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CHAPTER 1.  

Introduction 

1.1 Global Energy Scenario and Energy Sources 

The highly qualified life, demanded by the society of the 21st century, requires 

constant scientific and technological developments. Energy is the essential ingredient 

for the economic and social development.1 The technological revolution that we are 

now suffering has as a principle the energy produced by coal, oil, and gas. However, 

the consumption of these energy sources are limited and additionally, during the last 

decades have been strongly criticized due to the high CO2 emissions released.  

Besides, the energy produced by renewable energies are promising alternative 

supplies to limited non-renewable resources. Little by little, the use of fuel-based 

energy sources will be reduced and renewable solar energy, wind power, 

hydropower, geothermal energy and bioenergy will be settled in our life. 

Nevertheless, due to the intermittent availability of these type of resources, good 

energy storage systems have to be designed, Figure 1.1. Among the all systems, 

electrochemical energy storage systems (EESS)s seem to be the best alternative for 

the use of portable electronics, electric vehicles and smart grid facilities.  

Figure 1.1. The importance of electrochemical energy storage systems. 
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1.2 Electrochemical energy storage systems 

Design of promising energy storage devices will be one of the key points to implement 

renewable energy sources in our society. Depending on the application, the 

developed energy storage system should obey several demanded properties; i.e. light 

weight, flexibility, long duration, low cost, non-toxicity, safety, and it should be based 

on natural sources, Figure 1.2. During the last decades, two different effective 

methods have been expanded for EESS: supercapacitors and batteries, which are 

distinguished by the energy storage principle. Supercapacitors store energy 

electrostatically in electric fields, whereas in batteries, it is stored by reversible 

electrochemical reactions. Supercapacitors lead to a higher specific power densities 

than batteries, which means that supercapacitors are able to release low energy but 

in very short times. To the contrary, batteries possess higher specific energy densities 

than supercapacitors, and they provide high amount of energy in long time.2 

Therefore, the purpose for each EESS is different. 

 

Figure 1.2. Requirements for a good energy storage system. 
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Batteries have been implemented in a wide range of applications; from batteries with 

low energy densities in photovoltaic devices in residential areas, to energy storage 

systems with energy densities, which will provide an auxiliary network service. 

Nowadays, lithium ion is the commonly use EESS. However, safety issues, high cost, 

temperature dependence, and the demand of new requirements on EESSs have led 

to the need of new batteries developments. Lithium metal, metal-air and lithium 

sulfur are some of the up-coming technologies, Figure 1.3.  

Figure 1.3. Comparison of different types of energy storage systems in terms of specific energy 
densities and their application. Adapted from.3  

Li-metal 
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1.3 Battery performance – the role of the electrolyte 

An electrochemical battery contains a positive electrode, cathode, and a negative 

electrode, anode. Between the two electrodes, the electrolyte is placed, which 

ensures the ion mobility between the electrodes, Figure 1.4. The electrolytes are 

considered as electronically insulating, but ionically conducting materials. As the 

anode and the cathode have different chemical potentials, during the discharge, 

electron flow occurs more negative potential (anode), to the one with more positive 

potential (cathode).4 In the anode the oxidation half-reaction occurs, lose electrons, 

while in the cathode, the reduction half-redox reaction takes place, gain electrons. 

When the redox reaction is finished, the electron flow stops. In the case of 

rechargeable battery, when a voltage in the opposite direction is applied, the inverse 

current flow process happens during the charge. Electroneutrality is ensured by the 

ion transport across the electrolyte.5 

 

Figure 1.4. Different parts of a battery. 
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Generally, the commercially available batteries hold an electrolyte which is based on 

a salt dissolved in a liquid organic solvent. Additionally, in order to avoid the contact 

between the two electrodes, a separator is required. Even if liquid electrolytes offer 

high ionic conductivity, several characteristics have been questioned in the last years: 

i) flammability; ii) leakage; iii) volatility; and iv) toxicity. A successful electrolyte is 

expected to own multiple properties: 

- Excellent ionic conductivity. The electrolyte should be a good ionic conductor and 

electronic insulator; it is claimed the lithium ionic conductivity rather than high 

anion conductivity. This factor will determine the internal impedance and 

electrochemical behavior at different charge/discharge rates. Cation conductivity 

should surpass 10-3 S cm-1 at room temperature to achieve quick 

charge/discharge cycles. 

- High lithium transference number. A reduction of anion mobility can enhance the 

lithium transference number and overall battery performance, as the mobility of 

negatively charged anions will cause non-desired consequences.6 A lithium 

transference number closed to unity can reduce concentration gradients and 

polarization of the cell during the charge/discharge processes.7  

- Wide electrochemical stability window. The electrolyte should be stable between 

the electrodes’ oxidation and reduction reactions’ potentials. Meaning that an 

electrolyte with an electrochemical window up to 5 - 6 V vs. Li/Li+ is desired for 

emerging technologies. 

- Thermal stability. Some applications requires high temperature, thereby, the 

thermal stability of the electrolyte is demanded in newly elaborated electrolytes, 

as liquid organic solvents cannot work in high temperature, e.g. at 70 °C. 

- Mechanical stability. A good mechanical stability is an appreciate parameter in 

order to avoid the use of a separator as in the case of liquid electrolytes. 
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Additionally, ease thin film formation for a flexible battery, with the ability to 

adapt to different shapes is lastly requested.  

- Good interfacial contact between electrolyte and electrodes. Good contact is 

necessary to achieve homogeneous redox reaction on the electrodes.  

1.4 Types of solid electrolytes 

In the last years, the research has been focused on the development of safe and non-

toxic electrolytes. Different classes of electrolytes can be found in the literature to 

substitute the commonly used liquid organic electrolytes. The alternative solid 

electrolytes can be classified into two main groups, ion-conducting inorganic 

ceramics and ion-conducting polymer electrolytes.8 The first discovery of solid state 

electrolyte dates to 1960s when the sodium ion transport in ceramic based β-alumina 

(Na2O·11Al2O3) succeeded. Ceramic electrolytes show appropriate elastic modulus, 

high thermal stability, wide electrochemical stability window and favored ionic 

conductivity and lithium transference number.9 Several electrolytes have been 

developed over the years: LIPON, perovskite, garnet and alumina are some of the 

examples.9-10 Although the ceramic electrolytes present several advantages, some 

important drawbacks cannot be avoided: (i) some ceramic electrolytes are not inert 

in presence of moisture and CO2, this will lead to an important chemical stability 

decrease and difficult processability; (ii) various ceramic electrolytes can react with 

lithium metal anode, resulting in safety hazards; (iii) poor interfacial contact provided 

by this type of electrolytes will provoke high interfacial resistance, and non-

homogenous interfacial contact; and (iv) the high cost of the material is a limitation 

for commercialization.8  

Besides, solid polymer electrolytes (SPE)s can effectively overcome the problems 

mentioned before; SPEs show better flexibility to improve the interfacial resistance 
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and they are more cost-effective compared to ceramic electrolytes.8 Nevertheless, 

the solid polymer electrolytes provide lower ionic conductivity than ceramic 

electrolytes. Therefore, considering the difficulties of each one, there are still some 

challenges to address on this field.8  

1.4.1 Solid Polymer Electrolyte (SPE) 

The study of polymer electrolytes started with the research developed by Fenton, 

Parker and Wright in 1973.11 Wright and co-workers found that poly(ethylene oxide) 

(PEO) was able to solvate different alkali metal ions by electrostatic forces and 

coordinating bonds between polar groups and metal ions.11 In the study, a 

conductivity in the order of 10-5 S cm-1 at 330 K was achieved, for highly crystalline 

PEO-NaSCN complex. Later, in 1980s, Armand et al. proposed the application of the 

PEO-based material for energy storage systems as SPEs.12 The formulation strategy of 

SPE is the same as for liquid electrolytes, polymer electrolytes are solid solution of 

alkali metal salt in polymer. However, unlike liquid electrolytes, these materials are 

considered as safe electrolytes: generally, they are stable above 300 °C. The 

electrochemical properties of SPEs are affected by polymer backbone, compositions, 

distances between functional groups, molar mass, degree of branching and also by 

the nature and charge of metal cation and anion.13  

Different from the previously mentioned conventional SPE, there is another family 

where there is no need of including a salt into the formulation; the negatively charged 

ion is anchored to the polymer backbone and the only mobile ion is the positively 

charged ion, the cation, which is associated with anions by electrostatic forces. With 

the design of single-ion conducting polymer electrolytes (SIPE)s a lithium 

transference number approaching the unity is achieved. Nevertheless, the ionic 

conductivity is generally compromised. Since the first anionic polymer described at 

1986 by Bannister et al.,14 different polymeric backbones have been developed for 
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single ion-conducting polymer electrolytes.15 Trifuoromethylsulfonylimide (TFSI) 

containing anionic species, seem to be one of the most promising structures. This 

type of delocalized anion will provoke an improvement on electrochemical properties 

respect to other polymers containing low delocalized anions.16 Among the all 

monomer suggested, the lithium poly(styrenesulfonyl(trifluoromethylsulfonyl) has 

been deeply studied.17  

1.4.2 Gel polymer electrolytes 

Generally, SPEs and SIPEs show low ionic conductivities at room temperature. 

Therefore, the introduction of another small molecular weight component can 

increase the value. In the formulation of gel polymer electrolytes, an organic solvent 

or an ionic liquid is therefore included. The first example of this family was published 

in 1975, when Feuillade and Perche added propylene carbonate into a polymer-salt 

formulation (copolymer of vinylidene fluoride and hexafluoropropylene with 

NH4ClO4).18 This new formulation resulted in enhanced ionic conductivity; as ion 

transport mainly takes place in liquid or swollen phases. The plasticizer interacts with 

the polymer decreasing the intermolecular and intramolecular forces between the 

polymeric chains. Consequently, the rigidity of the polymer is decreased, promoting 

the ionic conductivity.19 Moreover, the addition of new component will guarantee the 

reduction of crystallinity and enhancement of ion dissociation, improving the ion 

transport. Among the all plasticizers, ionic liquids seem to be the most promising 

candidates, due to its high evaporation temperature; generally, above 200 °C. This 

new type of gel, known as ionogels, show very promising electrochemical properties 

as well as being considered as thermal-safe electrolytes.20  
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1.4.3 Composites polymer electrolytes 

Even if great efforts have been devoted to improve the electrochemical properties of 

polymer and ceramic electrolytes, in both systems there are several gaps to be 

addressed. Due to complementary properties shown by ceramic and polymer 

families, composite electrolytes have been developed. The poor dielectric constant 

of polymer electrolytes is complemented by the introduction of ceramic fillers, which 

provide higher dielectric constant.21 The dielectric constant can be adjusted by the 

type, size and amount of inorganic fillers implemented in the system.22 From a 

polymer electrolyte point of view, in this occasion the aim will be to improve the ionic 

conductivity and the lithium transference number of SPEs. 

1.5 Electrochemical properties 

1.5.1 Ionic conductivity and ion conduction mechanism 

The ionic conductivity (σ = neµ) is directly correlated by the concentration of charged 

species, elementary electric charge and the ability of the species to move in the 

media. All ions contribute to this measurement, the positively and negatively charged 

ions. Among the ions, the cation mobility is desired. The dissociation of the salt is 

normally associated with the lattice energy of the salt and the dielectric constant of 

the material. However, the dielectric constant of polymer is relatively low, and 

thereby, the dissociation is not ensured. Besides, in SPEs the coordination groups play 

an important role, where the ions tend to coordinate with them increasing the salt 

dissociation. 

The ionic conductivity is measured by Electrochemical Impedance Spectroscopy (EIS). 

An AC current with a specific amplitude is applied, and the resistance of the material 

in a given frequency range is measured within a temperature range, between 100 °C 
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and 25 °C. In this analysis, how the ion conduction behaves in such temperature limit 

is determined. Appling the Equation 1.1, the ionic conductivity can be obtained.  

 Rb = l
σA

    Equation 1.1. Equation for ionic conductivity. 

where l is the thickness of the membrane and A is the interfacial area between the 

membrane and the electrode. Rb is the resistance and it is determined by the 

impedance spectroscopy, by fitting by the equivalent circuit. 

Due to the complexity of the SPE system and the lack of simple correlation between 

the structure-properties, the ion transport in the polymeric matrix, still, cannot be 

described in its entirety. Colby and co-workers have deeply studied the correlation 

between the relaxation time of the polymer backbone and the ionic conductivity, 

demonstrating the importance of the polymer glass transition on its conductivity.23 

However, glass transition is not easy to predict, which depends on several factors; i) 

polymer structure; ii) polymer type; and iii) molar mass.24 Moreover, the system has 

to promote the dissociation of the anion and cation to increase the number of charge 

mobility. For that, the polymer is required to own some polarity, thus, the Li cation 

would be solvated by the polymer. Additionally, new salts have been proposed, to 

delocalize the negative charged ion to help the dissociation of the salt.17, 25 Therefore, 

a polymer with high segmental motion and moderate polarity with the combination 

of a salt with low lattice energy can be appropriate candidate to promote high ionic 

conductivity. 

Different theories have been implemented to the ionic conductivity, such as 

Arrhenius, Vogel-Tamman-Fulcher (VTF), William-Landel-Ferry equation, free volume 

model, and dynamic bond percolation (DBPM) model.26 From all of them, the ionic 



 Introduction 
 

13 
 

conductivity of SPEs is normally explained by Arrhenius and Vogel-Tamman-Fulcher 

equations. 

Arrhenius equation is widely used to explain ionic conductivity mechanism of SPEs 

through logσ vs. 1000/T curve, Equation 1.2.  

       σ = σ0
T

e−EA/𝑘𝑘BT    Equation 1.2. Arrhenius equation.26 

where σ0 is related to the number of charger carrier, T is the Kelvin temperature, kB 

is the Boltzmann constant, and EA is the activation energy of the diffusion. The crucial 

value of this equation is the activation energy; generally, the lower EA, the higher the 

ionic conductivity. When the ionic conductivity behavior in a temperature range 

tends to be a straight line in Arrhenius plot, the behavior is normally described by ion-

hopping model.27 The mechanism of the ion transport is based on ionic crystals, 

where the ions jumps to the nearest vacant place, increasing the ionic conductivity. 

By this equation, in the field of polymer electrolytes, the ionic conductivity of 

semicrystalline materials bellow the melting temperature is described. 

VTF equation consists on the glass transition temperature, being more relevant to 

SPEs, Equation 1.3,24 which was developed for pure polymeric system. Even if polymer 

electrolytes show solid-like macroscopic behavior, the local environment is similar to 

liquid-like. Thus, the ionic conductivity is normally coupled by segmental motion. This 

behavior can be observed at temperature above the Tg of the SPEs, SIPEs and in GPEs.  

       σ(T) = σ0exp (− A
T−T0

)     Equation 1.3. Vogel-Tamman-Fulcher equation.28 

where σ(T) is the ionic conductivity at certain temperature, A is the pseudo activation 

energy, related to the polymer segmental motion, σ0 is the conductivity 

preexponential factor, and T0 is referred to as the Vogel temperature.29 T0 is the glass 
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transition in ideal glasses, where the segmental motion or the ionic conductivity goes 

to zero, which is usually estimated to Tg-50.30 Ionic conductivity based on VTF 

equation presences a curvature behavior in Arrhenius plot. This theory is in good 

agreement with free volume theory, which refers to strong dependence of polymer 

segmental motion in ionic conductivity. When the temperature is above Tg, the free 

volume is incremented, and as a consequence, the polymer segments and ions are 

prone to move. As a result, since the ion diffusion is considered to occur through the 

free volume, the ionic conductivity is increased.31 This theory also claims the 

possibility to increase the free volume by introduction of plasticizers (an ionic liquid 

or a solvent).32 This assumption leads to the understanding why decreasing the glass 

transition normally increases the ionic conductivity and vice versa.  

1.5.2 Lithium transference number 

First, it is necessary to define lithium transference number and lithium transport 

number. Transference number, refers to the fraction of the current carried by each 

specific specie, T- and T+, which is true for diluted systems, where the salt is 

completely dissociated. Besides, in real systems, the interactions between ions have 

to be assumed. As a consequence, with a salt like LiX, the formation of ion triples such 

as [Li2X]+ and [LiX2]- as well as neutral species have to be considered (each specie will 

have their own transport number). In these systems, transport number needs to be 

determined. These values will be equal in diluted systems, when ion-ion pairing is 

avoided. 

There are different techniques to measure the lithium transference number. 

However, the experimental determination of transference number leads to several 

controversies and confusions; depending on the technique employed the value may 

change, as the ion pairing is not considered generally.  
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When a high lithium transference number is measured means that the conductivity 

is mainly promoted by Li+ mobility. In redox processes only lithium cation is involved; 

however, if high mobility of anion occurs in the system, migration in the opposite 

direction will occur, leading into a high gradient concentration, high polarization on 

the cell, and consequently, a high internal resistance will be formed.6 Ideally, 

immobilized anion is desired, in which the concentration gradients are dismissed.  

The most common technique to measure lithium transference number is described 

by Evans, Vincent and Bruce equation, which is simplified as Bruce-Vincent method,33 

Equation 1.4. A symmetric cell is polarized by applying a small potential (~10 mV) 

between two electrolytes until the steady state is reached. The internal resistance is 

measured before and after performing the polarization. 

        TLi+ = Iss(∆V−I0R0)
I0(∆V−IssRss)    Equation 1.4. Equation proposed by Evans, Vincent and Bruce. 

where ΔV is the applied potential difference, I0 is the initial current, Iss is the steady-

state current, and R0 and Rss are the interfacial resistance before and after 

polarization, respectively. Bruce-Vincent equation is only true when the ion-ion 

paring is negligible and when only one cation and one anion are in the system. As a 

result, we have to take into account the accuracy of this method in the results, as in 

SPE systems the ion pairing may occur. 

Another technique commonly used is Pulsed Field Gradient NMR (pfg-NMR).34 NMR 

techniques allow to measure lithium transference number by measuring the diffusion 

coefficients of different species in diluted concentrations, Equation 1.5.  

TLi+ = D+
D++D− 

    Equation 1.5. Lithium transference number by pfg-NMR. 
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A magnetic field is applied, and the shelf-diffusion coefficient of different species can 

be recorded. For example, by 7Li NMR, the diffusion of lithium cation can be 

determined, whereas by 19F NMR, the diffusion of TFSI- anion. Like that, the diffusion 

of the species can be determined and the transference number can be calculated. 

However, this method also assumes negligible ion-ion interactions. 

1.5.3 Electrochemical stability window and mechanical stability 

Normally, lithium batteries operate up to 4 V vs. Li/Li+, therefore, an electrolyte with 

electrochemical stability in such a voltage range is prescribed. Additionally, to expand 

to emerging high voltage technologies a wider electrochemical stability is desired. 

Nevertheless, liquid electrolytes cannot afford high voltages, which tend to oxidize, 

at the cathode or reduce, at the anode.  

Stable systems are able to form good solid electrolyte interface (SEI) layer in the 

interface of electrode and electrolyte during the first cycles.35 This layer which is 

principally formed by the decomposition of the electrolyte’s products, later helps to 

enhance the battery life. Thus, the electrolyte component can be tailored to form a 

fast and a stable SEI layer.36  

Another important parameter is the mechanical stability of the electrolyte. If a 

material with an appropriate shear modulus is developed, the need of a separator is 

eliminated. Good mechanical properties of SPE will also provide additional properties, 

such as flexibility. However, this property is linked to ion transport, and any of both 

properties can be compromised due to improvement of one of them.  

1.6 Polycarbonates as polymer matrix of Solid Polymer Electrolytes (SPE)s  

The chemistry of designing new polymers offers the opportunity to adjust the 

chemistry to different properties and applications. The choice of polymer host mainly 
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depends on two factors: the polarity of the polymer backbone (sufficient electron 

donor to form coordination with cation) and low hinderance for rotation. Therefore, 

SPE can be implemented in different battery-technologies depending on the results, 

such as Li-S, Li-based and Na-based batteries. The challenges of the use of these SPEs 

in solid-state batteries come from the electrochemical properties. The main challenge 

is to find the best chemical structure candidate with high cation transport. 

Poly(ethylene oxide) is the gold standard polymer among the all polymer host 

proposed. Since 1970s PEO has received extensive research interest.11-12, 37 Up to 

now, PEO has been the irreplaceable polymer, due to its ability to solvate different 

lithium-based salts; such as LiBr, LiSCN, LiTFSI. In these type of low glass transition 

polymers, the ion conduction occurs in the amorphous phase.38 The mechanism is 

leaded by the segmental motion of the coordination sites. However, it is affected by 

several polymer characteristics and ambient conditions: temperature, humidity, 

molar mass, polymer chain end-groups, salt, and therefore, physic-chemical 

properties.39 Even if previously mentioned properties have a direct consequence on 

the electrochemical properties, mainly the research has focused on the suppression 

of the crystallinity of PEO (melting temperature at 60 °C); the ionic conductivity is 

affected by the crystalline domains of the polymer, which is more evidence at low 

temperature,40 showing an ionic conductivity of 10-6-10-7 S cm-1,8 4 orders of 

magnitude less than the liquid organic electrolytes.37b However, the absence of 

crystallinity will undergo to poor mechanical properties. Thus, in the direction of 

eliminating the crystallinity of the material and to maintain the mechanical 

consistency, several strategies have been studied; configuration of cross-linked 

polymers20a and copolymers,41 introduction of an organic solvent42 or ionic liquid,20a 

the addition of ceramic fillers,43 and also, the development of new salts.44  
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Besides, the lithium transference number of conventional PEO-based SPE is normally 

bellow 0.2. The strong coordination between ethylene oxide (EO) units and the 

lithium, restricts the lithium mobility, and consequently, the conduction is mainly 

governed by the anions.45 This will cause low cell performance, due to the 

concentration gradients that will occur during the cycling. The ion mobility and 

lithium transference number of the PEO-SPEs have to be improved in order to be able 

to implement in commercially available batteries which operates at room 

temperature.8 

Over the last years, the research has been focused on the development of new 

chemistries for SPE; polycarbonates, polysiloxanes, polyalcohols, and polyesters 

seem to be the most promising ones.46 These polymers show low glass transitions, 

and occasionally, they do not show any crystallinity. Therefore, an improvement of 

ionic conductivity respect to PEO based SPEs is observed, especially, this 

enhancement is observed at room temperature, increasing one or two orders of 

magnitude and also, improving lithium transference number, above 0.5.46  

Traditionally, solvent mixture based on cyclic and linear carbonates have been 

employed in Li-ion batteries. The high molecular weight analogues of this small 

molecules are the polycarbonates. Thus, one of the most exciting alternative is the 

use of polycarbonates as polymer host materials. As a result, a lot of efforts were 

devoted in the last 5 years to this topic. Several studies on SPE based on 

polycarbonates, lead to a better understanding of the correlation between chemistry 

and electrochemical properties. Low glass transition and the weak coordination 

between lithium cation and the carbonyl group of the carbonate group bring several 

advantages to the electrochemical properties compared to PEO based SPEs:46 i) 

improvement on ionic conductivity at room temperature, (10-4-10-5 S cm-1); ii) 
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increase on lithium transference number, (0.5-0.6); and iii) wide electrochemical 

stability window (4.5-5.5 V). By FTIR analysis the favorable coordination of lithium 

cation with carbonyl group of the carbonate has been extensively observed; the band 

shifts to lower wavenumbers once it is coordinated. Moreover, within this polymer 

family, a new strategy has started to expand: polycarbonates seem to hold unique 

properties at high salt concentration,47 which are named as "polymer-in-salt". At high 

salt concentration the ionic conductivity is significantly increased. If the mechanical 

properties of these electrolytes are improved, these new family will open new 

possibilities for forthcoming batteries.  

Polycarbonates can be designed with carbonates groups as a part of the main chain 

of the polymeric backbone or as a side chain. 

Main-chain polycarbonates 

Aromatic polycarbonates are commercially available as engineering plastics. 

However, polymer electrolytes based on aromatic polymers show bad properties due 

to its high glass transitions, which will provoke a low ionic conductivity.48 

Nevertheless, the potential use of carbonate-based electrolyte was observed by 

Matsumoto and co-workers.48b Matsumoto et al. studied aromatic polycarbonates 

with few ethylene oxide units as a side chains; while more ethylene oxide units were 

incorporated in the polymer, a decrease on lithium transference number and 

electrochemical stability was resulted, observing the favorable effects of carbonate 

groups. 

In order to achieve low glass transition and flexible polymers, aliphatic 

polycarbonates have been suggested. Poly(ethylene carbonate) (PEC) has been 

widely explored as a host polymer. This polycarbonate can be synthesized by two 
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different routes: i) ring opening polymerization of 5-membered ring, which needs 

harsh reaction conditions due to the high stability of the ring, and consequently, 

results, in non-controlled structures;49 and ii) copolymeriztion of CO2 and epoxy 

ring.50 Tominaga’s group has studied the potential use of the last polymerization 

technique by synthesizing different polycarbonates.50b PEC was evaluated as polymer 

electrolyte by blending with different Li-salts: LiTFSI, LiBETI, LiBF4, LiFSI, LiClO4, and 

LiCF3SO3.21a, 50b, 51 The addition of LiClO4 and LiCF3SO3 to PEC, PEC-SPE showed a 

polyether based SPE behavior, where the ionic conductivity decreases with high salt 

concentrations. On these systems, a cross-linked effect was observed (Figure 1.5). 

Besides, with the addition of LiTFSI, LiBETI, LiBF4, and LiFSI to PEC-system, a favored 

ionic conductivity is achieved, due to the plasticizing ability of the anion, reaching at 

high conductivities values at high salt concentrations. The highest ionic conductivity 

for 80 wt.% LiTFSI:PEC system was detected to be 5·10-6 S cm-1 at 30 °C, showing a Tg 

of -62 °C.52 Besides, PEC:LiFSI results also show interesting values.21a Similar to LiTFSI 

system, high salt concentration leads to improve the ionic conductivity (188 mol% 

LiFSI leads to 2.2·10-4 S cm-1 at 60 °C and 10-5 S cm-1 at 25°C). For PEC:LiTFSI and 

PEC:LiFSI systems 2 different mechanisms have been proposed: i) especially at low 

salt concentrations, the ionic conductivity closely follows the glass transition trend, 

i.e. the driving force of the ion mobility is the chain flexibility;47, 53 ii) whereas at high 

salt concentration, when ion-ion pairing and aggregates starts to dominate the 

system, lithium migration decoupled from segmental motions is suggested.21a 

Therefore, percolation type polymer-in salt transport mechanism is proposed to be 

the dominant one at high salts contents,54 where there can be molten salt paths to 

conduct ions, and ion-hopping mechanism can occur. 
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Figure 1.5. Ionic conductivity and glass transition evolution of PEO and PEC systems at 
different LiFSI mol %. Adapted from.21a 

PEC-system, apart from showing an enhancement on ionic conductivity respect to 

PEO-systems, lithium transference number is significantly improved by the 

coordination of carbonyl groups and lithium cation.55 As in the case of ionic 

conductivity the lithium transference number seems to be favored while the salt 

concentration is increased, reaching values as high as 0.83 at 80 °C.21a, 53, 55 

Nevertheless, at lower salt concentration PEC-SPE show higher lithium transference 

number than polyether-SPE, generally close to 0.5, demonstrating the evidence of 

carbonate groups contribution on the system.21a 

The potential application of PEC-SPE was studied by Kimura and co-workers. LiFePO4 

based battery was evaluated using PEC with 80 wt.% LiFSI as electrolyte.56 The use of 

3D ordered macroporous polyimide matrix was necessary to reinforce the mechanical 
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stability. Interestingly, high reversible capacities (120-130 mAh g-1) and columbic 

efficiencies were observed at 30 °C.56 

Copolymerization of CO2 and epoxy chemistry also gives the opportunity to include 

different side chains.57 Tominaga’s group studied the effect on ionic conductivity by 

having some rigid and flexible glycidyl ether groups; possessing phenyl ether, tert-

butyl ether, n-butyl ether, ethyl ether, isopropyl ether and methoxyethyl ether, Figure 

1.6.57c, 58 As expected rigid side chains, lead in a high Tg, and therefore, in low ionic 

conductivity. Besides, the flexible groups were able to increase the free volume, and 

consequently, the ionic conductivity. The SPE having methoxyethyl group as a side 

chain showed a high value of 2.2·10-6 S cm-1 at 30 °C.57c This value surpasses the best 

value of PEC:LiTFSI-SPE.  

 

Figure 1.6. PEC with different side chains. 

In another study Morioka and co-workers studied the effect of oxyethylene groups as 

a side chain of PEC, having one, two or three oxyethylene units.57b Two different 

behavior were concluded when LiFSI was added to the polymer. First, the Tg was 

increased with the increase of the salt loading, at lower salt concentration than 50 

mol% of LiFSI. This trend was attributed to the polyether type SPEs behavior, where 

a preference coordination between Li+ and oxyethylene groups is speculated. 

Besides, when the salt concentration surpasses 50 mol% LiFSI, the Tg of the SPEs 

starts to decrease, showing polycarbonates based behavior. The interaction of lithium 
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cation and oxyethylene groups, also lowered the lithium transference number, being 

lower for the polymer containing more oxyethylene groups. 

In addition, Zhang et al. proposed the use of poly(propylene carbonate) as polymer 

electrolytes.59 Even if this polymer shows Tg of 5 °C, higher glass transition than PEC, 

the conductivity was as high as 3.0·10-4 S cm-1 at 20 °C with 23 wt.% of LiTFSI. 

However, this improvement could be affected by the cellulose-based matrix that was 

incorporated to reinforce the membrane. Unfortunately, data of the neat polymer 

electrolyte is missing to allow a comparison with other works. 

Whereas ring opening polymerization of 5-membered cyclic carbonate requires harsh 

conditions, the 6-membered cyclic carbonates are easily polymerized.49a The simplest 

polycarbonate is named as poly(trimethylene carbonate) (PTMC). The first attempt 

by this type of polymer was developed by Melchiors et al. and dates to 1996.60 In this 

study different alkali salts were combined to a triblock, composed by PEO in the 

middle block and poly(2,2-dimethyltrimethylene carbonate) in the extreme blocks. 

Due to higher PEO percentage rather than carbonate groups, the ionic conductivity 

was mainly through PEO, and therefore, the conductivity was not as high as for 

polycarbonate systems. 

Additionally, PTMC is amorphous low glass transition (-15 °C) polymer, appropriate 

for SPE based system. Silva et al. reported the effect of several salts on the 

conductivity of PTMC: LiCF3SO3, LiClO4, LiBF4, LiSbF6, LiPF6
61 and NaClO4, NaTFSI.62 

Besides, Brandell’s group studied in detail the use of this polymer in the area of 

polymer electrolytes. Sun et al. evaluated LiTFSI system with PTMC as a host polymer, 

Figure 1.7.63 The Tg was much lower than PEC, however, the ionic conductivity trend 

was more similar to polyether based SPE, where the ionic conductivity reaches a 
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maximum while the salt concentration increases. However, the lithium transference 

number is improved respect to polyether based host families (0.80 at 60 °C, 

carbonate:Li = 8),64 meaning that the carbonate group is involved in the 

electrochemical properties favorably. Even though, the conductivity is not as good as 

PEC-systems, reasonable capacity with high efficiency was achieved using Li/LiFePO4 

battery at 60 °C.65 At the first cycles the effect of the low ionic conductivity was 

observed in the capacity, which was gradually improved in the few first cycles, 

reaching up to 150 mAh g-1. This limitation was overcome by adding some low molar 

mass PTMC to the electrode. 

Ring opening polymerization also opens new strategies to developed new 

polycarbonate structures. Several attempts have been carried out to include 

functionalities which provides new properties to the host material. This approach was 

used by Mindemark and co-workers in different works.66 By including heptyl ether 

and allyl (cross-linkable) side chain to the carbonate ring, leads to the design of new 

homopolymers and copolymers, Figure 1.7. From the allyl side chain the polymers 

were UV-polymerized to refine the molecular flexibility. Even though the glass 

transition is lower than PTMC’s, lower ionic conductivities were achieved, from 2·10-

7 to 2·10-8 S cm-1. In order to understand the limited ionic conductivity, the 

coordination between alkaline salts and those carbonyl and ether groups were 

studied by FTIR analysis. The data was compared with PTMC, where the presence of 

ether groups is absence. Comparing the coordination of carbonyl groups, a minority 

coordination between lithium cation and ether groups was deduced. Therefore, this 

limited value could be attributed to the heptyl ether side chain, which is a 

hydrophobic molecule, and cannot provide the ion transport on the system. 
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Figure 1.7.  Chemical structure of (co)polymers synthesized via the ring opening 
polymerization of 6-member cycle carbonates. 

The functionally of the polymers can be tailored according to the final application. 

Mindemark et al. designed a polymer to improve the adhesion with inorganic 

substrates (Cu2O and TiO2).67 This was achieved by including some hydroxyl (-OH) 

groups into the polymer. By a copolymerization between TMC and TMC-OH, 

necessary amount of hydroxyl groups were incorporated, 10 mol%. The ionic 

conductivity shown by this copolymer was comparable with PTMC:LiTFSI. However, 

as desired, the adhesion was improved, and 3D-nanostructured electrodes were 

achieved.67 

Polycarbonates chemistry can be also combined by ether containing units in the 

polymeric backbone. This was developed by He et al.68 via polycondensation. Using 

this method He and co-workers compared two polycarbonates containing diethylene 

oxide and triethylene oxide units between the carbonate units, PDEC and PTEC 

respectively. The polymers resulted in relatively low molar masses around 8,000 g 

mol-1. Thus, when the LiTFSI was dissolved in the matrix, the membrane resulted in 

poor mechanical properties, and therefore, the membrane was supported by 

cellulose nonwoven. High ionic conductivities were analyzed at 25 °C: 1.12·10-5 S cm-

1 for PTEC:25 mol% LiTFSI system. Not surprisingly, the lithium transference number 

was between the value of polycarbonates and polyethylene oxide based systems, 

0.39 at 25 °C. The potential application of the materials was tested in half cells at 25 
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°C LiFePO4 and using a higher-voltage cathode material, LiFe0.2Mn0.8PO4 at room 

temperature at 0.2C, showing good specific capacity, 130 mAh g-1. 

Tominaga et al. also designed random copolymers combining carbonate and ether 

groups in the polymer backbone.38 High molecular weight copolymers were 

synthesized, and Tg led to decrease while the number of ether content was increased. 

The polycarbonates tend to incorporate between the ether units, avoiding the 

chelation effect, and therefore, the plasticizer effect of LiFSI was observed in the ionic 

conductivity tendency. This behavior was corroborated by FTIR analysis: similar 

coordination between carbonyl group and lithium cation as in PEC:LiFSI system was 

observed, which is in good agreement with the system studied by Mindemark et al.66b 

These systems provide higher ionic conductivity values than PEC:LiFSI in all salt 

concentration, showing the following values at 60 °C: 2.9·10-4 S cm-1 and a lithium 

transference number of 0.7 where 53 % EO are in the system in highly concentrated 

system, 120 mol% LiFSI.38b Additionally, the potential application was tested in LFP 

cell with good discharge capacities, close to 150 mAh g-1 at C/20, at 40 °C during the 

first cycles. 

Recently, CO2 sourced polycarbonates via polyaddition of bis(α-alkylidene 

carbonate)s with PEO diol of various molar masses were synthesized.69 Regarding to 

the ionic conductivity of the amorphous SPE, the value was increasing while the 

amount of ethylene oxide units was increased. In order to improve the mechanical 

properties of the SPEs, a semi-interpenetrated network was prepared, leading to a 

reasonable ionic conductivity at room temperature 1.1·10-5 S cm-1. Even though, the 

lithium transference number was between PEO-SPE and PC-SPE, 0.28 at 70 °C, it was 

possible to cycle at a C-rate of 1C with a good discharge capacity of 83 mA h g-1 after 

400 cycles, at 60 °C. 
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The electrochemical stability is considerably improved by the use of polycarbonates. 

For instance, in the case of PTMC the onset exceed to 4.5-5V vs. Li+/Li. This increase 

could be attributed to the low hygroscopic property of the polycarbonate, which was 

confirmed by remaining LiOH byproduct on the system.70 Additionally, this behavior 

is also consistent to a higher anodic stability of carbonate based solvents rather than 

ether-based solvents.71 

Cyclic carbonate side groups 

Another possible approach to include ion-coordination functional groups is as a side 

chain of polymer backbone. Britz et al. developed poly(acrylates) and 

poly(methacrylates) having 5-membered cyclic carbonate as functional group of the 

monomer (Figure 1.8a,b).72 Even though, the most flexible host material was achieved 

by the highest number of methylene unites between the main chain and cyclic 

carbonate, these polymers did not provide the highest ionic conductivity when LiTFSI 

blends were formed. The highest ionic conductivity was determined for polymer 

containing the shortest number of spacer, 3.7·10-6 S cm-1 at 40 °C (Figure 1.8a). This 

result is in good agreement to the conclusions developed by Mindemark et al. where 

the hydrophobic spacer did not allow the ion transport.66b 

Additionally, having cyclic polycarbonates as a side chain, some copolymers have 

been developed in order to sustain new properties (Figure 1.8c,d,e).73 Superionic 

conductivity, decoupled from segmental motion, was found in copolymer containing 

vinyl acetal, methoxyethylacrylate and ethylene glycol methyl ether methacrylate. 

Similar side functional groups were combined with silane based polymer backbone in 

the work reported by Matsumoto et al. (Figure 1.8f,g).74 Interesting ionic 
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conductivities comparable to PEC-system were obtained, high values at 30 °C: 

1.21·10-4 S cm-1 at high salt concentration (Figure 1.8g). 

All these polymers are considered as flexible host materials. In contrast, rigid systems 

also show reasonable good conductivity values.75 Cyclic carbonates as part of 

polymeric backbone show ionic conductivity of 10-7 S cm-1 at 40 °C with the 

combination of LiCF3SO3 (Figure 1.8h).76 Even if this value is high for the host polymer, 

including some carbonate groups is able to increase the conductivity 2-4 orders of 

magnitude at high salt concentration (10-4 S cm-1 at room temperature) (Figure 1.8i).76 
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Figure 1.8. Different polymers containing carbonate groups as a side chain. Adapted from.46 

Additionally, Chai et al. developed blends of rigid cyclic carbonate groups with lithium 

difluoro(oxolate) borate (Figure 1.8h).77 This combination lead to an ionic conductivity 

of 2.23·10-5 S cm-1 at 25 °C with the addition of 9.6 wt.% of salt. Also, it resulted in a 

lithium transference number of 0.57. These values were corroborated in a LiCoO2/Li 
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cell cycling at C/10 at 50 °C, giving good stability and capacities (140-130 mAh g-1) 

among 150 cycles at 0.1C. 

In another approach ether groups were incorporate to a rigid polymer. This was 

leaded by Itoh et al., where the combination of cyclic carbonates and ether containing 

side chain was synthesized (Figure 1.8j).78 The similar trend as previously mentioned 

was relived; it was observed a preferential coordination of LiTFSI towards ether 

groups.58, 66b However, while the highest ionic conductivity was determined for the 

highest ether content, 1.3·10-4 S cm-1 at 30 °C, the lithium transference number is 

compromised by the ether groups, 0.3. In another example, cyclic carbonates were 

combined with urea-amide group in different proportions (Figure 1.8k).79 High cyclic 

carbonate content leads to rigid materials and Arrhenius-type temperature 

dependence ionic conductivity. Thus, the optimum value was successfully measured 

for 25 mol% urea-amide monomer: an ionic conductivity of 1.7·10-6 S cm-1 at 30 °C. 
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1.7 Synthesis of polycarbonates via polycondensation 

Historically, polycarbonates have been synthesized using three polymerization 

techniques, Scheme 1.1.  

Scheme 1.1. Polymerization techniques for polycarbonates. 

 

1) Ring Opening Polymerization of cyclic carbonates. This chain propagation 

process, requires small concentration of initiator to achieve high molar mass 

polycarbonate. The number of polymer chains depends on the number of 

initiator and transfer molecules (alcohol molecules) added to the 

polymerization.80 In this way, a control molecular weight distribution and 

topology are successfully designed. However, the development of cyclic 

carbonates with high purity sometimes involves tedious synthetic steps. 

2) Copolymerization between CO2 and epoxy. High valued compounds are 
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synthesized from renewable and low cost resource. In the presence of a 

catalyst, CO2 opens the epoxy ring leading to a control polymer structure. 

This polymerization is scalable; however, the yield will depend on 

temperature, pressure and catalyst concentration.81 

3) Polycondensation between dicarbonates and diols. This type of 

polymerization is based on the condensation reaction between diols and 

small carbonates such as dimethylcarbonate. The polymers are formed via 

step-growth polymerization. This technique provides plenty of possible 

structures by the simply changing the diol which are commonly commercially 

available. The drawback of these type of polymerization is that the molar 

mass depends on the stoichiometry of the reagents, and besides, high 

temperatures and vacuum are needed. 

1.7.1 Analysis of different catalysts used in the polycondensation reaction of 

aliphatic polycarbonates 

The discovery of polycarbonates dates to 1898, when Einhorn disclosed the 

transformation of hydroquinone and resorcinol derivatives into polymeric 

materials.82 However, at the beginning of the 20th century the limited solubility of this 

polymer and its difficult processing avoided its study.  

In 1953, the first aromatic polycarbonates were commercialized by Bayer and were 

widely used as engineering plastics, owing to their outstanding high impact, low 

scratch- and temperature-resistance.83 Traditionally, polycarbonates were 

synthesized by interfacial polycondensation, between phosgene and sodium salts of 

bisphenol-A at 20-40 °C and atmospheric pressure. Weak organic bases, such as 

trimethylamine, were employed to accelerate the polycondensation reaction and 

achieved high molecular weights. Continuous restriction on the use of phosgene 
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derivatives, have pushed both industry and academia to develop phosgene free 

synthesis of polycarbonates. In this sense, phosgene has been replaced by dimethyl 

carbonate or diphenyl carbonate.  

Polycarbonate synthesis can be successfully performed through the 

polycondensation of dimethyl carbonate (DMC) or diphenyl carbonate (DPC) with a 

diol in a two-step process (Scheme 1.2). The first reaction step consists on initial 

condensation, the temperature is maintained at 100-130 °C over a period of 1-24 h 

until the equilibrium is reached. In this stage, hydroxyl and carbonate end groups 

react eliminating methanol/phenol, leading to low molecular weight oligomers (< 

1,000 g.mol-1). In the second step, the chain growth takes place by transesterification 

between hydroxyl and methyl/phenyl carbonate end groups or between two 

methyl/phenyl carbonate end groups in the presence of transesterification catalyst. 

High temperatures (150-350 °C) and high vacuum are required to proceed the 

reaction and to remove all unreacted monomers and the by-products (alcohol based 

molecule). The mole ratio of this polymerization is crucial to enhance the conversion 

of the first step and to obtain high molecular weight polycarbonates during the 

second step. The aim is to increase the number of methyl/phenyl carbonate end-

groups for the transesterification reaction, which are more reactive compared to 

hydroxyl groups. This can be achieved with an excess of dimethyl/diphenyl carbonate 

amount.84 
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Scheme 1.2. General route for the synthesis of polycarbonates via step-growth 
polymerization. Adapted from ref.84-85 

 

This methodology not only avoids the use of chlorinated reagents but is also 

performed in bulk avoiding the employment of organic solvents and hindering the 

formation of cyclic carbonate side products. Nevertheless, the reactivity of these two 

linear carbonates is much lower than historically used toxic phosgene reagent. 

Therefore, the reaction must take place at higher temperature (150-350 °C) and 

reduced pressure, with the required addition of catalysts. Alkali metals, such as NaH 

or NaOH, have dominated the field of polycarbonates obtained by step-growth 

polymerizations.86 

New efforts in polycarbonate synthesis were oriented toward the discovery of novel 

organocatalysts to achieve high molecular weights. There are three ways to activate 

the reaction: i) increasing the electrophilicity of the carbonate; ii) increasing the 

nucleophilicity of the alcohol; and iii) through a nucleophilic activation of the 

carbonate.87 Several classes of organic compounds, including tertiary amines, strong 

bases such as guanidines and amidines, N-heterocyclic carbenes and thiourea 
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derivatives have been investigated in polycarbonate synthesis, as point out in the 

following Figure 1.9. 

 

Figure 1.9. Organic bases used as catalysts for step-growth polymerization of polycarbonates. 
Adapted from.88 Cyclic guanidines and amidines: TBD, MTBD, and DBU,85, 89 N-heterocyclic 
carbenes: protected NHC,90 Nucleophilic activator: PPY,85, 91 DMAP,84-86, 91-92 Electrophilic 
activators: Thioureas,85 Dual catalyst based on ionic compounds: tetraethyl ammonium 
hydroxide,93 imidazolium-based ionic liquids.94 
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Still the achievement of high molecular weight polycarbonates by organocatalyzed 

step-growth polymerization remains an issue. While metal-based catalysed 

polymerization leads to molecular weights higher than 100 kg mol-1 (Mn = 150 kg mol-

1 using NaH),86b it is indeed more problematic to reach molecular weights higher than 

80 kg mol-1 from organocatalysts. Imidazolium-based ionic liquids and DMAP prove 

the most attractive compounds in this context. 

1.7.2 Pre-screening of organocatalysts used in this thesis for the synthesis of 
Polycarbonates 

In this thesis polycondensation was chosen as the synthetic method to prepare 

innovative polycarbonates to be used in solid polymer electrolytes. Before to start 

developing innovative polycarbonates, the polycondensation conditions and the 

catalyst were evaluated. As a first reaction model, dimethyl carbonate (DMC), 

diethylene glycol as a diol and DMAP as an organocatalys were chosen. Based on 

previous works, DMAP was selected for being one of the most promising and easy 

handling catalyst.92b A distillation set up with cooling system under nitrogen was 

employed to optimize the mole ratio of the polycondensation. The first step is carried 

out at 130 °C during 4 h and the condensation of the DMC and ethylene glycol-

hydroxyl end group takes place in competition with some evaporation of the DMC. 

For the second step, the reaction is heated up until 180 °C and the high vacuum is 

controlled: during the first 13 h the vacuum is maintained at 2.5 Pa and later, it is kept 

bellow <0.1 Pa which it is left in such conditions 8 hours. 

Scheme 1.3. Scheme of model polycondensation reaction. 
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Five model reactions were carried out by changing the reagents stoichiometry, mole 

ratios of DMC:diethylene glycol:DMAP: 1.5:1:0.01, 2:1:0.01, 2.5:1:0.01, 3:1:0.01, 

5:1:0.01. The molar mass of the polymerization was followed by GPC in THF based on 

PS standard, Figure 1.10, and it was taken as an indication of successful 

polymerizations. From the graph, how the molar mass is affected by the molar ratio 

can be observed. The first observation is that the polymerization does not happen 

with low excess of DMC (1.5:1:0.01), where the complete evaporation of DMC may 

occur. Besides, at higher DMC mole ratios than 1.5:1:0.01, the molar mass is 

progressively increased in the second step, until a plateau is detected, where the 

molar mass is constant. Consequently, the reaction’s yield also is affected by the mole 

ratio, Table 1.1; when a higher excess of DMC is employed, the higher is the yield. 

Taking into account the molar masses and the yields, the mole ratio of 3:1:0.01 

(DMC:diol:DMAP) seemed to be the optimum ratio for this type of system.  

 

Figure 1.10. Effect of molar ratio on Mn among the polycondensation. 
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Table 1.1.  Yields of polymerization using different mole ratio. 

DMC:diol:DMAP 1.5:1:0.01 2:1:0.01 2.5:1:0.01 3:1:0.01 5:1:0.01 

YIELD: --- 59 % 73 % 82 % 85 % 

 

The next step was to evaluate different organcoatalysts and its effect on the 

polymerization with the mole ratio of DMC:diethylene glycol:catalyst - 3:1:0.01. The 

following different acid, basic and neutral catalysts were evaluated, Figure 1.11; 

commercially available basic catalysts: DMAP, TBD, and DBU, commercially available 

acid catalysts: MSA, p-TSA, dodecyl benzene and triflic acid, and some catalysts were 

synthesized: MSA:TBD 1:1, MSA:TBD 2:1 and MSA:TBD 1:2, as described by 

Basterretxea and co-workers.95 

 

Figure 1.11. Chemical structure of the pre-screened organocatalysts. 

From the GPC data, Figure 1.12, the effectiveness of the basic catalyst can be clearly 

observed. All of the basic catalysts are able to catalyse the polycondensation of the 
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polycarbonates, even if we can observe a difference between them. According to the 

experiments, DMAP, TBD, MSA:TBD 1:1 and MSA:TBD 1:2 are the most promising 

ones. Besides, there are not significant differences on yields between different basic 

catalysed polymerizations, Table 1.2. 

 

Figure 1.12. Effect of organocatalyst on Mn among the polycondensation.  

Table 1.2.  Yield of different organocatalyzed polymerization. 

CATALYST DMAP TBD DBU MSA:TBD 
1:2 

MSA:TBD 
1:1 

YIELD: 82 % 85 % 73 % 90 % 84 % 

 

While basic catalysts work effectively, none of the acid-catalysts is able to catalyse 

the polymerization. As can be observed from the 1H-NMR, Figure 1.13, different 

catalytic activity in the first 4 hours of polymerization between the acid and basic 

catalysts can be observed: in the case of acid-catalysts the formation of the carbonate 
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links is avoided or retarded, restricting the polymerization. As the proton attributed 

to –COOCH2– cannot be detected for the polymers catalysed by acid organocatalysts.  

 

Figure 1.13.  1H NMR differences of the catalyst activity in the first 4 hours of polymerization. 
NMR carried out in CDCl3. 

As a conclusion, commercially available DMAP was chosen for the following 

polymerizations, being the most promising organocatalyst regarding molar mass and 

yield. In the Scheme 1.4 the mechanism of DMAP as nucleophilic activation is 

described. In presence of DMAP the carbonyl group will show a nucleophilic 

character. Thanks to the nucleophilic activation, an alcohol group can attack the 

carbonyl group, forming a carbonate group. 
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Scheme 1.4. Proposed nucleophilic activation mechanism of DMAP in the polymerization of 
polycarbonates. Adapted from ref.91a 

 

The set up that was used during the PhD was different. Therefore, the mole ratio was 

also adapted. The polymerizations were carried out in schlenk flasks. Consequently, 

the mole ratio of DMC:diol:DMAP was again calculated, being 2:1:0.01 the estimated 

ratio. Also, the reaction time and conditions were adapted. The first step last 4 h and 

the temperature was maintained at 130 °C, and for the second step, the temperature 

was increased up to 180 °C and the high vacuum was applied directly (<0.1 Pa). For 

the last step the polymerization was run overnight. 
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1.8 Motivation and objectives of the PhD thesis 

The continuous research on polymer electrolytes will lead us into a promising energy 

storage system. Up to now, PEO has been extensively explored polymer matrix in solid 

polymer electrolytes for lithium batteries. However, recently, polycarbonate-SPEs 

show considerable enhancements respect to PEO-SPEs, such as improved lithium 

conductivity and electrochemical stability. The main objective of this thesis is to 

evaluate and compare new polycarbonates’ structures as SPEs in lithium batteries. 

For this purpose, the versatile and simple polycondensation technique was chosen as 

synthetic tool to develop innovative polycarbonates. This synthetic method allowed 

to easily change the functionality of the diol and the properties of the polycarbonates. 

During our work, three different polycarbonate families have been successfully 

synthesized and characterized, which are described in 3 different chapters. 

Following the first chapter about the introduction of the polymer electrolytes, and 

once the best organocatalyst have been selected for the polymerization, in the 

second chapter, the versatility of polycondensation for the synthesis of linear aliphatic 

polycarbonates is demonstrated. Homopolymers and copolymers containing 

different methylene units are shown, and the effect of chemical structure and 

thermal properties in the electrochemical properties are discussed. This study is 

complemented by the evaluation of aliphatic homopolymers as solid polymer 

electrolytes in batteries. 

In chapter 3, a variety of poly(ethylene oxide carbonates) are described  as promising 

SPEs. On these polycarbonates, the number of ethylene oxide (EO) is varied between 

the carbonate groups. Thereby, the effect of EO units and carbonate groups on 

electrochemical properties was investigated. Moreover, the chemistry of the most 

promising poly(ethylene oxide carbonate) is modified to improve the mechanical 



Chapter 1 
 

42 
 

properties, in order to be able to further characterized the electrochemical 

properties. The promising PEO/PC polymers were further evaluated in lithium battery 

full cells. 

During the chapter 4, single ion conducting polymer electrolytes are designed by 

based on polycarbonates. In this chapter, a new single-ion conducting sulfonamide 

diol monomer is introduced in the PEO-PC backbone. This allowed a direct 

comparison of the electrochemical characterization, ion mobility and symmetric cell 

performance of single ion conducting polymer electrolyte with the analogous 

conventional SPE. 

In the last chapter, the most relevant conclusions are highlighted.  
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CHAPTER 2.  

Synthesis and characterization of 

aliphatic polycarbonates as solid 

polymer electrolytes 

 

2.1 Introduction 

Aliphatic polycarbonates based SPEs have shown promising ionic conductivity values, 

good electrochemical stability and high lithium transference number.1 In those works, 

the aliphatic carbonates have been synthesized mainly using two main routes: i) ring-

opening polymerization (ROP) of cyclic carbonates,1a, 2 and ii) copolymerization 

between CO2 and epoxides.3 Although these synthetic routes are successful, they 

suffer from some limitations and synthetic difficulties for chemical modifications. For 

instance, the chemical structure of the studied aliphatic polycarbonates as host 

materials is limited to the availability of cyclic monomers. In the case of ROP, usually 

trimethylene carbonate is employed, which leads to three-carbon spacer, and 
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regarding epoxide rings, induce two-carbon spacer. In order to study the effect of 

spacer between the carbonate units polycondensation technique has to be 

employed. 

Polycarbonates having ethylene oxide links between carbonate groups, synthesized 

through polycondensation, have been proposed by He and co-workers.4 In the same 

direction, in this chapter, we present the synthesis of a series of aliphatic 

polycarbonates by simple melt polycondensation employing organocatalysis.5 This 

synthetic method offers the possibility of designing great variety of aliphatic 

polycarbonates by adjusting the chemical structure of the commercially available 

aliphatic diol. Using this method, first of all, a series of eight different aliphatic 

polycarbonates are developed, ranging from 4 to 12 methylene units between the 

carbonate groups. Once the chemical structure and thermal properties are discussed, 

the possibilities of this synthetic method are explored; a series of copolymer families 

are carefully developed. Finally, how the number of methylene units and LiTFSI 

concentration affects the electrochemical properties of homopolymers are 

evaluated. 

2.2 Results and discussion  

2.2.1 Synthesis and characterization of aliphatic homopolycarbonates having 

between 4 and 12 methylene groups  

Aliphatic polycarbonates have gained great attention in the last decade in the area of 

solid polymer electrolytes. The low glass transition and high lithium cation mobility 

due to the weak coordination with carbonate groups has provoked the interest in this 

polymer family. Thus, following the polycondensation synthetic route depicted in 

Scheme 2.1, eight different aliphatic polycarbonates were obtained as light-brownish 
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solids, with a yield between 85 and 90 %. Thus, 1,4-butanediol, 1,5-pentanediol, 1,6-

hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1-12-

dodecanediol, led to aliphatic polycarbonates named as: P4C, P5C, P6C, P7C, P8C, 

P9C, P10C, P12C, respectively.  

Scheme 2.1. Polycondensation route to obtain eight aliphatic polycarbonates. 

 

Firstly, in order to confirm the chemical structure the aliphatic polycarbonates, they 

were characterized by NMR. Figure 2.1 shows a representative example of the 1H 

NMR and 13C NMR of P6C. The NMRs of the other aliphatic polycarbonates are shown 

in the Appendix Figure A1, A2. The 1H NMR spectrum shows signals at 4.12, 1.68 and 

1.41 ppm, which are attributed to the methylene protons of the polymer backbone. 

Furthermore, the small signal at 3.78 ppm assigned to methoxy groups, indicates that 

the polymer is terminated by methoxy functionality. The 13C NMR spectrum shows 

the signal of the carbonyl group at 155.34 ppm, confirming the chemical nature of 
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the carbonate polymer. Moreover, the signals at 67.78, 28.56 and 25.39 ppm are 

attributed to the different methylene carbons of the polymer backbone.  

 

Figure 2.1. Representative a) 1H NMR and b) 13C NMR spectra of poly(hexamethylene 
carbonate), P6C. 

    a) 1H NMR   

  b) 13C NMR
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Table 2.1 summarizes the absolute molar masses measured by GPC/SEC and thermal 

properties measured by DSC of the aliphatic polycarbonates. The molar masses 

determined by multiangle light-scattering detector, showed values between 8,000 

and 43,000 g mol-1, which are common values for polycondensation polymers.5 

Although there is not a clear reason, experimentally we observed that, the smaller 

the diol, the higher the molar mass of the aliphatic polycarbonates.  

Table 2.1. Results of the molar masses and thermal characterization of aliphatic 
polycarbonates. 

1 Molar masses measured by multiangle light scattering. a The data is recorded from the DSC 
measurements in the first heating scan. b The data recorded from the first cooling scan. c The 
data is recorded from the DSC measurements in the second heating scan. Heating and cooling 
scan rates: 20 K min-1 and 2 K min-1 respectively. d Data measured during the 3rd heating scan 
at 20 K min-1, after performing a ballistic cooling. 

Next, the crystallization and glass transition of the different aliphatic polycarbonates 

were characterized by Differencial Scanning Calorimetry (DSC). The DSC thermograms 

are shown in the Figure 2.2 and melting temperature (Tm), crystallization temperature 

(Tc) and glass transition temperature (Tg) were determined for all the samples. As a 

Homopolymers Mn (mol g-1)1 Đ Tg (°C)d Tm (°C)a Tm (°C)c Tc 

(°C)b 

ΔHm
 (J g-1) c 

P4C 43,300 1.6 -36 55 55 27 47 

P5C 27,700 1.6 -43 47 -- -- -- 

P6C 25,100 1.7 -50 51 46 40 44 

P7C 14,800 1.5 -50 47 43 34 57 

P8C 15,300 1.4 -54 57 56 42 40 

P9C 16,100 1.5 -48 51 51 42 82 

P10C 8,000 1.5 -37 57 56 48 83 

P12C 8,100 1.6 -37 63 64 58 99 
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first observation, in the first scan, all the aliphatic polycarbonates were 

semicrystalline polymers, showing melting temperatures between 47 and 63 °C. It is 

worth to note, that these polycarbonates show different behavior; most of the 

aliphatic polycarbonates used so far as host materials, were amorphous,1a whereas 

these are semicrystalline materials. Furthermore, it was noticed that the Tm is lower 

when the polymer has odd number of methylene units in the repeating unit, which is 

the case of P5C, P7C and P9C, if we compare with even ones P4C, P6C, P8C, P10C and 

P12C. Same observations have already been reported, which has been coined as odd-

even effect.6 The trend on Tm can be clearly noted, Figure 2.2b, which increases when 

increasing the methylene units. In summary, there is a change in the crystallization 

temperature with the number of CH2 on the repetitive unit: the polymers which have 

an even number of CH2 moieties are melting at higher temperature than the ones 

having odd number of CH2. Additionally, a higher crystallization temperature is 

observed, while number of CH2 is increased on the repetitive unit. According to the 

ΔHm the behavior is similar to the melting/crystallization temperatures; it is higher 

with the even ones and lower with odd ones, while the value is also increasing when 

the repeating unit has higher number of CH2. On the other hand, aliphatic 

polycarbonates showed glass transition temperatures between -36 and -54 °C, Table 

2.1. Tg is usually related to the CH2 moieties on the repetitive unit. As it has been 

previously reported,6 in our case also, the Tg slightly decreases with an increase in the 

CH2 number in the repeating unit, until the value 8 is reached, beyond in which the 

Tg starts to increase. 
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Figure 2.2. a) 2nd heating scan DSC traces of the aliphatic polycarbonates obtained at 20 K min-

1, and b) graphical representation comparing the relationship between the Tm value and the 
number of methylene groups of the 2nd heating scan at 20 K min-1. 

2.2.2 Potential use of polycondensation on the synthesis of copolymers  

The advantage of the versatile melt polycondensation was proved by the successful 

synthesis of a series of copolymers. The monomers, 1,4-butanediol, 1,7-heptanediol, 

and 1,12-dodecanediol were selected from the previous section.7 The homopolymers 

where chosen according to the melting temperature: 1,7-heptanediol characterized 

as the lowest melting temperature, and 1,4-butanediol and 1,12-dodecanediol 

defined as the highest melting temperatures of the family. The combination of 

different diols in the synthesis was successfully achieved following the same 

procedure as for the homopolymers. With this method a series of different 

copolymers poly(heptane-co-dodecane carbonate) P7C-P12C, poly(butane-co-

dodecane carbonate) P4C-P12C and poly(heptane-co-butane carbonate) P7C-P4C 

were synthesized (Scheme 2.2). 
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Scheme 2.2. Polycondensation of diols with dimethyl carbonate leading to random aliphatic 
polycarbonate copolymers investigated in this work. 

 

The chemical characterization of the copolymers was carried out by 1H NMR, 13C 

NMR, and GPC. The molar composition of the copolymers was determined 1H NMR 

technique. As an illustrative example, the obtained P4C-P7C random copolymer with 

an initial monomer feed of 60:40 mol% is depicted in Figure 2.3.  The peak attributed 

to 3 CH2 methylene units in the middle of the repetitive unit corresponding to 1,7-

heptanediol, integrates to 6 protons. In this way, the value of the rest of the areas 

will be estimated with respect to that area, and thereby, the mol ratio of the 

repetitive units can be easily calculated. All the synthesized copolymers were 

analysed using similar methodology and further information is provided in Appendix 

Figure A3, A4. Even if the initial feed was 60:40 mol% of 1,4-butanediol and 1,7-

heptanediol, respectively, the final composition of copolymer is determined by 

integrating the areas of 1H NMR spectrum, 66:44 mol%. The composition of the 24 

copolymers synthesized are shown in Table 2.2. Even if the initial monomer ratio and 

the final composition in the copolymer are not exactly the same, the final composition 

is related to the monomer feed. 
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Figure 2.3. 1H NMR of P4C-P7C 60:40 mol% in CDCl3.  

 

 

Table 2.2. Chemical characterization of copolymers: P7C-P12C, P4C-P12C and P4C-P7C. 

Initial monomer feed % 
Copolymer 

composition 
(1H NMR) 

GPC 
(PS standard) 

Randomnes 
(13C NMR) 

Heptane- 
diol 

Dodecane-
diol 

P7C P12C M
n
 Ð R 

95 05 95 5 17,000 1.8 0.64 
90 10 90 10 13,000 1. 7 0.65 
80 20 82 18 14,000 1.6 0.89 
70 30 67 33 9,200 1.9 1.13 
60 40 56 44 20,000 1,6 1.02 
50 50 43 57   13,000 1,7 0.98 
40 60 40 60 26,000 1,4 1.15 
20 80 16 84 19,000 1,6 0.79 
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Butane- 
diol 

Dodecane-
diol 

P4C P12C M
n
 Ð R 

95 05 94 6 11,000 1.6 0.77 
90 10 88 12 12,000 1.3 0.96 
85 15 82 18 6,000 1.7 1.09 
80 20 67 33 14,000 1.6 1.07 
60 40 55 45 11,000 1.5 1.09 
50 50 43 57 23,000 1.6 1.01 
40 60 34 66 15,000 1.6 1.06 
20 80 17 83 16,000 1.5 1.03 

Butane- 
diol 

Heptane- 
diol 

P4C P7C M
n
 Ð R 

95 05 92 8 11,000 1.5 0.71 
90 10 85 15 17,000 1.4 0.72 
80 20 75 25 22,000 1.6 0.76 
60 40 66 44 11,000 1.4 1.02 
40 60 33 67 11,000 1.6 1.04 
20 80 21 79 6,000 1.6 0.99 
10 90 10 90 18,000 1.6 0.92 
05 95 6 94 15,000 1.6 0.62 

 

The commoner distributions in the copolymer (random / blocky / alternate) is a 

fundamental factor, which will significantly affect the final properties such as 

crystallinity or biodegradation rate. The degree of randomness (R) of the copolymers 

is defined using the three different Equation 2.1, 2.2, and 2.3, and it is measured by 
13C NMR analysis.8 Figure 2.4 shows the 13C NMR of P4C-P7C 60:40 mol% structure. 

The signals around 155 and 67 ppm, which are split in three and four peaks, are 

attributed to the carbonyl and –OCH2– carbon resonance, respectively. A correct 

assignation of the peaks can lead to determine different dyad sequences of the 

copolymers, and consequently, the chemical structure of the copolymer. In this 

occasion, the split of carbonyl resonance is evaluated to determine the 

microstructure of the copolymer (Appendix Figure A5-A7). The degree of the 

randomness can be obtained applying the following equations: 
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R =  1
LnP4C

+  1
LnP7C

    Equation 2.1. 

LnP4C  =  fP4C−P7C+2fP4C−P4C
fP4C−P7C

     Equation 2.2. 

LnP7C  =  fP4C−P7C+2fP7C−P7C
fP4C−P7C

    Equation 2.3. 

where fP4C-P4C, fP4C-P47, and fP7C-P7C describe the dyads fraction, whereas LnP4C and LnP4C 

determines the number-average sequence length of the repetitive units.  

The carbonyl resonance is split in 3 peaks at 155.50, 155.42, and 155.33 ppm, 

corresponding to the dyads P7C-P7C (fP7C-P7C), P4C-P7C (fP4C-P7C), and P4C-P4C (fP4C-

P4C), respectively (Figure 2.4). Based on the relative integrated areas and using 

Equations 2.1-2.3, the microstructure of the copolymers is calculated. Considering 

that in block copolymers R equals to 0, in random copolymers R equals to 1, and in 

alternate copolymers R equals to 2, the microstructure of the copolymer is deduced 

(Table 2.2-2.3). This value in most of the cases is close to 1, which confirms the 

random nature of the samples. 



Chapter 2 
 

70 
 

 

 

Figure 2.4. 13C NMR analysis of P4C-P7C 60:40 mol% in CDCl3.  The signals of –OCOO- and -
OCOOCH2- zoomed, 155.60 – 1555.20 ppm and 68.4 – 66.8 ppm zoomed respectively. 

 

The molar mass has a direct effect on the thermal properties of the material. 

Therefore, the molar mass of the material was carefully determined by GPC in THF, 

using narrow PS standards. A similar Mn value between the copolymers was found, 

close to 15,000 g mol-1 (Table 2.1-2.3). The polydispersities obtained by GPC 

measurements are common values in polycondensation based synthesis, values 

between 1.3 and 2.0. These similar results allow to compare the properties of the 

different polycarbonates. 
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2.2.3 Electrochemical characterization of solid polymer electrolytes based on 

aliphatic homopolycarbonates  

The eight homopolymers were evaluated as matrix for polymer electrolytes by adding 

LiTFSI salt to them in order to have mobile ions. The Arrhenius plots of the synthesized 

polycarbonates containing 30 wt.% of LiTFSI are presented in Figure 2.5a. The lowest 

ionic conductivity at room temperature was showed by P4C, 4·10-7 S cm-1, and the 

highest value observed was 6·10-6 S cm-1 given by P7C. The rest of polycarbonates 

showed intermediate values following the series as: P7C > P12C > P9C = P6C > P10C 

> P8C > P5C = P4C. At 100 °C the SPEs based on P4C showed the lowest a value of 

9·10-5 S cm-1 and the highest value was obtained now for P12C with a value of 5·10-4 

S cm-1. Although there is a slight trend which indicates that the higher the number of 

methylene groups the higher the ionic conductivity, several exceptions to this rule 

are observed. Besides, molecular weight takes an important role in these results; 

P10C and P12C have the lowest value, showing one of the best values, which could 

be attributed to fewer entanglements. Moreover, these results are also linked to the 

DSC measurements, Figure 2.5b. Generally, the ionic conductivity is higher when the 

Tg is lower, except, where the melting point of the polymer is observed at low 

temperatures. All glass transitions of the SPEs were characterized, showing values of 

-51 °C for P4C, -36 °C/P5C, -52 °C/P6C, -54 °C/P7C, -44 °C/P8C, -41 °C/P9C, -59 

°C/P10C and -58 °C/P12C. Although there are some exceptions, some relationship 

between high ionic conductivity and low Tg can be drawn. On the other hand, the 

ionic conductivity of P8C, P10C and P12C at room temperature is affected by the 

semicrystallinity. 
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Figure 2.5. Aliphatic polycarbonates with 30 wt.% of LiTFSI. a) Arrhenius plot of solid polymer 
electrolytes, and b) 2nd scan DSC traces obtained at 20 K min-1. 

To further investigate the nature of the aliphatic polycarbonate and its influence on 

the ionic conductivity of the SPEs, several SPEs were formulated by different amounts 

of LiTFSI. The variation of the ionic conductivity, the coordination of lithium ion with 

a)

b)
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the carbonate group and, thereby the Tg were studied for three selected 

polycarbonates. For these experiments, we selected the aliphatic polycarbonates 

which showed the highest values of ionic conductivity such as P7C and P12C, and one 

of the lowest one, P5C. Solid polymer electrolytes based on P5C, P7C and P12C were 

blended with five salt concentrations: 20 wt.%, 30 wt.%, 40 wt.%, 60 wt.% and 80 

wt.% of LiTFSI. The temperature dependence Arrhenius plot of the ionic conductivity 

for P5C-LiTFSI, P7C-LiTFSI and P12C-LiTFSI are shown in Figure 2.6. 

As a first general observation, the highest conductivity values were obtained for P12C 

SPEs, then for P7C and the lowest for P5C. Two different effects of the salt addition 

were detected. In the case of P5C and P7C the maximum values of ionic conductivity 

were obtained SPEs containing between 20 and 30 wt.% of LiTFSI while by adding 

more salt, the ionic conductivity decreases. SPEs of P5C-20 wt.% LiTFSI and P7C-30 

wt.% LiTFSI, showed an ionic conductivity of 2·10-6 and 6·10-6 S cm-1 respectively at 

room temperature, Figure 2.6a,b. A possible explanation for this behavior was found 

in the DSC thermograms, showed in Figure 2.7a,b. In the cases of P5C-SPE and P7C-

SPE, the SPEs were amorphous electrolytes. In the case of P5C, beyond 20 and 30 

wt.%, the glass transition clearly increases, from -40 °C to -35 °C. In these samples, 

the salt was acting as a physical cross-linker, decreasing the ion mobility.  

On the other hand, in regards to P12C, the highest ionic conductivity is shown by the 

highest salt concentration, Figure 2.6c. The ionic conductivity values were 

significantly increased, from 3·10-7 S cm-1 with 20 wt.% of LiTFSI, until 1·10-4 S cm-1 

with 80 wt.% of LiTFSI at 25 °C. It is worth to note that the value of 1·10-4 S cm-1 at 

room temperature reported here, represents one of the highest conductivity values 

reported so far for polycarbonates, i.e. PEC-LiFSI (188 mol.%) shows ionic conductivity 

around 10-5 S cm-1.9 However, this polymer electrolyte cannot be considered as a free-
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standing membrane, due to the low molar mass of P12C (8,100 g mol-1), a viscous 

material is obtained. Moreover, DSC traces pronounced a different P12C-SPEs 

behavior respected to P5C-SPE and P7C-SPE. At low salt concentration, P12C-SPEs 

were semicrystalline, and by the addition of the salt the melting enthalpy is 

decreased, Figure 2.7c, and the glass transition of P12C-SPEs was not affected by the 

amount of salt. Herein, the trend of this ionic conductivity can be due to several 

factors: i) the decrease of crystallinity with the addition of salt can increase the ionic 

mobility, especially at room temperature; and ii) long hydrophobic spacers between 

the carbonyl groups can affect the solubility of the salt, thereby, the 

behavior/mechanism of ionic conductivity could be different. A similar trend with 

long hydrophobic spacers have been coined by Olmedo and co-workers.10 Moreover, 

in order to prove the effect of molar mass on electrochemical properties, P12C with 

23,900 g mol-1 was synthesized. As a result, a decreased on ionic conductivity was 

observed: with high molar mass P12C, 23,900 g mol-1, and 80 wt.% LiTFSI, the ionic 

conductivity decreases significantly, 3·10-6 S cm-1. 
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Figure 2.6. Ionic conductivity analysis of SPEs with several LiTFSI a) P5C, b) P7C, and c) P12C. 

a)

b)

c)
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Figure 2.7. DSC analysis of SPEs with several LiTFSI a) P5C, b) P7C, and c) P12C. 

a)

c)

b)



Synthesis and characterization of aliphatic polycarbonates as polymer electrolytes 
  

77 
 

Figure 2.8. FTIR-ATR analysis of SPEs with several LiTFSI a) P5C, b) P7C, and c) P12C. 

a)

b)

c)
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FTIR studies were performed to all polymers and polymer electrolytes. In previous 

works, the FTIR spectra demonstrated how lithium cation is able to coordinate with 

carbonyl group of the carbonate chemistry.9b, 11 The FTIR spectra of P5C, P7C, and 

P12C with different amounts of LiTFSI are shown in Figure 2.8. The neat 

homopolymers showed one single carbonyl stretching at 1740 cm-1. At low salt 

concentrations two vibrations of carbonyl group can be distinguished in all the SPEs; 

free carbonyl group at 1740 cm-1 and carbonyl group coordinated with the lithium 

cation around 1710 cm-1. However, at high salt concentrations, mainly the vibration 

of coordinated carbonyl group appears. This new band at lower wavenumber is 

associated to the coordination between the lithium cation and the polycarbonate 

backbone.  

Electrochemical stability window of P12C (80 wt.% LiTFSI) was evaluated by cyclic 

voltammetry at 60 °C, which is depicted on Figure 2.9. According to anodic limit of the 

polymer was found to be stable up to 4 V vs. Li+/Li. Besides, during the cathodic scan, 

reversible peaks at -0.33 and 0.16 vs. Li+/Li corresponds to lithium plating/stripping, 

confirming the capability of the polymer to transport lithium ions. Moreover, the two 

strong redox peaks at 0.79 and 1 V vs. Li+/Li in cathodic scan seem to be reversible, 

which could be attributed to some impurities at the electrode surface.   
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Figure 2.9. Electrochemical stability window obtained by CV at 0.5 mV s-1 for P12C, 80 wt.% 
LiTFSI at 60 °C. 

2.3 Conclusions 

In this chapter, we showed the versatility of polycondensation to obtain a variety of 

new aliphatic homopolymers and copolymers. We successfully proved the ability of 

this method to tune the polycarbonates chemical structure, by simply changing the 

structure of commercially available diol. In all the cases homogeneous molar masses 

(15,000 g mol-1) and pure polymers were developed. According to the DSC analysis 

the effect of chemical structure on thermal properties were discussed, where an odd-

even effect for the homopolymers was observed. We have to highlight that, these 

polycarbonates are semicrystalline materials, the opposite that was observed so far 

for poly(ethyelene carbonate) and poly(trimethylene carbonate). 

The use of aliphatic homopolymers was evaluated as host materials of solid polymer 

electrolytes by dissolving different LiTFSI concentrations in the matrix. The results 

indicate that structure of the polycarbonate, molar mass of the polymer and the 

amount of salt affects glass transition temperature, crystallinity, and consequently, 

ionic conductivity. A higher ionic conductivity was characterized for the 
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polycarbonate containing higher methylene units, being poly(dodecamethylene 

carbonate) with 80 wt.% of LiTFSI the highest, which displayed an excellent ionic 

conductivity value of 1·10-4 S cm-1 at room temperature and an electrochemical 

stability window up to 4 V. This high values of poly(dodecamethylene carbonate) can 

be attributed to the structure of the polymer; the addition of LiTFSI leads unique 

properties due to crystallinity and long hydrophobic spacers. Using other host 

polymers (few methylene units), the behavior was different; the addition of the salt 

leads to amorphous materials; high LiTFSI concentrations increases the glass 

transition temperature, and thereby, a lower ionic conductivity values were 

observed. 

Altogether, polycondensation strategy offers several advantages to engineer 

polycarbonates. The desired final properties can be adjusted by selecting the correct 

diol. Regarding to the electrochemical properties, the structure of the polycarbonate 

will influence on the trend of the ionic conductivity.  

2.4 Experimental part 

2.4.1 Materials 

Dry dimethyl carbonate (99+ %) and 4-dimethilaminopyridine (DMAP) (99%) were 

purchased from Across Organics. 1,4-butanediol (99+%), 1,5-pentanediol (98%), 1,7-

heptanediol (95%), 1,8-octanediol (99+%), 1,9-nonanediol (99%), 1,10-decanediol 

(99%) and 1,12-dodecandeiol (98%) were supplied by Across Organics and 1,6-

hexanediol (99%) by Sigma-Aldrich. All diols and DMAP were dried for 5 h prior to use. 

Lithium bis(trifluoromethane)sulfonimide (LiTFSI) (99.9%) was supplied from 

Solvionic. Tetrahydrofuran (GPC grade) was obtained from Scharlab, dry acetonitrile 

(ACN) (99.9%) from Across Organics, dichloromethane (DCM) (Cerfified AR for 

Analysis) and methanol (MeOH) (Certified AR for Analysis) from Fisher Scientific, 
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toluene (HPLC grace) from Sigma-Aldrich and deuterated chloroform (99.8%) from 

Deutero GmbH. 

2.4.2 Aliphatic homopolymer synthesis 

The chemical route used in this work was similar to the one previously reported.5 

Essentially, DMC, diol and the organocatalyst, DMAP, were added into a schlenk flask, 

where the flask was connected to the vacuum line. A 2:1:0.01 molar ratio of 

DMC:diol:DMAP was used. P6C: DMC (8 mL, 95 mmol, 2 eq.), 1,6-hexanediol (5.6 g, 

47.5 mmol, 1 eq), DMAP (57.9 mg, 0.475 mmol, 0.01 eq). The temperature was raised 

and kept isothermally at 130 °C for 4 h. Then again, the temperature was increased 

until 180 °C and high vacuum was applied. The reaction was left overnight. The high 

vacuum was necessary in the second step to remove the MeOH produced during the 

first step and to evaporate the excess DMC added to the flask. All the polymers were 

dissolved in dichloromethane and purified by precipitation in cold methanol, 

obtaining a yield around 85 % in all the cases. The polymers were characterized by 1H 

NMR and 13C NMR. The following example is given for P6C. 1H NMR (CDCl3 500 MHz):  

ẟ = 4.12 (t, OCOOCH2, 4H), 1.68 (m, OCOOCH2CH2, 4 H) and 1.41 (m, 

OCOOCH2CH2CH2, 4 H). 13C NMR (CDCl3 500 MHz): ẟ = 155.34 (OCOO), 67.78 

(OCOOCH2), 28.56 (OCOOCH2CH2), 25.39 (OCOOCH2CH2CH2). 

2.4.3 Copolymer synthesis 

As in the case of homopolymers, in the first step, dried reagents were introduced in 

a 50 mL of schlenk, flask which was placed in an oil bath at 130 °C, over 4 h. During 

the second step the temperature was raised at 180 °C and high vacuum was applied 

overnight. Using this methodology 3 different polycarbonates families were 

synthesized, changing the structure of diols and the mol ratio of diols. For all 

polycarbonates a mol ratio of DMC:diol:DMAP 2:1:0.01 was used. For instance, P4C-



Chapter 2 
 

82 
 

P7C 60:40 mol% was synthesized using the following amounts of reactants: DMC (8 

mL, 95 mmol, 2 eq.), diols (1 eq.): 1,4-butanediol (2.57 g, 28.48 mmol, 0.60 eq.), 1,7-

heptanediol (2.51 g, 18.99 mmol, 0.4 eq), DMAP (57.9 mg, 0.475 mmol, 0.01 eq.). 

Once the reaction was stopped, the polymers were dissolved in dichloromethane and 

powdered in cold methanol, yield above 85 %. The disappearance of the monomers 

was confirmed by 1H NMR. The final composition of the polymer was characterized 

by 1H NMR (CDCl3, 400 MHz), as an example P4C:P7C, δ= 4.15 (t, OCOOCH2, 4H 

(P4C)), 4.11 (t, OCOOCH2, 4H (P7C)), 1.77 (t, OCOOCH2CH2, 4H (P4C)), 1.66 (t, 

OCOOCH2CH2, 4H (P7C)), 1.36 (t, OCOOCH2CH2CH2CH2CH2CH2CH2OCOO, 6H (P7C)). 

The yield of the polymerization was determined by gravimetric (yield = 85 %). 

2.4.4 Preparation of solid polymer electrolytes  

Solid polymer electrolytes were prepared by solvent casting method from solution in 

anhydrous ACN (0.3 g of polymer/salt in 0.5 mL dry ACN). The solutions were directly 

casted onto the stainless steel spacers. First, ACN was removed under vacuum at 

room temperature during 24 h, and then after, the evaporation was completed inside 

of an argon filled glovebox, increasing the temperature up to 60 °C and applying 

vacuum for another 24 h. The samples were sandwiched between two stainless steel 

(SS) electrodes (average surface area = 2.01 cm2) in a coin cell CR2016 assembled in 

an argon-filled glove box (M-Braun). 

To perform the electrochemical stability window study the polymer electrolyte, P12C 

80 wt.% LiTFSI, was prepared directly casting on stainless steel or copper disk, the 

solvent was removed as it has been explained previosly.  

2.4.5 Characterization methods 
1H and 13C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker 

spectrometers at 500 MHz at room temperature, using deuterated chloroform. 
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The absolute molar masses of homopolycarbonates were analyzed by SEC/MALS/RI. 

The equipment was composed of a LC20 pump (Shimadzu) coupled to a DAWN 

Heleos multiangle (18 angles) light scattering laser photometer equipped with an He–

Ne laser (λ = 658 nm) and an Optilab Rex differential refractometer (λ = 658 nm),  (all 

from Wyatt Technology Corp., USA). Separation was carried out using three columns 

in series (Styragel HR2, HR4, and HR6; with pore sizes from 10 2 to 10 6 Å). Filtered 

toluene was used for the calibration of the 90° scattering intensity. The detectors at 

angles other than 90° in the MALS instrument were normalized to the 90° detector 

using a standard (PS 28 770 g mol− 1; Polymer Labs), which is small enough to produce 

isotropic scattering, at a flow rate of THF through the detectors of 1 mL min−1. In 

addition, the same standard and conditions were used to perform the alignment 

(interdetector delay volume) between concentration and light-scattering detectors 

and the band-broadening correction for the sample dilution between detectors. The 

analyses were performed at 35 °C and THF was used as a mobile phase at a flow rate 

of 1 mL min-1. ∂n/∂C was measured being around 0.06 mg mL-1 for all the 

homopolymers. The absolute molar mass was calculated from the RI/MALS data using 

the Debye plot (with first-order Zimm formalism) by using the ASTRA software version 

6.0.3 (Wyatt Technology, USA).  

Besides, molar mass distributions of the copolymers were measured by size exclusion 

chromatography (SEC). Samples were diluted in THF (GPC grade) to a concentration 

of approximately 5 mg mL−1 and filtered through a 0.45 mm nylon filter. The SEC set 

up consisted of a pump (LC-20A, Shimadzu), an autosampler (Waters 717), a 

differential refractometer (Waters 2410) and three columns in series (Styragel HR2, 

HR4, and HR6 with pore sizes ranging from 102 to 106 Å). Chromatograms were 

obtained in THF (GPC grade) at 35 °C using a flow rate of 1 mL min−1. The equipment 
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was calibrated using narrow polystyrene standards ranging from 595 to 3.95 · 10−6 g 

mol−1 (5th order universal calibration). 

A Perkin Elmer 8500 DSC equipped with an Intracooler III was employed in this study 

to characterize thermal properties. All the experiments were performed under 

ultrapure nitrogen flow and the instrument was calibrated with dodecane, indium 

and tin standards. Samples of 5 mg were used. Measurements were performed by 

placing the samples in sealed aluminum pans. The samples were first heated at a rate 

of 20 K min-1, from 25 °C to 100 °C and they were left 3 min at 100 °C to avoid the 

influence of thermal history, in order to be able to compare the 

crystallization/melting temperature afterwards. Subsequently, it was cooled down to 

-80 °C at a rate of 2 K min-1. Once again, it was heated up until 100 °C at 20 K min-1 

after waiting during 3 min at -80 °C. In order to determine the glass transition 

temperature, it was performed a ballistic cooling at the data was recorded during the 

heating scan at 20 K min-1. 

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

measurements (ATR-FTIR) were conducted on a Bruker ALPHA Spectrometer.  

All electrochemical measurements were carried out on a VMP3 (Biologic, Claix, 

France) potentiostat. Ionic conductivity of the polymer electrolytes was determined 

by AC impedance spectroscopy over the frequency range from 100 mHz to 1 MHz 

with an amplitude of 10 mV. The conductivities were analyzed in a temperature range 

down from 100 °C to 25 °C.  

Electrochemical stability window was determined applying cyclic voltammetry (CV) of 

the polymer electrolyte at 60 °C. The anodic limit was evaluated between open circuit 

potential (OCV) and 4.5 V versus Li+/Li at a constant rate of 0.5 m Vs-1. On the other 
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hand, the anodic scan was determined between OCV and -0.5 V versus Li+/Li using 

the same scan rate. The polymer electrolyte was sandwiched between a metal lithium 

disk and a working electrode. Metallic lithium served as a reference and counter 

electrode. Besides, stainless steel disk was used as working electrode during anodic 

stability study, whereas copper disks for cathodic measurements. The samples were 

sealed in CR2032 coin cells. 
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CHAPTER 3.  

Synthesis and characterization of 

poly(ethylene oxide carbonate) as 

solid polymer electrolytes 

 

3.1 Introduction 

Since the first report about ionic conductivity of salts in poly(ethylene oxide) (PEO) by 

Wright in 1973,1 several generations of PEO-SPEs for lithium batteries have been 

explored, due to its ability to solvate different types of salt. However, limited ionic 

conductivity and low lithium transference number of PEO led the batteries to operate 

at 70 °C. In the last decades, several attempts can be found in the literature in order 

to improve the PEO based SPEs properties; such as the incorporation of different 

types of salt,2 chemical functionalization,3 single-ion conducting polyelectrolytes.4 

block copolymers,4a, 5 introduction of inorganic nanoparticles  or nanofillers,6 or corss-

linked PEO networks.7   
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The main limitation of lithium conduction in PEO-SPE performance come from the 

high crystallinity and strong coordination between ethylene oxide (EO) units and 

lithium cation.8 Alternative to this type of host polymer, polycarbonates have been 

proposed; where usually crystallinity is absent and the weak coordination between 

carbonate and lithium promotes the lithium conduction. However, if carbonate 

groups and ethylene oxide (EO) units are alternated along the backbone, the 

crystallization of the EO units could be restricted, strong interation between ion-

polymer can be interrupted, and additionally, low glass transition should be 

achieved.9 

Thus, He and co-workers proposed the synthesis of two polycarbonates having two 

and three EO links via polycondensation,10 showing promising properties, an ionic 

conductivities in the range of 10-5 S cm-1 at room temperature after addition of 

cellulose nanofibers. In another studies, Tominaga et. al. reported the 

copolymerization between CO2 and different epoxies having ethylene carbonate and 

EO links in the final polymer.9b, 11
 In this example, the polycarbonates having few EO 

units and carbonate groups showed an ionic conductivity in the range of 10-4 S cm-1 

at 60 °C with high LiFSI content (120 mol%). Following this promising combination, in 

this chapter we further explored the combination of the two lithium friendly chemical 

groups: ethylene oxide and carbonate. We envision to provide three properties to the 

SPEs: i) a decrease on glass transition respect to polycarbonate due to the 

incorporation of EO units, and thereby, an enhancement on chain mobility and the 

ionic conductivity;12 ii) a restriction of crystalline EO phase formation by the inlclusion 

of carbonate groups; and iii) a favourable coordination between lithium cation and 

the carbonate group, which will promote the lithium conductivity, and therefore the 

lithium transfer number at room temperature. 
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Thus, in this chapter, we synthesized a series of eight different poly(ethylene 

oxide)/carbonate, PEO-PC, with different proportion of EO and carbonate groups by 

the polycondensation between poly(ethylene oxide) end-capped diol and dimetyl 

carbonate. The aim of this work, is to optimize the composition of the PEO-PC to 

investigate how the chemical structure and lithium salt concentration affects the 

electrochemical properties. Therefore, the ammount of  EO units was varied from 2 

to 45 between each carbonate group. However, the mechanical properties of this 

linear and low glass transition polymer needed to be improved. Thus, the mechanical 

properties of the best candidate SPE were improved by engineering a PEO-PC 

copolymer including a pendant methacrylic cross-linkable unit. The electrochemical 

properties and lithium diffusion of these free-standing PEO-PC films were evaluated. 

Finally, the transport ability of lithium was tested in a lithium symmetric cell. Due to 

its promising properties, preliminary tests of these SPEs in a solid-state cell Lithium-

SPE-NMC were carried out. 

3.2 Results and discussion 

3.2.1 Synthesis and physicochemical characterization of poly(ethylene oxide 

carbonates) (PEOX-PC) 

In the previous chapter we tested the versatile synthetic method of melt 

polycondensation to synthesize functional aliphatic polycarbonates. In this chapter, 

different low molecular weight poly(ethylene oxide) diols were used as monomers 

with dimethyl carbonate in the polycondensation process. The synthetic route 

towards poly(ethylene oxide carbonates) polymers is depicted in Scheme 3.1. It shows 

the synthesis of eight different polymers, containing between 2 and 45 EO units 

between each carbonate links. This synthetic approach benefits from the commercial 

availability of poly(ethylene glycol) diols of different lengths. The different PEOx-PC 
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polymers were synthesized in 2 steps reaction involving high temperature and 

vacuum. Using this method, PEOx-PC copolymers have been synthesized with 

different number of EO units (between 2 and 45): PEO2-PC, PEO3-PC, PEO4-PC, PEO6-

PC, PEO13-PC, PEO22-PC, PEO34-PC and PEO45-PC.  

Scheme 3.1. Synthetic route to different poly(ethylene oxide)/carbonates (PEOx-PC).  

 

Figure 3.1a shows the 1H NMR spectrum of PEO2-PC. The signal at 4.29 ppm is 

attributed to the protons next to the carbonate group, whereas the signal at 3.73 

ppm is assigned to the protons next to the oxygen. 1H NMR and 13C NMR spectra of 

the all the polymers are shown in Appendix Figure A8-A9. Both spectra confirmed the 

formation of the PEOx-PC polymers showing the expected peaks of the methylene 

groups close to the carbonates and the disappearance of the corresponding 

monomer signals. As expected, the intensity of the carbonyl signal of the carbonate 

group in 13C NMR spectra (Appendix Figure A9) varies depending on the composition 

of the PEOx-PC polymers and the theoretical ratio between carbonate group and EO 

units. More clearly, the presence of the carbonate group was confirmed by FTIR-ATR 

with the high intensity band appearing at 1740 cm-1, Figure 3.1b. 

DMAP

1st step  130 oC, 4 h / 7 h

2nd step 180 oC, vacuum, overnight

PEOX-PC

MeOH
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Figure 3.1. a) 1H NMR spectrum of PEO2-PC polymer, and b) FTIR-ATR of ethylene glycol (the 
monomer) and the resulting PEO2-PC polymer.  

Several polycarbonates were designed having different EO lengths vs. carbonate 

ratios in order to investigate the structure-properties relationship, Table 3.1. The 

molar masses of the PEOx-PC polymers were characterized by size exclusion 

chromatography having a light scattering detector. The polymers showed values of 
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molar masses in the range of 47,600 and 8,300 g mol-1, and dispersities around 1.5. 

It is worth noting that the obtained values of molar masses and dispersities are typical 

of polycondensation processes. 

Table 3.1. Physical properties of PEOX-PC. 

Polymer Mn (g mol-1) Đ Tg (°C)d Tc (°C)a Tm (°C)b ΔHm
 b (J g-1) 

PEO2-PC 47,600 1.4 -21 -- -- -- 

PEO3-PC 35,800 1.6 -36 -- -- -- 

PEO4-PC 32,400 1.4 -40 8 (cold 

T c ) 
52 59 

PEO6-PC 21,900 1.5 -53 -- -- -- 

PEO13-PC 21,900 1.6 -49 13 29 81 

PEO22-PC 14,700 1.5 -52 30 38 113 

PEO34-PC 22,500 1.7 -55 37 46 112 

PEO45-PC 8,300 1.5 -55 39 50 147 

a The data were recorded from the DSC measurements in the first cooling scan. b The data 
were recorded from the DSC measurements in the second heating scan. Cooling and heating 
scan rates: 2 K min-1 and 20 K min-1 respectively. d Data measured during the 3rd heating scan 
at 20 K min-1, after performing fast cooling scan at 50 K min-1. 

Differential scanning calorimetry (DSC) was used to determine the thermal properties 

of polycarbonates, which are summarized in Table 3.1 and shown in Figure 3.2. Not, 

surprisingly the glass transition temperature (Tg) decreases significantly with higher 

amount of the EO units between the carbonate groups. This same behaviour, where 

EO induces to decrease the Tg, have been reported for other polycarbonates having 

EO units.12 The highest Tg is observed in the case of the short PEO2-PC, -21 °C and the 

lowest for long PEO45-PC, -55 °C. On the other hand, polycarbonates containing few 

EO groups do not presences any crystallinity, PEO2-PC, PEO3-PC and PEO6-PC. 

Besides, PEO4-PC shows a crystallization process during the heating scan, which is 

known as a cold crystallization. In the case of higher length of EO units, the polymers 
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show crystallinity during the cooling scan, and the crystallization temperature (Tc) 

increases with the PEO length from 8 to 39 °C. As a result, the melting temperature 

(Tm) of the PEOx-PC polymers increases when the EO content is higher showing values 

between 29 and 52 °C. Meanwhile, the enthalpy of the melting (ΔHm) also increases 

with the number of EO groups, demonstrating that more crystalline EO phase in the 

case of higher amount of EO units. 

Figure 3.2. DSC of PEOX-PC. DSC traces obtained in the 2nd heating scan at 20 K min-1. 
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3.2.1.1 Ionic conductivity of poly(ethylene oxide carbonates) having LiTFSI as 

solid polymer electrolytes 

In this work we have incorporated carbonate links within the poly(ethylene oxide) 

chains to improve PEO properties as a solid polymer electrolyte. Thus, in order to 

verify this hypothesis, we first have compared the ionic conductivity of the precursor 

PEO34 diol and the resulting PEO34-PC formulated as SPEs by mixing with 30 wt.% 

LiTFSI. As it can be seen in Figure 3.3, the ionic conductivity is improved with the 

addition of few carbonate groups in the polymeric chain, especially at room 

temperature which is in good accordance to our expectations. The value given by the 

low molecular wegiht precursor diol, PEO34, is 1.4·10-5 S cm-1, whereas the PEO34-PC 

shows a value of 3.7·10-5 S cm-1. 

 

Figure 3.3. Arrhenius plot of ionic conductivity for poly(ethylene glycol) (1500 g mol-1), PEO34, 
and  the corresponding polycarbonate PEO34-PC (22,500 g mol-1). 
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Once we confirmed the beneficial effect of the carbonate group, the relationship 

between ionic conductivity and thermal properties of the eight different PEOx-PC 

polymers was investigated. The ionic conductivity values are represented in Arrhenius 

plot (Figure 3.4a) of polycarbonates containing 30 wt.% LiTFSI, which are measured 

by impedance spectroscopy in the temperature interval between 25 and 100 °C. In 

all cases the expected typical Vogel-Tammann-Fulcher (VTF) behaviour is observed. 

We have to point out that most of them are soft solid and sticky materials. The ionic 

conductivity generally increases with the content of EO units between carbonate 

groups. Figure 3.4b shows the DSC curves of the different solid polymer electrolytes. 

As it can be seen, the measurements showed that the lowest Tg value of -48 °C was 

consistent with the polymer showing the highest ionic conductivity, PEO34-PC. On the 

contrary, the electrolyte assigned with highest Tg value of -32 °C, showed the lowest 

ionic conductivity, PEO2-PC. In addition, the crystalline domains were suppressed or 

decreased with the addition of 30 wt.% of LiTFSI, only PEO45-PC was a semicrystalline 

material, which may explain why this material does not show the highest conductivity 

value at 25 °C. Thus, it seems that the ionic conductivity is compromised between the 

amounts of EO units and carbonates groups. It seems that both characters in the 

polymer have a crucial role, being both of them fundamental for the improvement of 

ionic conductivity. However, EO units brings crystallinity to system, restricting the 

ionic conductivity, thus, there is an optimum number of EO units, which is 34. From 

these results, we can suspect to increase the crystallinity of the polymer electrolytes 

with higher amount of EO units, more than 45. To highlight, the highest ionic 

conductivity value at 25 °C was observed for the case of PEO34-PC showing a value of 

3.7·10-5 S cm-1. 
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Figure 3.4. Analysis of PEOx-PC with 30 wt.% LiTFSI: a) Arrhenius plot of ionic conductivity, and 
b) DSC traces recorded in the 2nd heating scan at 20 K min-1. 

Next, we investigated the effect of the ratio between polymer and salt concentration. 

For this purpose a series of SPEs were formulated varying LiTFSI amount on PEO6-PC 

and PEO34-PC, Figure 3.5 and Figure 3.6 respectively. In both cases, when the salt 

content is varied the tendency is similar and the highest ionic conductivity values are 

a)

b)
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obtained for the SPEs with 30 wt.% lithium salt. In regards to PEO6-PC, all polymer 

electrolytes are amorphous, and thus, the ionic conductivity is only restricted by the 

glass transition (Figure 3.5). For this system also, the increase of lithium salt provokes 

an increase in Tg which limits the ion dynamics. For this polymer electrolyte family, 

30 wt.% LiTFSI (Li/O mole ratio of 6.7) is the SPE with the highest ionic conductivity, 

showing a value of 2·10-5 S cm-1 at room temperature.  

Figure 3.5. DSC of all PEO6-PC with different LiTFSI content: 20 wt.%, 30 wt.%, 40 wt.%, 60 
wt.%, 80 wt.%. a) Arrhenius plots of ionic conductivity, and b) DSC traces of the corresponding 
polycarbonates obtained in the 2nd heating scan at 20 K min-1. 

a)

b)
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In the case of PEO34-PC, with low salt concentration (20 wt.% LiTFSI) the ion 

movement is restricted at low temperature by the crystallinity of the polymer, which 

is shown in the DSC curves of Figure 3.6b. Apparently, once the salt concentration 

increases, the salt suppresses the crystallinity and the Tg increases. Thus, at high 

contents of lithium salt, the dynamics are limited by the increased glass transition of 

the SPE, being more similar behavior to PEO-SPE. In order to confirm this trend, we 

calculate the activation energy using VTF Equation 3.1, Table 3.2. Where A is the 

pseudo activation energy, σ0
 is the conductivity pre-exponential factor and T0 is 

referred to as the Vogel temperature, the glass transition in ideal glasses, however, 

usually it is estimated to Tg-50. The values obtained from VTF equation are in good 

accordance to the ionic conductivity trend; the lowest activation energies (2.49-1.19 

KJ mol-1) are shown by the SPEs giving the highest ionic conductivities. It can be 

concluded that the activation energy is limited by the glass transition, higher 

activation energy (7.11-14.49 kJ mol-1) is needed by the SPE with higher glass 

transition. The optimum mole ratio of 1:16 (Equation 3.2), corresponding to 30 wt.% 

of LiTFSI for PEO34-PC, shows an ionic conductivity of 3.7·10-5 S cm-1 at room 

temperature. PEO34-PC:SPE having 20 wt.% LiTFSI shows a technologically useful high 

value of 2.4·10-4 S cm-1 at 70 °C, which is similar to PEO34-PC with 30 wt.% LiTFSI at 

the same temperature, 3.5·10-4 S cm-1, Figure 3.6a.  

It is worth noting that these values are comparable to those PEO2-PC (3.81 S cm-1) 

and PEO3-PC (1.12·10-1 S cm-1) with the cellulose nonwoven substrate, previously 

reported.10 However, these SPEs do not have any substrate to improve the 

mechanical and electrochemical properties. 
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Figure 3.6. Analysis of PEO34-PC with different wt % LiTFSI : 20 wt.%, 30 wt.%, 40 wt.%, 60 
wt.% and 80 wt.%. a) Arrhenius plots of ionic conductivity, and b) DSC traces of the 
corresponding polycarbonates obtained in the 2nd heating scan at 20 K min-1. 

𝜎𝜎 =  𝜎𝜎0 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝐴𝐴

𝑇𝑇−𝑇𝑇0
�   Equation 3.1. Vogel–Tamman–Fulcher (VTF) equation.13 

 

a)

b)
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Table 3.2. Activation energies calculated from VTF equation. 

PEO34-PC 20 wt.% 
LiTFSI 

30 wt.% 
LiTFSI 

40 wt.% 
LiTFSI 

60 wt.% 
LiTFSI 

80 wt.% 
LiTFSI 

EA (kJ mol-1) 2.49 1.33 1.19 7.11 14.49 

 

𝑂𝑂
𝐿𝐿𝐿𝐿
𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚 = 𝑛𝑛𝑛𝑛 ×  

𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑀𝑀𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑔𝑔𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠
𝑀𝑀𝑤𝑤𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠

   Eqaution 3.2. O/Li mole ratio calculation. 

3.2.1.2 Chemical characterization of PEO34-PC by FTIR and solid state NMR 

It is well known that the lithium ions coordinate with carbonyl groups, while ethylene 

oxide groups chelate and trap lithium ions.14 Thus, a higher ionic conductivity and 

lithium transference number is usually measured when carbonyl groups are on the 

system.9b Figure 3.7 shows the FTIR spectra of the previous SPEs (PEO34-PC) in order 

to investigate this coordination between the lithium and the carbonate group. 

Without any salt in the media a sharp band is observed between 1740-1745 cm-1.  

However, when the salt LiTFSI is incorporated to the SPE, the stretching vibration 

mode for the carbonyl group becomes broad and it shifts to lower wavenumbers 

(1725 cm-1). This shift in stretching frequency occurs due to the coordination between 

the carbonyl group and the lithium cation, which is more pronounced with higher 

LiTFSI concentrations.   
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Figure 3.7. FTIR-ATR study on the coordination between Li cation and carbonyl groups  with 
different wt.% LiTFSI. 

To get a further insight into the ion dynamics in these SPEs 7Li NMR and 19F NMR 

studies were performed for PEO34-PC in order to study the local motion as a function 

of salt concentration. Figure 3.8 shows the 7Li and 19F spectrum of PEO34-PC based 

polymer electrolytes at different LiTFSI concentrations, ranging between 20 wt.% and 

80 wt.% LiTFSI. Owing to solid and sticky nature of the solid polymer electrolytes, 

there was some difficulty to get the sample uniformly distributed within the 5 mm 

NMR tubes, thus, resulting in magnetic field shimming having to be carried out on 

each sample individually. This will affect the line-shapes and potentially cause some 

errors in the absolute values of the observed chemical shifts. If we observed to Figure 

3.8, in the 80 wt.% LiTFSI sample, a second 7Li and 19F signal appears at a higher shift, 

respect to the other samples. Although we considered that this signal could arise from 

the shimming effects, we measured different longitudinal relaxation times (see Figure 

3.9) which indicate that they indeed represent two different lithium sites.  
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Figure 3.8. a) 7Li NMR spectrum of PEO34-PC at 343.15 K of different wt.% LiTFSI samples, and 
b) 19F NMR spectrum of PEO34-PC at 343.15 K of different wt.% LiTFSI samples. 

 

Figure 3.9. The 7Li longitudinal relaxation rates (R1) for PEO34-PC of different wt.% LiTFSI 
samples. The lines are fitted by the BPP model.  

The 7Li relaxation rates (R1 = T1
−1) for the different wt.% LiTFSI samples are shown in 

Figure 3.9. These data were fitted using the Bloembergen, Purcell and Pound (BPP)15 

model for nuclear spin relaxation. We expect that in these polymers the quadrupolar 

a) b)
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interaction will be the dominant mechanism for 7Li longitudinal relaxation, hence, we 

use:16 

1
𝑇𝑇1

=
4𝜋𝜋〈𝐶𝐶𝑄𝑄

2〉

50
� 𝜏𝜏𝑐𝑐
1+𝜔𝜔0

2𝜏𝜏𝑐𝑐2
+ 4𝜏𝜏𝑐𝑐

1+𝜔𝜔0
2𝜏𝜏𝑐𝑐2
� Equation 3.3. Bloembergen, Purcell and Pound (BPP).15  

CQ is the quadrupolar coupling constant, which is sensitive to the symmetry of the 

local Li+ environment (specifically the electric field gradient), and τc is the correlation 

time. The latter mechanism can be assumed to be thermally activated and thus will 

show Arrhenius behavior: 

𝜏𝜏𝑐𝑐 = 𝜏𝜏0𝑒𝑒𝑒𝑒𝑒𝑒 �𝐸𝐸𝐴𝐴
𝑅𝑅𝑇𝑇
�  Equation 3.4.  Arrhenius equation. 

where EA is the activation energy, R is the gas constant, τ0 is the correlation time at 

infinite temperature. The parameters extracted from the relaxation measurements 

using this model are shown in Table 3.3 together with the τc value calculated for 343 

K. 

Table 3.3. The parameters extracted from the 7Li T1 NMR relaxation measurements by using 
Equation 3.3. 

PEO34-PC CQ (kHz) τc (ns) at 343.15 K EA (kJ mol-1)a 

20 wt.% LiTFSI 25.21±0.46 1.47±0.03 37.73±0.69 

30 wt.% LiTFSI 25.52±0.47 2.52±0.05 27.53±0.51 

40 wt.% LiTFSI 24.51±0.45 3.12±0.06 24.49±0.45 

60 wt.% LiTFSI 22.38±0.41 3.82±0.07 17.20±0.32 

80 wt.% LiTFSI (1st signal) 23.67±0.44 3.20±0.06 16.59±0.31 

80 wt.% LiTFSI (2nd signal) 21.98±0.40 2.63±0.05 17.68±0.33 
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The activation energies extracted from the T1 data show that the lower LiTFSI 

concentrations have EA approaching 40 kJ mol-1 whereas at concentrations higher 

than 40 wt.% LiTFSI the value is almost halved. This reflects faster/favorable 

reorientational dynamics around the Li+ at higher concentrations. The τc values were 

determined as a function of temperature using the T1 fitting parameters and are 

plotted in Figure 3.10. At lower temperatures, the τc for the 20 wt.% LiTFSI sample is 

longer than at higher concentrations, but the trend is changed at higher 

temperatures with the 20 wt.% LiTFSI sample overall having the shortest τc at 

temperatures above 310 K which suggests faster dynamics, while 60 wt.% has the 

longest τc over almost the entire temperature range which suggests slower dynamics.    

 

Figure 3.10. τc  plots with temperatures for different PEO34-PC samples. 

The decrease in activation energies in longitudinal relaxation measurements can be 

explained as motion of lithium at nanosecond timescale get favour at higher lithium 

concentrations. This decrease with increasing salt concentration may occur as a result 

of an increase in ion clustering, which can be facilitated by an exchange in the 
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coordination environment, which is in good agreement with the new signal of 7Li and 
19F NMR spectrum. 

At this timescale, the relaxation mechanism is expected to be the fluctuation of the 

coordinating or near neighbour species such as the polymer or the anions. Hence, 

this activation energy lowering could be explained from fluctuations in ion-ion 

interactions. To our knowledge, the vehicular mechanism is one of the mechanisms 

to provide the ionic conductivity for the polymer electrolyte system,17 as many 

authors have observed the coupling of the polymer chain mobility and the ionic 

conductivity.18 Therefore, we believe that at high salt concentration the lithium 

motion can relate to lithium vibration/fluctuation or lithium hopping, changing the 

mechanism respect to low salt concentrations, from vehicular to structural 

rearrangement. This has been observed through simulations in related ionomer19 and 

ionic liquid systems and correlates with a change in mechanism of dynamics from 

vehicular to structural rearrangement.20 In our system, when we increase the salt 

concentration the glass transition is increased, therefore, the lower activation energy 

at 80 wt.% LiTFSI can come from the structural rearrangement.  

The CQs are comparable for 20 wt.% LiTFSI and 30 wt.% LiTFSI, and then are seen to 

decrease with increasing LiTFSI content, suggesting an increase in the average 

symmetry of the lithium environments most likely due to a different coordination 

environment.  

The appearance of another signal in 7Li spectrum for 80 wt.% LiTFSI sample can be 

explained by the existence of Li clusters (Li bounded by TFSI-anions) at high LiTFSI 

concentration, owing to the appearance of one signal when the LiTFSI concentration 

is lower than the 80 wt.%. Thus, we expect that the appearance of the new signal 

(named as 1st signal) in highly concentrated samples can be assigned for LiTFSI 
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clusters. The correlation time is slightly higher for the 1st signal than the 2nd one, 

suggesting slower local dynamics for the LiTFSI clusters or a more restricted local 

environment with fewer fluctuations.  

The results of 7Li NMR and ionic conductivity are fundamental for a better 

understanding of the systems; from the NMR analysis we can determine how fast the 

local motions are in the electrolyte, and the results measured by electrochemical 

impedance spectroscopy, are analyzing the overall longer range ion motions in the 

system. From both of them, several environments on the electrolyte can be 

determined. At high salt content electrolytes, PEO34-PC 80 wt.% LiTFSI, interestingly, 

2 different signals are observed, which have a different CQ and Ea from the T1 

relaxation measurements and thus, it reflects two different environments in the 

system. Compared to the high salt content electrolytes, the correlation times 

determined from the T1 fitting, in case of the lower LiTFSI concentrations, are higher, 

meaning faster local motions. These low salt content electrolytes do not show two 

different signals on the 7Li and 19F NMR.  

3.2.1.3 Lithium diffusion coefficient measurements by NMR  

The 7Li diffusion coefficients are fitted to the Stejskal-Tanner equation. γ is the 

gyromagnetic ration of the interest nucleus, D is the diffusion coefficients (m2 s-1), D 

is the gradient pulse duration (s), ẟ is the diffusion duration (s) and g is the gradient 

strength (G m-1).  S is the signal intensity observed at g gradient strength while S(0) is 

the maximum signal intensity. The 7Li diffusion coefficients measurements are 

performed at 70°C, it is observed that it decreases with increasing LiTFSI content from 

20 wt.% to 60 wt.%. Then they increase to their highest values for the first and the 

second signal at 80 wt.%, (see Figure 3.11 for details). This observation is consistent 

with the ionic conductivity for LiTFSI concentrations ranging from 20 to 60 wt.%, but 
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not for the case of 80 wt.%. The highest diffusion values corresponds to the first signal 

of for 80 wt.% LiTFSI. These results can be explained by the basic difference between 

diffusion and ionic conductivity measurements. For the diffusion measurements we 

observe a mean diffusion value for every mobile species containing 7Li. These species 

may consist of the Li coordinated (through Li…O interaction), clusters of Li with TFSI- 

anions, and can potentially include neutral clusters. Moreover, it is possible that the 

majority of the Li+ is undergoing slow translational diffusion with coefficient values 

too slow to measure by NMR. For the ionic conductivity measurement, only charged 

species are taken into account which means the Li+ itself and (Li)n-(TFSI)m
 (n≠m). 

𝑆𝑆
𝑆𝑆(0)

= exp [−𝛾𝛾2𝐷𝐷𝛿𝛿2 �∆ − 1
3
𝛿𝛿� 𝑔𝑔2    Equation 3.5. Stejskal-Tanner equation.21 

 

Figure 3.11. Diffusion measurements of different PEO34-PC containing different wt.% LiTFSI. 
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3.2.2 Synthesis and physicochemical characterization of cross-linked 

polycarbonate: PEO34-PC 10 wt.% MA 

Based on the previous work, we observed that both structures (ethylene oxide and 

carbonate groups) play an important role in the electrochemical behaviour. Specially, 

the polycarbonate with 34 EO units gave reasonable improved values. However, the 

low molar mass of the polymer and the plasticizing ability of LiTFSI led in poor 

mechanical properties. Therefore, next, we have incorporated cross-linkable 

methacrylic groups in order to developed a free standing SPE, based on 

polycarbonate containing 34 EO units, Scheme 3.2a. Poly(ethylene glycol) (Mn= 1500 

g mol-1) and methacrylic based diol (MA) were copolymerized using dimethyl 

carbonate via polycondensation. Different copolymers were synthesized having 5, 10 

and 20 wt.% of methacrylic diol respect to the overall diol were introduced to the 

formulation, which are named as PEO34-PC 5 wt.% MA, PEO34-PC 10 wt.% MA and 

PEO34-PC 20 wt.% MA, respectively. The polymerization was organocatalysed by 

DMAP, in a two steps reaction as previously explained: 1st step: 130 °C, 7 h and 2nd 

step: 170 °C and high vacuum, overnight. However, the temperature of the second 

step was maintained in 170 °C, as metacrylic diol started to cross-link at 180 °C, even 

if few ppm of hydroquinone were added. The chemical structures of the 

polycarbonates were confirmed by 1H NMR, which is shown in Appendix Figure A10, 

indicating the presence of methacrylic pendant units. The molar mass of the 

methacrylic functional poly(ethylene oxide carbonate) before cross-linking was 

measured by GPC based on narrow PS standards, showing a Mn value of 20,000 g mol-

1
. The functional methacrylic poly(ethylene oxide carbonate) was further cross-linked 

by ultraviolet light in the presence of a photoinitiator, Scheme 3.2b. The polymer, 

targeted LiTFSI amount, and the photoinitiator were dissolved in ACN. Once the 

solvent was evaporated, the dry films were exposed under ultraviolet light. After UV 
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treatment a free standing solid membrane was obtained as shown in the picture, 

Scheme 3.2b. 

Scheme 3.2. a) Synthetic route of cross-linkable methacrylic functional PEO34-PC, and b) 
Schematic representation of the post-polymerization, via ultraviolet light. 

 

After ultraviolet treatment, the PEO34-PC copolymer became insoluble in common 

organic solvents. Furthermore, FTIR-ATR was used to investigate the chemical nature 

of the cross-linking reaction. It has to be mentioned that this analysis was carried out 

before the addition of LiTFSI. FTIR-ATR analysis of PEO34-PC 10 wt.% MA, Figure 3.12a, 

confirmed the disappearance of double bonds, in 1717 cm-1 and, besides, new bands 

were described; 1680 cm-1, 720 cm-1, and 700 cm-1, corroborating the formation of 

UV irradiation

a)   PEO34-PC 10 wt% MA

b)  Ultraviolet irradiation of  PEO34-PC 10 wt% MA
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the cross-linked network due to the reactivity of the methacrylic units. Additionally, 

we performed DSC analysis to study the effect of the cross-linked network on the 

thermal properties of PEO34-PC 10 wt.% MA, as it can be observed, Figure 3.12b. The 

glass transition of the non-cross-linked to the cross-linked network was compared, 

which was significantly increased; the glass transition of the non cross-linked polymer 

was found to be -55 °C, whereas the glass transition of cross-linked polymer 

electrolyte was -45 °C. Besides, the enthalpy of melting is decreased once the 

polymer is cross-linked (from 134 J g-1 to 110 J g-1). 

Figure 3.12. a) FTIR-ATR analysis, and b) DSC traces of the 2nd scan at 20 K min-1 of PEO34-PC 
10 wt.% MA before and after cross-linking.  

a)

b)
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The cross-linked architecture of PEO34-PC 10 wt.% MA containing 30 wt.% of LiTFSI 

was confirmed by the study of the viscoelastic properties through AR-G2 rheometer, 

at 30 °C, 70 °C and 100 °C. Figure 3.13 depicts the double-logarithmic plots of G' and 

G'' vs. angular frequency of PEO34-PC 10 wt.% MA containing 30 wt.% of LiTFSI. As it 

can be observed from the figure, the storage modulus of the material is above the 

loss modulus at all temperatures, which means that the polymer is in the rubbery 

plateau region, confirming a three-dimensional network. Nevertheless, G’ and G’’ 

values depends on frequency and temperature, which could be argued with the 

remaining methacrylic groups after the post-polymerization.  All in all, the rheological 

experiments confirmed the solid nature of the free standing SPE membrane even at 

high temperatures. Additionally, the thermal stability was studied by 

thermogravimetic analysis, Figure 3.14. The onset temperature (Tonset) for PEO34-PC 

10 wt.% MA containing 30 wt.% of LiTFSI was found to be 275 °C.  

 

Figure 3.13. a) Storage and viscous modulus (G’ and G’’, respectively) of cross-linked PEO34-
PC 10 wt.% MA containing 30 wt.% LiTFSI at 30 °C, 70 °C and 100 °C. 
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Figure 3.14. Thermogravimetric analysis of PEO34-PC 10 wt.% MA containing 30 wt.% LiTFSI. 

3.2.2.1 Electrochemical characterization of the cross-linked PEO34-PC 

First, the effect of methacrylic content in the copolymer was evaluated, which should 

affect the cross-linking density of SPEs, and therefore on ionic conductivity. Thus, 

PEO34-PC copolymers with 5, 10 and 20 wt.% of methacrylic monomer and 30 wt.% 

of LiTFSI were investigated. Even though 5 wt.% methacrylic monomer gives slightly 

higher ionic conductivity (3.6·10-5 S cm-1 at room temperature), 10 wt.% of 

methacrylic diol was observed to be the minimum amount to succeed in a free 

standing SPE. Besides, the ionic conductivity lightly decreases from 3.2·10-5 S cm-1 

with 10 wt.% MA to 9.4·10-6 S cm-1 with the addition of 20 wt.% of MA at room 

temperature. Therefore, the polymer with 10 wt.% of methacrylic monomer was 

chosen for further studies. 

Second, electrochemical properties were investigated varying the LiTFSI 

concentrations in the polymer with 10 wt.% methacrylic diol, with the aim of 

determining the optimum composition for testing in lithium-based battery. The salt 

concentration was varied from 15 wt.% to 80 wt.% (Figure 3.15a). The highest 
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conductivity value of 3.2·10-5 S cm-1 at room temperature is obtained with 30 wt.% of 

LiTFSI, equivalent to an O:Li mole ratio of 1:16. We have to remark, that this value is 

not compromised by the cross-linked network, compared with 3.7·10-5 S cm-1 for the 

non-cross-linked PEO34-PC at ambient temperature, that we previously determined. 

Besides, the ionic conductivity showed at 70 °C is 1.3·10-3 S cm-1, which is higher than 

for the non-crosslinked PEO34-PC (3.5·10-4 S cm-1), could be attributed to the higher 

amount of carbonate groups present on the system than PEO34-PC. The trend with 

cross-linked SPEs is comparable to the case of non-cross-linked ones; when the salt 

concentration is lower than 30 wt.% of LiTFSI, the crystallinity is pronounced, as 

shown in DSC analysis, Figure 3.15b, and these crystalline domains restrict the ion 

conduction. Therefore, the ion movement is increased while the crystallinity is 

suppressed, the case of 30 wt.% of LiTFSI. Besides, if the salt concentration is 

increased more than 30 wt.%, the ionic conductivity decreases due to the increase 

on the glass transition temperature. With the high amount of LiTFSI, 80 wt.%, the 

glass transition increases more than 10 °C respect to 30 wt.% of LiTFSI, which 

provokes that the ionic conductivity decreases one order of magnitude. This ionic 

conductivity behaviour has more similarity to PEO based SPE rather than 

polycarbonate SPE. In the later case, a higher salt concentration, generally increases 

the ionic conductivity.22  
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Figure 3.15. a) Ionic conductivities and b) DSC measurements of cross-linked PEO34-PC 10 wt.% 
MA with different LiTFSI concentration. DSC recorded during the second heating scan at 20 K 
min-1. 

Then, we measured the lithium transference number at 70 °C using Bruce and Vincent 

method in order to see if carbonate group is involved in any electrochemical property. 

a)

b)
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The LiTFSI concentration was varied between 15 wt.% to 50 wt.% to study the effect 

of salt concentration on the transference number, the results are shown in Figure 

3.16a. The lithium transference number varies with the LiTFSI composition, showing 

the highest value of 0.59 for the SPE containing 30 wt.% of LiTFSI (experimental 

results in Figure 3.16b). This value compares favourably with PEO-based SPE with 30 

wt.% LiTFSI, which is close to 0.17. This clearly shows the previous observations of 

other authors on the favourable effect of carbonate groups on the lithium 

transference number;14 the carbonyl group of carbonate helps to dissociate the 

LiTFSI, leading to a favourable lithium mobility. This optimum value of 30 wt.% LiTFSI 

can be discussed with the ideal balance of Li cation and the amount of carbonate 

groups on the system: i) a lower concentration of salt than 30 wt.% LiTFSI, can lead in 

free carbonate groups and also, in lower cations in the systems; and ii) a system with 

higher LiTFSI concentration, not all the Li cations can be coordinated by carbonate 

moieties and they will coordinate with EO units. Therefore, the lithium transference 

number will decrease.  

Using this lithium transference values and the total ionic conductivity, we could 

calculate lithium cation conductivity at 70 °C, Figure 3.16a. As expected, SPE 

containing 30 wt.% of LiTFSI presents the highest lithium ionic conductivity among all 

the samples, 7.4·10-4 S cm-1, hence this composition was further investigated. 
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Figure 3.16. a) Lithium transference number in black ( ) and lithium ionic conductivity in red 
(∎) of different cross-linked PEO34-PC 10 wt.% MA membranes at 70 °C. b) EIS and CA 
experiments of PEO34-PC 10 wt.% MA with 30 wt.% LiTFSI. 

7Li solid-state NMR experiments were used to investigate the lithium cation 

environment and dynamics, and their dependence on the LiTFSI salt content. Pulsed 

field gradient diffusion measurements were used to measure the 7Li self-diffusion 

coefficients, Figure 3.17. These data show a clear trend of decreasing lithium cation 

diffusion coefficients as the salt content is increased. Faster timescale, shorter-range 

dynamics were also probed via 7Li T1 relaxation measurements, which were fitted 

using the same method as outlined in our previous section.23 The resulting graphics 

a)

b)
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and parameters are shown in Figure 3.18 and Table 3.4, again as a function of the 

LiTFSI content. The quadrupolar coupling constant CQ gives an insight into the 

symmetry of the Li+ coordination environment (via the local electric field gradient), 

and the decreasing value as LiTFSI content increases reflects the Li+ environment 

becoming slightly more symmetric on average. Alongside this trend, the correlation 

time τc increases while the activation energy for this motional process decreases with 

increasing LiTFSI concentration. The former implies a decrease in the local dynamics 

around the Li+ while the latter implies that the local dynamics become more 

energetically favourable. This apparent contradiction would be best explained by a 

change in the local coordination environment as the LiTFSI content increases, which 

is also what the changing CQ values imply. This is most likely the effect of the 

competing coordination of the Li+ by the TFSI anions and the ether oxygens of the 

polymer. These results can lead to understand why lithium ionic conductivity is 

decreased with the increase of LiTFSI concentration. Different environments can 

affect on a higher/lower lithium ionic conductivity when LiTFSI concentration is 

varied. 

Figure 3.17. 7Li diffusion coefficients as a function of wt.% LiTFSI measured using pulsed field 
gradient NMR at 70 °C. 
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Figure 3.18. a) Fits of the 7Li T1 relaxation data and b) temperature dependent 7Li motional 
correlation times.  

Table 3.4. 7Li quadrupolar coupling constants (CQ), motional correlation times (τc) and 
activation energies (EA) extracted from the fitting of the NMR T1 relaxation times. 

Samples CQ (kHz) τc (ns) at 343.15 K EA (kJ mol-1) 

20 wt.% LiTFSI 26.59±0.49 2.17±0.04 28.83±0.53 

30 wt.% LiTFSI 25.64±0.47 2.53±0.05 26.02±0.48 

40 wt.% LiTFSI 24.83±0.46 2.52±0.05 26.90±0.49 

50 wt.% LiTFSI 23.14±0.43 4.25±0.08 20.24±0.37 

a)

b)
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The electrochemical stability of the SPE based on PEO34-PC 10 wt.% MA containing 

30 wt.% of LiTFSI was investigated at a scan rate of 0.5 mV s-1 at 70 °C, Figure 3.19. 

The anodic limit of the SPE was 4.9 V vs. Li+/Li. During the cathodic scan, we observed 

a peak corresponding to the lithium plating process between 0 and -0.5 V vs. Li+/Li 

and the peak corresponding to the reverse process – stripping of lithium – between 

0 and 0.6 V vs. Li+/Li. The wide electrochemical stability, up to 4.9 V, opens 

opportunities to employ the membrane in different Lithium battery technologies. 

 

Figure 3.19. Electrochemical stability of cross-linked PEO34-PC 10 wt.% MA containing 30 wt.% 
LiTFSI. Cyclic voltammetry was carried out at 0.5 mV s-1 at 70 °C. 

3.2.2.2 Cross-linked PEO34-PC-SPE in Lithium symmetric cells 

To further confirm the viability of the SPE in Li-based cells, lithium symmetric cells 

were assembled and cycled at different current densities at 70 °C, Figure 3.20. At 0.1 

mA cm-2, the cell over-potential is around 10-50 mV which is comparable with state-

of-the-art polymer electrolytes commonly used in the Li-based symmetric cells.24 

Increasing the applied current density from 0.1 mA cm-2 to 0.5 mA cm-2, the 

overpotential of the symmetric cell also increased to 200 mV. The increased cell over-

potential is due to the kinetics limitation of the Li charge transfer in the SPE and/or 
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the solid electrolyte interphase (SEI) layer of Li/electrolyte. The impedance 

spectroscopy showed no significant change on the resistance of the SEI layer 

(corresponds to the first semicircle at high frequencies) with the variation on current 

density at the Li stripping/plating process. Besides, the second semicircle that is 

observed in Nyquist plot at low frequencies can be related to the mass transfer 

process. Even if a plateau cannot be observed due to the TFSI anion, we can say that 

this SPE can sustain high current densities. 

Figure 3.20. Lithium symmetric cell of cross-linked PEO34-PC 10 wt.% MA containing 30 wt.% 
LiTFSI. a) The evolution of overpotential with different current densities, b) Nyquist plot after 
applying different current densities, and c) Scheme of symmetric cell assembly. 

a)

b) c)
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3.2.2.3 Full solid-state rechargeable battery Lithium-SPE-NMC-cell based on 

cross-linked PEO34-PC  

Due to the promising results in the previous section, the cross-linked  PEO34-PC was 

tested in Nickel-maganese-cobalt (NMC) (111) cathode, Figure 3.21. NMC is a high 

voltage cathode, and as PEO34-PC shows stability up to 4.9 V, it may be suitable for 

this high voltage cathodes. For this preliminary results, the formulation of the SPE 

was slightly modified. The linear PEO34-PC was employed, with the combination of 14 

wt.% LiTFSI. In order to improve the mechanical properties, 5 wt.% of poly(ethylene 

glycol)diacryalte was used. The battery cycling (4.2 V-2.8 V) at C/20 was performed 

at 50 °C and 70 °C. As expected, a better capacities were obtained at higher 

temperature reaching almost 200 mAh g-1 and 160 mAh g-1 at 70 °C and 50 °C 

respectively at the begining, where a higher ionic conductivity is estimated. Even if, 

there is a capacity faiding, in the case of cell cycled at 70 °C the capacity retention is 

about 77 %, whereas in the cased of 50 °C, it is about 60 %, in both cases good 

efficiencies are determined. Although the battery can be optimize to improve the 

performance, these values for a all solid state battery are promising. 
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Figure 3.21. NMC-cell performance at 70 °C and 50 °C, using PEO34-PC based SPE.  

3.3 Conclusions 

In this chapter, we investigated the combination between ethylene oxide and 

carbonate units on several polymers on its thermal and electrochemical properties. 

Using melt polycondensation technique, a series of PEO2-45-PC were synthesized. The 

PEO-PC copolymers were formulated as solid polymer electrolytes (SPE) by adding 

different amounts of bis(trifluoromethane)sulfonimide lithium salt to the synthesized 

polymer. The optimum SPEs, showing the lowest glass transition temperature, was 

based on the poly(ethylene oxide)/carbonate having a high amount (34) of EO units 

between carbonate links. This polymer is semicrystalline, but the crystallinity is 

avoided by the addition of the LiTFSI salt. The highest ionic conductivity value of 

3.7·10-5 S cm-1 at room temperature was observed in the case of 30 wt.% LiTFSI. This 

ionic conductivity behaviors of these SPEs are similar to PEO-SPEs, where the glass 
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transition increases with the salt content. However, FTIR spectra revealed the 

favorable coordination between the carbonate groups and the lithium cation.  

Therefore, in order to further investigate the role of EO units and carbonate groups, 

free-standing solid polymer electrolyte was developed by incorporating 10 wt.% of 

methacrylic monomer into the poly(ethylene oxide34 carbonate) main chain. These 

membranes showed promising electrochemical values, such as high lithium ionic 

conductivity, transference number and electrochemical stability window of 7.4·10-4 S 

cm-1, 0.59 and 4.9 V respectively, at 70 °C with 30 wt.% of LiTFSI. In non cross-linked 

and cross-linked SPEs, solid 7Li NMR analysis showed a change on coordination 

environment while LiTFSI concentration is varied, which can be correlated with 

lithium diffusion and ionic conductivity trends. Finally, it was shown  the ability of 

PEO-PC SPE to transport lithium in a lithium symmetric cell at 70 °C. Furthermore, a 

full solid-state lithium-SPE-NMC-cell was built showing promising preliminary results. 

3.4 Experimental part 

3.4.1 Materials 

Dry dimethyl carbonate (99+ %) (DMC) and 4-dimethylaminopyridine (DMAP) (99%) 

were purchased from Across Organics. The diol diethylene glycol, hexaethylene glycol 

and poly(ethylene glycol) (Mn 1,500 g mol-1) were supplied by Fisher Scientific and 

the diols triethylene glycol, tetraethylene glycol, poly(ethylene glycol) (Mn 600 g mol-

1), poly(ethylene glycol) (Mn 1,000 g mol-1), and poly(ethylene glycol) (Mn 2,000 g mol-

1) by Merck. All diols were dried by azeotropic distillation in toluene for 8 h and DMAP 

was dried applying vacuum for 4 h at room temperature prior to use. Lithium 

bis(trifluoromethane)sulfonimide (LiTFSI) (99.9%) was supplied from Solvionic. 

Tetrahydrofuran (GPC grade) was obtained from Scharlab, acetonitrile (HPLC grade), 
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diethyl ether (Extra Pure, SLR, Stabilised with BHT), methanol (MeOH) (Certified AR 

for Analysis) and dichloromethane (DCM) (Cerfified AR for Analysis) from Fisher 

Scientific, toluene (HPLC grace) from Merck and deuterated chloroform (99.8%) from 

Deutero GmbH.  

3.4.2 Synthesis of linear poly(ethylene oxide carbonate)s 

Poly(ethylene oxide) diols were polymerized by melt polycondensation with dimethyl 

carbonate as reported in the previous chapter. In a typical experiment, a 2:1:0.01 

mole ratio of DMC:diol:DMAP was used for the diols containing between 2-6 EO units: 

diethylene glycol, triethylene glycol, tetraethylene glycol, hexaethylene glycol; PEO2-

PC, PEO3-PC, PEO4-PC, PEO6-PC. On the other hand, for diols containing higher 

amount of EO, PEG600, PEG1000, PEG1500, PEG2000, a mole ratio of 8:1:0.01 was 

required for a reasonable molar mass, as it was studied by our group; PEO13-PC, 

PEO22-PC, PEO34-PC and PEO45-PC.25 For the first set of polymers, the 1st step last 4 h 

at 130 °C, whereas for the second ones, 7 hours of the 1st step was required. However, 

in both cases the, second step was the same: 180 °C and vacuum, overnight. Once 

the polymerization was completed, all polymers were dissolved in dichloromethane 

and purified by precipitation in methanol the ones with 2-6 EO units, and in cold 

diethyl ether the other serie. The complete disappearance of the monomers was 

determined by 1H NMR, 13C NMR and FTIR-ATR. The following example is given for 

PEO6-PC: 1H NMR (CDCl3, 500 MHz): ẟ = 4.28 (t, OCOOCH2, 4H), 3.72 (t, 

OCOOCH2CH2, 4H), 3.64 (s, OCH2CH2O, 16H). 13C NMR (CDCl3, 125 MHz): ẟ = 155.14 

(OCOO), 70.63 (OCH2), 68.88 (OCOOCH2CH2), 67.05 (OCOCH2CH2). 
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3.4.3 Preparation of poly(ethylene oxide carbonates) based polymer 

electrolytes 

Solid polymer electrolytes containing different amount of PEOx-PC polymer matrix 

and LiTFSI salt were prepared by solvent casting method from solution in acetonitrile 

(ACN) (0.4 g of polymer/salt in 0.5 mL dry ACN) directly casted onto the stainless steel 

(SS) spacers. First, ACN was removed under vacuum at room temperature during 24 

h, and then, the evaporation was completed in an oven inside an argon filled 

glovebox, increasing the temperature up to 60 °C and applying vacuum for 24 h. 

3.4.4 Synthesis of cross-linkable poly(ethylene oxide34 carbonate)  

The synthesis of UV-curable polycarbonate was performed using the same synthetic 

process as previously described. The following amounts of reactants were used in the 

synthesis: DMC ( 1.5 mL, 17.84 mmol, 8 eq), diols (1 eq): PEG1500 (2 g, 1.33 mmol, 

0.6 eq) and bis-MPA methacrylic (MA) (0.22 g, 0.9 mmol, 0.4 eq.), and DMAP (2.7 mg, 

0.0223 mmol), 0.01 eq). 2,2-bis(hydroxymethyl)-propionic acid (MA) was synthesized 

in three steps following previously described work.26 10 wt.% of UV curable monomer 

respect to the overall diol used was incorporated. It was necessary to add few ppm 

of hydroquinone in order to prevent the polymerization from the double bonds 

during the polycondensation steps. During the first 7 hours of the polycondensation, 

the reaction was maintained at 130 °C, and later, the temperature was increased up 

to 170 °C and high vacuum was applied overnight. Once the reaction was stopped, 

the polymer was dissolved in dichloromethane and powdered in cold diethyl ether, 

obtaining 80 % of yield. The disappearance of the monomers was confirmed by 1H 

NMR. Moreover, the double bonds of the methacrylic diol could be determined by 1H 

NMR. In the final polymer, 23 mol % of MA was achieved. The polymer was 

characterized by 1H NMR (CDCl3, 400 MHz): δ= 6.13, 5.57 (s, C=CH2, 2H), 4.45-4.29 

(d, (OCOOCH2C, 4H), 4.28 (t, OCOOCH2CH2, 4H), 3.82 (t, OCOCH2CH2OCO, 4H), 3.71 
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(t, OCOOCH2CH2, 4H), 3.64 (s, OCOCH2CH2OCH2CH2, 128H), 1.95 (s, OCOOCH2CCH3, 

3H), 1.25 (s, H2C=CCH3, 3H). The yield of the polymerization was determined by 

gravimetry (yield = 70 %). 

3.4.5 Preparation of free standing polymer electrolytes 

For the preparation of ultraviolet cross-linked SPEs, the polymer, the salt (LiTFSI), and 

the UV initiator (2-hydroxy-2-methylpropiophenone (1 wt.% respect to the initial MA 

amount)), were dissolved in ACN. In each SPE a specific LiTFSI concentration was 

added: 0 wt.%, 15 wt.%, 20 wt.%, 25 wt.% 30 wt.%, 40 wt.%, 50 wt.% and 80 wt.%. 

Once the solutions were stirred during 10 minutes, they were cast onto a silicon mold. 

The solvent was removed at room temperature and later by applying high vacuum. 

Finally, the films were passed 3 times from a xenon arc lamp (Helios Italquartz, 45 

mW cm-2). Before performing any electrochemical characterization, the SPEs were 

first dried under vacuum at room temperature during 24 h, and after, the evaporation 

was completed in an oven inside an argon-filled glove box, increasing the 

temperature up to 60 °C and applying vacuum for 24 h. 

3.4.6 Preparation of solid polymer electrolytes for full-cell 

Free standing polymer electrolytes were prepared as follow: 1 g of polymer and 

0.1665 g LiTFSI were dissolved in 0.2 mL methanol. 5 wt.% of poly(ethylene glycol) 

diacrylate (PEGDA) (Mn 575) and photoinitiator (1 wt.% vs. PEGDA), 2-hydroxy-2-

methylpropiophenone were added to the solution. After stirring the solution during 

10 minutes, first, the solvent was slowly evaporated at room temperature and the 

evaporation of the solvent was completed applying high vacuum at room 

temperature overnight. Finally, the membranes were passed 3 times from xenon arc 

lamp (Helios Italquartz, 45 mW cm-2). Before performing any electrochemical 

characterization, the SPEs were first dried under vacuum at room temperature during 
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24 h, and after, it was completed increasing the temperature up to 60 °C and applying 

vacuum for 24 h. 

3.4.7 Cathode preparation 

The cathode preparation was carried out inside of an argon filled glove box. The 

cathode was composed by NMC (111) : C65 : polymer electrolyte (PEO34-PC 14wt.% 

LiTFSI 5 wt.% PEGDA) (60:10:30 wt.%). 0.33 g of cathode were mixed in 26 drops of 

NMP. The cathode was left stirring overnight and the next day, it was casted on top 

of carbon coated aluminium foil using a Dr. Blade (250 mm). The NMP evaporation 

was ensured by first drying it in the oven during 24 h at room temperature and later, 

by increasing the temperature until 50 °C for another 24 hours under vacuum. The 

NMC loading were 0.164 mAh cm-2 and 0.266 mAh cm-2 at 70 °C and 50 °C 

respectively. 

3.4.8 Characterization methods 

1H and 13C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker 

spectrometers at 500 MHz at room temperature, using deuterated chloroform. 

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

measurements (ATR-FTIR) were conducted on a Bruker ALPHA Spectrometer.  

The absolute molar masses of poly(ethylene oxide carbonates) were analyzed by 

SEC/MALS/RI. The equipment was composed of a LC20 pump (Shimadzu) coupled to 

a DAWN Heleos multiangle (18 angles) light scattering laser photometer equipped 

with an He–Ne laser (λ = 658 nm) and an Optilab Rex differential refractometer (λ = 

658 nm),  (all from Wyatt Technology Corp., USA). Separation was carried out using 

three columns in series (Styragel HR2, HR4, and HR6; with pore sizes from 102 to 106 

Å). Filtered toluene was used for the calibration of the 90° scattering intensity. The 
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detectors at angles other than 90° in the MALS instrument were normalized to the 

90° detector using a standard (PS 28 770 g mol− 1; Polymer Labs), which is small 

enough to produce isotropic scattering, at a flow rate of THF through the detectors 

of 1 mL min−1. In addition, the same standard and conditions were used to perform 

the alignment (interdetector delay volume) between concentration and light-

scattering detectors and the band-broadening correction for the sample dilution 

between detectors. The analyses were performed at 35 °C and THF was used as a 

mobile phase at a flow rate of 1 mL min-1. ∂n/∂C was measured for PEO2-PC, PEO3-

PC, PEO4-PC and PEO6-PC being around 0.06 mg mL-1. On the other hand, for the 

materials containing higher amount of ethylene oxide units, the ∂n/∂C of PEO was 

used (0.136). The absolute molar mass was calculated from the RI/MALS data using 

the Debye plot (with first-order Zimm formalism) by using the ASTRA software version 

6.0.3 (Wyatt Technology, USA).  

Besides, molar mass distributions of PEO34-PC 10wt.% MA was measured by size 

exclusion chromatography (SEC). The sample was diluted in THF (GPC grade) to a 

concentration of approximately 5 mg mL−1 and filtered through a 0.45 mm nylon filter. 

The SEC set up consisted of a pump (LC-20A, Shimadzu), an autosampler (Waters 

717), a differential refractometer (Waters 2410) and three columns in series (Styragel 

HR2, HR4, and HR6 with pore sizes ranging from 102 to 106 Å). Chromatograms were 

obtained in THF (GPC grade) at 35 °C using a flow rate of 1 mL min−1. The equipment 

was calibrated using narrow polystyrene standards ranging from 595 to 3.95 · 10−6 g 

mol−1 (5th order universal calibration). 

Differential Scanning Calorimetry (DSC) was performed on a DSC Q2000 differential 

calorimeter (TA Instruments). All the experiments were performed under ultrapure 

nitrogen flow. Samples of 5 mg were used. Measurements were performed by placing 
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the samples in sealed aluminum pans. The samples were first heated at a rate of 20 

K min-1, from 25 °C to 100 °C and they were left 3 min at 100 °C to avoid the influence 

of thermal history, in order to be able to compare the crystallization/melting 

temperature afterwards. Subsequently, the sample was cooled down to -70 °C at a 

rate of 2 K min-1 and subsequently heated to 100 °C at 20 K min-1 after waiting at -80 

°C during 3 min. In order to determine the glass transition temperature, it was 

performed a fast cooling (50 K min-1) at the data was recorded during the heating 

scan at 20 K min-1. 

The mechanical properties were analysed by rheological measurements using an AR-

G2 rheometer (TA Instruments) with parallel geometric plates (diameter 12 mm). 

Angular frequency sweeps were performed in the range of 62 < ω < 6-2 rad s-1 at 

different temperatures (70 °C, and 100 °C) in the linear viscoelastic regime. The time 

required for a frequency sweep was 5 min. Each measurement was repeated at least 

two times observing a good reproducibility. On the other hand, the thermogravimetry 

analysis was performed at N2 atmosphere at 10 K min-1 in Q500 TA Instruments. 

Ionic conductivity (σ) of the polymer electrolytes was determined by AC impedance 

spectroscopy over the frequency range from 100 mHz to 1 MHz with an amplitude of 

10 mV in a VMP3 (Biologic, Claix, France) potentiostat. The conductivities were 

analyzed in a temperature range during the cooling scan from 100 °C to 25 °C. All cells 

were assembled in an argon filled glove box (M-Braun), avoiding any water and 

oxygen. The polymer electrolytes were sandwiched between two stainless steel (SS) 

electrodes. In all the cases the average surface area of the electrode is 2.01 cm2. The 

polycarbonates were closed in CR2016 coin cells. Lithium transference number was 

calculated based on Bruce and Vincent method at 70 °C.27 The electrolytes were 

sandwiched between two lithium disks in CR2032 coin cells. Before the analysis, the 
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cells were left to stabilize at 70 °C for 24 h. The lithium ionic conductivity was 

calculated by multiplying the total ionic conductivity with lithium transference 

number at 70 °C.28 Electrochemical stability window was determined by applying 

cyclic voltammetry (CV) of the polymer electrolyte at 70 °C. The anodic limit was 

evaluated between open circuit potential (OCV) and 6 V vs. Li/Li+ at a constant rate of 

0.5 mV s-1. On the other hand, the cathodic scan was determined between OCV and 

-0.5 V vs. Li/Li+ using the same scan rate. Before performing the experiment, the 

electrolytes were left stabilizing for 24 h at 70 °C. The polymer electrolyte was 

sandwiched between a metal lithium disk and a working electrode. Metallic lithium 

served as a reference and counter electrode. Besides, stainless steel disk was used as 

working electrode during anodic stability study, whereas copper disks for cathodic 

measurements. The samples were sealed in CR2032 coin cells. 

Symmetric cell test was performed at 70 °C after stabilization at that temperature 

during 48 h. The SPE was sandwiched between two lithium metallic dicks.  

Full cell analysis was performed at 70 °C after stabilization at that temperature during 

24 h. The SPE was sandwiched between a lithium metallic dicks and NMC 111 based 

cathode. The capacity among the cycles was evaluated at C-rate of C/20 between 4.2 

V and 2.8 V. 

The 7Li NMR longitudinal relaxation times (T1) were measured on a 300 MHz Bruker 

Avance III spectrometer with 7Li Larmor frequencies of 116.64 MHz using a saturation 

recovery pulse sequence. These experiments were performed at various 

temperatures ranging from 293.15 to 343.15 K using a Bruker 5 mm Diff50 pulsed 

field gradient (PFG) NMR probe. The sample temperature was controlled to within ±1 

K with 10 minutes temperature equilibration time.   
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Diffusion coefficients were measured at 70°C using the same NMR probe with the 

stimulated echo pulse sequence. The maximum gradient strength was 2400 G cm-1 

and the repetition time was around 5 s. The gradient pulse length and diffusion time 

were chosen to be appropriate resulting the attenuation curves. Resulting signal 

decays were fitted to the Stejskal-Tanner equation.21 
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CHAPTER 4. 
Synthesis and characterization of 

Single-ion poly(ethylene oxide 

carbonate) polymer electrolyte 

 

4.1 Introduction 

Poly(ethylene oxide) PEO including a dissolved lithium salt has been the gold standard 

solid polymer electrolytes (SPEs) in the area of lithium batteries for more than 40 

years. As discussed in the previous chapters, polycarbonates are being highly 

investigated as alternatives to PEO due to the higher lithium transfer number of its 

SPEs (tLi+>0,5 vs tLi+>0,2 for PEO). A popular approach to further improve lithium 

transport number is anchoring the negatively charged ion to the polymeric chain, 

named as single-ion conducting polymer electrolytes (SIPEs). Several monomers 

including weak anionic species have been investigated;1 being the most studied 

polymer SIPEs, the lithium poly(styrenesulfonyl(trifluoromethylsulfonyl lithium salt).2 

This polymer and the methacrylic version has been included in a variety of block 
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copolymer formulations combining it with PEO segments.3 Nowadays, the best SIPEs 

reported in the literature from this combination of PEO and pending sulfonamide 

units report ionic conductivity values of 10-4 S cm-1 at 70 °C and lithium transference 

numbers close to unity.  

As discussed in the previous chapters, several groups have reported the successful 

combination of ethylene oxide (EO) units and carbonate groups in the same 

copolymer. EO units tend to decrease the glass transition, and consequently, 

increases the ionic conductivity, whereas the favorable weak coordination of 

carbonates and lithium cation promotes the lithium conductivity. Respect to this 

approach, our group recently proposed a new class of polymer host for lithium 

batteries application, consisting of ethylene oxide-carbonate segment, poly(ethylene 

oxide carbonates) PEO-PC. In chapter 3, a solid polymer electrolyte containing lithium 

bis(fluorosulfonyl)imide salt (LiTFSI) resulted in high ionic conductivity (3.2·10-5 S cm-

1 at 25 °C and 1.3·10-3 S cm-1 at 70 °C) and high lithium transference (0.6) at 70 °C.  

Taking into account both strategies, in this chapter we show a new single-ion 

conducting polymer which includes the three most successful chemical units in the 

area of polymer electrolytes such as ethylene oxide, carbonate and lithium-

sulfonamide groups. Single-ion poly(ethylene oxide carbonate) SIPCs are synthesized 

through the versatile polycondensation approach, showing a high ionic conductivity 

and lithium transference number close to unity. After composition optimization of 

single-ion conducting polymer electrolyte, the electrochemical properties and 

symmetric cell performance of SIPC electrolyte were compared with the analogue 

conventional solid polymer electrolyte reported in chapter 3. 
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4.2 Results and discussion 

4.2.1 Synthesis and characterization of Single-ion Conducting Poly (ethylene 

oxide carbonates) (SIPC) 

In the present work innovative single-ion conducting polymer electrolytes are 

synthesized via step-growth polycondensation. This versatile polymerization 

technique gives the opportunity to combine different chemical structures, allowing 

the design of polymers with targeted properties to fit the end-use application 

requirements. This synergetic result has already been proven in chapter 3 by the 

combination of ethylene oxide (EO) units and carbonate groups.4 Here, well studied 

EO units and carbonate groups are included to the single-ion polymer electrolyte. EO 

units are able to enhance the ionic conductivity, as they tend to show low the glass 

transition, whereas, carbonates groups are claimed to improve the lithium 

transference number and electrochemical stability.4 On the other hand, among the 

all anions proposed1b trifluoromethylsulfonylimide (TFSI) containing anionic species, 

like lithium ((3-((3-hydroxy-2-(hydroxymethyl)-2-

methylpropanoyl)oxy)propyl)sulfonyl) ((trifluoromethyl)sulfonyl)amide, bis-MPTFSI, 

contains one of the most delocalized anions, which will expect to be able to promote 

the salt dissociation.1b This diol was synthesized based on a previous report.5  

Scheme 4.1 describes the synthetic protocol employed in this polymerization. 

Polycarbonates are obtained by polycondensation in a mole ratio of 

DMC:diols:DMAP, 8:1:0.01.6 This polymerization includes two step reactions, were 

high temperature (130 °C - 180 °C) and high vacuum (< 0.2 Pa) are necessary. The 

final chemical structure was determined by 1H NMR in DMSO-d6 (Appendix Figure 

A11). 
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Scheme 4.1. Synthesis of single-ion conducting polymers via polycondensation. 

Three different copolymer compositions were targeted in order to design the optimal 

single-ion polymer electrolyte composition; PEO34:bis-MPTFSI: 75:25 mol% (SIPC-1), 

50:50 mol% (SIPC-2), and 25:75 mol% (SIPC-3). The properties of the polymer 

compositions are summarized in Table 4.1. Lithium content on the polymers was 

calculated by liquid 7Li NMR, Appendix Figure A12. Thereby, the lithium concentration 

was estimated and a good correlation between each composition was observed. 

Lithium concentration is three times higher in SIPC-2 than in SIPC-1. A similar increase 

in lithium concentration is observed when comparing SIPC-3 and SIPC-2. In addition, 

the molar masses of the polycarbonates were analysed in the GPC using DMF (10 mM 

of LiBr) as eluent, which ranged between 15-55 KDa. The dispersities obtained are in 

common range of step-growth polymerization processes (1.3-2).  

Table 4.1. Final polymers composition and molar masses. a 7Li NMR in DMSO-d6. 

Sample 
SYNTHESIS 

mmol Li/g 

polymer a 
GPC (10 mM LiBr in DMF) 

 PEO34  Bis-MPTFSI  Mn Mw Ð 

SIPC-1 75 mol% 25 mol% 0.21 55,000 77,000 2.0 

SIPC-2 50 mol% 50 mol% 0.58 15,000 21,000 1.4 

SIPC-3 25 mol% 75 mol% 1.9 15,000 19,000 1.3 
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 (overnight)

SIPC-1: 75 : 25 mol%
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SIPC-3: 25 : 75 mol%
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4.2.2 Ionic conductivity and thermal properties of single-ion poly(ethylene 

oxide carbonates) SIPCs 

Figure 4.1b shows the DSC traces of the SIPCs with various lithium concentration as a 

function of temperature. Both SIPC-1 and SIPC-2 exhibits an endothermic transition 

at 45 °C and 41 °C, respectively, corresponding to the melting of the crystalline EO 

phase. On the other hand, SIPC-3 does not exhibit any endothermic transition, 

indicating the amorphous nature of the polymer. To better understand the impact of 

the lithium monomer incorporation on the crystallinity of EO phase, the degrees of 

crystallinity of the SIPCs were characterized, Equation 4.1. The percentage of the 

crystalline EO of 43 wt.%, 38 wt.% and 0 wt.% were calculated for SIPC-1, SIPC-2 and 

SIPC-3, respectively, suggesting that the incorporation of lithium monomer in the 

polymer chain, hinders the crystallization of the EO segment. Similar observation was 

reported when lithium salt is added to PEO homopolymer.7 

𝐶𝐶𝑟𝑟 = ∆𝐻𝐻𝑓𝑓
𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃×∆𝐻𝐻𝑓𝑓

𝑜𝑜 × 100 Equation 4.1. The weight percentage of PEO crystallinity.  

Where ∆𝐻𝐻𝑓𝑓 is the enthalpy of fusion calculated by DSC during the second heating 

scan at 10 °C min-1 (J g-1). WPEO is PEO percentage in the polymer and ∆𝐻𝐻𝑓𝑓𝑜𝑜 is the fusion 

enthalpy of fully crystalline PEO, 205 J g-1. 

The ionic conductivities of the SIPCs with various content of lithium concentrations 

were also measured via electrochemical impedance spectroscopy in a temperature 

range of 100 °C – 25 °C, and the results are presented in Figure 4.1a. At room 

temperature, the ionic conductivity of the SIPCs is as followed: SIPC-3 > SIPC2 > SIPC-

1. It is well known that the ion conduction of lithium ion in PEO-based polymer 

electrolytes is governed by the segmental motion of the ethylene oxide chains in the 

amorphous phase.8 Therefore, below the melting temperature of the crystalline EO 
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phase, the ion conduction of these SIPCs materials is mainly dictated by the degree 

of the crystallinity of the polymer. Increasing the lithium content from 25 mol% to 50 

mol% (SIPC-1 to SIPC-2) only results in a slight decrease of the percentage of 

crystalline EO phase, going from 43 % to 38 %. This coincides with a slight increase of 

the ionic conductivity at 25 °C, going from 1.36·10-7 S cm-1 to 2.28·10-7 S cm-1, when 

the lithium content is increased from 25 mol% to 50 mol%. At a lithium content of 75 

mol% (SIPC-3), no crystalline EO phase is formed and a significant increase on the 

ionic conductivity is observed (e.g. 8.94·10-7 S cm-1 at 25 °C) 

Above the melting temperature of the crystalline EO phase (T> 50 °C), the lithium ion 

conduction is now governed by the O/Li molar ratio (incorporating carbonate 

oxygen), since all EO unit is now readily available for conduction. It seems that SIPC-

2 contains the best balance between oxygen and lithium molar ratio, O:Li = 35, 

whereas in the SIPC-1, the amount of lithium ion is the limiting factor to promote high 

ionic conductivity, O:Li molar = 110. On the other hand, the lower ionic conductivity 

of SIPC-3 (O:Li = 6) could be due to the fact that there is not enough carbonate/EO 

units available to coordinate with lithium ion and promote efficient dissociation from 

the anionic polymer backbone. Similar trend was observed when the same lithium 

based monomer was employed as polymer electrolyte.5 The SIPC-2 exhibits an ionic 

conductivity of 1.2·10-4 S.cm-1 at 70 °C. It is worth mentioning that such high value of 

ionic conductivity at low and high temperature is unusual in a solid single-ion 

conducting polymer electrolytes,1b and is likely due to the presence of carbonate 

group promoting lithium ion dissociation. However, the contribution of EO units is 

also pronounced, if we compared with a carbonate containing SIPE the value is not 

as high as in this case.1a 
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Figure 4.1.  a) Ionic conductivity, and b) thermal properties of SIPC-1, SIPC-2 and SIPC-3, (DSC, 
2nd heating scan at 10 °C min-1). 

4.2.3 Semi-interpenetrated free standing films between SIPC-2 with PEG 

diacrylate (PEGDA) 

SIPCs-based polymer electrolytes have low glass transition (around -40 °C) and are 

linear polymers. Therefore, at temperatures above the melting temperature of the 

EO crystalline phase, the mechanical properties of SIPCs are not sufficient for the use 

as solid state electrolyte, since in this application the polymer electrolyte also acts as 

a)

b)
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separator. To improve the mechanical properties of SIPCs, blends of SIPC polymer and 

small ammounts of PEG diacrylate (Mn = 575) (PEGDA) were investigated. For this 

study, the SIPC-2 was chosen due to its high ionic conductance at high temperature. 

Upon the ultraviolet irradiation in the presence of a photoradical initiator, 

interpenetrated cross-linked network of PEGDA and single ion conducting 

polycarbonates blends were obtained. The mechanical properties are notably 

improved using this strategy. However, it is important to note for the following 

discussions that the SIPC backbone is not involved in the cross-linking polymerization 

process and that only a semi-interpenetrated cross-linked network of PEGDA is 

formed. This network is likely to act as a molecular mesh-like component, which 

allows the retention of the mechanical integrity of the blend material at temperature 

above the melting temperature of the EO crystalline phase. In order to optimize the 

conditions two formulations were analysed; 5 wt.% of PEGDA and 10 wt.% of PEGDA. 

The ionic conductivity and thermal analysis of the interpenetrated free standing 

polymer electrolytes were characterized, and compared with non-cross-linked SIPC-

2, see Figure 4.2. The ionic conductivity is not significantly impacted, when only 5 

wt.% of cross-linker is used. The SIPC-2 containing 5 wt.% of PEGDA, shows an ionic 

conductivity of 3.2·10-5 S cm-1 at 70 °C, whereas without the interpenetrated polymer 

network, an ionic conductivity of 1.2·10-4 S cm-1 is obtained. However, when 10 wt.% 

of PEGDA is incorporated, a drastic decrease of the ionic conductivity is observed (i.e. 

9.6·10-7 S cm-1). Since the decrease in ionic conductivity is observed at temperature 

above the melting temperature of the EO crystalline phase, it is unlikely due to 

difference in the degree of crystallinity but rather a result of inter-molecular 

interactions between the SIPC-2 polymer and the interpenetrated PEGDA network. 

Such interactions can be indirectly probed by the resulted glass transition of the 

overall system. When 5 wt.% PEGDA is added, an increase in the  glass transition 
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temperature of the system is observed, going from -39 °C to -28 °C, likely causing the 

slight decrease in ionic conductivity. Besides, when the PEGDA concentration is 

doubled (10 wt.% PEGDA), the resulted glass transition temperature of the system is 

increased. This increase in glass transition temperature could likely explain such 

decrease in ionic conductivity. 

 

Figure 4.2.  a) Ionic conductivity, and b) thermal properties of SIPC-2 with 0, 5 and 10 wt.% 
PEGDA, (DSC, 2nd heating scan at 10 °C min-1). 

a)

b)
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Additionally, the mechanical study of interpenetrated cross-linked architecture of 

SIPC-2 with 5 wt.% PEGDA was performed by AR-G2 rheomether, at 70 °C and 100 °C. 

Figure 4.3 depicts the viscoelastic properties in the double-logarithmic plots of G’ and 

G’’ vs. angular frequency. The material’s response does not dependent on the 

temperature, and the storage modulus is above the loss modulus in both 

temperatures, meaning that the polymer electrolyte is in the rubbery region. The 

good mechanical stability of the interpenetrated cross-linked polymer electrolyte can 

be concluded. Additionally, the thermogravimetric analysis of SIPC-2 5 wt.% PEGDA 

performed at N2 atmosphere, shows thermal stability up to 390 °C, Figure 4.4. 

 

Figure 4.3.  Mechanical properties of SIPC-2 with 5 wt.% PEGDA.  
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Figure 4.4. Thermal stability of SIPC-2 with 5 wt.% PEGDA and bis-MPTFSI. 

4.2.4 Single ion conducting polymer electrolyte vs. conventional ion polymer 

electrolyte 

Single ion conducting polymer electrolytes have attracted a lot of attention in the 

recent years due to their potential application for energy storage devices. However, 

to our best knowledge, a comparison between the properties of a single ion 

conducting polymer electrolyte and its analogous conventional SPE is lacking. 

Therefore, in this work, we have compared, SIPC-2, which shows the most promising 

electrochemical properties among the family, with analogous PEO34-PC:LiTFSI SPE 

system.4, 7 So, to formulate a similar conventional SPE, we added 0.58 mmol Li/g 

polymer LiTFSI to a PEO34-PC with similar chemical composition in order to compare 

both systems, Scheme 4.2. We need to remark that in both systems 5 wt.% PEGDA 

was added to improve the mechanical properties and be able to carry out all the next 

measurements. 
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Scheme 4.2. Chemical structure of both single-ion and conventional polymer electrolyte 
poly(ethylene oxide carbonate) 

 

First, the lithium-ion transference number of both system was evaluated using Bruce 

and Vincent method,9 Figure 4.5a. A lithium transference number of 0.89 is obtained 

for the SIPC-2, confirming the single-ion conducting nature of this polymer. Besides, 

in the conventional SPE system, a value of 0.23 was measured. Second, the ionic 

conductivity of both system was analysed at 70 °C, Figure 4.5b. As expected the total 

ionic conductivity at 70 °C of SIPC-2 is lower than PEO34-PC system. Besides, when 

comparing the lithium conductivity of each system (ionic conductivity multiply by 

lithium transference number), in the case of SIPC-2 a value of 2.9·10-5 S cm-1 is 

detected, while in the case of conventional SPE is 7.9·10-5 S cm-1. Although, still the 

lithium conductivity is higher for PEO34-PC system than for SIPC-2, a better 

performance is expected for SIPC-2, as the concentration gradients of salt and cell 

polarization should be absented. 

SINGLE ION CONDUCTING 
POLYMER ELECTROLYTE

CONVENTIONAL 
POLYMER ELECTROLYTE

5 wt% PEGDA
0.58 mmol Li/g polymer 
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Figure 4.5.  Comparison of SIPC-2 and PEO34-PC. a) Lithium transference number analysis at 
70 °C. EIS and CA, and b) Total ionic conductivity and lithium conductivity at 70 °C. 

Next, 7Li solid state NMR was employed to investigate lithium cation environments 

and lithium dynamics at different temperatures, Figure 4.6. Pulsed field gradient 

diffusion measurements were used to measure 7Li and 19F shelf-diffusion coefficients 

at different temperatures, Figure 4.6a. Diffusion NMR analysis allows to quantify the 

a)

b)
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contribution in term of mobility for each ionic specie by targeting specific nuclei. For 

the host polymer PEO34-PC, a clear trend can be observed: TFSI ion diffuses faster 

than lithium ion, being more pronounced at higher temperatures. Thus, most of the 

conduction observed by EIS measurements, is likely due to the anion mobility (which 

is in good agreement with the lithium transference number). Besides, for SIPEs, since 

anion is covalently bonded to the polymer backbone, its diffusion is extremely limited. 

This means that in the case of SIPC-2, the ionic conduction is mainly due to the lithium 

ion mobility, as opposed to the conventional SPE system. When comparing the 7Li 

diffusion of the SIPC-2 with the conventional SPE, the lithium diffusion of SIPC-2 is 

higher than PEO34-PC-system, suggesting a faster lithium mobility. 

7Li relaxation, T1 experiments are dominated by the molecular reorientation. The 7Li 

relaxation rates, (R1 = T1
−1), for both systems are shown in Figure 4.6b. From the data 

a different relaxation behaviour can be observed for both system. The relaxation rate 

of conventional SPE could be fitted using the Bloembergen, Purcell and Pound (BPP) 

model for nuclear spin relaxation as in the Chapter 3.4, 7 As it was analysed before, we 

expect that quadrupolar interaction will be the dominant mechanism for 7Li 

longitudinal relaxation for this polymer.4, 7 Besides, in SIPC-2 system, at high 

temperature, the relaxation rate is not dependant on the temperature, and 

therefore, does not follow BPP model. This assumption lead to the understanding of 

having a distribution of sites. These sites, will show different local dynamics, which 

will cause multiple relaxation mechanisms on the system.   
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Figure 4.6. a) 7Li NMR lithium coefficient, and b) 7Li relaxation rate, R1, of SIPC-2 5 wt.% PEGDA 
and PEO34-PC 0.58 mmol LiTFSI/g polymer 5 wt.% PEGDA at different temperatures. The lines 
have been drawn in the figures to help to follow the trends. 

In order to understand the lithium diffusion data, the conformation and coordination 

of ions is monitored by FTIR-ATR. TFSI- anion holds two SO2 groups, which are prone 

to coordinate with lithium cation, or with more SO2 groups, Figure 4.7. In-phase 

a)

b)
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(νa
ipSO2) and out-of-phase (νa

opSO2) antisymmetric stretching vibrations of SO2 are 

pronounced around 1350 and 1330 cm-1 respectively, Figure 4.7a,b.10 Although it is 

well known that each vibration is a results of cis and trans conformations, it is 

reported that the trans conformation is more associated with the νa
ipSO2 vibration, 

and reciprocally for the cis conformation with the νa
opSO2 vibration.10 Therefore, the 

conformation distribution can be analysed qualitatively at different temperatures. In 

each system a change on the conformation is clearly observed with temperature 

increase. At temperature bellow 80 °C, each system show different conformations 

distribution. In SIPC-2 system, an equal contribution of both cis and trans 

conformation can be observed, Figure 4.7a, which may be induced by the steric 

hinderance of the backbone. Besides, in PEO34-PC system, although both 

conformations are detected, trans conformation appears to be the most 

predominant. However, in both system, at 100 and 90 °C, the cis conformation is 

mainly pronounced. Additionally, as Yoon et al. observed, cis conformation can 

enhance the lithium transport.11 Interestingly, in our SIPC-2 system, at temperature 

bellow 80 °C, there is a more important contribution of cis conformation than in 

PEO34-PC system. This could explain why higher lithium diffusion coefficients were 

obtained for SIPC-2 system than for PEO34-PC system.  

Moreover, Lasse and co-workers studied the different coordination types between 

lithium cation and TFSI anion.10 However, analysing this wavenumber range of the 

spectrum (1400 -1300 cm-1) is difficult to deduce the coordination in our systems. In 

both systems, Li(trans)2, Li(cis)2 and Li(cis-trans) are the combination possibilities. 

More insigne information can be obtained from the symmetric stretching vibration 

(wavenumber range of 1160 cm-1 – 1100 cm-1). However, unfortunately, this vibration 

is overlapped with C-O-C band of EO units at 1104 cm-1 7 and we cannot conclude any 

clear coordination. 
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Figure 4.7. FTIR-ATR comparison of the systems at different temperature a) SIPC-2 5 wt.% 
PEGDA, and b) PEO34-PC 0.58 mmol Li/g polymer 5 wt.% PEGDA. 

The lithium transport properties of both systems were evaluated in a lithium 

symmetric cell at 70 °C, Figure 4.8. A current of 0.2 mA cm-2 was applied to both 

systems, with a polarization period of 1 hour. Such experiments allow to assess two 

major criteria of an electrolyte: i) its lithium transport properties, which needs to be 

sufficient to sustain the current density applied; and ii) its ability to form a highly 

conductive solid electrolyte interphase (SEI) under the defined cycling conditions 

a) SIPC-2 5 wt% PEGDA

b) PEO34-PC 0.58 mmol Li/ g poly. 5 wt% PEGDA
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(also influenced its electrochemical stability towards lithium metal). A failure of an 

electrolyte to meet one of these two criteria will lead to poor cycling performance. It 

is worth mentioning that the SIPC-2 was not able to form a good SEI layer by itself 

and therefore lithium metal pre-treatment was needed to achieve good cycling 

performance. It is well known that the quality of the SEI formed is highly impacted by 

the type of lithium counter anion used, in which the bis (fluorosulfonyl) imide anion 

(FSI) have been shown to support the formation of high conductive SEI.12 Therefore, 

lithium metal pre-treatment was performed by solvent casting LiFSI on the lithium 

surface from DME solution containing 2 M of LiFSI and evaporating the solvent under 

high vacuum prior cell assembly. (For more details on lithium pre-treatment 

procedure, see experimental section). From Figure 4.8, we can clearly observe that 

both systems are able to sustain the current density applied. However, the single ion 

system shows lower overpotential and a distinct plateau, indicating that the single-

ion system exhibits better lithium transport properties, while the conventional SPE 

suffers from lithium transport limitation. The difference in lithium transport 

performance between the two systems is likely due to the presence of mobile TFSI 

anion in the conventional system that could promote the formation of a 

concentration gradient and limits the migration of the lithium ion through the 

electrolyte. 
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Figure 4.8. Symmetric cell at 70 °C applying 0.2 mA cm-2: a) SIPC-2 5 wt.% PEGDA, and b) PEO34-
PC 0.58 mmol Li/g polymer 5 wt.% PEGDA. 

Prior assessing any cycling performance of the single ion system in a full cell, the 

electrochemical stability towards oxidation has been assessed, using lithium-metal, 

SIPC-2 with 5 wt.% PEGDA and stainless steel cell at 70 oC, Figure 4.9. The SIPC-2 with 

5 wt.% PEGDA shows the anodic limit at 4.9 V vs. Li+/Li, which is commonly observed 

in carbonate containing polymer electrolytes.4 Such high anodic limit should allow to 

use high voltage cathode such as lithium cobalt oxide (LCO) or lithium nickel 

manganese cobalt oxide (NMC). 

a)

b)
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Figure 4.9. Electrochemical stability window of SIPC-2 with 5 wt.% PEGDA. 

4.3 Conclusions 

To conclude, the “ultimate” single-ion polymer electrolyte was synthesized 

combining the most successful chemical units in the area such as ethylene oxide, 

carbonate and sulfonamide. The single-ion conducting poly(ethylene oxide 

carbonate) copolymers showed high ionic conductivities and lithium transference 

number. The copolymer was compared with an analogue conventional polymer 

electrolyte containing equal molar lithium cation. Lithium interactions and mobility 

were compared by lithium PFG NMR, T1 measurements and FTIR-ATR analysis. 

Analyzing both system a favorable lithium diffusion was obtained for SIPE, which 

could be attributed to SO2 cis conformation. Finally, the performance of both polymer 

electrolytes on lithium symmetric cell was compared showing the single-ion polymer 

lower overpotentials.  
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4.4  Experimental part 

4.4.1 Materials 

Dry dimethyl carbonate (99+ %) (DMC) and 4-dimethylaminopyridine (DMAP) (99%) 

were purchased from Acros Organics. The later was dried applying vacuum for 4 h at 

room temperature prior to use.  Poly(ethylene glycol) (Mn 1,500 g mol-1) was supplied 

by Fisher Scientific and it was dried by azeotropic distillation in toluene for 8 h. 

Lithium bis(trifluoromethane)sulfonimide (LiTFSI) (99.9%) was supplied from 

Solvionic and the photoinitiator, 2-hydroxy-2-methylpropiophenone (DAROCUR) and 

poly(ethylene glycol) diacrylate (Mn 575 g mol-1) from Merck. Methanol (MeOH) 

(reagent grade), dimethylformamide (DMF) (reagent grade) and diethyl ether (Et2O) 

(Extra Pure, SLR, Stabilized with BHT) were obtained from Scharlab and toluene (HPLC 

grade), Lithium bromide (reagent plus ≥99 %) and deuterated DMSO (99.8%) from 

Merck. 

 

4.4.2 Ion exchange of bis-MPTFSI 

Potassium ((3-((3-hydroxy-2-(hydroxymethyl)-2-methylpropanoyl)oxy)propyl) 

sulfonyl) ((trifluoromethyl)sulfonyl)amide (bis-MPTFSI) was synthesized based on the 

work described by L. Porcarelli et. al.5 Before performing the polymerization, the ion 

exchange of bis-MPTFSI was carried out: potassium cation was changed to lithium 

cation. 1.01 equimolar amount of LiClO4 was added to the solution of bis-MPTFSI in 

acetonitrile. After stirring overnight, the KClO4 was removed by filtration, and ACN 

was removed from the filtrate by rotavap. 

4.4.3 Synthesis of Single-ion Conducting Polycarbonates (SIPC) 

The following example is given for the synthesis of SIPC-2 (PEO34:bis-MPTFSI 50:50 

mol%). Monomers, PEG1500 (PEO34) (2 g, 1.33 mmol, 0.5 eq) and ester functionalized 

anionic diol (bis-MPTFSI) (0.523 g, 1.33 mmol, 0.5 eq.), together with the catalyst, 
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DMAP, (3.25 mg, 0.0266 mmol, 0.01) were introduced into 10 mL schlenk flask inside 

argon filled glove box. After, anhydrous dimethyl carbonate (DMC) (1.8 mL, 21.8 

mmol, 8 eq.) was added to the schlenk flask. The schlenk flask was immersed in an oil 

bath and connected to the vacuum line. First, the reaction was maintained at 130 °C 

during 7 h, and finally, the temperature was increased to 180 °C and high vacuum was 

applied overnight. The purification of the SIPC was carried out by dissolving the 

polycarbonate in methanol and precipitating in cold diethyl ether. A yield of 85 % was 

calculated by gravimetric. Three polycarbonate compositions were tailored; 75:25 

mol% (SIPC-1), 50:50 mol% (SIPC-2) and 25:75 mol% (SIPC-3). The polymer was 

characterized by 1H NMR (DMSO-d6, 400 MHz): δ= 4.55 (s, OCOOCH2CCH2OOCO, 4H), 

4.18 (t, OCOOCH2CH2, 4H + OCOOCH2CCOOCH2), 3.61 (t, OCOOCH2CH2, 4H), 3.51 (s, 

OCOCH2CH2OCH2CH2O, 128H), 3.01 (m, OCOOCH2CCOOCH2CH2CH2), 1.99 (m, 

OCOOCH2CCOOCH2CH2), 1.88 (s, OCOOCH2CCH3, 3H).  

4.4.4 Preparation of SIPC and conventional polymer electrolyte 

The SIPCs were dissolved in MeOH by strong stirring during 10 min (0.5 g mL-1). The 

solutions were casted on silicon mold. Then, the solvent was allowed to evaporate at 

room temperature. The resulting polymers were further dried, under high vacuum 

and at 60 °C.  

The preparation of free standing SIPC was achieved blending the polycarbonates with 

a cross-linkable polymer, PEG diacrylate (Mn 575) (PEGDA); both polymers (0.2 g) and 

photoinitiator (1 wt.% vs. PEG diacrylate), 2-hydroxy-2-methylpropiophenone, were 

dissolved in methanol (0.4 mL), stirred during 10 minutes. First, the solvent was slowly 

evaporated at room temperature and the evaporation of the solvent was completed 

applying high vacuum at room temperature overnight. Finally, the membranes were 

passed 3 times from xenon arc lamp (Helios Italquartz, 45 mW cm-2).  
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Free standing conventional polymer electrolytes were prepared as follow: 0.9 g of 

polymer and LiTFSI (0.58 mmol Li/g polymer) were dissolved in 0.4 mL methanol. 0.1 

g PEG diacrylate (Mn 575) and photoinitiator (1 wt.% vs. PEG diacrylate), 2-hydroxy-

2-methylpropiophenone were added to the solution. After stirring the solution during 

10 minutes, first, the solvent was slowly evaporated at room temperature and the 

evaporation of the solvent was completed applying high vacuum at room 

temperature overnight. Finally, the membranes were passed 3 times from xenon arc 

lamp (Helios Italquartz, 45 mW cm-2).  

Before performing any electrochemical characterization non-cross-linked and cross-

linked electrolytes were first dried under vacuum at room temperature during 24 h, 

and after, the evaporation was completed, increasing the temperature up to 60 °C 

and applying vacuum for 24 h. 

4.4.5 Preparation of symmetric cells 

For symmetric cell analysis, the interpenetrated cross-linked polymer electrolytes 

were sandwiched between two metallic lithium disks and they were closed in a 

CR2032 coincells. In the case of the single ion conducting polymer electrolyte, the 

surface of metallic lithium had to be treated. Therefore, 5 µL of 2M LiFSI in DME was 

added in the interphases between lithium and polymer electrolyte. The DME was 

evaporated before closing the cell at 50 °C and under vacuum during 30 min. 

4.4.6 Characterization methods 
1H, and 7Li Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker 

spectrometers at 400 and 500 MHz at room temperature, in d6-DMSO, respectively. 

Diffusion measurements were carried out on a 300 MHz Bruker Advance III 

spectrometer with a Diff50 pulsed field gradient probe and a stimulated echo pulse 

sequence. Relaxation measurements were carried out on the same hardware with a 
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saturation recovery pulse sequence. Attenuated Total Reflectance Fourier Transform 

Infrared Spectroscopy measurements (ATR-FTIR) were conducted on a Perkin-

Elmer Spektrum ATR spectrometer.  

The molar masses (Mn, Mw) and PDI of SIPCs were measured on a PL-GPC 50 gel 

permeation chromatograph (Agilent Technologies) equipped with an integrated IR 

detector, a TSK-GEL1SuperAW4000 column (Tosoh) and a SuperAW-L Guardcolumn 

(Tosoh). A 10 mM LiBr solution in DMF was used as an eluent with a flow rate of 0.5 

mL min-1 at 50 °C. Calibration was performed with PEG standards. 

Differential Scanning Calorimetry (DSC) was performed on a DSC Q2000 differential 

calorimeter (TA Instruments). All the experiments were performed under ultrapure 

nitrogen flow. Samples of 5 mg were used. Measurements were performed by placing 

the samples in sealed aluminum pans. The samples were first heated at a rate of 20 

K min-1, from 25 °C to 100 °C and they were left 3 min at 100 °C to avoid the influence 

of thermal history, in order to be able to compare the crystallization/melting 

temperature afterwards. Subsequently, the sample was cooled down to -70 °C at a 

rate of 10 K min-1 and subsequently heated to 100 °C at 10 K min-1 after waiting at -

70 °C during 3 min. Finally, the sample was cooled down to -70 °C at a rate of 50 K 

min-1 and subsequently heated to 100 °C at 50 K min-1 after waiting at -70 °C during 3 

min (Tg value was determined from this last scan).  

The mechanical properties were analysed by rheological measurements using an AR-

G2 rheometer (TA Instruments) with parallel geometric plates (diameter 12 mm). 

Angular frequency sweeps were performed in the range of 62 < ω < 6-2 rad s-1 at 

different temperatures (70 °C, and 100 °C) in the linear viscoelastic regime. The time 

required for a frequency sweep was 5 min. Each measurement was repeated at least 
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two times observing a good reproducibility. On the other hand, the thermogravimetry 

analysis was performed at N2 atmosphere at 10 K min-1 in Q500 TA Instruments. 

Ionic conductivity, lithium transference number and electrochemical stability window 

were carried out in a VMP3 (Biologic, Claix, France) potentiostat and all cells were 

assembled in an argon-filled glove box (M-Braun). Ionic conductivity (σ) of the 

polymer electrolytes was determined by AC impedance spectroscopy over the 

frequency range from 100 mHz to 1 MHz with an amplitude of 10 mV. The 

conductivities were analysed in a temperature range down from 100 °C to 25 °C. The 

solid polymer electrolytes were closed in CR2032, sandwiched between two stainless 

steel (SS) electrodes. In all the cases the average surface area of the electrode is 2.01 

cm2. Lithium transference number was calculated based on Bruce and Vincent 

method at 70 °C.9 The electrolytes were sandwiched between two lithium disks in 

CR2032. Before the analysis the batteries were left to stabilize at 70 °C during 24 h. 

Electrochemical stability window was determined applying cyclic voltammetry (CV) of 

the polymer electrolyte at 70 °C. The SIPC was sandwiched between SS and lithium 

metallic disk. The anodic limit was evaluated between open circuit potential (OCV) 

and 5.5 V vs. Li/Li+ at a constant rate of 0.5 m V s-1. Before performing the experiment, 

the electrolytes were left stabilizing during 24 h at 70 °C. 

Symmetric cell tests were performed at 70 °C after stabilization at that temperature 

during 24 h. The SPEs were sandwiched between two lithium metallic disks. 

The 7Li NMR longitudinal relaxation times (T1) were measured on a 300 MHz Bruker 

Avance III spectrometer with 7Li Larmor frequencies of 116.64 MHz using a saturation 

recovery pulse sequence. These experiments were performed at various 

temperatures ranging from 293.15 to 343.15 K using a Bruker 5 mm Diff50 pulsed 
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field gradient (PFG) NMR probe. The sample temperature was controlled to within ±1 

K with 10 minutes temperature equilibration time.   

Diffusion coefficients were measured at 70°C using the same NMR probe with the 

stimulated echo pulse sequence. The maximum gradient strength was 2400 G cm-1 

and the repetition time was around 5 s. The gradient pulse length and diffusion time 

were chosen to be appropriate resulting the attenuation curves. 
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Appendix 

 

 

Figure A1. 1H NMR of aliphatic polycarbonates in CDCl3.  
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Figure A2. 13C NMR of aliphatic polycarbonates in CDCl3. 
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Figure A3. 1H NMR of P7C-P12C 70:30 mol% in CDCl3. 

 

Figure A4. 1H NMR of P4C-P12C 50:50 mol% in CDCl3. 
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Figure A5. The signal of OCOO 13C NMR of copolymers P4C-P7C with different mole 
ratios.  

155.15155.25155.35155.45155.55155.65155.75
Chemical Shift (ppm)

95:05

90:10

80:20

60:40

40:60

20:80

10:90

05:95

0:100

100:0



 Appendix  
 

171 
 

 

Figure A6. The signal of OCOO 13C NMR of copolymers P4C-P12C with different mole 
ratios.  
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Figure A7. The signal of OCOO 13C NMR of copolymers P7C-P12C with different mole 
ratios.  
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Figure A8. 1H NMR of ethylene oxide based polycarbonates (PEOX-PC) in CDCl3. 
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Figure A9. 13C NMR of ethylene oxide based polycarbonates (PEOX-PC) in CDCl3. 
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Figure A10. 1H NMR PEO34-PC-10 wt% MA in CDCl3. 

 

Figure A11. Chemical structure of SIPC-2. 
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Figure A12. Calibration curve of different LiBr solutions in DMSO-d6. The calibration 
curve was prepared by different LiBr solutions: 10, 6, 4, 2, 0.3, 0.1 mg mL-1. 
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CHAPTER 5.  

Conclusions 

In this thesis, innovative polycarbonates were developed using the versatile and 

simple polycondensation technique. Three different families of polycarbonates have 

been successfully synthesized and evaluated them as host materials of solid polymer 

electrolytes for lithium batteries as described in the different chapters. 

In the preliminary work, the conditions for melt polycondesation technique were 

optimized by carrying out a screening of different reaction conditions such as 

stoichiometry of reactants and type of organcatalysts. Among the all analyzed 

organocatalysts, basic catalysts showed superior catalytic activity over the acid based 

ones.  Among them, DMAP was selected, due to the high yield and high molar mass 

achieved. 

In the second chapter, versatility of polycondensation on the synthesis of linear 

aliphatic polycarbonates was demonstrated. Homopolymers and copolymers 

containing different methylene units were successfully developed. According to the 

DSC analysis the effect of chemical structure on thermal properties were discussed, 

where an odd-even effect in the melting temperature of the homopolymers was 

observed. This study was complemented by the evaluation of aliphatic 

homopolymers as matrixes of solid polymer electrolytes by adding a lithium salt. A 

higher ionic conductivity was characterized for the polycarbonates containing higher 

number of methylene units, which could be attributed to the structure of the 

polymer; the addition of LiTFSI leads unique properties due to crystallinity and long 
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hydrophobic spacers. Using other host polymers (few methylene units), the behavior 

was different; the addition of the salt leads to amorphous materials, therefore, the 

high LiTFSI concentration increases the glass transition temperature, which results in 

a lower ionic conductivity values. Still the overall values of ionic conductivity and 

mechanical properties of this type of aliphatic polycarbonates are relatively limited 

for being used as SPE. 

In order to increase the ionic conductivity values, in chapter 3, poly(ethylene oxide 

carbonates) were  synthesized via polycondensation. The synthetic route and the 

availability of different diols containing ethylene oxide units allows to tune the length 

of EO segments between carbonate groups. The best SPEs, showing the lowest glass 

transition temperature, was based on the high amount of EO units (34) between 

carbonate links. Even though PEO-SPE type behaviour was observed in ionic 

conductivity, a favourable coordination between Li-cation and carbonate groups was 

also characterized. In order to further investigate the role of EO units and carbonate 

groups, free-standing solid polymer electrolytes were designed. The developed SPEs 

showed promising electrochemical values, such as high lithium ionic conductivity, 

transference number and electrochemical stability window, where the effect of both 

chemical structure could be deduced. EO units decreases the glass transition 

temperature, improving chain mobility, and consequently, the conductivity, and the 

favourable coordination of carbonate group and lithium cation promotes the lithium 

conduction. All these results were reflected in a NMC-cell, were promising results 

were obtained at 70 °C and 50 °C. 

During the chapter 4, we synthesized a single-ion conducting polymer electrolyte 

including into it the most successful chemical units such as ethylene oxide, carbonate 

and sulfonamide. Single-ion conducting polymer electrolytes (SIPE) have attracted a 
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lot of interest for application in high energy density lithium metal batteries. This 

copolymer was synthesized by polycondensation between polyethylene glycol diol, 

dimethylcarbonate and a new functional diol including the lithium cation and 

sulfonamide anionic group. The beneficial effect of the combination between the 

three chemical groups produced the ultimate polymer electrolyte showing high ionic 

conductivity, good electrochemical window and high lithium transference values. 

Phase behavior and ionic conductivity were characterized, and lithium conductivity 

at 70 °C was carefully extrapolated. Lithium interactions and mobility were studied 

by lithium diffusion, NMR relaxation time measurements and FTIR-ATR analysis. This 

study was complemented by the direct comparison of single ion conducting polymer 

electrolyte with the analogous conventional SPE, where a favorable performance 

were observed in a lithium-lithium symmetric cell.  

To sum up, in this thesis three polycarbonates families have been successfully 

developed via polycondensation. All the polycarbonates have been evaluated as host 

materials of solid polymer electrolytes adding LiTFSI. The consequences of the 

number of methylene and EO units, and the concentration of single-ion monomer on 

the thermal and electrochemical properties have been studied. During this PhD thesis 

we developed innovative polymer electrolytes with excellent properties to be used 

as solid electrolytes in emerging battery technologies. 
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Laburpena 
21. mendean erronka berriei aurre egin beharra dago. Gaur egungo bizi kalitateak eta 

etengabe eraldatzen ari den gizarteak, berrikuntza konstanteak eskatzen dituzte, 

zentzu horretan, energia, garapen ekonomiko eta sozialerako ezinbesteko osagaia da. 

Gaur egungo iraultza teknologikoa, ikatzean, petrolioan eta gasan ustiatutako 

energian oinarritzen da, energia iturri hauen kontsumoa mugatua, garestia, eta azken 

hamarkadetan gogor kritikatua izan delarik, karbono dioxido kantitate handiak 

isurtzen baitituzte. 

Bestalde, energia berriztagarriak alternatiba egokiak dira. Poliki bada ere, gizartearen 

energia kontsumoa, eguzki energian, eolikoan, hidraulikoan, geotermikoan eta 

bioenergiakoan oinarrituko da. Zoritxarrez, energia hauek aldizkako iturriak dira. 

Beraz, energia-biltegiratze sistema egonkorrak garatu beharra dago, Irudia 1. Aukera 

guztien artean, gailu elektronikoetarako, ibilgailu elektrikoetarako eta sare 

elektrikoen instalazioetarako biltegiratze elektrokimikoak aproposak dira. Gaur egun, 

Li-ion bateriak erabilienak dira, baina gizartearen aurrerakuntzekin, bateria berrien 

diseinua eta garapena beharrezkoak izango dira. 

 

 

Irudia 1. Energia biltegiratzeko sistema elektrokimikoen garrantzia. 
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Bateria elektrokimiko bat 2 elektrodoz osatuta dago: elektrodo positiboa, katodoa, 

eta elektrodo negatiboa, anodoa. Bien artean elektrolitoa kokaturik dago. Bi 

elektrodoek potentzia kimiko desberdinak dituztenez, bateria bat deskargatzean, 

elektroiak anodotik (potentzia negatiboenetik), katodora (potentzia positibora) 

igarotzen dira. Bateria bat kargatzerako orduan, potentzia bat jarri behar da eta 

elektroiak anodora itzuliko dira. Elektrolitoak aldiz, konduktibitate ionikoa bermatu 

beharra dauka, elektroneutralitatea eraginez.  

Orokorrean, bateria komertzialek, gatz bat disolbatzaile organiko batean 

disolbatutako elektrolito bat izan ohi dute. Hauek, hainbat propietate ezegoki dituzte: 

i) sukoitasuna; ii) ihesa; iii) hegazkortasuna; eta iv) toxikotasuna. Hala, gaur egungo 

ikerketa, material berrien garapenean oinarritzen da. Propietate horiek hobetzeaz 

gain, beste hainbat aspektu kontuan hartu beharrekoak dira: 

- Konduktibitate ionikoa egokia 

- Litio transferentzia zenbaki altua 

- Egonkortasun elektrokimiko zabala 

- Egonkortasun termikoa 

- Egonkortasun mekanikoa 

- Elektrodo eta elektrolitoaren arteko kontaktu egokia 

Azken hamarkadetan hainbat elektrolito proposatu izan dira. Elektrolito solidoen 

artean, polimerikoak dira itxaropentsuenak. Poli(etilene oxidoa) izan da gehien ikertu 

den material polimerikoa; beirazko trantsizio tenperatura baxuko polimero 

semikristalinoa da. Gatz ugarirekin bateragarritasuna erakutsiaz bat, konduktibitate 

ionikoa aztertu izan ohi da. Zoritxarrez, polimeroaren semikristalinitatea dela eta, 

bateriek tenperatura altuetan funtzionatu ohi dute (70 °C-tik gora). Bestalde, 

poli(etileno oxidoa) duen talde polarrek, gatz desberdinen disoziazioa eta disolbatzea 
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eragiten dute. Aldiz, talde polarrek eragindako kooordinazio egonkorraren ondorioz, 

litio konduktibitatea jaisten da. Honela, neurtzen den konduktibitate osoaren zati 

handiena, anioiari dagokion mugikortasunari dagokio.   

Litioaren konduktibitatea eta tenperatura baxu eta altuko baterien funtzionamendua 

bermatzeko asmoz, material desberdinak proposatu dira: polikarbonatoak, 

poliesterrak, polisiloxanoak eta polialkoholak esaterako. Horien artean, azken 

urteetan, polikarbonatoak oso propietate interesgarriak erakutsi dituzte: batetik, 

trantsizio tenperatura baxuko polimero amorfoa; bestetik, koordinazio egokia litio eta 

karbonato taldearen artean (poli(etileno oxido)arena baino ahulagoa). 

Polikarbonatoaren estrukturaren eraginak elektrolito polimerikoan ikusteko asmoz 

tesi honetan hainbat familia polikarbonato sintetizatu dira. Historian zehar, 

polikarbonatoak 3 modu desberdinetan sintetizatu ohi dira: i) eraztun irekitzearen 

polimerizazio bidez; ii) CO2 eta epoxi bidezko kopolimerizazioarekin; eta iii) 

polikondentsazio bidez, Eskema 2. Hirugarren hau hautatu dugu estrukturan aldaketa 

gehien emateko aukera ematen duen polimerizazioa delako. Horrela, tesian zehar 

hiru familia desberdin garatu ditugu, hiru kapitulutan azaldu dena: 

Eskema 2. Tesian zehar erabili den polimerizazioa: polikondentsazioa. 
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Lehenik eta behin, organokatalizatzaile egokia aztertu da. Analisatu direnen artean, 

katalizatzaile basikoek, katalizatzaile azidoek baino aktibitate katalitiko handiagoa 

erakutsi dute. Guztien artean DMAP-ek erakutsi ditu balio hoberenak. 

Bigarren kapituluan, polikarbonato alifatikoak sintetizatu dira, polikondentsasioaren 

eraginkortasuna erakutsiz. Komertzialak diren diol funtzionalitatea duten 

monomeroei esker, homopolimeroak eta kopolimeroak sintetizatu eta karakterizatu 

dira. Homopolimeroen erabilera, elektrolito polimeriko bezala, ebaluatuz osatu da 

kapitulua. Emaitzei erreparatuz, polikarbonatoen estrukturek, polimeroarekin masa 

molarrak eta gatz kantitateak hainbat propietateetan eragiten dutela ikusi da: 

kristalinitatearen eta beirazko trantsizio tenperaturan, eta ondorioz, konduktibitate 

ionikoan. Balio altuagoko eroankortasun ionikoa metileno talde altuko polimeroetan 

lortu da. Balio hauek, polimeroaren egitura dela eta, LiTFSI gehitzen denean, 

propietate bereziak sortzen dituzte: kristalinitatea eta karbonatoen arteko espazio 

hidrofobiko luzeak direla eta, konduktibitatearen balio altuak emanaz. Bestalde, 

beste material batzuetan, gatza gehitzeak material amorfoa eragiten duenean, gatz 

kontzentrazio altuek, beirazko trantsizio tenperatura igotzea ekartzen du, 

konduktibitatea jaitsiz. Esan beharra dago, material hauekin, inoiz argitaratu den 

konduktibitate ioniko balio altuenen artean dagoela.  

Hirugarren kapituluan, poli(etileno oxido karbonatoak) polikondentsazio bidez 

sintetizatu dira. Karbonato taldeen artean, etileno oxido kopurua aldatu da, eta 

honen eragina analizatu da. Karakterizazio kimikoa burutu ostean, propietate 

elektrokimikoak aztertu dira LiTFSI gatza gehituaz. Beirazko trantsizio tenperatura 

baxuena duen elektrolito polimerikoak konduktibitate ioniko altuena erakutsi du, 

etileno oxido unitate kopuru altua duen polikarbonatoak, 34 unitate. Nahiz eta 

karbonato kopurua txikia izan, hainbat teknikaren bitartez karbonato taldearen 
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eragina analizatu ahal izan da. Horretarako, propietate mekanikoak hobetu behar izan 

dira, polimerizazioko kimika aldatuz. Behin propietate egokiak lortu direnean, 

propietate elektrokimikoak ebaluatu dira, bi talde kimikoen portaera nabarmenduz. 

Alde batetik, etileno oxidoari esker, beirazko trantsizio tenperatura jaitsi ahal izan da, 

hala, konduktibitate ionikoa hobetuz, eta bestalde, karbonato taldearen eragina litio 

transferentzia zenbakian eta egonkortasun elektrokimiko hobetuz nabarmendu da. 

Propietate guztiak, NMC-bateria batean islatu ziren, 70 °C eta 50 °C-tan emaitza onak 

lortuz. 

Laugarren kapituluan aldiz, ioi bakarreko konduktibitatea bermatzen duen 

polimeroen familia osatu da. Litio katioia da baterian erreakzio kimikoan parte 

hartzen duen ioia, beraz, anioiaren konduktibitatean eragozpenak besterik ez ditu 

ekartzen. Azken urteetan erabili den estrategia bat, anioia polimeroaren katera lotura 

kobalenteaz lotzea izan da. Oraingoan erabili dugun estrategia bera izan da. Gainera, 

polikondentsazioari esker hiru estruktura kimiko desberdin polimero kate berdinean 

batu ahal izan dira: ondo aztertuta dagoen etileno oxidoa, azken urteetan garrantzia 

hartu duen karbonato taldea, eta ioi bakarreko propietatea emango dion 

monomeroa. Talde kimiko guztiei esker, konduktibitate ioniko nahiko altuak lortu 

direnez, elektrolito polimeriko arrunt batekin konparatu ahal izan da. Bi sistemak 

konparatu ostean, ioi bakarreko polimero elektrolitoak propietate hobeak erakutsi 

ditu. 

Laburbilduz, tesi honetan, polikondentsazio bidez polikarbonato 3 familia osatu dira. 

Polikarbonato guztiak elektrolito polimeriko bezala aztertu dira, LiTFSI gatza gehituaz. 

Propietate termikoetan eta elektrokimikoetan metileno eta etileno oxido 

kopuruaren, eta ioi bakarreko monomeroaren kontzentrazioaren eragina aztertu da. 
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Résumé 
Le 21ème siècle doit faire face à de nouveaux défis sociétaux et environnementaux en 

lien avec l’amélioration de la qualité de vie qui nécessite une innovation permanente. 

Pour cela, la gestion de l’énergie est un élément clé. La révolution industrielle et ses 

développements technologiques ont beaucoup reposé sur les énergies fossiles issues 

du pétrole, du gaz et du charbon, avec les conséquences négatives que l’on connait 

aujourd’hui, liées en grande partie à l’émission de dioxyde de carbone. Dans ce 

contexte le développement des énergies renouvelables est nécessaire ; en effet 

progressivement les énergies basées sur le solaire, l’éolienne, l’hydraulique, la 

géothermie et les bio-ressources prennent le pas sur les énergies fossiles. 

Néanmoins, ces sources d’énergie sont bien souvent intermittentes, par conséquent, 

il est indispensable de développer des systèmes de stockage d'énergie fiables, Figure 

1. Parmi toutes les options le stockage électrochimique semble être le plus 

prometteur pour les appareils électroniques, les véhicules électriques ainsi que les 

réseaux. Aujourd’hui, même si les batteries lithium-ion sont largement répandues, 

car relativement performantes, il reste indispensable de concevoir et de développer 

de nouvelles batteries répondant mieux encore aux nouvelles nécessités sociétales. 

 

Figure 1. Importance des systèmes de stockage d'énergie électrochimiques. 
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Une batterie classique est constituée de deux électrodes: une électrode positive, la 

cathode, et une électrode négative, l’anode. Entre les deux se trouve l’électrolyte. 

Lorsqu'une batterie est en décharge, les électrons circulent, dans le circuit, de l'anode 

vers la cathode. Inversement, lorsque la batterie est en charge, une tension doit être 

appliquée et les électrons retournent à l'anode. Pour que cela fonctionne et garantir 

l'électro-neutralité l'électrolyte doit permettre la conductivité ionique des cations 

dans le sens opposé aux électrons. 

Actuellement, et en général, dans les batteries commercialisées l’électrolyte est un 

liquide constitué d’un sel de lithium dissout dans un solvant organique. Celui-ci 

présente plusieurs risques: i) d’inflammabilité; ii) de fuite; iii) de volatilité; et iv) de 

toxicité. Ainsi, des recherches sont menées pour développer de nouveaux matériaux 

électrolytiques, qui en plus de répondre aux risques mentionnés précédemment, 

cherchent à optimiser les propriétés suivantes: 

- Conductivité ionique élevée  

- Nombre de transport du lithium élevé 

- Stabilité électrochimique  

- Stabilité thermique 

- Stabilité mécanique 

- Contact efficace entre l’électrolyte et les électrodes 

Au cours des dernières décennies, plusieurs électrolytes solides ont été proposés et 

parmi eux les polymères sont les plus prometteurs (SPE pour Solid Polymer 

Electrolyte), en particulier le poly(oxyde d'éthylène) (PEO). En effet, le PEO est le 
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polymère le plus largement étudié car il possède une faible température de transition 

vitreuse (Tg) et les groupes polaires d’oxyde d'éthylène (EO) sont capables de 

dissocier les sels de lithium. Cependant, en raison de la semi-cristallinité du polymère, 

les batteries doivent fonctionner à des températures élevées (supérieures à 70 ° C, 

i.e. température de fusion). Aussi, en raison de la forte coordination des ions lithium 

par les groupes polaires, la conductivité spécifique des cations lithium diminue; ainsi, 

la majeure partie de la conductivité mesurée correspond à la mobilité des anions. 

Afin de garantir une conductivité du lithium optimum et le fonctionnement des 

batteries à basses et hautes températures, différents polymères ont été proposés : 

polycarbonates, polyesters, polysiloxanes, polyalcools, etc. Parmi ceux-ci, les 

polycarbonates ont montré ces dernières années des propriétés très intéressantes. 

D’une part, le polymère présente une température de transition vitreuse basse avec 

un caractère amorphe; d'autre part, il présente une bonne coordination entre les ions 

lithium et les groupes carbonates, mais plus faible qu'avec le PEO.  

Afin d’étudier l'impact de la structure chimique du polymère plusieurs familles de 

polycarbonates ont été synthétisées au cours de la thèse. Tout d’abord, les 

polycarbonates peuvent être synthétisés de trois manières différentes: i) par 

polymérisation par ouverture de cycle; ii) par copolymérisation de CO2 et d’époxy; et 

iii) par polycondensation, Schéma 2. Cette troisième voie a été choisie car elle permet 

de contrôler facilement la structure du polycarbonate. Ainsi, pendant la thèse, nous 

avons étudié trois familles différentes, décrites dans trois chapitres: 
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Schéma 2. Technique de polymérisation utilisée au cours de la thèse : polycondensation. 

 

Dans le deuxième chapitre est présenté la synthèse de polycarbonates aliphatiques 

montrant l'efficacité de la polycondensation. Il est à noter que parmi tous les 

catalyseurs organiques analysés, les catalyseurs basiques ont montré une activité 

catalytique supérieure par rapport à celle des catalyseurs acides. En effet la 4-

diméthylaminopyridine (DMAP) a montré les meilleurs résultats. En utilisant des 

monomères diols commerciaux, des polycarbonates (homopolymères et 

copolymères) ont été synthétisés puis caractérisés. L’étude a été complétée en 

utilisant ces polymères en tant que matrice électrolyte solide en ajoutant un sel de 

lithium (LiTFSI). Une conductivité ionique plus élevée a été observée pour les 

polycarbonates contenant un nombre d'unités méthylènes plus élevé, ce qui peut 

être attribué à la structure du polymère. L’ajout de LiTFSI a conduit à des propriétés 

uniques en raison de la cristallinité et de la présence de segments hydrophobes le 

long de la chaine. En utilisant des polymères avec peu d'unités méthylènes l’ajout du 

sel a conduit à des matériaux amorphes et l’augmentation de la concentration de 

LiTFSI entraine une augmentation de la Tg et donc une baisse de la conductivité 

ionique. Globalement, les valeurs de conductivité ainsi que les propriétés mécaniques 

de ces matrices polycarbonates aliphatiques restent relativement limitées pour une 

utilisation comme SPE. 

Afin d'augmenter la conductivité des poly(oxyde d'éthylène carbonates) ont été 

synthétisés par polycondensation, cette étude est présentée dans le chapitre 3. La 
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voie de synthèse ainsi que la disponibilité des différents diols contenant des unités 

oxyde d'éthylène ont permis de contrôler la longueur des segments OE entre les 

groupes carbonates. Les meilleures SPE, présentant les Tg les plus basses, sont 

obtenus avec un nombre élevé d'unités EO (34) entre les fonctions carbonates. Une 

coordination entre les ions lithium et les groupes carbonates a été observée, malgré 

un comportement de la conductivité ionique de type électrolyte-PEO. Afin d'étudier 

plus avant le rôle des unités EO et des groupes carbonates, des électrolytes 

polymères solides auto-supportés ont été préparés. Ces SPE ont montré des 

caractéristiques électrochimiques prometteuses, telles qu'une conductivité ionique 

et un nombre de transfert du lithium élevés ainsi qu’une large fenêtre de stabilité 

électrochimique. Ceci a permis de mettre en évidence le rôle de la structure chimique 

des polymères. Il a été observé que l’insertion d’unités EO diminue la température de 

transition vitreuse, améliorant ainsi la mobilité des chaînes et par conséquent la 

conductivité. Aussi, la coordination entre les groupes carbonates et les ions lithium 

favorise la conduction cationique. Toutes ces caractéristiques ont permis d’aboutir à 

des résultats prometteurs en cellules à 70 °C et 50 °C (électrodes NMC). 

Dans le chapitre 4 est présenté une étude centrée sur la synthèse d’électrolytes 

polymères de type ‘’single-ion’’ composé d’unités chimiques EO, carbonates et 

sulfonamides. Ces dernières années, les électrolytes polymères de type ‘’single-ion’’ 

(SIPE) ont suscité un vif intérêt pour une application dans les batteries haute densité 

d'énergie lithium métal. Dans ce travail, le copolymère a été synthétisé par 

polycondensation avec du polyéthylène glycol diol, du diméthyl carbonate et un 

nouveau diol fonctionnel comprenant le groupe anionique sulfonamide et le cation 

lithium. L’association de ces trois fonctions chimiques a permis de produire des 

électrolytes polymères présentant des conductivités ioniques élevées, une large 

fenêtre de stabilité électrochimique et des valeurs de nombre de transfert du lithium 
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élevées. En parallèle, les interactions et la mobilité des ions lithium dans la matrice 

polymère ont été étudiées par RMN à gradient de champs pulsé et analyse FTIR-ATR. 

La comparaison entre un système ‘’single ion’’ et SPE conventionnelle analogue (avec 

LiTFSI) a permis de mettre en évidence une diffusion plus favorable des ions lithium 

dans le système ‘’single ion’’. 

En résumé, au cours de cette thèse, trois familles de polycarbonates ont été 

synthétisé avec succès par polycondensation. Tous les polycarbonates ont été 

évalués en tant qu'électrolytes polymères solides après ajout de sel de lithium 

(LiTFSI). L’impact du nombre d'unités méthylène et OE, ainsi que de la concentration 

d’unités ‘’single ion’’ sur les propriétés thermiques et électrochimiques ont été 

évalués. Aussi, nous avons développé des électrolytes polymères innovants 

présentant des propriétés adaptées pour une utilisation dans les technologies de 

batteries tout solide émergentes. 
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List of acronyms 

EESS Electrochemical energy storage systems 

SPE Solid polymer electrolyte 

PEO Poly(ethylene oxide) 

EO Ethylene oxide 

SIPE Single-ion conducting polymer electrolyte 

TFSI Trifuoromethylsulfonylimide 

σ Ionic conductivity 

EIS Electrochemical impedance spectroscopy 

VTF Vogel-Tamman-Fulcher 

pfg-NMR Pulsed Field Gradient NMR 

NMR Nuclear magnetic resonance 

PEC Poly(ethylene carbonate) 

PTMC Poly(trimethylene carbonate) 

LiTFSI Lithium trifuoromethylsulfonylimide 

LiFSI Lithium bis(fluorosulfonyl)imide 

DMC Dimethyl carbonate 

DPC Diphenyl carbonate 

DMAP 4-Dimethylaminopyridine 

TBD 1,5,7-Triazabicyclo[4.4.0]dec-5-ene 

DBU 1,8-diazabiciclo[5.4.0]undeca-7-eno 

MSA Methanesulfonic acid 

p-TFSA p-toluenesulfonic acid 
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PXC Aliphatic polycarbonates X = methylene units between the 

carbonate groups 

PEOX-PC Poly(ethylene oxide carbonates)  X = number of ethylene oxide 

units between the carbonate groups 

MA Methacrylic based diol 

FTIR-ATR Fourier Transform Infrared-Attenuated total reflection 

GPC Gel permeation chromatography 

MeOH Methanol 

CDCl3 Deuterated chloroform 

DMSO-d6 Deuterated dimethyl sulfoxide 

DMC Dimethyl carbonate 

DCM Dichloromethane 

DMF N,N-dimethylformamide 

ACN Acetonitrile 

THF Tetrahydrofuran 

TLi+ Lithium transference number 

Mw Weight average molecular weight 

Mn Number average molecular weight 

Tg Glass transition temperature 

Đ Dispersity 

Tm Melting temperature 

Tc Crystallization temperature 

ΔHm Enthalpy of the melting 

TGA Thermogravimetric analysis 

DSC Differential scanning chromatography 

MA 2,2-bis(hydroxymethyl)-propionic acid  
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Bis-MPTSI lithium ((3-((3-hydroxy-2-(hydroxymethyl)-2-

methylpropanoyl)oxy)propyl)sulfonyl) 

((trifluoromethyl)sulfonyl)amide 

PEGDA Poly(ethylene glycol) diacrylate 

NMC Nickel manganese cobalt 

KClO4 Potassium perchlorate 

LiClO4 Lithium perchlorate 

LiBr Lithium bromide 

SS Stainless steal 

CV Cyclic voltammetry 

OCV Open-circuit voltage 
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