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ABSTRACT 

This work describes the successful melt infiltration of poly(butylene succinate) (PBS) and 

poly(butylene adipate) (PBA) within 70 nm diameter anodic aluminum oxide (AAO) templates. The 

infiltrated samples were characterized by SEM, Raman, and FTIR spectroscopy. The 

crystallization behavior and crystalline structure of both polymers, bulk and confined, were analyzed 

by differential scanning calorimetry (DSC) and grazing incidence wide angle x-ray scattering 

(GIWAXS). DSC revealed that a change in the nucleation process occurred from heterogeneous 

nucleation for bulk samples, to homogeneous nucleation for infiltrated PBA, and to surface-induced 

nucleation for infiltrated PBS. GIWAXS results indicate that PBS nanofibers crystallize in the α-phase, 

as well as their bulk samples. However, PBA nanofibers crystallize just in the β-phase, whereas PBA 

bulk samples crystallize in a mixture of α- and β-phases. The crystal orientation within the pores was 

determined, and differences between PBS and PBA were also found. Finally, broadband dielectric 

spectroscopy (BDS) was applied to study the segmental dynamics for bulk and infiltrated samples. 

The glass temperature was found to significantly decrease in the PBS case upon infiltration while 

that of PBA remained unchanged. These differences were correlated with the higher affinity of 

PBS to the AAO walls as compared to PBA, in accordance with their nucleation behavior 

(surface-induced versus homogeneous nucleation respectively). 
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INTRODUCTION  

Poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) are biodegradable 

commercial synthetic polyesters. These polymers have similar properties to linear low-density 

polyethylene and can be processed in conventional equipment commonly used for polyolefins.1 

This is the reason, why the applications of these biopolyesters have found a place in the market. 

Nevertheless, although from a macroscopic point of view, polymer properties of both polyesters 

have already been studied, their properties at the nanoscale level have been scarcely reported, 

even when it is known that confining a polymeric material into nanosized cavities introduces a 

new variable to those determining the properties of the material. In fact, the nucleation and 

crystallization of semi-crystalline polymers are dramatically affected by confinement2-7 and also 

segmental, and molecular dynamics are hindered  or restricted in many polymers, by 

confinement.8-11 Moreover, when confining polymers in nanocavities, polymer-wall, and 

polymer-substrate interactions can give rise to adsorption and/or to the formation of different 

chain conformations that will affect both structural and dynamic properties. So, it seems crucial 

to determine how polymer properties, crystallization and polymer dynamics of PBS and PBA can 

be affected by confinement, in particular, in cylindrical Anodic Aluminum Oxide (AAO) 

templates, one of the most studied spatial confinement systems. 

Tailored anodic aluminum oxide templates fabricated by a two anodization procedure12-

16, contain arrays of aligned cylindrical nanopores with narrow pore diameter distributions. 

Nanocavities of AAO templates provide versatility with respect to the diameter and length of the 

pores that are not interconnected. As reported in the literature, self-ordered nanoporous anodic 

aluminum oxide templates have been largely employed in the preparation of polymer nanofibers 

and nanotubes with diameters ranging from 20 to 400 nm and lengths from 700 nm to higher than 
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100 microns. Thus, AAO nanocavities have been infiltrated by many polymers and polymer-

based composites of different chemical nature and their polymer properties/structure relationship 

studied as a function of the degree of confinement. 

 Two of the most relevant physical phenomena studied in relation to the final properties 

of a polymer in confinement are crystallization and polymer dynamics. Moreover, crystalline 

regions can significantly modify the relaxation behavior of polymer chains in the amorphous 

regions and consequently affect many important physical properties. Confinement effects on 

polymer crystallinity and crystal structure and molecular dynamics of semicrystalline polymers, 

such as, poly(ethylene) oxide (PEO)3, 17, poly(ε-caprolactone) (PCL)4, 18, poly(vinylidene 

fluoride) (PVDF)19-21, poly(L-lactide) (PLLA)22, polypropylene(PP)16, poly(3-

hydroxybutyrate)(PHB)23, poly(ethylene)(PE)24 , syndiotactic polystyrene (sPS)25, poly(3-

dodecylthiophene) (P3DDT)26, Nylon-627,  and even block copolymers with PEO and PE 

crystallizable blocks24, just to name a few examples, have been studied in the past.  

Recent reviews on polymer crystallization discuss AAO infiltrated systems, as well as, 

polymer confined in droplets, ultrathin films or nanolayers.7, 28-31 One of the main conclusions of 

these works is that, as confinement increases, the crystallization temperature can experience large 

decreases, reflecting a change from heterogeneous nucleation in the bulk polymer to surface or 

homogeneous nucleation for polymers infiltrated inside nanopores. In some cases, fractionated 

crystallization has been reported (see references 28 and 29 and references therein). Recently, 

some of us reported18 that if a proper removal of the polymer layer that typically remains after 

infiltration is not achieved, this leads to pore connection at the surface of the AAO. In this case, 

such percolation of pores by a polymer layer can cause the appearance of fractionated 

crystallization. It has also been reported, that the crystallization of homogeneously nucleated 

crystals decreases as pore volume decreases (i.e., increasing confinement) since the probability 
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of nucleation also decreases and if the pore volume is below a critical size (around 10 nm), 

crystallization can be totally inhibited.2  

In summary, nanoconfinement plays a significant role in two main factors of 

crystallization: (a) a change in nucleation mechanism, from heterogeneous nucleation to surface 

or homogeneous nucleation and (b) the dependence of the crystallization temperature on the 

volume or the surface (or interphase) of the crystallizable micro or nanodomains. Moreover, the 

melting point also decreases with confinement but to a much lesser degree than the crystallization 

temperature. Also, Su et al. reported a preferential orientation of polymeric crystals generally 

induced by one or two-dimensional confinement.32 Avrami indexes decrease with confinement 

until values of 1 (or even lower) are achieved in the limit of isolated domains, as the material 

approaches a first-order (or lower) crystallization kinetics. This type of kinetics reflects that 

nucleation is the rate-determining step in the overall crystallization of ideally confined polymers.7, 

28-30, 33  

The molecular motions in polymer systems can be easily investigated using neutron 

diffraction and relaxation techniques.34-35 Both techniques allow monitoring glass transition 

changes in confined situations in comparison to the bulk material.  Confinement effects are of 

two types, pure confinement effects due to the hindering of a molecular motion, as a consequence 

of restricted space, and associated confinement effects, i.e., they are not a direct consequence of 

a confined molecular motion but related to surface interaction effects and, therefore, also related 

to low dimensionality, although they can often be masked. Nevertheless, this effect cannot be 

underestimated since, in many nanomaterials applications, the polymer is close to a surface which 

effectively confines it. In this kind of materials, surfaces are usually attractive, so interactions 

take place.  
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Recently, it has been shown that confinement not only affects segmental dynamics but 

also the chain dynamics of polymers, where an unexpected enhancement of the flow and a 

reduction in intermolecular entanglements has been found. Only to cite some examples, the 

influence of polymer confinement within templates of cylindrical nanopores on the single-chain 

dynamics of PEO has been studied by neutron scattering techniques3, 17, 36, and the segmental 

dynamics and the relaxation behavior of PVDF19, cis-1,4 polyisoprene10, PHB23 and PMMA by 

broad band dielectric spectroscopy.37 Results showed that the properties of the infiltrated 

polymers largely differ from those of the respective bulk polymer. However, the influence of 

confinement on the dynamic properties of polymer nanostructures is far from generalized and 

needs to be studied for each particular case, i.e., for PBS and PBA, among other biopolymers.  

 Taking into account previous results for semicrystalline polymers19, 36, there is not a 

general rule that can predict how confinement affects the properties of semicrystaline polymers. 

In fact, changes in nucleation mechanisms depend on the specific polymers under study and it is 

very difficult to predict if the nucleation will change from heterogeneous in the bulk to 

homogeneous or surface-nucleated under strict hard confinement cases. Therefore, the necessity 

of a specific study for each type of polymer under confinement arises, in order to contribute to 

the general understanding of polymers under confinement. The present work investigates the 

influence of confinement effects on dielectric and thermal properties of PBS and PBA infiltrated 

within nanoporous AAO templates. Both PBA and PBS are biodegradable aliphatic polyesters 

with a crystallization degree in the range 35–45% and glass transition temperatures, Tg, of around 

-55 °C and -35 °C, respectively. The samples were studied by Differential Scanning Calorimetry 

(DSC), Grazing Incidence Wide Angle X-Ray Scattering (GIWAXS), Scanning Electron 

Microscope (SEM), Broadband Dielectric Spectroscopy (BDS), Infrared (IR) and Raman 

spectroscopy. Very large differences were found in the nucleation and crystallization of the 
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infiltrated materials with respect to the polymers in bulk. The dielectric relaxation results 

indicated that molecular relaxations of the amorphous parts of both PBS and PBA were also 

significantly affected by confinement. 

 

EXPERIMENTAL SECTION 

 Materials and methods 

Fabrication of AAO templates. The homemade AAO templates have been fabricated using 

the well-known two-step electrochemical anodization process of aluminum foils12, which has 

been previously described in detail.12, 38-39 Previously, the aluminum was cleaned by sonication 

in different solvents that have different polarity (acetone, 2-propanol, water, and ethanol). 

Subsequently, the foils undergo a 4 min electropolishing process in a solution of perchloric acid 

and ethanol (1/3) with a constant voltage of 20 V and a temperature below 283 K. Firstly, AAO 

templates of 35 nm pore diameter and 30 μm in length were synthesized. For the first 

electrochemical anodization process, oxalic acid was used as an electrolyte in a concentration of 

0.03 M. Anodization time was 19 hours at 270.5 K. For the second electrochemical anodization 

process to length the nanopores, similar conditions were used. Subsequently, a process of 

widening of the pores in 5% H3PO4 was carried out until a size of 70 nm pore diameter was 

reached. The AAO templates are opened on one side only. The other side is closed and also 

contains the original aluminum base employed for the preparation of the template. 

Poly (butylene succinate) with Mw = 15000 g/mol and a glass transition temperature of Tg 

= 243 K, was supplied by Aldrich. Poly (butylene adipate) with Mw=12000 g/mol and Tg = 218 

K, was purchased from Aldrich.  
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Samples preparation by polymer infiltration in AAO templates. The infiltration of poly 

(butylene succinate) and poly (butylene adipate) was carried out by the melt precursor film 

wetting method. Polymer films were employed and placed on the AAO template surface and then 

infiltrated by heating them to 453 K for 12 h and 373 K for 6 h under nitrogen flow, for PBS and 

PBA respectively. Later, samples were quenched to room temperature and carefully cleaned to 

remove any residual polymer from the template surface, closely following the procedure 

recommended by Shi et al.18 

 

  Morphological and chemical characterization 

Scanning Electron Microscopy (SEM). Philips XL-30 ESEM was used to morphologically 

characterize the AAO templates and confined polymer samples. To observe the polymer 

nanofibers by SEM, alumina substrates were dissolved with NaOH 1 M during 1 h at room 

temperature (RT).  

Chemical characterization by Raman Spectroscopy (RAMAN) and Fourier Transformed 

Infrared Spectroscopy (FTIR). Raman spectroscopy was applied to study and verify the 

effectiveness of the infiltration of PBA and PBS. Renishaw InVia Raman Microscope (Renishaw 

plc, Wottonunder-Edge, UK) was used fitted with a grating spectrometer of 785 nm near-infrared 

diode laser and a Peltier-cooled charge-coupled device (CCD) detector, attached to a confocal 

microscope. All spectra were processed using Renishaw WiRE 3.3 software. Data acquisition 

covered the spectral range 3000−200 cm−1 with a spectral resolution of 4 cm-1.  
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To verify if any conformational changes happened during the infiltration processes, 

polymer nanofibers were examined by Fourier transform infrared spectroscopy (FTIR) employing 

a PerkinElmer Spectrum One coupled with an attenuated total reflectance (ATR) accessory. 

 

Crystallization process and crystalline structure characterization 

Crystallization process. The non-isothermal crystallization behavior of bulk and 

infiltrated polymers was examined by differential scanning calorimetry (DSC) using a DSC-

Q2000, TA calorimeter under a nitrogen atmosphere flow. Indium was used as a standard for 

calibration. Samples were heated from room temperature to 30 K above their melting point and 

held at this temperature for 3 min to erase thermal history. Then, they were cooled to 213 K at 10 

K/min and subsequently heated above their melting point. Around 5 mg of bulk polymer and 15 

mg of confined samples inside AAO were sealed in standard aluminum pans and samples were 

measured with aluminum base. Previous to DSC measurements, after melt infiltration, and in 

order to remove the excess polymer on the AAO surfaces, templates were cleaned in four steps, 

as follows: 1. Removing the excess bulk polymer from the surface using a sharp blade at room 

temperature, 2. Samples were further cleaned with a soft cloth at a temperature above the melting 

temperature of the polymer (413 K for PBS and 373 K for PBA), 3. The samples were polished 

using fine grade sandpaper, 4. Finally, the surface of the templates was cleaned with chloroform. 

2D Wide-Angle X-ray Diffraction (WAXD). The 2D wide-angle X-ray diffraction 

(WAXD) measurements were performed at 25 °C on a Xeuss 2.0 SAXS/WAXS system (Xenocs 

SA, France). The Cu Kα X-ray source (GeniX3D Cu ULD), generated at 50 kV and 0.6 mA, was 

utilized to produce X-ray radiation with a wavelength of 1.5418 Å. A semiconductor detector 
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(Pilatus 300K, DECTRIS, Swiss) with a resolution of 487 × 619  pixels (pixel size = 172 × 172 

μm2 ) was used to collect the scattering signals. The X-rays irradiate the sample along the x-axis 

with an incident angle of 3° with respect to the AAO surface. The 2D detector was placed 

perpendicular to the incident beam. The exposure time for each pattern was 20 min for infiltrated 

samples and 5 min for bulk samples. The one-dimensional intensity profiles were integrated from 

the 2D WAXS patterns and averaged along the azimuthal angle. Samples were treated before the 

measurements using a Linkam hot-stage to: 1. erase thermal history at 30 K above their melting 

point; 2. Cooldown to 213 K at 5 K/min. Then, the samples were stored at room temperature, and 

the measurements were made at room temperature.  

 

Dielectric Relaxation Processes 

The complex dielectric permittivity 𝜀𝜀∗ (𝜔𝜔) =  𝜀𝜀′ (𝜔𝜔) −  𝑖𝑖𝜀𝜀′′(𝜔𝜔), where 𝜀𝜀′  is the real and 

𝜀𝜀′′ is the imaginary part, was obtained as a function of the frequency ω and temperature T by 

using a Novocontrol high-resolution dielectric analyzer (Alpha-N analyzer). The sample cell was 

set in a cryostat, and its temperature was controlled via a nitrogen gas jet stream coupled with the 

Novocontrol Quatro controller. The dielectric measurements were performed at different 

temperatures in the range of 120 K and 390 K and at frequencies in the range of 10-1-106 Hz. For 

PBA and PBS homopolymer samples, measurements were carried out in the usual parallel plate 

geometry with electrodes of 20 mm in diameter. A separation of 100 mm between both electrodes 

was maintained by using a cross-shaped Teflon® spacer of a small area. For the samples 

infiltrated in the AAO templates, the measurements were carried out with a 15 mm electrode 

placed on top of the template without spacers. Before the dielectric measurements, the sample 
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capacitor (inside the BDS cell) was heated above the melting temperature of each polymer to 

erase the thermal history. 

 

 

 

RESULTS AND DISCUSSION 

 Sample preparation and SEM observations 

SEM allows observing the surface of the AAO templates and the obtained nanofibers, 

after the partial dissolution of the alumina template with 1 M NaOH solution. Figure 1a shows a 

representative image of the manufactured AAO templates, which confirms the size of the 

nanopores of the obtained templates. The pore size distribution on the sample surface is uniform 

with very well-defined geometry. Figures 1b and 1c are representative images of PBS and PBA 

nanofibers with around 70 nm diameter, respectively. As it can be seen, we have obtained 

nanofibers with good quality and high aspect ratio.  
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 Raman and FTIR spectroscopies   

AAO templates filled with PBS and PBA nanofibers were analyzed by Raman 

spectroscopy to corroborate that the infiltration of the polymers had been carried out successfully. 

PBS and PBA in bulk were also studied to compare their spectra with those of the infiltrated 

materials. For the characterization of Raman spectroscopy, first, the different main bands are 

assigned to each of the bonds that make up the PBS and PBA, respectively. The PBS and PBA 

spectra in bulk present less noise than confined samples and the bands are very well-defined, so 

these spectra will be used to compare with the spectra of infiltrated materials and to verify with 

their characteristic bands that the polymer has infiltrated correctly. 

 
 
Figure 1. (a) SEM micrograph of the top view of the prepared AAO template with 70  nm pore 
size and 30 µm length, (b) PBS and (c) PBA nanofibers produced inside the AAO templates 
(after the dissolution of the template in 1 M NaOH solution for 1 h).  
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Figure 2. Depth profile Raman spectra of PBS (a) and PBA (b) in bulk, as references, and 
infiltrated within AAO templates with 70 nm pore size and 30 µm length. Inserted numbers 
show the depth from the AAO surface.  

 

For both polymers, the signals identified with specific bond vibrations according to the 

literature40-42 are the following: around 2958 cm-1, asymmetric stretching mode of the CH2 groups; 

around 2875 cm-1, symmetric stretching mode of the CH2 groups; around 1721 cm-1, stretching 
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mode of the C = O bonds; around 1457 cm-1, bending in the plane of the CH2; and around 1121 

cm-1, stretching mode of the C-O bonds.  

Figure 2a and 2b show the normalized Raman spectra of infiltrated PBS and PBA inside 

AAO templates, with pinhole placement at different depths. Despite the noise due to the 

fluorescence of the alumina, it is possible to observe all characteristic bands of PBS and PBA up 

to 25 µm, respectively. As observed, all the bands remain constant along the depth of the template 

for both polymers, so, it confirms that both polymers penetrated homogeneously into the 

nanocavities. 

Taking into consideration the SEM images of the nanofibers together with the Raman 

results and weight calculations of polymer infiltration, we can assume that the polymers were 

completely infiltrated into the full length of the nanopores (30 µm). 

Figure 3 shows FTIR spectra for PBS (a) and for PBA (b). Based on the literature42-47, 

characteristic absorption bands in the range 3100−2800 cm−1 are identified as C−H vibrations of 

CH2 and CH3 groups. The strong bands at 1712 and 1725 cm-1 are due to the carbonyl group of 

the PBS and PBA ester groups, respectively. The other important bands are: C−H bending at 1460 

cm-1 and C=O stretching at 1160-1170 cm-1. The signal at 1154 cm-1 is a characteristic of C–O–

C stretching vibration in the repeated –OCH2CH2 unit. 

The most important differences in FTIR spectra between bulk and infiltrated samples are 

located at two regions that are labeled as a and b in Figure 3. In the dashed square labeled “a” in 

Figure 3, i.e., region from 1100–850 cm-1, three strong absorption bands corresponding to the C–

O single bonds can be observed. For both polyesters, the band at 915 cm-1 (marked as dashed 

vertical line I) corresponds to the C–OH bending vibration of the carboxylic acid groups and the 
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band at 953 cm-1 (marked as dashed vertical line II) is due to the O–CH3 stretching.  Peaks at 1063 

cm-1 for PBA and at 1045 cm-1 for PBS (marked as dashed vertical line III) correspond to C−C−O 

stretching vibration. The ratio of the intensity of the C−O stretching and C–OH bending peaks to 

the intensity of the O−CH3 stretching peaks (III/II and I/II) increases in the nanofibers, as 

compared to the bulk. Also, the ratio of the intensity of the C−O stretching band to the intensity 

of the C−OH bending band (III/I) decreases in the nanofibers with respect to the bulk. These 

changes prove that nano-structuration affects the FTIR spectra. In fact, we can observe a smaller 

share of O−CH3 bonds in the spectra, which could result from the interaction of PBS and PBA 

chains with the walls of the AAO templates. The differences between infiltrated and neat PBS 

spectra seem higher than those present in the case of neat and infiltrated PBA, but quantification 

of these signals is difficult.  
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Figure 3.  FT-IR spectra of PBS (a) and PBA (b) in bulk, as reference, and infiltrated in 
AAO templates with 70 nm nanopore size and 100 µm length. 

 

In addition, for both PBA and PBS, we observed a new intense band at 1571 cm-1 (see 

dashed square labeled “b” in Figure 3), which is characteristic of carboxylic acid salt stretching 

vibrations (COO-), probably formed inside the AAO pores were small amounts of water moisture 

produced the hydrolysis of ester groups due to the hydrophilic character of the AAO template.48-

50 From the obtained results, it can be concluded that with nano-structuration of PBA and PBS, 

there is a decrease of interactions between the polymer chains and new interactions appear 

between the polymer chains and the walls of the AAO templates (i.e., C−O on O−CH3). Similar 

results were found for infiltrated PMMA as a function of the degree of confinement, by Raman 

spectroscopy. The Raman results helped to understand the effect of confinement on dielectric 

relaxation behavior of the PMMA.37 
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 Non-isothermal Crystallization 

DSC scans of PBS-bulk, PBA-bulk, PBS-nanofibers, and PBA-nanofibers inside 70 nm 

AAO templates are shown in Figure 4. The extracted data from DSC curves are summarized in 

Table 1. Figure 4a shows that during the cooling scan, PBA-bulk exhibits a crystallization peak 

at around 306 K that it is shifted drastically to 241 K when the PBA is confined within the alumina 

nanopores. The subsequent heating scans show that the melting point of confined PBA is slightly 

lower as compared to bulk PBA, 330 K, and 326 K, respectively. Moreover, Figure 4b shows that 

the crystallization peak of PBS-bulk decreased from 355 K to 291 K in confined PBS and the 

peak melting temperature of PBS-bulk is 388 K, whereas it is 385 K for infiltrated PBS.  

 Both infiltrated PBS and PBA show only a single crystallization exotherm at temperatures 

much lower than those in bulk (between 64 and 66 K lower respectively). The total absence of a 

crystallization peak at crystallization temperatures similar to those in bulk PBS or PBA indicates 

that the number of nanopores is much higher (possibly by several orders of magnitude) than the 

number of active heterogeneities capable of nucleating these polyesters in bulk at much lower 

supercooling. In other words, the nanopores are statistically clean, and they are also completely 

isolated and in no way interconnected.16,24 If after the infiltration process a polymer layer would 

have remained on top of AAO template, such layer could have interconnected pores and then 

spread heterogeneous nucleation by percolation. In this work, we have applied very careful 

cleaning procedures (see experimental section) to make sure that no remaining film is left after 

cleaning the surface of the AAO nanocavities following the recommendations of Shi et al.18, so 

heterogeneous nucleation can be ruled out. 
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Figure 4. DSC curves for bulk and infiltrated samples of (a) PBA and (b) PBS. 

 

Mi et al.51 studied how PBA nanotubes in alumina templates with 100 and 200 nm pore 

diameters crystallized, and they observed a very small shift of the non-isothermal crystallization 

temperature. This either indicates that all nanotubes contain similar heterogeneities as those of 

PBA in bulk, or that some PBA film remained on the surface of the AAO templates 

interconnecting the nanopores. However, our work is focused on how confinement affected phase 

transitions rather than in the nucleation of PBA. 
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Table 1:  Data Summary of DSC Results 

Sample Tm (K) Tc (K) 

PBS bulk 388 355 

PBS Infiltrated 385 291 

PBA bulk 330 306 

PBA Infiltrated 326 241 

 

The change in Tc obtained upon infiltration in this work can be explained by a change in 

the nucleation mechanism of the polyesters, from heterogeneous to homogeneous or to surface 

nucleation.2 Infiltrated polymers can also nucleate at the AAO surface.29-30, 52-53 It is difficult to 

distinguish between surface and homogeneous nucleation. 28-30, 54 However, if the crystallization 

temperature is very close to the glass transition temperature (5-15 K above the Tg value), the 

nucleation will be most likely homogeneous. If on the other hand, the crystallization occurs at 

higher supercooling as compared to the bulk polymer, but still at considerably higher temperatures 

than Tg, then surface nucleation probably dominates the nucleation process within the nanopores. 

However, it must also be remembered that the homogeneous nucleation temperature is a function 

of the volume of the isolated nano or micro-domains. 33 

Comparing the Tg value for PBA (218 K) with the crystallization temperatures reported in 

Table 1, we can deduce that the nucleation must have changed from heterogeneous for the bulk 

sample (with Tc = 306 K) to homogeneous for the infiltrated sample (with a peak at Tc = 241 K, 

notice that the exotherm is wide and ends at 228 K), as the infiltrated sample is crystallizing at 
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temperatures very close to the glass transition temperature. Therefore, in the infiltrated PBA case, 

the crystallization occurs just before vitrification in a single exotherm, a clear sign of confined 

crystallization initiated by homogeneous nucleation.2, 29, 33, 54 

The situation differs for the PBS case, as the crystallization changes from a peak value of 

355 K to 291 K upon infiltration. Even though the change in supercooling is large, the Tg of PBS 

is located at around 243 K, hence still significantly much lower. Therefore, in the infiltrated PBS 

nanofibers, our DSC results indicate that the crystallization during cooling from the melt probably 

occurs by surface-induced nucleation caused by the AAO walls. 

 

 Crystalline structure and chain orientation of PBS and PBA within nanopores 

To investigate the orientation and crystal texture of the PBA and PBS crystals within the 

AAO nanopores, 2D WAXS experiments with Grazing incident mode were carried out at room 

temperature.  

Figure 5a and 5b show GIWAXS patterns for PBS-bulk and PBS-nanofibers (i.e., 

infiltrated PBS), respectively. There are five distinct reflections for PBS-bulk at q = 13.9, 15.5, 

16.0, 18.4, 20.3 nm-1. These reflections have d-spacing values of 4.52, 3.97, 3.93, 3.41, and 3.09 

Å, which can be assigned to the following crystal planes: (020/1�11), (021), (110), (121�) and 

(111), respectively. Similar diffraction features can be found for the infiltrated PBS. Two major 

peaks with q =13.8 and 15.9 nm-1 can be indexed as the (020/1�11) and (021/110) reflections. 

Compared with the bulk PBS, the (021) and (110) reflections are not well resolved in the 

infiltrated sample. As shown in Figure S1 (see Supporting Information), the peak centered at 15.9 

nm-1 can be fitted with two peaks. The small shoulder peak corresponds to the (021) reflection. 
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Nevertheless, the difference is subtle, and we would not like to emphasize too much about the 

(021) peak. Therefore, we assign this peak to a combination of (021) and (110) reflections.  The 

(111) reflection at q = 20.3 nm-1 is also visible in the infiltrated PBS. The results show that both 

the bulk and the infiltrated PBS crystallized into the same α form.  

 

       

 

       

Figure 5. 2D WAXS patterns of (a) PBS-bulk (b) PBS infiltrated (c) PBA-bulk, and (d) PBA-
infiltrated within AAO template with pore depth of 100 μm and pore diameter of 70 nm. X-ray 
incident angle with respect to the template is 3°.  

 

Figure 5c and Figure 5d show the GIWAXS patterns of PBA-bulk and PBA-nanofibers, 

respectively. For PBA-bulk, main reflections were observed at q= 12.5, 15.1, 15.3, 15.8, 17.0, 

and 17.2 nm-1. The reflections have d-spacing values of 5.03, 4.16, 4.10, 3.98, 3.69, and 3.65 Å, 

(a) PBS bulk (b) PBS infiltrated 

(c) PBA bulk (d) PBA infiltrated 
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which can be assigned to the following crystallographic planes: α (002), β (110), α (110), α (020), 

α (021), and β (020) reflections55-57, respectively. Hence, bulk PBA shows a mixture of two 

polymorphic phases, α and β.58 On the other hand, the reflection patterns of the PBA-nanofibers 

show only two β-crystals reflections at q = 15.1 and q = 17.2 nm-1, which can be assigned to β 

(110), β (020) reflections. Sun et al. have reported similar results, as they only found β-crystals 

reflections, for PBA infiltrated within AAO templates.51, 59 

In both polymers, the scattered intensity inside AAO is poorer than the scattered intensity 

in bulk. This could be associated with the reduced amount of polymer inside the AAO template, 

in conjunction with a decrease in the degree of crystallinity. 

Another feature of confined crystallization of polymers within AAO is the usual 

orientation of crystals inside the nanopores. As shown in Figure 6a, the degree of anisotropy of 

the PBS nanofibers is quite low as compared with other polymers such as PCL18, PEO17, and 

iPP.18 One possible reason is that the two major scattering arcs contain more than one reflection. 

If we assume the normal case of “c axis perpendicular to the pore axis”21, the (020) and (110) 

should locate on the meridian, while the (1�11) and (021) should locate somewhere on the off-

meridian position. Therefore, the mixed reflections could cause the broad azimuthal distribution 

of the two major arcs (see schematic illustration in Figure 6c). 
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Figure 6. Corresponding 1D intensity profile of PBS (a) and PBA (b) samples, obtained by averaging 
the intensity along the azimuthal angle. Schematic illustration showing the cross section of a PBS (c) 
and PBA (d) nanofibers embedded in an AAO template with chain-folded lamellar crystals inside the 
nanopores. 

 

On the other hand, infiltrated PBA exhibits a higher degree of anisotropy, as it is clear that 

the (020) reflection locates predominately on the meridian (see figure 6b). Azimuthal intensity 

profiles (see Figure 7) show that the intensity of the (020) peak is strongest on the meridian 
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(azimuth = 90°). Two peaks are observed for the (110) reflection at azimuth = 90° and 36°. The 

β form of PBA has an orthorhombic unit cell with lattice parameters of a = 0.505 nm, b = 0.736 

nm, and c = 1.47 nm60-61, resembling crystalline structures of poly(tetramethylene adipate). 62 
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Figure 7. Azimuthal intensity profiles of the two major reflections of the infiltrated PBA sample. 

 

The Polanyi equation is given by63:  

cos(𝜑𝜑) = cos (𝜃𝜃)cos (𝜙𝜙)                 (1) 

where θ is the half Bragg angle and ϕ the azimuthal angle with respect to the meridian. Plugging 

θ = 10.7° and ϕ = 54° (90°-36°) into the equation yields a φ value of 55°, which agrees with the 

angle between the (110) plane and the (020) plane for PBA infiltrated crystals. The meridional 

(020) and the (110) shoulder peak at azimuth = 36° correspond to the orientation mode of b-axis 

parallel to the pore axis (see schematic illustration in Figure 6d).  
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On the other hand, the (110) reflection for infiltrated PBA crystals has a broad peak at 

azimuth = 90°, which may indicate another possible orientation mode with the (110) plane normal 

parallel to the pore axis. We thus conclude that the PBA crystals within AAO templates exhibit a 

mixed orientation of b-axis or the (110) plane normal, parallel to the pore axis. Sun et al. reported 

an orientation mode of b-axis parallel to the pore axis for infiltrated PBA.51 However, the 

crystallization temperatures of their infiltrated PBA samples are 301 K (200 nm) and 299 K (100 

nm), much higher than that of our sample (241 K, 70 nm). 

 Our recent study showed that the orientation of crystals within AAO is determined by the 

fastest growth direction of crystals.32 Therefore, the frequently observed mixed orientation in 

infiltrated polymers within AAO templates is rationalized by the comparable growth rates along 

several different crystal planes. This scenario works for PBA as well, because the (110) and (010) 

growth planes are the two fastest growth planes of PBA, as shown by the morphology of solution 

crystallized single crystals.64 

 

Broad Band Dielectric Spectroscopy for bulk and confined polymers.  

The dielectric loss, 𝜀𝜀′′, measured as a function of temperature is presented for bulk and 

infiltrated PBA and PBS samples in Figures 8a and 8b.  

In both cases, two relaxation regions are observed: β and α in the order of increasing 

temperature. The relaxation processes appear as a peak in the dielectric loss spectra, moving 

towards higher temperatures as frequency increases. Two frequencies were plotted for 

comparison purposes, 101 and 103 Hz. At high temperatures, both polymers show the so-called α-

relaxation (or long-range segmental relaxation) which is the dielectric manifestation of the glass 

transition. In this relaxation process, the relaxation time strongly increases as temperature 

decreases.  
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Figure 8. Isochronal plots of ε´´ for (a) PBA bulk and PBA infiltrated in 70 nm alumina 
template, and (b) PBS bulk and PBS infiltrated in 70 nm alumina template at 101 and 103 
Hz. Loss curves of empty AAO templates (+) at 103 Hz are included in both Figures for comparison 
purposes.  

 

A secondary β-relaxation is also detected in Figure 8. The β relaxation is due to the short-

range motions of lateral or short-chain segments, which occur below the glass transition 

temperature.65 For this kind of semicrystalline polyesters, where the dielectric relaxations are 

related with reorientations of the dipole moments in the ester groups, a single β-relaxation 

component is observed, as Arandia et al. recently reported.66 To get this single β-relaxation peak, 

the samples have to be carefully dried before the dielectric experiments are performed.67  

Figure 8 also shows data for PBA and PBS infiltrated within 70 nm pore AAO templates. 

For these samples, the dielectric losses have a lower contribution than the bulk samples (due to 

the reduction of the volume of the sample capacitor filled by the polymer) and an additional 
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background-like signal from the alumina template that is weakly dependent on frequency and 

temperature. Relaxation processes (i.e., α and β) move to lower temperatures at given frequencies 

when the polymers are confined within the alumina nanopores. 

Representative isothermal experiments in the temperature range relevant for the β-

relaxation were carried out to analyze in detail the changes observed. The isothermal permittivity 

loss versus frequency for all samples at different temperatures is presented in Figure 9. In this 

figure, the main peaks observed correspond to the β-relaxation, and it is possible to compare 

quantitatively the differences in relaxation rates between bulk polymers and infiltrated samples 

better than in the isochronal plots case (Figure 9). 
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Figure 9. Isothermal plots of ε´´ for (a) PBA bulk and PBA infiltrated in 70 nm alumina 
template at 150, 160, 170 and 180K, and (b) PBS bulk and PBS infiltrated in 70 nm alumina 
template at 170, 180, 190 and 200K. Loss curves of empty AAO templates (+) at 160K for 
Figure 9a and at 180K for Figure 9b are included for comparison purposes. 
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In the β-relaxation region, the peak frequency, fmax, of confined polymers occurs at higher 

frequencies than those of bulk samples, indicating a faster local dynamics (see Supporting 

Information Figure S2). Some conformational changes also explained and observed above by 

FTIR can cause these faster dynamics in the β-relaxation when the samples are infiltrated into 

alumina nanopores. Confined effects can be due to the limited small spaces within the alumina 

nanocavities or to surface nucleated alumina walls. To quantify these differences, the relaxation 

time from each isothermal plot has been calculated as: 

 

𝜏𝜏 = (2𝜋𝜋𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚)−1                 (2)                                                                                                                   

 

For both systems, a clear Arrhenius behavior is found, and consequently, the data have 

been fitted to the Arrhenius equation: 

 

𝜏𝜏 (𝑇𝑇) = 𝜏𝜏∞ exp � 𝐸𝐸𝑎𝑎
𝑘𝑘𝐵𝐵 𝑇𝑇

�              (3)                                                                                                  

 

The resulting values are presented in Table 2. The activation energies for both bulk 

samples, PBA and PBS, are about 10%  higher than those obtained for infiltrated samples.  
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Table 2. Parameters describing the temperature dependence of the β-relaxation and α-relaxation.  

Sample  

β-relaxation  α-relaxation  

Ea 

(kJ/mol)  

τ͚  

(s)  

ΔH  

(kJ/mol)  

ΔS  

(kJ K/mol)  

B  

(K)  

T0  

(K)  

F ͚  

(Hz)  

Tg *  

(K)  

PBA bulk  41  1.7ˣ10-17  40  0.072  1186  183  1ˣ1014  214  

PBA Infiltrated  37  1.0ˣ10-16  6  0.058  1018  185  1ˣ1014  215  

PBS bulk 43  1.4ˣ10-16  41  0.054  1393  204  1ˣ1014  238  

PBS Infiltrated  38  4.3ˣ10-16  37  0.045  1387  195  1ˣ1014  229  

* Tg value for the bulk is taken equal to that one obtained from DSC data. The extrapolation to the 

infiltrated one is taken when log f (Hz) = a) -2.4 for PBA and b) -3.5 for PBS from Figure 11.  

 

The extremely low values obtained for τ∞ indicate that the molecular origin of the β-

relaxation does not correspond to single activated jumps between two equivalent positions of 

molecular units over an energy barrier, and therefore a more complex situation should be 

considered. One way of describing such behavior is by using the Eyring equation, where the 

relaxation time is expressed in terms of the difference in the Gibbs free energy, ΔG = ΔH – TΔS, 

between the equilibrium and the activated state. This leads to an equation similar to the Arrhenius 

one, where an entropic term appears in addition to the enthalpic one, as follows:  

𝜏𝜏 (𝑇𝑇) = ℎ
𝑘𝑘𝐵𝐵𝑇𝑇

𝑒𝑒𝑒𝑒𝑒𝑒 � ∆𝐺𝐺
𝑘𝑘𝐵𝐵𝑇𝑇

� =  ℎ
𝑘𝑘𝐵𝐵𝑇𝑇

𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑆𝑆
𝑘𝑘𝐵𝐵
� 𝑒𝑒𝑒𝑒𝑒𝑒 � ∆𝐻𝐻

𝑘𝑘𝐵𝐵𝑇𝑇
�            (4)                                                         

where h is Planck´s constant and ΔH and ΔS are the enthalpic and entropic changes respectively 

corresponding to the activated state. The same data are plotted in Figure 10 but with a linear 

behavior corresponding to equation 4. The extracted parameters are shown in Table 2. 
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Figure 10. Arrhenius plots of β processes where solid lines represent the Eyring 
descriptions for (a) PBA bulk and infiltrated PBA, and (b) PBS bulk and infiltrated PBS.  

 

Both enthalpic and entropic terms observed for both bulk PBA and PBS take relatively 

large values as compared with the infiltrated samples. Accordingly, it seems that confinement in 

the nanopores not only reduce the energetic barriers but also made the molecular mechanism for 

reorientation less complex (lower activation entropy).   

Concerning the α-relaxation, it can be seen in Figure 6 that it is sharp and stronger as 

compared to the corresponding β-relaxation. The quantification of the α-relaxation has been made 

by using the isochronal representation shown in Figure 11, since the conductivity contributions 

difficult a reasonable analysis of the isothermal curves from the infiltrated polymers, mainly in 

the case of PBA. 
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Figure 11. Isochronal plots of ε´´ (a) PBA bulk and infiltrated PBA, and (b) PBS bulk and 
infiltrated PBS for 100, 101, 102 and 103 Hz.  

 

Using the isochronal representation of the dielectric losses at different frequencies, the 

temperature (Tmax) at which the α-relaxation loss peak occurs has been determined for all samples. 

The temperature dependence of the peak frequencies corresponding to bulk and infiltrated 

samples are shown in Figure 12.  
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Figure 12. Arrhenius plot of the peak frequencies of (a) PBA bulk and infiltrated PBA, 
and (b) PBS bulk and infiltrated PBS. Solid lines represent the corresponding VFT fit of α 
relaxation.   

 

The data in Figure 12 were fitted to a usual Vogel-Fulcher-Tamman (VFT) equation:  

 

𝑓𝑓 (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) =  𝑓𝑓∞ exp � −𝐵𝐵
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚− 𝑇𝑇0

�                                  (5)                                                                   

 

where T0 is the Vogel temperature, B is an energetic term, and f∞ would correspond to a typical 

vibration frequency. The obtained fitting lines are shown in Figure 12, and the parameters are 

summarized in Table 2. To obtain accurate fits, and in accordance with the DSC Tg values 

obtained for the bulk polymers, a value of f∞ of 1x106 Hz was assumed.  
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The glass transition temperature obtained from the VFT fits is affected by confinement 

effects for both PBA and PBS samples. This glass transition temperature differences could be 

explained by taking into account the differences in the crystallinity between bulk and confined 

samples. However, the differences observed in α-relaxation peaks are also in accordance with the 

differences observed before in the β-relaxation peaks. Smaller differences are observed for the 

PBA than for the PBS polymer. However, there are also differences in the curvature of the VFT 

lines. In this case, the curvature increases for PBA but decreases for PBS. The behavior of PBA 

is quite unusual and could be due to a combination of two effects, one associated with faster local 

dynamics and the other hindering the cooperative motions involved in the glass transition. 

Consequently, it seems that these relaxations are quite dependent on the nature of the material 

used.  

DSC experiments have also detected important differences in the crystallization of 

confined PBA and PBS, as in PBA the nucleation is probably homogeneous, but in the case of 

PBS, it is induced by the AAO walls (i.e., surface nucleation). Moreover, it is worth considering 

that confinement and surface effects of the nano-constraint polymers may not necessarily be 

identical over the entire frequency or temperature range of the relaxation response.  

The results compiled in Table 2 suggest some correlation between the α-relaxation and 

the β-relaxation, although both processes are located at different frequencies and temperature 

ranges. The different values obtained for Ea (β-relaxation) and T0 (α-relaxation) reported for the 

confined samples in this manuscript, confirm that confinement effects are playing a large role in 

these samples, and that is why the dynamics of the PBA and PBS chains are different from those 

obtained for the bulk samples. 

Furthermore, there are large differences in the trends experienced by the glass transition 

temperature (see Table 2) upon confinement. PBA either experiences a very slight increase in Tg 
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upon infiltration (i.e., 1 K) or does not change with respect to the bulk if we consider the difference 

not significant. On the other hand, the Tg of PBS decreases 9 K with confinement (see Table 2). 

These differences may be correlated with the different interactions that the polymer chains have 

with the AAO walls in addition to confinement effects.  

In several infiltrated polymers, the detection of two Tg transitions (or even 3 Tg transitions) 

has been reported. This prompted researchers to interpret these two Tg values, as arising from two 

different layers within the infiltrated material. Typically, one Tg is much lower than the bulk Tg 

value and the other one, either stays at temperatures close to the bulk value or is even higher. If 

we consider the pores as perfect cylinders, we can divide each pore into two concentric cylinders. 

One of them consists of chains with higher segmental long-range mobility in the amorphous 

regions (the part with the lower Tg values), while the other has chains with more restricted 

mobility, comparable or even slower than those in the bulk material (the part with the higher Tg 

values).68-71-72 

In our case, only one Tg relaxation process has been detected for both PBS and PBA. 

However, we speculate that in the PBS case, where the material is more likely to nucleate at the 

AAO walls, a rigid semi-crystalline layer could be produced around the pore walls that do not 

contribute to the α−process that we detect by dielectric experiments or DSC (maybe because the 

layer is thin and its mobility is compromised by the crystals present and by the interactions with 

the walls). Instead, the dominant mobile amorphous chains present in the core experience higher 

segmental mobility and concomitantly a lower Tg value.  

In the homogenously nucleated PBA case, the nucleation should occur within the volume 

of each nanopore (a characteristic of homogenous nucleation, see refs. 2-3) and away from the 

interface with the AAO walls. As the Tg is similar than that of the bulk, we speculate that 
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segmental mobility is in this case dominated by confinement within the pores and is less affected 

by the presence of the AAO walls.23 

 

 CONCLUSIONS 

Polybutylene succinate (PBS) and Polybutylene adipate (PBA) were successfully 

infiltrated within laboratory-made Anodic Aluminum Oxide (AAO) templates of 70 nm diameter. 

DSC results indicate that infiltrated PBA molecules nucleate homogeneously inside the pore volume 

while BDS measurements showed that Tg values did not significantly change upon infiltration. On the 

other hand, PBS probably nucleates at the surface of AAO walls and the possible interactions with 

alumina were detected by FTIR. Such interaction with AAO walls influenced chain dynamics in such 

a way that BDS studies found a depression of approximately 9 K in the glass transition temperature 

upon infiltration. We conclude that PBS displays a higher affinity with AAO walls in comparison 

with PBA. Some differences were also found in terms of polymorphic behavior and crystal 

orientation between PBS and PBA by GIWAXS. Our study shows that the consequences of 

confinement in 70 nm diameter AAO templates are clearly different for PBA and PBS. 
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