denote the
structured addition of the databases A and I" by A+T". This binary operation, "+",
has to be defined as part of the concepts underlying the consequence relation. It
usually satisfies associativity

A1 +(A1 + A3) = (A1 + Ag) + Ag
and the empty database must satisfy

G+A=A+0=A

Commutativity is not required to hold.

3. We also need a concept of substitution of one structured database A inside
another, I', achieved by replacing one formula A in I" by A. Formally we need to
make sense of the symbol I'[A], reading T is a structured database which contains A

somewhere inside, and the symbol I'[A], which denotes the database resulting from
substituting A for A inside I". These notions are needed to formulate the Cut Rule.

We can now define the three rules which we call Identity, Surgical Cut (or
Substitutional Cut) and Directional Monotonicity as follows:
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Identity (A) ~A
Surgical (Substitutional) Cut

ArA

T[A]l~ B
T[A]l~ B

Directional Monotonicity (right hand side)

A ~A
A+T KA

Directional Monotonicity (left hand side)

A K~ A
T + A A

Definition 1. (Tentative Definition of Structured Consequence
Relation) Let L be a language. Let L be a family of order types of the form (T, <).
Assume that the empty set and one element set types are in L. Assume that the
notion of substitution of one order type T for a point x in another order type T'(X)
is well defined (as in (3) above).

We say that a relation A ~ A, (between ordered multisets A of wffs of an order
type T and a single wff A) is a S-consequence relation iff it satisfies Identity
and Surgical Cut.

Example 3. (Consequence presentation of CL) Consider a language with —>.
Consider data structures in the form of lists A = (Aq,...,An). An S-consequence
relation on pairs (A, A), written as A I A, is any relation satisfying the following
two conditions.

identity
(A) A
Surgical (Substitutional) Cut for (the data structure) Lists

(A1,...,An) I-A

(C1,....Cm, A, Dy,....DY I B
(C1,.-,.Cm, Aq,...,An, D1,...,Dk) I— B

Let I—cL be the smallest S-consequence relation satisfying the right hand side
deduction theorem for the data structure namely:

Right-hand side Deduction Theorem:

(Aq,...An) - A=> B iff (Aq,...,An,A) I— B
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Note that we need to show that such a smallest I— exists. This is simple because
the family of S-consequence relations for lists which satisfy Identity, Surgical
Cut and Right hand side Deduction Theorem is closed under intersections.

' The above example iillustrates two points:

1. How to define a logic by conditions on its consequence relation and its data
structures.

2. The notions of a Cut Rule anda Deduction Theorem depend on the data
structures.

To further illustrate our ideas, note that the well-known intuitionistic logic
can be defined in a similar manner, as shown next.

1. Intuitionistic Consequence

Data structures are sets of wifs. A I A is the smallest consequence relation on
the data structure satisfying Reflexivity, Monotonicity, Cut and the Deduction
Theorem.

2. R-mingle Consequence ,

Data structures are sets of wffs. A I— A is the smallest consequence relation
satisfying Identity, Cut and the Deduction Theorem.

3. Linear Consequence (LL)

Data structures are muiltisets of formulas. A I— A is the smallest Consequence
Relation satisfying ldentity, Cut and the Deduction Theorem.

Notice that the difference between R-mingle‘ and linear consequence is only in
the data structures.

2. Structured Consequence Relations: A General Notion of a Logical
System

We have seen that the general notion of a database is a configuration of
formulas. The proof discipline from such databases would rely on the configuration
in defining the allowable proof moves.

This section develops the general notions needed for S-consequence relation.

Definition 2. 1. Let L be a language for well formed formulas. L will contain
atomic propositions and connectives and the notion of a wff is defined inductively in
the traditional way.

2. Let L be a theory in first or higher order logic and let M be a class of
classical models of L. We assume that the structure with one point and empty
relations is in M. This structure is denoted by «t». Assume that two model
theoretic operations are defined on M and assume that M is closed under these
operations. The operations are the following:

(a) If T1 and T are two structures in M then an operation + is available for
constructing the structure T =1T¢ + T2. "+" usually satisfies associativity, but not
necessarily in the general case. If @ is the empty set then + is defined and @ + T =
T+d=1.
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(b) Let T1 and T2 be two disjoint structures in M and let x € T1 be a point in
T1. Then a binary substitution function Sub ‘C’é T4(x) is defined which yields the
result of substituting T in T1(x) for x (i.e. AxT1(x)[T2] is well defined). The
result of the substitution is also in M Sub is associative, and behaves like

substitution if done properly (no clash of variables).

(c) For some purposes (see section on structural connectives) we need to
allow for the notion of deletion. That is we must know how to delete the point x from
T(x). We can regard deletion as substituting the empty structure @ for x, i.e.
AXT(X)[D]. - , ,

Note that (a)-(c) above are very general, almost saying nothing. For each
particular case, '+ and 'Sub' must be specifically defined. For our purpose, i.e. the
study of general structured consequence relations, we do not need to know more. See
[35] for a general algebraic example with a semantical interpretation.

3. A database is any pair (T, 0) where T € M and § is a function assigning for
each x € T a wif 6(x).

4. A consequence relation for the pair (17\/[, L) is any relation ~ between
databases A = (T, 8) and single wifs A, written in the form A A, satisfying the
following: ‘ '

(a) Identity
(A) ~A
(b) Surgical Cut for M. If
A=(t1,81), T = (T3, 82), T4 N Tp = @, x € T2 and J(x) = A

and if further

ArA

I'r~B
then

['[A] = (T3, 83) ~ B
where

T3 = Sub T} T2(x)
and

d1(y) ify e T4

Ba(y) = {e‘my)- ity e 12
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Example 4. Consider CL (or examples 1 and 3) and its data structures of lists of
wifs. Let A= (A4,...,A,) and consider A of examples 1 and 3. This new data item can
be "added" to A in several ways:

1. Add A to the end of the sequence to form
(Aq,...,An, A)
2. Add A to the beginning of the sequence to form
_ (A, Aq,.LAD)
3. Add A to the middle of the sequence to form
(A1,...,Ak, A, Ak+1,'...,An)
4. Of course we can have combinations, for example, add A to the middle or the
beginning, etc

~ The CL deduction theorem allows for A to be added to the end of the sequence. We
can thus write A —>¢ B for the CL implication to indicate that given A it can give B
provided A is added to the end of the data sequence. The next connective to consider is
the implication A =, B where "b" means "beginning". Here we expect a deduction
theorem of the form

(A, Aq,...,An) — B,
iff

(Ay,....Ap)) — A—, B

For example, since

A=, B A=y B
we will get in this Iogfc

A, A=, B B.

In concatenation logic the implication must come earlier than the minor
premise. In this logic, the minor premise comes first. The set of theorems of this
logic, with =y, is unchanged; we get CL again, except that in the semantics we now
concatenate to the left. A different system is obtained if we have both implications
(see [17]). This is actually the Lambek Calculus. The Lambek Calculus can be
defined as the smallest S-consequence relation with two implications =>4 and =,
satisfying the appropriate Deduction Theorems for the list data structures.

For example, since

A—.B, A+ B
we get that
A (A=, B)—, B

The stipulation that
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A=, Biff A>, B

gives us linear logic, with = being either of =, or —e.
Both —¢ and =, satisfy a Deduction Theorem.

Having illustrated our concepts, we can now generalise the notion of the
deduction theorem to arbitrary data constellations. To achieve that we also need to
generalise the notion of implication.

Definition 3. 1. Let M = {ti} be a class of structures T;, as in definition 1. Let 0]
be a wif in some language L capable of expressing properties of the structures in

Assume that for every T in M ¢ defines a unique element (or possibly a unique
set of elements) in T. _

The formula ¢ defines a contraction mapping on structures T. Let T' be the
structure obtained from T by taking out the points identified by ¢. Thus, for
example, for lists structures T, if ¢ identifies the last element in the list then T'is
the list without its last element. We can denote the contraction mapping function by
"l¢" and write T =T Il ¢.

Thus, given two structures Ty, Tp we may say that To = T¢ | ¢ iff T is obtained
by dropping out of T1 the elements identified by ¢. We write T [l0]" to mean © I
,...,19, n times. For example, for lists T and ¢ which identifies the last element of
the list, we have (t1,...tn) = (t1,e.0tn, X) | & and @ = (t4,...,tn) (O],

2. Let a database discipline be given, involving a family of structures M. A
database A in this discipline is any pair (T, ) where T is a finite element of
(e.g. a list) and O associates with each t € T a formula d(t) = At. We also write A =
A'll ¢, justin case A = (1,8), A'=(t,8)and T=11l ¢ and & = &' Tt iedis
the restriction of d' to T.

Example 5. Let M be the class of all finite lists including the empty list. Define
+ as concatenation. Let L be a language with "+" and "<". ¢ can be a formula in L
which defines uniquely the last element of any finite list. Thus for T = (as,...,an,
b), we have Tl ¢ = (a1,..., an). These lists are the data structures of CL.

Definition 4. (The Notion of the Deduction Theorem) Let A, A' be two
databases and assume that T = 7' Il ¢. Assume further that we have

Al A= Biff A'~B

Consider a special connective denoted by —>¢. We say that —>¢ satisfies the
Deduction Theorem with respect to ¢ iff whenever A~ B and A = (T, 8) and T has n
elements then

AIOIN ~ @: 8(ty) = ¢ (. = B(tn) ¢ B) ..)

where «tp» = T[ll0] -T[ll0]+1 i.e. t; is the element identified by ¢ in T[llo]'.
Our discussions so far presented the consequence relation in the form of Ak~ A,
where A is a single formula on the right hand side. This is a Tarski type
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consequence relation. The general form of the consequence relation should be A~ T,
where both A and I" are structured databases. This is a Scott type consequence
relation. In fact, there is no reason at all to assume that the same structures can
serve on both sides of the turnstile. If we refer to the left hand side as the data and
the right hand side as the goal, then the general Scott type S-consequence relation
has the form A~ I', where A is a data structure and I" is a goal structure. For
example, A may be a set of formulas while T" may be a list of formulas. This is
indeed the case, for example, in Logic Programming, where we have

A b (At,...,An) iff A ~Aqand...and A A,

If A is a sequence, as in the case of CL, or a multiset, as in the case of linear
logic, then we can have

Ak (Aq,...,Ap)
iff for some A, A=A+ ...+ Ayand Air A, i=1,...,n

where + is concatenation or multiset union, respectively.

Another example is the case of Gentzen systems for classical logic, where both
A and I" are sets and where we have A~ {Aq,...,Ap} iff A Ay v ...V A,

In the above cases the Scott consequence relation A~ T, for ' a complex
structure, can be reduced to its Tarski part A~ A, where A a single formula. It is
not clear whether we should insist on this property to hold in the general case.

To get an idea of our options, let our starting point be two structured Tarski
type consequence relations i~y and I~y on the same language L with L4, £, and 9\/[1
and M, the two structural languages satisfying the conditions of definition 2. We
want to "extend" 4 and I~ to a Scott type consequence relation I~,allowing for A I~
I' where A is an f7l/[1 structured database and I' is an 57\/[2 structured goal. Thus the
allowable structures for I~ are _M1 for the data and Mg for goals. Clearly it must
satisfy the rules of Identity and Surgical Cut in the following form:

Al A

and

A[A]IT A" I A
A[A'lIT

We may wish to rename the Cut Rule as Left hand side Surgical Cut, to
stress that cut is done on the left.
A Right hand side Surgical Cut would be

Al~A[B] Bi~T"
A T[]

The question is, what other requirements do we have for I~?
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We obviously want to make use of both k1 and i~ 5. The new consequence I~
should extend them both in some sense. Since both consequence relations are
" general, the only structures they share for certain are the unit formulae
structures A. Given A, I and A, we know what A i~ Ais and what I"~y A is, but no
more. :
The next two definitions tell us what is the general notion of a Scott type S-
consequence relation and how to form a Scott type I~ out of ¢ and .

Definition 5. Let L be a language for wifs and let (M1, L) and (Mg, L) be
two languages for data and for goal structures respectively. Note that L4 and L,
come with their own respective notions of structural substitutions and structural
additions +q and +o respectively. :

A relation A I~ T is said to be a (Scott type) S-consequence relation on the data
and goal structures iff it satisfies the following two conditions:

ldentity Al~A

Surgical Cut
A[AlI~T[B] A'IrA BirTI'
A[A'] T [T].

Note that some of the traditional formulations of the Cut Rule may not hold, for
example '
Internal Cut

A+ AT A rA+T
A rTD

Transitivity
A KA A + AL B
Ar B

may not hold.

Further note that Identity can hold only for single formulas. | do not know
whether the rule of identity formulated for single formulas A would imply the rule
of identity for all common structures A.

Definition 6. Let i~y and  be two Tarski type S-consequence relations on
structured databases with structures M and Mg respectively, based on the same
language L, as indefinition 2. Assume that i~y and i are compatible, namely they
satisfy for all A, B.

ArB iff B o A

Define k1 5 to be the following Scott type S-consequence relation, called the
Minimal Amalgamation of 1 and b~s:
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1. The data structures of i~ » are those of .‘7\/[1 The goal structures of I~ » are
those of 9\/[2 '

2. Let A5 T hold iff (definition) for some wff A we have that both A~y A and
I3 A hold. '

Lemma 1. Let 4 and  be two compatible Tarski type consequence relations. Let
I~ be their minimal amalgamation. Then I~ is a Scott type consequence relation.

Definition 7. Let L be a language and let (M4, L£1) and (Mo, Ly) be structures
for the data and goal respectively. Let i~ i = 1, 2, be Tarski type S-consequence
relations on the data structures 57\/[; respectively with the goal structure being
single wffs and let I~ be a Scott type S-consequence on both data structures M and
goal structures %

(a) We say that I~ agrees with i~ in the data (respectively I~ agrees with ko
in the goal) iff for all A, T, A, (1) holds (respectively (2) holds).
(1) AIrAIff A1 A
(2) AIRT iff I A,
(b) We say that I~ agrees with (r~q, ) iff I~ agrees with ¢ in the data and
with I~ in the goal.

Theorem 1. Let kq and ko, be two compatible Tarski type S-consequence
relations, i.e. satifying for all A, B, A i~y B iff B ~» A. Then there exist two Scott-
type consequence relations, a maximal I~* and a minimal I~ which agree with (i,
k). In other words, for any I~ which agrees with (r~1, k) we have

1. for all A, I': A~ T implies A I~ T
2. Forall A, T: A I~ I' implies A+ T,

Example 6. (Symmetric Amalgamation) Given a Scott type S-consequence
relation k-, the two Tarski consequence relations derived from it, namely

Arqi Aiff ARA
'k Aiff AT

may not be identical or isomorphic, even in the case where A and I are based on the
same data structures. We say that the Scott type  is a symmetrical amalgamation
of the Tarski type kv iff the two derived consequence relations i~ and i~y are the
same and equal to k. For a given kg, it is always possible to construct the
symmetrical amalgamation. We cannot take the naive identity M = v =g because
then the definition of amalgamation will yield

A~ T iff for some A, A i~ Aand
I', A iff for some A, ArgAand I A.

If we let A = truth we get AT for all A, T'.
What is needed is an isomorphism function * such that
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We obviously want to make use of both k¢ and k2. The new consequence I~
should extend them both in some sense. Since both consequence relations are
' general, the only structures they share for certain are the unit formulae
structures A. Given A, I and A, we know what A ~¢ A is and what "~y A is, but no
more. '
The next two definitions tell us what is the general notion of a Scott type S-
consequence relation and how to form a Scott type I~ out of ¢ and k.

Definition 5. Let L be a language for wffs and let (M1, L1) and (M,, Ly) be
two languages for data and for goal structures respectively. Note that Ly and L,
come with their own respective notions of structural substitutions and structural
additions +1 and +, respectively. :

A relation A I T is said to be a (Scott type) S-consequence relation on the data
and goal structures iff it satisfies the following two conditions:

Identity Al~A

Surgical Cut
A[AlIT[B] A'IA BirI'
A[A'TIRT[T].

Note that some of the traditional formulations of the Cut Rule may not hold, for
example '
Internal Cut

A+ Ar T A A+ T
ArT

Transitivity
A~ A A + ArB
Ar B

may not hold.

Further note that Identity can hold only for single formulas. | do not know
whether the rule of identity formulated for single formulas A would imply the rule
of identity for all common structures A.

Definition 6. Let i~y and o be two Tarski type S-consequence relations on
structured databases with structures f7\/[1 and ,‘7\/[2 respectively, based on the same
language L, as indefinition 2. Assume that i~y and b are compatible, namely they
satisfy for all A, B.

Ar4B iff B A
Define k~1 5 to be the following Scott type S-consequence relation, called the

Minimal Amalgamation of k1 and bhs:
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1. The data structures of k4 5 are those of 9\/[1 The goal structures of i~ » are
those of W[Z '

2. Let A2 T hold iff (definition) for some wff A we have that both A4 A and
IT"~ A hold. '

Lemma 1. Let 4 and ~ be two compatible Tarski type consequence relations. Let
I~ be their minimal amalgamation. Then I~ is a Scott type consequence relation.

Definition 7. Let L be a language and let (17\/[1, L) and (Mg, L) be structures
for the data and goal respectively. Let b~ i = 1, 2, be Tarski type S-consequence
relations on the data structures Mi respectively with the goal structure being
single wffs and let I~ be a Scott type S-consequence on both data structures 9\/[1 and
goal structures §7V[2

(a) We say that I~ agrees with ¢ in the data (respectively I~ agrees with o
in the goal) iff for all A, T", A, (1) holds (respectively (2) holds).
(1) AIrAIff AR 1A
2) AIrT iff I A,
(b) We say that I~ agrees with (r~q, k) iff I~ agrees with k¢ in the data and

with b~ in the goal.

Theorem 1. Let q and r, be two compatible Tarski type S-consequence
relations, i.e. satifying for all A, B, A ~q B iff B o A. Then there exist two Scott-
type consequence relations, a maximal I~* and a minimal I~ which agree with (4,
k). In other words, for any I~ which agrees with (r~q, ) we have

1. for all A, T: Al T implies A I~ T
2. Forall A, T: A~ T implies AIn*T.

Example 6. (Symmetric Amalgamation) Given a Scott type S-consequence
relation b, the two Tarski consequence relations derived from it, namely

A AiffARA
Tho Aiff AT

may not be identical or isomorphic, even in the case where A and I" are based on the
same data structures. We say that the Scott type i~ is a symmetrical amalgamation
of the Tarski type kv iff the two derived consequence relations i~ and i~ are the
same and equal to . For a given kv, it is always possible to construct the
symmetrical amalgamation. We cannot take the naive identity M = ko =y because
then the definition of amalgamation will yield

A~ T iff for some A, A vy Aand
'~y Aiff for some A, ArgAand T A,

If we let A = truth we get AT for all A, I
What is needed is an isomorphism function * such that
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A™ =Aand ' A iff T~y A%
We thus get
A~ T iff for some A, A~y Aand [* ¢ A*
now since we also havé
Ay Biff Bro A
we get that * must satisfy
Ar-q B iff B* i~y A*.
In case of classical logic the mapping * is negation
A Biff =B = A,

The above examples have shown how to extend S-consequence relations to ones
with a more complex goal structure by minimal amalgamation. When the original
consequence relation I~ satisfies the Deduction Theorem, it is possible to extend h
by making use of this fact. The Deduction Theorem is similar to a left to right shift
operator (studied in a later section). Thus by using shift operators we can give
meaning to AT for T more complex, in terms of shifting I' to the left and
reducing the problem to a known one.

Thus for example one may write A i~ I iff some boolean combination Aj~ T ...
holds, where each I'j has less elements than I'.

Classical logic can be viewed to be a special case of reducing {Aj} ¢ {Bj, C} to
{Ai, 7C} ¢ {Bj}. '

The Intuitionistic consequence, arising from the Kripke Semantics, cannot be
viewed in this manner. We have no means of shifting wifs from the right hand side
to the left hand side.

Let ~' be a consequence relation with M1 and Mz being the structures for the
data and goals respectively. Let ~" be another consequence relation with structures
M‘1 and M'g respectively. We want to define the composition ~* of ' and . The
data structures (goal structures) of M*1 (M*g) are obtained from M1 and ﬁ7\/["1
(respectively 9\/[9'2 and "5) by the repeated substitution of one data structure
inside the other. ‘

If the structures in 17\/['1 are lists of points (xi,...,xn) and the structures in
W[‘H are sets then the structures in M*1 are hereditary lists of non-empty sets of
points (Xy,...,Xp). If M1 contains multisets of points then *y is a hereditary set
of multisets of non-empty sets of points.

Definition 8. (Composition of two S-consequence relations) Let ' and
~" be two consequence relations with structures (9\/['1, 9\/['2) and (9\/["1, "5)
respectively. We assume further that we have available a notion of substitution of a
T' structure inside a T" structure and vice versae as needed below. We define the
composition ~* of ~ and " as follows:
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1. The structures of Mlof ~*, i =1, 2 are defined by induction.

(a) Let M,(O M U 57\/[

(b) Assume M , for k < n are all defined. Let T € M ) for some k
< n and T'(x) (respectlvely T"( is in 57\/[' (respectively 57\/["‘) Then T'(T) (resp
(1)) is in M*(n).

(c) Let M* = U M*;(n)

Note: It is easy to show that if T1(x) € M* and 1, € M*; then
T1(t2) € M.
2. Let A = (11, 81) and T = (15, 85) be two databases for h* .
We can assume by definition that for some o4, By, 0z, B2, €, M:

T1 = B1(0ty) hence A = Ag(e)

To = Bo(0n) hence I‘ I"O(n), where

Ap(x) = B1 = (Ba(x)

€ = (0, 81), 11 (062, 52)
where By, B2 are either in M'y orin M fori=1, 2 respectively.

Note that 9; do not give a value to x.
We say that A ~* T iff for some C, D

€= (01, 01) ~ C

n = (02, 82) ~* D and

Ap [C] ~* T'y[D]

Let us summarise our current view:

- A logical -language L is defined by introducing the notion of well formed
formulas and by further stating a family of data structures and defining the notions
of substitution on the data structure, and of adding (combining) data structures.

- Minimal conditions. for a relation between data structures and formulas to be
a consequence relation are those of Identity and Surgical Cut. The smallest
consequence relation (if it exists) for a language L is denoted by S (L).

- The smallest structured consequence relation for the langauge with = only,

' can be extended either in the direction of non-monotonic consequence relations or
in the direction of Substructural Logics or both.

- We need and can develop adequate semantics for S (L) in the spirit of [3],
see [34].

3. Structural Connectives

Let  be a Scott type consequence relation on a language L. The consequence
relation involves structures for the data and structures for goal. The purpose of
this section is to show that given these structures, there are some natural
connectives, called structural connectives, which one may wish to add into the
language L, with porperties dictated by the structure. In fact, the entire
consequence relation may be in some cases (e.g. linear logic, see next section) no
more and no less than a reflection (via the structural connectives) of the
properties of the data structures involved.
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Let ~ be any Scott type consequence relation. Let 9\/[1 be structures for the data
and let Mg be the structures for the goals. Let +1 be structural addition for the
data and +» for the goal. We can thus write

A+1ArB+p T

which may or may not hold.

We assume nothing special about b, only that it satisfies the mimimal
properties of Identity and Surgical Cut. We do not assume any special
connectives in the language L of i, and we aim to introduce several structural
connectives. :

It might be useful to think in terms of two examples, namely concatenation
logic, where the structures are lists, and linear logic, where the structures are
multisets. Both cases would have — in the language L. To be even more specific,
think of the Tarski type consequence relations to be the relations I—¢ and I for
CL and for LL of example 3 respectively, and assume that b~ is some Scott extension
of one of them which agrees with it, the goal structures being the same as the data
structures. Note further that there may be more than one such k~ agreeing with the
Tarski type I—¢L or I of example 3, and that in the sequel we may choose one
such ~ with special symmetry conditions.

Let us begin with a general Scott type consequence .

The first thing to bear in mind is that in the general case, the structural
operators "+¢" and "+2" which come with ~ are in the metalevel, on the structures
of 9\/[1 and Mg respectively, and not in the language L of b itself. For the special
case of CL, "+" is concatenation and for the case of LL,"+" is multiset union. Let
. us now add another metalevel operator, a sort of notational shift operator "o",
having the following properties:

A +1 A° ~ I"means the sameas A A+, T
and
A B9+, " means the same as A +1 BT

In fact, A +1 A° I~ B +, I should be the same as A +{ B~ A+, I

Thus the operator "0" in "A°" is used to indicate, in the metalevel, where the
formula A should be. It has the status of a metalevel annotation, indicating that
although the formula A appears in one place in the structure, it should be in
another place. Thus A+{ A°~ I really says through the annotation "o" on A, that A
is really on the right hand side, namely A = A +2 I'. For general structures the
annotation may be problematic. If A[x] indicates that x stands somewhere in the
structure A, then we know what A[A] means. We also have to say what A[A9]
means. We have to specify the following:

1. Since A° in A[A°] means that although A° shows up in A[x] at the place x
(i.e. we have A[A%/x]), A should really be somewhere else, we need to specify
where A should be.
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2. If A° is not at place x in A[x], then there is nothing at x. Hence our notion of
substitution should also allow for empty substitution A[Q/x], which is really
deletion. '

If both A and T are multisets, as in the case of linear logic, then we have no
such problem, otherwise a precise definition is required. Even in the case of CL,
this is not simple, and requires care.

In CL, the data structures are lists (A1,...,A ). Of course (Aq,...,A,, B) is
generally not the same data structure as (B, Aq,...,Ap). We can mark B as Bo to
mean that B should be shifted to the other end of the list. Thus

(A1yeoAny B9) = dof (B, Aqy.An)
(BO, A1!"'!An) = def (A1:---,Any B)

Note that Ay +2 A, (and similarly Ty +1 I'2) is not meaningful, since +» (resp
+1) is a goal (data) structural addition and cannot be applied to the data (goal).

So far we have introduced several meta operations. We now want to put them in
the object level. We have seen in connection with the Deduction Theorem in the
previous section that it is possible to take a meta operation and add a connective for
it in the object language. We now do just that for "+1", "+2" and "o" of the
metalevel. We denote the object level connectives by "@ " "®," and "O",
respectively. ‘ :

Our purpose is to study their obvious properties. The connection between {A +
B} and {A © B} is that they must be declaratively identical. This means that A © B
should behave essentially like A + B in all i~ contexts. We thus have the following
rules:

Identity

A+;B~A®,B
A®;B~A+,B

The other direction of the identity of A ®; B with A + B, cannot be written
directly but can be characterised by a Cut rule:

Surgical Cut

Ay +4 (A +1B) +1 Ao T +5 (C 4—2 D) +2 T'»
Ay +1 (A®{B)+1AprTy+, (C®, D)+ .

_ We believe that the object level counterparts of the structural connectives of
any system can always be conservatively added to the system. We may have to
assume some mild and very reasonable sufficient conditions..

Example 7. In the case of CL, if we add the structural connective ® to the
language, we get the following system CL (@), with the following two rules:

(A, B) ~A®B
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which we get from Identity, and we should also have the following from the Cut
Rule

(A‘],...,An, A, B, B1,...,Bm) k\’ C
(Ay,...,An, A® B, By,....Bp)~ C

These we call Structural Rules for the structural connective ®, because
they arise from the fact that @ is no more than an object level reflection of the
structured database operation +.

In classical logic the data structures are sets and conjunction "A" serves as the
structural connective. The goal structures are also sets and "v" serves as the
structural connectives. :

In case of CL we also have a Right hand side Deduction Theorem, which,
when combined with the structural connective @ will yield rules like

A®BrCiff AB—C
and
dhrA— (B— A © B).

We now have to check which rules for © follow from the properties of shift.
We know that A +1 A® I~ B® 4+, I should hold iff A +1 B~ A +» I'. We immediately
get

AP O A
AR A ©

Consider
A+yCO+1DOKWT
which is the same as
Ar(C®,D)+, I
which is the same as
A+{(CO®,D)°RT

We thus have that (C €, D)° must be the same as C° &4 D°. Similarly (C ©4
D)© must behave the same as C° ®, D°. We thus get

(C ®, D)® ~C° ®,D°
(C ®, D)® ~C° ®,D°

We still have a problem of what to do (what meaning we can prove or have) to
A ©4 B when it appears on the right hand side and C ®, D when it appears on the
left hand side. The typical expression is:

C®,DrA®B
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clearly it should be the same as
(A ©1B)° I~ (C ®, D)°
which is t'he same as
A® ©,B° ~C° &, D°

which does not help, as again we get the wrong "@" on the wrong side.
In general, there is nothing to be done. However, if we have the object level
‘=" with the Deduction Theorem holding, a few more equivalences can be derived.

Consider
A+{BkRC
this holds iff
ArB—,C
but also iff
A B +; C.
Hence
B—>; C is equivalent to B® &, C.

The difference between the shift and the Deduction theorem is that the
connective "—>/" is in the object language L, while our "+5" and "o" are in the
metalevel. A B°+, C is just another way of writing, in the metalevel, A +1 B
C. -

However, if we do have the object level connectives,"® ", and "®,", we can
write down equivalences. We therefore get that

A ©, B is equivalent to A° =, B
A © B is equivalent to (A —>, B®)®

Thus "®4", "®," are reducible, in a system containing "—,", to the connectives
=" and "O" '

Let us now pause and summarise what we have learnt so far.

Suppose we start with a consequence relation i~ with +1 for data and +» for
goals. Suppose we introduce a shift operation which shifts from the right hand side
of the data to the left hand side of the goals and vice versae, and suppose that we
have an object level connectives © for the shift and —, satisfying right hand side
Deduction Theorem. Then we can define in the object level the two operators "® "
and "®53" using ">," and the object level "©" as follows:

A ®,B=defA® —.B
A ©, B = def (A—, B9)°,
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The above discussion showed how to add a structural connective © to reflect the
notion +, which is part of the defintion of any consequence relation. Any specific
consequence relation allows for a family M of structures. Any of these structures T

€ M can be reflected in the object level by a special connective . The way it is

done is described in the next definition.

~ Definition. 9. (Left Structural Connectives and Left Structural Rules)
" Let M be a class of structures and let i~ be a consequence relation structured on

57\/[, as defined in 2. Let T be a fixed structure in Mand assume T has n elements

at,...,an. Indicate this fact by writing t(ay,...,a,). Enrich the language of k with an

additional n-place connective (Aq,...,An) with the following Left Structural

Rules for .
Identity

(t(a1,..., ap), 8) Pv (6(aq),...,0(an)).

Surgical Cut

Let Ay = (11, 01) and A = (1, 8). Let x € T4 and let 81(x) = B. Let Ay = (T2,
82) be the result of structural substitution of A in Ay, i.e. Ap = Aq[B/A].
This means that To = AxT¢(X)[7].

Consider A'y = (T41(x), 0'y) which is just like Aq except that &'{(x) =

(8(ay),...,0(an)). Thus A'y = A4[B/ (d(ay),...,0(ap))l.
The Surgical Cut Rule is therefore

A{[B/Al~ A"
A1[B/ (6(aq),...,8(ap))l ~ A

or if formulated with a slight abuse of notation:
AXT{(x)[T] ~ A
At ()1 (3(a1).....B(an)] P A

The cut rule really' ensures the other direction of the identity, by forcing to

behave properly.
We are now ready to explain what a Structural Shift Connective is and what
Structural Shift Rules are.

Definition 10. (Structural Shift Connectives) Let i~ be a Scott type S-
consequence relation and let M and £ be as in definition 5. Let 0; be the wif of £,
each identifying a unique point in each T, € 17\/[. Further assume that for each 1
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(a1,...,an) there exist a unique Tz (a1,...,an, 2) such that T =T ll ¢o. Assume 7' =
T4 I 1. We can write T' = f1(T1), and T, = f»(T) where f; are function symbols for
the functional dependence which exists.

Let 03:; be a new unary connective to the language of . Enrich ~ with this
~connective and the following structural shift rule:

(01, ¢2) Structural Shift Rule
Let A1 = (T1(x), 01) be the data structure with x the point identified in T4 by

¢4, and let Ay = (T2(y), 62) be the goal structure with y the point identified by ¢o.
Assume that 81(x) and 8»(y) satisfy that either §1(x) = 0‘2; A and da(y) = A or

01(x) = A and 8x(y) = Oﬁ; A. For each of the above the following holds:

A Ap l dg iff Aqll 01 Ap

The functions induced by ¢4, ¢o define the two places, and the shift rule tells us
that 012 A shifts A from one place to the other place.
It is worth noting that with a bit of abuse of notation, the shift operation can be

written as

1. A1[© Al Ap[Q] iff A4[D] Ag[A]‘
2. A1[A] I~ AL[@] iff A4[D] ~ A[© Al

where @ is the empty set and its substitution at point x in A[x] means deletion.

Example 8. Consider CL with its list. structures. Let ¢1 define the last element of
a list and let ¢, define the second element of a list. Then if © denotes 0$; we get to

the -following two shift rules:
1. (A1,...,Am, orB) h’ (C‘],,Cn)
iff (A1,...,Am) b~ (Cq, B, C»,...,Cp)

2. (Aq,....Ap) I~ (Cy, © B, Cs,...,.Cp)
itf (A1,....An, B) I~ (C1,...,.Cp)

The shift operation suggest a new structural connective m A. Its meaning can

be motivated by the following observation. Given A(x) and Ax(y) the shift rule,
stated intuitively, says for example that:

A1[A] ~ A (@) iff A1[Q] I~ Ao[© Al

We understand the operation as shifting A from Aq into Ay. After the shift, Ais
no longer present in Ay but is recorded in Ap. That is why we write A{[Q]. If we do
not take A out A4, we get a different rule namely

AvIL] Al Agl@] it Aq[[1] ATk A0 Al
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This means that although A is supposed to "shift" to the right hand side, it stays
while "duplicating” itself. The connective “m“ indicates the duplications property.

Example 9. Consider the previous example where we had

(A1,....Am, B) I~ (C1,...,Cn)
iff (A1,....An) I (C19, B, Ca,....Cp)

If the formula B does not delete itslef when shifting, but duplicates itself we
indicate this by writing m B instead of B.

(At,...An 1] B) I~ (Cy,....Cn)
iff ( A1, +Am, [1] By~ (C1 © B, C3,....C)

Thus m B at the last place on the left simply indicates an infinite number of
B's. Of course we can shift the entire m B to the right and get

(A11"')Am! m B) o (C‘],...,Cn)
iff (A1,....Am) ~ (C1 © [I] B, Cs,...,Cp)

Some properties of m and © can be obtained from the above meaning,
especjally if other connectives are present, for ‘example

B+B=[B

Another structural connective is the proof-net like connective, which
identifies copies. Consider again A4[x] and Ao[y]. Using a shift connective, we can
either put x = A andy = @ or put x = and y = © A. In either case we get A on the
left (A4[A]) and nothing on the right.

Another possibility is to put A on the right and nothing on the left, i.e. A{[D],
As[A]. We can write this possibility also as A¢[© A], Ao[D].

What we shouild not write is

A4[O© Al Ap[A]

because here we are duplicating A twice on the right. We could of course add an
additional marker say 1 t, to indicate that these two copies of A should really be one
copy. So we can write:

A4[© Tat] b~ Ajltat]
where T T marks the fact that there is only one copy. Thus(© fatf, Tat) is not the

same as (tat, © tat) because the first corresponds to A on the right and the second
corresponds to A on the left.
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Example 10. To continue the previous example,
(At,.rAn, © tat) b (C1, Tat, C2,....C)

is the same as A
(A1,-.Am) I~ (C1, A, Ca,....Cn)

while

(Ah---;Am, TAT) h (C‘l’ o TAT! CZ:---,Cm)
is the same as
(A1,...,Am, A) "" (C1‘,...,Cn)3.

We now turn out attention to the so called "additive" connectives. As before, we
start with a general consequence relation ~. :

Consider now the case where we have that both A~ T"[A4] and A i~ T'[A5] hold.
We can abbreviate the above situation by writing in the metalevel A K~ AxT(x)[A4
A Ag] or just A  T[A1 A Ag] where "A" is a metaleval symbol, just like "+¢",
"+>" and "o". Similarly if we have A[A{] T and A[A,] ~ I' we can abbreviate it
using "v" and write A[A1 Vv Ax]~T'. Note that "A" and "v" only abbreviate other
notation and are not operations on the data. We could modify the data structures if
we want to accommodate the respective operations but that is not necessary.

Note that A[A1 A Aol ~ T is not meaningful, as we have not said what it means
when "A" appears on the left. Similarly for A ~T [Ay Vv Ag].

The following hold by definition '

ARAABIHfArAandARB
AvBrT iff AT andBrT.

Example 11. Suppbse we add the structural connectives and to the

language; what are the obvious properties it must satisfy? In the general case we
cannot say much beyond the obvious, so let us see what we get in the special case of
linear logic. Here the Deduction Theorem comes into play:

1. Alva—éBCiffA,Akv-BC |

iff A, AbBand A, A~C
if AA—>BandArA—C

iff A (A= B)|A (A C).
2. Al~A B—C
iffA,ABPvC

iff A, ACand A BrC
iff A WA= CandArB—>C
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iff A (A= C) (B— C).
3. From the Identity Rule we get, since A BrA B that

AI~A B

BrA B
4. Similarly since by the ldentity Rule A BrA B we get that:
A BrA
A B }~.B
5. SinceAPvA B we get (A B)© K~ A® and similarly (A B)® K~ B°.

Hence we get (A B)® ~ A9 |A| B,
6. Since A|A| B~ A weget A® ~ (A B)©. Similarly B® K (A B)© and
therefore Aol B ~ (AA

7. Since (A — C) B—> C)rA—> Cand A®; (A— C)~ C we get by
Surgical Cut that A ®4 (A— C) (B> C)) ~ C and similarly B ® 4 ((A—
C) (B— C)) ~Chence (A B) ¢ (A— C) (B— C)) i C and therefore

(A= C) B— C)kvA B— C.

So far our study of structural connectives and shift connectives used no special
properties of i beyond the existence of =, in the object language. We shall see that
we are going to need some symmetry assumptions on k. Suppose we start with the
Tarski kL of example 3. and assume that i~y and i~ are both Scott type and are
compatible with k. Everything we have said and done so far would apply to both
k1 and ~; equally. We can thus add the structural connective "©" and get all the
equivalences mentioned earlier to hold. However there might be a difference
between the case of 4 and that of o, depending on their properties.

Example 12. Consider the consequence relation i~ 1 defined by
A L1 Aiff.for some B e A, AL B,

where A is a multiset. This is a consequence relation.

Let ~y be the minimal amalgamation of k| and k1. Clearly A iy T" iff for
some A € T', A A holds. This means that i~4 is monotonic in T".

Let us add to the ¢ the shift "©@" and consider the following: A k~q B, G iff A I~
BO — Ciff A, B® ~y C. If we continue the chain using the fact that i~y agrees with
L we get that the above holds iff A, B® K C. We can now get that i is
monotonic in B®, i.e. Ay C implies A, B® ~ C. This is so because A C
implies A ¢ B, C and hence A, B® I~ C from the equivalence chain. Although
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itself is not monotonic, there is nothing wrong with monotonicity in B®, because we
know that A, B® i C really means A k~q B, C. However, it does force us
syntactically to note which wff is of the form B and which is of the form B®, and
“excludes writing B@© instead of B. Clearly this is not desirable. We therefore need
to assume further properties on the i~ which agrees with i, namely the property
that it is symmetrical, namely A ~ T iff T'© b~ A®.

In terms of definition 6, we want k to be the amalgamation of | with itself.

We now proceed with a series of definitions leading to the notion of self
amalgamation.

Definition 11. (The dual of a consequence relation) Let ~ be a
consequence relation in language L. Consider a dual language L" defined as follows:

1. The atoms of L" are all atoms of the form q*, where q is an atom of L.

2. The connectives of L” are all connectives of the form # , where # is a
connective of L.

Let * be a maping from L to L" defined by

3. (q)" = q, for q atomic

4. (#(A1,....An))" = #"(A"q,...,A"), for a connective #.

5. Define A"~ A" iff def A A,

Example 13. In classical logic let A and v be duals and let A" = -A.
For further study of the ideas of this section, see [36].

4. A Case Study: What is the Logic of Classical Linear Logic

A lot has been said about linear logic. From our point of view, the system is
very simple; it is the logic based on the data structures of multisets, satisfying the
Deduction Theorem and fortified with additional structural and shift connectives. It
is our purpose in this section to present linear logic from this point of view4.

We start with the data structures of multisets for both the data and goal. Consider
the language with —> only and consider the smallest Scott type consequence relation
h satisfying the deduction theorem for —.

We know from example 3. that the smallest Tarski type consequence relation
¢ for multisets satisfying the deduction theorem does characterise implicational
intuitionistic linear logic. Thus it is clear that

Abq Aiff A~ {A}.
What is not clear is the nature of the consequence A ~; A defined by
Ao Aiff (A} ~A.

We shall address this problem later.

Given b, let us add to the language the structural connectives © 1, ®, and the
shift connective ©, as we did in the previous section, when we were discussing such
connectives for an arbitrary consequence relation. We get for our case that the
following holds, where X =Y means both X ~YandY i~ X:
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1.A® 0 =A
2.A®,B=A° > B
3.A®;B=(A—> B9)°
4, (A 91 B)O EAO 92 BO
5. (A 92 B)O = A0 e1 BO

We can also add the "of course" connective m and proof net markers. Let us
agree that 1,1 is the corresponding connective on the right. We thus have:

6. A 91 m1 = m1 A

7.A92m2AEm2A

8.A &, BfnT~ C ®, (B®)Int is the same as A ®; B~C
9.A ®, BOtnT ~ C ®, BfnT is the same as A &, B® ~C.

The moral of the story is that the properties of all of these connectives are
determined by the structure and their geometric meaning.

The additives and can be added to linear logic as in the example 11.
When added to the language alongside ©1 and ©;, one can form formulas with
arbitrary nestings of ,, , ® 4, ®, within themselves. Given the meaning of

these connectives, the corresponding meatalevel structures are the composition of
two consequence relations, one for the additives over sets and one for the
multiplicatives over multisets, as in Definition 8.

In the case of the additives of linear logic, the structures T* were multisets of
sets (not hereditary). These can be regarded as a family of structures T of M (i.e.
multisets) obtained by choosing all possible points from the sets of points in T*.
For example if T* is ({a, b}, {c, d}, {€}) then the following set of T's are associated.

(a, ¢, &), (a, d, e), (b, c, &) and (b, d, e).

We write formally T € T* to indicate the connection. We can define the function
&* to give values (wff) to each point. Thus databases and goals become lists of sets
of formulas or multisets of sets of formulas.

For example, if A* is ({A, B}, {C, D}, {E}) we get the following associated
databases ' |

(A, C, E), (A, D, E), (B, C, E) and (B, D, E).

We write again A € A* to indicate the assomatlon
Our goal is to define a consequence relation A*~* I'* by stlpulatlng

A* o T*iff gof, forall A € A*, T € T*, ArT.

We need to show that we get an S-consequence relation and for that we need to
define the Surgical Cut Rule; we need to define substitution of one -structure in
another. We refer back to the general definition of the composmon of two S-
consequence relations.
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We now present a theorem about the Hilbert formulation of linear logic with —
and = which shows that © can be taken as — and that = can be mapped into the
implicational fragment.

Theorem 2. Let LL(1) be the extension of LL of example 3. with the unary
symbol = and the following axioms:

I==—AA
I-(=(A=> -B)—> C) < (A—> (B—> C))
I- (A= B)— ("B =A)

Let L be an arbitrary atom of LL. Let ¢-L(A) be a translation from LL(=) into
LL(L) defined as follows: )

¢L(q) = (q—= L)— L, q atomic
¢L(A = B) = ¢-(A) = ¢-L(B)
oL(=A) = oL(A) > L

Then the following holds:
LL(7) I A iff LL 1= ¢-L(A).
Remark. The previous theorem yields the following:

1. Semantics for LL(~), through the semantics for LL.

2. It shows that =1, &4 and ®, (i.e. all the structural connectives of linear
logic) are already definable from the impliction —, via the "internal" translation
¢+, for a fixed atom L.

3. It shows that = can also be regarded as a negation, and not merely as a shift
operator. g '

Example 14. (Cut Free Formulation of Linear Logic) In this section, we
started with a consequence relation L for multisets as data, added the obvious
structural and shift connectives together with the additives, defined the symmetric
amalgamation and got a consequence relation . Certain properties of i~ were listed
in the previous example. It is possible to list enough properties of  to enable one
to derive the Cut Rule. When this is done one gets a cut free formulation of the
sytem k. Although we have been referring to i~ as linear logic, we have not proved
that I~ is indeed the system known in the literature as linear logic. To show that, all
we need to do is to take a known formulation of linear logic, say 1, see e.g. [27],
and prove that all 1 rules are valid in . This will show that =4 < k. If we prove
the Cut Elimination for ¢ this will show that < I {. Thus essentially Cut
Elimination for 1 establishes that i~ is indeed linear logic.

*Department of Computing
Imperial College of Science, Technology and Medicine, London
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Notes

1 El presente articulo es una version parcial del aparecido en P. Schroeder-Heister y K.
Dosen (eds.): 1993, Substructural Logics, Oxford University Press,.

2 There are several versions of the Cut Rule in the literature, they are all equivalent
for the cases of classical and intuitionistic logic but are not equivalent in the context
of this paper. The version in the main text we call Transitivity (Lemma
Generation). Another version is:

r~~A A,AKL B
' AT B

This version implies monotonicity, when added to Reflexivity.
Another version we call Internal Cut:

AART A AT
AKT

3 The perceptive reader may ask why we are doing all of this shifting. Instead of writing
plainly (C, A) b~ B, for example, we code it as C i~ (B, © A), putting A on the right
and then marking it by @ to indicate that it should really be on the left. Then to
confuse matters even further, we write A on the left anyway and mark it so that the
duplication is cancelled, i.e. (C, Tath (B, o fAD). ..

The answer can be found in understanding the annotation as indicating resource.
A structured database presents formulas to be used in the deduction in a way
compatible with their structured layout. For linear logic the layout is a multiset and
so each formula is to be used exactly once. In the course of the proof the formulas
may be scattered about and/or duplicated. We need annotations to keep track of what
is happening. This is why these connectives are useful. :

4 The reader is cautioned that the phrase "from our point of view" is important.
Intuitionistic logic, from our point of view, is essentially the smallest monotonic
consequence relation with the Deduction Theorem for —, with sets as structures and
the structural and shift connectives. However, intuitionistic logic arose in a context
of far greater importance and motivation in the historical development of logic.
Similarly, linear logic has its own historical context and to understand its role one
has to go back as early as 1976 [25]. For these reasons, Avron [26] should be
viewed in context.
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