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RESUMEN 

Las células stem de la pulpa dental (DPSCs; en inglés) son células extraídas de la pulpa 

dental de los terceros molares (cordales). Durante el desarrollo embrionario, estas células 

migran desde la cresta neural como una población de células ectomesenquimales, tras 

experimentar una transición epitelio-mesenquimal (EMT), para formar la mayor parte de 

los tejidos craniofaciales. 

Las DPSCs presentan unas propiedades que las convierten en un recurso especialmente 

útil para la terapia celular. Entre estas propiedades destaca el potencial de diferenciación 

hacia distintos tipos de linajes celulares y tejidos, incluido hueso, cartílago, nervioso, 

músculo y tejido adiposo, entre otros. Por otro lado, a diferencia de otros tipos de células 

stem adultas mesenquimales, las DPSC son fáciles de obtener de pacientes con un 

procedimiento de extracción sencillo, mínimamente invasivo. Además, estas células se 

cultivan fácilmente en forma de cultivo primario y se amplifican rápidamente gracias a 

su alta tasa de renovación celular. En cuanto al mantenimiento y crioconservación de esta 

población de células, requieren una metodología relativamente sencilla. Además, podría 

considerarse la obtención de células de pacientes para terapias futuras de trasplante 

celular autólogo, evitando así los posibles problemas derivados de otros tipos de 

trasplante (alogénico), como son los efectos secundarios derivados de los tratamientos de 

inmunosupresión y el rechazo inmunológico. También, presentan propiedades 

inmunosupresoras y buena tolerancia a los biomateriales, lo que las hace especialmente 

atractivas para su uso en clínica (ANEXO 1).  

En cuanto al potencial de reparación de las DPSC destaca su troncalidad, reflejada tanto 

por la alta tasa de renovación celular, como por la expresión de marcadores de células 

stem pluripotentes como Oct4, Nanog, Sox2, cMyc, Lin28, Rex1, Stella y Ssea1. Esta 

troncalidad puede ser potenciada mediante la reprogramación celular. Numerosas 

metodologías de reprogramación han sido desarrolladas durante los últimos años, como 

la incorporación mediante la transfección de factores de pluripotencia con vectores 

Yamanaka y con virus Sendai, retrovirus o lentivirus. Recientemente, se ha desarrollado 

una nueva tecnología de edición genética, CRISPR, que permitiría la adición de genes de 

pluripotencia concretos. Sin embargo, todas estas metodologías pueden dar lugar a un 

acumulo de errores y de mutaciones que convierte a las células madre, derivadas por estas 

metodologías, en potencialmente arriesgadas y, por tanto, no aptas para su uso en terapia 
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celular en humanos. Es por todo ello que el conocimiento de las vías de señalización 

Notch y Wnt/β-Catenina, por ejemplo, y de su intervención en la troncalidad y renovación 

de las células stem sería de utilidad en el campo de la reprogramación celular. (ANEXO 

2).  

Las vías de señalización Notch y Wnt/β-Catenina son cruciales en el mantenimiento y la 

diferenciación de distintos tipos de células stem en células maduras. El uso de proteínas 

recombinantes para la modulación de estas vías a diferentes tiempos y concentraciones 

podría ayudar en el control sobre el mantenimiento de estas poblaciones de células stem, 

sin que ello suponga una alteración definitiva o la acumulación de errores en el DNA de 

las células de interés. Además, la modulación en la troncalidad o pluripotencia viene 

acompañada de una remodelación del metabolismo y de la epigenética, todo ello 

necesario para garantizar la eficiencia de la reprogramación. El estudio de todos estos 

cambios en la fisiología de las DPSCs es necesario para asegurar una terapia celular 

efectiva, precisa y segura, que garantice la obtención de células sanas y sin errores 

(ANEXO 2). 

Las vías de señalización Notch y Wnt/β-Catenina tienen un papel importante en el 

mantenimiento y diferenciación de las poblaciones de células madre. En el caso de las 

DPSCs, las vías Notch y Wnt/β-Catenina son indispensables en la expresión de 

marcadores de pluripotencia (Oct4, Nanog, Sox2, cMyc, Lin28, Rex1, Stella y Ssea1) y 

también en el mantenimiento de la proliferación de células stem. Además, ambas vías 

funcionan conjuntamente para el mantenimiento de estas condiciones de pluripotencia y 

renovación celular (ANEXO 3). 

 Cuando tratamos con el fármaco DAPT (inhibidor de la γ-secretasa) se inhibe la vía de 

señalización Notch y disminuyen los marcadores de pluripotencia (Oct4, Nanog, Sox2, 

cMyc, Lin28, Rex1, Stella y Ssea1), además de la proliferación de las DPSCs. Por el 

contrario, tanto cuando usamos el fármaco BIO (inhibidor de GSK3β) como la proteína 

recombinante WNT-3A para sobreactivar la vía de señalización canónica Wnt/β-

Catenina, observamos un aumento en la expresión de factores de pluripotencia 

mencionados anteriormente, así como en la proliferación celular en las DPSC. Además, 

los tratamientos previos con BIO y WNT-3A mejoraron la eficiencia de la diferenciación 

de las DPSCs hacia adipocitos y osteocitos. Estas alternativas, podrían usarse, por tanto, 
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con el objetivo de mejorar tratamientos de diferenciación in vitro e incluso para acelerar 

procesos de regeneración in vivo (ANEXO 3). 

La manipulación experimental de las vías de señalización Notch y Wnt/β-Catenina en las 

DPSC, desencadena una remodelación del metabolismo, que se traduce en cambios 

fisiológicos importantes tanto a nivel celular como a nivel molecular. En la inhibición de 

la vía Notch, los cambios a nivel molecular se traducen en una disminución o paralización 

parcial de la vía glucolítica y una ralentización del metabolismo en las vías catabólicas 

primarias, lo cual se evidencia por una acumulación de glucosa y una disminución de la 

cantidad de especies reductoras a nivel celular. La actividad mitocondrial y la expresión 

génica de las principales subunidades mitocondriales no parecen verse afectadas, pero sí 

que observamos una disminución en el contenido total de lípidos presentes en la célula y 

una disminución en la expresión de los enzimas responsables de su degradación. En la 

activación de Wnt/β-Catenina, el aumento del consumo de glucosa por las DPSCs es 

evidente, así como de otras especies de aminoácidos como glutamina y glutamato, lo cual 

parece indicarnos una alta actividad glucolítica en estas condiciones. La incrementada 

producción de especies reductoras y la alta actividad mitocondrial, puede deberse a una 

hiperexcitación e hiperactividad del metabolismo de las DPSCs. La expresión génica de 

las subunidades mitocondriales parece mantenerse, sin sufrir grandes cambios, 

interesante desde el punto de vista funcional de la mitocondria. La hiperexcitación 

mitocondrial parece desembocar en el aumento en la generación de lípidos, los cuales se 

almacenan en el citoplasma en forma de gotas lipídicas, además de un aumento en la 

degradación de ácidos grasos durante la fosforilación oxidativa. Los efectos observados 

en el tratamiento de la vía de señalización Wnt/β-Catenina se corresponden con una 

remodelación del metabolismo que podría estar directamente ligada con el aumento de la 

troncalidad, que tiene lugar de manera simultánea en las DPSCs (ANEXO 4). 

A nivel epigenético, también se produce una remodelación de los factores epigenéticos 

en condiciones de tratamiento activador de Wnt/β-Catenina en las DPSCs. La 

remodelación de la cromatina, acompañada con cambios en los perfiles de metilación y 

acetilación tanto del DNA como de las histonas parece crucial para sobrepasar la barrera 

epigenética que determina las capacidades de troncalidad y diferenciación celular. Es así 

como se podría conseguir una reprogramación celular más efectiva. La troncalidad de las 

DPSCS queda evidenciada por la expresión de los marcadores de pluripotencia Oct4, 

cMyc, Sox2 y Nanog y por el aumento del número de células dentro del ciclo celular. En 
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primer lugar, los niveles de metilación de DNA son menores cuando las DPSCs son 

tratadas con los activadores de Wnt/β-Catenina, especialmente tras la exposición con la 

proteína recombinante WNT-3A, que parece ser una activación más efectiva desde el 

punto de vista epigenético. Por el contrario, el patrón de acetilación es mayor en las 

DPSCs con la vía de señalización Wnt/β-Catenina sobreactivada, tanto con el fármaco 

BIO como con la proteína recombinante WNT-3A. En cuanto a la metilación de histonas 

observamos cambios en H3K27me, H3K4me3 y H3K9me3, lo que sugiere que en 

condiciones de activación de la via Wnt/β-Catenina, las histonas H3 sufren una mayor 

metilación. En cuanto a la inactivación de Notch, no observamos cambios a nivel 

epigenético en las células DPSC. Los cambios epigenéticos se encuentran muy ligados a 

los cambios en el metabolismo, por ejemplo, a nivel de acetilación de histonas a través 

del metabolito acetyl-Coa, tanto derivado de la glucolisis como de la oxidación de ácidos 

grasos. Por tanto, todos estos cambios a nivel epigenético podrían darnos alguna 

explicación sobre cómo cooperan el metabolismo y la epigenética para hacer efectiva la 

reprogramación celular (ANEXO 5). 

En conclusión, las vías de señalización Notch y Wnt/β-Catenina, son dos vías de 

señalización indispensables para la expresión de factores pluripotentes y para el 

mantenimiento de la población de células stem. Ambas vías de señalización celular 

podrían ser moduladas con el fin de facilitar una reprogramación controlada y medida de 

las células stem dentales. Esto podría garantizar la utilización más segura de las células 

stem reprogramadas para su uso en clínica. De esta manera, además podrían realizarse 

seguimientos del estado fisiológico tanto a nivel metabólico como epigénetico de las 

células que hayan sufrido una reprogramación celular y determinar qué patrones podrían 

comprometer su fisiología y funcionalidad.  

Por último, la reprogramación parcial y controlada de estas células podría utilizarse para 

la mejora de protocolos de diferenciación existentes en cuanto a rapidez y efectividad de 

obtención de poblaciones celulares concretas y además diseñar nuevos protocolos no 

contemplados anteriormente, bien por su complejidad o por no ser totalmente eficientes 

en la obtención de distintos tipos celulares.  

Es por ello, que el estudio de las vías de señalización Notch y Wnt/β-Catenina, y el efecto 

de la modulación de ambas vías de señalización en la reprogramación genética, 
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metabólica y epigenética podría suponer grandes avances en la mejora de los actuales 

métodos de reprogramación celular. 
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ABSTRACT 

Dental Pulp Stem Cells (DPSCs) are cells extracted from the dental pulp of third molars 

(wisdom teeth). During embryonic development, these stem cells migrate from neural 

crest as an ectomesenchymal population after undergoing an epithelial-mesenchymal 

transition (EMT), to form most of craniofacial tissues. 

Stem cells from dental pulp present some interesting properties, which make them a 

unique resource of stem cells for cell therapy. Among these features, they present a high 

differentiation potential to different cell lineage types and tissues including bone, 

cartilage, muscle and adipose tissues. Moreover, these types of cells are easily obtained 

from patients, cultured in primary cultures and amplified long-term due to their high self-

renewal capacity. As for their maintenance and cryopreservation, these stem cells require 

a simple methodology. Indeed, stem cells from dental pulp present immunosuppressive 

properties and a good adaptation to biomaterials, all of which makes them especially 

attractive for their use in tissue engineering (ANEX 1).  

Regarding DPSCs regeneration potential, it is to highlight their stemness, characterized 

by their high self-renewal capacity and their expression of pluripotency core factors Oct4, 

Nanog, Sox2, cMyc, Lin28, Rex1, Stella y Ssea1. This stemness could be enhanced by 

cell reprogramming. During the last few years, several methodologies have been 

developed like transcription factors transfection with Yamanaka vectors and Sendai virus, 

retrovirus or lentivirus, and the recent technology CRISPR. However, all these 

methodologies lead to mistakes and mutations converting transfected stem cells into 

potential risk to use in humans. Taking all together, the comprehensive knowledge of 

Notch and Wnt/β-Catenin signaling pathways would be of great interest, because they are 

a fundamental part of the signaling network, which regulates stemnnes and 

differentiation. Notch and Wnt/β-Catenin signaling pathways play a crucial role in the 

maintenance and differentiation of different types of stem cells. The use of recombinant 

proteins for the modulation of these pathways at different times and concentrations would 

enable a control over the maintenance of these populations of stem cells, avoiding 

permanent DNA alteration and mistakes in stem cells. Indeed, the modulation of stemness 

and pluripotency comes together with metabolism and epigenetic remodelling to 

maximize reprogramming efficiency. The study of all these changes in DSPCs physiology 

could be necessary to develop an effective, acute and safe cell therapy (ANEX 2). 
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Notch and Wnt/β-Catenin signaling pathways play a significant role in stem cells 

maintenance and differentiation. Notch and Wnt/β-Catenin pathways are crucial for the 

expression of pluripotency stem cell factors (Oct4, Nanog, Sox2, cMyc, Lin28, Rex1, 

Stella y Ssea1) and the self-renewal of stem cells. Both pathways work together to 

maintain these conditions. When we used the treatments DAPT (γ-secretase inhibitor) for 

Notch inactivation, pluripotency stem cell factors were reduced and this came along with 

a lower self-renewal capacity. Conversely, when we treated cells with   BIO (GSK3β 

inhibitor) and the recombinant protein WNT-3A for Wnt overactivation, both the 

expression of pluripotency stem cell factors and self-renewal were enhanced. 

Interestingly, the pre-treatment of DPSCs with BIO and WNT-3A also improved the 

efficiency of two differentiation media protocols to obtain osteocytes and adipocytes, 

respectively. This strategy could be used to enhance differentiation media protocols in 

vitro and even to accelerate regeneration processes in vivo (ANEX 3). 

Notch and Wnt/β-Catenin modulation result in a metabolic remodelling that includes 

important physiological changes. In Notch inhibition, changes at molecular level are 

translated into a reduction or partial blocking of glycolysis and a slower activity of the 

primary catabolic pathways, which was evidenced by a cellular accumulation of glucose 

and a decrease in cellular reducing power. Mitochondria activity was not affected, but 

there was a reduction in total cellular lipid content. On the contrary, during Wnt/β-Catenin 

overactivation, there was a clear increase in the consumption of glucose, together with 

other metabolites such as glutamine and glutamate. Mitochondrial metabolism was 

largely stimulated and the cellular lipid content was increased as well. These effects 

correspond to a metabolic remodelling, which is intimately related to stemness in DPSCs 

(ANEX 4). 

As for the epigenetic map, we also found a clear chromatin remodelling, characterized by 

changes in methylation and acetylation patterns in DNA and histones after Wnt/β-Catenin 

activation. This seems to be crucial to overcome the epigenetic barrier, which determines 

cell stemness and differentiation capacities, and to achieve an effective cell 

reprogramming. Firstly, DNA methylation level was lower when cells were treated with 

Wnt/β-Catenin coactivators. Conversely, the acetylation profile is higher in Wnt/β-

Catenin overactivation. Regarding histone methylation, we observed an effect in 

H3K27me, H3K4me3 and H3K9me3, so after these treatments HistoneH3 is more highly 

methylated. In Notch inhibition, we did not see any major epigenetic changes. Epigenetic 
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changes are linked to remodelling in metabolism and both could be affected together and 

regulating each other (ANEX 5). 

Overall, Notch and Wnt/β-Catenin signaling pathways are indispensable for the 

expression of pluripotency stem cell factors and the self-renewal of DPSCs, and the 

activity of these pathways could be manipulated to control reprogramming safety of 

DPSCs with regard to their use in cell therapy. Moreover, a comprehensive knowledge of 

this pluripotency network with metabolism and epigenetics could help to find out new 

effective ways of reprogramming by avoiding cell damage at cellular and molecular level. 

A partial and controlled reprogramming of DPSCs may be also used to improve the 

efficiency of already existent differentiation protocols to obtain specific differentiated 

cell populations. This could be also interesting to facilitate the design of new cell 

differentiation protocols, which are presently impossible to carry out due to their 

complexity. 
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1.1 DENTAL PULP STEM CELLS: CHARACTHERISTICS AND ORIGIN 

Dental Pulp Stem Cells are multipotent stem cells described as a unique population of 

precursor cells isolated from the postnatal human dental pulp capable of regenerating a 

reparative dentin-like complex (Ledesma-Martinez et al., 2016).  

Further, immune-suppressive and present non-tumorigenic properties of DPSCs convert 

them into suitable stem cells well tolerated upon grafting (Pierdomenico et al., 2005; 

Wilson et al., 2015). One interesting feature is that DPSCs retain the ability to 

differentiate into different cell types including myocytes, odontoblasts, osteoblasts, 

chondrocytes, adipocytes, neural progenitors, hepatocytes, cells of blood vessels and 

smooth muscle cells (Arthur et al., 2008; Aurrekoetxea et al., 2015; d'Aquino et al., 2009; 

La Noce et al., 2014; Stevens et al., 2008) (Figure 1 A).  

 

 

 

 

 

 

 

Figure 1A. Schematic representation of adult tooth. A) The tooth is placed in the gingiva and the alveolar 

foramen. The population of Dental Pulp Stem Cells (DPSCs) are located in areas adjacent to the nerves and 

blood vessels inside the dental pulp. These nerves are linked to the roots in the apical foramen.  Dentin, 

which is secreted by odontoblasts, is placed covering the tooth and protecting it from external agents. 

DPSCs also remain potential to differentiate in chondrocytes, muscle cells, adipocytes and neurons.  

Other stem cell types with similar properties could be obtained from gingival and 

periodontal tissues (Abe et al., 2012; Huang et al., 2009; Ibarretxe et al., 2012; Lima et 

al., 2017; Liu et al., 2015; Petrovic and Stefanovic, 2009) (Figure 1 B). 
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Figure 1B. Different stem cells extracted from dental tissues. Dental tissues remain different stem cells 

with potential for cell therapy: Dental Follicle Stem Cells (DFSCs), Dental Pulp Stem Cells (DPSCs), Stem 

Cells from Human Exfoliated Teeth (SHED), Gingival Fibroblastic Stem Cells (GFSCs), Stem Cells from 

Apical Papilla (SCAP) and Periodontal Ligament Stem Cells (PDLSCs). 

As for in vitro characteristics, DPSCs express fibroblastic (Collagen I, Vimentin and α-

SMA) and neurogenic markers (β-3Tubulin, and Nestin) and their shape reminds to 

neurons with long neuritis. One explanation to this would be their ectomesenchymal 

origin (Figure 2 A,B,C, D).Moreover, DPSCs show stem cell (Oct4 and cMyc) and cell 

proliferation markers (ki67 and PCNA) providing huge quantity of stem cells for 

transplantation (Atari et al., 2012; Ferro et al., 2012; Kerkis et al., 2006; Rosa et al., 

2016)(Figure 2 E, F, G, H).  

 

 

 

 

 

 

 

 

Figure 2. Characterization of DPSCs in vitro. A-D) DPSCs expressed mesenchymal (Collagen I, 

Vimentin, α-SMA) and neural markers (β-3Tubulin, Nestin) marker in basal conditions, due to their have 

ectomesenchymal origin. Scale bar=20 µm. E-H) DPSCs as proliferative cells express Ki67 and PCNA and 

also present pluripotency stem cells factors such as Oct4 and cMyc. Scale bar=20 µm. 
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Microenvironment described as extracellular scaffold, cell interactions and growth 

factors, is crucial during differentiation of DPSCs because these signals control stem cells 

orientation, polarity and type of cell division (symmetric or asymmetric) (Gattazzo et al., 

2014). During embryonic development and, after the three germ layer formation 

(ectoderm, mesoderm and endoderm), pluripotent stem cells from embryo or Embryonic 

Stem Cells (EMSC), suffer several divisions and receive different signals leading to 

genetic determination, which occurs in humans between the 8 and 10 week of the embryo 

development. Then, multipotent stem cells, have all the genetic information and depend 

on surrounding signals to differentiate into the different type of cells that form the adult 

organism (Wagers et al., 2002).After neural tube fusion, a population of stem cells 

migrate from the neural crest and suffers the phenomena known as epithelial-

mesenchymal transition (EMT). In the head, these cells migrate to generate craniofacial 

tissues (dental pulp and dental follicle of the teeth, muscles, bones, cartilages and even 

ganglion of peripheral nerves) (Aurrekoetxea et al., 2015; Gronthos et al., 2002). 

Consequently and because of the origin of these cells, DPSCs have a huge potential to 

generate dental and connective tissues (Gronthos et al., 2002).Interestingly, DPSCs 

formed fully differentiated adipocytes, chondrocytes and osteocytes in vitro after several 

weeks of differentiation (Grottkau et al., 2010). However, these protocols take long time 

of differentiation and usually are low efficient, leading to lost cells or death. Find a 

strategy to enhance more ratios of cell differentiation could be of suitable importance in 

cell therapy. 

DPSCs come from the cranial neural crest (NC) and have some characteristics of neural 

crest progenitors(Abe et al., 2012; Janebodin et al., 2011; Miletich and Sharpe, 2004; 

Simoes-Costa and Bronner, 2015).In the same way that NC-derived cells, dental stem 

cells are characterized by the expression of neural crest factors such as Snail/Snai1, 

Slug/Snai2, Twist1, Hnk1, Pax3, Neurogenin2 and Sox10 (Kiraly et al., 2009; Schiraldi 

et al., 2012), and core factors including Oct4a, cMyc, Sox2, Klf-4, Lin28, Rex1, SSEA1 

and Nanog (Atari et al., 2012; Ferro et al., 2012; Janebodin et al., 2011; Kerkis et al., 

2006; Rosa et al., 2016; Uribe-Etxebarria et al., 2017). These factors could be crucial to 

the maintenance and self-renewal of dental stem cell populations. 
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1.2 PLURIPOTENCY NETWORK OF EMBRYONIC STEM CELL FACTORS 

WORKS THROUGH NOTCH AND WNT-βCATENIN SIGNALING. 

Wnt and Notch pathway are involved in the preservation of pluripotency of both ES cells 

and adult stem cells, and are critical for the maintenance of the stem cell phenotype 

(Androutsellis-Theotokis et al., 2006; Borggrefe et al., 2016; Clevers et al., 2014; 

Perdigoto and Bardin, 2013; Reya and Clevers, 2005). Wnt signalling is endogenously 

activated in ES cells and downregulated upon differentiation (Sato et al., 2004). Wnt and 

Notch pathways also play an important role in the emergence of the neural crest and some 

of these cells differentiate into dental pulp cells(Garcia-Castro et al., 2002; Hari et al., 

2012; Leung et al., 2016; Rogers et al., 2012; Stuhlmiller and Garcia-Castro, 2012). It is 

known that dental stem cells present higher levels of core factors and Wnt/Notch activity 

than do other mesenchymal stem cells in the adult body (Atari et al., 2012; Huang et al., 

2009; Janebodin et al., 2011; Vasanthan et al., 2015). However, the role of these pathways 

in the maintenance of stemness and self-renewal in DPSCs is still unclear.  

Activation of Notch signaling through ligand binding triggers proteolytic cleavage of 

Notch receptors, first by A-Disintegrin-And-Metalloproteases (ADAM) followed by γ-

secretases, which results in the cleavage and release of the Notch intracellular domain 

(NICD) from the membrane. The NICD translocates to the nucleus where it directly 

interacts with CSL/RBPj/CBF-1 transcription factors to turn on the expression of Notch 

target genes such as the Hairy Enhancer of Split (Hes) family (D'Souza et al., 2010). As 

for Wnt signaling, three different pathways Canonical Wnt signaling Non-Canonical Wnt 

signaling, and Wnt signaling Ca2+ dependent form this pathway. 

In Canonical Wnt signaling, the interactions between Wnt protein ligands and the proteins 

Frizzled/LRP receptors lead to the recruitment of AXIN, APC and GSKβ3 to the 

membrane, thus preventing phosphorylation and degradation of β-CATENIN protein. As 

a result, β-CATENIN accumulates in the cytoplasm and translocates into the nucleus, 

where it interacts with TCF/LEF family factors and leads to the expression of Wnt 

signaling target genes (Clevers, 2006). Both pathways regulate each other at multiple 

points (Borggrefe et al., 2016; Fukunaga-Kalabis et al., 2015)and promote the 

maintenance of self-renewal and inhibition of differentiation in many stem cell types, 

including DPSCs (Mizutani et al., 2007; Scheller et al., 2008; Yiew et al., 2017).However, 

Non-Canonical Wnt signaling acts independent from β-CATENIN, especially in adhesion 
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proteins such integrins, cadherines, among other(Adler and Taylor, 2001; Boutros et al., 

1998). The third singalong is Ca2+ dependent and activates Protein Kinase C (Kuhl et al., 

2000; Sheldahl et al., 1999). 

Pharmacological manipulation of the Notch and Wntβ-Catenin Canonical pathways is 

relatively simple via the use of well-known drugs such as DAPT (ᵞ-secretase inhibitor; 

Notch signalling blocker), and BIO (GSK3-β inhibitor; Wnt signaling activator), and by 

recombinant activator proteins such as WNT-3A. The use of these drugs BIO and DAPT 

has already proven to be a valuable complementary strategy to induce either cellular 

reprogramming or cellular differentiation (Ichida et al., 2014; Kitajima et al., 2016). 

Therefore, a thorough understanding of the stemness and differentiation potential of 

DPSCs and their modulation by cell signalling pathways would be highly desirable to 

apply these cells more efficiently in areas such as regenerative medicine, tissue 

engineering and drug screening. In this work, we used DAPT and BIO, as well as human 

recombinant WNT-3A as pharmacological modulators to investigate the role of 

Notch/Wnt in maintaining stemness and the expression of pluripotency core factors in 

DPSCs with the goal of optimizing existing protocols of somatic cell differentiation using 

DPSCs. 

Some authors have attributed pluripotent markers expression to the crosstalk between 

Notch and Wnt signaling(Kwon et al., 2011; Uribe-Etxebarria et al., 2017). During Wnt 

signaling, β-Catenin goes to the nucleus, activates transcription and Wnt target genes such 

as Sox2, Oct4, Nanog and Jagged1, which activates Notch signaling, leading to cell 

proliferation. Wnt pathway is regulated by the GSK3β, which leads to β-Catenin 

degradation. When GSK3β is inhibited, this pathway overactivates, and as a result, β-

Catenin goes permanently to the nucleus and activates Notch signaling through 

Jagged1overtranscription.  

As for Notch signaling, cell-contact is indispensable due to that the convertases are the 

responsible for the two cleavages for NICD translocation to the nucleus and Notch target 

genes transcription. γ-secretase inhibitor DAPT prevents NICD active form from the 

second cleavage and therefore Notch signaling is inhibited. Moreover, β-Catenin 

aggregates to Notch receptor in the membrane and consequently is degraded in the 

proteasome. Finally, Wnt signaling activity would also be affected by Notch inhibition 

(Andersen et al., 2012; Hori et al., 2013) (Figure 3). 
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Figure 3. Notch and Wnt signaling crosstalk are responsible for pluripotency markers 

expression in mesenchymal stem cells (Kwon et al., 2011; Uribe-Etxebarria et al., 2017, 

Andersen et al., 2012; Hori et al., 2013). During Wnt signaling, β-Catenin goes to the nucleus, 

activates transcription factors such as Sox2, Oct4, Nanog. Indeed, express Jagged1, that activates 

Notch signaling and cMyc transcription. When GSK3β is inhibited, β-Catenin is continuously 

translocated to the nucleus and upregulates all transcription factors mentioned before. 

Consequently, Notch and Wnt signaling are overactivated. As for Notch signaling, the γ-secretase 

inhibitor DAPT prevents Notch receptor cleavage, NICD active fragment transport to the nucleus 

and stem cell transcription factors expression. In this inhibition Wnt signaling is also affected 

because Notch receptor joins to β-Catenin causing its degradation in the proteasome and therefore, 

Wnt inhibition. Consequently, pluripotent markers expression has been assigned to the crosstalk 

between Notch and Wnt signaling. 
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1.3 NOTCH AND WNT-βCATENIN CONTROL CELL CYCLE AND SELF-

RENEWAL OF PLURIPOTENT STEM CELLS  

Pluripotent stem cells (PSCs) are defined by an unlimited self-renewal capacity and an 

undifferentiated state. The cell cycle of PSCs is defined by a minimal time spent in G1/G0 

(Coronado et al., 2013; Ghule et al., 2011; Li and Kirschner, 2014). The fundamental 

understanding of how the cell cycle and stemness are linked has become of crucial 

importance between broad disciplines including regenerative medicine, cancer biology, 

and aging. 

As mentioned before, the pluripotency network consists of a core set of embryonic stem 

transcription factors (Oct4 (Pou5f1), Sox2, Nanog, Lin28, among others) that serve to 

establish the undifferentiated state and the self-renewing capacity of PSCs cells (Hackett 

and Surani, 2014; Young, 2011). It has been identified also a crosstalk of cMyc with the 

cell cycle genes (Kim et al., 2008; Kim et al., 2010). cMyc activity increases the rate of 

proliferation and reprogramming by helping to establish a pluripotent cell cycle in 

reprogrammed cells (Huskey et al., 2015; Kim et al., 2008; Kim et al., 2010; Lavagnolli 

et al., 2015; Rahl et al., 2010). cMyc work also as a target with the key pluripotency 

factors Oct4 and Nanog (Cartwright et al., 2005; Hishida et al., 2011; Loh et al., 2006). 

Other authors have described the implication between the expression of cMyc and Wnt 

signalling (Cartwright et al., 2005) and the relationship with pluripotency (Hishida et al., 

2015; Sun et al., 1999). Because of augmentation of cell proliferation is the potentially 

increased accumulation of genetic mutations due to error-prone DNA synthesis. Oct4 

binds to and inhibit Cdk1 resulting in an extension of G2 phase, which allows more time 

for the DNA repair machinery to correct mutations de novo (Zhao et al., 2014). 

Apparently, the core pluripotency network can control the cell cycle, but cell cycle 

regulators also control pluripotency (Abe et al., 2012; Huskey et al., 2015; Kallas et al., 

2014; Neganova et al., 2014). Some studies have shown that cells under proliferation are 

bound to suffer reprogramming (Guo et al., 2014; Roccio et al., 2013). The understanding 

of the relationship between pluripotency network and the cell cycle machinery would be 

of great interest in regenerative medicine to develop safety cell therapies and in the study 

of treatments to control proliferative cancer cells. 
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1.4 METABOLISM REPROGRAMMING IN STEM CELLS 

Cell metabolism is known to play a significant role in the production of energy and maybe 

be involved in the regulation of cell fate. In fact, some authors have described metabolism 

to be implicated in cell-fate determination and stem cell activity in different contexts 

(Buck et al., 2016; Gascon et al., 2016; Zhang et al., 2016a; Zhang et al., 2016b; Zheng 

et al., 2016).  Moreover, metabolic remodelling seems to mediate the process of 

reprogramming. Firstly, cells that enter in a pluripotent state through reprogramming 

require an early metabolic switch to take place. One explanation to this is that the 

metabolic requirements of differentiated cells are different from highly proliferative 

pluripotent stem cells. The first tandem of activated genes during reprogramming 

corresponds to genes involved in increased proliferation and metabolic change 

(Cacchiarelli et al., 2015).  

Classically, metabolism has been divided in oxidative, completed in the mitochondria, or 

non-oxidative or glycolytic, completed in the cytoplasm (Chandel et al., 2016; Ryall et 

al., 2015b). The expression of glycolysis-related genes and lactate production in PSCs is 

described to be higher than in differentiated cells, while oxygen consumption seem to 

decline (Armstrong et al., 2010; Folmes et al., 2011; Mathieu et al., 2014; Prigione et al., 

2010; Varum et al., 2011). Moreover, it has been shown that high glucose culture medium 

reprograms mouse somatic cells into iPSCs more efficiently than low-glucose medium 

(Jang et al., 2012; Zhu et al., 2010). Thus, these findings show that high glycolysis is 

crucial for pluripotency; but how PSCs maintain and acquire high glycolysis levels or to 

what extent this metabolic behaviour affects pluripotency is still unknown. Mitochondrial 

activity seems to be crucial since work as a tool of Oxidative Phosphorylation or 

OXPHOS metabolism for energy production in cell reprogramming (Sperber et al., 2015). 

Finally, it has been described the formation of lipid accumulations in lipid droplets as 

source of energy during this remodelling (Sperber et al., 2015). 

PSCs have a very specific metabolic pattern that probably reflects their rapid proliferation 

and the specific microenvironment from which they are derived. Although distinct 

metabolic properties are critical for the generation and maintenance of PSCs, it is 

unknown how PSCs maintain and acquire this metabolic signature. Oxidative 

phosphorylation or OXPHOS is used by somatic cells for energy production, but upon 

reprogramming, the transition to pluripotency is accompanied with a shift to a glycolytic 
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metabolism (Burk and Schade, 1956; Folmes et al., 2011; Panopoulos et al., 2012; 

Prigione et al., 2010; Varum et al., 2011). PSCs also rely on one-carbon metabolism for 

histone methylation and maintenance of pluripotency (Shiraki et al., 2014; Shyh-Chang 

et al., 2013).  

Interestingly, the well-studied core pluripotency factors Oct4 and cMyc regulate 

glycolysis directly by targeting key glycolytic enzymes in embryonic stem cells, such as 

Hk2 and Pkm2 which affect Lactate, Acetate and Glucose metabolites (Folmes et al., 

2013; Kim et al., 2015). Apparently, one of the keys regulators is the core pluripotent 

factor cMyc, which directly binds and regulates metabolic gene targets, influencing 

glycolysis(Kim et al., 2004; Osthus et al., 2000; Shim et al., 1997), mitochondrial 

biogenesis (Li et al., 2005; Zhang et al., 2007), glutamine (Gao et al., 2009) and proline 

catabolism (Liu et al., 2012). Lin 28 gene has been reported to play a relevant role in PSC 

metabolism by maintaining the low mitochondrial function and regulating one-carbon 

metabolism, nucleotide metabolism, and histone methylation (Zhang et al., 2016b). 

Interestingly, several authors have described that stem cell factors Oct4 and Lin28 

regulate stem cell metabolism and conversion to pluripotency, and form a complex core 

pluripotent factor network with other core factors such as Sox2 and Nanog(Matoba et al., 

2006; Zhang et al., 2016b). Further research is necessary to understand all these process 

that governs metabolism remodelling through pluripotency core factors. 

Research over the last years has identified an essential role for metabolites in the 

regulation of epigenetics and transcription, including S-adenosyl methionine (SAM) 

produced via the one-carbon cycle, acetyl-CoA from glycolysis, α–ketoglutarate (α-KG) 

and flavin adenine dinucleotide (FAD) from the NAD+/TCA cycle, and also from the 

integration of glycolysis and OXPHOS(Ryall et al., 2015a; Ryall et al., 2015b). SAM 

leads to histone methylation whereas ascorbate and a-ketoglutarate are the responsible for 

histone demethylation (Carey et al., 2015; Shyh-Chang et al., 2013).  

It has been shown that the lack of acetyl-CoA causes a loss of pluripotency and delays 

cell differentiation (Moussaieff et al., 2015). Apparently, the reason besides is that acetyl-

Coa is crucial to regulate and maintain histone acetylation in stem cells allowing 

chromatin remodelling during differentiation (Moussaieff et al., 2015). 

The mechanism by which cellular metabolism can influence stem cell fate is mostly 

unknown, but it is clear that it influences the epigenetic landscape, which in turn affects 
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gene expression (Harvey et al., 2016). According to these findings, some metabolic 

intermediates may contribute in the regulation of open chromatin, which is crucial for 

pluripotent potential of stem cells. Therefore, it would be of great interest understanding 

how metabolism contribute to pluripotency state and how is linked to epigenetics.  

1.5 CELL REPGROGRAMMING NEEDS EPIGENETIC REMODELING OF 

STEM CELLS  

It is known that at early stages during embryonic development, some genes remain active, 

but when differentiation goes on (later stages) gradually become silenced and subsets of 

cell type-specific genes are turned on. This is the result of selectivity active expression of 

transcription factors in association with chromatin modification and remodelling, which 

includes covalent histone modification and DNA methylation of CpG dinucleotides, 

among other epigenetic modifications.  

Gene activity is mostly determined by chromatin structure and interactions of chromatin-

binding proteins. Histone deacetylase inhibitors (HDACi) play a significant role in 

homeostatic balance between histone acetylation and deacetylation, increasing the 

transcriptional rate and influencing cell physiology. That suggests that inhibition of 

HDACs has a great potential in restorative dentistry through elevating the expression of 

NANOG and SOX2 (Gu et al., 2013; Jin et al., 2013). Regarding histone methylation , 

histone demethylases or HMTs inactivation associates with reduced mineralization of 

DPSCs and genes involved in odontoblast differentiation (Rodas-Junco et al., 2017). 

Therefore, epigenetic changes play a crucial role in the terminal differentiation of 

odontogenic lineages in DPSCs. As an example, the inhibition of eZH2, enzyme which 

catalyses H3K27me3 methylation (Hui et al., 2014), impedes DPSCs cell proliferation by 

decreasing cell number, arresting the cell cycle, and increasing apoptosis (Bayarsaihan, 

2016). Accordingly, adipogenic induction of DPSCs leads to the suppression of eZH2, 

which in turn diminishes transcriptional activity of PPAR-r and CEBP/a differentiation 

markers (Bayarsaihan, 2016). As for global DNA methylation, the odontogenic-specific 

DNA hypomethylation was suggested to be a typical feature of  DPSCs, and the spatial 

distribution of 5mC and 5hmC in DPSCs is still unknown (Ai et al., 2018).  In 

concordance to previous studies, DNA demethylation have been shown to increase the 

capability of odontogenic differentiation in DPSCs(Bayarsaihan, 2016).  During DPSCs 

differentiation, the main key is the DNA methyltransferase, DNMT1, whereas expression 
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changes of DNMT3A, DNMT3B and members of the TET family were relatively low. 

Taking all before into consideration, it seems that DNA demethylation may play a 

fundamental role in reparative dentinogenesis in human dental pulp (Bayarsaihan, 2016).  

Since Yamanaka findings about key transcription factors of pluripotency, increasing 

knowledge has been recruited in several studies to understand the cooperation between 

pluripotency stem cells factors and the remodeling of epigenetics during cell 

reprogramming.  

The most studied embryonic stem cell factors Oct4, cMyc, Nanog, Sox2, Klf4 and Lin28 

have been widen in a complex network form by other factors such as Rex1, Ssea1, Stella, 

which interact with epigenetic landscape(Boyer et al., 2005; Ivanova et al., 2006; Loh et 

al., 2006; Rao and Orkin, 2006).cMyc may be associated with histone acetyltransferase 

(HAT) complex, and induces global histone acetylation. Indeed, in ESCs chromatin 

architecture Oct4 acts directly regulating downstream target genes encoding H3K9 

HDACs which modulate the H3K9 methylation status of the pluripotency factors, Nanog 

among others, respectively, to maintain stem cell identity (Loh et al., 2007).  

Moreover, pluripotency factors interact between each other building a complex network. 

Nanog acts as a transcription repressor for genes that are important for cell differentiation 

(Chambers et al., 2003; Mitsui et al., 2003). Klf4 might contribute to activation of Nanog 

and other ES cells-specific genes (Takahashi and Yamanaka, 2006). Oct4 also interacts 

as part of the Nanog interactome (Wang et al., 2006) and with Sox2 (Navarro et al., 

2008)to maintain pluripotency (Endoh et al., 2008).  

These all factors induce somatic cell de-differentiation thanks to the chromatin 

remodelling. Therefore, we could attribute chromatin modification because of these 

transcription factors, which may play an important role in the reprogramming progress.  
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Dental pulp stem cells as a multifaceted tool 

for bioengineering and the regeneration of 

craniomaxillofacial tissues 

Maitane Aurrekoetxea*, Patricia García-Gallastegui*, Igor Irastorza, Jon 

Luzuriaga, Verónica Uribe-Etxebarria, Fernando Unda and Gaskon Ibarretxe*. 

Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, 

University of the Basque Country UPV/EHU, Leioa, Spain 

ABSTRACT 

Dental pulp stem cells, or DPSC, are neural crest-derived cells with an 

outstanding capacity to differentiate along multiple cell lineages of interest for 

cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of 

DPSC can be achieved using simple in vitro protocols, making these cells a very 

attractive and promising tool for the future treatment of dental and periodontal 

diseases. Among craniomaxillofacial organs, the tooth and salivary gland are 

two such cases in which complete regeneration by tissue engineering using 

DPSC appears to be possible, as research over the last decade has made 

substantial progress in experimental models of partial or total regeneration of 

both organs, by cell recombination technology. Moreover, DPSC seem to be a 

particularly good choice for the regeneration of nerve tissues, including injured 

or transected cranial nerves. In this context, the oral cavity appears to be an 

excellent testing ground for new regenerative therapies using DPSC. However, 

many issues and challenges need yet to be addressed before these cells can be 

http://www.frontiersin.org/Physiology/editorialboard
https://www.ncbi.nlm.nih.gov/pubmed/26528190
http://journal.frontiersin.org/article/10.3389/fphys.2015.00289/abstract
http://journal.frontiersin.org/article/10.3389/fphys.2015.00289/abstract
http://journal.frontiersin.org/article/10.3389/fphys.2015.00289/abstract
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employed in clinical therapy. In this review, we point out some important 

aspects on the biology of DPSC with regard to their use for the reconstruction 

of different craniomaxillofacial tissues and organs, with special emphasis on 

cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and 

strategies to fully exploit the capacities of DPSC for bioengineering of the 

aforementioned tissues. 

Keywords: DPSC, differentiation, tooth, bone, salivary gland, nerve, cell 

therapy
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INTRODUCTION: DPSC AND TISSUE ENGINEERING OF THE ORAL 

CAVITY 

The oral cavity is a complex multi-organic structure. Because oral tissues and organs are 

functionally connected at many levels, irreversible damage to any of the mislikely to 

eventually affect the others, causing extensive malfunction. Tooth decay, periodontal 

disease, alveolar bone resorption, orthodontic problems, orofacial neuropathic pain, and 

impaired salivary gland function are conditions that seriously affect oral health of a large 

part of the world population. Owing to their functional connectivity, once damage is 

diagnosed tone organ of the oral cavity it is important to intervene rapidly and 

efficiently, to repair or replace the injured or lost tissues, to avoid severe degradation of 

oral health. Synthetic replacement materials and prostheses (fillings, bridges, implants, 

etc.) have traditionally been the treatment of choice to treat dental decay. However, all 

functions of the original biological tooth are not fully restored by this kind of 

replacement therapies. Other organs of the oral cavity (e.g., nerves, salivary glands) are 

simply not amenable to mechanical substitution approaches. Thus, tissue engineering 

represents a new collection of treatment options for the complete biological regeneration 

of craniomaxillofacial tissues and organs. The development of this field requires three 

essential components: (i) stem cells, (ii) biomaterial scaffolds, and (iii) stimulating 

factors or inductive signals. Tissue engineering is now fully considered as an alternative 

to the conventional treatments for dental injury and disease, offering substantial 

advantages over traditional dental restoration techniques (Nör, 2006; Wang et al., 2012). 

Stem cells are the cornerstone of regenerative cell therapy. An enormous variety of 

multipotent stem cells have been isolated and studied from different human tissues, such 

as the bone marrow (Ding and Morrison, 2013), adipose tissue (Kapur et al., 2015), skin 

(Blanpain and Fuchs, 2009), and the umbilical cord (Yan et al., 2013; Kalaszczynska 

and Ferdin, 2015). Among them, mesenchymal stem cells (MSC) are the most promising 

for clinical purposes (Rastegar et al., 2010; Ménardand Tarte, 2013).In the oral cavity, 

adult tooth tissues also contain different active populations of stem cells with 

mesenchymal phenotype (Huang et al., 2009). Unlike other types of MSC, dental stem 
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cells originate from the neural crest (Janebodinetal.,2011) and are lineage related with 

peripheral nerve glial progenitor cells(Kaukuaetal.,2014), which places them in a 

privileged position to mediate regeneration of both connective and nerve tissues 

(Ibarretxe et al., 2012; Martens et al., 2013). Several types of human dental stem cells 

have been identified. Among them; DFPC, Dental Follicle progenitor cells; PDLSC, 

Periodontal ligament stem cell; SCAP, Stem cells from apical papilla; SHED, Stem cells 

from primary exfoliated deciduous teeth; DPSC, Dental pulp stem cells, which are 

without a doubt the most used for research purposes (Figure 1). Although it still remains 

a considerable challenge to obtain all the different types of neuronal and glial cells from 

DPSC, their differentiation to specialized connective tissue cells has proven to be 

relatively simple. Efficient protocols for obtaining adipocytes, chondroblasts and 

osteo/odontoblasts are firmly established in the literature (Gronthos et al., 2002; Huang 

et al., 2009; Kawashima, 2012). 

In this review, we summarize the current understanding of DPSC and their capacity to 

regenerate injured orofacial tissues, with special focus on the teeth and associated 

periodontal tissues, peripheral cranial nerves, and the salivary glands. We present the 

different strategies used in experimental restorative models with potential applications 

in dentistry and oral medicine, together with the different scaffold biomaterials and 

stimulating factor combinations employed to elicit an optimal cellular response required 

to regenerate damaged tissues. We critically comment on some crucial aspects to be 

considered for bioengineering and the regeneration of each of these tissues, based on our 

own research experience. 
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Figure 1. Multiple differentiation potential of DPSC. DPSC are isolated from the adult dental pulp and 

can be in vitro expanded and differentiated to multiple cell lineages, including all connective tissue-

lineages and some neural cell lineages. 

DPSC FOR BONE REGENERATION 

Regeneration of maxillary and mandibular bone is fundamental in the field of 

implantology (Lee et al., 2014). Osteogenic differentiation of DPSC is easily 

induced in vitro by adding ascorbic acid (Asc), dexamethasone (Dexa), and β-

glycerophosphate (β-gly) to the culture medium, along with fetal bovine serum 

(Laino et al., 2005; Langenbach and Handschel, 2013). Asc is an essential 

enzyme cofactor to generate pro- collagen (Vater et al., 2011), which is necessary 

for the correct synthesis of Collagen type I, the main organic component of the 

bone matrix. Dexa is required for osteoblast differentiation, working as Runx2 

inductor by activating WNT/β-catenin signaling in MSC (Hamidouche et al., 

2008). Runx2 transcription factor expression is fundamental in driving cellular 

commitment to osteogenic lineages. Finally, β-gly is a donor of inorganic 

phosphate, which is essential for creating hydroxyapatite mineral, and as a 

signaling molecule to induce DPSC osteo- differentiation (Foster et al., 2006; 
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Fatherazi et al., 2009; Tada et al., 2011). 

The application of this differentiation cocktail is highly effective in inducing 

DPSC to generate a mineralized bone-like extracellular matrix in vitro.  When 

DPSC are exposed to this differentiation cocktail for 7–21 days, they start to 

strongly express different osteoblast differentiation markers, such as Osterix, 

Runx2, Osteocalcin, and Bone Sialoprotein. Alkaline phosphatase (ALP), and 

Alizarin red staining are positive under these conditions, and are used to 

demonstrate effective differentiation of DPSC to functional osteoblasts, and the 

generation of a calcified hydroxyapatite (HA)-containing extracellular matrix 

(Mangano et al., 2010; Yu et al., 2010; Li et al., 2011). DPSC-derived osteoblasts 

are phenotypically and functionally similar to normal primary osteoblasts, 

although some differences remain in terms of their gene expression profiles 

(Carinci et al., 2008). Naïve undifferentiated DPSC are negative for the adult 

osteo/odontoblast differentiation marker Osterix, but exhibit detectable levels of 

Runx2, suggesting they are primed or pre-committed to differentiate to 

osteo/odontoblasts (Yu et al., 2010). When the osteogenic differentiation cocktail 

is added to DPSC, Runx2, and Osterix expression increase and these cells 

generate extracellular calcified bone-like matrix nodules, that stain distinctively 

and positively with Alizarin red (Laino et al., 2005; Figure 2). 

In the last few years, the use of DPSC for in vivo bone regeneration by tissue 

engineering has been extensively studied by relying on these protocols and using 

different experimental models and types of scaffolds with different results 

(Morad et al., 2013). Woven bone chips obtained by human DPSC (hDPSC) 

osteoinduction are able to induce the generation of adult bone tissue with an 

integral blood supply, when they are heterotopically transplanted in immune-

compromised (IC) animals (d’Aquino  et  al.,  2007). However, the use of 

scaffolding materials is often necessary to optimize the 3D structure of the 

formed bone tissue and enhance the osteoblastic differentiation of hDPSC. To 

this end, different materials have been successfully employed as a vehicle of 
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hDPSC, including 3D gelatin scaffolds (Li et al., 2011), self-assembling 

biodegradable peptide nanofiber hydrogels (Chan et al., 2011), CaP/PLGA 

(calcium phosphate/polylactic-co-glycolic acid) scaffolds (Graziano et al., 

2008a,b), particulate hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic 

scaffolds (Zhang et al., 2008), and natural scaffolds like biocoral (Mangano et 

al., 2011) and chitosan/collagen (Yang et al., 2011).Finally, alginate and 

PuraMatrix™ hydrogels also provide a three dimensional (3D) biodegradable 

carrier of stem cells for bone tissue engineering purposes, with the additional 

large advantage that these formulations are injectable, forming 3D hydrogels 

upon contact with the physiological environment and thus completely filling the 

tissue lesion, with minimally invasive dental and orthopedic surgeries. Dental 

stem cells encapsulated in either alginate or PuraMatrix™ exhibited high 

capacities for osteo-differentiation both in vitro and in vivo (Misawa et al., 2006; 

Cavalcanti et al., 2013; Moshaverinia et al., 2013). 
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Figure 2. Osteogenic differentiation of DPSC. In the presence of a three-ingredient cocktail 

containing dexamethasone, β-glycerophosphate and Ascorbate added to the culture medium for 

7days, DPSC differentiate to osteoblast-like cells that generate a mineralized bone tissue matrix 

that stains positively for Alizarin red. 

Inductive signals also play a critical role to stimulate development of new bone 

tissue. The development of a well- defined, safe, and controlled technique to 

obtain and locally deliver growth factors derived from autologous plasma has 

provided a powerful tool to enhance bone tissue regeneration, which has been 

successfully implemented in the clinical practice (Anitua et al., 2008, 2012). 

Formulations such as Platelet-rich plasma (PRP), Platelet-rich fibrin (PRF), and 

Plasma rich in growth factors (PRGF) provide a biologically enriched culture 

medium for the stimulation and functional differentiation of primary cells with 

latent regenerative potential. Several studies have shown that PRGF in particular 

provides additional benefits for bone regeneration (Paknejad et al., 2012; Rivera 

et al., 2013). It has been reported that PRP and PRGF induce proliferation and 

enhance osteogenic differentiation in SHEDs, DPSCs, and PDLSCs (Lee et al., 

2011). Other studies have used recombinant human Bone morphogenetic protein 

2 (rhBMP-2) to enhance osteogenic differentiation of DPSC in animal models 

of alveolar bone reconstruction (Liu et al., 2011). The use of rhBMP-2 is 

approved and widely extended to perform maxillary sinus floor augmentation in 

dental practice (Nazirkar et al., 2014; Freitas   et al., 2015). 

Despite a large body of preclinical evidence, very few clinical trials have still 

been performed to evaluate new advanced therapeutic medicinal products 

(ATMP) for bone regeneration based on DPSC (La Noce et al., 2014). A notable 

exception is one clinical trial performed with seven patients to repair mandibular 

bone defects by transplant of DPSC in a collagen scaffold (d’Aquino et al., 

2009). After 3 years of follow-up, the clinical outcomes were positive (Giuliani 

et al., 2013). However, several obstacles remain, including a changing 

regulatory framework, a shortage of technology for automation of cell 

production by Good manufacturing practice (GMP) standards, a non-alignment 
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between academic and industrial research, and a need for long- term product 

follow-up (La Noce et al., 2014; Leijten et al., 2015). These limitations have 

hampered the emergence of DPSC as a tool to enhance bone regeneration at 

clinical level. 

DPSC FOR DENTAL PULP REGENERATION 

Caries and root fracture are the cause of approximately fifty percent of all tooth 

extractions. Tooth injuries such as pulp exposure, deep caries and irreversible 

pulpitis are currently treated by endodontics and dental refilling/reconstruction. 

This procedure usually entails the amputation or entire removal of the dental 

pulp and replacement of the tissue with an inert material. Root fracture and tooth 

loss are closely related to this loss of pulp vitality because innervation and 

vasculature affect pulp homeostasis and root dentin regeneration. The 

regeneration of pulp injuries has become a goal for functional tooth restoration 

in dentistry (Nakashima and Akamine, 2005; Nakashima et al., 2009). 

The first research reports on DPSC showed that these cells present optimal 

characteristics to attain functional regeneration of the dental-pulp chamber. 

Xenogenic transplant of HA/TCP scaffolds with hDPSC into the dermis of IC 

mice resulted in the formation of pulp-like tissue and polarized odontoblasts that 

produced tubular dentin, showing that dentinogenic differentiation was one of 

the prime or default programs established in the DPSC phenotype (Gronthos et 

al., 2000, 2002). Recently, more refined studies combining SHED with 

injectable scaffolds (Puramatrix™ and rhCollagen type I) have demonstrated 

that dental stem cells are not only kept alive when injected into human premolar 

root canals in vivo, but are also able to fully reconstruct vascularized pulp tissue 

throughout the root canal, and to differentiate to DSPP and DMP-expressing 

odontoblasts that generate new dentin (Rosa et al., 2013).In a similar 

experimental design, other authors employed combinations of DPSC and 

umbilical vein endothelial cells embedded in Parametric™ scaffold, to improve 
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vascularization and angiogenesis of de novo formed dental pulp-like tissue 

(Dissanayaka et al., 2015). 

Other studies have focused on the regenerative potential of different cytokines 

and growth factors, with the goal to improve cellular chemotaxis and cell 

homing into the emptied dental pulp space in vivo. Different combinations of 

cytokines and growth factors which included basic Fibroblast growth factor 

(bFGF), Platelet derived growth factor (PDGF), or Vascular endothelial growth 

factor (VEGF) in the presence of basal levels of Nerve growth factor (NGF) and 

BMP-7 were effective in regenerating a revascularized and recellularized dental 

pulp-like tissue integrated into endodontically-treated root canal dentinal walls 

in vivo (Kim et al., 2010). 

In addition, it has been shown that bFGF and Stromal-derived factor (SDF1) 

also exert a potent chemotactic recruitment on DPSC, while BMP-7 induces 

their differentiation (Suzuki et al., 2011). In a recent study, SDF1 loaded onto 

silk-fibroin scaffolds promoted the complete regeneration and revascularization 

of the dental pulp of mature dog teeth that had been subjected to endodontic 

treatment in situ (Yang et al., 2015), suggesting a promising future for the 

functional reconstruction of dental pulp tissue in next generation dentistry. 

DPSC FOR COMPLETE DENTAL REGENERATION 

In 2009, a ground-breaking report was published by the group of T. Tsuji on the 

generation of complete and fully functional teeth by combining isolated mouse 

dental epithelial and MSC (Ikeda et al., 2009). More recently, in 2011, the same 

research group developed a complete tooth unit consisting of a mature tooth, 

periodontal ligament and alveolar bone, using a similar recombination technique 

(Oshima et al., 2011). These tooth units were transplanted into toothless mouse 

jaw regions in vivo, and erupted correctly and in occlusion. They also presented 

an adequate dental structure, an adequate hardness of enamel and dentin, a 

proper function of the periodontal ligament, a positive alveolar bone remodeling 
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response to orthodontic forces, and a positive response to noxious stimuli such 

as mechanical stress and pain. 

Although precise replication of these results has not yet been reported on the 

literature, the aforementioned work represents   a substantial advance in stem 

cell combination technology, with the potential to develop completely new 

bioengineered replacement organs for next generation regenerative therapy. One 

of the main limitations to date is probably the lack of consistent sources of 

epithelial cells that can be combined with dental mesenchymal cells (DPSC or 

others) to generate a complete bioengineered tooth germ. The team of T. Tsuji 

employed embryonic mouse tooth germ epithelia as precursors of the enamel 

organ, a structure that fully disappears in adult teeth. In the search for dental-

competent sources of epithelial stem cells, some authors have reported success 

using adult gingival epithelial cells, which upon recombination with 

mesenchymal cells generate mature teeth and form enamel and dentin (Angelova 

Volponi et al., 2013). Other authors have employed iPSCs-derived cells to 

generate mature bioengineered teeth by similar recombination methods (Wen et 

al., 2012; Cai et al., 2013; Otsu et al., 2014). The substantial progress made in 

the field of dental bioengineering warrants further research on this line for the 

next years. 

DPSC FOR REGENERATION OF NERVE TISSUE AND DAMAGED 

CRANIALNERVES 

DSPC originate from the neural crest (Janebodin et al., 2011) and share a 

common origin with peripheral nerve glial progenitor cells (Kaukua et al., 2014). 

These features make DPSC a very interesting choice for regeneration of the 

peripheral nervous system, including nerves of the oral cavity. Some reports 

claim that DPSC can even differentiate to functionally active adult neurons 

(Arthur et al., 2008; Kiraly et al., 2009; Gervois et al., 2015). These conclusions 

are based on the acquisition of neuron- specific gene and protein markers by 
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DPSC, and also on their capacity to generate neuronal-like voltage-dependent 

sodium and calcium currents, and action potential-like membrane voltage 

oscillations. However, it should be noted that to date there has been no definite 

proof of differentiation of DPSC to genuine neurons that can exhibit repetitive 

firing of action potentials upon electrical stimulation, and establish synapses 

showing functional plasticity as identified by transmission electron microscopy 

(TEM). 

However, it is undeniable that DPSC present some striking similarities with 

neural stem cells. When DPSC are grown in culture conditions lacking fetal 

serum, they reorganize morphologically and switch from a uniform cell 

monolayer to a more quiescent state characterized by the appearance of 

prominent spheroid structures that resemble CNS-derived neurospheres which 

stain positively for the neural stem cell marker Nestin (Ibarretxe et al., 2012; 

Bonnamain et al., 2013; Xiao and Tsutsui, 2013; Gervois et al., 2015; Figure 3). 

Migratory cells are occasionally observed to leave the DPSC spheroids and 

virtually all these cells express the neuron-lineage marker β3-tubulin. Moreover, 

their morphology is in some cases surprisingly similar to migratory neuroblasts, 

with a long and thin leading process terminated by a prominent growth cone, 

and a trailing cell body displaying a few short cytoplasmic processes (Marín et 

al., 2006). However, a note of caution should be added: another cell type of the 

dental pulp, the odontoblast, is also characterized by the expression of Nestin, 

the generation of voltage-dependent Na+ currents, and a similar morphology 

(Fujita et al., 2006; Ichikawa et al., 2012). The DPSC population grown in these 

conditions is fairly heterogeneous, both morphologically and physiologically, 

with a range of different morphologies from fibroblast-like to neuroblast-like 

cells, and also a variable rate of response to stimulation with neurotransmitter 

receptor agonists. 
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Figure 3. Neurosphere-like properties of DPSC-derived spheroids. DPSC grown in serum-

devoid conditions rearrange to form characteristic spheroids that stain positive for neural stem 

cell markers. Migratory cells outside of the spheroids express some neuronal markers and 

present a variable morphology, with either fibroblast-like or neuroblast-like features. 

Regardless of the debate on the true capacity of DPSC to differentiate to neurons 

and other neural cell lineages, there is little doubt that these cells could be a very 

interesting choice to repair injured nerve tissues as a result of their active 

secretion of neurotrophic and immune-modulatory factors (Nosrat et al., 2004; 

Pierdomenico et al., 2005). The high expression of certain neural markers and 

neurotransmitter receptors by DPSC also suggests that these cells may actively 

respond to signals of the neural environment and effectively integrate into injured 

nerve tissues, promoting the reestablishment of functional nerve connectivity 

(Arthur et al., 2009; Kadar et al., 2009; Kiraly et al., 2009). For instance, some 

recent reports show that transplanted DPSC are able to differentiate in vivo to 

myelinating cells in the spinal cord, replacing lost cells and promoting 

regeneration of transected axons in acute models of spinal cord injury (Sakai et 
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al., 2012). 

In the case of the peripheral nerve system, treatment of nerve injuries represents 

a clinical challenge because of the difficulties of regenerating transected nerves. 

Though numerous surgical successes have been reported with a short nerve gap, 

there is still no satisfactory technique for long nerve defects, which often require 

a complex clinical reconstruction. Autologous nerve grafting has been considered 

the gold standard for repairing peripheral nerve gaps caused by traffic accidents 

or tumor resectioning (Kumar and Hassan, 2002; Hayashi and Maruyama, 2005; 

Bae et al., 2006). However, this technique has inevitable disadvantages, such as 

a limited supply of available nerve grafts and permanent loss of the sacrificed 

donor nerve function. Brain- derived neural progenitor cells also promote 

regeneration of transected nerves (Murakami et al., 2003). However, the use of 

cells from other neural tissues involves potentially serious clinical complications 

along with ethical considerations. 

Taking all these arguments into account, there is an active search for new sources 

of cells to be used in craniofacial nerve bridging and regeneration. Considerable 

advances have been made in this field using DPSC for the treatment of facial 

nerve injuries. Particularly, patients with facial paralysis, especially younger 

ones, may experience tremendous psychosocial distress about their condition 

(Chan and Byrne, 2011). Recent studies have used DPSC transplanted in PLGA 

tube scaffolds to achieve a complete functional regeneration of the facial nerve 

in rats to recovery levels comparable to those obtained with peripheral nerve 

autografts (Sasaki et al., 2011, 2014). Interestingly, recent research also indicates 

that hDPSC can be differentiated to Schwann-like cells that efficiently myelinate 

DRG neuron axons in vitro, a finding confirmed by ultrastructural TEM analysis 

(Martens et al., 2014). Considering the important role that Schwann cells play in 

axonal protection and regeneration of peripheral nerves (Walsh and Midha, 

2009), and the difficulty of their harvesting and maintenance, the generation of 

DPSC- derived autologous Schwann cells may represent a milestone in the design 



1. INTRODUCTION. ANEX 1 

 

35  
 

of new treatments for conditions of peripheral nerve injury, including facial 

paralysis. 

Finally, another important property of DPSC is their active secretion of 

neurotrophic factors (Nosrat et al., 2004; Bray et al., 2014), which may be 

exploited to treat neuropathic pain states associated with peripheral nerve injury. 

In the case of orofacial pain, some of the most distressing and painful conditions 

that can be experienced by a human being are neuralgias affecting the trigeminal 

nerve, or CN V. These are characterized by intense stabbing pain and spasms, 

usually associated with a mechanical injury, compression, demyelination and 

inflammation of trigeminal sensory fibers (Love and Coakham, 2001; Sabalys et 

al., 2013). It is known that local application of Glial derived neurotrophic factor 

(GDNF) exerts a potent analgesic effect and reverses the symptoms associated 

with neuropathic pain (Boucher et al., 2000). Because DPSC secrete important 

amounts of GDNF, it is conceivable that autologous DPSC transplantation to the 

injured trigeminal nerve may also potentially provide important benefits to treat 

severe orofacial pain disorders, alone or in combination with pharmacological 

enhancers of GDNF signaling (Hedstrom et al., 2014), some of which are even 

formulated to permit topical application. 

DPSC FOR SALIVARY GLAND REGENERATION 

Salivary gland regeneration is an area of intense research because the most common 

treatment for head and neck cancer (i.e., radiotherapy) irreversibly affects salivary gland 

function, causing hyposalivation and xerostomia. In consequence, difficulty in 

mastication, swallowing, taste, speech, rampant dental caries and mucosa infections 

appear, leading to high discomfort in patients and a reduced quality of life (Vissink et 

al., 2010). Palliative treatments such as mechanical stimulation of salivary gland activity 

(chewing gum), or pharmacological agents such as pilocarpine (Salagen™), as well as 

saliva substitutes, show a limited efficacy in relieving the symptoms (Taylor, 2003). 

Tissue engineering of a salivary gland replacement organ would be a conclusive way to 



1. INTRODUCTION. ANEX 1 

 

36  
 

treat these patients. To accomplish this complex task, there are some issues that must be 

taken into account: (i) optimization of the 3D scaffold material properties (including 

non-toxicity, permeability and biodegradability, among others), (ii) identification of an 

epithelial stem cell population capable of appropriate salivary differentiation (iii) 

definition of ideal culture conditions and extracellular matrix components (ECM) with 

laminin, integrins, MMPs to mimic the microenvironment of the gland, and (iv) selection 

of a population of MSC to be combined with  salivary  epithelial cells to generate a full 

bioengineered salivary gland germ. Finally, in comparison with dental bioengineering, 

salivary gland bioengineering presents an important additional requirement: apart from 

the communication between  the  epithelium  and  the mesenchyme, epithelial-axonal 

interactions are also required from the very beginning of salivary gland morphogenesis, 

because innervation plays an important role in regulating the activity of epithelial 

progenitor cells (Knox et al., 2010) and salivary gland branching and tubulogenesis 

(Nedvetsky et al., 2014). Therefore, salivary gland bioengineering strategies must also 

take into account that this is an organ that heavily relies on the establishment of a 

functional innervation to properly complete its development (Lombaert et al., 2011; 

Knosp et al., 2012). 

Some studies indicate that isolated mouse salivary gland stem cells (cKit+, CK14+, Msi-

1+, and Sca-1+) can grow and form salispheres that produce amylase (Lombaert et al., 

2008). Moreover, injection of a liquid suspension containing only 300–400 cKit+ cells 

into the mouse SMG was shown to partially rescue the loss of morphology and function 

induced by irradiation insults (Lombaert et al., 2008; Coppes and Stokman, 2011; 

Nanduri et al., 2013). In recent years, the technology to generate salivary gland 

organoids in vitro has progressed remarkably. Recent major advances in the field include 

the advent of bioengineered glands constructed from dissociated cells from adult and 

fetal salivary glands (Ogawa et al., 2013; Nanduri et al., 2014). An important study by 

the group of T. Tsuji showed that the bioengineered salivary glands generated by a cell 

recombination protocol contained epithelium, mesenchyme, endothelium, and nerve 

cells. Most importantly, the entire organ could be transplanted into adult mice, reconnect 

with the existing ductal system and function properly (Ogawa et al., 2013; Ogawa and 
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Tsuji, 2015). Thus, the salivary gland joins the tooth in the list of organs that can be fully 

generated ex vivo by tissue engineering. As in the case of the tooth, the main challenge 

to translate these findings to clinical practice is still the need for sources of stem cells 

that are sufficiently abundant and competent for salivary epithelial differentiation, and 

that do not involve destruction of donor salivary gland tissue. 

 

 

 

 

 

 

 

 

 

Figure 4. Recombination of salivary gland germ epithelia with DPSC in 3D culture.(A) 

SMG epithelia can be mechanically and enzymatically isolated from SMG mesenchyme, and 

recombined with hDPSC in 3D laminin scaffolds to generate a bioengineered salivary gland 

germ (B) SMG acini from E14.5mouse, showing the extensive natural innervations of the SMG 

by β3-tubulin + nerve fiber sat this developmental stage. (C) SMG acini from E14.5mouse, 

showing the natural localization of lamina in the basal lamina that separates the salivary 

epithelium and mesenchyme. 
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ABSTRACT 

Dental Pulp Stem Cells (DPSCs) are stem cells extracted from the dental pulp of third 

molars and deciduous teeth. Stem cells from dental pulp present some interesting 

properties that convert them in unique resource of stem cells for cell therapy; present high 

differentiation potential and they are easily obtained from patients, amplified and 

cryopreserve. Interestingly, stem cells from dental pulp present inmunosupresory 

properties and are well tolerated by biomaterials, which make them especially attractive 

for their use in clinics. 

As for DPSCs regeneration potential, it is to highlight their stemness, given by high self-

renewal and the expression of pluripotency core factors Oct4, Nanog, Sox2, cMyc, Lin28, 

Rex1, Stella y Ssea1. This stemness could be enhanced by cell reprogramming with 

transcription factors transfection and the recent technology CRISPR. However, this 

methodology could lead to aberrant mutations in DNA converting stem cells in potentially 

dangerous to use in humans. Notch and Wnt/β-Catenin signaling pathways play a crucial 

role in the maintenance and differentiation of different type of stem cells. To understand 

how Notch and Wnt/β-Catenin signaling pathways work with stemness and self-renewal 

would be of great interest in order to create controlled cell reprogramming strategies. 
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Indeed, the modulation of stemness and pluripotency is coming together with metabolism 

and epigenetic remodelling for ensure reprogramming efficiency.  

Metabolism remodelling includes important physiological molecular and cellular changes 

in glycolysis, mitochondrial activity and lipid precursors, which could be necessary for 

ensuring a safety cell therapy with DPSCs. In epigenetic landscape, chromatin 

remodelling is accompanied with changes in methylation and acetylation patterns of DNA 

and histones. These changes are crucial for defeating epigenetic barrier and creating an 

effective cell reprogramming. Epigenetic changes are linked to remodelling in 

metabolism and could be affected together affecting each other. The knowledge of the 

link between pluripotency network with metabolism and epigenetic in Notch and Wnt 

signaling modulation could help to determine an effective manner of reprogramming 

avoiding cell physiology damage.  
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INTRODUCTION 

Dental Pulp Stem Cells (DPSCs) are stem cells extracted from the dental pulp of third 

molars and deciduous teeth. These stem cells are neural crest-derived cells with an 

outstanding capacity to differentiate along multiple cell lineages of interest for cell 

therapy (Aurrekoetxea et al., 2015).  Despite cell therapy improvements there are some 

limitations due to the obtainment, maintenance and cryopreservation of adult stem 

cells(Hunt, 2011).DPSCs present some characteristics such as relative abundance, low 

morbidity, easy accessibility, differentiation potential and tolerance to biomaterials and 

this together make DPSCs highly promising for tooth tissue engineering and 

craniomaxillofacial regeneration (Aly, 2015; Aurrekoetxea et al., 2015; Ibarretxe et al., 

2012; Kellner et al., 2014; Wu et al., 2015; Yang et al., 2016).  Moreover, the capacity of 

DPSCs to differentiate into specialized cells makes them attractive candidates for clinical 

applications (Bray et al., 2014; Syed-Picard et al., 2015).Nevertheless, it is known that 

DPSCs, as other adult human stem cells, have a limited potential to differentiate into some 

type of cells due to their genetic determination. It is known that DSPCs lost their 

differentiation potential and stem cells markers along aging (Alraies et al., 2017). 

Therefore, it is crucial to study different methodology for improving their differentiation 

potential (Gronthos et al., 2000).Development of methodology to convert adult stem cells 

into Induced Pluripotent Stem Cells or iPSCs has risen during the last few years. As an 

example, one of the most employed methods is the transfection through Yamanaka factors 

(cMyc, Oct4, Nanog, Sox2 and Klf4) to produce pluripotent stem cells with potential to 

generate almost all cell type (Takahashi et al., 2007; Takahashi and Yamanaka, 2006b). 

Nevertheless, an excess of reprogramming factors may trigger cell-cycle arrest, death, 

mutations or inappropriate differentiation in transfected cells(Banito et al., 2009; 

Kawamura et al., 2009; Li et al., 2009).Therefore, achieving the right balance of 

reprogramming factors appears to be critical. Different forms of genomic impairment 

such as elimination p53 and Ink4/Arf locus allows more efficient reprogramming, but 

also leads to chromosomal instability(Kawamura et al., 2009; Li et al., 2009; Marion et 

al., 2009). The use of microRNA has also been reported successful results in improving 

DPSCs differentiation potential (Li et al., 2015). Taking all together, understanding 

pathways mechanism may be interesting alternative to modulate reprogramming under 

control. It is still unclear how pluripotency networks operate with metabolism and 

epigenetics, which are essential to establish more efficient and safety differentiation 
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protocols. It is known that dental stem cells present higher levels of core factors (cMyc, 

Sox2, Nanog, Oct4, Rex1, Lin 28, Rex1, Stella and Ssea1) (Atari et al., 2012; Huang et 

al., 2009; Janebodin et al., 2011; Uribe-Etxebarria et al., 2017; Vasanthan et al., 2015). 

Indeed, both pathways have been demonstrated to enhance stemness and different 

differentiation media efficiency (Uribe-Etxebarria et al., 2017).However, the role of these 

pathways in the maintenance of stemness and self-renewal in DPSCs is still unclear. 

Interestingly, cellular metabolism might also play a crucial role being involved in the 

regulation of cell fate and stem cell activity (Buck et al., 2016; Gascon et al., 2016; Zhang 

et al., 2016b; Zheng et al., 2016).Furthermore, the mechanism by which cellular 

metabolism can influence stem cell fate has only recently begun to be explored; however, 

it is clear that it does so, at least in part, by influencing the epigenetic landscape, which 

in turn affects gene expression (Harvey et al., 2016). 

Overall, Notch and Wnt/β-Catenin signalling pathways are indispensable for pluripotency 

stem cell factors expression and self-renewal and could be altered to control 

reprogramming safety and measured of DPSCS that guarantees their safety use in cell 

therapy. Moreover, the knowledge of this pluripotency network with metabolism and 

epigenetic could help to determine an effective way of reprogramming avoiding cell 

physiology damage at cellular and molecular level. Partial reprogramming and controlled 

of these cells may be used for existent differentiation protocols enhancement in terms of 

rapidness and effectiveness of specific cell populations. It could be interesting also the 

design of new protocols difficult to carry out due to their complexity. Stemness, 

metabolism and epigenetic seems to form a complex network and here we review some 

of the last important findings in this network with insights into our previous research. 

DENTAL PULP STEM CELLS CHARACTHERISTICS AND ORIGIN 

Dental Pulp Stem Cells are described as a unique population of precursor cells isolated 

from the postnatal human dental pulp capable of regenerating a reparative dentin-like 

complex (Ledesma-Martinez et al., 2016). Indeed, DPSCs are easily accessible for 

extraction, retained as a population of the dental pulp; these stem cells are also easily 

isolated from the pulp cavity of teeth (Figure 1 A).Further, immune-suppressive and non-

tumorigenic properties of DPSCs convert them into suitable stem cells well tolerated upon 

grafting (Pierdomenico et al., 2005; Wilson et al., 2015). One interesting feature is that 

DPSCs retain the ability to differentiate into different cell types including myocytes, 
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odontoblasts, osteoblasts, chondrocytes, adipocytes, neural progenitors, hepatocytes, 

cells of blood vessels and smooth muscle cells (Arthur et al., 2008; Aurrekoetxea et al., 

2015; d'Aquino et al., 2009; La Noce et al., 2014; Stevens et al., 2008)(Figure 1 A). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.Schematic representation of adult tooth. A) The tooth is placed in the gingiva and the alveolar 

foramen. The population of Dental Pulp Stem Cells (DPSCs) are located in areas adjacent to the nerves and 

blood vessels inside the dental pulp. These nerves are linked to the roots in the apical foramen. Dentin, 

which is secreted by odontoblasts, is placed covering the tooth and protecting it from external agents. 

DPSCs also remain potential to differentiate in chondrocytes, muscle cells, adipocytes and neurons. B) 

Different stem cells extracted from dental tissues. Dental tissues remain different stem cells with 

potential for cell therapy: Dental Follicle Stem Cells (DFSCs), Dental Pulp Stem Cells (DPSCs), Stem Cells 

from Human Exfoliated Teeth (SHED), Gingival Fibroblastic Stem Cells (GFSCs), Stem Cells from Apical 

Papilla (SCAP) and Periodontal Ligament Stem Cells (PDLSCs). 
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Other stem cell types with similar properties could be obtained from gingival and 

periodontal tissues (Abe et al., 2012; Huang et al., 2009; Ibarretxe et al., 2012; Lima et 

al., 2017; Liu et al., 2015a; Petrovic and Stefanovic, 2009) (Figure 1. B). As for in vitro 

characteristics, DPSCs express fibroblastic (Collagen I, Vimentin and α-SMA) and 

neurogenic markers (β-3Tubulin, and Nestin) and their shape reminds to neurons with 

long neuritis. One explanation to this would be their ectomesenchymal origin (Figure 2 

A, B, C, D). Moreover, DPSCs show stem cell markers(Oct4 and cMyc) and cell 

proliferation markers (KI67 and PCNA) providing huge quantity of stem cells for 

transplantation (Atari et al., 2012; Ferro et al., 2012; Kerkis et al., 2006; Rosa et al., 

2016)(Figure 2 E, F, G, H). 

 

Figure 2.Characterization of DPSCs in vitro. A-D) DPSCs expressed mesenchymal (Collagen I, 

Vimentin, α-SMA) and neural markers (β-3Tubulin, Nestin) marker in basal conditions, due to their have 

ectomesenchymal origin. Scale bar=20 µm. E-H) DPSCs as proliferative cells express Ki67 and PCNA and 

also present pluripotency stem cells factors such as Oct4 and cMyc. Scale bar=20 µm.  

Microenvironment described as extracellular scaffold, cell interactions and growth 

factors, is crucial during differentiation of DPSCs because these signals control stem cells 

orientation, polarity and type of cell division (symmetric or asymmetric) (Gattazzo et al., 

2014). During embryonic development and, after the three germ layer formation 

(ectoderm, mesoderm and endoderm), pluripotent stem cells from embryo or Embryonic 

Stem Cells (EMSC), suffer several divisions and receive different signals leading to 
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genetic determination. This genetic determination occurs in humans between the 8 and 

10 week of the embryo development. Then, multipotent stem cells, have all the genetic 

information and depend on surrounding signals to differentiate into the different type of 

cells that form the adult organism (Wagers et al., 2002).After neural tube fusion, a 

population of stem cells migrate from the neural crest and suffers the phenomena known 

as epithelial-mesenchymal transition (EMT). In the head, these cells migrate to generate 

craniofacial tissues (dental pulp and dental follicle of the teeth, muscles, bones, cartilages 

and even ganglion of peripheral nerves) (Aurrekoetxea et al., 2015; Gronthos et al., 2002). 

Consequently and because of the source of these cells, DPSCs have a huge potential to 

generate dental and connective tissues (Gronthos et al., 2002). 

DPSCs come from the cranial neural crest (NC) have some characteristics of neural crest 

progenitors (Abe et al., 2012; Janebodin et al., 2011; Miletich and Sharpe, 2004; Simoes-

Costa and Bronner, 2015).It has been proposed that evolution of the NC-specification 

program has enabled cells at the neural plate border to acquire multipotency and 

migratory ability (Green et al., 2015). A subgroup of transcription factors termed neural 

plate border specifiers is required for the establishment of the neural plate border, as well 

as regulation of the downstream target factors known as neural crest specifiers, which 

mediate the induction of neural crest lineage(Simoes-Costa and Bronner, 2015). In the 

same way that NC-derived cells, dental stem cells are characterized by the expression of 

neural crest factors such as Snail/Snai1, Slug/Snai2, Twist1, Hnk1, Pax3, Neurogenin2 

and Sox10 (Kiraly et al., 2009; Schiraldi et al., 2012), and core factors including Oct4a, 

cMyc, Sox2, Klf-4, Lin28, Rex1, SSEA1 and Nanog (Atari et al., 2012; Ferro et al., 2012; 

Janebodin et al., 2011; Kerkis et al., 2006; Rosa et al., 2016; Uribe-Etxebarria et al., 

2017). These pluripotency factors are fundamental to maintaining stem cell pluripotency 

(Chambers and Tomlinson, 2009; Hishida et al., 2015; Takahashi et al., 2007), therefore 

DPSCs may present some superior features with respect to other multipotent stem cell 

populations of the adult human body (Atari et al., 2011; Atari et al., 2012; Rosa et al., 

2016).  
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PLURIPOTENCY NETWORK OF EMBRYONIC STEM CELL FACTORS 

WORKS THROUGH NOTCH AND WNT-βCATENIN SIGNALING. 

Wnt and Notch pathway are involved in the preservation of pluripotency of both ES cells 

and adult stem cells, and are critical for the maintenance of the stem cell phenotype 

(Androutsellis-Theotokis et al., 2006; Borggrefe et al., 2016; Clevers et al., 2014; 

Perdigoto and Bardin, 2013; Reya and Clevers, 2005). Wnt signalling is endogenously 

activated in ES cells and downregulated upon differentiation (Sato et al., 2004). Wnt and 

Notch pathways also play an important role in the emergence of the neural crest and some 

of these cells differentiate into dental pulp cells (Garcia-Castro et al., 2002; Hari et al., 

2012; Leung et al., 2016; Rogers et al., 2012; Stuhlmiller and Garcia-Castro, 2012). It is 

known that dental stem cells present higher levels of core factors and Wnt/Notch activity 

than do other mesenchymal stem cells in the adult body (Atari et al., 2012; Huang et al., 

2009; Janebodin et al., 2011; Vasanthan et al., 2015). However, the role of these pathways 

in the maintenance of stemness and self-renewal in DPSCs is still unclear.  

Activation of Notch signaling through ligand binding triggers proteolytic cleavage of 

Notch receptors, first by A-Disintegrin-And-Metalloproteases (ADAM) followed by γ-

secretases, which results in the cleavage and release of the Notch intracellular domain 

(NICD) from the membrane. The NICD translocates to the nucleus where it directly 

interacts with CSL/RBPj/CBF-1 transcription factors to turn on the expression of Notch 

target genes such as the Hairy Enhancer of Split (Hes) family (D'Souza et al., 2010). As 

for Wnt signaling, three different pathways Canonical Wnt signaling, Non-Canonical Wnt 

signaling, and Wnt signaling Ca2+ dependent form this pathway. 

In Canonical Wnt signaling, the interactions between Wnt protein ligands and the proteins 

Frizzled/LRP receptors lead to the recruitment of AXIN, APC and GSKβ3 to the 

membrane, thus preventing phosphorylation and degradation of β-CATENIN protein. As 

a result, β-CATENIN accumulates in the cytoplasm and translocates into the nucleus, 

where it interacts with TCF/LEF family factors and leads to the expression of Wnt 

signaling target genes (Clevers, 2006). Both pathways regulate each other at multiple 

points (Borggrefe et al., 2016; Fukunaga-Kalabis et al., 2015)and promote the 

maintenance of self-renewal and inhibition of differentiation in many stem cell types, 

including DPSCs (Mizutani et al., 2007; Scheller et al., 2008; Yiew et al., 2017).However, 

Non-Canonical Wnt signaling acts independent from β-CATENIN, especially in adhesion 
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proteins such integrins, cadherines, among other (Adler and Taylor, 2001; Boutros et al., 

1998). The third singaling is Ca2+ dependent and activates Protein Kinase C (Kuhl et al., 

2000; Sheldahl et al., 1999). 

Pharmacological manipulation of the Notch and Wnt β-Catenin Canonical pathways is 

relatively simple via the use of well-known drugs such as DAPT (ᵞ-secretase inhibitor; 

Notch signaling blocker), and BIO (GSK3-β inhibitor; Wnt signaling activator), and by 

recombinant activator proteins such as WNT-3A. The use of these drugs BIO and DAPT 

has already proven to be a valuable complementary strategy to induce either cellular 

reprogramming or cellular differentiation (Ichida et al., 2014; Kitajima et al., 2016). 

Therefore, a thorough understanding of the stemness and differentiation potential of 

DPSCs and their modulation by cell signaling pathways would be highly desirable to 

apply these cells more efficiently in areas such as regenerative medicine, tissue 

engineering and drug screening. In this work, we used DAPT and BIO, as well as human 

recombinant WNT-3A as pharmacological modulators to investigate the role of 

Notch/Wnt in maintaining stemness and the expression of pluripotency core factors in 

DPSCs with the goal of optimizing existing protocols of somatic cell differentiation using 

DPSCs. 

Some authors have attributed pluripotent markers expression to the crosstalk between 

Notch and Wnt signaling (Kwon et al., 2011; Uribe-Etxebarria et al., 2017). During Wnt 

signaling, β-Catenin goes to the nucleus, activates transcription and Wnt target genes such 

as Sox2, Oct4, Nanog and Jagged1, which is expressed in the membrane and activates 

Notch signaling, leading to cell proliferation. Wnt pathway is regulated by the GSK3β, 

which leads to β-Catenin degradation. When GSK3β is inhibited, this pathway is 

overactivated, and as a result β-Catenin goes permanently to the nucleus and Notch 

signalling is activated through Jagged1 overtranscription. 

As for Notch signalling cell-contact is indispensable due to that, the convertases are the 

responsible for the two cleavages for NICD translocation to the nucleus and Notch target 

genes transcription. γ-secretase inhibitor DAPT, prevents NICD active form from the 

second cleavage and therefore Notch signalling is inhibited. Moreover, β-Catenin 

aggregates to Notch receptor in the membrane and consequently is degraded in the 

proteasome. Finally, Wnt signalling activity would also be affected by Notch inhibition 

(Andersen et al., 2012; Hori et al., 2013) (Figure 3). 
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Figure 3. Notch and Wnt signaling crosstalk are responsible for pluripotency markers expression in 

mesenchymal stem cells (Kwon et al., 2011; Uribe-Etxebarria et al., 2017, Andersen et al., 2012; Hori 

et al., 2013). During Wnt signaling, β-Catenin goes to the nucleus, activates transcription factors such as 

Sox2, Oct4, Nanog. Indeed express Jagged1, that activates Notch signaling and cMyc transcription. When 

GSK3β is inhibited, β-Catenin is continuously translocated to the nucleus and upregulates all trasncription 

factors mentioned before. Consequently, Notch and Wnt signaling are overactivated. As for Notch 

signaling, the γ-secretase inhibitor DAPT prevents Notch receptor cleavage, NICD active fragment 

transport to the nucleus and stem cell transcription factors expression. In this inhibition Wnt signaling is 

also affected because Notch receptor joins to β-Catenin causing its degradation in the proteasome and 

therefore, Wnt inhibition. Consequently, pluripotent markers expression has been assigned to the crosstalk 

between Notch and Wnt signaling. 
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NOTCH AND WNY SIGNALING CONTROL CELL CYCLE AND SELF-

RENEWAL OF PLURIPOTENT STEM CELLS 

Pluripotent stem cells are defined by an unlimited self-renewal capacity and an 

undifferentiated state. These cells have cell cycle is defined by minimal time spent in G1 

(Coronado et al., 2013; Ghule et al., 2011; Li and Kirschner, 2014). The fundamental 

understanding of how the cell cycle and stemness are linked has become of crucial 

importance between broad disciplines including regenerative medicine, cancer biology, 

and aging. As mentioned before, the pluripotency network consists of a core set of 

embryonic stem transcription factors, including Oct4 (Pou5f1), Sox2, and Nanog, among 

others. All of them serve to establish the undifferentiated state and the self-renewing 

capacity of ESC cells (Hackett and Surani, 2014; Young, 2011).  

When Yamanaka and colleagues first successfully reprogrammed somatic cells to a 

pluripotent state, they observed that Induced Pluripotent Stem Cells (iPSCs) cells grew at 

a rate similar than ESC cells (Takahashi et al., 2007), with minimal spent in G1/G0 phase 

(Ghule et al., 2011; Ruiz et al., 2011). Mitotic nuclei are reprogrammed at rates 

significantly higher than interphase nuclei and that this is due in part to the de-

ubiquitination of histones during mitosis resulting in gene derepression (Halley-Stott et 

al., 2014). Similar studies have shown that enriching for proliferating cells enhances 

reprogramming (Guo et al., 2014; Roccio et al., 2013).The mechanisms that underlie this 

increase in proliferation as cells reprogram have been the focus of multiple studies that 

we have mentioned before. The process of reprogramming stresses the cells, e. g. through 

DNA damage, induction of apoptotic programs, and oncogene expression (Marion et al., 

2009), and reducing the checkpoint activity of p53 and Cdk inhibitors promotes 

successful reprogramming (Lin et al., 2014). Along with CDK regulation, modulating the 

proper levels Cyclins is fundamental to proper reprogramming (Abe et al., 2012; Edel et 

al., 2010; McLenachan et al., 2012). Studies in core factors, cell cycle phase and CDKS 

and Cyclins could give more information about how reprogramming works through 

pluripotency and cell cycle. 

Control of cell cycle by embryonic stem cell markers 

Although it is known that these transcription factors play a crucial role in the activation 

of the greater pluripotency network (Boyer et al., 2005), a crosstalk with the cell cycle 

machinery has been also identified. Early studies of the core pluripotency network have 
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identified cMyc, a key regulator of many cell cycle genes (Kim et al., 2008; Kim et al., 

2010), also as a target of Oct4 and Nanog, being therefore crucial for the maintenance of 

pluripotency (Cartwright et al., 2005; Hishida et al., 2011; Loh et al., 2006). Other authors 

have described also the dependency of pluripotency on Wnt signaling(Hishida et al., 

2015; Sun et al., 1999). The Wnt signaling pathway has been shown to elevate the level 

of cMyc (Cartwright et al., 2005). cMyc activity increases the rate of proliferation and 

reprogramming by helping to establish a pluripotent cell cycle in reprogrammed cells 

(Huskey et al., 2015; Kim et al., 2008; Kim et al., 2010; Lavagnolli et al., 2015; Rahl et 

al., 2010). 

cMyc and Oct4 can directly modulateE2F activity (Huskey et al., 2015; Kim et al., 2010; 

Zhang et al., 2009), one of the major regulators of the cell cycle, which can affect the 

activity of Cyclin /CDK complexes. In addition, Nanog can upregulate CDKs and the 

CDK activator, Cdc25a (Zhang et al., 2009). To further enhance high CDK activity, 

several CDK inhibitors are repressed in part by core pluripotency factors (Lee et al., 2010; 

Singh and Dalton, 2009). Not surprisingly, activating some pathways such as E2Fs, Wnt 

and FGF pathways are implicated in the regulation of the core pluripotency network genes 

Oct4, Sox2, and Nanog (O'Connor et al., 2011; Uribe-Etxebarria et al., 2017; Yeo et al., 

2011). 

One complication of fast cell proliferation is the potentially increased accumulation of 

genetic mutations due to error-prone DNA synthesis. Oct4 binds to and inhibits Cdk1 

resulting in an extension of G2 phase which allows more time for the DNA repair 

machinery to correct mutations de novo (Zhao et al., 2014). Apparently, the core 

pluripotency network can control the cell cycle, but cell cycle regulators also control 

pluripotency (Abe et al., 2012; Huskey et al., 2015; Kallas et al., 2014; Neganova et al., 

2014).  

METABOLISMREPROGRAMMINGIN PLURIPOTENT STEM CELLS 

Cellular metabolism could be implicated in cell-fate determination and stem cell activity 

as well as is crucial in the production of energy(Buck et al., 2016; Gascon et al., 2016; 

Zhang et al., 2016a; Zhang et al., 2016c; Zheng et al., 2016). In fact, metabolic 

remodelling appears to mediate the process of reprogramming. When cells enter in a 

pluripotent state through reprogramming, requires an early metabolic switch to take place, 

because the metabolic requirements of differentiated cells are different from highly 
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proliferative pluripotent stem cells. The first tandem of activated genes during 

reprogramming is enriched for genes important for increased proliferation and metabolic 

change (Cacchiarelli et al., 2015).  

Mitochondrial changes during metabolism remodelling 

During reprogramming of human somatic cells into iPSCs, mitochondria need to undergo 

significant remodelling, a process known as mitochondria rejuvenation, during which 

mitochondrial activity seems to be lower (Folmes et al., 2012; Folmes et al., 2011; Gu et 

al., 2016; Ma et al., 2015; Prigione et al., 2010; Suhr et al., 2010; Varum et al., 2011; 

Zhou et al., 2012). These findings could explain the temporary upregulation of 

mitochondrial proteins in cells undergoing reprogramming, which has previously been 

observed via proteomic analyses (Hansson et al., 2012). This transient “hyper-energetic” 

state seems to be required for reprogramming of differentiated cells into pluripotent stem 

cells, which is accompanied with an increment in reactive oxygen species (ROS) 

production and enhancement of the glycolytic rate. 

Glycolytic and Oxidative Phosphorylation (OXPHOS) activity prevalence during 

metabolism remodelling 

The expression of glycolysis-related genes and lactate production in human PSCs is 

higher than in differentiated cells and oxygen consumption declines(Armstrong et al., 

2010; Folmes et al., 2011; Mathieu et al., 2014; Prigione et al., 2010; Varum et al., 2011). 

High glucose culture medium reprograms mouse somatic cells into iPSCs more 

efficiently than low-glucose medium (Jang et al., 2012; Zhu et al., 2010). Thus, these 

findings show that high glycolysis is crucial for pluripotency; but how PSCs maintain and 

acquire high glycolysis levels or to what extent this metabolic behaviour affects 

pluripotency is still unknown. Mitochondrial activity seems to be crucial since work as a 

tool of Oxidative Phosphorylation or OXPHOS metabolism for energy production in cell 

reprogramming as well as (Sperber et al., 2015). Finally, it has been described the 

formation of lipid accumulations in lipid droplets as source of energy during this 

remodelling (Sperber et al., 2015). 

Until few years, metabolism profile of stem cells that suffered reprogramming described 

Warburg Effect, but more studies in this field demonstrated that not all reprogrammed 

stem cells followed this pattern. The Warburg effect has been described over the years to 
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operate in highly proliferative cells to rapidly build up anabolic intermediates for 

proliferation while minimizing ROS-induced damage. Therefore, the Warburg effect is a 

specific mode of glycolytic metabolism, defined as unusually rapid glycolysis followed 

by lactate synthesis even under aerobic conditions. These intermediates feed into, but are 

not limited to, glycolytic shunts into the pentose phosphate pathway for nucleotide and 

NADPH synthesis, shunts into amino acid synthesis via 3-phosphoglycerate and 

pyruvate, and shunts into lipid synthesis via dihydroxyacetone phosphate. The pyruvate-

lactate step in the Warburg effect is necessary to recycle the rate-limiting NAD+ 

coenzyme and keep the redox reactions in glycolysis running rapidly. Apparently, the 

pyruvate-acetyl-CoA step is important for pluripotency, but not the pyruvate-lactate step. 

This is a critical distinction to make, because it suggests that the Warburg effect is not 

rate limiting for pluripotency (Moussaieff et al., 2015b). The upregulation of glycolysis 

occurs early during iPSC reprogramming, well before a small fraction of cells acquires 

pluripotency (Folmes et al., 2011; Shyh-Chang et al., 2013).Moreover, acetyl-coA 

metabolite suffers a rapid decrease during differentiation of ESC suggesting the relevant 

role of this metabolite in the balance between pluripotency and differentiation (Mathieu 

et al., 2014). Many authors have described two different stem cells states in 

reprogramming primed and naive stem cells which follows distinct 

metabolism(Weinberger et al., 2016). We represented a schematic model showing 

principal differences between the metabolism of primed and naive stem cells between 

according to Weinberger model (Figure 4). Primed stem cells principally depend on 

glycolysis instead of OXPHOS whereas naive stem cells retain high levels of OXPHOS 

during high glycolysis (Mathieu et al., 2014; Sperber et al., 2015; Wanet et al., 2015; 

Zhou et al., 2012).According to our data, we hypothesize that DPSCs treated with Wnt 

activators, remains some primed and naive stem cells characteristics. We have studied 

some other features that can help to better understand more about metabolism how it 

works with epigenetics in reprogramming (Figure 5). 
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Figure 4.Characteristics of naïve and primed stem cells according to gene expression, metabolism 

and epigenetics. Pluripotent Stem cells could be divided according to some features showed in the 

following table in naïve and primed stem cells. Weinberger model explained the differences between these 

two populations of pluripotent stem cells studying gene patter expression, behavior in metabolism and 

epigenetics (Weinberger et al., 2016). We observed some of these features in our treated DSPCs, but some 

of them observed in Weinberger model are still unknown in our system model. 
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Figure 5.Comparative between Weinberger model in naïve and primed stem cells and other features 

of pluripotent stem cells observed in our DPSCs model. We observed some features in our Wnt 

overactivated DSPCs that are attributed to naïve stem cells, such as cell proliferation, pluripotency markers 

(NANOG, KLFs ESRRB, OCT4, CMYC, LIN28, SOX2), histone acetylation, global DNA hypo 

methylation, histone methylation H3K4me3, H3K37me3, H3K9me3, dependence on DNMT1, DNMT3A, 

DNMT3B, glycolytic and oxidative metabolism , production of  NADH, FADH2, ATPase activity, 

mitochondrial membrane activity and depolarization, perinuclear mitochondria, promotion of pluripotency 

maintenance by NANOG or PRDM14, lipid droplets and oxidation of fatty acids. 
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Control of metabolism by embryonic stem cell markers 

It has been described that somatic stem cells can be reprogrammed to pluripotency by 

Oct4 and Sox2 together with Klf4 and cMyc (OSKM) or Nanog  and Lin28 (OSNA) 

(Burk and Schade, 1956; Park et al., 2008; Takahashi et al., 2007; Takahashi and 

Yamanaka, 2006a; Yu et al., 2007). Pluripotent Stem Cells (PSCs) have a very specific 

metabolic pattern that probably reflects their rapid proliferation and the specific 

microenvironment from which they are derived. Although distinct metabolic properties 

are critical for the generation and maintenance of Pluripotent Stem Cells (PSCs), it is 

unknown how PSCs maintain and acquire this metabolic signature. OXPHOS is used by 

somatic cells for energy production, but upon reprogramming, the transition to 

pluripotency is accompanied with a shift to a glycolytic metabolism (Burk and Schade, 

1956; Folmes et al., 2011; Panopoulos et al., 2012; Prigione et al., 2010; Varum et al., 

2011). PSCs also rely on one-carbon metabolism for histone methylation and 

maintenance of pluripotency (Shiraki et al., 2014; Shyh-Chang et al., 2013). Interestingly, 

the well-studied core pluripotency factors Oct4, cMyc, Sox2 and Nanog regulate 

glycolysis directly by targeting key glycolytic enzymes in embryonic stem cells, such as 

Hk2 and Pkm2, which affect Lactate, Acetate and Glucose metabolites (Folmes et al., 

2013; Kim et al., 2015). Apparently, one of the keys regulators is the core pluripotent 

factor cMyc, which directly binds and regulates metabolic gene targets, influencing 

glycolysis(Kim et al., 2004; Osthus et al., 2000; Shim et al., 1997), mitochondrial 

biogenesis (Li et al., 2005; Zhang et al., 2007), glutamine (Gao et al., 2009) and proline 

catabolism (Liu et al., 2012). Furthermore, the sustainment of high glycolytic flux delays 

ESC differentiation and enables certain populations of ESCs to retain the capacity for 

self-renewal and differentiation potential.  Lin 28 gene has been reported to play a 

relevant role in PSC metabolism by maintaining the low mitochondrial function 

associated with primed pluripotency and in regulating one-carbon metabolism, nucleotide 

metabolism, and histone methylation (Zhang et al., 2016c).Interestingly, several authors 

have described that stem cell factors Oct4 and Lin28 regulate stem cell metabolism and 

conversion to pluripotency, and forma complex core pluripotent factor network with other 

core factors such as Sox2 and Nanog(Matoba et al., 2006; Zhang et al., 2016c).It has been 

recently reported that at a very early stage of reprogramming known as naive state, the 

increase in glycolysis is accompanied by a transient burst of OXPHOS activity or 

Oxidative Phosphorylation activity (Burk and Schade, 1956; Hawkins et al., 2016; Kida 
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et al., 2015). These findings could explain the temporary increase of mitochondrial 

proteins in cells undergoing reprogramming (Hansson et al., 2012). 

CELL REPGROGRAMMING NEEDS EPIGENETIC REMODELING OF STEM 

CELLS  

It is known that at early stages during embryonic development, some genes remain active, 

but when differentiation goes on (later stages) gradually become silenced and subsets of 

cell type-specific genes are turned on. This is the result of selectivity active expression of 

transcription factors in association with chromatin modification and remodelling, which 

includes covalent histone modification and DNA methylation of CpG dinucleotides, 

among other epigenetic modifications. 

Histone modifications during epigenetic remodelling 

Gene activity is mostly determined by chromatin structure and interactions of chromatin-

binding proteins. To search for the elusive keys for DPSC cells pluripotency, many 

researchers have turned to the study of ES cells chromatin. It is to take into consideration 

that some features of chromatin in ES cells are different from the somatic cells, including 

nuclear architecture, chromatin structure, chromatin dynamics, and histone modifications. 

For example, ES cells chromatin displays characteristics of loosely euchromatin, such as 

an abundance of acetylated histone modifications and increased accessibility to nucleases 

(Boyer et al., 2006; Meshorer and Misteli, 2006). Consistent with the fact that the 

chromatins of pluripotent nuclei is in an open conformation, recent studies have shown 

that lineage-specific genes replicated earlier in pluripotent cells than differentiated cells, 

and had unexpectedly high levels of acetylated H3K9 and methylated H3K4. This 

modification is also combined with H3K27 tri-methylation. H3K27 methylation is 

functionally important for preventing differentiation genes expression in ES cells (Azuara 

et al., 2006; Bernstein et al., 2006). 

Regarding DPSCs, p300, a well-known histone acetylase (HAT) play an important role 

in maintaining stemness of DPSCs, increasing transcript levels of NANOG and SOX2 

and maintaining lower expression levels of odontoblastic differentiation markers (Wang 

et al., 2014). Histone deacetylase inhibitors (HDACi) alter the homeostatic balance 

between histone acetylation and deacetylation, increase the transcriptional rate and 

influence cell physiology suggesting that inhibition of HDACs has a great potential in 
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restorative dentistry through elevating the expression of NANOG and SOX2(Gu et al., 

2013; Jin et al., 2013). Moreover, different types of  histone deacetylases (HDACs) such 

as HDAC1, HDAC2, HDAC3, HDAC4 and HDAC9 act as important accelerator of 

odontoblast differentiation (Jin et al., 2013; Klinz et al., 2012; Paino et al., 2010).  Histone 

marks in DPSCs revealed that H3K4me3 and H3K9me3 are the most prominent in DPSCs 

(Gopinathan et al., 2013). During differentiation, early mineralization genes are enriched 

with H3K4me3 whereas H3K27me3 and H3K9me3 are higher in late mineralization 

genes (Gopinathan et al., 2013). Interestingly, one demethylase is responsible for 

H3K27me3 removing, which contributes to odontogenic/osteogenic differentiation of 

DPSCs (Hoang et al., 2016). All of these results indicate an important regulatory circuit 

involving histone modifications that are crucial in determining cell fate in DPSCs. The 

potential application of eZH2, enzyme which catalyses H3K27me3 methylation in tissue 

regeneration, including nervous system, muscle, pancreas, and dental pulp has been 

recently discussed (Hui et al., 2014). Inhibition of the enzymatic activity of eZH2 impedes 

DPSCs cell proliferation by decreasing cell number, arresting the cell cycle, and 

increasing apoptosis (Bayarsaihan, 2016). Adipogenic induction of DPSCs leads to the 

suppression of eZH2, which in turn diminishes transcriptional activity of PPAR-r and 

CEBP/a (Bayarsaihan, 2016). According to recent research, the expression of 

pluripotency genes OCT4, NANOG, and SOX2 is higher in DPSCs than in Dental 

Follicle Stem Cells or DFSCs and it has been observed a substantial increase in 

H3K27me3. The inactivation of histone demethylase KDM6B associates with reduced 

mineralization of DPSCs and genes involved in odontoblast differentiation (Rodas-Junco 

et al., 2017). All of these results indicate an important regulatory circuit involving histone 

modifications that are crucial in determining cell fate in DPSCs. 

Global DNA Methylation at CpG islands 

DNA methylation at CpG islands is another gene silence mechanism of epigenetics 

crucial for gene expression. Silencing of certain genes by DNA methylation is required 

for induction of differentiation of ES cells whereas DNA hypomethylation is required for 

stemness condition maintenance (Jackson et al., 2004). Recent research focus on 

hypermethylation of promoter/enhancer regions of key pluripotency stem cells factors 

such as Oct4 that correlates with correlates with gene silencing in differentiated cells. 

Interestingly, hypomethylation in ES cells allows cells to maintain high level of Oct4 

expression, thus keeping them in pluripotent state (Taranger et al., 2005).  
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As for DPSCs epigenetic alterations, it has been described that an inhibitor of DNA 

methyltransferase diminishes global DNA methylation in Periodontal Ligament Stem 

Cells (PDLSCs), interestingly involving Wnt/β-Catenin activation (Liu et al., 2016).This 

experiment at same concentration was performed in DPSCs and it was shown to 

increment of odontogenic differentiation potential (Zhang et al., 2015). 

The odontogenic-specific DNA hypomethylation was suggested to be a typical feature of 

DPSCs (Ai et al., 2018). Some researchers tried to understand the spatial distribution of 

5mC and 5hmC in odontoblasts and DPSCs. According to them, during differentiation 

the DNA methyltransferase, DNMT1 was vigorously transcribed, while expression 

changes of DNMT3A, DNMT3B and members of the TET family were relatively modest. 

In concordance to previous studies, DNA demethylation have been shown to increase the 

capability of odontogenic differentiation in DPSCs (Bayarsaihan, 2016).Taking all before 

into consideration, it seems that DNA demethylation may play a fundamental role in 

reparative dentinogenesis in human dental pulp. Despite some progress in this field, 

relatively little is known about the epigenetic pattern and consequent pleiotropic effects 

that drive DPSCs into both stemness and specialized lineages. 

Control of epigenetic remodelling by embryonic stem cells factors 

Since Yamanaka findings about key transcription factors of pluripotency, increasing 

knowledge has been recruited in several research to understand how pluripotency stem 

cells factors and the remodeling of epigenetics during reprogramming cooperates. 

The most studied embryonic stem cell factors Oct4, cMyc, Nanog, Sox2, Klf4 and Lin28 

have been widen in a complex network form by other factors such as Rex1, Ssea1, Stella, 

which interact with epigenetic landscape (Boyer et al., 2005; Ivanova et al., 2006; Loh et 

al., 2006; Rao and Orkin, 2006).cMyc may be associated with histone acetyltransferase 

(HAT) complex, and induces global histone acetylation, thus allowing Oct4 and Sox2 to 

bind to their specific target loci. Nanog regulates pluripotency as a transcription repressor 

for downstream genes that are important for cell differentiation such as Gata4 and Gata6 

(Chambers et al., 2003; Mitsui et al., 2003). Klf4 might contribute to activation of Nanog 

and other ES cells-specific genes through p53 repression (Takahashi and Yamanaka, 

2006b). Apparently, Oct4 cooperates with Nanog and Sox2 to repress Xist (Navarro et 

al., 2008).  Oct4 also interacts with several polycomb group proteins (e.g., Ring1B, Rybp) 

as part of the Nanog interactome (Wang et al., 2006) to maintain pluripotency (Endoh et 
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al., 2008). Indeed, in ESCs chromatin architecture Oct4 acts directly the directly 

regulating downstream target genes encoding the H3K9 demethylases Jmjd1a and 

Jmjd2c, which modulate the H3K9 methylation status of the pluripotency factors Tcl1 

and Nanog, respectively, to maintain stem cell identity (Loh et al., 2007). 

These all factors induce somatic cell de-differentiation thanks to the chromatin 

remodelling. Therefore, we could attribute chromatin modification because of these 

transcription factors, which may play an important role in the reprogramming progress. 

REPROGRAMMING NETWORK BETWEEN EPIGENETICS AND 

METABOLISM  

As mentioned before, metabolism can be broadly divided in oxidative, completed in the 

mitochondria or non-oxidative, completed in the cytoplasm (Chandel et al., 2016; Ryall 

et al., 2015b). Nevertheless, research over the last years has identified an essential role 

for metabolites in the regulation of epigenetics and transcription, including S-adenosyl 

methionine (SAM) produced via the one-carbon cycle, acetyl-CoA from glycolysis, α–

ketoglutarate (α-KG) and flavin adenine dinucleotide (FAD) from the NAD+/TCA cycle, 

and also from the integration of glycolysis and OXPHOS(Ryall et al., 2015a; Ryall et al., 

2015b).  

Acetyl-Coa interaction with epigenetics 

Several studies place glycolysis, as a crucial producer of glycolytic intermediates 

necessary for the production of new biomass and metabolites required for epigenetic 

changes in transcription (Wellen et al., 2009).Acetyl-CoA can contribute to several 

cellular processes including the initiation of the TCA cycle, the de novo synthesis of 

lipids, and acetylation of specific amino-acid residues (predominantly lysine) on both 

histone and non-histone proteins (Koopman et al., 2014; Lunt and Vander Heiden, 

2011).In fact, acetyl-CoA from glycolysis was found to serve as the substrate for histone 

acetylation. However, mitochondrial acetyl-CoA from fatty acid oxidation does not 

contribute to histone acetylation in absence of glucose (Wellen et al., 2009). These links 

between glycolysis and histone acetylation described before, have been observed in ESCs 

(Moussaieff et al., 2015b), skeletal muscle stem cells (Ryall et al., 2015b), tumour cells 

(Liu et al., 2015b) and yeast (Friis et al., 2009).Lack of acetyl-CoA production has been 

shown to cause a loss of pluripotency and delays cell differentiation (Moussaieff et al., 
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2015b).Apparently, the reason besides is that acetyl-Coa is crucial to regulate and 

maintain histone acetylation in stem cells allowing chromatin remodelling during 

differentiation (Moussaieff et al. 2015). During ESC differentiation: pyruvate becomes 

fully oxidized in mitochondria, leading to acetyl-coA depravation, loss of histone 

acetylation and subsequent loss of pluripotency markers expression (Moussaieff et al., 

2015a; Moussaieff et al., 2015b). The activity of the Histone Deacetylase Sirtuin (SIRT1) 

has also been shown to be crucial for reprogramming (Tang and Rando, 2014) Moreover, 

acetate, an acetyl-CoA precursor, prevented histone deacetylation and blocked the 

differentiation of ESCs (Moussaieff et al., 2015b). Nevertheless, others have attributed 

glycolysis-derived acetyl-CoA, through ATP citrate lyase (ACLY), the enhancer of the 

histone acetylation during adipogenesis (Wellen et al., 2009). These findings suggest that 

cytosolic acetyl-CoA does not always correlate with stemness and in this case, switch 

might exist to modulate histone acetylation and chromatin plasticity during cellular 

differentiation. 

SAM contribution to epigenetic landscape 

Several are the metabolites that contribute to the regulation of histone modifications and 

pluripotency in ESC metabolism. One of these is S-adenosylmethionine or SAM, which 

leads to histone methylation whereas ascorbate and a-ketoglutarate are the responsible for 

histone demethylation (Carey et al., 2015; Shyh-Chang et al., 2013). As SAM acts as the 

substrate for methyl transferases, is therefore a key regulator for maintaining the 

undifferentiated state of ESC and is highly expressed in iPSCs. SAM levels are controlled 

by nicotinamide N-methyl transferase (NNMT) by increasing H3K27me3 repressive 

marks (Sperber et al., 2015). NNMT role in pluripotency is here hypothesized to control 

SAM levels, SIRT1 and acetylation in DPSCs. 

The mechanism by which cellular metabolism can influence stem cell fate is mostly 

unknown, but it is clear that it influences the epigenetic landscape, which in turn affects 

gene expression (Harvey et al., 2016).According to these findings, some metabolic 

intermediates may contribute in the regulation of open chromatin that is crucial for 

pluripotent potential of stem cells. Therefore, it would be of great interest understanding 

how metabolism contribute to pluripotency state and how is linked to epigenetics. 

The epigenetic changes that occur during somatic cell reprogramming are also distinct 

from the epigenetic changes required to maintain pluripotency. Whereas somatic cell 
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reprogramming involves complex global remodelling of histone modifications and DNA 

methylation, pluripotency maintenance requires an enrichment of histone acetylation to 

maintain chromatin plasticity, relative to differentiated cells(Mattout et al., 2015).We 

incorporate in the following figure how specific metabolism pathways relevant for 

DPSCs integrate with epigenetics signalling (Figure6). 

 

 

 

 

 

 

 

 

 

Figure 6. Representation of epigenetic and metabolic changes during reprogramming in DPSCs. Wnt 

signaling activation by either BIO or WNT-3A increases glucose consumption by overexpression of 

glycolytic enzymes HK2 and/or PKM2. LDHA and LDHB contribute to lactate-pyruvate conversion. 

LDHB is overexpressed while LHDA is downregulated in Wnt activated DPSCs. Pyruvate dehydrogenase 

complex subunits are also upregulated in BIO/WNT-3A treated DPSCs and this leads to fuel the 

mitochondrial TCA cycle. These “hyper-energized” DPSCs show a net accumulation of lipids and a 

mitochondrial hyperpolarization. Overexpression of cytosolic ACLY and ACSS2 enzymes suggests 

cataplerosis leading to cytosolic accumulation of acetyl-coA, which can be then used for lipid biosynthesis. 

This excess of acetyl-CoA is used for histone acetylation. The total amount of NAD+ is used by SIRT 1 to 

quit acetylation marks. Contrarily, SAM from the One Carbon Metabolism acts as contributor for DNA 

methylation and NNMT convert SAM to SAH. This NNMT indirectly contributes to DNA de-methylation 

whereas then level of acetylation is higher in these conditions thanks to HAT and SIRT1 activities fueled 

by NAD+/NADH. Interestingly, ATP can contribute to DNA phosphorylation, but high levels can 

contribute to block AMPK, blocking DNA phosphorylation. Meanwhile, mitochondria consume amino 

acids such as glutamine and glutamate to replenish TCA metabolites in a coordinated cycle of cataplerosis 

and anaplerosis. Cytosolic fatty acids also appear to participate in this process, as suggested by the 

overexpression of CPT1 and β-oxidation enzymes at mRNA level. DPSCs reprogrammed with BIO or 
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WNT-3A thus show a boost in glycolysis without the characteristic lactate accumulation observed in the 

classic Warburg effect.  

PLURIPOTENCY STEM CELLS FACTORS NETWORK  

Recent studies have enabled the construction of transcriptional regulatory networks in 

ESCs that provide clues about how these factors control pluripotency and undergo 

subsequent differentiation events. These crucial transcription factors have also been 

described to form an intrinsic core-regulatory circuit that maintains ESCs in the 

pluripotent state during in vitro experiments. Using different methodology such as RNA 

interference method, microarray analysis, and genome wide chromatin 

immunoprecipitation experiments, numerous target genes bound by Nanog, Oct4, and 

Sox2 have been identified. These factors appear to form a tight transcriptional regulatory 

circuit that maintains ES cells in a pluripotent state (Boyer et al., 2005; Ivanova et al., 

2006; Loh et al., 2006; Rao and Orkin, 2006). 

These transcription factors, playing important roles in ES cells, form a regulatory 

pluripotency network that maintains ES cells self-renewal and stemness pluripotency by 

sustaining transcription factors expression at precise level(Cowan et al., 2005). Further 

studies found that forcing the expression of particularly transcription factors (Oct4, Sox2, 

c-Myc, Klf4), in somatic cells might reprogram them (Takahashi and Yamanaka, 2006b).  

Oct4 is a POU domain-containing transcription factor that binds to an octamer sequence, 

ATGCAAAT(Zhao, 2013). Oct4 expression is activated at the four-cell stage and is 

expressed in most of stem cells, from ESCs and iPSCs, to some adult stem cells such as 

Dental Pulp Stem Cells(Zeineddine et al., 2014). Oct4 is highly expressed in human 

ESCs, and its expression diminishes when these cells differentiate into adult stem 

cells(Shi and Jin, 2010). Several target genes of Oct4 have been described until now, and 

these include Fgf4, Utf1, Opn, Rex1/ Zfp42, Fbx15, and Sox2 (Nishimoto et al., 1999; 

Tomioka et al., 2002; Zeng et al., 2004).Oct4 promoter contains conserved distal and 

proximal enhancers that can either repress or activate its expression depending on the 

binding factors occupying these sites (Pan et al., 2002). Its expression can be regulated 

by itself (Chew et al., 2005; Okumura-Nakanishi et al., 2005). This network regulation 

may contribute to a stable maintenance of the steady levels of Oct4 in ESCs. Furthermore, 

Nanog and FoxD3 also can activate Oct4 expression (Pan et al., 2006). Oct4 activity is 

modulated by interactions with other transcription factors that include Sox2, FoxD3, and 
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ESG1 which are highly expressed in ES cells. Sox2 (SRY-relatedHMGbox2), a member 

of the HMG-domain DNA-binding protein family, forms a complex with Oct4 protein. 

The complex Oct4/Sox2 can regulate Oct4 and Sox2 expression and further research 

indicated that also Nano could be modulated by this complex (Kuroda et al., 2005; Rodda 

et al., 2005), due to an Oct4/Sox2-binding site in the Nanog promoter. Therefore, 

Oct4/Sox2 complex plays a crucial role in maintaining the expression of embryonic stem 

cell factors in ESCs through autoregulatory and multicomponent loop network motifs. 

Therefore, Oct4 can regulate Nanog expression and maintains its activity by directly 

activating Nanog promoter when expressed below steady state, yet represses it at par with 

or above steady state concentration in ES cells. This can explain the evidence that 

overexpression of Oct4 induces differentiation (Pan et al., 2006). 

Nanog is another homeobox-containing transcription factor with an essential role in 

maintaining the stemness, being a major regulator of the pluripotent state (Chambers et 

al., 2003; Mitsui et al., 2003). The mechanism through which Nanog regulates stem cell 

pluripotency remains entirely unknown. Nanog regulates pluripotency as a transcription 

repressor for downstream genes that are important for cell differentiation such as Gata4 

and Gata6 (Chambers et al., 2003; Mitsui et al., 2003). However, Nanog can also activate 

the genes necessary for self-renewal such as Rex1 (Pan and Pei, 2005; Shi et al., 2006). 

Nanog can also activate Oct4 promoter (Pan et al., 2006) and may interact with Wnt and 

BMP4 signaling pathways (Suzuki et al., 2006). Network between these factors Oct4, 

Sox2, and Nanog may be the main transcriptional factors in regulating ESCs pluripotency. 

Nanog has been identified as a major driver of pluripotency (Rao and Orkin, 2006; Silva 

et al., 2009).Rex1 is a target gene of Oct4/Sox2 complex. Rex1 is also directly regulated 

by Nanog, suggesting that Rex1 may be an intersection of Nanog and Oct4/Sox2 signaling 

(Shi et al., 2006). 

The cMyc may be associated with histone acetyltransferase (HAT) complex, and induces 

global histone acetylation, thus allowing Oct4 and Sox2 to bind to their specific target 

loci.  

Klf4 might contribute to activation of Nanog and other ES cells-specific genes through 

p53 repression (Takahashi and Yamanaka, 2006b).  
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CONCLUSIONS 

In this review, we have presented an extensive discussion of how metabolism and 

substrate utilization can regulate transcription, through metabolites acting as co-factors 

for epigenetic regulators in DPSCs compare to ESCs. Moreover, we have described the 

current state of knowledge regarding the changes in metabolism that occur during stem 

cell differentiation and reprogramming. However, it is our hope that this review has also 

highlighted the gaps in our understanding of the process of metabolic and epigenetic 

reprogramming in stem cells. Future research investigating epigenetic changes in stem 

cell populations will likely include analyses of intracellular metabolites and cellular 

metabolism as a complex network. The understanding of the process of metabolic and 

epigenetic reprogramming in stem cells will lead to significant advances in the fields of 

stem cell transplantation and regenerative medicine. 
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This PhD Thesis Work thesis purpose is to study the role of Notch and Wnt/β-Catenin 

signaling pathways in the reprogramming of Human Dental Pulp Stem Cells. 

Overexpression of pluripotency stem cells markers leads to cell reprogramming in 

somatic cells and the metabolism and epigenetic remodelling is necessary to ensure its 

effectiveness. Reprogramming is a well-known strategy used to obtain different type of 

cells for using them in cell therapy. Because of all this mentioned before we have 

studied the molecular effect of Notch and Wnt/β-Cateninsignaling modulation in 

pluripotency markers expression, self-renewal, metabolism and epigenetic, knowing 

that this could be translated into an approach to obtain different cell types in a 

controlled, safety and efficient methodology of cell reprogramming. 

Having all these points before into consideration and the hypotheses described, in this 

PhD Thesis Work we have reached one major objective: 

To study the molecular and physiological implications of Notch and Wnt/β-Catenin 

signaling pathways in cell reprogramming. 

To reach conclusions in this general objective we have developed these other minor 

objectives: 

1- To study the effect of Notch and Wnt/β-Cateninsignaling pathways in stemness 

pluripotency stem cell factors and self-renewal in Human Dental Pulp Stem Cells 

population. 

2- To verify if Notch and Wnt/β-Catenin signaling pathways modulation could be used 

as a pre-treatment of Human Dental Pulp Stem Cells to induce reprogramming and 

enhance differentiation media protocols efficiency. 

3- To analyze Notch and Wnt/β-Cateninsignaling modulation in metabolism 

remodelling through glycolysis, mitochondrial activity and lipid turn over.  

4- To observe the implication of Notch and Wnt/β-Catenin signaling modulation in 

methylation and acetylation pattern of DNA and histones that allows epigenetic 

remodelling of chromatin in Human Dental Pulp Stem Cells. 
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of Dental Pulp Stem Cells through expression 
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ABSTRACT 

Dental Pulp Stem Cells (DPSCs) from adult teeth express neural crest (NC) markers 

together with core transcription factors associated with stem cell pluripotency, such as 

Oct4a, Sox2, cMyc, Rex1, Stella/Dppa3, SSEA1/Fut4, Lin28 and Nanog. The possibility 

to boost the natural stemness features of DPSCs by mild methods that do not involve gene 

and/or chromatin modification is highly desirable for cell therapy. Canonical Wnt and 

Notch are two highly conserved developmental signaling pathways that are involved in 

NC emergence and stem cell self-renewal. We determined that both pathways operate 

coordinately to regulate the expression of core pluripotency and NC factors in DPSCs. 

Pharmacological inhibition of the Notch pathway by the γ-secretase inhibitor DAPT for 

48 hours abolished the expression of NC and core factors together with a silencing of 

canonical Wnt signaling and a clear reduction in the stemness potential of DPSCs, as 

shown by a lower ability to generate mature, fully differentiated osteoblasts and 

adipocytes. Conversely, pharmacological activation of the Wnt pathway, by either the 

https://www.ncbi.nlm.nih.gov/pubmed/29092089
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GSK3-β inhibitor BIO or human recombinant protein WNT-3A for 48 hours, largely 

increased the expression of NC and core factors together with an increased efficiency of 

DPSCs to differentiate into mature osteoblasts and adipocytes. These results show that a 

short preconditioning activation of Wnt/Notch signaling by small molecules and/or 

recombinant proteins  enhances the stemness and potency of DPSCs in culture, which 

could be useful to optimize the therapeutic use of these and other tissue-specific stem 

cells.  
Keywords: dental pulp stem cells, multipotency, self-renewal, pluripotency core factors, neural 

crest, stemness and differentiation, osteogenesis, adipogenesis, Notch, Wnt, BIO, DAPT, 

WNT3A. 
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INTRODUCTION 

During embryogenesis, neural crest (NC) cells generate most craniomaxillofacial tissues, 

including all major tissues of the teeth except the enamel. The remarkable abilities of the 

NC earned it the designation of “the fourth embryonic layer” (Shyamala et al., 2015; 

Thomas et al., 2008). Importantly, some NC stem cells with a non-differentiated 

phenotype remain in the dental pulp of mature teeth and are known as Dental Pulp Stem 

Cells (DPSCs)  (Aurrekoetxea et al., 2015; Gronthos et al., 2002; Gronthos et al., 2000; 

Ibarretxe et al., 2012; Janebodin et al., 2011; Kaukua et al., 2014; Liu et al., 2015). Other 

stem cell types with similar properties may be obtained from gingival and periodontal 

tissues (Abe et al., 2012; Huang et al., 2009; Ibarretxe et al., 2012; Lima et al., 2017; Liu 

et al., 2015; Petrovic and Stefanovic, 2009), and even from periodontal inflammatory 

lesions like human periapical cysts (Marrelli et al., 2013; Marrelli et al., 2015; Tatullo et 

al., 2015). As NC-derived cells, dental stem cells are characterized by the expression of 

neural crest factors such as Snail/Snai1, Slug/Snai2, Twist1, Hnk1, Pax3, Neurogenin2 

and Sox10 (Kiraly et al., 2009; Schiraldi et al., 2012), and core factors including Oct4a, 

Sox2, Klf4, Lin28, SSEA1 and Nanog(Atari et al., 2012; Ferro et al., 2012; Janebodin et 

al., 2011; Kerkis et al., 2006; Rosa et al., 2016). Core factors are fundamental to 

maintaining stem cell pluripotency (Chambers and Tomlinson, 2009; Takahashi et al., 

2007; Yu et al., 2007), thus suggesting that dental stem cells may present some superior 

features with respect to other multipotent stem cell populations of the adult human body 

(Atari et al., 2011; Atari et al., 2012; Rosa et al., 2016) . This could be very relevant to 

cell therapy because stem cells from dental tissues are known to be easily accessible for 

extraction and well-tolerated upon grafting due to their immune-suppressive properties 

(Pierdomenico et al., 2005). Furthermore, DPSCs are non-tumorigenic even after their 

immortalization by telomerase overexpression (Wilson et al., 2015). Finally, given that 

the dental pulp is rather well preserved in mid-to-advanced age patients, DPSCs are also 

suitable for autologous therapy (Ibarretxe et al., 2012; Kellner et al., 2014; Wu et al., 

2015). 

The canonical Notch and Wnt signaling pathways are critical for the maintenance of the 

stem cell phenotype (Androutsellis-Theotokis et al., 2006; Borghese et al., 2010; Clevers 

et al., 2014; Perdigoto and Bardin, 2013; Reya and Clevers, 2005). Both pathways also 

play an important role in the emergence of the neural crest (Hari et al., 2012; Leung et 
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al., 2016; Rogers et al., 2012; Stuhlmiller and Garcia-Castro, 2012). It is known that 

dental stem cells present higher levels of core factors and Wnt/Notch activity than do 

other mesenchymal stem cells in the adult body (Atari et al., 2012; Huang et al., 2009; 

Janebodin et al., 2011; Vasanthan et al., 2015). However, the role of these pathways in 

the maintenance of stemness and self-renewal in DPSCs is still unclear.  

Activation of Notch signaling through ligand binding triggers proteolytic cleavage of 

Notch receptors, first by A-Disintegrin-And-Metalloproteases (ADAM) followed by γ-

secretases, which results in the cleavage and release of the Notch intracellular domain 

(NICD) from the membrane. The NICD translocates to the nucleus where it directly 

interacts with CSL/RBPj/CBF-1 transcription factors to turn on the expression of Notch 

target genes such as the Hairy Enhancer of Split (Hes) family (D'Souza et al., 2010). In 

Canonical Wnt signaling, the interactions between Wnt protein ligands and Frizzled/LRP 

receptors lead to the recruitment of AXIN, APC and GSK3β to the membrane, thus 

preventing phosphorylation and degradation of β-CATENIN protein. As a result, β-

CATENIN accumulates in the cytoplasm and translocates into the nucleus, where it 

interacts with TCF/LEF family factors and leads to the expression of Wnt signaling target 

genes (Clevers, 2006). Both pathways regulate each other at multiple points (Borggrefe 

et al., 2016; Fukunaga-Kalabis et al., 2015) and promote the maintenance of self-renewal 

and inhibition of differentiation in many stem cell types, including DPSCs (Mizutani et 

al., 2007; Scheller et al., 2008; Yiew et al., 2017). 

Pharmacological manipulation of the Notch and Wnt pathways is relatively simple via 

the use of well-known drugs such as DAPT (ᵞ-secretase inhibitor; Notch signaling 

blocker), and BIO (GSK3-β inhibitor; Wnt signaling activator), and by recombinant 

activator proteins such as WNT-3A. The use of BIO and DAPT has already proven to be 

a valuable complementary strategy to induce either cellular reprogramming or cellular 

differentiation (Ichida et al., 2014; Kitajima et al., 2016). Therefore, a thorough 

understanding of the stemness and differentiation potential of DPSCs and their 

modulation by cell signaling pathways would be highly desirable to apply these cells more 

efficiently in areas such as regenerative medicine, tissue engineering and drug screening. 

In this work, we used DAPT and BIO, as well as human recombinant WNT-3A as 

pharmacological modulators to investigate the role of Notch/Wnt in maintaining stemness 

and the expression of pluripotency core factors in DPSCs with the goal of optimizing 
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existing protocols of somatic cell differentiation using DPSCs. 

MATERIALS AND METHODS 

DPSC culture 

DPSCs were isolated from human third molars obtained from healthy donors between 15 

and 30 years of age by fracture and enzymatic digestion of the pulp tissue for 1 h at 37 

°C with 3 mg/ml collagenase (17018-029, Thermo Fisher Scientific, Boston, 

Massachusetts, USA) and 4 mg/ml dispase (17105-041, Thermo Fisher Scientific) 

followed by mechanical dissociation. The DPSCs were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10 % fetal bovine serum (FBS), L-

glutamine (1 mM) and the antibiotics penicillin (100 U/ml) and streptomycin (150 µg/ml). 

The DPSCs could be amplified and maintained in these conditions for very long periods 

(> 6 months). However, to avoid cell aging issues, we only employed DPSCs that had 

been grown in culture for less than 3 months and had accumulated no more than 6 total 

passages. Comparative experiments between control and treatment conditions were 

always and without exception performed in parallel using DPSCs from the same donor.  

Notch and Wnt pathway pharmacological modulation 

To block Notch signaling, we employed DAPT ((N-[N (3, 5-diflorophenacetyl-L-alanyl)] 

5-phnylglycine t-butyl ester), a γ-secretase inhibitor, (565784, Calbiochem, San Diego, 

California, USA), at a concentration of 2.5 µM. DAPT was added to the culture medium 

for 48 hours prior to the assays where DAPT-treated DPSCs were compared with DPSCs 

treated only with the control vehicle, 2.5 µM DMSO. To overactivate Wnt signaling, we 

used 2.5 µM BIO (6-bromoindirubin-3´-oxine), a GSK3β inhibitor (361550, 

Calbiochem), which was added to the medium for 48 hours prior to the assays. BIO-

treated cells were compared with DPSCs exposed to the inactive analog MBIO (methyl-

6-bromoindirubin-3´-oxine) at 2.5 µM as a corresponding control (361556, Calbiochem). 

WNT-3A recombinant protein (5036-WN-010, R&D Systems, Minneapolis, USA) was 

added to the DPSCs cultures to overactivate Wnt signaling in two concentrations: 2.5 µM 

and 5 µM.  
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Osteogenic differentiation of DPSCs  

We used the following protocol to induce DPSC differentiation to mature osteoblasts: 6 

µM β-glicerophosphate (G9422, Sigma-Aldrich, St. Louis, Massachusetts, USA), 10 nM 

dexamethasone (D4902, Sigma), and 52 nM ascorbic acid (127. 0250, Merck, Darmstadt, 

Germany) were added to the cell cultures in DMEM + 10 % FBS for three weeks. The 

DPSCs had been previously subjected to preconditioning treatment with DMSO, DAPT, 

MBIO or BIO for 48 h, as described. Terminal osteoblast differentiation was assessed by 

detection of extracellular calcified bone matrix deposits via Alizarin Red staining using 2 

g/100 ml Alizarin Red S (400480250, Across Organics, Geel, Belgium) at pH 4.3. The 

DPSCs were fixed with 10 % formalin (F7503, Sigma) for 30 min. We then incubated the 

cells with Alizarin S Red for 45 min before washing the cells four times with PBS to 

remove any background staining. The Alizarin Red absorbance at 450 nm was quantified 

using a Synergy HT Multi-Mode Microplate Reader (Biotek, Winooski, Vermont, USA). 

Alkaline Phosphatase (ALP) staining was also used to assess osteoblast differentiation, 

as this enzymatic activity is present in mature bone matrix-secreting cells. We dissolved 

one BCIP/NBT tablet (B5655-5ATB, Sigma) in 10 ml miliQ water and added this 

solution to DPSCs fixed for 1 min with 10 % formalin. We then washed the cells with 

PBS containing 0.05 % Tween 20 (STBB3609, Sigma). ALP activity was quantified by 

absorbance at 405 nm with a Synergy HT Multi-Mode Microplate Reader. 

Adipogenic differentiation of DPSCs 

To induce adipogenic differentiation, we treated DPSC cultures with 0.5 mM IBMX 

(I5879, Sigma), 1 µg/ml insulin (91077C, SAFC Biosciences, St. Louis, Massachusetts, 

USA) and 1 µM dexamethasone (D4902, Sigma) for four weeks after a preconditioning 

treatment with DMSO, DAPT, MBIO or BIO for 48 h. The DPSCs were exposed to this 

differentiation cocktail and subsequently fixed with 10 % formalin for 10 min and then 

washed with PBS containing 60 % Isopropanol. Lipid droplets in mature adipocytes were 

detected using Oil Red staining solution, which contained 5.14 µM Oil Red Stock (O-

0625, Sigma) in miliQ water. The cells were stained for 10 min, and Oil Red absorbance 

was measured at 490 nm using a Synergy HT Multi-Mode Microplate Reader (Biotek). 

RNA extraction, conventional RT-PCR and quantitative Real-Time PCR (qPCR) 

Cell pellets were frozen and stored at -80 °C. Total RNA was extracted from the cells 
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using the RNeasy Kit (74104, Qiagen, Hilden, Germany) and checked for purity by 

calculating the 260/280 ratio via the Nanodrop Synergy HT (Biotek). cDNA (50 ng/µl) 

was obtained by reverse transcription of total extracted RNA using the iScript cDNA Kit 

(1708890, BioRad, Hercules, CA, USA) with the following reagents: iScript reverse 

Transcriptase (1 µl), 5x iScript Reaction Mix (4 µl) and Nuclease Free water (variable) 

to a final volume of 20 µl. We analyzed gene expression using 1 µl of cDNA (5 ng/µl) 

diluted in 4 µl of My TaqTM Red Mix (BIO-25043, Bioline, St. Petersburg, Russia), 1 µl 

of primers (0.625 µM) and Nuclease Free Water for a total volume reaction of 10 µl, for 

conventional RT-PCR. Amplification products were separated by electrophoresis in a 2 

% agarose gel. Quantitative Real-Time PCR experiments were conducted in an 

iCyclerMyiQTM Single-Color Real-Time PCR Detection System (BioRad, USA), using 

4.5 µl of Power SYBR® Green PCR Master Mix 2x (4367659, Applied BiosystemsTM, 

Applied Biosystems, Carlsbad, CA, USA), 0.5 µl of primers (0.3125 µM), 0.3 µl of cDNA 

(1.5 ng/µl), and Nuclease Free water for a total volume reaction of 10 µl. All primers 

were obtained from public databases and checked for optimal efficiency (> 90 %) in the 

qPCR reaction under our experimental conditions. The relative expression of each gene 

was calculated using the standard 2-ΔCt method (Livak and Schmittgen, 2001) normalized 

with respect to the average between β-Actin and Gapdh as  internal controls. All reactions 

were performed in triplicate. qPCR was run on ABI PRISM® 7000 (Thermo Fisher 

Scientific, Thermo Fisher Scientific, Boston, MA, USA). Data were processed by CFX 

Manager™ Software (BioRad, USA). We assessed that all qPCR reactions yielded only 

one amplification product by the melting curve method. We used the following primer 

pairs for different genes obtained via the Primer-Blast method (Primer Bank):  
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Primers Sequence 5´ - 3´ Annealing (ºC) Amplicon (bp) 

β-Actin Upstream GTTGTCGACGACGAGCG 58.5 93 

Downstream GCACAGAGCCTCGCCTT 59.7 

GAPDH Upstream CTTTTGCGTCGCCAG 60.3 131 

Downstream TTGATGGCAACAATATCCAC 60.8 

Notch1 Upstream ATAGTCTGCCACGCC 54 149 

Downstream AGTGTGAAGCGGCCA 54.9 

Notch2 Upstream AAGCCCAGACATTCTTGCAGCTTG 64.1 107 

Downstream TCCAGGGCATAATTCCCAACAGGA 63.7 

Notch3 Upstream ACCCCCAAGAGGCAAGTGT 61.1 125 

Downstream AGGATGAAAAAGACTAAAAGGAAGG

AA 
59 

Notch4 Upstream GCGATAATGCGAGGAAGATACG 59.4 118 

Downstream TCGGAATGTTGGAGGCAGAAC 60.6 

Hes1 Upstream GGTACTTCCCCAGCACACTT 59 138 

Downstream TGAAGAAAGATAGCTCGCGG 57.7 

β-Catenin Upstream GAAGCTGGTGGAATGCAAGC 60.1 279 

Downstream GACAGTACGCACAAGAGCCT 60 

Nestin Upstream GGTCCTAGGGAATTGCAGC 57.9 144 

Downstream CTCAAGATGTCCCTCAGCCT 58.8 

Jagged1 Upstream AGATCTCAATTACTGTGGGAC 57.1 88 

Downstream GCAGGAACACTGATATTTGTC 58.7 

Jagged2 Upstream TCTTGCAAAAACCTGATTGG 62.6 86 

Downstream CAGTCGTTGACGTTGATATG 59.2 

Lef1 Upstream TGCCAAATATGAATTAACGACCCA 59 151 

Downstream GAGAAAAGTGCTCGTCACTGT 58.5 

Oct4 *  Upstream CGTGAAGCTGGAGAAGGAGA 60.7 137 
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Downstream CATCGGCCTGTGTATATCCC 60.1 

cMyc Upstream GTCAAGAGGCGAACACACAAC 60 162 

Downstream TTGGACGGACAGGATGTATGC 60.1 

Sox2 Upstream ATAATAACAATCATCGGCGG 61.1 90 

Downstream AAAAAGAGAGAGGCAAACTG 57.8 

Klf4 Upstream TCTTGAGGAAGTGCTGAG 56.5 147 

Downstream ATGAGCTCTTGGTAATGGAG 58.3 

Nanog Upstream GTCAAGAAACAGAAGACCAG 56.4 184 

Downstream GCCACCTCTTAGATTTCATTC 59.2 

Lin28 Upstream CTGGTGGAGTATTCTGTATTG 56.2 81 

Downstream ACCTGTCTCCTTTTGATCTG 58.3 

Rex1 Upstream TATCTCAACCTGTTCATCGAG 59.3 130 

Downstream CCACATTCAGGTAGATGTTC 56.9 

Ssea1/Fut4 Upstream ACAAAATCATCTGTTGGGAC 58.9 85 

Downstream AGCAGATAAGCACTTTCAAC 56.2 

Stella/Dppa3 Upstream GAGGAGTAAGAACATTGCTG 56.5 133 

Downstream CTTGATTCCTTCTTAACTCCC 58.3 

Snail/Snai1 Upstream AACAATGTCTGAAAAGGGAC 58.1 94 

Downstream ATAGTTCTGGGAGACACATC 55.4 

Slug/Snai2 Upstream AAACAACCTGAAGACTTGTG 56.8 157 

Downstream TTCTTTGTACAGTGGTTTGG 57.7 

Sox10 Upstream ACTTAGTGGAGTTCTCATCC 54.7 106 

Downstream AAGAATGAGGTTATTGGCAC 58.1 

Pax3 Upstream ATCAACTGATGGCTTTCAAC 59.2 120 

Downstream CAGCTTGTGGAATAGATGTG 58.3 

Pax7 Upstream AGGAGTACAAGAGGGAAAAC 56.4 108 

Downstream TAATCGAACTCACTGAGGG 57.8 

Neurogenin2 Upstream AGGGAAGAGGACGTGTTAGTGC 61.9 225 
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Downstream GCAATCGTGTACCAGACCCAG 61 

Twist1 Upstream CTAGATGTCATTGTTTCCAGAG 57.9 136 

Downstream CCCTGTTTCTTTGAATTTGG 60.9 

Wnt3  Upstream CTGTGACTCGCATCATAAG 56.8 186 

Downstream ATGTGGTCCAGGATAGTC 54.3 

Wnt1  Upstream CTATTTATTGTGCTGGGTCC 58.5 125 

Downstream AGAAACTGAGGAGAGAAGAG 54.2 

Hnk1 Upstream TGTGAGTGCTGGTAATGAG 57.2 169 

Downstream ACTGCCCTCATCCTTATG 57.5 

* transcript variants (Pou5f1; Oct4a) and (Pou5f1p1; Oct4pg1) 

Protein extraction 

The cells were washed with 0.9 % NaCl several times, and the proteins were extracted 

with 100 µl Lysis Buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 150 mM NaCl, 0.5 % 

sodium deoxycholate, 0.1 % SDS, 1 % IGEPAL® CA-630 in dH2O, and Proteinase 

Inhibition Cocktail Set III 1:100, 539134, Calbiochem). Protein quantification was 

performed in each Western Blot using the DCTM Protein Assay (Bio Rad, 5000112), 

including Reagent A (#500-0113), Reagent B (#500-0114) and Reagent S (#500-0115). 

Western blot (WB) 

The samples were diluted in NuPAGE sample buffer (NP0007, Novex, Life technologies, 

Carlsbad California, USA) and loaded onto a 4-12 % Invitrogen NuPAGE BisTris Gel (1 

mm x 10 well; NP032180X, Novex, Life Technologies) followed by transfer onto 0.45 

µm-pore nitrocellulose membranes (Inmmobilon® Transfer Membranes; EMD 

Millipore, USA) and run in an XCell Sure Lock Electrophoresis machine (NP0007, 

Novex, Life Technologies). For Western Blot analyses, we used anti β- ACTIN (1:1000, 

4967, Cell Signaling), anti-GAPDH (1:10000, MAB374, Millipore, Missouri, USA), anti-

PARP antibody (1:2000, 9542S, Cell Signaling, Massachusetts, USA), anti-SOX2 (1:500, 

GTX101506, GeneTex, California, USA), anti- NANOG1,2 (1:1000, D73G4, #4903, 

Cell Signaling), anti-N1ICD antibody (1:1000, ab8925, Abcam, Cambridge, UK), anti-

total β-CATENIN antibody (1:4000, ab6302, Abcam) and anti-active β-CATENIN 
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antibody (1:500, 05-665, Millipore). The secondary antibodies (P0260, DAKO, 

Hovedstaden, Denmark; NA9340, GE Healthcare, UK) were added at a 1:2000 dilution. 

The membranes were stripped using Red Blot (M2504, Inmmobilon® EMD Millipore). 

Immunofluorescence (IF) 

DPSCs cultured over glass coverslips were fixed with 4 % paraformaldehyde for 10 min 

and washed with PBS. Blocking was performed by 10 min incubation with normal goat 

serum (501972, Thermo Fisher Scientific). The DPSCs were then incubated overnight 

with primary antibodies diluted in PBS + 2 % BSA + 0.1 % Tx-100 at 4 °C. The rabbit 

anti-N1ICD (ab8925, Abcam), anti-OCT4 (ab19857, Abcam), anti-CMYC (ab32 [9E10], 

Abcam),  anti-KI67 (ab15580, Abcam) and anti-total βCATENIN (ab6302, Abcam) 

antibodies were used at 1:200, , 1:100, 1:1000, 1:100 and 1:3000 dilutions, respectively. 

Goat anti-rabbit Alexa Fluor (488:A11012; 594: A11012, Invitrogen, Carlsbad, CA, 

USA) were employed as secondary antibodies at a 1:200 dilution, followed by DAPI 

which was used to counterstain cell nuclei. Images were captured with an epifluorescence 

Axioskop microscope (Zeiss, Germany) operated with Nikon NIS-Elements and an 

Apotome Confocal Microscope (Zeiss, Germany) operated with Nikon DS-Qi1Mc 

software (Tokyo, Japan). The fluorescence intensities in the samples were quantified by 

Fiji-ImageJ (Schindelin et al., 2012) after background subtraction. 

Cell proliferation and death assays 

We used propidium iodide (PI, 20 µg/ml, Sigma) to detect cell death and Calcein-AM (5 

µM, Life Technologies) to detect cell viability. We incubated both fluorescent dyes for 

30 min at 37 °C in culture medium and washed the cells 3 times with PBS. Fluorescence 

quantification was accomplished using microfluorimetry by measuring light emission at 

495 nm (Calcein-AM; green fluorescence) and 630 nm (PI; red fluorescence) in a 

Fluoroskan Ascent plate reader (Thermo Scientific). 
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Statistical analyses  

Statistical analyses were performed with Excel, IBM SPSS Statistics v.9 (SPSS, Chicago, 

IL, USA) and Graph Pad v.6 software (Graph Pad Inc., USA). All data sets were subjected 

to a Kolmogorov-Smirnov normality test prior to analysis. For small sample sizes, non-

parametric tests were chosen by default. Comparisons between only two groups were 

made using U-Mann Whitney test. Comparisons between multiple groups were made 

using Kruskal-Wallis followed by Dunn´s post hoc test. P ≤ 0.05 was considered to be 

statistically significant. 

RESULTS 

Notch activity was required for the expression of core pluripotency factors and 

self-renewal of DPSCs 

Control DPSCs showed detectable amounts of core pluripotency factors such as Oct4 

(Pou5f1 and Pou5f1p1), Sox2, Nanog, Lin28, Rex1, Stella, SSEA1 and cMyc transcripts 

by RT-PCR amplicon bands. To assess whether DAPT treatment would affect the 

expression of core factors in DPSCs, we exposed the DPSC cultures to transient 

applications of 2.5 µM DAPT for 48 h. Interestingly, for many factors that were 

expressed, the RT-PCR bands were significantly reduced or virtually lost when the 

DPSCs were pre-treated with DAPT (Fig. 1a). As an internal control to assess Notch 

activity, we examined the expression of the Notch target gene Hes1. We consistently 

observed a clear decrease in Hes1 expression following DAPT treatment. We next wanted 

to corroborate these changes by qPCR, and we determined that all core factors had 

significantly decreased levels of expression when the DPSCs were exposed to DAPT. In 

some cases, such as that of Rex1 or SSEA1 expression, it was decreased by more than 90 

% with respect to the control conditions (Fig. 1b). Finally, these changes were also 

corroborated by IF and WB, where OCT4 (nuclear active form OCT4-A; (Atlasi et al., 

2008; Ferro et al., 2012; Liedtke et al., 2007), SOX2, NANOG (canonical isoform 1 

(Saunders et al., 2013; Wang et al., 2008), CMYC and Notch activity markers, such as 

Notch 1-Receptor Intracellular Domain (N1ICD), had also a consistently reduced 

expression at the protein level (Fig. 1c-l). 
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Figure 1. Notch inhibition by DAPT reduces the expression of core pluripotency factors in DPSCs. 

(a): RT-PCR revealed differences in the expression of cMyc, Sox2, Nanog, Oct4, and Hes1 expression 

following DAPT exposure. (b): Q-PCR analysis confirmed a decrease in core factors cMyc, Sox2, Nanog, 

Oct4, Rex1, Stella, SSEA1 and Hes1 transcripts between the control (DMSO) and DAPT conditions. Data 

are normalized to reference β-Actin and GAPDH levels and presented as the mean +SEM (n=3). The dashed 

line represents normalized gene expression in control conditions. (c-h): IF images of DPSCs grown for 48 

h in presence or absence of DAPT and stained for OCT4 (c, d), CMYC (e, f) and N1ICD (g, h) in green. 

DAPI labels cell nuclei in blue. Scale bar=20 µm. (i, j, m): Bar charts showing relative total and nuclear 

OCT4 (i), CMYC (j), and N1ICD (m) fluorescence in control and DAPT-treated DPSCs. The data are 

presented as mean +SEM (n=3). (k, l): Representative WB showing SOX2 (k), NANOG and active cleaved 

N1ICD (l). β-ACTIN was used as protein loading control. *: p<0.05;**: p<0.01;***: p<0.001. U-Mann 

Whitney test. 

The proliferation rates of DPSCs in the presence or absence of DAPT were compared, to 

verify if the decreased expression of core factors in DPSCs also reflected a decreased 

ability for self-renewal and proliferation. DPSCs were incubated with a mixture of 

calcein-AM/PI, after being cultivated for 48 h in the presence or absence of DAPT. No 

PI fluorescence was detectable in either condition, indicating that cell viability was not 

compromised by DAPT treatment. However, calcein fluorescence was reduced by 

approximately 40 % in the DAPT conditions compared to control (Fig. 2a-c). To 

corroborate this result, the number of proliferative cells positive for 

Ki67,amarkerofcellproliferationpresentduringtheG1, S, G2 and M phases of the cell 

cycle, but absent from non-dividing cells (G0), was evaluated. Ki67 labelling was 

significantly lower in the DAPT-treated DPSCs with respect to controls, thus indicating 

a reduction in the amount of cycling proliferative cells (Fig. 2e-g). Finally, it was 

confirmed that, despite inducing a reduction in DPSC proliferation, DAPT treatment did 

not cause any genomic damage or apoptotic cell death. The cleaved poly-ADP ribose 

polymerase (PARP) levels were assessed by WB and resulted negative in all conditions 

(Fig. 2d). Taken together, these results suggested that Notch inhibition caused a decrease 

in the expression of core pluripotency factors in DPSCs, which resulted in decreased self-

renewal and proliferation capacities, without affecting cell viability. 
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Figure 2. Cell proliferation and cell death analysis in DPSC exposed to DAPT. (a, b): Calcein-AM 

(green) and Propidium Iodide (PI; red) DPSC grown in control and DAPT conditions for 48 h. Scale bar: 

200 µm. (c): Quantification of relative Calcein and PI fluorescence.  Data are presented as mean + SEM (n 

=7). (d): Western Blot showing absence of cleaved PARP protein (89kDa; red arrow) in both DMSO and 

DAPT conditions, in comparison with total inactive non-cleaved PARP (116kDa) which was well detected 

(e, f): IF for KI67 in DMSO and DAPT conditions. Scale bar: 20µm. (g): Quantification of KI67 labeling 

in DAPT-treated and control DPSCs. Data are presented as mean +SEM (n =7). **: p < 0.01. ***: p <0 

.001. U-Mann Whitney test. 

Notch and Wnt/β-Catenin signaling interact and positively regulate each other in 

DPSCs 

To assess whether Notch signaling interacted with Wnt/β-Catenin signaling in DPSCs, 

we studied the effect of DAPT treatment on the expression of Wnt signaling targets by 

qPCR. Notch1-4 receptor expression was negatively affected by the treatment, whereas 

the expression of the Notch ligand Jagged1 was unaffected (Fig. 3a, b). These results 

showed an overall downregulation of Notch signaling in DPSCs as induced by DAPT 

treatment. Intriguingly, we also determined that DAPT treatment reduced the expression 

of the canonical Wnt mediators Wnt3a and β-Catenin, and also that of the Wnt target gene 
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Lef1 by ~50-70 % of their respective control values (Fig. 3a, b). We wanted to confirm 

this result by assessing β-CATENIN protein levels both by WB and IF. A significant 

decrease in the amount of both total and nuclear active β-CATENIN was found in DPSCs 

exposed to DAPT for 48 h (Fig. 3c-f). Therefore, Notch inhibition results in a parallel 

Wnt/β-Catenin signaling inhibition in DPSCs. 
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Figure 3. Notch inhibition by DAPT negatively regulates Wnt/β-Catenin signaling in DPSCs. (a): RT-

PCR revealed differences in the expression of key Wnt signaling mediators and targets Wnt3a, β-Catenin 

and Lef1 in DPSCs following DAPT exposure. (b): QPCR confirmed a decrease in both Notch receptors 

and Wnt factors between control (DMSO) and DAPT conditions. Data are normalized to reference β-Actin 

and GAPDH levels and presented as the mean +SEM (n=4). The dashed line represents normalized gene 

expression in control conditions. (c, d): IF images of total β-CATENIN in DAPT-treated DPSCs compared 

with controls. Scale bar=20 µm (e): Bar chart showing relative total and nuclear β-CATENIN fluorescence 

in control and DAPT conditions (f): WB of total and nuclear active β-CATENIN in control and DAPT-

treated DPSCs. β-ACTIN was used as a protein loading control.*: p<0.05;**: p<0.01;***: p<0.001. U-

Mann Whitney test. 

BIO-induced Wnt activation enhanced the expression of pluripotency core factors 

in DPSCs. 

To investigate whether Wnt/β-Catenin activation would enhance the expression of 

pluripotency core factors in DPSCs, we used BIO treatment for 48 h to hyperactivate Wnt 

signaling by inhibiting β-CATENIN degradation. As a control for treatment efficacy, 

BIO-treated DPSCs showed increased levels of both total and activeβ-CATENIN protein, 

whereas other Wnt targets such as Lef1 also demonstrated consistently increased 

expression (Fig. 4a, b, g, h, k-l). Therefore, BIO induced a strong hyperactivation of Wnt 

signaling in DPSCs. We then assessed the expression of pluripotency core factors in BIO-

treated DPSCs by RT-PCR and qPCR. We determined that BIO also induced 

overexpression of pluripotency factors at both the transcript (Fig. 4a, b), and protein levels 

(Fig. 4c-k). 

In addition to boosting the expression of core pluripotency factors, BIO also increased 

DPSC proliferation ability. As shown by the Calcein/PI assay, the number of viable cells 

in culture significantly increased after BIO treatment with respect to controls (Fig. 5a-c). 

Consistently, the KI67/DAPI fluorescence ratio increased in response to BIO treatment, 

which indicated a greater proportion of active dividing cells in these conditions (Fig. 5e-

g). We detected neither PI-positive cells nor an active PARP signal in BIO-treated cells 

(Fig. 5d). Together, these experiments demonstrated that Wnt activation by BIO treatment 

increased the proliferation and self-renewal capacities of DPSCs without compromising 

their viability and genomic integrity. 
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Figure 4. Wnt activation by BIO leads to increased expression of core pluripotency factors in DPSCs. 

(a): RT-PCR revealed differences in the expression of cMyc, Sox2, Nanog, Oct4 and Lef1 following BIO 

exposure. (b): Q-PCR analysis confirmed an increase in cMyc, Sox2, Nanog, Oct4, Rex1, Stella, SSEA1and 

Lef1 expression between control (MBIO) and BIO conditions. Data are normalized to reference β-Actin and 

GAPDH levels, and presented as the mean + SEM (n=3). The dashed line represents normalized gene 

expression in control conditions. (c-h): IF images of DPSCs grown in the presence of MBIO or BIO for 48 

h and stained for OCT4 (c, d), CMYC (e, f) and total β-CATENIN (g, h) in green. DAPI labels nuclei in 

blue. Scale bar: 20 µm. (i, j, m): Bar charts showing relative total and nuclear OCT4 (i) CMYC (j) and total 

β-CATENIN fluorescence in MBIO and BIO-treated DPSCs. The data are presented as the mean +SEM 

(n=3). (k, l): Representative WB showing an increase in SOX2 (k), native NANOG1 and NANOG2 

isoforms, with slightly different MWs (k), as well as in both total β-CATENIN and activeβ-CATENIN (l) 

protein expression. β-ACTIN was used as a protein loading control. *: p<0.05;**: p<0.01;***: p<0.001. U-

Mann Whitney test. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. Cell proliferation and cell death analysis in DPSC exposed to BIO.  (a, b): Calcein-AM 

(green) and Propidium Iodide (PI; red) DPSC grown in MBIO and BIO conditions for 48 h. Scale bar: 200 

µm. (c): Quantification of relative Calcein and PI fluorescence.  Data are presented as mean + SEM (n =7). 

(d): Western Blot showing absence of cleaved PARP protein (89kDa; red arrow) in both MBIO and BIO 

conditions, in comparison with total inactive non-cleaved PARP (116kDa) which was well detected. (e, f): 

IF forKI67 in MBIO and BIO conditions. Scale bar: 20µm. (g): Quantification of KI67 labeling in MBIO- 

and BIO-treated DPSC. Data are presented as mean +SEM (n =7). *: p < 0.05. U-Mann Whitney test. 
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Wnt activation by BIO induced Notch upregulation in DPSCs 

Given that we found that DAPT treatment affects Wnt signaling in DPSCs, we wondered 

whether Notch activity would also be affected in BIO-treated DPSCs. We found that in 

BIO-treated DPSCs, most Notch receptors did not undergo any changes in expression, 

except the Notch2 receptor, which was found to be slightly upregulated at the transcript 

level (Fig. 6a, b).  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Wnt activation by BIO positively regulates Notch signaling in DPSCs. (a): RT-PCR revealed 
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differences in the expression of Notch mediators, ligands and receptors under BIO exposure. (b): Q-PCR 

analysis confirmed an increase in Notch 2, Jagged1, Wnt3, β-Catenin and Hes1 expression between control 

(MBIO) and BIO conditions. The data are normalized to reference β-Actin and GAPDH levels and presented 

as the mean + SEM (n=4). The dashed line represents normalized gene expression in control conditions. (c, 

d) IF images of active N1ICD, in cells treated with BIO and MBIO. Scale bar=20 µm (e) Bar chart showing 

relative total and nuclear N1ICD fluorescence in MBIO- and BIO-treated cells. (f) WB showing an increase 

in N1ICD expression in BIO-treated DPSCs. β-ACTIN was used as a protein loading control. *: p<0.05;**: 

p<0.01;***: p<0.001. U-Mann Whitney test. 

However, the Notch canonical ligand Jagged1 underwent a much larger 8-fold increase 

in expression when the DPSCs were exposed to BIO, followed by Wnt3a and β-catenin 

with a ~5-fold increased expression each (Fig. 6b). Moreover, Hes1 was also prominently 

upregulated in these conditions, which constituted solid evidence that Notch signaling 

was being hyperactivated by BIO exposure (Fig. 6b). We also tested Notch signaling 

upregulation at the protein level using an antibody for active cleaved N1ICD. Increased 

levels of N1ICD were detected for the BIO-treated DPSCs by both WB and IF (Fig. 6c-

f). 

Wnt/Notch activation enhanced expression of neural crest markers in DPSCs 

As Notch/Wnt are crucial in NC induction and their activation enhanced core factor 

expression in DPSCs, we tested whether NC markers would also be affected by 

Notch/Wnt pharmacological modulation. We found that both Snai1 and Snai2 markers 

are constitutively expressed by DPSCs, especially Snail/Snai1, and we did not find a 

reliable detectable Sox10 expression in DPSCs in our control conditions (Fig. 7a, b). 

Other NC gene markers such as Pax3, Neurogenin2, Twist1 and HNK1were also 

expressed in control DPSCs. However, when we cultured DSPCs with DAPT, the 

expression of all these markers was downregulated to less than half of basal levels as 

assessed by qPCR, with some cases such as Pax3 were downregulation accounted to more 

than 90 % of basal expression (Fig. 7a, b). Conversely, when we cultured cells with BIO, 

most markers increased expression to about twice of control levels, with the notable 

exception of Pax3 which increased more than 10-fold (Fig. 7c, d).Some NC gene markers 

which presented a very low expression in control DPSCs, such as the case of Sox10, 

yielded consistent amplicon bands in conventional RT-PCR following BIO treatment. All 

these changes were corroborated by qPCR (Fig. 7c, d). 

Thus, Notch/Wnt activation upregulated the expression of both pluripotency and NC 
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markers in DPSCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. BIO and DAPT antagonistically regulate the expression of neural crest markers 

Snail/Snai1, Slug/Snai2, Sox10, HNK1, Neurogenin2, Twist and Pax3 in DPSCs. (a) RT-PCR showing 

NC marker gene expression in DMSO and DAPT-treated DPSCs. (b) Q-PCR showing relative differences 

on Snai1, Snai2, Sox10, HNK1, Neurogenin2, Twist andPax3 expression. (c) RT-PCR showing NC marker 

gene expression in MBIO and BIO-treated DPSCs. (d) Q-PCR showing relative differences in Snai1, Snai2, 

Sox10, Neurogenin2, Twist andPax3 expression. Data are normalized to reference β-Actin and GAPDH 

levels and represented as the mean + SEM (n=3). The dashed line represents normalized gene expression 

in control conditions. *: p<0.05;**: p<0.01;***: p<0.001. U-Mann Whitney test. 
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Wnt/Notch pre-activation enhances differentiation of DPSCs to osteoblasts and 

adipocytes 

Established in vitro protocols can be used to induce terminal differentiation of DPSCs to 

mature osteoblasts and adipocytes (Gronthos et al., 2002; Langenbach and Handschel, 

2013). Thus, we hypothesized that a short (48 h) pre-activation of the Notch/Wnt 

signaling pathway would render DPSCs more responsive to differentiation signals. 

Conversely, Notch/Wnt pre-inhibition would result in a reduced DPSC differentiation 

capacity. To test our hypothesis, we exposed DPSCs to BIO or DAPT for 48 h as before. 

Untreated DPSCs were used as controls. Then, control and treated cells were exposed to 

osteoblastic differentiation medium in the absence of BIO or DAPT. As evidence of 

terminal osteoblastic differentiation, we used ALP and Alizarin Red assays. Interestingly, 

after 3 weeks of osteogenic treatment, Alizarin Red+ deposit formation as assessed by 

light absorbance was between two- and three-fold higher in the DPSCs pretreated with 

BIO, and significantly lower in the DPSCs pretreated with DAPT when compared with 

controls (Fig. 8 a-d, m; a´-d´). ALP enzymatic activity was also found to be significantly 

higher (i.e., osteoblastic differentiation more efficient) when the DPSCs were pretreated 

with BIO (Fig. 8e-h, m; e´-h´). To verify whether Notch/Wnt modulation could also affect 

DPSC differentiation into adipocytes, we exposed DPSCs to BIO or DAPT for 48 h. 

Control and treated cells were then exposed to adipogenic differentiation medium for 4 

weeks. We performed Oil Red staining to assess adipocyte generation. Interestingly, we 

found that BIO pretreatment also enhanced DPSC conversion to adipocytes as assessed 

by Oil Red after the differentiation treatment period. Oil Red staining was significantly 

higher in the BIO-pretreated cells, near twice as much as controls (Fig. 8i-l, n; i´-l´). 
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Figure 8. A preconditioning exposure to BIO for 48 h enhances DPSC differentiation efficiency into 

osteoblasts and adipocytes. (a-d): Alizarin S Red staining to assess calcified matrix formation and 

osteoblast differentiation in control (DMSO, MBIO), BIO and DAPT conditions. (e-h): Alkaline 

phosphatase (ALP) staining images at high magnification to detect osteoblastic commitment and 

differentiation in control (DMSO, MBIO), BIO and DAPT conditions. Scale bar=100 µm. (i-l): Oil Red 

staining to assess lipid droplet formation and adipocyte differentiation in control (DMSO, MBIO), BIO and 

DAPT conditions. Scale bar=200µm (m): Relative absorbance quantification at 450 nm, 405 nm  and 

409nm for Alizarin Red, ALP and Oil Red, respectively for DMSO and DAPT. (n): Relative absorbance 

quantification at 450 nm, 405 nm and 409nm for Alizarin Red, ALP and Oil Red, respectively for MBIO 

and BIO conditions. The data are normalized to DMSO and MBIO as internal controls and presented as the 

mean +SEM (n=6) *: p<0.05;**: p<0.01;***: p<0.001. U-Mann Whitney test. 
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Wnt activation by exposure to human recombinant Wnt-3A protein for 48 h also 

enhances expression of NC and pluripotency core factors in DPSCs 

Since BIO is known to be a general GSK-3β inhibitor (Meijer et al., 2003) this treatment 

could affect other signaling pathways apart from Wnt. In order to prove that the observed 

effects on core factor and NC factor expression and DPSC stemness depended specifically 

on the canonical Wnt signaling pathway we used WNT-3A protein, a well-described 

prototypical canonical Wnt ligand (Famili et al., 2015; Zhang et al., 2009) to stimulate 

DPSCs for 48 h in similar conditions to BIO. We used two concentrations of human 

recombinant WNT-3A: 2.5 µM and 5 µM, to verify any possible dose-dependent effects.  
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Figure 9. Wnt activation by WNT-3A also increases the expression of pluripotency core factors, 

Notch markers and neural crest markers in DPSCs. (a) RT-PCR showing core factors (cMyc, Sox2, 

Nanog, Oct4, Rex1, Stella, SSEA1), Hes1 and NC markers (Snai1, Snai2, Sox10,HNK1, Neurogenin2, Twist 

andPax3) expression in DMSO and WNT-3A at 2.5 µM and 5 µM concentration in DPSCs. (b) QPCR 

showing relative differences on expression of core factors cMyc, Sox2, Nanog, Oct4, Rex1, Stella, SSEA1, 

Hes1, Lef1 and β-Catenin expression.(c) QPCR showing relative differences on expression of NC markers 

Snai1, Snai2, Sox10,HNK1, Neurogenin2, Twist andPax3 expression. Data are normalized to reference β-

Actin and GAPDH levels and represented as the mean + SEM (n=3). The dashed line represents normalized 

gene expression in control conditions. *: p<0.05;**: p<0.01;***: p<0.005. Dunn´s Test, Kruskall Wallis H 

Test. 

 
Interestingly, we found that all the tested pluripotency and NC factors increased their 

expression when exposed to WNT-3A, being the effect more pronounced at the 

concentration of 5 µM. Among the markers that were most strongly affected we detected 

Sox2, Oct4 (Pou5f1 and Pou5f1p1), Lin28, Stella, SEEA1, Slug, HNK1 and Sox10 (all 

within a ~5-10 fold increase in expression) and Pax3 (~30x increase with 5 µM WNT-

3A). As a control for Wnt activation, Lef1 expression was also solidly upregulated after 

WNT-3A treatment. All expression changes were verified by RT-PCR and qPCR (Fig. 

9a-c). 

Exposure to WNT-3A also upregulates Notch/Wnt crosstalk signaling in DPSCs 

We also wanted to verify whether the Notch/Wnt interaction that was observed after 

DAPT/BIO treatments was also observed after treating cells with WNT-3A. QPCR 

experiments had already showed a clear upregulation of Hes1 expression in DPSCs 

exposed to WNT-3A (Fig. 9b). We corroborated this result by performing IF and found a 

significantly increased N1ICD nuclear fluorescence, especially at a concentration of 5 

µM WNT-3A (Fig. 10a-c, k). Similarly, nuclear β-CATENIN protein labeling was also 

found to be increased as well (Fig. 10d-f, k). Finally, so could be said about KI67 labeling 

levels (Fig. 10g-i; k). Thus, 5 µM WNT-3A induced a coordinated upregulation of 

Notch/Wnt cross-signaling and an increased proliferation capacity in DPSCs. 
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Figure 10. Wnt activation by WNT-3A also upregulates Notch signaling in DPSCs. (a-i): IF images of 

DPSCs grown for 48 h in presence or absence of WNT-3A at two different concentrations 2.5 and 5 µM 

and immunolabeled for N1ICD (a-c), total β-CATENIN (d-f) and KI67 (g-i). DAPI labels cell nuclei in 

blue. Scale bar= 20 µm. (j): Bar charts showing relative total N1ICD and total β-CATENIN fluorescence 

in control and WNT-3A-treated DPSCs. (k): Bar charts showing relative nuclear N1ICD, β-CATENIN and 

KI67 labeling fluorescence in control and WNT-3A-treated DPSCs. Data are presented as mean + SEM 

(n=3). *: p<0.05;**: p<0.01;***: p<0.001. Dunn´s Test, Kruskall Wallis H Test.  



4. RESULTS. ANEX 3 
 

120  

A preconditioning treatment with human recombinant WNT-3A also enhances 

differentiation capacity of DPSCs to osteoblasts and adipocytes 

Finally and in view of the last results, we wanted to verify whether a preconditioning 

treatment with WNT-3A would also render DPSCs more responsive to osteogenic and 

adipogenic differentiation treatments.  
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Figure 11. A preconditioning treatment with WNT-3A for 48 h also enhances DPSC differentiation 

efficiency into osteoblasts and adipocytes. (a-c): Alizarin S Red staining to assess calcified matrix 

formation and osteoblast differentiation in control (DMSO) and WNT-3A 2.5 and 5 µM conditions. (d-f): 

Alkaline phosphatase (ALP) staining images at high magnification to detect osteoblastic lineage 

commitment and differentiation in control (DMSO) and WNT-3A 2.5 and 5 µM conditions. (g-i): Oil Red 

staining to assess lipid droplet formation and adipocyte differentiation in control (DMSO) and WNT-3A 

2.5 and 5 µM treatment. Scale bar=200µm (j): Relative absorbance quantification at 450 nm, 405 nm and 

409nm for Alizarin Red, ALP and Oil Red, respectively. Data are normalized to DMSO as internal control 

and presented as mean + SEM (n=4) *: p<0.05. Dunn´s Test, Kruskall Wallis H Test. 

Thus, we exposed DPSCs to a preconditioning treatment with WNT-3A for 48 h and 

subsequently placed cells in osteogenic and adipogenic culture media respectively, in 

similar conditions as shown before with DAPT/BIO. As predicted, pretreatment with 

WNT-3A enhanced DPSC capacity to differentiate to these two cell lineages (Fig. 11). 

DISCUSSION 

We report for the first time that Notch and Wnt signaling are required for the expression 

of neural crest and pluripotency core factors in DPSCs. Importantly, both pathways 

positively regulate each other to maintain DPSC stemness, and specific activation or 

inhibition of one pathway invariably affects the other in the same way. These findings 

shed light on the control mechanisms of DPSC self-renewal and maintenance and have 

important potential implications regarding the use of DPSCs for cell therapy. 

There are several reasons for research interests regarding DPSCs and other dental stem 

cells. These cells are easy accessible in both young and aged patients, they possess a 

significant capacity for in vitro expansion, and they have non-tumorigenic phenotypes. 

Furthermore, a strong body of research evidence shows that DPSCs have a greater multi-

lineage differentiation potential than do other tissue-specific stem cells (Atari et al., 2012; 

Kerkis et al., 2006; Rosa et al., 2016). It is illustrative of the growing acknowledgement 

of the stemness potential of DPSC that some authors have referred to some 

subpopulations of these cells as Dental Pulp Pluripotent Stem Cells, or DPPSCs (Atari et 

al., 2012). 

Arguably, induced Pluripotent Stem Cells (iPSCs) derived from autologous somatic cells 

could be regarded as the ideal source of stem cells for in vivo cell therapy; these cells are 

truly pluripotent (i.e., have no restriction to differentiate to any type of adult cell), can be 



4. RESULTS. ANEX 3 
 

122  

extracted from any donor’s tissue and have the donor’s same genetic background. 

However, traditional cell reprogramming procedures rely on permanent gene transfection 

with Yamanaka or related core pluripotency factors (Takahashi et al., 2007), and this is 

not yet acceptable for safety reasons. Hence, while these cell reprogramming technologies 

are not mature enough for clinical use, the interest to search for alternative sources of 

autologous pluripotent-like cells, including DPSCs, is growing very fast. The possibility 

to boost the natural pluripotency-like features of DPSCs by methods that do not involve 

permanent chromatin modification or gene transfection is highly desirable for cell 

therapy. 

Canonical Notch and Wnt signaling pathways have been described as pivotal regulators 

of stemness and pluripotency (Clevers et al., 2014; Dravid et al., 2005; Fox et al., 2008; 

Li and Chen, 2012; Lowell et al., 2006; Lluis et al., 2008; Park et al., 2008; Simandi et 

al., 2016; Yan et al., 2010), and their pharmacological manipulation has already been 

tested as a strategy to enhance either cell differentiation (Kitajima et al., 2016) or cell 

reprogramming (Ichida et al., 2014). Notch inhibition by γ-secretase blockers has been 

associated with an increased efficiency of keratinocyte reprogramming (Ichida et al., 

2014). In our model system, however, we found a very different effect: Notch inhibition 

by DAPT decreased the expression of core factors in DPSCs and diminished their 

capacity to generate fully differentiated osteoblast and adipocyte cells. In this regard, it is 

worth remarking that Notch effects have long been known to be extremely context-

dependent; the same Notch signal can have very different outcomes depending on the cell 

type, physiological state, and extracellular environment. Regarding Wnt signaling, its 

pharmacological activation by GSK-3β inhibitors in mouse iPSCs has been associated 

with increased cell differentiation (Kitajima et al., 2016). However, in our DPSC model, 

BIO application significantly increased the expression of core factors and enhanced 

DPSC differentiation potential to generate adult osteoblasts and adipocytes. Again, we 

attribute these differences to the various cell culture systems that were tested in this and 

other studies. 

One important difference between our study and the aforementioned studies is the 

presence/absence of serum in the culture medium. The use of medium containing FBS 

has long been considered the gold standard for manipulation and in vitro expansion of 

DPSCs (Gronthos et al., 2002; Gronthos et al., 2000). In vitro expansion of DPSCs is 
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often inevitable due to the low amounts of tissue material and total cells that can be 

collected from the human dental pulp, as compared to other stem cell sources. In this 

regard, despite ongoing progress in culture media formulations that do not contain fetal 

serum for maintenance of DPSCs (Bonnamain et al., 2013; Eubanks et al., 2014; Jung et 

al., 2016; Xiao and Tsutsui, 2013), currently the addition of FBS or related agents to the 

culture media permits to easily overcome the issue of initial cell expansion. However, it 

is becoming increasingly apparent that FBS-containing media also induce DPSCs to 

differentiate into a default osteo/odontogenic pathway (Pisciotta et al., 2012; Yu et al., 

2010) and this may not be the best choice to generate certain cell lineages, particularly 

neural cells, from DPSCs (Jung et al., 2016). Moreover, upon continual expansion 

induced by the presence of 10 % FBS, DPSC cultures also tend to generate populations 

of committed/differentiated cells (Mokry et al., 2010), and therefore, progressive stem 

cell exhaustion was also a concern in this study. We confirmed that the proliferation rates 

and core factor expression decreased steadily in DPSCs upon serial passaging (data not 

shown). This correlation between sustained stem cell aging and loss of multipotency has 

also been reported elsewhere (Bose and Shenoy, 2016). 

One important finding of this study is that the Notch and Wnt pathways operate 

coordinately as part of a common network to maintain DPSC stemness. We found that 

the expression of core factors in DPSCs is completely dependent upon Notch/Wnt 

signaling. Notch inhibition by DAPT applications virtually abolishes the expression of 

core factors and decreases DPSC stemness, and this is accompanied by parallel Wnt 

inhibition. Conversely, Wnt activation by BIO or WNT-3A significantly increases the 

expression of core factors and DPSC stemness. In view of this evidence, the question 

becomes what connection these pathways have at the molecular level. Many positive and 

negative interactions have been reported between both pathways in a myriad of model 

systems (Borggrefe et al., 2016; Fukunaga-Kalabis et al., 2015; Kwon et al., 2011; 

Nicolas et al., 2003; Shi et al., 2015). In colorectal cancer cells, it was shown that Wnt 

signaling affects Notch through β-CATENIN-mediated transcriptional activation of the 

gene Jagged1 (Rodilla et al., 2009). JAGGED1 is a Notch ligand which can activate 

Notch receptors and consequently, Notch signaling. Consistent with this, BIO-induced 

Wnt activation in DPSCs elicited a sharp increase in the transcriptional levels of Jagged1. 

It is likely that such an increased Jagged1 transcription would eventually activate Notch 

receptors in DPSC cultures. In addition, β-CATENIN has also been reported to physically 
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bind to and interact with reprogramming factors, in particular OCT-4A (Simandi et al., 

2016), and Oct4a transcription levels are also positively regulated by Wnt signaling in 

pluripotent stem cells (Li and Chen, 2012; Simandi et al., 2016). Finally, Wnt/β-Catenin 

is also known to increase cMyc gene transcription, which promotes cell proliferation 

(Barker et al., 2000). Consistently, DPSCs treated with BIO or WNT-3A expressed an 

increased number of cMyc transcripts, which relates to an increased cell proliferation in 

these conditions. 

Together with enhanced core factor expression, activation of the Notch/Wnt signaling 

pathways also increased the expression of NC markers by DPSCs. Both Notch and Wnt 

signals have long been associated with NC induction(Gazarian and Ramirez-Garcia, 

2017; Hari et al., 2012; Leung et al., 2016; Rogers et al., 2012; Stuhlmiller and Garcia-

Castro, 2012). Indeed, NC cells also express relatively high levels of core factors, which 

possibly relates to their ample capacity to generate very diverse cell lineages (Thomas et 

al., 2008). We found that NC markers Pax3, Hnk1, Twist, Neurogenin2, Snail/Snai1, 

Slug/Snai2 and Sox10 had increased expression levels when the DPSCs were exposed to 

WNT-3A or BIO, and their expression decreased in the presence of DAPT, thus showing 

a similar relationship to the one found with pluripotency core factors. 

Our results demonstrate that Wnt/Notch activation induces DPSCs to increase their 

stemness. This could have important implications to optimize the clinical use of these 

cells. A short preconditioning treatment with WNT-3A or BIO for 48 hours was enough 

to improve DPSC potential to differentiate to at least two different adult cell lineages, 

osteoblasts and adipocytes, which are both of mesenchymal origin. This is a very 

important finding because it proves that DPSC exhaustion by continuous exposure to FBS 

could be at least partially prevented by transiently boosting the activity of Notch/Wnt 

pathways, by means of small molecules and/or recombinant proteins, which would 

enhance stemness traits of DPSC cultures just 48h before use for differentiation or cell 

transplant. It would also be very interesting to verify whether this preconditioning effect 

holds true also for other non-mesenchymal cell lineages of interest, such as Schwann cells 

(Martens et al., 2014), Neuron-like cells (Gervois et al., 2015) and Hepatocyte-like cells 

(Atari et al., 2012). Finally, the adoption of this preconditioning strategy could also be 

applicable to differentiation protocols that do not rely on FBS (Eubanks et al., 2014; Xiao 

and Tsutsui, 2013), allowing the fastest translation to clinical therapy. 



4. RESULTS. ANEX 3 
 

125  

CONCLUSION 

Our data show that Notch and Wnt signaling are required for maintenance of neural crest 

and core pluripotency factor expression in DPSCs. Furthermore, both pathways operate 

coordinately as part of the same signaling network to maintain DPSC stemness. Thus, a 

Notch/Wnt signaling activation preconditioning step by BIO or WNT-3A for 48 h 

significantly enhanced the capacity of DPSCs to respond to established in vitro protocols 

for osteoblastic and adipogenic differentiation. Conversely, Notch/Wnt inhibition 

decreased stemness of DPSCs. These preconditioning changes involve levels of 

expression of core pluripotency and neural crest factors, which correlated with an 

enhanced differentiation potential of DPSC. This strategy could be used alone or in 

conjunction with other methods of cell reprogramming that do not involve permanent 

gene transduction or modifications at genome level to generate DPSCs and other tissue-

specific adult stem cells with increased self-renewal and cell differentiation potential for 

cell therapy. 
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ABSTRACT 

Human Dental Pulp Stem Cells (DPSCs) can differentiate to a wide range of different cell 

lineages, and share some gene expression and functional similarities with pluripotent stem 

cells. The stemness of DPSCs can also be pharmacologically enhanced by the activation 

of canonical Wnt signaling. Here we examined the metabolic profile of DPSCs during 

reprogramming linked to Wnt activation, by a short (48 h) exposure to either the GSK3-

β inhibitor BIO or human recombinant protein WNT-3A. Both treatments largely 

increased glucose consumption, and induced a gene overexpression of pyruvate and 

mitochondrial acetyl-coA producing enzymes, thus activating mitochondrial TCA 

metabolism in DPSCs. This ultimately led to an accumulation of reducing power and a 

mitochondrial hyperpolarization in DPSCs. Interestingly, Nile Red staining showed that 

lipid fuel reserves were being stored in Wnt-activated DPSCs. We associate this 

metabolic reprogramming with an energy-priming state allowing DPSCs to better respond 

to subsequent high demands of energy and biosynthesis metabolites for cellular growth. 

These results show that enhancement of the stemness of DPSCs by Wnt activation comes 

along with a profound metabolic remodeling, which is distinctly characterized by a crucial 

participation of mitochondrial metabolism. 
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INTRODUCTION 

Dental Pulp Stem Cells (DPSCs) constitute a very promising tool for regenerative 

medicine procedures. These stem cells can differentiate to very diverse cell lineages, and 

have been successfully employed in different experimental animal models of 

pathology(Hollands et al., 2018), as well as in several clinical trials to regenerate oral and 

dental tissues in humans (Giuliani et al., 2013; Nakashima et al., 2017). DPSCs have a 

high clonogenic potential with a distinct ectomesenchymal neural crest (NC) phenotype 

(Gronthos et al., 2002; Gronthos et al., 2000), which endows them with the capacity to 

form not only mesenchymal lineage cells like adipocytes, osteoblasts, odontoblasts and 

chondrocytes, but also neurons, Schwann cells (Gervois et al., 2015; Martens et al., 2014), 

smooth muscle and vascular endothelial cells, among others (Karbanova et al., 2011). 

Reprogramming and generating pluripotent stem cells out of somatic cells remains a 

promising alternative to obtain autologous differentiated cells for graft therapies. 

However, current reprogramming methods often rely on permanent genetic modification, 

precluding their use for human medical therapy. Interestingly, DPSCs have also been 

described to show a pluripotent-like phenotype (Atari et al., 2012) and a high plasticity 

for cell reprogramming, even using mild methods which do not involve gene transfection, 

making them a promising alternative source of pluripotent-like cells (Atari et al., 2011; 

Pisal et al., 2018; Uribe-Etxebarria et al., 2017; Yan et al., 2010). 

Stem cell differentiation and/or somatic cell reprogramming are characterized by 

profound changes in cell metabolism. Over the last years, increasing experimental 

evidence pictures metabolism as a key regulator of both stem cell potency and 

differentiation (Hanahan and Weinberg, 2011; Pavlova and Thompson, 2016; Zhang et 

al., 2016b). This metabolic priming is suited to respond to the demands of cell growth 

and proliferation (Lunt and Vander Heiden, 2011). Thus, important evidence links 

metabolism, mitochondrial dynamics, and protein homeostasis with stemness (Garcia-

Prat et al., 2017). There exist two major metabolic states of the cell: aerobic/oxidative 

(occurring in the mitochondria) and anaerobic/glycolytic (occurring in the cytosol), which 

perform at least three essential functions: 1) the generation of the energy (ATP) and 

reducing power (NADH, FADH2, NADPH) necessary for biosynthesis processes; 2) the 

production of glycolytic intermediates essential for anabolic reactions during cell division 

and, 3) the release of metabolites employed in enzymatic reactions, including those 

involved in epigenetic modification (Teslaa and Teitell, 2015). 
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Compelling evidence shows that the specific metabolic requirements of pluripotent stem 

cells tip the balance towards a higher utilization of anaerobic pathways, at the expense of 

a reduced utilization of aerobic oxidative phosphorylation, which in turn associates with 

the process of cell differentiation (Chandel et al., 2016; Mathieu and Ruohola-Baker, 

2017). Inducing the transition from oxidative into glycolytic metabolism promotes 

somatic cell reprogramming to iPSCs (Folmes et al., 2011; Gu et al., 2016). Stemness is 

promoted, and differentiation is prevented by glycolysis induction or oxidative 

metabolism inhibition (Mathieu and Ruohola-Baker, 2017; Varum et al., 2011) whereas 

differentiation of iPSCs occurs through oxidative metabolism, which is characterized by 

a high ATP and low lactate content (Cho et al., 2006; Folmes et al., 2011; Varum et al., 

2011). However, despite these findings controversy remains about the precise role of 

mitochondrial oxidative metabolism in the early onset of pluripotency. There is also 

evidence for a transient mitochondrial oxidative phosphorylation burst during the initial 

stages after nuclear reprogramming (Hawkins et al., 2016; Kida et al., 2015). 

Here we report that a deep metabolic remodeling occurs in DPSCs during the first 48 h 

of reprogramming under Notch and Wnt signaling modulation conditions, which were 

previously described to regulate the expression of pluripotency core factors and self-

renewal in these cells (Uribe-Etxebarria et al., 2017). This work gives evidence of a 

metabolic switch, distinctly characterized by a mitochondrial involvement in the 

generation of large amounts of reducing power, and a cytoplasmic accumulation of lipid 

fuel reserves, associated with an enhanced DPSC stemness. Combinatorial modulation of 

signaling pathways reveals cell-type-specific requirements for a highly efficient and 

synchronous reprogramming to iPSCs (Vidal et al., 2014). Therefore, the present study 

provides very interesting new data with regard to approachable future research to design 

new protocols for a safe DPSC reprogramming. 
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MATERIALS AND METHODS 

DPSC culture 

DPSCs were isolated from human third molars obtained from healthy donor patients 

between 15 and 30 years of age by fracture and enzymatic digestion of the pulp tissue for 

1 h at 37°C with 3 mg/ml collagenase (Thermo Fisher Scientific Cat# 17018-029, Boston, 

Massachusetts, USA) and 4 mg/ml dispase (Thermo Fisher Scientific Cat# 17105-041) 

followed by mechanical dissociation. Cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS), L-glutamine (1 

mM) and the antibiotics penicillin (100 U/ml) and streptomycin (150 µg/ml). The DPSCs 

could be amplified and maintained in these conditions for very long periods (> 6 months). 

However, to avoid cell aging issues, we only employed DPSCs that had been grown in 

culture for less than 3 months and had accumulated no more than 6 total passages. 

Comparative experiments between control and treatment conditions were always and 

without exception performed in parallel using DPSCs from the same donor.  

Notch and Wnt pathway pharmacological modulation 

To inhibit Notch signaling pathway, we employed DAPT (N-[N-(3, 5-

Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester), a γ-secretase inhibitor, 

(Calbiochem Cat#565784, San Diego, California, USA), at a concentration of 2.5 µM. 

DAPT was added to the culture medium for 48 h prior to the assays where DAPT-treated 

DPSCs were compared with DPSCs treated only with the control vehicle, 2.5 µM DMSO. 

To over-activate Wnt signaling pathway, we used 2.5 µM BIO (6-bromoindirubin-3´-

oxine), a GSK3β inhibitor (Calbiochem Cat#361550), which was added to the medium 

for 48 h prior to the assays. BIO-treated cells were compared with DPSCs exposed to the 

inactive analog MBIO (methyl-6-bromoindirubin-3´-oxine) at 2.5 µM as a corresponding 

control (Calbiochem Cat#361556). WNT-3A recombinant protein (R&D Systems 

Cat#5036-WN-010, Minneapolis, USA) was also added to the DPSC cultures to over-

activate Wnt signaling, at a concentration of 2.5 µM during a total incubation time of 48 

h, as in the rest of the treatments. 
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1H-NMR of DPSCs 

To obtain an NMR spectrum, an average of 6x106 cells was extracted using the dual phase 

extraction method (Al-Saffar et al., 2006). Lyophilized samples of the water soluble 

fraction were reconstituted in deuterium oxide (D2O). 1H-NMR spectra were acquired as 

previously described (Al-Saffar et al., 2006). Metabolite concentration were determined 

by integration and normalized relative to the peak integral of an internal reference (TSP 

0.15%) and corrected for the number of cells extracted per sample. 

RNA extraction, conventional RT-PCR and quantitative Real-Time PCR (qPCR) 

Total RNA was extracted from the cells using the RNeasy Kit (Qiagen Cat#74104, 

Hilden, Germany) and checked for purity by calculating the 260/280 ratio via the 

Nanodrop Synergy HT (Biotek). cDNA (50 ng/µl) was obtained by reverse transcription 

of total extracted RNA using the iScript cDNA Kit (BioRad Cat#1708890, CA, USA) 

with the following reagents: iScript reverse Transcriptase (1 µl), 5x iScript Reaction Mix 

(4 µl) and Nuclease Free water (variable) to a final volume of 20 µl. We analyzed gene 

expression using 1 µl of cDNA (5 ng/µl) diluted in 4 µl of My TaqTM Red Mix (Bioline 

Cat#BIO-25043, St. Petersburg, Russia), 1 µl of primers (0.625 µM) and Nuclease Free 

Water for a total volume reaction of 10 µl, for conventional RT-PCR. Amplification 

products were separated by electrophoresis in a 2 % agarose gel. Quantitative Real-Time 

PCR experiments were conducted in an iCyclerMyiQTM Single-Color Real-Time PCR 

Detection System (BioRad, USA), using4.5 µl of Power SYBR® Green PCR Master Mix 

2x (Applied BiosystemsTM,Cat#  4367659, Carlsbad, CA, USA), 0.5 µl of primers (0.3125 

µM), 0.3 µl of cDNA (1.5 ng/µl), and Nuclease Free water for a total volume reaction of 

10 µl. All primers were obtained from public databases and checked for optimal 

efficiency (> 90 %) in the qPCR reaction under our experimental conditions. The relative 

expression of each gene was calculated using the standard 2-ΔCt method (Livak and 

Schmittgen, 2001) normalized with respect to the average between β-ACTIN and GAPDH 

as internal controls. All reactions were performed in triplicate. qPCR was run on ABI 

PRISM® 7000 (Thermo Fisher Scientific, Thermo Fisher Scientific, Boston, MA, USA). 

Data were processed by CFX Manager™ Software (BioRad, USA). We assessed that all 

qPCR reactions yielded only one amplification product by the melting curve method. The 

primer pairs for different genes obtained via the Primer-Blast method (Primer Bank) are 

listed in Table 1. 



3. RESULTS. ANEX 4 
 

139 
 

Primers Sequence 5´ - 3´ 
Annealing 

(ºC) 

Amplicon 

(bp) 

β-ACTIN  F GACGACATGGAGAAAATCTG 59.7 131 

R ATGATCTGGGTCATCTTCTC 58 

GAPDH  F GTTTTGCGTCGCCAG 60.3 139 

R TTGATGGCAACAATATCCAC 60.8 

Hexokinase2 

(HK2) 

F GAAAGCAACTGTTTGAGAAG 56.7 162 

R CAATGTCTGAGATGTCTTTGG 59.8 

Pyruvate kinase 

isoenzyme M2 

(PKM2) 

F ATGTTGATATGGTGTTTGCG 60.9 142 

R ATTTCATCAAACCTCCGAAC 
60.4 

Lactate 

dehydrogenase 

A (LDHA) 

F CACCATGATTAAGGGTCTTTAC  

58.9 

 

87 

R AGGTCTGAGATTCCATTCTG 58.2 

Lactate 

dehydrogenase 

B (LDHB) 

F TTGAAAGTGCCTATGAAGTC 56.9 152 

R ATTCTCAATGCCATACATCC 
58.8 

Pyruvate 

dehydrogenase 

A1 (PDHA1) 

F CAGCACTGATTACTACAAGAG 54.2 120 

R CCCTTCCCAGATCTACAATAG 
59.1 

Pyruvate 

deshidrogenase 

B (PDHB) 

F GAGGTGATAAATATGCGTACC 57.6 92 

R CCTTCCACAGTTACAAGATG 
57.2 

Pyruvate 

dehydrogenase 

X (PDHX) 

F GCAAATGCCAGATGTTAATG 60.6 147 

R GCAATTTCCTGGATACCTTTAG 
60.4 

ATP citrate 

lyase (ACLY) 

F TGTAGTGACCAAAGATGGAG 57.7 81 

R TTCACTTTGCAGATGTAGTC 55.3 

Acyl-Coa 

synthetase short 

chain family 

member 2 

(ACSS2) 

F GCTCAAGAAGCAGATTAGAG 56 137 

R CATGGTCATTCTGAGCAATC 

60.7 
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Carnitine 

palmitoyltransfe

rase 1A 

(CPT1A) 

F AAGTTTTATCTGAGCCTTGG 57.5 195 

R AGAACTTGGAAGAAATGTGG 

58.2 

Monocarboxyla

te transporter 1 

(MCT1/SLC16

A1) 

F TATTGGAGTCATTGGAGGTC 59 194 

R TTAGAAAGCTTCCTCTCCATC 

59.1 

Hes family 

bHLH 

transcription 

factor 1 (Hes1) 

F GGTACTTCCCCAGCACACTT 

 

59 137 

R GAAGAAAGATAGCTCGCGG  

 

57.7  

Lymphoid 

enhancer 

binding factor 1 

(Lef1) 

F TGCCAAATATGAATTAACGAC

CCA  

 

59 151  

R GAGAAAAGTGCTCGTCACTGT 58.5 

Cytochrome c 

oxidase subunit 

6C (COX6C)  

F TTGTATAAGTTTCGTGTGGC 57.7 117 

R TACACTCTGAAAGATACCAGC 56.1 

Cytochrome c 

oxidase subunit 

7A2 (COX7A2) 

F AAATAAAGTTCCGGAGAAGC 58.9 123 

R GTTCCACCAACTGTAAGAATC 57.6 

Cytochrome c 

oxidase subunit 

7C (COX7C) 

F GAATTTGCCATTTTCAGTGG 61.9 77 

R TAGCAAATGCAGATCCAAAG 60.4 

Cytochrome c 

oxidase subunit 

4I1(COX4I1) 

F ATTGAAGGAGAAGGAGAAGG 58.9 82 

R CTCCTTGAACTTAATGCGATAC 59.3 

Cytochrome c 

oxidase subunit 

6B1 (COX6B1) 

F AAGACATGGAGACCAAAATC 58.9 149 

R AGAGATATCGCCTCCTTTAG 57.6 

ATP synthase 

F1 complex 

F ACGTTTCAATGATGGATCTG 60 111 

R TCTGCATCTGTAAGTCTCTTC 56.2 



3. RESULTS. ANEX 4 
 

141 
 

subunit alpha  

(ATP5A1) 

ATP synthase 

F1 complex, 

beta subunit 

(ATP5B) 

F TACCACCAATTCTAAATGCC 58.9 85 

R GTGCTCTCACCCAAATG 57.5 

ATP synthase 

F1 complex 

subunit epsilon 

(ATP5E) 

F CTCAGCTACATCCGATACTC 56.4 154 

R CATTTCAAGCTTTAGTCAGGG 60.3 

NADH 

ubiquinone 

oxidoreductase 

core subunit S1 

(NDUFS1) 

F TTACTTCCAGCAAGCAAATG 60.5 123 

R GAGGCTCTGCTAATTGAATC 58.1 

NADH 

ubiquinone 

oxidoreductase 

core subunit S2 

(NDUFS2) 

F GATGTTTGAGTTCTACGAGC 56.5 185 

R GATTTCGCCAGATCCTATTG 61 

Acyl-CoA 

dehydrogenase 

medium chain 

(ACADM) 

F TACTTGTAGAGCACCAAGC 55.5 118 

R GTATTTCGACGACCAGAATC 58.6 

Hydroxyacyl-

CoA 

dehydrogenase 

trifunctional 

multienzyme 

complex subunit 

alpha 

(HADHA) 

F ACTAAAACCTCCAGAGGAAC 56.4 123 

R GTCAATTTTTCCACCAATCC 60.6 
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Immunoblotting 

The cells were washed with 0.9% NaCl several times and the proteins were extracted with 

100 µl of Lysis Buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 150 mM NaCl, 0.5% 

sodium deoxycholate, 0.1% SDS, 1% IGEPAL® CA-630 in dH2O, and Proteinase 

Inhibition Cocktail Set III 1:100, Calbiochem Cat#539134,). Protein quantification was 

performed in each Western Blot using the DCTM Protein Assay (Bio Rad Cat#5000112), 

including Reagent A (#500-0113), Reagent B (#500-0114) and Reagent S (#500-0115). 

The samples were diluted in NuPAGE sample buffer (Novex, Life technologies, 

Cat#NP0007, Carlsbad, California, USA) and loaded onto a 4-12% Invitrogen NuPAGEB 

is Tris Gel (1 mm x 10 well; Novex, Cat#NP032180X, Life Technologies) followed by 

transfer onto 0.45 µm-pore nitrocellulose membranes (Inmmobilon® Transfer 

Membranes; EMD Millipore, USA) and run in an XCell Sure Lock Electrophoresis 

machine (Novex, Cat#NP0007, Life Technologies).For Western Blot analyses, we used 

anti β-ACTIN antibody (1:1000, Cell Signaling Technology Cat# 4967, 

RRID:AB_330288), anti-GAPDH antibody (1:10000, Millipore Cat# MAB374, 

RRID:AB_2107445, Missouri, USA), anti-lactate dehydrogenase A (LDH-A) antibody 

(1:10000, Santa Cruz Biotechnology Cat# sc-27230, RRID:AB_672142, Texas, USA), 

anti-lactate dehydrogenase B (LDH-B) antibody (1:1000, Thermo Fisher Scientific Cat# 

PA5-43141, RRID:AB_2609663) and anti-Hexokinase 2 (HK2) antibody (1:1000, Cell 

Signaling Technology Cat# 2106S, RRID:AB_823520). The secondary antibodies anti-

rabbit and anti-mouse (GE Healthcare Cat# NA9340-1ml, RRID: AB_772191, UK; Dako 

Cat# P0260, RRID: AB_2636929, Hovedstaden, Denmark) were added at a 1:2000 

dilution. The membranes were stripped using Red Blot (Inmmobilon® EMD Millipore 

M Cat# 2504). 

Nile Red Assay of cellular lipid content  

DPSCs cultured over glass coverslips were fixed with 4% paraformaldehyde for 10 min 

and washed with PBS. The DPSCs were then incubated for 15 min with 1µg/ml Nile Red 

(Thermo Fisher Scientific, Cat#N1142, Waltham, Massachusetts, USA) diluted in PBS, 

followed by DAPI which was used to counterstain cell nuclei. Images were captured with 

an epifluorescence Axioskop microscope (Zeiss, Germany) with a Nikon NIS-Elements 

and an Apotome Confocal Microscope (Zeiss, Germany) operated with Nikon DS-Qi1Mc 
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software (Tokyo, Japan). The fluorescence intensities in the samples were quantified by 

Fiji-ImageJ(Schindelin et al., 2012) after background subtraction. 

Cell viability and Mitochondrial Membrane Potential Assays (TMRE) and ROS 

determination 

We used Calcein-AM (5 µM, Thermo Scientific Cat#C3100MP) to detect cell presence 

and viability and Tetra Methyl Rhodamine Ethyl-ester, or TMRE (200 nM, Thermo 

Fisher Scientific Cat#T669) to provide an estimation of the mitochondrial membrane 

potential of DPSCs. In addition, we used 2, 7-dichlorofluorescein diacetate or DC-FDA 

(100µM, Thermo Fisher Scientific Cat#D399) to evaluate the production of reactive 

oxygen species (ROS) by DPSCs. As a positive control for ROS production, we used 

0.1%, 0.5% and 1.5% of H202. In these experiments, DAPI was also included as a nuclear 

counterstain. We incubated DPSCs with fluorescent dyes for 30 min at 37°C in culture 

medium and washed the cells 3 times with PBS. Fluorescence quantification was 

accomplished using microfluorimetry by measuring light emission at 495 nm (Calcein-

AM; green fluorescence), 630 nm (PI; red fluorescence), 527 nm (DCF-DA; green 

fluorescence) and 359 nm (DAPI; blue fluorescence) in a Fluoroskan Ascent plate reader 

(Thermo Scientific). Data are plotted as normalized mean ± SEM of TMRE/Calcein and 

mean ± SEM of DCF-DA/DAPI fluorescence to compensate for differences in cell 

density in the reading field. 

Alamar Blue detection 

Alamar Blue (Thermo Fisher Scientific Cat#DAL1025) was used to detect cell viability 

and estimate the cellular reducing power of DPSCs. Alamar Blue was diluted 1:10 and 

absorbance was read at 600 nm (reduced state) in a Fluoroskan Ascent plate reader or in 

a Nanodrop Synergy HT (Biotek) run with Microplate Software: Biotek Gen5 Data 

Analysis Software(Biotek). 

NAD+/NADH Detection Kit 

This assay was performed using a NAD+/NADH Kit (Sciencell Research Laboratories, 

Cat#8368). Previously, non-specific proteins of the DPSC samples were eliminated by an 

Amicon Ultra-0.5 Centrifugal Filter Unit with Ultracel-10 membrane (Millipore 

Cat#UFC501008). Absorbance was measured at 490 nm with an ELISA plate reader in 

Nanodrop Synergy HT (Biotek) with Microplate Software: Biotek Gen5 Data Analysis 

https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/
https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/
https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/


3. RESULTS. ANEX 4 
 

144 
 

Software (Biotek). The NAD/NADH ratio was calculated following the manufacturer’s 

instructions. 

Statistical analyses  

Statistical analyses were performed with Microsoft Excel, IBM SPSS Statistics v.9 

(SPSS, Chicago, IL, USA) and Graph Pad v.6 software (Graph Pad Inc., USA). All data 

sets were subjected to a Kolmogorov-Smirnov normality test prior to analysis. For small 

sample sizes, non-parametric tests were chosen by default. Comparisons between only 

two groups were made using U-Mann Whitney test. Comparisons between multiple 

groups were made using Kruskal-Wallis followed by Dunn´s post hoc test. P ≤0.05 was 

considered to be statistically significant. 

  

https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/
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RESULTS 

Notch activity is required for the maintenance of glycolytic metabolism of DPSCs 

In a previous report (Uribe-Etxebarria et al., 2017), it was characterized that Notch 

inhibition by DAPT treatment (2.5 µM for 48 h) decreased stemness of DPSCs. Here we 

wanted to assess whether such inhibition induced also changes at metabolic level by 

assessing the presence of cellular metabolites using nuclear magnetic resonance (NMR). 

Thus, it was found that DAPT significantly affected the levels of intracellular lactate 

(54.02% ± 14.90%; p= 0.002), glucose (163.96% ± 13.04%; p=0.037) and 

glycerophosphocoline or GPC (57.45% ± 12.63%; p=0.04) in DPSCs (Figure 1. A).  

Following DAPT treatment, glucose was more accumulated in DPSCs, whereas the levels 

of lactate were found to be significantly lower than in control samples. The levels of 

aminoacids (glutamate, glutamine), and metabolites involved in membrane phospholipid 

turnover (choline, phosphocholine PC, GPC) were not either not affected or decreased in 

DPSCs after DAPT treatment (Figure 1. A). In addition, transcript mRNA expression 

analysis for some key protein enzymes of the glycolytic and mitochondrial metabolism 

Hexokinase 2 (HK2) and Pyruvate Dehydrogenase B and X (PDHB, PDHX) were all 

found to be negatively affected by the exposition to DAPT (Figure 1. B). The expression 

of the mitochondrial fatty acid carrier CPT1A (Carnitine palmitoyl transferase) and the 

plasma membrane monocarboxylate transporter SLC16A1/MCT1 was downregulated at 

mRNA level when the DPSCs were treated with DAPT (Figure 1. B). Lactate 

Dehydrogenase A (LDHA) and Lactate Dehydrogenase B (LDHB) gene expression levels 

also underwent a decrease of more than 50% with respect to the control conditions (Figure 

1. B). Finally, WB also confirmed these changes, where LDHA, LDHB and HK2 had a 

consistently reduced expression also at the protein level in DPSCs (Figure 1. C). 
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Figure 1. Notch inhibition by DAPT affects glycolytic metabolism in DPSCs. (A): NMR analysis 

revealed differences in the levels of Lactate, GPC and Glucose following DAPT exposure. (B): Q-PCR 

analysis confirmed a decrease in HK2, LDHA, LDHB, SLG16A1, PDHB and CPT1A expression between 

the control (DMSO) and DAPT conditions. Data are normalized to reference β-ACTIN and GAPDH levels 

and presented as the mean +SEM (n=6). The dashed line represents normalized gene expression to control 

conditions. (C): Representative WB showing LDHA, LDHB and HK2. β-ACTIN was used as protein 

loading control. *: p<0.05;**: p<0.01;***: p<0.001. U-Mann Whitney test. 
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BIO-induced Wnt activation increases glucose utilization and the expression of 

genes promoting mitochondrial TCA activity and lipid biosynthesis in DPSCs  

To investigate whether Wnt/β-catenin activation would affect metabolism in DPSCs, we 

used a 2.5 µM BIO treatment for 48 h to overactivate Wnt signaling by inhibiting β-

catenin degradation, as this had been previously associated to an increase in DPSC 

stemness(Uribe-Etxebarria et al., 2017). By NMR we observed that treatment with BIO 

induced a significant reduction in the levels of glucose (14.2% ± 2.2%; p=0.037), and 

glutamine (41.4% ± 9.1%; p =0.002) and increased the cellular amount of GPC (240.7% 

± 66.9%; p =0.037) (Figure 2A). In addition, Wnt activation also induced the 

overexpression of several genes involved in: (i) glycolysis, pyruvate kinase isozyme M2 

(PKM2); (ii) mitochondrial acetyl-coA biosynthesis, pyruvate dehydrogenase B (PDHB); 

(iii) cytosolic acetyl-coA biosynthesis, ATP-citrate lyase (ACLY); and (iv) cytosolic fatty 

acid synthesis, Acyl-coA synthetase short-chain family member (ACSS2). It was 

noteworthy that while ACLY was overexpressed, the expression of the mitochondrial 

fatty acid transporter CPT1 was also significantly upregulated at transcript level as well 

(Figure 2B). There was no cellular accumulation of lactate in BIO-treated DPSCs (Figure 

2A). However, in these conditions there was a clear upregulation of LDHB and PDHB, 

and a downregulation of LDHA transcript expression (Figure 2B). The expression of 

SLC16A1/MCT1was also significantly enhanced at mRNA level in DPSCs following BIO 

treatment (Figure 2B). We also tested the expression of enzymes LDHA, LDHB and HK2 

by WB. We confirmed previous findings by detecting increased levels of LDHB and 

decreased levels of LDHA, whereas no significant changes were observed in HK2 in BIO-

treated DPSCs (Figure 2C). 
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Figure 2. Wnt activation by BIO increases glucose utilization and the expression of enzymes involved 

in mitochondrial TCA metabolism and lipid biosynthesis in DPSCs. (A): NMR analysis revealed 

differences in the levels of Lactate, Glutamine, GPC and Glucose following BIO exposure. (B): Q-PCR 

analysis confirmed an increase in PKM2, LDHA, LDHB, PDHA, PDHB, SLG16A, ACSS2, ACLY and 

CPT1A expression between control (MBIO) and BIO conditions. Data are normalized to reference β-ACTIN 

and GAPDH levels, and presented as the mean +SEM (n=6). The dashed line represents normalized gene 

expression to control conditions. (C): Representative WB showing an increase in LDHB, while no changes 

were observed in LDHA or in HK2 protein expression. β-ACTIN was used as a protein loading control. *: 

p<0.05;**: p<0.01;***: p<0.001. U-Mann Whitney test. 
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Exposure to human recombinant WNT-3A for 48 h increases glucose utilization and 

the expression of genes promoting mitochondrial TCA activity and lipid biosynthesis 

in DPSCs 

 

To ensure that the effects induced by BIO could be specifically attributed to the activation 

of canonical Wnt signaling pathway (Famili et al., 2015; Zhang et al., 2009) we also used 

WNT-3A, a well-described prototypical canonical Wnt activator ligand. After treatment 

of DPSCs with WNT-3A, we observed some of the same effects found following BIO 

treatment, with a higher consumption of glucose (64.8% ± 11.7%; p =0.004) and 

glutamate (68.2% ± 3.1%; p =0.003, respectively) with respect to control DPSC levels. 

We also found an increase in choline consumption (22.4% ± 15.2%; p =0.036), although 

the levels of PC and GPC were not significantly affected (Figure 3A). By qPCR we 

detected an upregulation in the expression of some key gene markers for glycolysis 

(HK2), TCA cycle (PDHB), lactate transporter (SLC16A1/MCT1), pyruvate synthesis 

(LDHB), and acetyl-coA and fatty acid biosynthesis (ACLY; ACCSS2 respectively) in 

DPSCs (Figure 3B). Most of these changes were consistent with what was observed in 

BIO conditions. CPT1A gene expression was again found to be significantly increased. 

Assessment of protein expression levels for LDHA, LDHB and HK2 by WB also 

confirmed a clear upregulation of HK2 and LHDB enzymes, in WNT-3A treated DPSCs 

(Figure 3C).  
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Figure 3. Wnt activation by WNT-3A increases glucose utilization, and the expression of enzymes 

involved in TCA metabolism and lipid biosynthesis in DPSCs. (A) NMR analysis revealed differences 

in the levels of Glutamate, Choline and Glucose following WNT-3A exposure. (B) Q-PCR showing relative 

differences on expression of HK2, PKM2, LDHA, LDHB, PDHB, SLC16A1, ACSS2, ACLY and CPT1. Data 

are normalized to reference β-ACTIN and GAPDH levels and represented as the mean +SEM (n=6). The 

dashed line represents normalized gene expression to control conditions. (C) Representative WB showing 

an increase in LDHB and HK2, while no changes were observed in LDHA. β-ACTIN was used as a protein 

loading control. *: p<0.05;**: p<0.01;***: p<0.001. U-Mann Whitney test. 
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Wnt activation increases cellular reducing power and the amount of NAD+ and 

NADH in DPSCs 

As the metabolic and gene expression profile of DPSCs was altered after Wnt/Notch 

modulation, we tested whether the overall reducing power of DPSCs would be affected 

in these conditions as well. To asses this hypothesis, firstly, we measured the levels of 

reduced NADH and oxidized NAD+ in DPSC cultures subjected to DAPT/BIO/WNT-

3A treatments. We found that reduced NADH levels increased significantly when DPSCs 

were exposed to the recombinant protein WNT-3A, compared to controls (2.3 µM ± 0.1 

µM; p =0.018). The levels of the oxidized NAD+ form were also found to be increased, 

suggesting that this reducing power was being actively used by the cells (Figure 4A). 

NADH levels were not affected in DAPT-treated cells, and they were found to be 

increased, although not significantly (p =0.105), in BIO-treated cells (Figure 4A). Then, 

as a confirmation for these results, we used Alamar Blue to assess the overall reducing 

power of DPSCs subjected to different treatments (Figure 4. B). Alamar Blue is a general 

indicator of cellular reducing power because it can react with different reduced nucleotide 

species such as NADPH, NADH and FADH2. Quantification of Alamar Blue absorbance 

determined that BIO (193.2% ± 22.7%; p =0.046) and WNT-3A-treated DPSCs (276.9% 

± 24.3%; p =0.024) presented an increased reducing power respect to control conditions, 

whereas the reducing power was significantly lower in DPSCs treated with DAPT (30.7% 

± 14.3%; p = 0.001). 

Wnt activation induces hyperpolarization of mitochondria of DPSCs 

To study whether Notch and Wnt signaling could also affect the energetic state of 

mitochondria, we first assessed the mitochondrial potential by measuring the uptake of 

the fluorescent cationic lipid species tetramethyl-rhodamine ethyl ester (TMRE) by live 

DPSCs that were treated with DAPT, BIO and WNT-3A. Incubation with 200 nM TMRE 

revealed the mitochondrial morphology and localization in DPSCs in red fluorescence. 

TMRE fluorescence was increased in BIO and WNT-3A treated DPSCs (Figure 5A, B, 

C). The increased TMRE uptake was confirmed by fluorescence quantification (Figure 

5D). Thus, WNT-3A-treated DPSCs increased significantly their mitochondrial 

membrane potential with respect to control DPSCs (124.7% ± 1.1%; p =0.022) (Figure 

5D). However, results of DC-FDA assays did not show any significant differences in ROS 

production after these treatments. Normalized DC-FDA fluorescence levels in treated 
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DPSCs with respect to controls were 83.3% ± 14.3% for BIO and 91.5% ± 15.1% for 

WNT-3A, respectively (n = 20). Instead, following treatment with 0.5%, 1% and 1.5% 

H2O2 (30 min) the DC-FDA signal in DPSCs was more than four-fold higher  for 0.5% 

H2O2 (430% ± 29%), and was more than two orders of magnitude increased in the other 

two conditions (23092% ± 161.7% ; 26070% ± 126%). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Wnt activation increases reducing power in DPSCs. (A): NADH and NAD+ assay revealed 

differences in the cellular concentration of NADH and NAD+ in DPSCs following DAPT, BIO and WNT-

3A exposure. (B): Alamar Blue detection confirmed that reducing power in DPSCs was higher in BIO and 

WNT-3A conditions. (C): Quantification of Alamar Blue detection at 600 nm in DMSO, DAPT, MBIO, 

BIO and WNT3-A-treated DPSCs. Data are presented as the mean +SEM (n=6). *: p<0.05;**: p<0.01;***: 

p<0.001. U-Mann Whitney test. 
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Figure 5. Wnt activation hyperpolarizes mitochondria and increases the levels of mRNA expression 

of ETC subunits, but not ATP synthase subunits, in DPSCs (A, B, C): TMRE-loaded DPSCs grown 

with DMSO, BIO and WNT-3A treatment for 48 h. Scale bar: 20 µm. (D): Quantification of relative 

TMRE/Calcein fluorescence. Data are presented as mean+ SEM (n =12). (E, F, G): Q-PCR showing 

relative differences in Cytochrome c Oxidase subunits (COX4A1, COX6C, COX7A2 AND COX7C), ATP 

synthase subunits (ATP5A1, ATP5B and ATP5E), and NADH-Ubiquinone Oxidoreductase subunits 

(NDUFS1 and NDUFS2). Data are normalized to reference β-ACTIN and GAPDH levels and represented 

as the mean +SEM (n=6). *: p<0.05;**: p<0.01;***: p<0.001. U-Mann Whitney test. 
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Wnt activation induces the overexpression of mitochondrial electron transport 

chain (ETC) genes, but not ATP synthase genes in DPSCs 

In order to estimate ETC activity in Wnt-activated DPSCs we tested the expression of 

some genes coding for some mitochondrial ETC complex subunits by qPCR. We 

observed increased levels of transcript expression in most of the cytochrome C oxidase 

(complex IV) subunits tested: COX4A.i1, COX6c, COX7a and COX7c, and also in the 

NADH-Ubiquinone oxidoreductase (complex I) subunits NDUFS1 and NDUFS2 in 

DPSCs treated with BIO and/or WNT-3A (Figure 5E, F). Interestingly, some of these 

subunits were also upregulated in the case of DAPT treatment (Figure 5E, F). Finally, the 

assessment of expression levels of mitochondrial ATP synthase subunits ATP5a, ATP5e 

and ATP5b provided us with information about the utilization of the mitochondrial proton 

gradient to produce ATP. Interestingly, there was no increase in the expression of ATP 

synthase subunits in either BIO or WNT-3A treated DPSCs (Figure 5G), despite a clear 

upregulation of the expression of ETC complexes and an increased mitochondrial 

membrane potential in these conditions. A significant increase in ATP synthase subunit 

expression was only found in cells treated with DAPT (Figure 5G).  

Wnt activation promotes lipid biosynthesis and accumulation in DPSCs 

In order to assess whether the treatments with DAPT, BIO and WNT-3A were inducing 

changes in the cytoplasmic lipid content in DPSCs, we performed a Nile Red staining. 

The treatment with WNT-3A significantly increased lipid accumulation in DPSCs, almost 

twice as much comparing to control (180 % ±19.4%; p =0.005) (Figure 6C, G). As a 

positive control, we used sister cultures of DPSCs which underwent an adipogenic 

pharmacological treatment, which presented a roughly three-fold increase in Nile Red 

fluorescence compared to the non-treated cells (Figure 6F, G). Cells treated with DAPT 

showed a non-significant reduction in Nile Red staining (Figure 6B, G). 
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Figure 6. Wnt activation promotes both lipid biosynthesis and oxidation in DPSCs. (A, F): Nile Red 

Staining revealed differences in the accumulation of lipid droplets under BIO and WNT-3A exposure. Scale 

bar=20 µm. (G):Bar chart showing relative fluorescence of Nile Red lipid droplets in DMSO, DAPT, 

MBIO, BIO and WNT-3A conditions. (H): Q-PCR analysis showed an increase in ACADM and HADHA 

expression in WNT-3A and BIO–treated cells. The data are normalized to reference β-ACTIN and GAPDH 

levels and presented as the mean +SEM (n=6). *: p<0.05;**: p<0.01;***: p<0.001. U-Mann Whitney test. 
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Wnt-activated DPSCs overexpress β-oxidation enzymes at mRNA level 

Mitochondrial β-oxidation of fatty acids provides for molecules of acetyl-coA ready to 

enter the TCA cycle, while simultaneously generating reducing power (Giudetti et al., 

2016). A limiting step in this process is the transport of fatty acids to mitochondria, which 

is catalyzed by the carnitine shuttle, in which CPT1 critically participates. Since we had 

demonstrated that DPSCs treated with BIO or WNT-3A accumulated cellular lipids while 

also significantly overexpressed CPT1 at mRNA level, we examined whether transcript 

expression for β-oxidation enzymes would also be somehow affected in these conditions. 

Interestingly, an upregulation of expression was found for Acyl-coA dehydrogenase 

medium chain (ACADM) and Hydroxyacyl-CoA dehydrogenase (HADHA) genes in BIO 

and WNT-3A-treated DPSCs (Figure 6H).  

DISCUSSION 

DPSCs are a promising source of pluripotent-like stem cells for cell therapy, which apart 

from being easily accessible, possess a significant capacity for in vitro expansion, have 

non-tumorigenic phenotypes and a greater multi-lineage differentiation potential than 

other tissue-specific stem cells (Atari et al., 2012; Kerkis et al., 2006; Rosa et al., 2016). 

Compared to Pluripotent Stem Cells (PSCs), Embryonic Stem Cells (ESCs) and induced 

Pluripotent Stem Cells (iPSCs), DPSCs do not pose ethical or safety issues. In a previous 

report, we demonstrated that the stemness of DPSCs could be enhanced by a controlled 

activation of Notch/Wnt signaling pathways, which are functionally interconnected in 

these cells. Thus, a short (48 h) pharmacological Wnt activation by BIO or WNT-3A 

caused an important increase in the expression of pluripotency core factors in DPSCs 

(Uribe-Etxebarria et al., 2017). This kind of gentle approach to enhance stemness without 

relying on traditional nuclear reprogramming methods may prove beneficial to fully 

exploit the capabilities of DPSCs and other tissue-specific stem cells. 

Over the last few years, metabolism has entered the stage as a fundamental regulator of 

pluripotency (Folmes et al., 2011; Mathieu and Ruohola-Baker, 2017). In fact, activation 

of glycolysis pathways is known to enhance somatic cell reprogramming efficiency 

(Folmes et al., 2012) and pharmacological activation of glycolysis, in combination with 

other small compounds, allows for a reduction of the traditional recipe of Yamanaka 

factors for nuclear reprogramming to a simplified version containing just OCT-4 (Zhu et 

al., 2010). Consistently, pharmacological inhibition of glycolysis results in a reduced 
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reprogramming efficiency (Folmes et al., 2011). This evidence illustrates how metabolic 

plasticity can facilitate (or impair) stemness. In fact, the differentiation of pluripotent cells 

and the reprogramming of somatic cells often involve metabolic switches at very early 

stages, before changes in phenotype and/or the expression of pluripotency core factors 

can be yet observed (Folmes et al., 2011). 

The current prevailing view acknowledges that fully differentiated cells rely mainly on 

mitochondrial oxidative phosphorylation to meet their energy demands, while non-

committed PSCs primarily use glycolysis and production of lactate. This metabolic 

signature was first described in cancer cells as “The Warburg Effect” (Vander Heiden et 

al., 2009; Warburg, 1956), and it was later consistently observed in both ESCs and 

iPSCs(Mathieu and Ruohola-Baker, 2017; Varum et al., 2011). Following DAPT 

treatment, glucose was accumulated in DPSCs, suggesting a lower utilization of this 

primary fuel for glycolysis. Consistently, also the levels of lactate were found to be 

significantly lower than in control samples. Interestingly, despite being the glycolysis 

inhibited, glutamine and glutamate were not being used as alternative source of energy 

following DAPT treatment, since the levels of these aminoacids were not changed, with 

respect to control DPSCs. 

In Wnt-activated DPSCs, we observed an upregulation of glycolysis after 48 h. This was 

characterized by a decrease in cellular glucose levels, assessed by NMR, and an increased 

expression of glycolytic enzymes at both mRNA and protein level. However, WNT-3A 

treated DPSCs did not show the portrait of a classic Warburg effect, since most of the 

glucose appeared to be directed to pyruvate and mitochondrial acetyl-coA synthesis, 

rather than towards the production of lactate. In fact, lactate levels were not increased at 

all in Wnt-activated DPSCs. Furthermore, we found an overexpression of the membrane 

transporter SLC16A1/MCT1, suggesting that lactate might even be taken up by DPSCs 

as an alternative source of pyruvate. The overexpression of the lactate-to-pyruvate 

converter enzyme LDHB and the downregulation of expression of its antagonistic 

enzyme LDHA, at both gene and protein levels, during both BIO and WNT-3A treatment 

seem to add strong support to this view. 

If Wnt-activated DPSCs were driving an enhanced glycolytic input to feed the 

mitochondrial TCA cycle, as also suggested by the overexpression of mitochondrial PDH 

complex subunits, and the accumulation of cellular reducing power (NADH), then the 

question became: with what purpose? It seemed that at least some of this reducing power 
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was being used by the mitochondrial ETC, as suggested by the increased expression of 

some key Complex I and Complex IV subunits. Consistently, mitochondria were 

hyperpolarized in DPSCs exposed to BIO and WNT-3A, with an about 25% increased 

uptake of TMRE. However, this mitochondrial hyperpolarization did not came along with 

a concomitant increase in the expression of ATP synthase subunits, which suggested that 

the accumulation of reducing power in these conditions was not being primarily used to 

synthesize more ATP. The observation of mitochondrial hyperpolarization is interesting, 

since this has also been observed in other PSCs (Folmes et al., 2011). The mitochondrial 

potential magnitude has been reported to be predictive of the stemness of ESCs, where 

populations of high-mitochondrial potential ESCs were more prone to generating 

teratomas after transplantation, whereas low-mitochondrial potential ESCs were found to 

be pre-committed for somatic differentiation (Schieke et al., 2008). 

Recent evidence showed that maintenance of a high mitochondrial membrane potential is 

required for a burst in reactive oxygen species (ROS) generation which regulates cell 

proliferation by hypoxia inducible factor (HIF) expression (Martinez-Reyes et al., 2016). 

However, in our DPSC cultures we could not detect any significant increase in ROS 

production by DC-FDA fluorimetric assays after treatment with BIO or WNT-3A. 

Interestingly, experiments of somatic cell reprogramming to PSCs at very early stages 

showed that the increase in glycolysis associated with nuclear reprogramming was at first 

accompanied by a burst in ETC activity, before switching to a classic Warburg-like 

glycolytic metabolism (Hawkins et al., 2016; Kida et al., 2015). In our experimental 

model, DPSCs were exposed to Wnt activators and the cell phenotype was assessed short-

term, after only 48 h, a time frame which could easily correspond with such early 

reprogrammed cells. Other studies have reported that a functional ETC is essential for 

maintaining pluripotency (Zhang et al., 2016a), and that disruption of mitochondrial 

dynamics could directly impact reprogramming efficiency (Facucho-Oliveira et al., 2007; 

Vazquez-Martin et al., 2012). Altogether, mitochondrial changes in our model of DPSCs 

seem to correspond with a stemness-associated metabolic plasticity, although a possible 

involvement of ROS signaling in this context should be further clarified. 

Accumulation of reducing power in DPSCs renders cells “hyper-energetic”, with a high 

capacity for cellular biosynthesis. TCA cycle intermediaries such as citrate and 

oxaloacetate are used for the de novo synthesis of lipids and nucleotides, which could 

provide cells with a source of energy and metabolites when differentiation signals begin 



3. RESULTS. ANEX 4 
 

159 
 

(Chandel et al., 2016). In fact, another of the most interesting findings of the present work 

is that DPSCs were accumulating cytoplasmic lipid droplets after Wnt activation, as 

assessed by Nile Red staining. Lipid biosynthesis requires cytosolic acetyl-coA, which is 

primarily derived from a cytosolic export of mitochondrial citrate, to provide for an 

increase in cellular reducing power and release of biosynthesis metabolites in a process 

known as cataplerosis (Owen et al., 2002). Then, a critical metabolic reaction is catalyzed 

by the ACLY enzyme, which transforms this citrate to acetyl-coA, thus linking 

carbohydrate and lipid metabolism (Wellen et al., 2009). Importantly, ACLY expression 

was found to be clearly upregulated in DPSCs after BIO and WNT-3A treatment. In this 

context, the accumulation of cytosolic acetyl-coA could serve two main purposes: first 

(i), to provide a primary substrate for lipid biosynthesis, and second (ii) to provide a 

substrate for histone acetylation, which has been shown necessary to maintain 

pluripotency (Moussaieff et al., 2015b). In fact, compelling evidence indicates that during 

early stages of differentiation of human ESCs, cytosolic acetyl-coA levels drop and this 

was associated with histone deacetylation and spontaneous cell differentiation. In 

contrast, a rise of cellular acetyl-coA levels was linked with maintenance of pluripotency 

(Moussaieff et al., 2015b). 

Thus, in view of our results and despite the fact that we could not actually measure acetyl-

coA levels in our model, in all likelihood cataplerosis was occurring in DPSCs after Wnt-

activation. This would clearly support lipid biosynthesis as storage of fuel reserves to 

prepare for subsequent differentiation stimuli demanding a fast production of ATP and 

metabolites, but additionally, it could also mediate histone acetylation related to an 

enhanced stemness(Martinez-Reyes et al., 2016; Moussaieff et al., 2015a). Interestingly, 

together with an increased lipid biosynthesis, we detected reduced levels of glutamate and 

glutamine in Wnt-activated DPSCs, indicating compensatory anaplerosis to sustain high 

TCA cycle activity levels. Finally, some of the fatty acids generated by DPSCs after Wnt 

activation were also being transported to mitochondria for β-oxidation, as suggested by 

the increased expression of CPT-1 and other genes (ACADM, HADHA) coding for β-

oxidation enzymes. These results feature a complex and coordinated cycle of cataplerosis 

and anaplerosis to support the activity of the mitochondrial TCA cycle, and thus generate 

a large reducing power and a mitochondrial hyperpolarization in DPSCs. The main 

findings of the present work are summarized in Figures 7 and 8.  
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Figure 7. Representation of metabolic pathways and steps affected during Wnt activation in DPSCs. 

Wnt signaling activation by either BIO or WNT-3A increases glucose consumption by overexpression of 

glycolytic enzymes HK2 and/or PKM2. LDHA and LDHB participate in lactate to pyruvate conversion. 

LDHB is overexpressed while LHDA is downregulated in Wnt activated DPSCs. Pyruvate dehydrogenase 

complex subunits are also upregulated in BIO/WNT-3A treated DPSCs, thus fueling the mitochondrial 

TCA cycle. These “hyper-energized” DPSCs show a net accumulation of lipids and a mitochondrial 

hyperpolarization. Overexpression of cytosolic ACLY and ACSS2 enzymes suggests cataplerosis leading 

to cytosolic accumulation of acetyl-coA, which can be then used for lipid biosynthesis. Meanwhile, 

mitochondria consume amino acids such as glutamine and glutamate to replenish TCA metabolites in a 

coordinated cycle of cataplerosis and anaplerosis. Cytosolic fatty acids also appear to participate in this 

process, as suggested by the overexpression of CPT1 and β-oxidation enzymes at mRNA level. DPSCs 

reprogrammed with BIO or WNT-3A thus show a boost in glycolysis without the characteristic lactate 

accumulation observed in the classic Warburg effect.  
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Figure 8. The modulation of DPSC stemness by Notch and Wnt signaling comes associated with a 

deep metabolic remodeling.Wnt-activated DPSCs show an atypical Warburg effect, boosting glycolysis 

but also mitochondrial TCA activity. DPSCs in these conditions accumulate large amounts of reducing 

power, and cytoplasmic lipids. Understanding metabolic changes linked to DPSC reprogramming could be 

of great interest to make the best use of DPSCs for cell therapy. 
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CONCLUSIONS 

In conclusion our data show that enhancement of DPSC stemness by short-term Wnt 

signaling activation for 48 h comes along with a profound metabolic remodeling, 

featuring a boost of glycolysis but also of mitochondrial TCA activity. This metabolic 

plasticity bears some resemblance with other models of somatic cell reprogramming at 

very early stages, where a distinct involvement of mitochondrial potential and oxidative 

phosphorylation have also been reported, in contrast to the classically portrayed Warburg 

effect featured by lactate accumulation. We associate these changes to a transient hyper-

energetic priming stage, where DPSCs accumulate a large reducing power for 

biosynthesis. Interestingly, DPSCs also generated cytoplasmic lipid reserves, a process 

likely associated with cataplerosis. Altogether, we showed that the increase in 

pluripotency core factor expression observed after Wnt activation in DPSCs was mirrored 

by important changes in both glycolytic and oxidative metabolism, suggesting that 

stemness and metabolic plasticity are intimately related. A characterization and 

modulation of these metabolic changes could be of great interest to make the best use of 

DPSCs and their stemness/differentiation capabilities regarding cell therapy. 
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ABSTRACT 

Dental Pulp Stem Cells (DPSCs) from adult teeth express core transcription factors, 

such as cMyc, Oct4a, Nanog and Sox2. The possibility to boost the natural stemness 

features of DPSCs and be able to determine pluripotent state by fast methods like Mass 

Spectroscopy, might convert actual reprogramming methods more suitable and safety 

for cell therapy. Canonical Wnt and Notch are two highly conserved developmental 

signaling pathways that are involved in pluripotent markers expression.  We determine 

that both pathways regulate the expression of core factors but only Wnt signaling alter 

significantly cell cycle progression. The enhanced expression of pluripotent markers is 

also linked with epigenetic remodeling during reprogramming. Pharmacological 

inhibition of the Notch pathway by the γ-secretase inhibitor DAPT for 48 hours 

abolished the expression of core factors together. Conversely, pharmacological 

activation of the Wnt pathway, by either the GSK3-β inhibitor BIO or human 
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recombinant protein WNT-3A for 48 hours, largely increased the expression of core 

factors together with an increased cell cycle progression, DNA hipomethylation and 

histones acetylation and methylation. Efficiency of DPSCs to be reprogrammed could 

rely on epigenetic barrier, and these epigenetic studies give more information about how 

epigenetic barrier could be defeat for an optimal reprogramming. These results show 

that activation of Wnt signaling by small molecule WNT-3A enhances the stemness, 

cell proliferation and plastic of epigenetic barrier allowing safety methods and more 

efficient than precious ones and Mass Spectroscopy could be useful to optimize the 

therapeutic use of these and other tissue-specific stem cells.  

Keywords: dental pulp stem cells, epigenetics, pluripotency core factors, methylation, 

acetylation, histones, reprogramming, stemness and differentiation, Notch, Wnt, BIO, DAPT, 

WNT-3A. 
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INTRODUCTION 

Dental Pulp Stem Cells or DPSCs arises from neural crest (NC) to generate most 

craniomaxillofacial tissues (Aurrekoetxea et al., 2015; Gronthos et al., 2002; Gronthos 

et al., 2000; Ibarretxe et al., 2012; Janebodin et al., 2011; Kaukua et al., 2014; Liu et 

al., 2015). Interestingly, DPSCs present some advantages with respect to other 

multipotent stem cell populations of the adult human body (Atari et al., 2011; Atari et 

al., 2012; Rosa et al., 2016) such as the expression of the core pluripotent factors Oct4a, 

Sox2, Klf4, Lin28, SSEA1 and Nanog (Atari et al., 2012; Ferro et al., 2012; Janebodin 

et al., 2011; Kerkis et al., 2006; Rosa et al., 2016; Uribe-Etxebarria et al., 2017). Those 

all factors are fundamental to maintaining stem cell pluripotency (Chambers and 

Tomlinson, 2009; Hackett and Surani, 2014; Takahashi et al., 2007; Young, 2011; Yu et 

al., 2007). The use of DPSC could also be very relevant to cell therapy because stem 

cells from dental tissues are known to be easily accessible for extraction, well-tolerated 

upon grafting due to their immune-suppressive properties (Pierdomenico et al., 2005), 

non-tumorigenic (Wilson et al., 2015) and are also suitable for autologous therapy 

(Ibarretxe et al., 2012; Kellner et al., 2014; Wu et al., 2015).  

Somatic cells can be reprogrammed into a pluripotent state by ectopic expression of 

Oct4, Sox2, Klf4 and cMyc. This suggests promising treatments for many human 

diseases and regeneration issues. However, this reprogramming method is not efficient 

at all because of the restrictions of epigenetic barrier (Polo et al., 2012; Takahashi and 

Yamanaka, 2006). Therefore, the study of these multiple epigenetic modifications 

during the differentiation of stem cells could be of suitable importance. Moreover, some 

authors have demonstrated the higher efficiency of DPSCs compared to other stem cells 

for reprogramming due to the similar methylation pattern to Pluripotent Stem Cells or 

PSCs (Thekkeparambil Chandrabose et al., 2018). 

The epigenome of stem cells is slightly different from the genome of differenciated 

stem cells. Stem cells present a genome in euchromatic conformation whereas the 

genome of somatic stem cells is enriched in the heterochromatic conformation (Boyer et 

al., 2005; David et al., 2011; Wang et al., 2013).  Currently, it is known that DNA 

methylation levels are low in pluripotent stem cells both in vitro and in vivo (Nashun et 

al., 2015; Polo et al., 2012). In PSCs acetylation weakened DNA interaction with 

lysines (K) of histones leading to the unfolding of chromatin and activation of gene 
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transcription (Tessarz and Kouzarides, 2014). Contrarily, loss of acetylation, catalyzed 

by histone deacteylases (HDACs), leads to heterochromatin conformation, favouring the 

repression of transcriptional activity (Marmorstein and Zhou, 2014). As for histone 

modifications, general description attributes H3K4me3 as an activator mark whereas 

H3K9me3 and H3K27me3 to repressive mark associated with transcriptional silencing 

(Zhou et al., 2011).  

DNA methylation profile of Dental Pulp Stem Cells is remarkably stable in human 

tissues. Interestingly, it has been described that an inhibitor of DNA methyltransferase 

diminishes global DNA methylation in Periodontal Ligament Stem Cells (PDLSCs), 

interestingly involving Wnt-βCatenin activation (Liu et al., 2016). This experiment at 

same concentration was performed in DPSCs and it was shown to increment of 

odontogenic differentiation potential (Zhang et al., 2015). Regarding other epigenetic 

marks, such as acetylation, it has been shown that p300, a well-known histone acetylase 

or HAT, seems to play an important role in maintaining stemness of DPSCs. P300 

increased transcript levels of NANOG and SOX2 and maintained lower expression 

levels of odontoblastic differentiation markers (Wang et al., 2014). Moreover, different 

types of histone deacetylases or HDACs such as HDAC1, HDAC2, HDAC3, HDAC4 

and HDAC9 act as important accelerator of odontoblast differentiation (Jin et al., 2013; 

Klinz et al., 2012; Paino et al., 2010). Histone marks in DPSCs revealed that H3K4me3 

and H3K9me3 are the most prominent in DPSCs (Gopinathan et al., 2013). During 

differentiation, early mineralization genes are enriched with H3K4me3 whereas 

H3K27me3 and H3K9me3 are higher in late mineralization genes (Gopinathan et al., 

2013). Interestingly, one demethylase, is responsible for H3K27me3 removing which 

contributes to odontogenic/osteogenic differentiation of DPSCs (Hoang et al., 2016). 

All of these results indicate an important regulatory circuit involving histone 

modifications that are crucial in determining cell fate in DPSCs. Despite some progress, 

the epigenetic code and consequent pleiotropic effects that drive DPSCs into specialized 

cell lineages is something little known. 

The canonical Notch and Wnt signaling pathways are critical for the maintenance of the 

stem cell phenotype (Androutsellis-Theotokis et al., 2006; Borghese et al., 2010; 

Clevers et al., 2014; Perdigoto and Bardin, 2013; Reya and Clevers, 2005) and the 

inhibition of differentiation in many stem cell types, including DPSCs (Mizutani et al., 

2007; Scheller et al., 2008; Yiew et al., 2017). It is known that dental stem cells present 
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higher levels of core factors and Wnt/Notch cross-linked activity than do other 

mesenchymal stem cells in the adult body (Atari et al., 2012; Huang et al., 2009; 

Janebodin et al., 2011; Uribe-Etxebarria et al., 2017; Vasanthan et al., 2015). However, 

the role of these pathways in the maintenance of stemness, self-renewal and epigenetics 

in DPSCs is still unclear. A better understanding of the chromatin marks and gene 

expression would lead to significant improvements in nuclear reprogramming of 

Induced Pluripotent Stem Cells or iPSCs, transdiferentiation, and ex vivo expansion of 

stem cells for transplant therapies. Moreover, it is important to understand how the 

regulation of transcription and self-renewal capacity cooperates to enable stem cells 

reprogramming. For this purpose, we have studied epigenetic profile of DPSCs treated 

with Notch and Wnt signaling modulators and identified global and histone methylation 

and acetylation pattern comparing to DPSCs treated with osteogenic and adipogenic 

differentiation media protocols. 
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MATERIALS AND METHODS 

DPSC culture 

DPSCs were isolated from human third molars obtained from healthy donors between 

15 and 30 years of age by fracture and enzymatic digestion of the pulp tissue for 1h at 

37 °C with 3 mg/ml collagenase (17018-029, Thermo Fisher Scientific, Boston, 

Massachusetts, USA) and 4 mg/ml dispase (17105-041, Thermo Fisher Scientific) 

followed by mechanical dissociation. The DPSCs were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10 % fetal bovine serum (FBS), L-

glutamine (1 mM) and the antibiotics penicillin (100 U/ml) and streptomycin (150 

µg/ml). The DPSCs could be amplified and maintained in these conditions for very long 

periods (> 6 months). However, to avoid cell aging issues, we only employed DPSCs 

that had been grown in culture for less than 3 months and had accumulated no more 

than 6 total passages. Comparative experiments between control and treatment 

conditions were always and without exception performed in parallel using DPSCs from 

the same donor.  

Notch and Wnt pathway pharmacological modulation 

To block Notch signaling, we employed DAPT ((N-[N (3, 5-diflorophenacetyl-L-

alanyl)] 5-phnylglycine t-butyl ester), a γ-secretase inhibitor, (565784, Calbiochem, San 

Diego, California, USA), at a concentration of 2.5 µM. DAPT was added to the culture 

medium for 48 hours prior to the assays where DAPT-treated DPSCs were compared 

with DPSCs treated only with the control vehicle, 2.5 µM DMSO. To overactivate Wnt 

signaling, we used 2.5 µM BIO (6-bromoindirubin-3´-oxine), a GSK3β inhibitor 

(361550, Calbiochem), which was added to the medium for 48 hours prior to the assays. 

BIO-treated cells were compared with DPSCs exposed to the inactive analog MBIO 

(methyl-6-bromoindirubin-3´-oxine) at 2.5 µM as a corresponding control (361556, 

Calbiochem). WNT-3A recombinant protein (5036-WN-010, R&D Systems, 

Minneapolis, USA) was added to the DPSCs cultures to overactivate Wnt signaling in 

two concentrations: 2.5 µM and 5 µM. 
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Osteogenic differentiation of DPSCs 

We used the following protocol to induce DPSC differentiation to mature osteoblasts: 6 

µM β-glicerophosphate (G9422, Sigma-Aldrich, St. Louis, Massachusetts, USA), 10 

nM dexamethasone (D4902, Sigma), and 52 nM ascorbic acid (127. 0250, Merck, 

Darmstadt, Germany) were added to the cell cultures in DMEM + 10 % FBS for three 

weeks. The DPSCs had been previously subjected to preconditioning treatment with 

DMSO, DAPT, MBIO or BIO for 48 h, as described. Terminal osteoblast differentiation 

was assessed by detection of extracellular calcified bone matrix deposits via Alizarin 

Red staining using 2 g/100 ml Alizarin Red S (400480250, Across Organics, Geel, 

Belgium) at pH 4.3. The DPSCs were fixed with 10 %formalin (F7503, Sigma) for 30 

min. We then incubated the cells with Alizarin S Red for 45 min before washing the 

cells four times with PBS to remove any background staining. The Alizarin Red 

absorbance at 450 nm was quantified using a Synergy HT Multi-Mode Microplate 

Reader (Biotek, Winooski, Vermont, USA). Alkaline Phosphatase (ALP) staining was 

also used to assess osteoblast differentiation, as this enzymatic activity is present in 

mature bone matrix-secreting cells. We dissolved one BCIP/NBT tablet (B5655-5ATB, 

Sigma) in 10 ml miliQ water and added this solution to DPSCs fixed for 1 min with 10 

% formalin. We then washed the cells with PBS containing 0.05 % Tween 20 

(STBB3609, Sigma). ALP activity was quantified by absorbance at 405 nm with a 

Synergy HT Multi-Mode Microplate Reader. 

Adipogenic differentiation of DPSCs 

To induce adipogenic differentiation, we treated DPSC cultures with 0.5 mM IBMX 

(I5879, Sigma), 1 µg/ml insulin (91077C, SAFC Biosciences, St. Louis, Massachusetts, 

USA) and 1 µM dexamethasone (D4902, Sigma) for four weeks after a preconditioning 

treatment with DMSO, DAPT, MBIO or BIO for 48 h. The DPSCs were exposed to this 

differentiation cocktail and subsequently fixed with 10 % formalin for 10 min and then 

washed with PBS containing 60 % Isopropanol. Lipid droplets in mature adipocytes 

were detected using Oil Red staining solution, which contained 5.14 µM Oil Red Stock 

(O-0625, Sigma) in miliQ water. The cells were stained for 10 min, and Oil Red 

absorbance was measured at 490 nm using a Synergy HT Multi-Mode Microplate 

Reader (Biotek). 
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RNA extraction, conventional RT-PCR and quantitative Real-Time PCR (qPCR) 

Cell pellets were frozen and stored at -80°C. Total RNA was extracted from the cells 

using the RNeasy Kit (74104, Qiagen, Hilden, Germany) and checked for purity by 

calculating the 260/280 ratio via the Nanodrop Synergy HT (Biotek). cDNA (50 ng/µl) 

was obtained by reverse transcription of total extracted RNA using the iScript cDNA 

Kit (1708890, BioRad, Hercules, CA, USA) with the following reagents: iScript reverse 

Transcriptase (1µl), 5x iScript Reaction Mix (4µl) and Nuclease Free water (variable) to 

a final volume of 20 µl. We analyzed gene expression using 1µlof cDNA(5 ng/µl) 

diluted in4 µl of My TaqTM Red Mix (BIO-25043, Bioline, St. Petersburg, Russia), 1 

µl of primers (0.625 µM) and Nuclease Free Water for a total volume reaction of 10 µl, 

for conventional RT-PCR. Amplification products were separated by electrophoresis in 

a 2 % agarose gel. Quantitative Real-Time PCR experiments were conducted in an 

iCyclerMyiQTM Single-Color Real-Time PCR Detection System (BioRad, USA), 

using4.5 µl of Power SYBR® Green PCR Master Mix 2x (4367659, Applied 

Biosystems TM, Applied Biosystems, Carlsbad, CA, USA), 0.5 µl of primers (0.3125 

µM), 0.3 µl of cDNA (1.5 ng/µl), and Nuclease Free water for a total volume reaction 

of 10 µl. All primers were obtained from public databases and checked for optimal 

efficiency (> 90 %) in the qPCR reaction under our experimental conditions. The 

relative expression of each gene was calculated using the standard 2-ΔCt method (Livak 

and Schmittgen, 2001) normalized with respect to the average betweenβ-Actin and 

Gapdh as  internal controls. All reactions were performed in triplicate. qPCR was run 

on ABI PRISM® 7000 (Thermo Fisher Scientific, Thermo Fisher Scientific, Boston, 

MA, USA). Data were processed by CFX Manager™ Software (BioRad, USA). We 

assessed that all qPCR reactions yielded only one amplification product by the melting 

curve method. We used the following primer pairs for different genes obtained via the 

Primer-Blast method (Primer Bank): 
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Primers Sequence 5´ - 3´ Annealing (ºC) Amplicon (bp) 

β-Actin Upstream GTTGTCGACGACGAGCG 58.5 93 

Downstream GCACAGAGCCTCGCCTT 59.7 

GAPDH Upstream CTTTTGCGTCGCCAG 60.3 131 

Downstream TTGATGGCAACAATATCCAC 60.8 

DNMT1 Upstream CGTAAAGAAGAATTATCCGAGG 60.5 123 

Downstream GTTTTCTAGACGTCCATTCAC 57.7 

DNMT3A Upstream GAAGAGAAGAATCCCTACAAAG 57.6 136 

Downstream CAATAATCTCCTTGACCTTGG 60 

DNMT3B Upstream CTTACCTTACCATCGACCTC 57.7 167 

Downstream ATCCTGATACTCTGAACTGTC 54.7 

NNMT Upstream CTGACTACTCAGACCAGAAC 53.6 113 

Downstream TCTGTTCCCTTCAAGATCAC 59.3 

KAT8/HAC Upstream GAAATATGAGAAGAGCTACCG 57.2 123 

Downstream ATCTTATGGTCTTTGCCATC 58 

SIRT1/HDAC Upstream AAGGAAAACTACTTCGCAAC 57.6 89 

Downstream GGAACCATGACACTGAATTATC 59.7 

Hes1 Upstream GGTCCTAGGGAATTGCAGC 57.9 144 

Downstream CTCAAGATGTCCCTCAGCCT 58.8 

Lef1 Upstream AGATCTCAATTACTGTGGGAC 57.1 88 

Downstream GCAGGAACACTGATATTTGTC 58.7 

Lin28 Upstream CTGGTGGAGTATTCTGTATTG 56.2 81 

Downstream ACCTGTCTCCTTTTGATCTG 58.3 

Rex1 Upstream TATCTCAACCTGTTCATCGAG 59.3 130 

Downstream CCACATTCAGGTAGATGTTC 56.9 

Ssea1/Fut4 Upstream ACAAAATCATCTGTTGGGAC 58.9 85 

Downstream AGCAGATAAGCACTTTCAAC 56.2 
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Protein extraction 

The cells were washed with hand-warm PBS several times, and the proteins were lysed 

on ice  with 200 µl Lysis Buffer (50 mM Tris-HCl pH 7.5, 1mM EDTA, 150 mM NaCl, 

0.5 % sodium deoxycholate, 0.1 %SDS, 1 % IGEPAL® CA-630 in dH2O), and 

Proteinase Inhibition (1:100, 539134, Calbiochem) and phosphatase inhibitor cocktail 

(1:100, 539134, Calbiochem). After an incubation of 5 minutes lysates were scrapped 

thoroughly and transferred to a prechilled 1.5 mL tube and submitted to homogenization 

in a Bandelin Plus sonicator using a 1, 5 MS probe. After three sonication bursts on ice 

of 20 seconds with 1 min of repose between each one of them at a 90 % amplitude, 

lysates were cleared by centrifugation at 20000 rcf 10 min at 4ºC. Supernatants were 

quantified using CuSO4-BCA in 50:1 ratio (B9643, Sigma). BSA (A7906, Sigma) was 

used for performing a linear relationship with concentration and absorbance at 490nm. 

Samples were read in Nanodrop Synergy HT (Biotek). 

Western blot (WB). 

The samples with 30 µg of protein concentration were diluted in loading buffer (62,5 

mM Tris-HCl pH 6, 8, 2,5 % SDS; 10 % glycerol; 5 % β-mercaptoethanol and 0,002 % 

bromophenol blue). After electrophoretic separation (electrophoresis bufer formulation: 

25 mM Tris, pH 8, 3; 193 mM glycine, 0, 1% SDS) under constant 120 V, proteins were 

blotted during 3 hours (250 V max, 600 W max, constant 400 mAmps. Transfer buffer 

formulation: 25 mM Tris pH 8,3; 192 mM glycine; 20% methanol; 0, 1% SDS) onto 0,2 

µm-pore nitrocellulose membranes using the Mini-PROTEAN tetra system and Mini 

Trans-Blot cell respectively fed by a PowerPac HVTM High-Current Power Supply. 

Once correct protein transfer was confirmed by Ponceau S protein staining, membranes 

were washed with TBST (10 mM Tris-HCl pH 8; 150 mM NaCl; 0,05 % Tween20) 

until all dye was gone and submitted to blockage using 1 % BSA diluted in TBST 

during 1 hour at room temperature under constant agitation. For Western Blot analyses, 

we used anti α-TUBULIN (1:3000, 4967, Cell Signaling), anti-H3K9me3 (1:2000, 

9542S, Cell Signaling, Massachusetts, USA), anti-H3K4me3 (1:1000, ab12209, Abcam, 

Massachusetts, USA), anti-H3K27me3 (1:1000, ab6002, Abcam) and anti-H3AC 

(1:2000, 06–599, Millipore). The secondary antibodies used were: mouse IgGκ light 

chain binding protein HRP conjugated 1:5000 (Santa Cruz sc-516102), anti-rabbit-HRP 

1:5000 (Santa Cruz sc-2357), and anti-rat-HRP 1:4000 (Santa Cruz sc-2006). The blots 
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were developed using the Luminata Crescendo Western HRP Substrate (Millipore 

WBLUR0500). Western blot images were taken in a Syngene G: BOX CHEMI XR5 

system (Syngene, Cambridge, UK). The membranes were stripped using Red Blot 

(M2504, Inmmobilon® EMD Millipore).  

DNA extraction 

Cell lyssates were done with DNA lyssis Buffer (100mM Tris-HCl, 50mM EDTA, 

200mM NaCl and 0, 2% SDS) and Proteinase K (AM2546, Thermo Fisher Scientific) 

which was used at 100 mg/ml and samples were incubated overnight at shaking.  The 

samples were treated with 5 µl RNAse at 10mg/ml (800-325-3010, Roche, Basilea, 

Switzerland), during1h at 37ºC.DNA extraction was performed using phenol-

chloroform methodology with phenol (P1037, Sigma) and chloroform (288306, Sigma). 

After all, DNA concentration and purity was checked purity by calculating the 260/280 

ratio via the Nanodrop Synergy HT (Biotek).  

Quantification of DNA methylation by Mass Spectroscopy  

The, DNA was lead to hydrolysis and DNA hydrolysis samples (10 μl typically 

containing 50 ng of digested DNA) were run in reverse phase UPLC column (Eclipse 

C18 2.1 × 50 mm, 1.8 μ particle size, Agilent) equilibrated and eluted (100 μl/min) with 

water/methanol/formic acid (95/5/0.1, all by volume). The effluent from the column 

was added to an electrospray ion source (Agilent Jet Stream) connected to a triple 

quadrupole Mass Spectrometer (Agilent 6460 QQQ).  The machine had operated in the 

positive ion multiple reaction monitoring mode using previously optimized conditions, 

and the intensity of specific MH+→fragment ion transitions were measured and 

recorded (5mC m/z 242.1→126.1, 5hC 258.1→142.1 and dC m/z 228.1→112.1). The 

measured percentage of 5mC in each experimental sample was calculated from the 

MRM peak area divided by the combined peak areas for 5mC plus 5hmC plus C (total 

cytosine pool). 

Cell Cycle phase determination 

Cells were trypsined and dilute in ethanol 100%. Determination of cell cycle was 

assessed using Propidium Iodide0.5mg/ml (P4170, Sigma) and Ribonuclease RNAse 10 

µg/ml (R4642, Sigma). Samples were read using CytoFLEX Flow Cytometer (Beckman 

https://www.beckmancoulter.com/wsrportal/wsrportal.portal?_nfpb=true&_windowLabel=UCM_RENDERER&_urlType=render&wlpUCM_RENDERER_path=%252Fwsr%252Fresearch-and-discovery%252Fproducts-and-services%252Fflow-cytometry%252Fflow-cytometers%252Fcytoflex%252Findex.htm
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Coulter, California, USA) and analyzed with Kaluza G for Gallios Acquisition Software 

(Beckman Coulter). 

Statistical analyses  

Statistical analyses were performed with Excel, IBM SPSS Statistics v.9 (SPSS, 

Chicago, IL, USA) and Graph Pad v.6 software (Graph Pad Inc., USA). All data sets 

were subjected to a Kolmogorov-Smirnov normality test prior to analysis. For small 

sample sizes non-parametric tests were chosen by default. Comparisons between only 

two groups were made using U-Mann Whitney test.  

RESULTS 

Wnt activity is required for the expression of essential core pluripotency factors in 

DPSCs 

We culture DPSCs in DMSO, DAPT, MBIO, BIO and WNT-3A treatment conditions 

for 48 hours. Indeed, we exposed DPSCs to different well-established osteogenic and 

adipogenic differentiation media protocols. After these treatments, we did not detect 

differentiation either in shape or in morphology. As positive control of differentiation, 

established in vitro protocols can be used to induce terminal differentiation of DPSCs to 

mature osteoblasts and adipocytes (Gronthos et al., 2002; Langenbach and Handschel, 

2013). After cells exposition to osteoblastic differentiation medium during 3 weeks, we 

verified formation of calcium deposit by Alizarin S Red staining (Figure 1A). After 4 

weeks of adipogenic differentiation, we performed Oil Red staining to ensure lipid 

droplet formation (Fig.ure 1A). Real Time RT-PCR analysis revealed that As for 

DAPT-treated cells suffered a significant decrease in the gene expression of pluripotent 

core factors c-MYC, SOX2, OCT4 and NANOG. Furthermore, in some cases such as 

SOX2, OCT4 and NANOG gene expression, it was decreased by more than 50 % with 

respect to the control conditions (DMSO, MBIO) (Figure 1C). After the induction with 

differentiation protocols mentioned before, we confirmed strong decrease in the 

expression of pluripotent core factors. Interestingly, in cells treated with WNT-3A and 

BIO, the relative gene expression of core factors c-MYC, SOX2, OCT4 and NANOG was 

upregulated (Figure 1C). 

https://www.beckmancoulter.com/wsrportal/wsrportal.portal?_nfpb=true&_windowLabel=UCM_RENDERER&_urlType=render&wlpUCM_RENDERER_path=%252Fwsr%252Fresearch-and-discovery%252Fproducts-and-services%252Fflow-cytometry%252Fflow-cytometers%252Fcytoflex%252Findex.htm
https://www.beckman.com/coulter-flow-cytometers/gallios/kaluza-for-gallios
https://www.beckman.com/coulter-flow-cytometers/gallios/kaluza-for-gallios
https://www.beckmancoulter.com/wsrportal/wsrportal.portal?_nfpb=true&_windowLabel=UCM_RENDERER&_urlType=render&wlpUCM_RENDERER_path=%252Fwsr%252Fresearch-and-discovery%252Fproducts-and-services%252Fflow-cytometry%252Fflow-cytometers%252Fcytoflex%252Findex.htm
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Figure 1. Enhancement of stemness and differentiation of DPSC by DAPT, BIO, WNT-3A, 
osteinduction and adipoinduction media. (A): Phase Contrast Microscopy and Alizarin S Red and Oil 
Red staining showed clear differences in morphology during the treatments with osteoinduction and 
adipoinduction media. Scale bar=100µm (C): Q-PCR analysis confirmed differences in the expression of 
core pluripotent factors c-Myc, Sox2, Oct4a and Nanog transcripts between the control (DMSO, MBIO) 
and DAPT, BIO, WNT-3A and differentiation media conditions. Data are normalized to reference β-
ACTIN and GAPDH levels and presented as the mean +SEM (n=3). The dashed line represents 
normalized gene expression to control conditions. *: p<0.05;**: p<0.01;***: p<0.001. U-Mann Whitney 
test. 

Notch and Wnt/β-Catenin signaling affected cell cycle and its regulation in DPSC 

Notch and Wnt signaling both activation and inactivation, showed to alter the ratio of 

DPSCs proliferation (Uribe-Etxebarria et al., 2017). To confirm this data, we studied 

G0/G1, S and G2/M cell cycle phases after Notch and Wnt treatments. Data compiled 

from DPSCs in passage 5, showed the % of number cells in G0/G1, S and G2/M where 

each graph made a comparison between treatment and its respective control (Figure 1A-

C). Bar graph showing DPSC control cells (DMSO, MBIO) compare to WNT-3A and 

BIO - treated cells at low passages (P3-P5) (Figure 1D). Surprisingly, data obtained by 

Flow Cytometry did not show significant changes after DAPT treatment. Interestingly, 
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BIO and WNT-3A-treated cells showed 7% and 4% lower of cells in G1/G0 phase 

respectively (Figure 1D). To obtained more data about cell cycle, we studied the gene 

expression of CYCLIN D, a key regulator of G0-G1, G1-S and S-G2/M phases, after 

DAPT, BIO and WNT-3A exposure. CYCLIN D transcription decreased significantly in 

DAPT-treated cells, whereas cells treated with WNT-3A and BIO expressed higher 

levels of CYCLIN D respect to DMSO and MBIO (Figure 1E-F). Consistently, DPSC 

treated with the two differentiation culture media showed lower gene expression of 

CYCLIN D by 80-90 % of their respective control values (Figure 1E).  

Wnt signaling activation by WNT-3A altered methylases and demehtylases gene 

expression and leads to DNA hyper-methylation of DPSCs. 

To investigate whether Notch and Wnt signaling would also control epigenetic profile 

of DPSC, we studied DNA methylation pattern by high resolution Mass Spectroscopy 

after these treatments. Then, we observed higher significant % 5mC in osteoinduction 

(2. 713 ± 0.025: p<0.01) and adipoinduction (2.812 ± 0.0148: p<0.01) media respect to 

control DMSO (2.412 ± 0.058) (Figure 3. A). Interestingly, cells treated with WNT-3A 

cells diminished % 5mC (2.168 ± 0.098: p<0.05) whereas we did not show significant 

changes in BIO (2.228 ± 0.143) respect to control DMSO (2,633 ± 0.062) and MBIO 

(2.215 ±0.108) (Figure 3. B). Real-Time RT-PCR determined that DAPT-treated cells 

increased transcript levels of methylases DNMT1, DNMT3A AND DNMT3B. 

Consistently, similar results were obtained when cells were exposed to osteoinduction 

and adipoinduction media (Figure 3C). Regarding to Wnt activators WNT-3A and BIO, 

the gene expression of DNMT1 was lower respect to controls (DMSO, MBIO) (Figure 

3D). Surprisingly, DNMT3A and DNMT3B were higher to controls DMSO and MBIO 

(Figure 3B).  
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Figure 2. Notch/Wnt treatment effect in cell cycle progression in DPSCs. (A, B, C): Flow Cytometry 
analysis of cell cycle revealed some differences between the different treatments (DMSO, DAPT, MBIO, 
BIO, WNT-3A). (D): Representation of all cell cycle phase G1/G0, S, G2/M revealed small but 
significant differences between the different conditions. Data are presented as the mean +SEM (n=8). (e) 
Q-PCR analysis with cells treated with DAPT and induction media conditions confirmed a decrease in 
Cyclin D respect to the control (DMSO). (f) Q-PCR analysis showed higher expression of Cyclin D in 
BIO and WNT-3A-treated cells when compared to the control (MBIO). Data are normalized to reference 
β-Actin and GAPDH levels and presented as the mean +SEM (n=3). The dashed line represents 
normalized gene expression in control conditions. *: p<0.05;**: p<0.01;***: p<0.001. U-Mann Whitney 
test. 
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Figure 3. Notch and Wnt signaling pathways control DNA methylation and demethylation of 
DPSCs. (A, B): Q-PCR showing relative differences in Dnmt1, Dnmt3a and Dnmt3b expression between 
control (DMSO, MBIO) and DAPT, BIO, WNT-3A, Adipoinduction and osteoinduction media. Data are 
normalized to reference β-Actin and GAPDH levels and represented as the mean +SEM (n=3). (C, D): 
DNA hypermethylation patterns showing % 5mC in control (DMSO, MBIO) respect to DAPT, BIO, 
WNT-3A and Osteoinduction media. Data are presented as the mean +SEM (n=8). *: p<0.05;**: 
p<0.01;***: p<0.001. U-Mann Whitney test. 

Wnt activation modifies acetylation pattern. 

Then we wondered to know whether histone acetylation profile would also be affected 

in these conditions. We assessed protein expression by WB and Acetyl-Histone H3 was 

higher WNT-3A and BIO-treated cells compare to controls (DMSO, MBIO) (Figure 4 

C). To confirm these data we assessed Real-Time PCR and DAPT-treated DPSCs had 

lower gene expression of acetylase HAT/KAT8 and higher de-acetylase HDAC/SIRT1 

compare to control (DMSO) (Figure 4. A). Consistently, differentiation media increased 

gene expression of HDAC/SIRT1; approximately, two times, whereas HAT/KAT8 was 

clearly downregulated (Figure 4A). Contrarily, when cells were exposed to WNT-3A 

and BIO, HAT/KAT8 highly increased their expression (Figure 4B), and the 

HDAC/SIRT gene expression was not significant affected (Figure 4C). We have studied 

also Nicotinamide N‑methyltransferase or NNMT, which clearly is downregulated in 
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DAPT, and upregulated in two fold change BIO and WNT-3A almost 10 fold change 

respect to control (DMSO, BIO) (Figure 4 D, E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Notch and Wnt signaling affects DNA acetylation. (A, B): Q-PCR showing relative 
differences in Hat/Kat8, Hdac/Sirt1 and Hes1 expression between control (DMSO, MBIO) and DAPT, 
BIO, WNT-3A, Adipoinduction and osteoinduction media. Data are normalized to reference β-Actin and 
GAPDH levels and represented as the mean + SEM (n=3). (C) Representative WB showing an increase in 
H3AC. WNT-3A-treated DPSCs respect to control (DMSO, MBIO), while no changes were observed in 
DAPT. α-TUBULIN was used as a protein loading control.*: p<0.05;**: p<0.01;***: p<0.001. U-Mann 
Whitney test. 
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Wnt activation modifies Histone H3 methylation pattern. 

Immunoblotting analysis was assessed to determine if Histones H3 changed epigenetic 

tri-methylation. Firstly, we studied the most common Histones H3 such as H3K4me3, 

H3K27me3 and H3K9me3, protein expression profiles showed an increase in 

methylation in H3K4me3, H3K27me3 and H3K9me3 in BIO and WNT-3A (Figure. 

5A). Regarding DAPT, no changes were detected in cells trated with ƴ-secretase 

inhibitor. Then, we analyzed, the gene expression of their catalytic enzymes subunits 

MLL (H3K4me3), EZH2 (H3K27me3) and EHMT2 (H3K9me3). No changes were 

observed in DAPT (Figure 5B). Regarding to WNT-3A, gene expression of MLL, 

EZH2, and EHMT2 was higher compare to control DMSO (Figure 5C).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Notch/Wnt alteration affects histone H3 methylation in DPSCs. (A, B, C): Q-PCR showing 
relative differences in expression of catalytic enzymes of H3K4me3 (Mll), H3K27me3 (Ezh2), and 
H3K9me3 (Ehmt2) in  DMSO, BIO and WNT-3A treatment for 48 h. Data are normalized to reference β-
ACTIN and GAPDH levels and represented as the mean +SEM (n=3).  (D): WB showing methylated 
H3K4me3, H3K27me3, and H3K9me3. α-TUBULIN was used as a protein loading control. *: p<0.05;**: 
p<0.01;***: p<0.001. U-Mann Whitney test. 
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DISCUSSION 

Several studies have described canonical Notch and Wnt signaling pathways as pivotal 

regulators of stemness and pluripotency (Cartwright et al., 2005; Clevers et al., 2014; 

Dravid et al., 2005; Fox et al., 2008; Li and Chen, 2012; Lowell et al., 2006; Lluis et 

al., 2008; Park et al., 2008; Simandi et al., 2016; Yan et al., 2010), and their 

pharmacological manipulation has already been tested as a strategy to enhance either 

cell differentiation (Kitajima et al., 2016) or cell reprogramming (Ichida et al., 2014; 

Uribe-Etxebarria et al., 2017). 

Notch inhibition by γ-secretase blockers has been described to enhance the efficiency of 

keratinocyte reprogramming (Ichida et al., 2014). In our DPSC model, however, Notch 

inhibition by DAPT decreased the expression of pluripotency core factors and did not 

altered significantly self-renewal although γ-secretase inhibitor is still used as an 

antitumour treatment (Dai et al., 2018). Moreover, Notch effects have long been known 

to be extremely context-dependent; the same Notch signal can have very different 

outcomes depending on the cell type, physiological state, and extracellular environment. 

Regarding Wnt signaling pharmacological activation, mouse iPSCs have been 

associated with increased cell differentiation (Kitajima et al., 2016) Nevertheless, in our 

model system, BIO and WNT-3A application significantly increased the expression of 

core factors, increased self-renewal and altered epigenetics marks which could enhance 

reprogramming efficiency. Other authors have tested Wnt reprogramming properties in 

PLDSCs and DPSCs altering DNA methylation (Liu et al., 2016; Zhang et al., 2015). 

Again, we attribute these differences to the various cell culture systems that were tested. 

The pluripotent network consists of a core set of transcription factors, including Oct4 

(Pou5f1), Sox2, and Nanog, which serve to establish the undifferentiated state and the 

self-renewing capacity of pluripotent stem cells (Boyer et al., 2005). This network 

interacts with the cell cycle machinery. For example, cMyc acts as the regulator of 

many cell cycle genes (Kim et al., 2008; Kim et al., 2010) and as a target of Oct4 and 

Nanog is crucial to the maintenance of pluripotency network (Cartwright et al., 2005; 

Hishida et al., 2011; Loh et al., 2006). It is widely described cell cycle arrest when cells 

are treated with DAPT (Ferrari-Toninelli et al., 2010). However, DPSCs did not suffer 

significant changes when expose to DAPT, giving a clue about a quiescent state. In 

PSCs cell cycle is defined by a rapid progression through the cell cycle and a minimal 
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time spent in G1, similar to ESCs (Coronado et al., 2013; Ghule et al., 2011; Li and 

Kirschner, 2014). Several studies have shown that enriching for proliferating cells 

enhances reprogramming (Guo et al., 2014; Roccio et al., 2013; Ruiz et al., 2011).In 

DPSCs treated with BIO and WNT3-A, we did not show more than 7% of change in 

G1/G0 phase cell cycle compare to controls DMSO and MBIO. But interestingly, this 

tendency of less % of cells G1/G0 phase and more into cell cycle progression  was 

maintaining after numerous experiments and explains results obtained in studies before 

regarding cell proliferation (Uribe-Etxebarria et al., 2017). One explanation of this 

could be non-tumorigencing DPSCs properties that could let them the chance to 

maintain cell cycle less affected (Wilson et al., 2015). Several studies place Cyclins as 

fundamental to proper reprogramming (Abe et al., 2012; Edel et al., 2010; McLenachan 

et al., 2012). On the other hand, CyclinD, one of the most studied cyclins because of its 

importance in G1 phase length regulation (Dong et al., 2018), is clearly upregulated in 

BIO and WNT-3A-treated DPSCs although cell cycle is not highly affected. More 

studies about this would explain why DPSCs are able to control cell cycle machinery 

despite pluripotency network upregulation. 

Cell reprogramming and cell differentiation is accompanied by drastic changes in the 

epigenetic patterns. The epigenetic changes that occur during somatic cell 

reprogramming are also distinct from the epigenetic changes required to maintain 

pluripotency. Whereas somatic cell reprogramming involves global DNA demethylation 

and a complex remodeling of histone modifications, pluripotency maintenance requires 

an enrichment of histone acetylation to maintain chromatin plasticity, relative to 

differentiated cells (Mattout and Meshorer, 2010).  

Several studies associate epigenetic marks with odontogenic differentiation (Gopinathan 

et al., 2013; Huynh et al., 2017; Lesot et al., 2001; Zhou et al., 2018). In oral tissues 

such as DPLCs and DPSCs the inhibition of methylases leaded to reprogramming of 

cells and also was observed a high Wnt-βCatenin activity (Liu et al., 2016; Zhang et al., 

2015). This is consistent with our results in which we observed a DNA demethylation in 

WNT-3A treated cells, Analyzing gene expression of three different methylases we 

observed that DNMT1 is down-regulated in BIO and WNT-3A treated cells. DNMT1 

binds to hemi-methylated DNA (DNA with only one stand methylated), at CpG sites 

and is expressed abundantly in adult cells (Gnyszka et al., 2013; Robertson et al., 1999). 

Although,  the gene expression of  DNMT3A and DNMT3B are up-regulated after BIO 
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and WNT-3A treatment, it is known that both enzymes are required for the genome-

wide de novo methylation of DNA, less abundant in adult cells than DNMT1 (Okano et 

al., 1998), therefore less important for somatic cell reprogramming. 

As for acetylation pattern, the deacetylase SIRT1 have been involved through Wnt/β-

Catenin in odontogenic differentiation (Feng et al., 2016).  Similarly, according to other 

authors, increment of histone deacetylases (HDACs) enhances odontodifferentiation and 

their use could be a strategy with promising potential for regenerative endodontic 

therapy (Jin et al., 2013; Klinz et al., 2012; Paino et al., 2014; Zhang et al., 2015). In 

our system in BIO and WNT3-A treated cells acetylation in H3 is higher respect to 

control. This was corresponded to gene expression results with lower levels of SIRT1 

and higher levels of the acetylase HAT/KAT8. No changes were observed in acetylation 

of H3 in cells treated with DAPT, although SIRT1 and HAT/KAT8 are altered. In our 

system in DAPT-treated cells, SIRT1 is upregulated whereas not significant changes 

were observed in BIO and WNT-3A. Interestingly, SIRT1 gene expression is positive 

regulated by Nicotinamide N‑methyltransferase or NNMT (You et al., 2018) an enzyme 

that is crucial in One Carbon Metabolism transforming SAM into SAH (Xu et al., 

2016). In cells treated with DAPT, we observed less gene expression of NNMT whereas 

BIO and WNT-3A would overexpress NNMT in DPSCs. Although SIRT1 is not 

affected in BIO and WNT-3A, levels of NNMT are upregulated, indicating that 

metabolism could play an essential role in epigenetics. Moreover, this step is crucial in 

metabolism because SIRT1 depends on NAD pool provided by metabolic process 

involved in energy production such as lipid anabolism, gluconeogenesis, and 

mitochondrial respiration (Canto and Auwerx, 2012). More studies would be necessary 

to understand this complex network between metabolism and epigenetics. 

Some studies have shown that during these process of remodelling cells in PSCs usually 

had high levels of methylated H3K4, combined with H3K27 trimethylation. H3K27 

methylation is functionally important for preventing genes expression in ES cells 

whereas H3K4 methylation acts as activator mark for gene transcription (Azuara et al., 

2006; Boyer et al., 2006). Histone marks in DPSCs revealed that H3K4me3, H3K9me3 

and H3K27me3 become more important during the different stages of differentiation 

(Gopinathan et al., 2013). In our treated-DPSCs methylation of these histones became 

more important when cells were exposed to BIO and WNT-3A. H3K4, H3K27 and 

H3K9 tri-methylation is higher although the strongest effect is produced in cells treated 
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with WNT-3A. Involving catalytic subunits of key enzymatic regulators of these 

histones methylation (MLL, EZH2 and EHMT2), in BIO and WNT-3A seemed to be 

upregulated. One explanation to this could be that this type of methylation represents 

the global state of histones H3 and depend on the genes that are silenced by H3K9me3 

and H3K27me3 and the genes that remain active through H3K4me3. Moreover, 

H3K4me3 and H3K27me3 epigenetic markers could be bound to bivalent domain that 

could control gene activation and gene repression of specific genes (Bernstein et al., 

2006). Nicotinamide N-methyl transferase (NNMT), through EZH2 catalytic enzyme, 

regulates H3K27me3 repressive marks (Sperber et al., 2015). In our system, H3K27me3 

marks increase in Wnt overactivation.  

In this article, we hypothesized that epigenetic remodelling during Wnt activation with 

the recombinant protein WNT-3A, did not only involve histone modifications and DNA 

methylation, this overview gives more clues about how reprogramming, pluripotency 

and epigenetics cooperates. Our results demonstrate that Wnt activation induces DPSCs 

to increase their stemness, enhances proliferation and remodels epigenetics. This could 

have important implications to optimize the clinical use of these cells. The fact that 

treatment with WNT-3A change epigenetic barrier gives a clue on how pluripotent 

network cooperates with cell cycle, global methylation of DNA and Histone 

methylation and acetylation. This is a very important finding because it proves that 

epigenetic barrier is essential to DPSCs reprogramming and it allows developing 

reprogramming strategies more efficient and safe to cell therapy. 
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CONCLUSION 

Our data show that Notch and Wnt signaling are required for maintenance of core 

pluripotency factor expression in DPSCs. Wnt signaling activation by WNT-3A for 48h 

significantly enhanced the cell cycle progression and remodels epigenetic barrier by 

leading to less hyper-methylated DNA pattern, more acetylation and histone 

modifications such as H3K4me3, H3K27me3 and H3K9me3 which seem to allow all 

together DPSCs reprogramming. Conversely, Notch inhibition decreased stemness 

factors of DPSCs but did not alter cell cycle or epigenetic machinery in a functional 

way. These changes that involve less levels expression of core did not correlated with 

an enhanced differentiation potential of DPSC. Epigenetic study could be used alone or 

in conjunction with other methods to ensure cell reprogramming efficiency and safety 

allowing cell use for cell therapy. 
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As we mentioned before, DPSCs as a population that comes from the neural crest (NC) 

express markers from neural crest progenitors (Kiraly et al., 2009; Schiraldi et al., 2012) 

and pluripotency factors expression (Abe et al., 2012; Janebodin et al., 2011; Miletich 

and Sharpe, 2004; Simoes-Costa and Bronner, 2015, Atari et al., 2012; Ferro et al., 2012; 

Janebodin et al., 2011; Kerkis et al., 2006; Rosa et al., 2016; Uribe-Etxebarria et al., 

2017).One explanation to this is that evolution of the NC-specification program would 

have enabled cells at the neural plate border to acquire multipotency and migratory ability 

(Green et al., 2015). These pluripotency factors are crucial to maintaining stem cell 

pluripotency in broad type of cells (Chambers and Tomlinson, 2009; Hishida et al., 2015; 

Takahashi et al., 2007). Some authors, remarks and highlight the use of DPSCs as they 

would present some superior features with respect to other multipotent stem cell 

populations of the adult human body due to the broad set of pluripotency factors 

expressed at basal conditions (Atari et al., 2011; Atari et al., 2012; Rosa et al., 2016). 

These pluripotency stem cells factors (especially Oct4, Sox2, c-Myc, Klf4) have 

described to be necessary for not only maintain stemness and self-renewal (Hackett and 

Surani, 2014; Young, 2011)., but also for inducing reprogramming of somatic cells into 

iPSCs(Takahashi and Yamanaka, 2006a). These crucial transcription factors form an 

intrinsic core-regulatory circuit in precise levels that maintains ESCs in a pluripotent state 

(Boyer et al., 2005; Ivanova et al., 2006; Loh et al., 2006; Rao and Orkin, 

2006).Importantly, enhancing the expression of these pluripotent factors by different 

strategies have demonstrated to improve different differentiation media protocols (Han et 

al., 2014; Liu et al., 2015a).Other methodologies have worked as a pre-treatment strategy 

before the exposure to the differentiation media(Uribe-Etxebarria et al., 2017). One 

interesting approach is to modulate signalling pathways as a new strategy to modulate 

reprogramming under control conditions, although different crosstalks have been 

described (Uribe-Etxebarria et al., 2017).Other authors have described also the 

dependency Wnt, FGF, E2Fs and PI3K signaling, which also promotes pluripotency 

(Hishida et al., 2015; O'Connor et al., 2011; Sun et al., 1999; Yeo et al., 2011). The Wnt 

signaling pathway has been shown to elevate the level of cMyc(Cartwright et al., 2005). 

WNT-3A and BIO treatments have demonstrated to increase pluripotent markers 

expression and to enhance adipocytes and osteocytes differentiation media protocols 

(Uribe-Etxebarria et al., 2017).This complex network of crucial factors also interacts with 

cell cycle machinery, including cMyc(Huskey et al., 2015; Kim et al., 2008; Kim et al., 

2010; Lavagnolli et al., 2015; Rahl et al., 2010), Oct4 (Huskey et al., 2015; Kim et al., 
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2010; Zhang et al., 2009) and Nanog(Zhang et al., 2009).Yamanaka and colleagues 

observed a similar G1 phase between Induced Pluripotent Stem Cells (iPSCs) and ESC 

cells (Takahashi et al., 2007), with minimal G1 phase. Other authors detected a 

phenomena called “mitotic advantage”, in which mitotic nuclei are reprogrammed at 

higher significantly rates than interphase nuclei (Guo et al., 2014; Roccio et al., 2013, 

Halley-Stott et al., 2014)due to the de-ubiquitination of histones during mitosis resulting 

in gene derepression (Halley-Stott et al., 2014). Modulating the proper levels of Cyclins, 

especially CyclinD is fundamental to proper reprogramming in cancer stem cells (Abe et 

al., 2012; Edel et al., 2010; McLenachan et al., 2012, (Oh et al., 2018). Studies in core 

factors, cell cycle phase and cyclins could give more information about how 

reprogramming works through pluripotency and cell cycle. During reprogramming, 

metabolism suffers a significant remodelling including high glucose and 

glutamate/glutamine metabolism, mitochondria remodelling without ROS reactive 

species production and turn-over of NADH/NAD+ and lipid droplets formation (Figure 

5).  

 

 

 

 

 

 

 

 

 

Figure 5. Genetic, metabolic and epigenetics features of Dental Pulp Stem Cells. DPSCs suffer a 

metabolic and epigenetic remodelling during Wnt overactivation with BIO and WNT-3A. We studied some 

features such as Pluripotency markers (NANOG, OCT4, CMYC, LIN28, SOX2), Hystone acetylation, 

Global DNA hypomethylation, Histone methylation (H3K4me3, H3K37me3, H3K9me3, Dependence on 

DNMT1, DNMT3A and DNMT3B, Metabolism, Production of  NADH, FADH2, ATPase activity, 
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Mitochondrial membrane activity and depolarization, Perinuclear mitochondria, Lipid droplets and 

Oxidation of fatty acids. 

 

This metabolic profile did not suit at all with Warburg effect described in cancer cells 

(Warburg, 1956). This model is based on rapid glycolysis followed by lactate synthesis 

even under aerobic conditions. In addition, the pyruvate-lactate step is necessary to 

recycle the rate-limiting NAD+ coenzyme and keep the redox reactions in glycolysis 

running rapidly (Koppenol et al., 2011; Vander Heiden et al., 2009; Warburg, 1956). 

However, in our system the production of lactate did not increased and OXPHOS worked 

functionally. One explanation to this point besides in that pluripotency is not rate-limiting, 

is not needed the pyruvate-lactate step, but pyruvate-acetyl-CoA step is crucial for the 

production of intermediaries (Moussaieff et al., 2015b). Indeed, it has been described that 

mitochondria remodelling occurs during the induction of reprogramming in a phenomena 

called “mitochondria rejuvenation” (Folmes et al., 2012; Folmes et al., 2011; Gu et al., 

2016; Ma et al., 2015; Prigione et al., 2010; Suhr et al., 2010; Varum et al., 2011; Zhou 

et al., 2012). These findings could explain the temporal elevation of mitochondrial 

proteins in cells undergoing reprogramming (Hansson et al., 2012). This transient “hyper-

energetic” state seems to be required for reprogramming, which is accompanied with an 

increment in reactive oxygen species (ROS) production and enhancement of the 

glycolytic rate. However, Warburg effect builds up anabolic intermediates for 

proliferation while minimizing ROS-induced damage (Koppenol et al., 2011; Vander 

Heiden et al., 2009; Warburg, 1956). Although some authors have highlighted the 

relevance of ROS generation for efficient reprogramming in DPSCs, the rate of ROS 

remains constant even metabolic remodelling (Zhou et al., 2016). The upregulation of 

glycolysis occurs in early steps during iPSC reprogramming, before a small fraction of 

cells acquires pluripotency (Folmes et al., 2011; Shyh-Chang et al., 2013). Moreover, 

acetyl-coA metabolite suffers a rapid decrease during differentiation of ESC suggesting 

the relevant role of this metabolite in the balance between pluripotency and differentiation 

(Mathieu et al., 2014). It is also to remark the existence of two different types of 

populations when cells undergo reprogramming; primed and naive stem cells, which 

follows distinct metabolism. We have represented a schematic model showing principal 

differences between DPSCs after Wnt treatments comparing to this two type of 

populations described in Weinberger model (Weinberger et al., 2016) (Figure 6). Primed 

stem cells mainly depend on glycolysis and have less OXPHOS whereas naive stem cells 
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retain high levels of OXPHOS during high glycolysis (Mathieu et al., 2014; Sperber et 

al., 2015; Wanet et al., 2015; Zhou et al., 2012).Several studies have linked naive stage 

of reprogramming to an increased in glycolysis accompanied by a transient burst of 

OXPHOS activity (Burk and Schade, 1956; Hawkins et al., 2016; Kida et al., 2015). 

According to our data, we hypothesize that DPSCs treated with Wnt activators, remains 

some primed and naive stem cells characteristics. Indeed, we added other features that 

can help to understand more about metabolism and epigenetic and how it works with 

reprogramming. 

During the years several recipes to enhance reprogramming has been described; Oct4 and 

Sox2 together with Klf4 and cMyc (OSKM) or Nanog and Lin28 (OSNA), among others 

(Burk and Schade, 1956; Park et al., 2008; Takahashi et al., 2007; Takahashi and 

Yamanaka, 2006b; Yu et al., 2007). Regarding genes and their relationship with this 

complex network, Lin 28 gene has been reported to play a relevant role in PSC 

metabolism maintaining the low mitochondrial function associated with primed 

pluripotency and in regulating one-carbon metabolism, nucleotide metabolism, and 

histone methylation (Zhang et al., 2016). Interestingly, other authors have described that 

the stem cells transcription factors Oct4 and Lin28 regulate stem cell metabolism and 

conversion to pluripotency through several molecular mechanisms interacting with other 

core factors such as Sox2 and Nanog(Matoba et al., 2006; Zhang et al., 2016).  
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Figure 6. Characteristics of naïve and primed stem cells according to gene expression, metabolism 

and epigenetics.  Pluripotent Stem cells could be divided according to some features showed in the 

following table in naïve and primed stem cells. Weinberger model explained the differences between these 

two populations of pluripotent stem cells studying gene patter expression, behaviour in metabolism and 

epigenetic(Weinberger et al., 2016). We observed some of these features in our treated DSPCs, but some 

of them observed in Weinberger model are still unknown in our system model. 
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These pluripotency stem cells factors are also related to epigenetic landscape, for 

example, cMyc is described to be associated with histone acetyltransferase (HAT) 

complex and induces global histone acetylation(Takahashi and Yamanaka, 2006a). 

Indeed, Oct4 acts in inactivation of X chromosome to induce reprogramming(Navarro et 

al., 2008), interacts with several polycomb group proteins (Wang et al., 2006) and 

regulates H3K9 methylation status of the pluripotency factors Tcl1 and Nanog, 

respectively, to maintain stem cell identity (Loh et al., 2007). Another relevant core 

factor, Nanog regulates pluripotency Gata4 and Gata6 genes important for differentiation 

and linked to epigenetics(Chambers et al., 2003; Mitsui et al., 2003). Klf4 might 

contribute to activation of Nanog and other ES cells-specific genes through p53 

repression (Takahashi and Yamanaka, 2006a). These all factors induce somehow somatic 

cell de-differentiation thanks to the chromatin remodelling. 

Epigenetic alterations suffered in Wnt overactivation conditions could be crucial for 

efficient reprogramming as epigenetic barrier work together to ensure stability in gene 

expression. Despite some progress in this field, relatively little is known about the 

epigenetic pattern and consequent pleiotropic effects that drive DPSCs into both stemness 

and specialized lineages. To search for the elusive keys for DPSC cells reprogramming, 

it is crucial to understand how behaves epigenetic in PSCs during reprogramming. It is 

well known that features of chromatin in PS cells are different from the somatic cells, 

including nuclear architecture, chromatin structure, chromatin dynamics, and histone 

modifications. As an example, PSCs chromatin displays open conformation of chromatin 

besides high levels of acetylated H3K9 and methylated H3K4 enablingpluripotent nuclei 

the early replication of lineage-specific genes during differentiation(Boyer et al., 2006; 

Meshorer and Misteli, 2006).Indeed, H3K27 methylation is functionally important for 

preventing differentiation genes expression in ES cells (Azuara et al., 2006; Bernstein et 

al., 2006).DNA methylation at CpG islands remains as another gene silence mechanism 

of epigenetics relevant for gene expression. Silencing of certain genes by DNA 

methylation is required for induction of differentiation of PSCs whereas DNA 

hypomethylation is required for stemness condition maintenance (Jackson et al., 2004). 

Interestingly, hypomethylation in ES cells allows cells to maintain high level of Oct4 

expression, thus keeping them in pluripotent state (Taranger et al., 2005). In DPSCs levels 

of methylation are lower in Wnt treatments giving further evidence about the plasticity of 

chromatin when needs remodelling. 
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Finally, there is also a link between metabolism and epigenetic. For start, several studies 

places glycolysis apart from generating ATP, as a crucial producer of glycolytic 

intermediates necessary for the production of new biomass and metabolites required for 

epigenetic changes in transcription (Wellen et al., 2009). Wellen have attributed 

glycolysis-derived acetyl-CoA, through ATP citrate lyase (ACLY), the enhancer of the 

histone acetylation during adipogenesis(Wellen et al., 2009).  The acetyl-CoA generated 

in glycolysis, apart from its contribution to the initiation of the TCA cycle and the de 

novo synthesis of lipids, would have an important role in acetylation of specific amino-

acid residues (predominantly lysine, K) on both histone and non-histone proteins trough 

HATs(Koopman et al., 2014; Lunt and Vander Heiden, 2011). Indeed, mitochondrial 

acetyl-CoA from fatty acid oxidation needed glucose to serve as a substrate for histone 

acetylation (Wellen et al., 2009). Moreover, acetate, an acetyl-CoA precursor, prevented 

histone deacetylation and blocked the differentiation of ESCs (Moussaieff et al., 2015b). 

These links between glycolysis and histone acetylation described before, have been 

observed in different cells such as ESCs (Moussaieff et al., 2015b), skeletal muscle stem 

cells (Ryall et al., 2015), tumour cells (Liu et al., 2015b) and yeast (Friis et al., 2009). 

The activity of the Histone Deacetylase Sirtuin 1 or SIRT1 (HDAC) has also been shown 

to be crucial for reprogramming and regulates PSCs pluripotency (Tang and Rando, 

2014). Interestingly, there are several metabolites that contribute in regulation of histone 

modifications and pluripotency apart from acetyl-CoA.In PSCs differentiation pyruvate 

becomes fully oxidized in mitochondria, leading to acetyl-coA depravation, loss of 

histone acetylation and subsequent loss of pluripotency markers expression (Moussaieff 

et al., 2015a; Moussaieff et al., 2015b). These findings suggest that cytosolic acetyl-CoA 

does not always correlate with stemness and in this case, switch might exist to modulate 

histone acetylation and chromatin plasticity during cellular differentiation. Another 

example is α-ketoglutarate, derived from glutamine, which promote histone and DNA 

demethylation in order to maintain relaxed chromatin state (Sperber et al., 2015). SAM 

acts as the substrate for methyl transferases and as a result is a key regulator for 

maintaining the undifferentiated state of PSCs(Shyh-Chang et al., 2013).  SAM levels are 

controlled by nicotinamide N-methyl transferase (NNMT), converting them into SAH, 

which through EZH2 catalytic enzyme, regulates H3K27me3 repressive marks (Sperber 

et al., 2015). We incorporate metabolism signalling and its network with epigenetics in 

the following figure as recent research and our finding in our DPSCs system (Figure 6). 

Here we hypothesized NNMT role to control SAM levels and methylation in DPSCs 
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(Figure 6). In our system, H3K27me3 marks increase in Wnt overactivation. One 

explanation to this could be that the function of H3K27me3 marks remains elusive. One 

Perhaps in the absence of other repressive mechanisms such as DNA methylation or 

H3K9me3, H3K27me3 can compensate their missing activities. For example, H3K27me3 

becomes enriched at repetitive elements such as ERVs in PGCs where DNA methylation 

is globally depleted (Lindroth et al., 2008; Ng et al., 2013). 

 

 

 

 

 

 

 

 

 

 

Figure6. Representation of epigenetic and metabolic changes during reprogramming in DPSCs. Wnt 

signaling activation by either BIO or WNT-3A increases glucose consumption by overexpression of 

glycolytic enzymes HK2 and/or PKM2. LDHA and LDHB contribute to lactate-pyruvate conversion. 

LDHB is overexpressed while LHDA is downregulated in Wnt activated DPSCs. Pyruvate dehydrogenase 

complex subunits are also upregulated in BIO/WNT-3A treated DPSCs and this leads to fuel the 

mitochondrial TCA cycle. These “hyper-energized” DPSCs show a net accumulation of lipids and a 

mitochondrial hyperpolarization. Overexpression of cytosolic ACLY and ACSS2 enzymes suggests 

cataplerosis leading to cytosolic accumulation of acetyl-coA, which can be then used for lipid biosynthesis. 

This excess of acetyl-coA is used for histone acetylation. The total amount of NAD+ is used by SIRT 1 to 

quit acetylation marks. Contrarily, SAM from the One Carbon Metabolism acts as contributor for DNA 

methylation and NNMT convert SAM to SAH. This NNMT indirectly contributes to DNA de-methylation 

whereas then level of acetylation is higher in these conditions thanks to HAT and SIRT1 activities fueled 

by NAD+/NADH. Interestingly, ATP AN CONTRIBUTE TO DNA phosphorylation, but high levels can 

contribute to block AMPK, blocking DNA phosphorylation. Meanwhile, mitochondria consume amino 

acids such as glutamine and glutamate to replenish TCA metabolites in a coordinated cycle of cataplerosis 
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and anaplerosis. Cytosolic fatty acids also appear to participate in this process, as suggested by the 

overexpression of CPT1 and β-oxidation enzymes at mRNA level. DPSCs reprogrammed with BIO or 

WNT-3A thus show a boost in glycolysis without the characteristic lactate accumulation observed in the 

classic Warburg effect. 

In support with this hypothesis, in DPSCs treated with Wnt overactivators, there are some 

key points in common with PSCs in metabolism and epigenetic behaviour during 

reprogramming as well as different remarks. Curiously, during reprogramming of DPSCs, 

these pluripotency core factors remain higher when glucose is continuously fully oxidized 

and OXPHOS work functionally and mitochondria are at their highest membrane 

potential. The epigenetic changes that occur during somatic cell reprogramming are also 

distinct from the epigenetic changes required to maintain pluripotency. Whereas somatic 

cell reprogramming involves complex global remodelling of histone modifications and 

DNA methylation, pluripotency maintenance requires an enrichment of histone 

acetylation to maintain chromatin plasticity, relative to differentiated cells (Mattout et al., 

2015). In our system, we observe histone methylation and acetylation patterns 

modification with DA methylation remodelling. 

More studies will be necessary to understand gene expression, metabolism and epigenetic 

network to design more safety and efficient methods of reprogramming. Notch and 

Wnt/β-Catenin work as fundamental signalling pathways in DPSCs maintenance of 

stemness and self-renewal. Modulation of Wnt signaling by recombinant protein WNT-

3A would be a good alternative to control reprogramming in different times and 

concentrations. This strategy could be used for creating new more efficient and faster 

differentiation media protocols to achieve different type of cells for cell therapy from 

Dental Pulp Stem Cells. 
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After doing this thesis, we have reached the following conclusions: 

1- The signalling pathways Notch and Wnt/β-Catenin regulate the stemness of Dental 

Pulp Stem Cells, controlling their expression of pluripotency core factors and self-

renewal.  

2-A Wnt signalling overactivation pre-treatment improves the capacity of DPSCs to 

subsequently differentiate to mature cell types such as osteocytes and adipocytes.. This 

strategy allows the creation of faster and more efficient differentiation media protocols. 

3- Notch inhibition by DAPT slows down glycolytic metabolism. 

4- Wnt overactivation by BIO or WNT-3A accelerates glycolytic metabolism, bringing 

Dental Pulp Stem Cells to a hyper-energetic state characterized by increases in 

mitochondrial tricarboxylic acid cycle (TCA) activity, mitochondrial membrane 

potential, lipid biosynthesis, and in the generation of reducing nucleotide species 

(NADH). 

5- The overactivation of Wnt pathway decreases DNA methylation and increases histone 

methylation and acetylation in Dental Pulp Stem Cells. 

6. The overactivation of Wnt pathway leads to a partial reprogramming of Dental Pulp 

Stem Cell cultures, as part of a signalling network controlling the expression of 

pluripotency core factors, and metabolic and epigenetic plasticity.  
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