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ABSTRACT: In this paper, Tarskis notion of Logical Consequence is viewed as a special case of the more
general notion of being a theorem of an axiomatic theory. As was recognized by Tarski, the material
adequacy of his definition depends on having the distinction between logical and non logical constants
right, but we find Tarskis analysis persuasive even if we dont agree on what constants are logical. This
accords with the view put forward in this paper that Tarski indeed captures the more inclusive notion
of theoremhood in an axiomatic theory. The approach to logical consequence via axiomatic theories
leads us to grant centrality to inference schemas rather than to full-fledged arguments and to view the
logically valid schemas as a subclass of generally valid schemas.
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1. Introduction

The now widely accepted definition of logical consequence was first explicitly formulated by Tarski
in his 1936 article “On the concept of logical consequence”l. Tarski's motivation for his definition
rests on two fundamental tenets: (1) logical consequence preserves truth, and (2) logical
consequence is formal2. Truth preservation can be given a simple rendering: If a sentence S is a
logical consequence of a set of sentences X, then § is true if all sentences in = are. This weak
requirement can be strengthened: If § is a logical consequence of %, then not only is not the case
that all sentences of = are true and S is false, but it is impossible that it be so. Indeed, it had long
been maintained before Tarski that logical consequence amounts to this impossibility, but it was
not clear enough what this impossibility meant. Formality of logical consequence is here of help.
The constants occurring in a sentence are classified into logical and non—logical. For the purposes
of logical consequence, to say that an actually false sentence can be true is to say that the non-
logical constants occurring in the sentence can be reinterpreted in such a way that what the
sentence expresses under this reinterpretation holds. Let's refer to this as “the sentence becomes
true in this reinterpretation”. Tarski's definition now reads: A sentence § is a logical consequence
of a set of sentences X iff § becomes true in all reinterpretations in which all sentences of =
become true.

What has this to do with form? In Tarski's own words, since the relation of logical consequence
“is to be uniquely determined by the form of the sentences between which it holds, this relation
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cannot be influenced in any way by (...) knowledge of the objects to which the sentence [S] or the
sentences of the class [Z] refer. The consequence relation cannot be affected by replacing the
designations of the objects referred to in these sentences by the designations of any other
objects”, it cannot be affected by reinterpretations3.

The notion of a reinterpretation can be made clearer. Tarski's final definition, essentially the
one we use now, is couched in terms of interpretations and models of what he calls ‘sentential
functions’ but we shall call ‘sentence schemas’. A sentence schema is obtained from a sentence
by replacing some constants occutring in § by variables of the corresponding kind (e.g. an individual
constant by an individual variable or a binary relation constant by a binary relation variable)4. Out of a
single sentence § various essentially different sentence schemas can arise, depending on what
particular constants we replace by variables. Let's provisionally call a sentence schema arising from
asentence § ‘strict’ if is obtained from S by replacement of all non-logical constants occurring in §
by variables. The strict sentence schema arising from a given sentence is supposed to embody the
logical form of the sentence. Sentences are true or false, whereas sentence schemas are true or
false in an interpretation -an interpretation being an assignment of entities of the appropriate kind
to the variables. An interpretation is a model of a sentence if the strict sentence schema is true in
the interpretation. Now Tarski's final definition of logical consequence can be given: A sentence S
is a logical consequence of a set of sentences % if and only if every model of all sentences of = is
also a model of S.

It should be emphasized (as Tarski himself did) that the adequacy of this definition rests on a
previous dichotomy between logical and non-logical constants. What distinguishes the behavior of
logical and non-logical constants in Tarski's definition is that the non-logical constants are to be
reinterpreted, whereas the logical ones retain their meaning. Should we take a non-logical
constant as logical or vice-versa -i.e. should we allow reinterpretations of some logical constant or
keep the meaning of a non-logical constant fixed in all interpretations- then we would get our
notion of logical consequence wrong. What notion would get then? Would we get some kind of -
non-logical consequence? I contend, and I regard this as a rather obvious claim once it has been
suitably elaborated, that Tarski's definition of logical consequence captures a very natural concept
even when the distinction between logical and non-logical constants is not respected. It is the
concept of being a theorem of an axiomatized theory.

The relation holding between a theorem of an axiomatized theory and its set of axioms is
similar to that of logical consequence. Focusing on this notion rather than on that of logical
consequence has some methodological advantages. In the first place, we have arguably a better
intuitive grasp of what theoremhood in a given axiomatic theory should be than what logical
consequence is, because we know why we build axiomatic theories for, but we have only rather
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disperse data about the logicity of certain inferences. But then, it should be easier to reach an
agreement about the intuitive adequacy of a precise definition of theoremhood than of a definition
of logical consequence. In the second place, we can very naturally regard logical consequence as
theoremhood in axiomatic theories of a special kind. Provisionally call an axiomatic theory ‘pure’ if
all its non-specific terms (see below) are logical constants and no specific term is. Then logical
consequence (according to Tarski's definition) amounts to theoremhood in a pure axiomatic
theory. More precisely: § is a logical consequence of = iff § is a theorem of the pure axiomatic
theory having T as set of axioms.

The approach to logical consequence via axiomatic theories can be of some help when trying to
discern what a logical constant is (or should be), and thus, what logical consequence is (or should
be). We seem to have conflicting intuitions or preconceptions about the logicity of certain notions.
Perhaps there is no single all-embracing answer to the question of what notions are logical notions,
thus of what constants are actually logical constants. Granted, there are certain clear instances of
logicity and of non-logicity (negation is a logical notion, having a beard is not), but there are other
cases in which our answer is unclear or even controversial, witness full second-order quantification.
What is to count as a logical notion may well depend on what task we expect logic to fulfil. Thus, if
we expect logic to be of help in characterizing important structures or classes of structures, we will
be prone to count full second-order quantification as a logical notion. Considerations about one
important use of axiomatic theories, namely theorem systematization, could direct us to put some
stringent requirements on logic.

2. Starting from axiomatic theories

When a given theory about a certain subject mater is axiomatized® or when a new theory is
axiomatically constructed, a list of sentences, the axioms of the theory, is laid down. The axioms
are assumed to express true propositions about the subject matter. They can be regarded as basic
principles encapsulating the whole content of the theory, which can be obtained piecemeal from
the theorems. The axioms determine the theory, which consists of all zheorems, i.e. of all
sentences of the language in which the content of the theory is expressed that follow from the
axioms.

The claim that the axioms determine the theory needs to be evaluated. Even assuming that it is
clear what a candidate for theoremhood is (i.e. what counts as a sentence of the language of the
theory), as we here shall assume, we have to be clear about what it is for a sentence to follow from
the axioms. The immediate answer to this question is that to follow from the axioms is to be a
logical consequence of them. But we cannot rest content with this answer, since one of our aims is
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precisely to analyse theoremhood in order to understand logical consequence. Moreover, as will be
obvious later on, this answer is indeed wrong for an arbitrary axiomatic theory.

2.1. Specific and primitive terms

Ifwe are to build an axiomatic theory, we have to decide what are the terms in terms of which we
want to describe the subject matter. These we call the specific terms of the theory. Indeed the
theory can be seen as the theory of the entities (concepts or objects) signified by these specific
terms. Thus in Plane Euclidean Geometry we may choose as specific terms the predicates ‘is a
point’, ‘is aline’, ‘lies in’, ‘is between’, ‘is congruent to’. In the axiomatic theory of vector spaces
over the field of real numbers, we choose as specific terms the predicate s a vector’ the constant
Oy’ to denote the zero vector, and terms for the sum of vectors and for the product of a real
number (a scalar) and a vector. The specific terms of an axiomatic theory are among the primitive
terms of the theory, but they don't exhaust them. The primitive terms of the (language of) the
theory are those which are not defined, whereas the specific are those primitive terms dealing
with the subject matter of the theory. Thus, in Euclidean geometry, the terms for identity and the
logical terms in general, or the membership relation between geometric objects and sets of
geometric objects that may appear in the formulation of the continuity axiom8 are primitive, but
not specific. Similarly, in the axiomatic theory of the vector spaces over the reals that we discuss
below, the terms for the arithmetical operations between real numbers do not belong among the
specific terms, although they are primitive, i.e. undefined. The distinction between terms specific
and non-specific is necessaty to identify an axiomatic theory. In principle, we could have distinct
axiomatic theories with the same primitive terms and the same set of axioms, but with different
choice of specific terms. As will become clear presently, different choices of specific terms
determine different sets of theorems and, consequently, different theories.

The rationale behind the distinction between specific and non-specific terms lies at the core of
the axiomatic method. One of the reasons why we may want to build an axiomatic theory of a
subject matter is to keep track of all our assumptions over the subject matter by having them
explicitly stated. The specific terms of the theory being the ones dealing with the subject matter,
we list all our assumptions about them explicitly in the axioms and we commit ourselves not to
appeal to their meaning in the further development of the theory, i.e. in the proofs of the
theorems?. It is clear that not all terms can be taken as specific in this sense, as to take a term as
specific amounts to presuppose nothing about it (except its grammatical features, its syntactic and
semantic categories), and if nothing extragrammatical can be assumed of any term, then nothing
can be said with them and the axioms will fail to express any assumptions. Consider e.g. the
geometric axiom stating that any two points lie on exactly one line: “If A and B are distinct points,

142 THEORIA - Segunda Epoca
vol. 12/1, 1997, 139-160



Ignacio JANE THEOREMHOOD AND LOGICAL CONSEQUENCE

then there is a line and no more than one line in which A and B lie.” Imagine we know nothing
about points, lines or the relation of a point lying on a line. If we are to gather some information
about these from this axiom, we must know a good deal about the meaning of the other terms
appearing in the axiom (if, ‘and’, ‘distinct’, ‘there is’, ‘no more than one’, etc.10) These terms are
primitive, but not specific in our sense.

2.2. An analysis of theoremhood

Suppose we have an axiomatic theory T with specific terms ¢, ..., & and with set of axioms AX,
which we assume to be true. We shall refer to whatever the specific terms stand for (mean or
denote) as ‘specific entities’, which may be concepts, relations, functions, objects of any kind. We
thus may say that the axioms are true of the specific entities, hold of them. Let § be a sentence of
the language in which T is expressed. Our considerations suggest that § should be a theorem of T
if S is true of the specific entities, but its truth depends solely on those features of the specific
entities that are explicitly stated in the axioms. The axioms can be regarded as asserting the
existence of some definite links among the specific entities. Every sentence in which one or more
specific terms occur can also be regarded as stating (truly or falsely) that some relations hold
among the specific entities. If the sentence § is true, the entities are mutually related as S states. If,
moreover, $ is a theorem, then the holding of the relations among the specific entities stated by S
depends only on the specific entities being related as the axioms declare. This being so, S will hold
as well of any other set of entities exhibiting the links asserted by the axioms to bind the specific
entities, in brief, S will also hold of any other set of entities satisfying the axioms. Thus:

() If S is a theorem of T, then S is true in all reinterpretations of the specific terms satisfying
the axioms.

This is indeed a principle of which extensive use has been made in the mathematical
development of the axiomatic method. A customary way to show that some given sentence is not
a theorem of an axiomatic theory is to exhibit a reinterpretation of the specific terms in which the
axioms remain true but the sentence becomes false. The most famous examples of this kind are
the various independence proofs of the parallel axiom from the remaining Euclidean axioms. It may
be of some help to restate the preceding general argumentation for this particular casell.

Consider the axiomatic theory whose axioms (AX) are the planar version of those given by
Hilbert in Grundlagen der Geometrie12, excluding the axiom of parallels, and let P be (Hilbert's
formulation of) the parallel postulate (i.c. the sentence asserting that given a point A not lying ona
line / there is exactly one line with no points in common with / on which A lies). Both the axioms
and P assert that some definite relations among the specific geometric entities (point, line, lying
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on, being between, congruence) hold. To show that P is not a theorem of the axiomatic theory
whose axioms are AX, we produce a suitable reinterpretation of the primitive terms of the theory.
First we fix a circle K and where the original theory says ‘point’ we read ‘interior point of K, where it
says ‘line’ we read ‘chord of K, where it says of a point that it /ies on a line, or that it is befween two
other points we also read ‘lies’ and ‘between’, where it speaks of a segment being congruent to
another segment, we read that the former is the image under a projective transformation of
the plane mapping K onto itself of the latter. This way, every sentence S speaking about the plane
is transformed into a sentence §* (the reinterpretation of §) talking about the interior of the circle
Kin such away that $* asserts about the new entities exactly what S asserts about the original ones.
Thus P*, the reinterpretation of the parallel postulate, says that if / is a chord of K and A is an
interior point of K not lying in /, there is exactly one chord of K not meeting / in which A lies. Finally
let AX* be the set of reinterpreted axioms. One shows that the reinterpretation is such that AX* is
true and one sees rather easily that P* is false. But then a fortiori the holding of the relations
among the new entities asserted by AX* does not guarantee the holding of the relations among
the same new entities asserted by P*. It follows that the holding of the relations among the
primitive entities asserted by AX does not guarantee the holding of the relations among the same
entities asserted by P. Thus P is not a theorem of the theory determined by AX.

We want to argue now that the converse to (x) follows as well from the general conception of
an axiomatic theory, so that being true in all reinterpretations of the specific terms satisfying the
axioms is not only a necessary but also a sufficient condition for theoremhood in an axiomatic
theory.

Suppose S is true in all reinterpretations of the specific terms satisfying the axioms. Since to be
true is just to be true in the “identity reinterpretation” (everything remains unchanged) and the
axioms are, by our assumption, true, S is true. Thus, in order to show that § is a theorem, we are left
to show that §'s truth depends solely on those features of the specific entities ey, ..., €, explicitly
stated in the axioms, that is, we must show that having these features is a sufficient condition for §
to hold.

But suppose that this is not so, i.e. suppose that having these feature is not a sufficient
condition for ey, ..., e, to be mutually related as S asserts. What this means is simply that there are
(or there can be) some other entities &7, ..., dy, that (i) have these features but (ii) are not related
as S asserts. Let's reinterpret the specific terms so that they stand for these other entities. By (i)
the axioms stay true in this reinterpretation and by (if) S becomes false. This, however, contradicts
our assumption that § is true in all reinterpretations of the specific terms satisfying the axioms.
Thus we may conclude:
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(**) A sentence is a theorem of an axiomatic theory iff it is true in all reinterpretations of the
specific terms satisfying the axioms.

2.3. Schematic theories and formality

The characterization (+) of theoremhood in an axiomatic theory allows us to view axiomatic
theories as consisting of sentence schemas rather than of bona fide sentences. In order to do that,
we simply have to replace the specific terms for suitable variables. It should be remarked that this
move is true to the spirit of the axiomatic method13, as substituting the variables &, ..., &, for the
specific terms £z, ..., &, has the practical effect of preventing any specific presupposition about their
meaning in the development of the theory. Besides, our talk about reinterpretations of the specific
terms becomes clearer. Now we talk about interpretations of the corresponding variables.
Variables (should) have definite ranges of variability, so that there is no doubt in principle about
what values a variable can take, and thus about what a possible interpretation of the set of chosen
variables is.

For a sentence S of the original language, let ‘S(&1, ..., En)’ -briefly ‘S(€)’- be the schema
obtained by substituting the variables for the specific terms. The set AX of axioms of the original
theory becomes a set AX(€) of axiom schemas and the theorems of the schematic theory are the
sentence schemas obtained from the theorems of the original theory. Finally, a sentence schema
S(&) will be a theorem of the schematic axiomatic theory with set of axioms AX(€) if and only if
S(€) is true in every interpretation of the variables satisfying the axioms.

We can describe the role of the specific terms in an axiomatic theory as being formal in the
sense that the only thing that matters of them for the determination of theoremhood is their
semantic category, not their particular meaning; what matters is their semantical form, as opposed
to their semantical content. That is why the transition from the fully significant to the schematic
version of the theory is a legitimate move. But we should not say that, accordingly, the relation
holding between axioms and theorems is formal. Saying so would be a misleading way of stating
the facts, since it could suggest that this relation has only to do with, or can be reduced to
syntactical properties and relations, which need not be the case. Our discussion of the axiomatic
theories so far has not gone into how the non-specific primitive terms of the language work to
determine theoremhood. For the development of the theory anything true about them could be
presupposed. And there is no reason to assume that in general their contribution to the
determination of the theory can be syntactically described. Thus in an axiomatic theory for some
branch of Physics a great deal of higher mathematics is presupposed, couched in the use of
mathematical terms as primitive, but certainly not specific. It is the presupposed mathematical
theory that allows us to obtain physical theorems from the physical axioms. In cases like this, the
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relations between axioms and theorems lie at a level deeper than syntax. It is thus advisable to
refrain from calling in general the relation from axioms to theorems ‘formal’, but we can still
reasonably contend that the contribution of the specific terms to this relation is merely formal.

2.4. Additional remarks on axiomatic theories

Many axiomatic theories are directly constructed as schematic theories, with variables as
primitive terms. They are not built to describe a fixed structure, but to define a whole class of
structures, those satisfying the axioms. This is the case of the axiomatic theory of groups, of rings,
of linear orderings, of Boolean algebras, etc. For theories of this kind, (+ #) is no more the result of
an analysis, but rather a definition of theoremhood. Thus a sentence (-schema) § in the language
of groups is said to be a theorem of the axiomatic theory of groups iff it holds in all groups, i.e. iff it
is true in all interpretations of the axioms.

There is a clear difference of use of the two kinds of axiomatic theories -those fully meaningful
and those only partially interpreted- in mathematical practice (excluding logic). Among the
theories of the first kind, which are the only ones the present paper is concerned with, we find
Peano arithmetic, the axiomatic theory of the real number field and set theory. Among the latter
we find the theory of groups, of rings, and algebraic theories in general. Euclidean geometry is
peculiar in this respect, since, as already mentioned in a previous footnote, can be and has been
seen as belonging to both classes. The difference I have in mind is this: Of the former it is their
theorems that we are mainly interested in, whereas of the latter we study their models. To be
aware of this difference, we must only look at textbooks. In a textbook on number theory we find
theorems about natural numbers, which are the values of the object variables of the language in
which the theory is expressed. The same happens if we turn to a book on analysis of on set theory.
But in a book on group theory, we find theorems about groups -which are the models of the
theory and not the values of the variables of the language of the group axioms. The theorems of
axiomatic number theory are proven from the axioms of the theory. They are theorems in the
sense of this essay. But the propositions one finds in a book on group theory are not at all
consequences of the axioms of groups, but instead they talk about the existence of groups,
homomorphisms among groups, etc. Strictly speaking, most of them are theorems of set theory.

Let's consider the so-called “group axioms”. Let ‘g’ be its conjunction. As usually found in an
Algebra text14, g can be viewed as a binary set-theoretical predicate with variables ‘G, “®” and ‘¢’
such that for every set G, every e e G and every binary operation ® on G,

(G, ®,e)isagroupiffg.
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(g can be taken to be: (1) © is associative, (2) foranya e G,a ® e=aand (3) foranya e G
there existsb e Gsuch thata  b=e.)

It is clear that g is the definiens of the definition of a group (a definition which is analogous to
that of a continuous function among topological spaces or to that of isomorphism between binary
relations). Thus viewed, it is plain that group theory is not an axiomatic theory.

Seen from a logician's perspective, the so-called “group axioms” are not expressed in the same
(set-theoretical) language in which we do ordinary group theory (the theory whose objects are
groups). The language in which these “axioms” are formulated is a mathematical construct, so that
the satisfaction relation holding between a structure and a formula of this language is a
mathematical relation between mathematical objects about which we talk in the language in which
we develop the theory. ‘(G, ¢, e) = ¢’ is a mathematical formula of the fragment of the
regimented natural language in which we do mathematics. For particular G, ¢, e and ¢,
(G, ,e) = ¢ expresses a property of the structure (G, ©, e). (Thus, if ¢ is VaVy (xey =y °x),
‘(G, ®, e) = ¢’ says that © is commutative.) Let's refer to this property as ‘Pg’. Thus, if v is the
formula conjunction of the logician’s “axioms of the theory of groups” (yis thus the formal version
ofg), then (G, ©, e) isa group iff (G, , e) has the property Py. Thus, for every structure (G, ®, €):

(G, *, e) has property Pyiff g.

(If we express fully what it means for a structure (G, ©, e) to have property Py, we shall get °g’. Le.
what the biconditional says is simply ‘g iff g’.)

Among formulas of this language we define a relation Th (for theoremhbood) thus: Th(¢, ) iff
for every structure (H, ©,e),if (H, ®,e) = ¢, then (H, °,e) = y-i.e. if (f, ©, e) has property
Py, then (H, ©, e) has property Py, so that Th(y, ) if and only if every group has the property
Pyy.

! The moral of these remarks is that “the language of group theory” does not function as «
language, being just a means to codify properties that a group may or may not possess. Thus, the
relation Th is not the relation of theoremhood, since the latter is a relation between sentences of a
fully significant language. It follows that we cannot appeal to our knowledge of the “language of
the theory of groups” to get insights on or to found any claims about the theoremhood relation. In
general, axiomatic theories of the second kind, are not actually theories. (This does not mean that
there are no reasons to see the relation Th as a formal equivalent of the relation of theoremhood.
Indeed, it is.)
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3. Theoremhood vs. logical consequence

There is a simple reason why being a theorem of an axiomatic theory cannot be generally
identified with being a logical consequence of the axioms of the theory. It is this: Logical
consequence is supposed to be an absolute relation between sets of sentences X and single
sentences S, i .e. whether S is a consequence of = or not depends only on X and S, whereas the
relation between the axioms of an axiomatic theory and its theorems is relative to the choice of
specific terms. However, as we shall urge later on, a relation analogous to the axioms-theorem
relation in an axiomatic theory is present whenever we draw (normally not on logical grounds
alone) a conclusion from a set of premisses. The detour through axiomatic theories helps us to
direct our attention to everyday inferences, of which the logical ones are just a particular, limiting
case. But before addressing arguments and inferences directly, I would like to exemplify with
natural instances the two opposite ways in which theoremhood in a general axiomatic theory can
fail to coincide with logical consequence of the set of axioms. We first sketch an axiomatic theory
of the inclusion relation between subsets of an arbitrary set, among whose theorems not all logical
consequences of its axioms belong. Then we turn to a theory of the vector spaces over the field of
real numbers, not all whose theorems are logical consequences of the axioms. We shall
presuppose almost nothing about logical consequence, only that some particular sentence
follows logically or does not follow logically from some particular finite set of sentences.

In the following discussion we must always have in mind that the theory under
consideration is fully significant. Its sentences are full-fledged sentences, although they belong
to a formalized language. We insist on this, because the use of a formal language may entice us to
take some of the symbols of the language as lacking interpretation.

3.1. A simple theory of inclusion

Suppose S is not a theorem of an axiomatic theory 7. Can there be a proof of § from the axioms, AX,
of T? No, we are prone to answer, because a proof of § from AX would show that § is a theorem of
T, which by assumption is not. Indeed, the canonical way to show that something is a theorem of T
is precisely to prove it from AX. This answer, however, misses the point that for a proof of § from
AX'to show that S is a theorem of 7, nothing in it can be assumed about the meaning of the specific
terms that is not laid down explicitly in the axioms. But there could be a proof of § from AX in which
use were made of an analysis of some concept signified by a specific term. For a particular concept
and a particular analysis thereof, such a proof, although failing to guarantee theoremhood in T,
might suffice to show that §is a logical consequence of AX.
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A situation of this kind is afforded by the following theory T, dealing with the inclusion relation
among all subsets of a fixed set A. We formulate this theory in a first-order language with symbols
‘c, ‘m’and ‘U for the inclusion, the intersection and the union among subsets of A. These are the
specific symbols. The remaining primitive symbols are the connectives, the quantifiers and the

equality symbol ‘='. The axioms are:

(Al) WxVy (xcyaycx —x=Y)
(A2) VaVy@xnycxaxnycy)
(A3) VaV)WVz(zcxazcy—zcxny)
(Ad) VaVy(xcxuyaycxuy)
(AS) VaV)WVWz(xczaycz—oxuyc2),

expressing the extensionality of sets (A1) and the respective characterizations of the intersection
and the union of two sets as the largest set included in both (A2, A3) and as the smallest set
including both (A4, AS).

Consider the sentences

(S1) Wy (xny=x—-xcy)
and  (S2) WaVy (xcy—>xny=x).

It can be argued as follows that both S1 and S2 are logical consequences of Al - AS.

Suppose x and y are subsets of A. By A2, x ny < y. So, if x Ny =x, thenx ¥y, since it is a
logical fact that substitution of equals by equals preserves truth. This shows that S1 follows
logically from A2, hence from Al - A4

We now turn to the proof of §2. Letx and y be subsets of A such thatx = y. By A2, x ny cx.
So, by Al in order to conclude thatx ny =x we are left to show thatx cx ny. Now, we have
that (i) x = (since this just means that every element of x is an element of x, which, being an
instance of the logical law VYRVyx(yRx —yRx) is a logical truth) and, by assumption, (ii) x .
So, from (i) and (ii) we get by A3 thatx cxx Ny, as desired.

However, only 1, but not S2 is a theorem of 7, as can be seen by exhibiting a reinterpretation
of the specific symbols in which the axioms stay true but the conclusion becomes falsel5. The
proof just given of S2 is not acceptable as a proof of theoremhood in 7' because in it we have made
use of the reflexivity of c without tracing it to a specific axiom. But if ‘x < x’ means that every
element of x is an element of x (remember that our language is fully meaningful, that ‘<’ is not
any binary relation symbol) and if it i true on logical grounds that, whatever sets and elemenis are,
all elements of a set are elements of the set, why cannot we make free use of the reflexivity of
in logically inferring S2 from Al - A5?
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3.2. The case of vector spaces as an example

The case concerning inclusion was brought in to exemplify how a sentence S could be a logical
consequence of the set of axioms of an axiomatic theory, although there is a reinterpretation of the
specific terms making the axioms true and § false. Now we discuss a natural example of a much
more usual situation, namely of an axiomatic theory not all whose theorems are logical
consequences of its set of axioms. To make things completely clear, we shall see through an
example how a proof of a sentence from the axioms can fail to establish the sentence as a logical
consequence of them. The theory we choose is the theory of vector spaces over the field of real
numbers. This theory is about the vectors, and the specific terms of the language in which we
formulate it deal with vectors and operations among them. Lying in the background there is the
field of the real numbers (the scalars, in this context). They, however, are not the objects the
theory is concerned with, so the axioms of the theory are explicit only about the behavior of vectors
and how they are affected by the scalars, but they are silent about how the scalars are related to
themselves. The relevant facts about the scalars are presupposed.

To be explicit, we formulate the theory in a first-order language (with a symbol for the domain
of discourse: the set of vectors). The specific terms are: ‘V' (for the set of vectors), “+v’ (for
vector addition), 4y’ (for vector inverse), 0y’ (the null vector) and ‘f (for the product of a vector by
a scalar). In addition to these, we also need non-specific, but primitive symbols to deal with the
scalars: A predicate symbol for the set of real numbers, the constants ‘0’ and ‘1" and symbols ‘+’
and ‘°’ for the real field operations. One point about the syntax of the symbol ‘P It yields vector
terms of the form ‘f(r, x)’, where 7’ is a term for a real number and x’ is a term for a vector. To
make formulas more readable, we shall write as usual 7’ for ‘f(r, x)’.

We can, if we wish, think of the theory as being about a fixed set of vectors, namely the vectors
in the Euclidean plane. If we do so and if, as usual, we represent any such vector by a
pair of real numbers, then (b, ) +v (r, ) = (p +71,q +35),v 0, 9 = (P, 9), Oy = (0, 0) and
r(p, q) = (r ° p, r * q). This way we see our theory as having full content (not as a schematic
theory).

The axioms of the theory fall naturally into two groups. Those which are about +v, -y, and Oy
alone state that the vectors form a commutative group with respect to vector addition: for all
VECtors x, y, 2,

(1) x+v@+yz)=E+y)) vz
(2) xtyy=y+yx

B x+yly=x
(4)  xHy-ye=0y,
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while those that describe the effect of the scalars over the vectors can be rendered thus: for all
scalars g, r and all vectors x; 7,

5) qtvy) =gx+tyqg
() @+rx=qrc+ym

(7) (@er)x=q(%)
®) lx=x

By using the first five axioms, one can show without much trouble that for any scalar g:
() g (Oy)=0y.16

Let's consider now the proof of the following theorem:
(B)  Ifxisany vector distinct from Oy, then x +yx # Oy .

Suppose that x -++yx = Oy . Thus, by axiom (8),
(v)  Let+ylx=0y.

Since 1 + 1 = 2, axiom (6) allows us to infer that 2x = 1x +y 1x, so that by (y):
®) =0

Thus, by (o),
® S@)=30)=0

Since% * 2 =1, axiom (7) tells us that Lx = % (2x). Thus
©  Ix=0y,

and finally, by axiom (8),x=0y. ~ QED.

This fastidiously detailed proof establishes that () is a theorem of the axiomatic theory we are
dealing with, but gives us no ground for claiming that (B) is a logical consequence of axioms (1) -
(8). Indeed, its explicitness makes it clear why it fails to do so. In the proof, facts about the real
numbers have been assumed that, on the one hand, are not explicitly stated in the axioms and, on
the other hand, we are unwilling to count as “merely logical”. In particular, we have assumed that 2
is different from zero and that, therefore, it has a multiplicative inverse, in other words, that 1/2
exists. If we want to venture a general diagnose of what goes on in this example we can say that a
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theorem of this theory may fail to be a logical consequence of the axioms because the theory has
been formulated in a language containing primitive terms that are neither specific nor logicall7,

It should be remarked that this is not a contrived example of an axiomatic theory. On the
contrary, there are many axiomatic theories formulated in languages of this kind. Indeed, it is
customary to build axiomatic theories presupposing that some concepts used in their formulation
are clear, which amounts to taking the terms denoting them as primitive and using freely any
knowledge we have of them in the proofs of the theorems. We build axiomatic theories on top of
other theories. Geometry itself has been axiomatized over the real numbers18. So has classical
mechanics and many other physical theories.

4. Towards logical consequence

Our discussion of theoremhood in axiomatic theories can help us to look at our everyday drawing
of conclusions from a slightly new perspective. Thus, we do not begin by classifying arguments
into logically correct and logically incorrect in order to find out in what logical correctness consist,
but simply between plain correct and incorrect, with the hope of understanding correctness -of
which logical correctness is perhaps a special case. Most of the correct arguments we appeal to in
order to establish our claims in ordinary situations are not, strictly speaking, logically correct, but
they fully fulfil the goal of truth preservation.

4.1. Arguments and inference schemas

What is the characteristic mark of an argument? This we can try to discover by asking ourselves
how we would justify our use of ‘therefore’. Consider assertions of (a) and (b):

(@ 5°3=155°6=30and5*9=45
(b) 5°3=15,5¢6=30.Therefore5 ® 9 =45.

How should we account from the difference between both?

To begin with, the use of ‘therefore’ in (b) suggests that whoever has asserted it, has seen a
connection between the first two equations and the last, a connection that the asserter of (a)
either has not seen or has not cared to emphasize. Since we want to know what kind of a
connection this is, we may ask why ‘therefore’ has been used. We can receive as an answer: “Why,
because 3 + 6 = 9.” If we ask for a more detailed explanation, we can be told: “for any three
numbers m, n, k:mz ® (n+ k) =m ® n+m * k.” Such an answer would certainly satisfy us,
because it points to the inference schema according to which the conclusion was (or could be)
drawn:
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men=r
mek=s
~men+k)=r+s

To be patterned according to an inference schema is a characteristic feature of an argument. If
we should argue for the correctness of a particular argument (with sentences as premisses and
conclusion) we would, in the ideal case, exhibit a certain pattern, a schematic inference (with
sentence-schemas as premisses and conclusion), of which our argument is an instance. As a
matter of fact, however, we need not proceed exactly thus. On the one hand, we may, as in the
example just given, appeal to a general law validating the inference schema instead of actually
producing it. On the other hand, we may have to restate our original argument so that it fits the
schema.

Thus consider the argument:

Any number times zero equals zero.
Bur5#0.
Therefore % doesn't exist.

To make it totally clear why this argument is correct, we can say: “In general, % is the unique
number a such thata ® m = n. So, what the conclusion says is that there is no number whose
product by zero equals 5, which follows immediately from the premisses.” In other words, we first
restate the argument as

Any number times zero equals zero.
But 5 # 0.
Therefore there is no number a such thata ® 0 =5,

and then, by saying that this immediately follows from the premisses, we implied that the
inference schema on which the argument is patterned should be obvious. It could be this:

Vxx+0=0
0#5
L Taxx s 0=95,
with ‘+’ as a variable. But we could also generalize on 0 (or on 5 or on both) and on the domain of

discourse, having the fully general schema

Vxxsa=a
a#b
s dexxa=0b.
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We could also have said something of the kind: “The conclusion follows from the premisses
because the two premisses taken together say that every number times 0 is different from 5,
while the conclusion says that no number times 0 equals 5 -which is the same.” This would mean
that the inference schema on which the argument is modelled is:

Vx — A(x)
DA A).

This variety of possible inference schemas underlying a single argument is something normal.
Indeed, except possibly in very simple arguments looking themselves like schemas and only found
in elementary logic texts (like “Lucy speaks Dutch or Lucy speaks German. But Lucy does not
speak Dutch. Therefore Lucy speaks German”), an argument can be patterned on many inference
schemas, each of them corresponding to a means of validating the argument. There is nothing
wrong with the idea of multiple justification. What matters is that an argument is always patterned
on some inference schema (or on a chain of inference schemas).

This is the import of the truism that logic is formal. Inference schemas are forms of arguments.
Itis the validity of inference schemas rather than the correctness of arguments that is central to
Logic. Correctness of arguments is a derivative notion, belonging to the applications of Logic. In
Logic we construct what we call ‘formal languages’ in order to codify inference schemas (but the
sentences of these languages are really only sentence schemas). We study what it is for an
inference schema to be valid and we find calculi to generate valid schemas. We recognize an
argument as correct if we can fit it in a valid schema, that is if we can pattern it (possibly modulo a
suitable reformulation) on one of these valid inference schemas.

4.2. Valid inference schemas

The naive, immediate answer to the question, what a correct argument is, is that an argument is
correct if it is impossible both for its premisses to be true and its conclusion false. In general, this
answer can only be used to show that an argument with true premisses and a false conclusion is
incorrect, but it is rather useless when we are confronted with an argument with some false
premiss or with a true conclusion. The difficulty in turning this naive answer to an enlightened one
lies in the rendering of the impossibility clause. If we are faced with an actual argument with, say,
true premisses and true conclusion, how are we to know if the conclusion could be false? As a
matter of fact, it is not only in general difficult to find out whether a given true sentence could be
false, but it is unclear what this possibility means. Does it mean that the world might have been
otherwise that it actually is, thus making the sentence false? Or rather that the world remains as it
is while the words occurring in the sentence might have other meanings? These are both unlikely
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possibilities. Underlying the correctness of an argument, there is no change of the world or of the
meaning of the words we use. Let's look at a simple example. Consider the argument

All tigers are mammals.
All felines are mammals.
Therefore, all tigers are felines.

Since this argument is incorrect, it ought to be possible for its premisses to be true and for its
conclusion to be false. Have we then to ponder whether tigers could have not been felines?
Obviously not. This has nothing to do with the correctness of the argument. In this case we can say
exactly what we mean. We see the argument as being of the form

All A are B.
All CareB.
~allAareC

and we just recognize that it is possible to find some other argument of the same form with true
premisses and false conclusion. No change of the world or of meaning occurs, but something
much simpler and intelligible: finding arguments patterned on a given schema.

We are back to schemas and ready to say what their validity amounts to. A schema is valid iff all
arguments patterned on it are correct -which, according to our discussion means: iff there is no
interpretation of the variables occurring in it in which the premisses are true and the conclusion is
false. In other words, an inference schema is valid iff its conclusion is true in all models of the
premisses. This is analogous to theoremhood in a schematic axiomatic theory:

An inference schema is valid iff its conclusion is a theorem of the schematic axiomatic theory
whose axioms are the schema's premisses.

This conception of validity is fully satisfactory for schemas. The aim of an inference is to
preserve truth. This definition of validity is tailor-made for this purpose: a schema is valid iff all
possible inferences made according to it are truth presetving.

However, the corresponding notion of correctness for arguments (as opposed to schemas, viz.
an argument is correct iff its conclusion is true in all reinterpretations satisfying the premisses) is
not satisfying, as

(1) it does not apply to non-formalized languages. If we decide to formalize the argument, we
are immediately faced with the difficulty that one same argument can be formalized in different
languages and in different ways. Different formalizations can give conflicting answers to its
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correctness. Should we then say: “If the argument is formalized thus, it is correct, while if it is
formalized thus it is incorrect™ This is out of the question. Notice that no similar predicament
arises if we see the different formalizations as representing different inference schemas. Some of
these schemas may be valid and some invalid, but this does not affect the correctness of the
original argument. If at least one faithful formalization of the argument exhibits the pattern of a
valid inference, then we shall take the argument as correct.

(2) Even for formalized languages, Tarski's definition of correctness of an argument (as
opposed to the validity of argument schemas) works only under the assumption that the syntactic
form of a sentence coincides with or, at least, determines its alleged logical form, i.e. under the
assumption that from the syntax of any given sentence S all possible inference schemas / can be
read such that § can occur in an argument patterned on 1. But since we are at bottom interested in
what the sentences express rather than in the sentences themselves, even if Tarski's notion of
logical consequence is appropriate for formal languages as such, we are left with the problem of
deciding whether the formal language we have chosen to express our argument fulfils those
syntactical requirements.

The choice of the language is specially delicate when we declare an argument incorrect. First
notice that an argument exemplifying a valid inference can also exemplify an invalid one. Now
consider the argument (where 4, B, C are given sets of, say, natural numbers):

Aisincluded in B.
Bis included in C.
Therefore A is included in C.

We can show that this argument is correct9 (although the inference schema that it suggests is
invalid!). This is an argument about inclusion and we know that for sets X and ¥, that X is included
in Y means that all elements of X are elements of B. This being so, our argument can be seen as
exemplifying the valid inference schema:

Vx (xe A—xe B)
Vx (xe B—xe ()
 Vx(xeA—-xe Q).

But suppose that we see our argument (the same argument!) as expressed in a first-order
language containing a non-logical binary symbol ‘R’ for the inclusion relation and individual

)

constants ‘@, ‘b’, ‘¢’ for the sets A, B, G, respectively.
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aRb
M bRe
. akc.

Viewed as embedded in this language, the argument will turn out to be incorrect by Tarski's
criterion. Is this not an unwanted result? What is clear is that the inference form (F) is invalid. But
why must we say that the argument is incorrect? Shouldn't we rather say that the language we '
have chosen is inadequate for the analysis of this argument?

If we look at (), we find it difficult to see it as a full-fledged argument. The letter ‘R’ is not
seen as meaning what is supposed to mean (the inclusion relation), rather it is seen as a relation
variable or place-marker. (7) is seen as a schema, as an invalid schema, but we say that it is a full-
fledged argument, hence an incorrect one. But didn't we show a moment ago that the argument
(not the schema) was, in fact, correct?

One reason why we feel so comfortable with Tarski's analysis of logical consequence for
formalized languages is that we tend to see formal languages as only partially interpreted, and
more so when we discuss logical matters. What we call sentences in a first-order formal language,
i.e. formulas with no free individual variables, are still sentence schemas, because the non-logical
symbols they contain -be they relation symbols, function symbols or individual constants- are seen
as allowing any interpretation. Consequently, what we call arguments are not treated as
arguments, but rather as inference schemas. Tarski's definition of logical consequence should thus
be rather seen as a definition of validity of inference schemas. Whether of logical validity we have
not yet considered.

4.3. Logically valid inference schemas

In order to find out what distinguishes a logically valid inference schema, we look at the schema in
the context of axiomatic theories. We saw that an inference schema is valid iff its conclusion is a
theorem of the schematic axiomatic theory whose axioms are the schema's premisses. The
variables occurring in the schema stand for the specific terms of the theory, those terms whose
contribution to the theoremhood relation we described as being merely formal, depending only on
their semantical category and not on their particular meaning. To deal with the question of the
logicity of schemas, we have to turn our attention to the contribution to theoremhood of the
remaining, non-specific primitive terms and, more generally, of the conceptual machinery of the
language.

The axioms of an axiomatic theory determine the theory through the conceptual machinery of
the language. The axioms are never self-sufficient. Something must always be presupposed in
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building an axiomatic theory, lest the axioms be barren of any consequences. The presupposed
facts, what we may call the “underlying basis of the axiomatization”, encode the means with
whose help the full content of the theory, the totality of its theorems, is to be secured. The
question whether the theorems logically follow from the axioms is thus a question about the
character of the underlying basis. We will not try to solve it in this essay, but only hint at two
features that should be taken into consideration when testing the underlying basis of an axiomatic
theory with a view to its logicity. We should namely inquire about (1) the nature of what is
presupposed and (2) how these presuppositions work to secure the theorems from the axioms.

With respect to the first aspect, there seems to be a minimal condition that the underlying
basis of an axiomatic theory must fulfil if its theorems have to be logical consequences of the
axioms. One trait of Logic is universality, everywhere applicability. Logical notions can be used in
any context. In particular, the terms appearing in the underlying basis of such a theory should not
restrict the choice of interpretations of the specific terms. This is not a precise requirement20, but
it easily yields precise diagnoses of non-logicity of particular bases.

Let us now turn to the second point. Here we appeal to another trait of logic, its not requiting
further justification. Thus, if the underlying basis of our axiomatic theory is to count as logical, it
must rest on no deeper basis, that is, the facts presupposed in the theory which are needed to
determine the theorems are not to be gathered elsewhere. This makes it only natural to demand
that there be a suitable means of actually producing the theorems of the theory. That is, that there
be a well-determined list of rules enabling us to generate the theorems from the set of axioms,

This is a sensible requirement. It is the requirement of having a definite notion of proof to
substantiate any claim of theoremhood. Suppose § is a sentence which we claim to be a theorem.
If our claim is to be taken seriously, we must offer a proof of § from the axioms. Consider any one
such proof. In addition to the axioms, it will have recourse to some facts about the primitive, non-
specific terms. How do we know that these facts occut? We cannot appeal to some deeper theory
to sanction them, since by assumption there is none to be appealed to. Shall we have to call on our
intuitions? Besides opening the door to serious and pethaps irreducible disagreements about the
identity of the theory2!, this procedure would be contrary to the spirit of the axiomatic method,
one of whose principal aims is to dispel unaccounted for assumptions. Thus, all facts assumed in
addition to the axioms must be either laid down explicitly to make use of them in proofs or must
be couched in the rules allowed to carry out the proofs. If theoremhood in a certain axiomatic
theory is to coincide with logical consequence of the axioms, then no theorem of the theory must
lack a proof according to some fixed set of rules.
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Notes
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1In Logic, Semantics , Metamathematics. Papers from 1923 to 1938. Translated into English and edited by J.
H. Woodger. Oxford at Clarendon Press, 1956 (pp. 409-420).

21oc. cit., p. 414.
3 Loc. cit., pp. 414 - 415.

4 We suppose that this is done in a uniform way, the same constant being always replaced by the same
variable, even in different sentences.

5 An interpretation must also fix the domain or domains of objects over which the quantified variables
range. We can avoid insisting on this point by assuming that the languages under consideration contain
special predicates to be interpreted as these domains.

6 There are two distinct kinds of axiomatic theories, which can be epitomized by Euclidean geometry as
traditionally viewed (as even Frege saw it) and as viewed by Hilbert. The fundamental difference
between them is this: traditional Euclidean geometry is about points, lines, planes, etc. and its axioms
and theorems are supposed to express true propositions about them. On the face of it, Hilbertian
Euclidean geometry is also about the same entities as its traditional version, but strictly speaking is about
nothing in particular. The geometrical terms occurring in its axioms and theorems are just
uninterpreted symbols, so that there is no question about the axioms and theorems being true: they are
but sentence schemas. The axioms are thought of as setting restrictions on the possible interpretations
of these symbols, thus as defining a class of structures (the class of structures satisfying them). For the
time being, we shall restrict ourselves to axiomatic theories of the first kind, since its theorems are fully
meaningful sentences about which we know how to reason. Later on we shall see how the schematic
theories of the second kind arise naturally from those of the first kind.

7 This terminology is not standard. Our specific terms are the terms called ‘primitive’ in the usual accounts
of the axiomatic method. Normally, non-specific terms are not mentioned at all in the description of an
axiomatic theory. They are simply used in the formulation of the axioms as belonging to the “underlying
logic". We need to draw this distinction and bring all terms of the language to the foreground because
we shall later inquire into the logicity of what the theory presupposes.

8 To be definite, we take the continuity axiom as stating that for any partition of the points of a line into two
non-empty sets such that no element of either lies between two points of the other, there is a point in
one of the sets which lies between every other point of this set and all other points of the other.

9 Thus Tarski:

This knowledge [of the things denoted by the specific terms] is, so to speak, our private concern which does not
exert the least influence on the construction of our theory. In particular, in deriving theorems from the axioms,
we make no use whatsoever of this knowledge, and behave as though we did not understand the content of the
concepts involved in our considerations, as if we knew nothing about them that had not been expressly asserted
in the axioms. (Introduction to logic and to the methodology of deductive sciences, second edition, Oxford
University Press, 1946, p. 122).

10 1t is not enough to know that ‘if and ‘and’ are truth-functional connectives, that ‘distinct’ is a two-place
predicate, etc. We must know what particular truth-functions and what particular relations they mean.

11 See, e.g. R. Courant and H. Robins: 1941, What is Mathematics? An elemeniary approach o ideas and
methods, Oxford University Press, pp. 218-222.

12 1t is not necessary for this discussion to know exactly what these axioms are.

13 That we can view axiomatic theories thus, does not imply that we maintain that axiomatic theories have
no subject matter. In Tarski's words: “If, in the construction of a theory one behaves as if one did not
understand the meaning of the terms of this discipline, this is not at all the same as denying those
terms any meaning.” (Introduction to Logic and to the methodology of deductive sciences, p. 129).

THEORIA - Segunda Epoca 159
Vol. 12/1, 1997, 139-160




Ignacio JANE THEOREMHOOD AND LOGICAL CONSEQUENCE

14 a5 in van der Waerden's Algebra, vol 1, p. 12.

15 e.g. take the universe of discourse to be the set B = {0, 1, 2, 3} and (1) reinterpret < as the relation *
holding between 0 and 0, 0 and 1, 0 and 2, 0 and 3, 1 and 1, 2 and 1, 3 and 1, (2) reinterpret M as the
operation N* so that i M* = 0, unless i = j = 1, in which case i n*j = 1 and (3) reinterpret U as U* so
that i U*j = 1, unless i = j = 0, in which case i U* j = 0. The axioms hold in this interpretation, but S2
fails, because 2 <* 1, but 2 n*1 =0 # 2,

16 The proof goes like this: It follows from the group axioms (1) - (4) that Oy is the unique vector x satisfying
the equation x +yx = x. Now, from 0y +y Oy = Oy and axioms (5) and (6) we get: g (Oy) +yg (Oy) =
=g (Oy +v 0y) =g (0y). Thus g (0y) satisfies the equationx +yx = x. Hence g (Oy) = Oy.

17 With the terminology of the introduction, the theory of vector spaces over the real field should be
classified as ‘not pure’.

18 e.g. Birkhoff: 1932, ‘A set of postulates for plane geometry based on scale and protractor’, Annals of
Mathematics 33, 329-345.

19 Here I do not insist that it is logically correct.

20 1t can be made precise only when the language in consideration is precisely given.

21 since the theory consists of its theorems.

Ignacio Jané es profesor titular del departamento de Logica, Historia y Filosofia de la
Ciencia de la Universidad de Barcelona. Se ocupa sobre todo de temas relacionados con la
logica y la teorfa de conjuntos, especialmente en lo que respecta a la filosofia y a la historia
de sus conceptos bisicos. Entre sus publicaciones se cuentan 'A critical appraisal of second-
order logic' (History and Philosophy of Logic 14, 1993) y 'The role of the absolute in Cantor's
conception of set' (Erkenntnis 42, 1995).

160 THEORIA - Segunda Epoca
Vol. 12/1, 1997, 139-160



