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Enhanced precision bound of low-temperature
quantum thermometry via dynamical control

Victor Mukherjee® "23*, Analia Zwick?, Arnab Ghosh2, Xi Chen"® & Gershon Kurizki?

High-precision low-temperature thermometry is a challenge for experimental quantum
physics and quantum sensing. Here we consider a thermometer modeled by a dynamically-
controlled multilevel quantum probe in contact with a bath. Dynamical control in the form of
periodic modulation of the energy-level spacings of the quantum probe can dramatically
increase the maximum accuracy bound of low-temperatures estimation, by maximizing the
relevant quantum Fisher information. As opposed to the diverging relative error bound at low
temperatures in conventional quantum thermometry, periodic modulation of the probe allows
for low-temperature thermometry with temperature-independent relative error bound. The
proposed approach may find diverse applications related to precise probing of the tem-
perature of many-body quantum systems in condensed matter and ultracold gases, as well as
in different branches of quantum metrology beyond thermometry, for example in precise
probing of different Hamiltonian parameters in many-body quantum critical systems.
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progress in diverse quantum technologies, including

quantum metrology!~3, quantum information processing
(QIP)%, and quantum many-body manipulations®. The maximum
amount of information obtained on a parameter of a quantum
system is quantified by the quantum Fisher information (QFI),
which depends on the extent to which the state of the
system changes for an infinitesimal change in the estimated
parameter®10, Ways to increase the QFI, thereby increasing the
precision bound of parameter estimation, are therefore recog-
nized to be of immense importancell12, Recent works have
studied QFI for demonstrating the criticality of environmental
(bath) information!3, QFI enhancement in the presence of strong
coupling!* or by dynamically controlled quantum probes’, and
the application of quantum thermal machines to quantum
thermometry!>.

Here, we propose the synthesis of two concepts: quantum
thermometry®1214-22 and temporally periodic dynamical control
that has been originally developed for decoherence suppression in
QIP23-27, We show that such control can strongly increase the
QFI that determines the precision bound of temperature mea-
surement, particularly at temperatures approaching absolute zero.
Accordingly, such control may boost the ultralow-temperature
precision bound of diverse thermometers, e.g., those based on
Coulomb blockade?8, metal-insulator-superconductor junc-
tions??,  kinetic 30, and novel hybrid super-

P recise probing of quantum systems is one of the keys to

inductance’Y,
conductors3!. Alternatively, dynamical control may allow theese
thermometers to accurately estimate a broad range of
temperatures.

Results
Model. An example of our dynamically controlled quantum
thermometer (DCQT) is a quantum wavepacket trapped in a
potential and subjected to periodic modulation, while it is
immersed in a thermal bath (Fig. la). Measurements of the
wavepacket after it has reached a steady-state provide information
about the bath temperature. Another example of a DCQT is the
internal state of either a two-level or a multilevel system coupled
to a spin-chain bath3233. The level separation is periodically
modulated by a control field (e.g., a field-induced alternating
current Stark shift) and its level populations are finally read out
by laser-induced fluorescence in the optical range (Fig. 1b). Many
of the advanced thermometers!4-1628-31 may be adapted to such
dynamically controlled operation.

The proposed DCQT is described by a Hamiltonian H(t),
subjected to a modulation with time period 7 = 27/A:

H(t+7) =H(t) = Y Hy(1);
k

H(t+ 1) = Hy(1).

(1)

The DCQT is coupled to a bath through the interaction
Hamiltonian of the form H; = >, Hy = 3,5, ® B;. Here, §;
and B, are, respectively, the k-th mode DCQT and bath
operators. In cases where the k-th bath mode acts as a Markovian
environment characterized by a mode-dependent unknown
temperature T}, the corresponding DCQT mode thermalizes to
the temperature T} at long times, thus enabling us to perform
mode-dependent thermometry. Alternatively, if the bath is
thermal with an unknown temperature T, a single-mode DCQT
suffices for bath-temperature estimation.

Analysis. For simplicity, we restrict our analysis below to a
thermal bath with temperature T, probed by an A/-level DCQT

that is described by the Hamiltonian H(t) = hZﬁiOwn(t)|n)<n|

ﬁ Spin Bath

Fig. 1 Schematic realization of a quantum thermometer. a Schematic
realization of a dynamically controlled quantum thermometer by a motional
wavepacket of a state of a cavity, or an ion/atom trapped in an optical
lattice potential. The frequency of the trap is periodically varied (black
arrow) by modulating the length of the cavity, or the amplitudes of the
lasers forming the trap. The wavepacket is in contact with a phonon bath,
and relaxes to the corresponding thermal steady-state at long times.

b Same, for a spin-chain bath coupled to a two-level system whose
resonant frequency is periodically modulated.

Phonon Bath

with energy spectrum w, () = nw(t) for real positive w(t), and an
interaction Hamiltonian H; = S® B. Here, n denotes the level
index, and we assume S to be a system operator belonging to a Lie
algebra. For a two-level system, S =6, the x Pauli operator,
while for a harmonic oscillator, § = (a+ &T), where 4, a' denote
the annihilation and creation operators, respectively. For a single-
mode DCQT, we consider a generic, periodic, diagonal (fre-
quency) modulation:

w(t) = i(s(m/) sin(m'tA) + c(m') cos(m'tA)), (2)

where s(m'), c¢(m’) are adjustable real constants, corresponding to
the m’-th frequency harmonic. One can extend this analysis to a
multi-mode DCQT probing a multi-mode bath (see Methods).

Here, we focus on controls with 7 much smaller than the
thermalization time of the system, such that one can adopt the
secular approximation, thereby averaging out all rapidly oscillat-
ing terms and arriving at a time f>> 7 at the steady-state
pt — 00) = SV 0, n) (n|34-36. The level populations o, are
functions of the bath temperature T, the bath response
(correlation) functions G(w,,) (see Methods)37-38 at the m-th
sideband frequency w,, = w, + mA, and the modulation-
dependent m-th sideband weight P, > 0 (see Methods and
Supplementary Notes 2-5). Here, the sidebands m =
0,+1+2, ... arise due to the periodic modulation, the mean
frequency w, = ([jw(t)dt)/7, and P,’s satisfy the constraint
S P =133 As can be expected in experiments, we
impose an upper bound on the available resources for dynamical
control, by considering only frequency modulations such
that max[m'|A<w,. Unless otherwise stated, we take h and
kp to be unity, and assume the bath response obeys the
standard Kubo-Martin-Schwinger condition G(—w)/G(w) =
exp(—w/T)%.

We may infer the bath temperature T' from measurements of
0, of the thermometer: e.g, through measurement of the
average phonon occupation number of a trapped-wavepacket
probe (Fig. 1a)3%, or the fluorescence of a two-level system probe
(Fig. 1b). We can assess the effectiveness of our measuring
scheme from the QFI as a function of the system and bath
parameters. The relative error 6T /T is bounded by the minimal
achievable error &, dictated by the Cramer-Rao bound for optimal
positive-operator valued measure, which in this case are the level-
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population measurements. It obeys the relation®%40

_ 3
TV MH G)
Here, M denotes the number of measurements, and H =
—2lim, o O*F(p(T, 1), p(T + €, 1)) /06 = Y-\ o[00,/OT[ fe, _is

the QFI at temperature T784142, F(p,,p,) = Tr[, [ \/P1Ps \/E]
being the fidelity between p, and p,.

The dynamics of the DCQT, and consequently also the
resultant steady-state, depends crucially on the factors P,,G(w,,);
in general, a large P,G(w,) is beneficial for estimating
temperatures T ~ w,, (see below, Methods and Supplementary
Notes 1-5)36. Although we cannot control the bath correlation
functions (spectral-response) G(w,,), nevertheless for a given
G(w,,), we can tailor the thermometry QFI to our advantage by
judicious choices of the periodic control fields, and hence of the
corresponding P,,’s and w,,’s. For example, a versatile thermo-
meter, which can measure a wide range of temperatures with
high-accuracy bound would require a modulation that corre-
sponds to large QFI over a broad range of temperatures, in order
to yield £ <« 1 for finite M. The above scenario can be realized
using modulations, which give rise to multiple non-negligible
P,’s, or equivalently, large P, G(w,,) over a broad range of
frequencies. In particular, it is exemplified below using a
sinusoidal modulation characterized by a single, or few
frequencies. On the other hand, a different modulation would
enable the same thermometer to measure temperatures with
higher accuracy bound (or, equivalently, larger QFI), but at the
expense of the changing of the temperature range over which the
DCQT can measure accurately. This can for example be realized
using periodic 7-pulses, which give rise to only two sidebands,
viz., non-negligible P, 34

Therefore, in contrast to thermometry in the absence of any
control, DCQT gives us the possibility of tuning the range and
accuracy bound of measurable temperatures. This necessitates an
appropriate choice of control parameters (A, m',s(m'),c(m')) in
Eq. (2) depending on the temperatures of interest.

Harmonic-oscillator DCQT for sub-Ohmic baths. As a generic
example of DCQT, we consider the probe to be a periodically
modulated harmonic oscillator. The interaction Hamiltonian is
H = (& + &T) ® B, where a (a') denotes the annihilation (crea-
tion) operator of the DCQT, and B is a bath operator.

We first consider the thermometry of a broad class of bath
spectral-response functions!8:43

G(w) = y—

s—1
we

S

e /% for w > 0, (4)

under the Kubo-Martin-Schwinger condition. Here, y is a
positive constant determining the system-bath coupling strength.
Since we focus on the weak-coupling limit, such that the
thermalization time ~ y~! > 7, w,!, the secular approximation
is valid3”. Expression (4) yields sub-Ohmic, Ohmic and super-
Ohmic bath spectra for s< 1, s =1 and s > 1, respectively.

To show the full advantage of our control scheme, we start by
focusing on a sub-Ohmic bath spectrum, since it has a non-zero
G(w) infinitesimally close to w = 0, even though G(w) vanishes at
w =0 (cf. Eq. (4)), which is ideal for low-temperature thermo-
metry!”. To simplify the treatment, we take the limit of small y in
Eq. (4) to ensure weak-coupling, s — 0 to generate small w,;,,
and w, — oo to realize high-cutoff frequency, and arrive at the
nearly flat bath spectrum (NFBS)

G(w) = Gy = ys'w exp(—s) (5)

for w;, Sw K w,, with w_;, ~ sw, (see Supplementary Notes 4
and 5). Hence, w,,;, can be as small as sw_, thus enabling us to
probe the bath very close to the absolute zero (see below). The
comparison of our results with those obtained for a sub-Ohmic
bath spectrum with finite s and w, is shown in Figs. 2 and 3. The
extension of our results to the case of a generic bath spectrum is
presented below.

Below we choose the control scheme Eq. (2) to have ¢(m') =

wo0,y o and s(m') = uAd,, |, so that w(t) is varied sinusoidally:
w(t) = wy + pAsin(tA). (6)

In the limit of weak-modulation (0 <y < 1), only the
sidebands m =0 and m = +1 have significant weights P, in
the harmonic (Floquet) expansion of the system response3*:
the mth sideband weight P,,, corresponding to the Floquet
(harmonic) frequency w,, = w, + mA, falls off rapidly with
increasing |m|. The QFI can then be written as (see Supplemen-
tary Note 4)

H:H,I +H0+H1,

P ilew%lwztl (7)
(-1+ ew?I)ZT4
Here, H,, are the contributions to the QFI arising from to the
m = =1 sidebands with P, ~ y?/4, and H,, includes the m = 0
contribution.

The advantages of DCQT are then revealed for a control
scheme with A chosen such that

Hy =

w_~T <K wy,w, (8)
so that
0, = 1 < N avg )” (9)
Noyg + 1 \ Ny + 1
with the average occupation number given by
1

Nan:Nefszewfl/T_l (10)
Pl

The QFI is then predominantly associated with the H_, term,
with the maximum located at the temperature

TrT | = (w—A)/4=w_,/4 (11)

If higher sidebands (|m| > 2) are taken into account, the results
remain valid, except for a marginal increase of the relative error
bound & at low temperatures (see Supplementary Notes 2-5).
By contrast, in the absence of any control (¢ = 0), ¢, is still
given by Eq. (8), with the average phonon occupation number

! (12)

- ewn/ T _1 ’
which vanishes in the limit T < w,. The corresponding QFI is
given by

N, =N,

avg

wo
2
erwy

“o 2 47
(—l—l—er) T

which has a single peak at T = T, where T, satisfies the equation
T, = w, coth(wy/2T,)/4 (cf. inset of Fig. 2).

One can infer from the above results that a weak sinusoidal
modulation (small y) with appropriately large A results in a
double-peaked QFI, attaining maxima at T~ T_; and T = T,
owing to contributions from H_; and H,, respectively (Fig. 2).
This double-peaked QFI signifies the applicability of DCQT for
estimating a much broader range of temperatures, viz., in the
vicinity of T = T_,, which can be tuned according to our

H(p=0)=Hy(u=0) = (13)
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Fig. 2 Relative error bound and quantum Fisher information. Relative
error bound £ for estimation of bath temperature T (in units of wy) by a
harmonic-oscillator dynamically controlled quantum thermometer (DCQT)
under sinusoidal modulation for the following bath spectra: nearly flat bath
spectrum (magenta solid curve), sub-Ohmic bath spectrum with s =

0.1, w, = 100 (black dashed curve) and the same spectra in the absence of
control (turquoise dotted curve). For low temperatures in the absence of
control, & — oo, thus making it impossible to measure low temperatures as
shown. In contrast, our dynamical control scheme reduces £ to finite values
at low temperatures, for nearly flat, as well as sub-Ohmic bath spectra, thus
showing the advantage of DCQT. Inset: Quantum Fisher Information () as
a function of temperature T (in units of w,) for DCQT under sinusoidal
modulation and in the absence of control, for the bath spectra in the main
figure (same curve colors). DCQT increases the quantum Fisher
information significantly at lower temperatures, giving rise to a peak at

T ~ T_, (magenta dot), in addition to the peak at T =~ T (turquoise dot).
Here, the modulation amplitude y = 0.2, wy =1,A = 0.9 (see Eq. (6)),
m=0, £1, £2, +3 and the number of measurements M = 1. The
thermalization time ~ p~' is assumed to be long enough such that the
secular approximation is valid.

temperature of interest by tuning w_;, and T =T, In
comparison, an uncontrolled quantum thermometer can accu-
rately measure temperatures only in the vicinity of T = T, for
probes characterized by a single energy gap, or at multiple fixed
(untunable) temperatures, for probes characterized by highly
degenerate multiple energy-levels with arbitrary spacings!2.

For a sub-Ohmic bath spectrum with a low-frequency edge
w,,;,» the minimum error bound &(T = T_,;) per measurement
(M =1) remains finite and approximately constant at (see
Supplementary Note 4)

exp(2)

ilm E(T = T*l Z 6‘)min/4) - 2‘1/[ )

(14)

where A T w, signifies A approaching w, from below. Condition
(14) yields the maximum possible advantage offered by our
control scheme close to the absolute zero (ie., for
T~ T_, < w,), and is valid in the regime

G<w_ ~T, wy,<w_;~T. (15)

An error bound &, which does not diverge at low temperatures
T < w, (as in standard quantum thermometry), but instead stays
constant as the temperature decreases in that range, is deemed to
be highly advantageous, since it allows us to measure such low
temperatures. We have thus obtained a remarkable result: the
advantage offered by our control scheme, expressed by the bound

102

G(w) /’__----‘ === \\
10t . i
]
o ‘ ‘
o 1 2w/w0§ 4
0.02 0.06 T—l/wo 0.1

Fig. 3 Temperature-independent relative error bound with dynamical
control. Relative error bound & for the estimation of bath temperature at
T=T_, = (wy — A)/4, by a harmonic-oscillator dynamically controlled
quantum thermometer under sinusoidal modulation (cf. Eq. (6)), for the
following bath spectra: nearly flat bath spectrum (magenta solid curve),
sub-Ohmic bath spectrum with s = 0.1, w. = 100 (black dashed curve) and
the same spectra in the absence of control (turquoise dotted curve).
Dynamical control reduces the relative error bound significantly, with &
remaining constant over a broad range of low temperatures T < wg. The
sidebands m = 0, £1, +2, +3 are included in the calculation. Here, the
modulation amplitude ¢ = 0.2, and wy = 1. Inset: Corresponding spectral-
response functions scaled by y.

Eq. (14) close to the absolute zero (ie., for T < w,), is maximal
for a sub-Ohmic, nearly flat bath spectrum (NFBS) with small,
but non-zero, lower edge, such that the bath interacts weakly with
the DCQT at all non-zero frequencies. Regime (15) ensures that
the dynamics is Markovian (see Methods).

Conditions (14), (15) allow us to achieve thermometry with a
high-precision bound for very low temperatures; viz., only a finite
number of measurements M > e*/(4u*) ensures a relative error
bound, which is constant, i.e., temperature-independent, and has

the finite value exp(2)/2uv/ M. For given small values of G, and
W,in> We then arrive at a minimum (limiting) temperature bound
that is measurable with the error bound (14) per measurement:

T = max[Typys Thima);
Tiim1 > Go; Tiimp >

(16)
min?’

In particular, for a sub-Ohmic NFBS (Eq. (5)) coupled very
weakly with the thermometer at all frequencies such that
Gy < Wy, — 0, one has T}, — 0, thus enabling us (at least
under ideal circumstances, i.e., in absence of any other source of
error) to accurately measure temperatures very close to the
absolute zero.

The only penalty for a small G, < w,;, is long thermalization
time. Yet, even if G, corresponds to divergent thermalization
times (e.g., for Gy, w,,;, — 0), one can use optimal control to
reach the steady-state at the minimal (quantum speed limit)
time**: one can initially apply a strong brief pulse to take the
thermometer to an optimal state, from which it takes the least
time to thermalize, as detailed in ref. 4°. Following this initial
pulse, one can periodically modulate the system, as presented
here. This behavior is in sharp contrast to that of an unmodulated
thermometer, where &(T) diverges for T — 0, thus precluding
any possibility of precise temperature estimation at very low
temperatures!’.
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This novel effect of keeping ¢ finite even in close proximity to
the absolute zero is a direct consequence of our control scheme,
and is unachievable without modulation for any non-zero wj,.
Extension of the analysis to multipeak QFI is given in the
Supplementary Note 6 (also see Fig. 4).

As discussed above, optimal thermometry demands choosing a
A such that the QFI has a maximum at the temperature regime of
interest, which is always possible for small enough w,;, (cf. Eq.
(16)). However, even for a bath spectrum with small but finite
W > ONe can perform low-temperature thermometry with a low-
relative error bound in the regime Gy < T < w,;, via suboptimal
DCQT whose response is peaked at a temperature close to, but
larger than w,;,. In this case the QFI, albeit not maximal, would
be still significantly higher than that of the same thermometer in
the absence of dynamical control. For example, in order to
measure temperatures of the order T ~ 107%w,, ideally one
would need w,, ~ 107*w,. However, even a suboptimal modula-
tion with w,, ~ 1072w, which leads to QFI with a maximum at
T ~ w,, ~ 1072w, results in H =~ 14.3 at T = 10w, (see inset
of Fig. 4). In contrast, M is vanishingly small (ie, H < 1/T*
such that &> 1/ VM; of. Eq. (3)) for the same temperature
regime in the absence of control, thus exhibiting the advantage of
our DCQT even for suboptimal thermometry at T < w,; .

Thermometry of arbitrary bath spectra. The advantage offered
by DCQT is not restricted to the specific bath spectra considered
above. In fact, the key result of significant improvement in low-
temperature thermometry by dynamical control holds for arbi-
trary bath spectra satisfying the Kubo-Martin-Schwinger con-
dition (see Eq. (30) of Methods), as long as G(w>0) is
independent of temperature. Choosing a control scheme satisfy-
ing (see Eq. (11))

w_, =T (17)
for a positive constant x of the order of unity, leads to a QFI,
which diverges quadratically with temperature:

I’]BKKZ
—_———. 18
(1T e
The above result Eq. (18), which is valid for any bath spectra,
arises due to w_, being vanishingly small (see Eq. (17)). The
lowest temperature for which Eq. (18) is valid is given by the
condition

~
~

w_y ~T> Ty, = Glw_y). (19)

As in the case of sub-Ohmic NFBS, condition (19) ensures that
the thermalization time is long enough for the secular approx-
imation to remain valid. This in turn results in a relative error
bound

(~1+7e)’ 1

e VM
:POG(WO) + P, (G(w,) + G(w_y))
P,G(w_,) '

which is not explicitly dependent on the temperature, even for
low temperatures T < w, (see Fig. (3)). Although the relative
error bound £ is not explicitly dependent on temperature, the QFI
and consequently & still depend on the details of the bath spectral
function G(w) at w = w_,, which in turn is determined by the
temperature through Eq. (17). The maximum QFI in this case is
obtained by modulations satisfying the optimal condition

P,G(w_;) > PyG(w,), P, G(w,).

(20)

(21)

The above condition ensures that the sidebands m= —1

60 -

£

40 -

. \vwmm
T/wo 10!

Fig. 4 Dynamical control with multiple harmonics. Relative error bound ¢
and Quantum Fisher Information H (in inset) as a function of temperature
T (in units of wy) in the absence of any modulation (turquoise dotted
curve) and under multi-harmonic modulation w(t) = wy + A (g, sin(ItA)+
pysin(l'tA)) (magenta solid curve), for harmonic-oscillator dynamically
controlled quantum thermometer probing a bath with nearly flat bath
spectrum. Our control scheme reduces the lowest temperatures
measurable with finite £ by almost two orders of magnitude (arrow). Here,
=80, =99, ugy = 0.394, tgy = 0.115, A = 0.01, wg =1, Wy, < 0.01
and M =1.

1073 1072

min

are insignificant, so as to yield a small relative error bound at
T ~ w_, (see Supplementary Note 3).

Condition (21) shows that one needs to tailor the control
scheme to the bath spectrum at hand. For example, in the case of
a bath spectrum characterized by G(w;) > G(w_, ), one needs to
design a modulation with P_, > P, in order for our control
scheme to be beneficial for estimating temperatures
T ~T_; < wy. This can be realized using a periodic 7-pulse
modulation, in which case P,, ~ 4/n? and P, ,, ~ 034,

Discussion
We have shown that by subjecting a generic quantum thermo-
meter to an appropriate dynamical control, we may increase its
maximum accuracy bound of measuring a chosen range of
temperatures. The class of quantum thermometers considered
here relies on the measurement of the energy-level populations g,
at the steady-state, as well as knowledge of the resonant frequency
w, of the thermometer, the modulation parameters y and A (cf.
(6)) and (at least crudely) the bath spectral density G(w) (see
Supplementary Note 1). It falls in the category of secondary
thermometers. The advantage of the proposed DCQT becomes
especially apparent at low temperatures, where, for generic bath
spectra G(w), its accuracy bound of measuring the bath tem-
perature, quantified by the QFIL, is dramatically higher than that
of its unmodulated counterpart. Namely, dynamical control
allows us to perform low-temperature thermometry with
temperature-independent relative error bound, at temperatures
above the bound set by Eq. (16). Our proposed control scheme
can be tailored according to the bath spectra at hand, in order to
maximize the QFI, and determine the number of its peaks and
sensitivity ranges, thus making it highly versatile. .

In addition to our diagonal Hamiltonian H(t) =
Zﬁfzown(t)|n><n|, off-diagonal interaction terms of the form

> nm=o(Mym|n)(m| + h.c.) may incur non-adiabatic effects,
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which may cause spurious transitions between the energy levels,
even in the absence of any external bath. In order to avoid such
excitations one should require w(t) > h,, ,, for all ¢, n, m, thereby
ensuring adiabaticity.

The dynamical control studied here has already been realized
experimentally, in the context of probing the system-environment
coupling spectrum®. One can utilize similar dynamical control to
realize DCQT in different multilevel systems (see Supplementary
Note 1): (i) a harmonic-oscillator DCQT can be implemented by
the mode of a cavity of length I(t), whose frequency w(t) o 1/(¢)
is modulated with the inverse of the cavity length?’. (i) A two-level
DCQT can be implemented by a qubit whose level spacing is
modulated by a time-dependent magnetic field, for example in
nuclear magnetic resonance*® and nitrogen-vacancy (NV)-center#®
experiments. Experimentally, one can probe the thermal steady-
state p(t — oo) of the DCQT at large times, after decoupling it
from the bath, followed by ceasing the dynamical control (i.e., first
setting y = 0, and then y = 0). In a harmonic-oscillator thermo-
meter one can then estimate the temperature T through measure-
ment of the mean number of quanta of the thermometer N, for
example through motional sideband spectroscopy, which relies on
the asymmetry between phonon absorption (proportional to N,,)
and phonon emission (proportional to N, + 1)°0. In a two-level
NV-center thermometer®2, spin readout using photo-
luminescence may enable us to measure the N-V temperature.

The thermal energy-level population measurements @, (see
Eq. (9)), which constitute the optimal positive-operator valued
measure for estimating temperature‘“’, are characterized solely by
the average number of quanta N,,. Consequently, measurement
of N, gives us the complete knowledge of p(t — oc), which in
turn enables us to approach the minimum error bound & of bath-
temperature estimation. However, while DCQT can dramatically
reduce the error bound of temperature estimation (see Egs. (19)
and (20)), additional experimental errors may arise from the
finite accuracy of measuring A, or the energy-level populations.
These errors, which depend on the experimental apparatus, may
prevent us from reaching the fundamental theoretical bound of
Eq. (20) (see Supplementary Note 2).

DCQT can be highly advantageous for thermometry of diverse
baths realized by many-body quantum systems in condensed
matter and ultracold atomic gases, with spectra and modulations
satisfying the optimal condition Eq. (21).

The temperatures measurable with low-relative error bound
using our control scheme are presented in Table 1.

In a microwave cavity subjected to sinusoidal modulation with
wy, — A ~ 10* Hz, DCQT results in QFI attaining a peak at
temperatures of the order of 1012 K, x being real. We thereby
open new avenues for the study of cavity quantum electro-
dynamics and quantum information processing* at extremely low
temperatures. The caveat noted above is that although the
dynamical control can be expected to significantly reduce the
error in low-temperature thermometry, however, experimental
errors may preclude the attainment of theoretical bound of
temperature resolution.

DCQT can be expected to be highly beneficial in baths exhi-
biting the widely studied 1/f* (a > 0) noise spectra*® in
vacuum tubes®® or in thick film resistors®*. This kind of
spectra ensures that for a sinusoidal modulation with small w_,,
the most dominant contribution arises from the m = —1 side-
band, thus enabling us to probe low frequencies with high-
precision bound.

An intriguing application of the proposed DCQT concerns
experimentally studying the third law of thermodynamics for low-
temperature many-body quantum systems, in the sense of under-
standing the scaling of the cooling rate with temperature®>=>7. In

Table 1 lllustrative values. Values of T_, = hiw_,/4kg,
quantum Fisher information H(T = T_,) and relative error
bound &(T =T_,) for w_; = wg — A ~ 10* Hz, for a
harmonic-oscillator dynamically controlled quantum
thermometer under sinusoidal modulation probing a nearly
flat bath spectrum. Here, x is a real number.

Parameters Values
w_; ~ 10" Hz
T ~1.9% 10712 K
H(T=T_,) e, s
- Pre mai “’51 %K—Z %%%K72
—P+efel ) K2T?
§T=T_) ~ exp(2)/ (2uv/M)

view of predictions that the cooling rate does not vanish as the
absolute zero is approached for baths with anomalous dispersion,
such as magnon (ferromagnetic) spin chains8, high-precision low-
temperature thermometry is imperative.

In many-body quantum systems®-%3, interactions may keep a
system non-equilibrated for a long time after a quench3’, during
which time its different collective modes k may have their own
temperatures T. High-precision multi-mode thermometry over a
wide range of temperatures using our DCQT can verify whether
different modes have different temperatures, and thus avoid
thermalization.

The versatility of our DCQT can be well-suited for simulta-
neous multi-mode probing of a bath with high-accuracy bound,
which can be especially useful for nanometer-scale thermometry
in biological systems®465,

The recently discussed need for thermometers with vanishing
energy gaps for measuring low-temperatures in many-body
quantum systems!” and in strongly coupled quantum sys-
tems!8, suggests the importance of control schemes capable of
tuning the gap of a quantum thermometer to our advantage.
Application of our control scheme to thermometers modeled by
many-body quantum systems, or to thermometers coupled
strongly to the bath, in order to achieve high-precision low-
temperature thermometry, is an interesting question, which we
aim to address in the future.

The control scheme presented above may have diverse appli-
cations in quantum metrology beyond thermometry. For exam-
ple, periodic modulation of energy levels in many-body quantum
critical systems may be applicable to precise probing of inter-
particle coupling strengths in these systems®®.

Methods

Thermalization under periodic modulation. We consider a multi-mode DCQT
system with its state p(t) given as a direct product of single-mode states p;:

p(t) = @ypy(t), interacting with a multi-mode bath, again described by the direct
product state py = ®py, . Here, pp denotes the state of the k-th mode of the bath.
For each k, p;(t) evolves under the action of a periodic Hamiltonian, satisfying Eq.
(1). The system is coupled to the bath mode through the interaction Hamiltonian

Hy = $,© By, (22)

where each of the independent k-th mode baths has a spectrum wide enough to
give rise to Markovian dynamics; for example, a finite-Q cavity mode, or a finite-
lifetime phonon mode. In case the above assumption is violated, leading to non-
Markovian dynamics?%37, the DCQT may be useful for revealing the absence of
thermalization. Here, we allow for baths with mode-dependent temperatures T/,
which we aim to measure accurately using our DCQT.

We sketch below the derivation of the master equation describing the
thermalization of a system under periodic control. We refer to refs. 34-37 for details
of the derivation, and ref. 46 for experimental studies of open quantum system in
presence of dynamical control. (For reviews on periodically driven open quantum
systems, see refs. 36:67.)
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The time evolution operator for the periodic Hamiltonian Eq. (1) is given by

U,(£,0) = T exp (71‘/0[1%,{(:/)(1{),

T being the time ordering operator. According to the Floquet theorem, one can
decompose the time evolution operator as U (t,0) = i’k(t)ekk‘, where P, (t + 1) =
P,(t) and Ry is a constant operator. Taking into account U,(0,0) = 1, and the
periodicity of P,(t), one obtains P,(0) = 1 and hence

(23)

Uy (1,0) = f’k(r)ekkr = P(O)ei{ki = ¢, One can now identify the operator R,
with an effective Hamiltonian H; . averaged over a period of H,(t), as
U,(7,0) = R = o Hiar (29)
with eigen energies (. and eigen states |ry), through the relation
Higr = ) Q) (ril. (25)
v

The Fourier components :ka_’m of the system operator S, (t) (cf. Eq. (22)) in the

interaction picture with respect to the evolution (23), are given as
~ A T PPN
Si(t) = Ui(t, 0)8,Uy(t,0)

=22 Som

{0} mez

x(wk+mA (26)

where A = 271/, m are integers, and {w,} is defined as the set of all transition
frequencies (y » — (., between the levels of Hy 4 and the operators Si,m are the

mth-harmonic transition operators associated with these levels3®

Next, we focus only on the dynamics of the k-th mode of the thermometer and
the bath. Under the standard Born-Markov approximation in the weak
thermometer-bath coupling limit, we arrive at the master equation3’

et = = [ sty [0, [Aulo - 95000 2.3,

P =
where Trp denotes trace over the bath mode k, and H,,(t) is the k-th mode
interaction Hamiltonian in the interaction picture.
We now assume that the thermalization time of the thermometer induced by
the bath is much longer than 7 or w,, = (@, + mA)~". Consistently, we adopt the
secular approximation (SA) to average out the rapidly oscillating terms of the form

exp[+i(wy,, — wy,,)t] at times ¢ >> 7, w; }, such that only the terms with k =
34-37

@7)

K,m=m survivesg. We then finally arrive at the master equation , which is a
weighted sum of Lindbladian superoperators, each valid for system-bath coupling
centered at w,,, = wk -+ mA:

( )= Ek Pt Zzﬁwkm Pilt (28)
{w } m
Here,
‘cwk,m [ﬁk(tﬂ ZG(wk + mA)DwA,m[ﬁk t - mA)DLkm[f)k(t)]"
o c o 2
Dl = (S0 08, 538~ 3008, )

and

(e ma)) = [ e 0By o),

J =00
where B (t) = eiﬁt“Bke’iﬂt“, H,, being the bath Hamiltonian, represents the bath
spectral-response or auto-correlation function sampled at the frequency harmonics
+ (wy + mA). The Kubo-Martin-Schwinger condition must be imposed, i.e.,

G(wy, + mA)
G(—w, — mA)
Egs. (29), (30) imply that, within the approximations assumed above, p,
equilibrates to a thermal (Gibbs) state at temperature T. The level populations are

determined by the weighted bath response at the resonance frequencies w; shifted
by Floquet harmonics of modulation, @y ,, = w; + mA.

= exp|(wy + mA) /T (30)
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