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ABSTRACT: This short paper about fuzzy set-based approximate reasoning first emphasizes
the three main semantics for fuzzy sets: similarity, preference and uncertainty. The
difference between truth-functional many-valued logics of vague or gradual propositions
and non fully compositional calculi such as possibilistic logic (which handles uncertainty)
or similarity logics is stressed. Then, potentials of fuzzy set-based reasoning methods
are briefly outlined for various kinds of approximate reasoning: deductive reasoning
about flexible constraints, reasoning under uncertainty and inconsistency, hypothetical
reasoning, exception-tolerant plausible reasoning using generic knowledge, interpolative
reasoning, and abductive reasoning (under uncertainty). Open problems are listed in the
conclusion.
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1. Introduction

Fuzzy set-based approximate reasoning was proposed and developed by Zadeh in
the seventies (e.g., Zadeh, 1979). In Zadeh's approach, each granule of knowledge is
expressed by means of fuzzy sets. More precisely, it is represented by a possibility
distribution (computed as a combination of fuzzy set membership functions in the
general case), which acts as an elastic restriction on the possible values of the
variables involved in the piece of knowledge. Then, the representations of different
granules of knowledge can be conjunctively combined and projected on the referentials
of variables of interest in order to deduce conclusions. Finally, the possibility
distribution which is thus obtained can be linguistically approximated in terms of
pre-defined fuzzy sets, modifiers and connectives in order to provide the user with a
conclusion expressed in an agreed upon vocabulary. If we except this last linguistic
approximation step, approximate reasoning in the fuzzy set and possibility theory
framework appears to be a machinery somewhat similar to what is done in the
probabilistic setting where join and marginal probability distributions are computed
(using other representation conventions, and a different algebraic structure).
However, Zadeh has also suggested some similarity with logical deduction, by
emphasizing a particular case of the combination/projection procedure, named
"generalized modus ponens”, where from a fact of the form "X is A" and a rule "if X is
A then Y is B" (where X and Y are variables, A', A and B are fuzzy sets), a conclusion Y
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is B' is computed. The generalized modus ponens can be also understood in terms of
fuzzy truth-values (Zadeh, 1979; Baldwin, 1979), where the truth-value of a
proposition "X is A" is viewed as its compatibility with respect to what is actually
known, say, "X is A'" (this compatibility is computed as the fuzzy set of possible
values of the membership pa(u) when the fuzzy range of u is A"). But, Zadeh's view of
fuzzy logic, where "truth-values are linguistic, i.e. of the form "true", "not true",
"very true", "more or less true", "false", "not very false", etc., and the rules of
inference are approximate rather than exact' (as stated in (Zadeh, 1979)), departs
from classical logic, and even multiple-valued logics, concerns. In the recent past
years, Zadeh (1994) has particularly emphasized the key role of fuzzy rules in
approximate reasoning.

As such, the approach is rather general, but on the one hand it does not say what
particular types of approximate reasoning can be captured in this framework, and on
the other hand, its situation with respect to logical formalisms remains unclear. This
short paper intends to suggest some answers to these two questions by providing a
brief overview of the research trends (for a general survey of the literature on fuzzy
set-based approximate reasoning, see (Dubois and Prade, 1991)). A presentation of
some fuzzy set-based logical formalisms is given in Section 3. Different semantics of
fuzzy rules are discussed in Section 4, before giving a survey of the various kinds of
approximate reasoning where fuzzy set-based methods apply in Section 5. Open
problems are mentioned in the conclusion. In order to clarify what kinds of practical
problems we may have in mind when dealing with approximate reasoning, the three
main potential semantics of fuzzy sets, namely, similarity, preference and
uncertainty, are first emphasized in Section 2 and the crucial difference between
degree of truth and degree of uncertainty is stressed.

2. The Semantics of Fuzzy Sets - Fuzziness Versus Uncertainty

Fuzzy sets seem to be relevant in three classes of applications where approximate
reasoning plays a role: classification and data analysis, decision-making problems, and
reasoning under uncertainty. These three directions, that have been investigated by
many researchers, actually correspond and/or exploit three semantics of the
membership grades, respectively in terms of similarity, preference and uncertainty.
Indeed, considering the degree of membership pp(u) of an element u in a fuzzy set F,
defined on a referential U, one can find in the literature, three interpretations of this
degree:

- degree of similarity: pr(u) is the degree of proximity of u to prototype elements of
F. Historically, this is the oldest semantics of membership grades (Beliman,
Kalaba and Zadeh, 1966). This view is particularly suitable in classification,
clustering, regression analysis and the like, where the problem is that of
abstraction from a set of data. It is also at work in fuzzy control techniques, where
the similarity degrees between the current situation and the prototypical ones
described in the condition parts of the rules, are the basis for the interpolation
mechanism between the conclusions of the rules;
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- degree of preference: F represents a set of more or less preferred objects (or values
of a decision variable x) and pp(u) represents an intensity of preference in favor
of object u, or the feasibility of selecting u as a value of x. This view is the one
later put forward by Bellman and Zadeh (1970); it has given birth to an abundant
literature on fuzzy optimisation and decision analysis. Approximate reasoning is
then concerned with the propagation of preferences when several constraints
(which may be fuzzy) relate the variables. Applications pertain to design and
scheduling problems;

- degree of uncertainty: this interpretation was proposed by Zadeh (1978) when he
introduced possibility theory. pg(u) is then the degree of possibility that a
parameter x has value u, given that all that is known about it is that "x is F".
Possibility can convey an epistemic meaning (F then describes the more or less
plausible values of x) or a physical meaning (ug(u) being the degree of ease of
having x = u). Viewing pp(u) as a degree of uncertainty only refers to the
epistemic interpretation. The physical meaning of possibility has more to do with
preference and feasibility.

There always remains some confusion in the fuzzy literature on the potential of fuzzy
sets for handling uncertainty. This state of confusion can be exemplified in some texts
by fuzzy set proponents claiming that probability theory models randomness while
fuzzy set models subjective uncertainty (hence ignoring subjective probability). It is
also present in the expert systems literature where certainty factors have been
confused with membership grades. It also pervades the antifuzzy literature where the
truth-functionality of conjunction, disjunction and negation in fuzzy logic is
considered as mathematically inconsistent (see (Elkan, 1994) for a recent
restatement of this fallacy).

In fact, insofar as fuzzy sets model vague predicates, membership grades model
degrees of truth of vague propositions, not degrees of uncertainty. In the scope of
knowledge representation, truth is a matter of convention, while uncertainty reflects
incomplete or contradictory knowledge. In classical logic the convention is that truth is
binary. Fuzzy set theory (and before, multivalued logics) has modified this convention.
This shift in convention does not entitle degrees of truth to be interpreted as degrees of
uncertainty.

Degrees of uncertainty can be attached to a non-fuzzy proposition in order to
model the fact that it is not known whether this proposition is true or false.
Uncertainty is at the meta-level with respect to truth. In classical logic truth is
binary (true or false) while uncertainty is ternary (surely true, surely false, or
unknown). In probability theory, truth is usually binary (crisp propositions) while
uncertainty takes on all values in the unit interval. In fuzzy set theory truth is many-
valued but there is no uncertainty insofar as the element, the membership grade of
which is computed, is precisely located. Knowing that a bottle is precisely half full, we
can say that it is half true that the bottle is full, which does not mean at all that the
probability that the bottle is full is one half (in this latter case, it is possible that the
bottle is in fact empty for instance). Fuzzy-truth values (which Zadeh has claimed to
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be typical of fuzzy logic) are possibility distributions that describe partially unknown
truth-values.

As pointed out above, a degree of membership pg(u) is interpreted as a degree of
truth or as a degree of uncertainty depending on the cases. When it is a degree of truth
it is attached to the fuzzy proposition 'X is F' and it is known that X = u. As a degree of
uncertainty, pr(u) is attached to the non-fuzzy proposition X = u, when all that is
known is that the value of X is somewhere in the support of F; then pg(u) is
interpreted as the degree of possibility that X = u.

3. Logical Embeddings

Very different extensions of classical logic that exploit the notion of a fuzzy set
have been proposed. Some are truth-functional, while others are not. We may
distinguish between:

- many-valued logics that were proposed before fuzzy set theory came to light. They
are exclusively devoted to the handling of "vague" propositions p, i.e.,
propositions which may be partially true (e.g., propositions involving properties
whose satisfaction is a matter of degree). The underlying algebraic structure is
then weaker than a Boolean algebra, and can be consistent with truth-values t(P)
that lie in the unit interval and remain truth-functional. See, e.g., (Hajek, 1995)
for an introduction.

- possibilistic logic that is built on top of classical logic, and where each crisp
proposition is attached a lower bound of a degree of necessity N(p) expressing the
certainty of p given the available information. N(p) = 1 iff p is surely true and
N(p) = 0 expresses the complete lack of certainty that p is true (either p
is false and then N(-p) = 1, or it is unknown if p is true or false and then
N(=p) = 0). The degree N(p) is compositional for conjunction only
n(N(pAq) = min (N(p),N(q)), and N(pvq) = max (N(p),N(q)) generally). For
instance, if g = —p, p v q is tautological, hence surely true (N(pvq) = 1),
but p may be unknown (N(p) = N(—p) = 0). Moreover N(-p) = 1 — II(p) where
I1(p) is the degree of possibility of proposition p. Functions N and
IT stem from the existence of a fuzzy set of more or less possible
worlds, one of which is the actual one. It is described by means of
a possibility distribution © on the interpretations of the language, and
N(p) = 1 = sup {n(w), ® = —p} = 1 - [I(—p), i.e., N(p) is computed as the
degree of impossibility of the proposition —p. A possibilistic logic formula (p,ot)
understood as N(p) > ., is represented by a fuzzy set such that interpretations
which make p false have degree 1 — o > II(—p) (i.e., the possibility that p is false
is upper bounded by 1 — o), while the interpretations which make p true have
degree 1. Then, the possibility distribution = representing a set of possibilistic
formulas is obtained by the min-conjunction of the fuzzy sets representing the
formulas (Dubois, Lang and Prade, 1994).

In possibilistic logic a fuzzy set describes incomplete knowledge about where the actual
world is, while in many-valued logics fuzzy sets describe the extensions of vague
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predicates. The truth-functionality is not compulsory however when dealing with
vagueness:

In similarity logics it is supposed that the vagueness of predicates stems from a
closeness relation (Ruspini, 1991) that equips the set of interpretations of the
language. Then a Boolean proposition p is actually understood as a fuzzy proposition p
whose models are close to models of p. Let [p] be the set of models of p and
R(p) = [p] 6 R the fuzzy set of models close (in the sense of fuzzy relation R) to
models of p. Then generally, R(p A q) < R(p) N R(q), without equality, so that truth-
values are not truth-functional with respect to conjunction.

In classical logic, a proposition p entails another proposition g whenever each
situation where p is true is a situation where q is true. Entailment is denoted =, and
p = q means [p] < [q] where [p] is the set of models of p.

In possibilistic logic, the type of inference which is at work is plausible
inference. The possibility distribution © on the set of interpretations encodes an
ordering relation that ranks possible worlds ® in terms of plausibility. Then p
plausibly entails q if and only if q is true in the most plausible situations where p is
true, i.e., max[p] < [q], where max[p] = {® € [p], =(®) maximal}. This type of
inference is also called "preferential inference" in nonmonotonic reasoning. In
contrast, inference in similarity logics is dual to preferential inference.
The set of interpretations of the language is equipped with a similarity relation R. Then
p entails approximately q in similarity logic if all the situations where p
is true are close to situations where q is true, i.e., [p] < support[R(q)].
More generally, a degree of strength of the entailment can be computed as
(@ | p) = infye[p] SUPw'e[q] PR(®,®'). It plays in similarity logic the same
role as a degree of confirmation in inductive logic. In possibilistic logic the
counterpart of I(q | p) is the conditional necessity N(q | p) computed from =, i.e.,
N(g I p) = N(—p vq)>0ifII(g A p) > II(=g A p), and N(q | p) = O otherwise.

These newly emerged notions of fuzzy set-based inference certainly deserve
further developments, and lead to very different types of logic. Of interest is the study
of their links to the usual entailment principle of Zadeh (defined as a fuzzy set
inclusion), and various extensions of consequence relations in multiple-valued logic,
as studied by Chakraborty (1988), Castro et al. (1994).

4. Fuzzy Rules

As already said, in possibilistic or in similarity logics, the propositions are not
fuzzy by themselves, although possibilistic propositions, or classical propositions
blurred by similarity are represented by fuzzy sets. Fuzzy rules involve fuzzy sets
directly in their expression. Strangely enough, in spite of the acknowledged
importance of fuzzy rules and of the great number of works in fuzzy set-based
approximate reasoning, there has been very little concern until now about the possible
intended meanings of a fuzzy rule, although fuzzy rules seem to play an important role
in our thinking mechanisms. However, several kinds of fuzzy rules can be
distinguished from a semantic point of view (Dubois and Prade, 1991, 1995).

THEORIA - Segunda Epoca 113
Vol. 11 - N¢ 27, 1996, 109-121



Didier DUBOIS, Henri PRADE FUZZY LOGIC AND APPROXIMATE REASONING

- Certainty rules: they are of the form "the more x is A, the more certain y lies in B".
The rule is interpreted as "if x = u, it is at least pa (u)-certain that y is B",
which is represented by a joint possibility distribution Ttx,y(U,v) upper
bounded by max(1 - pa(u), pg(v)), since values outside B are at most
(1 = pa(u))-possible for vy;

- Gradual rules: they are of the form "the more x is A, the more y is B".
Their representation is such that Ttx,y(U,v) = 1 if pa(u) < pg(v). When
pa(u) > pg(v), Tix,y(U,v) can be taken to be equal to 0 or pg(v) depending if the
relation between x and y is fuzzy or not;

- Possibility rules: they are of the form “the more x is A, the more possible y is B",
with the intended meaning that if x = u, any value in B is at least pa(u)-possible.
Their representation Tix,y(u,v) is thus lower-bounded by min(ug(v), pa(u)).
This corresponds to the modelling of the rules in Mamdani's method for fuzzy
control;

- Antigradual rules: they express that "the more x is A (i.e., the greater pa(u) if
X = u), the larger the set of values which are possible for y" (for instance, we
may take for y the set {v | ug(v) > 1 — pa(u)}).

It is important to notice that certainty and gradual rules contrast with possibility and
antigradual rules. The conclusions of the former have to be combined conjunctively
since they assess restrictions on possible values, while the conclusions of the latter
have to be combined disjunctively since they express sets of values which are just
possible.

5. Various Kinds of Approximate Reasoning

Fuzzy sets offer a powerful tool for the modelling of various kinds of commonsense
reasoning, where the three semantics of membership functions interfere. Let us
review some of them.

Fuzzy deductive inference

This type of approximate reasoning has been advocated by Zadeh in the mid-
seventies, as a calculus of fuzzy restrictions. The principles of this approach were
recalled in the introduction. They rely on the conjunctive combination of possibility
distributions and their projection on suitable subspaces. This conjunction/projection
method is at work in the POSSINFER system of Kruse et al. (1994). This type of
inference is also a generalization of constraint propagation to flexible constraints,
provided that one interprets each statement as a requirement that some controllable
variable must satisfy. Then the possibility distributions model preference, and
inference comes down to consistency analysis (such as arc-consistency, path-
consistency, etc.) in the terminology of constraint-directed reasoning. The advantage
of fuzzy deductive inference is to directly account for flexible constraints and
prioritized constraints, where the priorities are modelled by means of necessity
functions (see Dubois, Fargier and Prade, 1994).
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Reasoning under uncertainty and inconsistency

A possibilistic knowledge base K is a set of pairs (p, s) where p is a classical logic
formula and s is a lower bound of a degree of necessity (N(p) 2 s). It can be viewed as
a stratified deductive data base where the higher s, the safer the piece of knowledge p.
Reasoning from K means using the safest part of K to make inference,
whenever possible. Denoting Ko = {p, (p,s) € K, s 2 a0}, the entailment
K I (p,at) means that Ko — p. K can be inconsistent and its inconsistency degree is
inc(K) = sup{oi, K — (L,a)} where L denotes the contradiction. In contrast with
classical logic, inference in the presence of inconsistency becomes non-trivial. This is
the case when K — (p,a) where o > inc(K). Then it means that p follows from a
consistent and safe part of K (at least at level ). This kind of syntactic non-trivial
inference is sound and complete with respect to the above defined preferential
entailment. Moreover adding p to K and nontrivially entailing g from K U {p}
corresponds to revising K upon learning p, and having q as a consequence of the revised
knowledge base. This notion of revision is exactly the one studied by Gérdenfors
(1988) at the axiomatic level.

Nonmonotonic plausible inference using generic knowledge

Possibilistic logic does not allow for a direct encoding of pieces of generic
knowledge such as "birds fly". However, it provides a target language in
which plausible inference from generic knowledge can be achieved in the
face of incomplete evidence. In possibility theory "p generally entails q" is understood
as "p A q is a more plausible situation than p A —q". It defines a constraint of the form
Il(p A q) > TI(p A —q) that restricts a set of possibility distributions. Given a set S of
generic knowledge statements of the form "p; generally entails q;", a possibilistic base
can be computed as follows. For each interpretation ® of the language, the maximal
possibility degree wn(w) is computed, that obeys the set of contraints in S. This is done
by virtue of the principle of minimal specificity (or commitment) that assumes each
situation as a possible one insofar as it has not been ruled out. Then each generic
statement is turned into a material implication —p;V q;, to which N(=-p; Vv q;) is
attached. It comes down, as shown in Benferhat et al. (1992) to rank-ordering the
generic rules giving priority to the most specific ones, as done in Pearl (1990)'s
system Z. A very important property of this approach is that it is exception-tolerant.
It offers a convenient framework for implementing a basic form of nonmonotonic
system called "rational closure" (Lehmann and Magidor, 1992), and addresses a basic
problem in the expert system literature, that is, handling exceptions in uncertain
rules.

Hypothetical reasoning

The idea is to cope with incomplete information by explicitly handling assumptions
under which conclusions can be derived. To this end some literals in the language are
distinguished as being asssumptions. Possibilistic logic offers a tool for reasoning with
assumptions. It is based on the fact that in possibilistic logic a clause (=h v q, o) is
semantically equivalent to the formula with a symbolic weight (q, min (o, t(h))
where t(h) is the (possibly unknown) truth value of h. The set of environments in
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which a proposition p is true can thus be calculated by putting all assumptions in the
weight slots, carrying out possibilistic inference so as to derive p. The subsets of
assumptions under which p is true with more or less certainty can be retrieved from
the weight attached to p. This technique can be used to detect minimal inconsistent
subsets of a propositional knowledge base (see Benferhat et al., 1994).

Interpolative Reasoning

This type of reasoning is at work in fuzzy control applications, albeit without
clear logical foundations. Klawonn and Kruse (1993) have shown that a set of fuzzy
rules can be viewed as a set of crisp rules along with a set of similarity relations.
Moreover an interpolation-dedicated fuzzy rule 'if is A then Y is B" can be understood
as "the more x is A the more Y is B" and the corresponding inference means that if
X =xand o = pa(x) then Y lies in the level cut By. When two rules are at work, such
that oy = pa(x), oz = HAo(X), then the conclusion Y € (By)q, NT (B2)a, lies
between the cores of By and By, i.e., on ordered universes, an interpolation effect is
obtained. It can be proved that Sugeno's fuzzy reasoning method for control can be cast
in this framework (Dubois, Grabisch, Prade, 1994). More generally interpolation is
clearly a kind of reasoning based on similarity (rather than uncertainty) and it should
be related to current research on similarity logics (Dubois et al., 1995). More
generally similarity relations and fuzzy interpolation methods should impact on
current research in case-based reasoning.

Abductive reasoning

Abductive reasoning is viewed as the task of retrieving plausible explanations of
available observations on the basis of causal knowledge. In fuzzy set theory causal
knowledge has often been represented by means of fuzzy relations relating a set of
causes C to a set of observations S. However the problem of the semantics of this
relation has often been overlooked. pr(c,s) may be viewed either as a degree of
intensity or a degree of uncertainty. Namely, when observations are not binary,
HR(c,s) can be understood as the intensity of presence of observed symptom s when the
cause c is present. This is the traditional view in fuzzy set theory. It leads to Sanchez
(1977) approach to abduction, based on fuzzy relational equations. Another view has
been recently proposed by the authors, where by pg(c,s) is understood as the degree of
certainty that a binary symptom s is present when c is present. A dual causal matrix
R' must be used where pg:(c,s) is the degree of certainty that a binary symptom s is
absent when c is present. On such a basis the theory of parsimonious covering for
causal diagnosis by Peng and Reggia (1990) can be extended to the case of uncertain
causal knowledge and incomplete observations. This method is currently applied to
satellite failure diagnosis (Cayrac et al., 1994).

6. Conclusion and Open Problems

Fuzzy sets open a lot of new areas of research, or at least a new way of
investigating old questions in a unified way. They are useful to model vague predicates
in reasoning, but also for coping with incomplete information. Fuzzy sets are also a
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natural framework for reasoning with similarity and preference. A number of open
problems remains, some of which are listed hereafter:

A syntax for fuzzy logic

A lot of works have been done in fuzzy logic at the semantic level, but few papers
address the question of finding a proper syntax. Most of these papers (e.g., Pavelka,
1979) put intermediary truth-values in the object language. The only well-known
axiomatic system is the one for Lukasiewicz logic, that relies on MV-algebras. But
Zadeh's fuzzy logic is not based on MV-algebra. Offering a syntax to Zadeh's fuzzy logic
may cancel the main objection raised by logicians against fuzzy set theory.

Refining the min-based ordering

Fuzzy constraint satisfaction is based on the idea of finding a solution that best
satisfies the most violated constraint. A lot of solutions may remain indiscriminated in
such a process. The question is how to refine this ordering while remaining faithful to
that egalitarian principle. Several proposals are being studied that derive from set-
inclusion and lexicographic methods borrowed from nonmonotonic reasoning and social
sciences (e.g., Dubois, Fargier and Prade, 1995).

Implementing nonmonotonic reasoning systems in possibilistic logic

So far only rational and preferential inference have been captured. Some other
forms of nonmonotonic reasoning approaches such as circumscription (Benferhat et
al., 1993) and default theory (Yager, 1987) should be investigated with this purpose
in view.

Expressing and handling independence statements in possibility theory

Commonsense exception-tolerant reasoning relies not only on generic rules, but
also on independence assumptions. In logic conditional independence of propositional
variables is implicitly assumed due to the monotonicity of the inference. On the
contrary, independence must be explicitly postulated in probability theory. This topic
deserves a lot of investigations in possibility theory because several concepts of
independence look reasonable. Preliminary results can be found in (Dubois et al.,
1994; Fonck, 1994; De Campos et al., 1995)

Defining a full-fledged logic of similarity

The purpose is to handle approximate reasoning problems and account for
interpolation. Especially it might be useful to cast both similarity logic and
possibilistic logic in the same setting so as to come up with a system of approximate
inference under incomplete information; see Esteva et al. (1994) for a preliminary
work.

Fuzzy abduction with prior knowledge

All fuzzy relational abductive reasoning methods neglect the fact that the retrieval
of causes is partially based on prior knowledge especially when obervations are scare.
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Bayesian methods of diagnosis exploit prior knowledge. How to account for prior
knowledge using fuzzy methods?

Fuzzy sets with non-numerical scales

Another point is that although fuzzy sets have been introduced with a numerical
flavor, a membership function is not necessarily mapped on a set of numbers, but an
ordered set such as a complete lattice is enough. A membership function can even be
construed as an ordering relation >f, attached to a predicate F, where u > u' means
that u is more F than u'. A fuzzy relation R on U x U can also be viewed as a ternary
relation (on U3), i.e., a collection {2u, u € U} of binary relations that are complete
preorderings. Then pgr(u,u) = pr(u,u") can represent a situation where u' >, u,
which reads u' is closer to u than u". These structures are common in conditional logics
of counterfactuals (Lewis, 1973) to which similarity logics can be related.
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