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Abstract 

In order to extract the regularities underlying a continuous sensory input, the individual 

elements constituting the stream have to be encoded and their transitional probabilities 

(TPs) should be learnt. This suggests that variance in statistical learning (SL) 

performance reflects efficiency in encoding representations as well as efficiency in 

detecting their statistical properties. These processes have been taken to be 

independent and temporally modular, where first, elements in the stream are encoded 

into internal representations, and then the co-occurrences between them are computed 

and registered. Here, we entertain a novel hypothesis that one unifying construct – the 

rate of information in the sensory input – explains learning performance. This 

theoretical approach merges processes related to encoding of events and those related 

to learning their regularities into a single computational principle. We present data from 

two large-scale experiments with over 800 participants tested in support for this 

hypothesis, showing that rate of information in a visual stream clearly predicts SL 

performance, and that similar rate of information values lead to similar SL performance. 

We discuss the implications to SL theory and its relation to regularity learning. 

 

 

 

Keywords: Statistical learning; Rate of information; Information theory; Visual 

processing.  
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 Statistical learning (SL)—learning from the distributional properties of sensory 

input across time and space— is taken to be involved in a wide range of basic and 

higher-order cognitive functions (Frost, Armstrong, Siegelman, & Christiansen, 2015). In 

the last two decades, therefore, extensive research has focused on demonstrating that 

regularities in different inputs are rapidly perceived and learned by newborns (e.g., Bulf, 

Johnson, & Valenza, 2011), children (e.g., Saffran, Newport, Aslin, Tunick, & Barrueco, 

1997), adults (e.g., Saffran, Newport, & Aslin, 1996), as well as non-human species (e.g., 

Toro & Trobalón, 2005). What remains controversial, however, is the precise nature of 

the computations underlying SL (e.g., Siegelman, Bogaerts, Armstrong, & Frost, 2019; 

and see Frost, Armstrong, & Christiansen, under review, for extensive discussion).  

In a typical SL experiment, participants are presented with a continuous stream 

of elements. This stream consists of repeating embedded patterns, which can also be 

described as an array of Transitional Probabilities (TPs) between the basic elements in 

the stream. Research on SL has unequivocally demonstrated that humans are sensitive 

to the statistical properties of the input, which allows them to recognize the patterns 

embedded in the stream in a subsequent test phase, in the visual (e.g., Kirkham, 

Slemmer, & Johnson, 2002), auditory (e.g., Saffran, Newport, Aslin, Tunick, & Barrueco, 

1997), or tactile (Conway & Christiansen, 2005) modality.  

SL performance, however, cannot be explained by considering only the statistical 

properties of the input. Consider for example the Visual Statistical Learning (VSL) task, in 

which the input stream consists of abstract shapes (e.g., Turk-Browne, Junge, & Scholl, 

2005), fractal stimuli (e.g., Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 

2014), or cartoon aliens (e.g., Arciuli & Simpson, 2012). In order to learn the pattern of 

co-occurrences between the stream’s elements, participants must 1. acquire robust 

representations of these elements, and 2. compute their pattern of co-occurrences. This 

approach served as the basis for a recent account of SL performance (Frost et al., 2015). 

In this schematic model, SL outcomes are the product of the interplay between 

encoding-related (and modality-specific) mechanisms that form representations from 

the input, and higher-order learning-related (and domain-general) mechanisms that 
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compute the transitional statistics of the encoded representations. Critically, this model 

naturally assumes some form of temporal modularity: first, elements in the stream must 

be encoded into internal representations, and then the co-occurrences between these 

internal representations can be computed and registered. Moreover, the model argues 

for neuro-biological separability – with encoding of stimuli occurring in lower cortical 

regions (visual, auditory and somatosensory cortices), that feed into statistical 

computations in higher cortical regions such as the medial temporal lobe (MTL) system 

(and see Schapiro et al., 2014; Schapiro, Turk-Browne, Botvinick, & Norman, 2017, for 

discussion). The model also outlines implications for understanding individual-

differences in SL. It suggests that these may arise either from variance in efficacy of 

encoding stimuli in a given modality, or from variance in the efficacy in computing their 

transitional probabilities.  

This view, however, was challenged by a recent experimental work that aimed to 

test the model, focusing on the demarcation line between encoding and learning 

(Bogaerts, Siegelman, & Frost, 2016). The study used a within-subject design with an 

independent manipulation of Exposure Duration (ED) of each shape in the stream (i.e., 

the amount of time that the stimulus is physically available for processing, a parameter 

affecting the efficacy of encoding the individual shapes), and the extent of the TPs in the 

stream (a parameter related to the registration of the co-occurrences between shapes). 

In contrast to the model proposed by Frost et al. (2015), which considered these two 

processes to be independent, temporally modular, and therefore, additive, a substantial 

interaction between ED and TPs was found, so that the impact of ED was modulated by 

TPs and vice versa. This interaction suggested that the ability to encode the individual 

shapes and the sensitivity to their co-occurrences are not independent processes, but 

rather that the statistical properties of the stream may facilitate encoding, and 

conversely, that optimal conditions of encoding can serve to enhance sensitivity to the 

statistical structure of the input. The interaction of ED and TPs was further 

demonstrated by tracking individual differences in performance. Participants who 

showed greater sensitivity to changes in ED tended to show greater sensitivity to 
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changes in TPs, and vice versa. These sets of findings are consistent with other studies 

demonstrating the interdependence of perceptual processes and regularity learning. For 

example, Barakat, Seitz, & Shams (2013) reported that the presence of statistical 

regularities enhances the detection of individual visual elements even when they appear 

outside the context of the learned regularities. In a similar vein, Grieco-Calub, Simeon, 

Snyder, & Lew-Williams (2017) showed that auditory SL performance is impaired when 

the familiarization stream comprises of spectrally degraded speech sounds. From a 

broader perspective, the interaction between encoding and learning aligns with the 

well-documented benefits of context on stimulus encoding, such as the classic effect of 

schema congruency on subsequent memory of new events (Hintzman, 1986). 

However, whereas the account provided in Bogaerts et al. (2016) adequately 

describes the data, it does not truly explain it. Finding that two processes interact, does 

not tell us much about what drives this interaction, and what computations underlie it. 

Importantly, it does not elucidate the nature of individual differences in visual SL 

abilities. How should these be explained and predicted? Why is sensitivity to rate of 

presentation correlated with sensitivity to extent of stimuli predictability? The present 

paper targets, therefore, the intriguing interaction between encoding of elements in 

vision and computing their transitional statistics. Our following experimental work was 

aimed to offer a novel computational principle for understanding visual SL, building 

upon the principles of Information Theory. To preview our findings, we suggest that one 

unifying computational principle can account for SL abilities, jointly explaining the 

effects of encoding- and learning-related factors, as well as their interaction. Note, that 

although we target here the learning of abstract visual shapes as a test-case, our 

computational principle, can be extended to a range of learning situations across 

cognition. 

 

A unifying principle – Rate of Information 

In the current work we adopt an information theoretic approach to SL. We 

therefore aim to quantify the input to which learners are exposed in terms of the 
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available information it carries. In information theory, the basic measure for the amount 

of the available information in an input is entropy. The basic idea behind entropy is that 

when the input is more random, events in the stream are less predictable, and 

therefore, each event carries more information by itself (also referred to as higher 

surprisal). In contrast, if events in an input stream are highly predictable, each event on 

average carries little information (or, has lower surprisal) because it can be predicted 

from other events. Operationally, in the context of SL, the average amount of 

information found in each element, given the element that preceded it, can be 

quantified using Markov entropy (measured in bits/elements; see, for example, Nastase, 

Iacovella, & Hasson, 2014)1:   

𝑴𝒂𝒓𝒌𝒐𝒗 𝒆𝒏𝒕𝒓𝒐𝒑𝒚 =  − ∑ 𝒑(𝒊) ∑ 𝒑(𝒋|𝒊) ∗ 𝒍𝒐𝒈 𝒑(𝒋|𝒊)

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

 

This formula quantifies the average extent of new information provided by each 

element in the stream, by summarizing the average predictability of each element, 

weighted by its overall frequency2. To illustrate, consider an input stream with four 

elements: A, B, C, and D. In an input stream in which these four elements appear 

randomly one after the other (e.g., D B A C C B C A D B, etc.) all elements in the stream 

are unpredictable, and therefore each event provides maximal new information, leading 

to high entropy. In contrast, if the same four elements are organized in a stream 

consisting only of the pairs AB and CD (e.g., A B A B C D A B C D, etc.) the second 

element in each pair does not carry any new information, because it is fully predictable 

by the element preceding it, leading to low entropy. Indeed, calculating the Markov 

                                                           
1 Note that Markov Entropy focuses on the amount of information of each element given the TPs in the 
stream. This type of entropy is specifically relevant to learning situations in which TPs between elements 
are the available cues for learning, such as in typical SL tasks on which we focus here. In other learning 
situations, other measures of entropy should be applied. For example, some learning situations require 
the learning of the overall distribution of elements, rather than the TPs between them (see Thiessen, 
Kronstein, & Hufnagle, 2013, for discussion). In these situations, the information in the input should be 
quantified by Shannon Entropy, which focuses on the (marginal) probability of each element (regardless 
of the TPs between elements).   
2 Entropy can be calculated using Log in different bases (2, e, or 10). Here we use Log in the basis of 2 in all 
calculations following the convention in Information Theory.  
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entropy for these two streams reveals higher entropy for the random stream (2 

bits/element) versus the structured stream (0.5 bits/element).  

In the context of SL, the higher the TPs between elements within-patterns (i.e., a 

stream that consists of more regular patterns), the lower the entropy value. 

Importantly, however, while Markov entropy and TP are correlated, they are far from 

being equivalent. From the inception of the SL literature, TP was used as a way of 

summarizing the degree of structure in the presented input, and was calculated simply 

by averaging the probabilities of transitions within-patterns (e.g., Aslin, Saffran, & 

Newport, 1998; Saffran, Aslin, & Newport, 1996). This has led later experimental work 

to manipulate the degree of structure in the input by changing this parameter (see, e.g., 

Bogaerts et al., 2016; Hay, Pelucchi, Estes, & Saffran, 2011). In contrast to TP, Markov 

entropy is calculated on the full matrix of transitions of all elements in the stream (all 

transitions i, j), including both between- and within-pattern transitions. Thus, Markov 

entropy is impacted by all parameters that affect the full matrix of transitions between 

elements (e.g. within-pattern TPs, the ways in which noise is introduced to the input, 

the overall number of patterns, the length of patterns, etc.), and thus quantifies the 

average amount of information that is provided by each element. Note, however, that in 

the present design, changes of entropy values resulted from manipulation of TPs alone, 

and not via other parameters.  

 However, looking only at the entropy level, the average extent of new 

information provided by each element, is not enough to predict learning outcomes. 

Another important factor that affects information processing is the time available to 

process each element. Therefore, a unifying computational principle for SL performance 

must also take into account the time dimension. In the context of SL paradigms, a 

straightforward measure for the time dimension is rate of presentation – the number of 

elements that appear in each second. A faster stream of elements (with higher rate of 

presentation) will be more difficult to process as there is less time to process the extent 

of novel information carried by each element. In contrast, a slower stream of 

information will be easier to process, therefore leading to better learning outcomes.  
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 A single computational principle, which takes into account both the entropy and 

time dimensions, is, therefore, Rate of Information (RI). As shown in the formula below, 

RI is simply the multiplication of Markov entropy (average extent of new information 

per element, measured in bits/element) by the rate of presentation (the time available 

to process each element, measured in elements/second).  

(1) 𝑹𝒂𝒕𝒆 𝒐𝒇 𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 (
𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
) =  𝒆𝒏𝒕𝒓𝒐𝒑𝒚 (

𝑏𝑖𝑡𝑠

𝑒𝑙𝑒𝑚𝑒𝑛𝑡
) ∗  𝒓𝒂𝒕𝒆 𝒐𝒇 𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 (

𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑠𝑒𝑐𝑜𝑛𝑑
) 

 

Since RI is the multiplication of bits/element by element/second, the units of this 

measure are bits/second. Intuitively, therefore, RI quantifies the extent of new 

information per second to be processed (or, in more formal terms, the amount of bits of 

new information to be processed per second). In the context of SL, it measures how 

much new information is available in each second of the familiarization stream. 

Importantly, note that RI takes into account both the average extent of predictability of 

elements as well as the time available to process each unit given its predictability. 

Therefore, it could potentially explain the effects of both encoding-related and learning-

related factors, as well as their interaction. Specifically, here we propose that RI could 

account for both the effect of TPs between elements (with higher TPs leading to lower 

entropy, therefore lower RI, and vice versa), the effect of ED (with longer ED for each 

element leading to slower rate of presentation – less shapes per second, therefore 

lower RI, and vice versa), and their interaction.  

 How would we know whether it is indeed RI that drives VSL performance? The RI 

hypothesis generates two straightforward predictions. First, if indeed RI drives SL 

performance, then a clear monotonic function, where higher levels of RI lead to worse 

SL performance, should be found (as documented in other domains in the Cognitive 

Sciences, e.g., de Fleurian, Blackwell, Ben-Tal, & Müllensiefen, 2017; Fan, 2014; Miller, 

1956). Whereas, in principle, the shape of this function is not unequivocally clear a 

priori, in the context of VSL performance, a logarithmic function seems the most 

probable: at lower levels of RI (i.e., streams with lower amounts of information to be 

extracted) we expect a substantial impact of changes in the amount of information on 
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SL performance, which is expected to decrease at higher levels of RI as SL performance 

gets closer to chance-level. We therefore hypothesize that SL performance would be 

predicted from log-transformed RI. A second even stronger prediction is that similar SL 

performance should be observed in learning conditions with identical RI levels 

regardless of the specific task parameters. In the context of the VSL paradigm, it is thus 

predicted that even if two learning conditions have different combinations of TPs and 

ED (i.e., a condition with high ED and low TP vs. a condition with low ED and high TP), a 

similar SL performance should be observed as long as their RI level is identical.  

 In light of these two predictions, the current work employed two experimental 

strategies. In order to test the first prediction – whether RI indeed monotonically 

predicts SL performance – we examined VSL performance across a large number of 

conditions, with different RI levels (through a re-analysis of Bogaerts et al., and 

Experiment 1). This allowed us to test whether there is a logarithmic relation between 

SL performance and RI. In order to examine the second prediction – similar VSL 

performance for conditions with similar RI regardless of specific ED and TPs parameters 

– we compared performance in a series of paired conditions with identical RI, but 

different combinations of ED and TPs (Experiment 2).  

 

Preliminary evidence – re-analysis of Bogaerts et al. (2016) 

 Before turning to the new experimental work, in the current section we examine 

some preliminary evidence for the RI hypothesis, through a re-analysis of the data from 

Bogaerts et al. (2016). This data is based on a sample of 42 subjects, each participating 

in 9 VSL conditions. In each of these conditions the VSL task included 8 pairs of shapes. 

Using a within-subject factorial design, Bogaerts et al. (2016) found significant effects of 

ED (a factor with 3 levels: 200, 600, 1000 ms per shape), within-pattern TPs (0.6, 0.8, 1) 

and their interaction on VSL performance. Here we re-examined these results, now 

asking whether VSL performance is indeed predicted not from ED and TPs (and their 

interaction), but rather from a single factor: RI. We therefore calculated the RI level in 

each of the 9 conditions employed by Bogaerts et al. (2016; see Table 1), then, we 
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examined the relation between VSL performance and RI across the 9 conditions. As 

shown in Figure 1, we observed a very high logarithmic fit between VSL and RI (R2 = 

0.84). This preliminary analysis already supports, to some extent, the first prediction 

regarding RI, showing that it indeed accounts for performance in a VSL task. Moreover, 

it clearly shows that this possible relation is characterized by a logarithmic function. This 

is further supported by the fact that a linear fit between VSL and RI was substantially 

lower, R2=0.66. 

 

Condition parameters Rate of Information (bits/sec) SL performance (% correct) 

ED = 1000 , TP = 1 1.50 72.8 

ED = 1000 , TP = 0.8 2.22 65.6 

ED = 600 , TP = 1 2.50 67.6 

ED = 1000 , TP = 0.6 2.71 61.8 

ED = 600 , TP = 0.8 3.68 59.7 

ED = 600 , TP = 0.6 4.53 59.5 

ED = 200 , TP = 1 7.50 58.4 

ED = 200 , TP = 0.8 11.08 56.3 

ED = 200 , TP = 0.6 13.53 54.8 

Table 1. RI levels for the 9 conditions from Bogaerts et al. (2016). 
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Figure 1. SL performance by RI (bits/sec) in the 9 conditions from Bogaerts et al. (2016). Line 
shows best logarithmic fit. 

 

 Admittedly, however, this re-analysis cannot be taken to provide anything more 

than preliminary support, due to some limitations. First, it was based on a small number 

of experimental conditions – only 9 overall. Second, RI levels in these conditions were 

not well distributed over a wide range of possible values, as there were many conditions 

with a small amount of information per second (6/9 conditions had a RI of 4.53 or less). 

The goal of Experiment 1 was therefore to examine whether a logarithmic function 

between VSL scores and RI is indeed obtained, over a larger number of experimental 

conditions, spanning over a wide range of RI values.  

 

Experiment 1 

 In Experiment 1 we examined VSL performance across 24 RI levels, created 

through different combinations of ED and TPs. We predicted that RI would account for 

VSL performance, and that it would do so better compared to other possible factors. 

Therefore, in operational terms, we predicted that a clear logarithmic function between 

VSL performance and RI would (again) be observed across the whole range of RI levels, 

and, importantly, that a regression model with RI as a single predictor would best fit the 

data, compared to models with ED, TPs, and their interaction as predictors.   
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Methods 

 Participants 217 students of the Hebrew University (43 males) participated in 

the study for payment or course credit. Participants had a mean age of 22.8 (range: 18-

35), and reported no history of learning or reading disabilities, ADD or ADHD. They were 

randomly assigned into one of the 24 VSL conditions (resulting in a sample of 8-12 

subjects in each condition).  

 Design, Materials, and Procedure In designing the Experiment, we calculated 

the RI levels of 72 possible VSL conditions, resulting from all possible combinations of 9 

possible ED values (from 200ms to 1000ms in intervals of 100ms, i.e. 200ms, 300ms, 

400ms, …, 1000ms), and 8 TPs values (from 0.3 to 1 in intervals of 0.1, i.e. 0.3, 0.4, 0.5, … 

1). The RI levels of these possible conditions are presented in Table 2. From these 72 

possible combinations, we selected 24 conditions (highlighted cells in Table 2), by 

selecting 2 to 3 conditions from each value of ED and TPs (i.e., 2-3 conditions from each 

row/column in Table 2), so as to evenly cover a wide range of possible RI levels.     

 

 

  
Exposure Duration (ED) 

  
200 300 400 500 600 700 800 900 1000 

Tr
an

si
ti

o
n

al
 P

ro
b

ab
ili

ty
 (

TP
s)

 0.3 16.22 10.82 8.11 6.49 5.41 4.64 4.06 3.60 3.25 

0.4 15.46 10.3 7.72 6.19 5.16 4.42 3.86 3.43 3.09 

0.5 14.57 9.70 7.29 5.82 4.85 4.16 3.64 3.23 2.91 

0.6 13.53 9.01 6.76 5.41 4.53 3.87 3.39 3.01 2.71 

0.7 12.42 8.26 6.20 4.97 4.13 3.54 3.09 2.75 2.47 

0.8 11.08 7.39 5.53 4.42 3.68 3.16 2.77 2.46 2.22 

0.9 9.54 6.34 4.78 3.82 3.17 2.73 2.39 2.12 1.91 

1.0 7.50 5.00 3.75 3.00 2.5 2.14 1.87 1.67 1.50 

Table 2. RI levels for 72 possible combinations of ED and TPs. Highlighted cells are the 
conditions selected for Experiment 1. 

 



13 
 

All other task parameters were similar to that of Bogaerts et al. (2016). The VSL 

task in all conditions employed the same 22 shapes (e.g., Turk-Browne et al., 2005; see 

Appendix A). For each subject, 16 of the 22 shapes were randomly chosen and organized 

to create eight pairs (the remaining 6 shapes were used for the “lie detection” trials, see 

below). Similar to typical SL tasks, the first part of the VSL was a familiarization phase, in 

which the eight pairs were presented continuously, one after the other, in a random 

order. Each pair appeared 24 times during familiarization, with the only constraint that 

the same pair could not appear twice in a row. In all conditions, there was a 100ms 

interval between shapes, both within- and between-pairs. The manipulation of TPs was 

done by including random noise in conditions with TPs smaller than 1: for example, in a 

condition with TPs = 0.8, for each pair AB during familiarization, shape B appeared after 

shape A 80% of the time, while in 20% of the time shape B was randomly replaced by 

another shape X, while avoiding immediate repetition of shapes. The familiarization 

stream lasted between 2 to 7 minutes (depending on the ED condition). Prior to 

familiarization, participants were instructed to carefully attend the stream as they 

would later be tested, but were not told that the stream consisted of pairs or any form 

of sequential regularities.  

 Following the familiarization phase, a 38 2-Alternative Forced Choice (2-AFC) test 

phase started. Thirty-two of the test-trials examined SL abilities, by contrasting 1) "true 

pairs"—two shapes that appeared as a pair during the familiarization phase, and 2) 

"foils"—two shapes that did not appear as a pair during familiarization. Foils were 

constructed without violating the position of the shapes within the original pairs (e.g., 

for two true pairs AB and CD, possible foils could be AD or CB, but not AC or DB). Scores 

in the SL task ranged then from 0 to 32, according to the number of correct 

identifications of pairs during the test phase. The remaining 6 test-trials were "lie 

detection" trials, examining whether subjects attended the familiarization stream. These 

trials contrasted “true pairs” with a pair containing a novel shape that did not appear at 

all during familiarization (see Bogaerts et al., 2016; Romberg & Saffran, 2013, for a 

similar procedure).  
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 General Procedure Participants completed the VSL task from their home 

computers, through an online platform. Participants were instructed to do the task 

alone in a quiet room, to avoid external distractions (turn-off their cell phone, and turn 

off music) and to have only the experiment window open on their computer. 

 

Results and Discussion 

 Performance on the lie detection trials was high (86.6%, significantly different 

than chance-level of 50%, t(216) = 29.15, p < 0.001), showing that subjects (at the 

group-level) indeed kept their attention on the familiarization stream. Note that, in 

contrast to previous studies (e.g., Bogaerts et al., 2016; Romberg & Saffran, 2013), we 

(a-priori) opted not to use performance on lie detection trials as a method to screen 

participants at the individual-level, due to the small number of trials (only 6 per subject), 

which might lead to a high error rate (i.e., screening subjects who actually did attend to 

the stream).  

 Across the 24 conditions, performance on the SL trials was significantly different 

than chance (56%, t(216) = 6.89, p < 0.001). Figure 2 shows VSL performance as a 

function of RI level. As can be seen, the results of Experiment 1 replicate the logarithmic 

function between RI and VSL performance from the preliminary analysis based on the 

results of Bogaerts et al. (2016). Admittedly, Figure 2 presents a noisier picture 

compared to Figure 1 above (across the 24 conditions R2 = 0.35, substantially lower than 

the fit across the 9 conditions in Figure 1 where R2 = 0.84). This additional noise is most 

likely due to the smaller number of subjects represented by each data point (n varied 

between 8 and 12 for each data point in Figure 2, compared to n = 42 in Figure 1), and 

the between-subject design in Experiment 1 (as opposed to the within-subject design in 

Bogaerts et al., 2016).  
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Figure 2. SL performance by RI (bits/sec) in the 24 conditions of Experiment 1. Line shows best 

logarithmic fit. 

  

Next, we turned to examine whether indeed (log-transformed) RI outperforms 

other possible predictors in accounting for VSL performance. To do so, we ran a series of 

logistic mixed effect models (Jaeger, 2008). All models had correctness in each SL trial as 

the dependent variable, the trial number (1-32) and the position of the true-pair within 

the 2-AFC trial (first or second) as control variables, and a by-subject random intercept. 

Each of the models had different fixed effects, representing the different possible 

predictors of SL performance (see Table 3). We predicted that the model with only log-

transformed RI would best account for the data. We compared the models by looking at 

Bayesian Inference Criteria (BIC) values, which are a standard way of model comparison 

in mixed effect models (e.g., Müller, Scealy, & Welsh, 2013). A lower BIC represents a 

better model, with the natural exponent powered by half the difference between the 

BIC of two models to be interpreted similarly to a Bayes Factor (i.e., 𝑒∆𝐵𝐼𝐶/2 ≈ Bayes 

Factor; e.g., Masson, 2011). Thus, for example, a ΔBIC = 5 between model A and model 

B means that model A account for the data 𝑒5/2 = 12.18 times better than model B.  

As predicted, the logarithmic model with only log-transformed RI level (top row 

of Table 3) best fit the data, as reflected by its lowest BIC value compared to all other 

models. The minimum difference between this model and any other model without 
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Rate Information as a predictor (i.e., models 3-5 in Table 3) was ΔBIC = 8, meaning that 

(log-transformed) RI accounted for the data 𝑒8/2 = 54.5 times better compared to any 

of these models. Note also that the logarithmic transformation of RI improved model fit 

by ΔBIC = 5 (see model 1 vs. model 2 in Table 3), showing strong evidence for a 

logarithmic (rather than a linear) relation between VSL and RI. Taken together, the 

results of Experiment 1 show that (log-transformed) RI can indeed account for VSL 

performance, and that it does so better than other predictors. Importantly, RI had 

better explanatory power than a model with separate predictors for ED, TPs, and their 

interaction. This suggests that the main effects for ED and TPs, as well as their 

interactive effect, can all be explained by a single computational principle – RI. 

Theoretically, this suggests that both encoding-related and learning-related effects (as 

well as their interaction) operate along a single axis – the amount of information per 

second in the input stream.  

Model BIC 

1) VSL ~ log (Rate of Information) 9460 

2) VSL ~ Rate of Information 9465 

3) VSL ~ ED + TPs + ED:TPs 9475 

4) VSL ~ ED:TPs 9469 

5) VSL ~ ED + TPs 9468 

6) VSL ~ ED + TPs + log (Rate of Information) 9475 

7) VSL ~ ED + log(TPs) + ED:log(TPs) 9476 

Table 3. Model comparison results for Experiment 1.  

 

 An even stronger test of the RI account can be achieved by comparing the model 

with log-transformed RI (model 1 in Table 3 above), to an alternative model that instead 

considers separately the mathematical constituents of RI: rate of presentation and 

Markov entropy. Mathematically, the RI model, SL ~ a + b*log(RI), can be expressed as 

SL ~ a + b*log(entropy*presentation_rate), which is equivalent to: SL ~ a + 

b*log(entropy) + b*log(presentation_rate). Critically, in this specification of the model, 
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the coefficient of entropy and rate of presentation is equal. The question is, therefore, 

whether this model better predicts the data compared to a model in which the two 

coefficients are not constrained to be equal (i.e. SL ~ a + b1log(entropy) + 

b2log(presentation_rate)). Examining this unconstrained model revealed that it had a 

BIC value of 9463, indeed higher than that of the log(RI) model where BIC = 9460, 

meaning that the unified log-RI accounted for the data 𝑒3/2 = 4.48 times better than 

the unconstrained model. This provides additional evidence that RI, as a unified 

construct, accounts best for the data.  

 

Experiment 2 

Our aim in Experiment 2 was to extend the findings of Experiment 1 and show 

that not only RI determines VSL performance in a logarithmic manner, but importantly, 

that similar RI levels lead to similar VSL performance, regardless of ED and TPs values.  

Our experimental strategy was to employ a within-subject design with different pairs of 

ED and TPs combinations that have identical RI levels. In two sub-experiments 

(Experiments 2a and 2b), each participant thus performed two VSL tasks with the same 

RI level: one with fast stimulus presentation (low ED) and a high degree of regularity 

(high TP), and the other with slow stimulus presentation (high ED) and a low TP. We 

examined whether these led to similar performance. 

 

Experiment 2a 

Methods  

Participants An additional sample of 250 Hebrew University students was 

recruited to participate in Experiment 2 for course credit or payment. Participants were 

randomly assigned to one of five experimental conditions (n = 50 in each condition). 

From this initial sample, 243 participants (56 males, n = 47-50 in each condition) 

completed their participation in the study (i.e., participated in both experimental 

sessions; see below), and their data is used for all subsequent analyses. Participants’ 
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mean age was 22.89 (range: 18-35), and they reported no history of reading or learning 

disabilities, ADD and ADHD.  

Design, Materials, and Procedure Each experimental condition in Experiment 2 

consisted of a pair of VSL tasks with similar RI level but different combinations of ED and 

TPs. To select the 5 pairs, we again examined all 72 possible combinations of 9 ED levels 

(200 to 1000ms in intervals of 100) and 8 TP levels (0.4 to 1 in intervals of 0.1). From 

these possible conditions, we then selected 5 pairs, each consisting of two ED-TP 

combinations with similar RI values (see Table 4). Importantly, in each pair, one 

condition had a combination of lower value of ED and higher value of TPs (labeled low 

ED/high TP condition), while the other had a combination of a higher ED and lower TPs 

(labeled high ED/low TP).  

Experimental parameters in the VSL tasks were identical to Experiment 1. Each 

Participant performed both conditions within each pair condition, at least 7 days apart 

(mean: 14.24 days; range: 7-50 days). As in Experiment 1, participants took the tasks 

from home, through an online platform, and were requested to avoid any external 

distractions.  

 

  
Exposure Duration (ED) 
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 0.3 16.22 10.82 8.11 6.49 5.41 4.64 4.06 3.60 3.25 

0.4 15.46 10.3 7.72 6.19 5.16 4.42 3.86 3.43 3.09 

0.5 14.57 9.70 7.29 5.82 4.85 4.16 3.64 3.23 2.91 

0.6 13.53 9.01 6.76 5.41 4.53 3.87 3.39 3.01 2.71 

0.7 12.42 8.26 6.20 4.97 4.13 3.54 3.09 2.75 2.47 

0.8 11.08 7.39 5.53 4.42 3.68 3.16 2.77 2.46 2.22 

0.9 9.54 6.34 4.78 3.82 3.17 2.73 2.39 2.12 1.91 

1.0 7.50 5.00 3.75 3.00 2.5 2.14 1.87 1.67 1.50 

 
Table 4. Highlighted cells show the conditions selected for Experiment 2a. Each color represents 

one condition pair.  
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Results and Discussion 

 Performance on the lie detection trials was high – 84.1%. This value significantly 

differed from chance (t(242) = 30.99, p < 0.001) showing that again participants kept 

their attention to the familiarization stream. Overall SL performance (across conditions) 

also differed from chance level (56.2%, t(242) = 9.67, p < 0.001), reflecting successful SL 

at the group-level.  

 Figure 3 (left panel) presents VSL performance in each of the 5 condition pairs as 

a function of RI. As can be seen, the pattern of results across RI levels replicates those of 

Experiment 1, with an observed logarithmic relation between VSL performance and RI. 

More importantly, we then examined VSL performance within each condition pair, to 

assess whether it was similar across the low ED/high TP and the high ED/low TP 

combinations. In line with our predictions, a series of paired t-tests showed no 

significant difference between the two combinations across all five condition pairs (from 

lowest to highest RI levels: pair 1: t(47) = 0.15, p = 0.88; pair 2: t(49) = 1.46, p = 0.15; pair 

3: t(48) = 1.81, p = 0.08; pair 4: t(46) = 0.65, p = 0.52; pair 5: t(46) = 0.63, p = 0.53). Note, 

however, that the use of t-tests in this context is limited. Our a-priori prediction in this 

experiment was that a similar VSL performance should be observed in each of the 5 

condition pairs – that is, we predicted a lack of an effect. T-tests, as all other null-

hypothesis-significance-testing (NHST) procedures, cannot provide support for the null 

hypothesis (i.e., no difference between combinations), but only for the alternative 

(some difference between combinations; see, e.g., Dienes, 2014). We therefore next 

calculated, for each condition pair, a Bayes Factor (BF), quantifying the ratio between 

the likelihood of the data under the alternative hypothesis and the likelihood of the data 

under the null (i.e., 𝐵𝐹 =  
𝑝(𝐷|𝐻1)

𝑝(𝐷|𝐻0)
). We predicted that across the 5 pairs, support for the 

null hypothesis would be observed, as reflected by BFs smaller than 1. We used 

‘Bayesian paired t-tests’ (Rouder, Speckman, Sun, Morey, & Iverson, 2009) using the 

BayesFactor package in R (Morey, Rouder, & Jamil, 2014), with default priors (i.e., 

Cauchy distribution with a width of √2/2 on effect size). As predicted, in all 5 pairs, a BF 

smaller than 1 was observed, reflecting support for the null hypothesis (from lowest to 
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highest RI levels: pair 1: BF = 0.19; pair 2: BF = 0.19; pair 3: BF = 0.7; pair 4: BF = 0.41; 

pair 5: BF = 0.16). Similarly, a combined analysis of all data across all 5 pairs revealed 

substantial support the null, meaning, as predicted, no difference in VSL performance 

between high ED/low TP and high ED/low TP combinations across RI levels (BF = 0.2).  

 

Figure 3. SL performance by RI (bits/sec) across condition pairs in Experiment 2a. Each pair of 

conditions is represented by two points in the same RI level: Blue points represent high ED/low 

TP combinations whereas orange points represent lowED/highTP combinations. Left Panel: 

Results of the original 5 condition pairs. Right Panel: Results of the follow-up study: replication 

of pairs 3 and 4. Error bars depict 95% confidence intervals. 

 

Note, however, that the strength of evidence for the null was somewhat weaker 

in two out of the five condition pairs with medium RI levels. Specifically, in pairs 3 and 4, 

the null hypothesis predicted the data only 1.42 or 2.44 times better than the 

alternative, respectively, values that are typically considered as "weak" evidence for the 

null over the alternative (e.g., Wetzels et al., 2011). We therefore conducted a follow-up 

study in which we re-ran these two condition pairs with a new sample of 100 Hebrew 

University students. Eighty-nine of them (20 males, mean age = 22.4, age range: 19-30) 

completed their participation (n = 42 in pair 3, n = 47 in pair 4, mean interval between 

tests 11.3 days with range: 7-36 days). Performance on the lie detection trials for this 

sample was 86.9% (significantly different from chance: t(88) = 23.01, p < 0.001) and 

mean SL performance again differed from chance level 56.6%, t(88) = 7.25, p < 0.001). 

The right panel of Figure 3 presents VSL performance in the two replicated conditions as 
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a function of RI. Again, no significant difference was observed between high ED/low TP 

vs. low ED/high TP combinations in the two pairs (pair 3: t(41) = 0.12, p = 0.9; pair 4: 

t(46) = 1.7, p = 0.1). Bayes Factor analysis also provided support for the null hypothesis 

in both conditions, although the extent of support again differed between the two pairs: 

pair 3: BF = 0.17; pair 4: BF = 0.60. Given the variance in findings between pairs in 

Experiment 2b we aimed to further estimate the actual effect of ED and TP 

combinations across a wider range of RI levels. 

 

Experiment 2b 

 Experiment 2b again used conditions with identical RI levels, but different 

combinations of ED and TP. The experiment had a total of 5 condition pairs: 3 

'replication pairs' from Experiment 2a (which were not already replicated in the follow-

up study), and two 'new pairs', with different RI values. The goal of Experiment 2b was 

therefore to collect further data, both replicating and extending Experiment 2a. 

 

Methods 

 Participants Since we exhausted most of the Hebrew University student pool in 

Experiments 1 and 2a, in Experiment 2b we turned to a different platform – Amazon 

Mechanical Turk. This also allowed us also to extend the validity of our findings to a 

wider and heterogeneous sample of participants. We first recruited 500 participants 

through Mechanical Turk, who were randomly assigned into one out of the five 

condition pairs (n = 100 in each condition), and participated in one (random) 

combination of ED and TP within this pair. After 7 days, we re-contacted all participants 

via e-mail, and offered them to participate again in the experiment, sending them a link 

to the other ED/TP combination of the condition pair to which they were assigned. A 

total of 279 participants out of the original 500 agreed to participate also in the second 

session (between 43 and 66 in each condition pair) – their data was used in all analyses 

presented below. 
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Design, Materials, and Procedure The 5 condition pairs in Experiment 2b are 

presented in Table 5. As noted above, the three 'replication pairs' conditions were pairs 

from Experiment 2a (those that were not already replicated in the follow-up study): pair 

1 from Experiment 2a, RI ≅ 2.2; pair 2, RI ≅ 3.2; and pair 5, RI ≅ 7.6. In addition, two 

new pairs were selected (RI ≅ 3.65, RI ≅ 6.3), to cover more of the RI range. All other 

task parameters were identical to Experiment 2a. The mean time interval between 

sessions within each condition pair was 10.9 days (range: 7-20 days).  

 

  Exposure Duration (ED) 
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 0.3 16.22 10.82 8.11 6.49 5.41 4.64 4.06 3.60 3.25 

0.4 15.46 10.3 7.72 6.19 5.16 4.42 3.86 3.43 3.09 

0.5 14.57 9.70 7.29 5.82 4.85 4.16 3.64 3.23 2.91 

0.6 13.53 9.01 6.76 5.41 4.53 3.87 3.39 3.01 2.71 

0.7 12.42 8.26 6.20 4.97 4.13 3.54 3.09 2.75 2.47 

0.8 11.08 7.39 5.53 4.42 3.68 3.16 2.77 2.46 2.22 

0.9 9.54 6.34 4.78 3.82 3.17 2.73 2.39 2.12 1.91 

1.0 7.50 5.00 3.75 3.00 2.5 2.14 1.87 1.67 1.50 

 
Table 5. Condition pairs in Experiment 2c. Each color represents one condition pair. Yellow, 

orange, and purple pairs are replications of pairs 1, 2, and 5 in Experiment 2a, respectively (RI ≅ 
0.65, RI ≅ 0.95, and RI ≅ 2.3, also marked by dashed rectangles). The two other pairs are new 

conditions.  

 

 

Results and Discussion 

 As in previous Experiments, performance on the lie detection trials was high – 

72.8% (significantly different from chance: t(278) = 19.88, p < 0.001) showing that 

participants kept their attention to the familiarization stream. Admittedly, lie detection 

performance was somewhat lower than the observed values in Experiments 1 and 2a (in 

which lie detection performance was around 85%). This is probably due to the 
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difference in participant pool (Hebrew University students in Experiments 1 and 2a vs. 

Mechanical Turk workers in Experiment 2b). Nonetheless, overall SL performance 

(across conditions) significantly differed from chance level (55.17%, t(278) = 9.44, p < 

0.001), reflecting successful SL at the group-level. Figure 4 presents VSL performance in 

the 5 condition pairs as a function of RI levels. Below we describe these results, 

discussing separately the replication pairs, and the new pairs.  

 

 
Figure 4. VSL performance by RI (bits/sec) in the five condition pairs of Experiment 2b. Blue 

points represent high ED/low TP combinations whereas orange points represent lowED/highTP 

combinations. Replication pairs are marked with dashed rectangles. Error bars depict 95% 

confidence intervals. 

 

VSL performance: Replication pairs 

We start by examining VSL performance in the 'replication pairs' from 

Experiment 2a: pairs 1 (RI ≅ 2.2), 2 (RI ≅ 3.2), and 5 (RI ≅ 7.6). As in Experiment 2a, no 

significant difference was observed between high ED/low TP and low ED/high TP 

combinations in the three pairs and Bayes Factor analysis revealed some support for the 

null hypothesis (BF < 1) in all three pairs (pair 1: t(42) = 1.88, p = 0.07, BF = 0.82; pair 2: 

t(51) = 1.36, p = 0.18, BF = 0.36; pair 5: t(58) = 0.52, p = 0.61; BF = 0.16).  
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VSL performance: New pairs 

In line with previous experiment, VSL performance in the two new pairs (new-

pair 1: RI ≅ 3.65, new-pair 2: RI ≅ 6.3), showed no significant difference between high 

ED/low TP and low ED/high TP combinations and the Bayes Factor analysis showed 

some support for H0 in both condition pairs (new-pair 1: t(58) = 1.73, p = 0.08, BF = 

0.58; new-pair 2: t(65) = 0.12, p = 0.91; BF = 0.14). 

 Taken together, the results of Experiment 2a and 2b suggest that indeed RI 

provides an overall good predictor of VSL performance. Across the three sub-

experiments, on a total 12 sub-samples (all n>40), not one statistically significant 

difference was found between VSL conditions with identical RI level, having different 

combinations of ED and TPs. Bayes Factor analyses complemented this finding: When 

looking at the experimental conditions separately, Bayes Factors for all 12 RI pairs had a 

BF < 1 value, signaling some support for the null hypothesis. Moreover, in 6 out of the 

12 pairs we found that BF < 1/3, signaling substantial support for the null. Our results 

thus conform with the predictions of RI determining VSL performance. They suggest that 

similar VSL performance is obtained within the same rate of information, regardless of 

ED and TP combinations.  

 

Aggregated analysis 

Although our results show that RI does a good job at predicting VSL 

performance, some data points we obtained seem to be discrepant with the RI account. 

Specifically, some of the pairs comparisons resulted in an BFs that are typically 

considered 'inconclusive' (i.e., BF larger than 1/3; e.g., Wetzels et al., 2011). This raises 

the question of whether such variance in findings simply reflect noise, or whether it 

points to some more fundamental bias of RI as a predictor of VSL performance. In light 

of the multiple comparisons throughout Experiment 2, and the error measurements 

characteristics to the 2-AFC test (see Siegelman, Bogaerts, & Frost, 2016  for discussion), 

it is possible that the discrepant data points are due to noisy performance measures. 



25 
 

However, when considering the combined results of Experiments 2a and 2b, it seems 

that the lowED/highTP combination had a slight advantage in VSL performance 

compared to the highED/lowTP combination (see Figures 3 and 4, above). Indeed, when 

merging the data across all conditions in all sub-experiments across all condition pairs, a 

2% difference in performance between combinations emerged, which was found to be 

significant (lowED/highTP mean = 56.8%, highED/lowTP mean = 54.8%, t(610) = 3.33, p = 

0.001; BF  = 10.7). It thus seems that when considering VSL performance across all 

conditions, the effect of ED seems perhaps less pronounced than that of TPs – that is, a 

change from a low-ED to a high-ED condition impacts VSL performance less than a 

parallel change from a low-TP to a high-TP condition. In more theoretic terms, it is 

possible that while combining the two measures together, ED has a lesser influence on 

VSL compared to TPs. What could be the source of imbalance between ED's and TPs' 

impact on VSL performance?  

One possible source could be a non-linear impact of ED on task performance. As 

documented in many fields (e.g., Carver, 1973; Sable, Gratton, & Fabiani, 2003; Sherman 

& Turvey, 1969) presentation rate tends to have a non-linear effect on performance, 

where a change in very fast EDs (e.g., a change in ED from 200ms to 300ms) have a 

greater impact on performance than a parallel change in slower EDs (e.g., a change from 

900ms to 1000ms, which is negligible). This would suggest that for obtaining an even 

better fit of the data the simple multiplication of entropy (bits/element) by rate of 

presentation (elements/second) for computing RI (see equation (1), above), should incur 

some correction. Mathematically, this can be done by having a power smaller than 1 for 

the rate of presentation part of the equation (noted as x in formula (2) below), which 

aims to capture the decrease in the effect of presentation rate with increasing baselines: 

 

(2) 𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅_𝑹𝑰 =  𝒆𝒏𝒕𝒓𝒐𝒑𝒚 ∗  𝒓𝒂𝒕𝒆 𝒐𝒇 𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝒙 

(𝑤ℎ𝑒𝑟𝑒 𝑥 < 1) 

 

To examine whether such modification improves the predictive power of RI, we 

conducted an aggregated analysis of all data from Experiments 2a and 2b (n = 611 
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subjects overall). The data was analyzed using logistic mixed-effect models, with 

correctness in each trial as the dependent variable, as well as a by-subject random 

intercept. We then used a bootstrapping procedure3 to find the value of x (the exponent 

of rate of presentation) that best predicts the data. The average exponent of rate of 

presentation which produced the best model fit was x = 0.7 (SD = 0.11). The value being 

smaller than 1 with a small SD suggests that, indeed, a modification of the RI calculation 

was beneficial. To cross-validate this proposed modification of the RI calculation we 

returned to the results of Experiment 1, and examined whether a better model fit would 

be reached by a (log-transformed) modified-RI, compared to the (log-transformed) 

'simple RI' we used before. A slightly lower BIC value was found when using modified-RI 

as a predictor, with BIC = 9458, as compared to the original 'linear-RI', which had a BIC = 

9460. This suggests that modified-RI accounted for the data 𝑒2/2 = 2.72 times better 

than the 'simple RI' model4. To illustrate this finding, Figure 5 presents SL performance 

in the different conditions of Experiment 1 as a function of log-transformed modified-RI, 

which accounts for 38.5% of the variance across conditions (cf. Figure 1 above which 

presents the same results with the 'linear-RI', and where R2=35%). To avoid making a 

claim based on overfitting the available data, however, we should caution that firm 

conclusions regarding the exact power of ED for RI computations require further 

investigation (and see General Discussion, below).  

 

                                                           
3 In each run, we randomly sampled n = 200 subjects. We then ran a series of mixed effect models, each 

time with a different exponent x, running from x = 0.2 to x = 1, in intervals of 0.05 (i.e., 0.2, 0.25, 0.3, …, 

1). For each x, a mixed model was run, with log-transformed modified-RI as a fixed-effect. After running 

on all values from 0.2 to 1 for this sub-sample, the optimal value of x for this run was selected, based on 

the value that resulted in a lowest BIC value for the model (representing best model fit). We re-iterated 

this bootstrapping procedure k=100 times.  
  
4 To re-validate the RI account and its superior predictive power compared to models comprising of ED 
and TP, we also compared the model with the modified RI to models with power-transformed ED (i.e. 
ED0.7), TP, and their interaction. Thus, we ran two additional models with ED powered by 0.7, with either 
TP or log-transformed TP, and their interaction, namely: (1) VSL ~ ED0.7+TP+ED0.7:TP, and (2) VSL ~ 
ED0.7+log(TP)+ED0.7:log(TP). Both models produced BIC values substantially higher compared to the 
modified RI model: BIC=9474 and BIC=9475, respectively (ΔBIC of at least 16 compared to the modified RI 
model; see main text).  
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Figure 5. Results of the cross-validation procedure, depicting SL performance by modified RI in 

the 24 conditions of Experiment 1. Line shows best logarithmic fit. 

 

General Discussion 

Learning the regularities embedded in a continuous input stream has been taken 

to be a basic cognitive ability demonstrated across modalities, age, and species. In the 

visual modality, it has been shown across a wide range of stimuli differing in complexity. 

In the present paper we address the question of how precisely SL computations are 

done, aiming to offer a theoretical account regarding the possible nature of computed 

representations. Assuming that learning the embedded regularities between elements 

in an input stream requires encoding the elements’ representations as well as 

computing their TPs, our starting point was the surprising interaction between encoding 

constraints and TPs computations (Bogaerts et al., 2016). This interaction ruled out an 

account based on two separate stages of processing, one in which stimuli are encoded, 

the other which subsequently computes the TPs between the elements (Frost et al., 

2015), suggesting that these processes occur in parallel. But how can we account for 

such parallel processing? What is the nature of the computed representations during 

learning? Here we offer a unified principle that subsumes this interaction and considers 

in parallel both TPs (the amount of information carried by each element in the stream), 

and the time allocated to compute this information. As such, we suggest that the 

representations of the amount of information encompassed in each element in the 



28 
 

stream (entropy), and how they are built over time, belong to one unified construct - 

Rate of information. This account blurs the distinction between the encoding of 

elements and the extraction of the statistical properties embedded in the stream (cf. 

Frost et al., 2015). Instead, it suggests that learning patterned regularities in an input 

can be described as a process of information extraction, a process constrained either by 

extent of unpredictability of elements or by challenging presentation parameters, and 

these two components can be interchangeable. This view thus conforms with 

neurobiological findings, showing entropy-related computations already in early sensory 

cortices (Nastase et al., 2014; Tobia, Iacovella, & Hasson, 2012; and see Hasson, 2017 for 

a detailed discussion of possible underlying neurobiological mechanisms). 

 We provide substantial evidence supporting this theoretical claim, based on data 

from more than 800 subjects overall. In Experiment 1 we show across a wide range of 

TPs and ED combinations that RI monotonically determines VSL performance in a 

function that is logarithmic. Our findings demonstrate that log-transformed RI provides 

by far the best fit of VSL performance, predicting learning outcomes significantly better 

than the joint combination of ED, TP, and ED by TP interaction. In Experiments 2a and 2b 

we take this finding a step further, testing the strong prediction that similar RIs will 

result in similar performance regardless of ED and TP combinations. Using Bayesian 

analysis, we show that RI offers the most probable account for VSL performance.  

 Considering SL theory, an important question is whether our findings from the 

visual domain can be extended to auditory inputs. From a pure information theory 

perspective, entropy can be assessed in any input regardless of modality. Indeed, recent 

studies targeting speech production suggest that the extent of word surprisal 

determines speech rate so that unpredictable (informative) words are spoken more 

slowly (e.g., Cohen Priva, 2017). However, whereas it is possible that speakers naturally 

adjust their speech rate given word surprisal, the extrapolation of RI calculations to the 

auditory modality, is not trivial and requires targeted research. First, the visual and 

auditory cortices vastly differ in the parameters defining efficiency in computing 

representations from continuous input streams (Conway & Christiansen, 2006; 
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Emberson, Conway, & Christiansen, 2011; Frost et al., 2015). Second, and perhaps more 

importantly, when linguistic stimuli compose the input stream (as is the case in the 

Saffran et al., 1996 task), participants have well-established linguistic representations 

they bring to the learning task (see Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 2018). 

Such prior expectations may either increase or decrease the input's initially perceived 

entropy, based on the overlap between the input and prior linguistic exposure, as well 

as potentially alter the impact of rate of presentation on SL computations. Thus, how RI 

impacts auditory SL with linguistic elements (as well as other facets of SL, see Siegelman, 

Bogaerts, Christiansen, & Frost, 2017) remains an outstanding question. 

 The current results also provide a new perspective to the role of SL in language 

acquisition and processing. Under the common view, efficient language use relies on SL 

abilities as it requires sensitivity to regularities embedded in the input (see, e.g., Gómez 

& Gerken, 2000; Romberg & Saffran, 2010). The current work refines this view, 

suggesting that the joint shared mechanism behind SL and language is information 

extraction. According to this perspective, languages can be viewed as a mean for 

transferring novel information in a given time unit (see also, e.g., Cohen Priva, 2017; 

Linzen & Jaeger, 2015), which is then extracted through SL computations. In the same 

vein, our account also refines the interpretation of individual-differences studies 

showing a correlation between SL performance and linguistic abilities (e.g., Arciuli & 

Simpson, 2012; Frost, Siegelman, Narkiss, & Afek, 2013). It suggests that the source of 

these correlations is different information extraction capacities of different individuals, 

where some individuals can process more information per time unit compared to 

others. This view thus resembles the classic work by George Miller, who argued that 

individuals exhibit varying working memory performance as they differ from one 

another in the maximal amount of information they can process (Miller, 1956).  

Our findings, however, raise additional questions that require further 

investigation. Recall that to account for the decreasing effect of ED on RI in slower 

presentation rates, we employed a transformation on RI using a power smaller than 1 

on presentation rate. This transformation seems to fit best the range of EDs employed 
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in our study, EDs that are typically employed in SL experiments. One possibility to 

consider, however, is that very long exposure durations may have an adverse effect on 

learning (leading to worse VSL performance), because they implicate higher demands on 

working memory. Investigating this possibility requires data collected in conditions with 

EDs longer than 1 second, combined with an exploration of different possible 

mathematical transformations that allow for non-monotonicity. Relatedly, we should 

stress that the exact mathematical transformation of ED needs to be further validated 

using other visual stimuli that differ in complexity from those used here. We should also 

note that in our present investigation we did not employ a separate and independent 

measure to estimate a-priori participants' encoding abilities. Rather, we manipulated 

encoding and learning related factors within the SL task. Our RI account highlights the 

interplay of encoding and assimilation of statistics in accounting for SL performance. A 

future extension of this work could therefore examine whether and to what extent 

individual differences in SL performance can be traced back to individuals' encoding 

abilities. 

Another important outstanding question concerns the impact of RI on the 

dynamics of learning. Our current RI formulations only consider the expected mean of RI 

in an input stream, and examine its power in accounting for learning outcomes following 

a relatively long exposure phase. What remains unexplored is how RI modulates 

performance continuously throughout learning. Future work is left with the task of 

assessing the impact of RI dynamically, measuring how the rate of information 

presented to learners at each time point during familiarization is related to their gradual 

accumulation of knowledge, eventually leading to final SL performance. This requires, 

however, more advanced models that estimate changes in information as stimuli unfold 

(see, e.g., Kidd, Piantadosi, & Aslin, 2012), combined with online measures of  SL which 

continuously tap into learning abilities throughout the familiarization phase (see 

Siegelman, Bogaerts, Kronenfeld, & Frost, 2018, for discussion).  

Lastly, the current work also opens broad theoretical questions regarding the 

role of SL across cognition, and in language in particular. We found that over the course 
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of an experimental session, adults show above-chance learning of streams involving few 

bits of information to be learned (0-10 bits in our experimental setting). This amount of 

information is smaller tenfold compared to the amount of information that needs to be 

extracted by learners in real-world tasks. A recent work estimated that an average 

human has to extract and store around 1.5 million bits of information during language 

acquisition (Mollica & Piantadosi, 2019). This discrepancy in scale raises questions 

regarding whether and how SL findings scale up to account for real-world learning tasks 

in general, and language acquisition and processing in particular. Assuming that SL plays 

a key role in language acquisition and use, SL research should explicitly consider the 

exact mechanisms that are available to learners, as well as the full array of statistical 

and non-statistical cues that are available to them in the input, to provide a 

comprehensive account of how learners assimilate the huge amounts of information 

that they eventually learn.  

To conclude, we suggest that learning regularities in the visual modality is best 

described by considering the rate of novel information that has to be processed in the 

input stream. The advantage of RI as a theoretical construct is that it offers a unifying 

computational principle that combines together the extent of informativeness (or 

entropy) in the stream, and the time that is allocated to process it. This approach holds 

the promise of generating precise computational accounts, and therefore testable 

predictions for understanding how regularities in an input stream are learned. 
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