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Lyme disease is the most prevalent vector-borne disease in the Northern hemisphere, with a 

recent estimate of 650,000-850,000 affected people in Europe (1) and 300,000 in the U.S (2). 

The increase in Lyme disease cases reported in the last decade in the US and Europe along with 

climate change-associated shifts in tick populations predicts that this disease will be a major 

public health concern in the near future. The variety of symptoms associated with the infection 

and the difficulties in its diagnosis, together with the absence of an effective vaccine 

underscores the emerging need for more detailed knowledge about the disease and the 

mechanisms of the immune responses involved. 

 
The importance of macrophages in the control of B. burgdorferi infection is two-fold: first, they 

control spirochetal numbers by phagocytosis; and second, they are greatly responsible for the 

inflammatory response as a result of infection. Both aspects of the macrophage response are 

intimately related and therefore, the search for phagocytic receptors also involve the 

identification of pathways associated with the overall inflammatory output of these cells. In this 

work, we proposed as a general aim the study of macrophage responses to Borrelia 

burgdorferi, focusing on the elements involved in their phagocytic activity and the subsequent 

cell-mediated inflammatory response, in order to understand more deeply the interaction of 

this cell type and the bacterium as well as the functional consequences of such interactions. 

 

Using large-scale analytical approaches such as transcriptomics and proteomics, we have 

studied innate immune responses to the spirochete using both murine macrophages and 

human monocytes and macrophages. Using RNAseq and micro arrays, we compared the global 

transcriptional profile of primary murine macrophages (BMM) and human peripheral blood 

monocytes (hMon) after exposure to B. burgdorferi.  In both cases, the main transcriptional 

traits involved in the response resulted in an overlapping pro-inflammatory profile that, 

nevertheless, reveals distinct transcriptional specificities based on differences both in cell type 

and species. Overall, similar proinflammatory pathways were found to be activated, such as 

TLRs, MyD88, NF-B complex, TNF, IL-1β and IL-1α. Conversely, in both cases, the response 

suggested the inhibition of IL-10Rα-induced pathways, which have been shown to temper the 

inflammatory response. 
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We completed our studies using proteomics analyses: a proteomic profile of BMMs in response 

to the spirochete; and the identification of proteins present within B. burgdorferi-containing 

phagosomes in human macrophages. Together, the results obtained identified the complex 

array of signaling components that are involved in the inflammatory output of macrophages, 

provided clues to the long-term consequences of the encounter of these cells with the 

spirochete, and allowed us to identify a group of receptors that are involved in the 

internalization and/or induction of inflammatory factors in response to the bacterium. 

 

Arising from the information obtained in these approaches, we invested a significant effort 

elucidating the surface receptors and signaling mediators involved in the complex process of B. 

burgdorferi phagocytosis. We discovered that some surface receptors play a regulatory role, 

while others are directly implicated in the process. Phagosome analysis confirmed that 

phagocytosis involves several receptors and signaling mediators, distinctly triggering a 

signaling/inflammatory response. 

 

Apart from confirming the implication in the internalization of the spirochete of receptors 

already described such as MARCO (4) and uPAR (5), our data allowed us to define a set of 

receptors that modulate the uptake and/or proinflammatory cytokine production of 

macrophages in response to B. burgdorferi. In particular, we describe the regulation of CD180 in 

response to B. burgdorferi. Our results show that CD180 modulates both phagocytosis and 

inflammation in response to B. burgdorferi through the transcriptional repression of 

complement receptor 3 (CR3). CD180 is known to play a role in both enhancing and suppressing 

TLR responses that seem to vary with cell type (6); therefore, our data suggest a tight control on 

macrophage behavior that is, at the same time, specific to the pathogen. It also indicates that 

there could be multiple mechanisms of phagocytic and proinflammatory control that may be 

relevant at different phases of the response. 
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Our work has led to the identification of the Fc gamma receptor family as phagocytic receptors 

for B. burdorferi in the absence of antibodies. Although the importance of the common FcR γ-

chain in the control of spirochetal burdens in mice has been previously demonstrated in the 

presence of antibodies (7), the alpha chain (CD64) has never been previously related to direct 

phagocytosis. The results obtained suggest that the role played by these receptors may not be 

solely mediated by antibodies. Furthermore, the behavior of other members of the pathway, 

such as CD45 and FcRG3 (low affinity α chain) confirms the relevance of this pathway. 

 

We also elucidated the importance and behavior of different signaling molecules, such as 

SHIP1, FcRγ, Syk and MyD88. The inhibitory phosphatase SHIP1, the kinase Syk and the 

common gamma chain, FcRγ do not only signal in response to the Fc Receptor pathway, but 

have also been demonstrated to interact with activator ITAMs and inhibitory ITIMs present in 

some C-type lectins (8), many of them described in our studies. SHIP1 can also be recruited by 

certain C-type lectins, involving FCRγIIB, which can result in an anti-inflammatory response (9).  

 

On the other hand, MyD88 is known to play and important role in B. burgdorferi phagocytosis, 

since is responsible for a large percentage of spirochetal internalization (9); however, although 

we demonstrate its presence in bacteria-containing phagosomes, we could not identify the 

receptor(s) that signal through this effector molecule. Several C-type lectins have been 

reported to crosstalk with TLRs, such as Dectin-1 and TLR2 (11) or DC-SIGN and TLR4 (12). 

Therefore, since the precise role of each C type lectin remains unknown, we cannot dismiss the 

possibility that one or various of the described receptors might be indirectly implicated in the 

MyD88-dependent phagocytosis of B. burgdorferi. Overall, the data presented reveal the 

intricated network and crosstalk between receptor families that intervene in the phagocytic 

process. 

 

Apart from MARCO, uPAR and CR3, no further receptor has been previously associated with B. 

burgdorferi phagocytosis so far, but many of the receptors described in this thesis play a role in 
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the ingestion of other pathogens. It is possible that the role played by some of them, such as 

GPI anchored proteins, might be accessory, as shown in the case of CD14 during CR3-mediated 

phagocytosis (12). 

 

The overall signature response to a specific pathogen is dictated by the addition of the signals 

emanating from surface receptors that recognize pathogen components, which is further 

modulated by the interaction of intracellular signaling molecules, resulting in both the 

internalization of the pathogen and the induction of cytokines and chemokines. We also 

describe the complex array of signals that are triggered by the interaction between B. 

burgdorferi and macrophages. Thus, our results will set the basis to elucidate the contribution 

that each receptor plays in the overall response of macrophages to the spirochete and the 

assignment of the relationship between receptors and signaling pathways that lead to the 

functional output on these cells. This knowledge will lead to a better understanding of 

macrophage function in response to B. burgdorferi, clarifying the inflammatory responses 

observed during human Lyme borreolisis, and revealing new targets of intervention. 
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La enfermedad de Lyme es la enfermedad transmitida por artrópodos más prevalente en el 

hemisferio norte, con una estimación reciente de 650,000-850,000 personas afectadas en 

Europa (1) y 300,000 en los EE. UU. (2). Esta enfermedad es causada por una bacteria llamada 

Borrelia burgdorferi que es transmitida al ser humano a través de la picadura garrapatas 

pertenecientes al género Ixodes. El aumento en los casos de enfermedad de Lyme 

diagnosticados en la última década en los EE. UU. y Europa, junto con los cambios en las 

poblaciones de garrapatas debidos al cambio climático, predice que esta enfermedad será un 

problema importante de salud pública en un futuro cercano. Las dificultades en el diagnóstico y 

la ausencia de una vacuna eficaz frente a la enfermedad de Lyme apuntan a que existe una 

necesidad apremiante de obtener un conocimiento más detallado sobre la enfermedad y los 

mecanismos de la respuesta inmune involucrada. La investigación en esta área de estudio 

podría contribuir al desarrollo de terapias efectivas y herramientas de diagnóstico específicas 

que faciliten el tratamiento de esta enfermedad, que en muchos casos sigue mal o poco 

diagnosticada. 

La importancia de los macrófagos en el control de la infección por B. burgdorferi es doble: 

primero, intervienen en la eliminación de las espiroquetas mediante el proceso de fagocitosis; y 

segundo, son responsables de la respuesta inflamatoria provocada en respuesta la infección. 

Ambos aspectos de la respuesta están íntimamente relacionados y, por lo tanto, la búsqueda de 

receptores fagocíticos también conlleva la identificación de vías de señalización asociadas a la 

respuesta inflamatoria mediada por estas células. En este proyecto, propusimos como objetivo 

general el estudio de la respuesta inmune de los macrófagos a B. burgdorferi, centrándonos en 

los elementos involucrados en su actividad fagocítica y la posterior respuesta inflamatoria 

mediada por estas células, a fin de comprender más profundamente la interacción de este tipo 

de células y la bacteria. 

Mediante enfoques analíticos de gran escala, como la transcriptómica y la proteómica, hemos 

estudiado la respuesta inmune innata frente a la espiroqueta utilizando macrófagos de ratón y 

monocitos y macrófagos humanos. A través de los análisis de RNAseq y microarray, hemos 

comparado el perfil transcripcional global de macrófagos murinos primarios (BMM) y de 
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monocitos sanguíneos periféricos humanos (hMon) en respuesta a B. burgdorferi. En ambos 

casos, los principales rasgos transcripcionales involucrados en la respuesta presentan un perfil 

proinflamatorio que, sin embargo, muestran especificidades debidas a diferencias en el tipo 

celular y especie. A grandes rasgos, se encontró la activación de vías proinflamatorias similares, 

tales como TLR, MyD88, el complejo NF-B, TNF, IL-1β e IL-1α. Por el contrario, en ambos casos 

la respuesta provocó la inhibición de las vías inducidas por IL-10Rα, que se ha demostrado que 

atenúan la respuesta inflamatoria. 

 

Completamos nuestro estudio realizando dos análisis proteómicos: un análisis proteómico de 

BMM en respuesta a la espiroqueta; y la identificación de proteínas presentes dentro de los 

fagosomas de macrófagos humanos tras fagocitar B. burgdorferi. Juntos, los resultados 

obtenidos identificaron el conjunto de componentes de señalización que participan en la 

respuesta inflamatoria de los macrófagos. Los datos proporcionaron pistas sobre las 

consecuencias a largo plazo de la estimulación de estas células con la espiroqueta y nos 

permitieron identificar un grupo de receptores que están involucrados en la internalización y / 

o inducción de factores inflamatorios en respuesta a la bacteria. 

 

Partiendo de la información obtenida en estos ensayos, tratamos de describir los receptores de 

superficie y los mediadores de señalización involucrados en el complejo proceso de fagocitosis 

de B. burgdorferi. Descubrimos que algunos receptores de superficie desempeñan un papel 

regulador, mientras que otros están directamente implicados en el proceso. El análisis de los 

fagosomas confirmó que la fagocitosis involucra varios receptores y mediadores de 

señalización, lo que desencadena claramente una respuesta de señalización / inflamatoria. 

 

Además de confirmar la implicación en la fagocitosis de la espiroqueta de receptores ya 

descritos, como MARCO (4) y uPAR (5), nuestros datos nos permitieron definir un conjunto de 

receptores que modulan la captación y/o la producción de citoquinas proinflamatorias por los 
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macrófagos en respuesta a B. Burgdorferi. En particular, describimos el papel regulador de 

CD180 en respuesta a la bacteria. Nuestros resultados muestran que CD180 modula tanto la 

fagocitosis como la inflamación en respuesta a B. burgdorferi a través de la represión 

transcripcional del receptor del complemento 3 (CR3). Se sabe que CD180 desempeña un papel 

tanto en la activación como en la represión de las respuestas mediadas por los receptores tipo 

Toll (TLRs). El papel desempeñado por CD180 parece variar dependiendo del tipo celular y del 

tipo de patógeno (6); por lo tanto, nuestros datos sugieren que hay un estricto control sobre el 

comportamiento del macrófago que es, al mismo tiempo, dependiente del tipo de patógeno. 

También indican que podría haber múltiples mecanismos de control sobre la fagocitosis e 

inflamación que pueden ser relevantes en diferentes fases de la respuesta inmune. 

 

Gracias a nuestra investigación hemos identificado a la familia de receptores Fc gamma como 

mediadores fagocíticos de B. burgdorferi en ausencia de anticuerpos. Aunque la importancia de 

la cadena FcRγ en la respuesta a la espiroqueta ha sido demostrada previamente en ratones 

aunque en presencia de anticuerpos (7), la cadena alfa (CD64) no se ha relacionado 

previamente con la fagocitosis no opsónica. Los resultados obtenidos en nuestro estudio 

sugieren que el papel desempeñado por estos receptores puede no estar mediado únicamente 

por anticuerpos. Además, el comportamiento de otros miembros de la ruta de señalización, 

tales como como CD45 y FcRG3 (cadena α de baja afinidad) confirma la implicación de esta ruta 

en la respuesta inmune a este patógeno. 

 

También esclarecimos la importancia y el comportamiento de diferentes factores de 

señalización, como SHIP1, FcRγ, Syk y MyD88. La fosfatasa inhibitoria SHIP1, la quinasa Syk y la 

cadena gamma, FcRγ, no solo transducen las señales de la ruta de señalización de los Fc, sino 

que se ha demostrado que interactúan con dominios intracelulares ITAM (activadores) e ITIM 

(inhibidores) presentes en algunas lectinas de tipo C (8) , muchos de ellos descritos en nuestro 

estudio. SHIP1 también puede ser reclutado por ciertas lectinas de tipo C, que, involucrando al 

receptor FCRγIIB, desencadenan una respuesta antiinflamatoria (9). 
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Por otro lado, se ha demostrado que MyD88 juega un papel importante en la fagocitosis de B. 

burgdorferi, siendo responsable de un gran porcentaje de la internalización de las espiroquetas 

(9); sin embargo, aunque hemos identificado su presencia en los fagosomas de B. burgdorferi, 

no hemos podido identificar los receptores que actúan a través de este elemento de 

señalización. Se ha descrito que varias lectinas de tipo C interactúan con los TLRs, tales como 

como  Dectin-1 y TLR2 (11) o DC-SIGN y TLR4 (12). Por lo tanto, dado que el papel exacto que 

desempeña cada lectina de tipo C sigue siendo desconocido, no podemos descartar la 

posibilidad de que uno o varios de los receptores descritos en nuestro estudio puedan estar 

implicados en la fagocitosis dependiente de MyD88. En conclusión, los datos obtenidos revelan 

que existe una compleja conexión entre las familias de los receptores que intervienen en el 

proceso de fagocitosis de este patógeno. 

 

Además de MARCO, uPAR y CR3, hasta ahora no se había asociado ningún otro receptor con la 

fagocitosis de B. burgdorferi, sin embargo, muchos de los receptores descritos en esta tesis 

desempeñan un papel en la eliminación de otros patógenos. Es posible que la implicación de 

algunos de ellos, como las proteínas ancladas a GPI, pueda ser accesoria, como se muestra en el 

caso de CD14 durante la fagocitosis mediada por CR3 (12). 

 

La respuesta inmune global a un patógeno está dictada por la integración de las señales que 

emanan de los receptores de superficie que reconocen los componentes del patógeno. Estas 

señales son moduladas por la interacción entre los factores de señalización intracelular, lo que 

resulta en la internalización del patógeno y la inducción de citoquinas y quimiocinas. Nuestro 

estudio describe la complejidad de las señales que se activan tras la interacción entre B. 

burgdorferi y los macrófagos. Por lo tanto, nuestros resultados establecen la base para 

entender la contribución que cada receptor desempeña en la respuesta general de los 

macrófagos a la espiroqueta y la relación entre los receptores y las vías de señalización.  
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Este conocimiento conducirá a una mejor comprensión del rol de los macrófagos en respuesta a 

B. burgdorferi, arrojando luz sobre los síntomas inflamatorios observados durante la borreolisis 

de Lyme y revelando nuevas dianas terapéuticas para un tratamiento más efectivo de la 

enfermedad. 
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1.1  Introduction to Lyme disease 

Lyme disease is a multisystemic illness caused by spirochetes of the genus, Borrelia and 

transmitted by ticks. It is the most prevalent vector-borne disease of the northern 

hemisphere. The incidence of the disease is estimated to be 300,000 cases per year in the 

US (CDC) and up to 850,000 cases is Europe (CisiD); however, these numbers could be 

higher because Lyme disease is not always reported due to the lack of mandatory reporting 

in several areas, including Europe. Most cases in Europe are located in areas of Central and 

Eastern Europe (Slovenia, Lithuania, Bulgaria, Estonia, Poland and the Czech Republic). The 

incidence of Lyme disease has increased during the last decades due to climate change as 

increasing temperatures have expanded the habitat range for the tick vectors of Lyme 

disease. 

Lyme disease, also known as Lyme borreolisis, was first described in 1975 in Lyme, 

Connecticut, where a group of children presented symptoms related to juvenile rheumatoid 

arthritis, therefore the disease was at first called “Lyme arthritis” (1). In June 1982, Willy 

Burgdorfer discovered a previously unidentified bacterium in a nymphal Ixodes scapularis 

tick, further research demonstrated that this microorganism was also present in sera from 

patients diagnosed with Lyme disease. After he published his findings the spirochete was 

named Borrelia burgdorferi in his honour (2). The symptoms of the disease have been 

described along the past centuries in regions of USA and Europe. Moreover, the 2010 

autopsy of Ötzi the Iceman, a 5,300-year-old mummy, revealed the presence of the DNA of 

Borrelia burgdorferi, making him possibly the earliest known human with Lyme disease (3). 

Lyme disease is a zoonotic disease transmitted between humans and other animals by hard-

bodied tick belonging to the Ixodes genus, namely Ixodes scapularis and Ixodes pacificus in 

US and Ixodes ricinus in EU (4) (Figure 1). In addition to B. burgdorferi, I. scapularis can also 

act as the vector for other pathogens including Anaplasma phagocytophilum and Babesia 

microti. Different Borrelia genospecies are known to cause the disease, B. burgdorferi sensu 

stricto (hereafter referred to as B. burgdorferi) is the only genospecies that cause the 

disease in North America, while B. afzelii and B. garinii are most prevalent in Eurasia (5). 

Together, all 3 Borrelia genospecies are collectively referred to as B. burgdorferi sensu lato. 

The genus comprises 30 genospecies, albeit at least three species are known to cause the 

disease in Europe (B. burgdorferi s.l., B. spielmanii, and B. bavariensis), leading to a wider 

https://en.wikipedia.org/wiki/%C3%96tzi_the_Iceman
https://en.wikipedia.org/wiki/Mummy
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variety of clinical manifestations in Europe than in North America. A further three species (B. 

bissettii, B. lusitaniae and B. valaisiana) have been very occasionally detected in European 

patients, but are not recognised as disease causing pathogens (4). Other members of the 

Borrelia genus are known to cause relapsing fever, which are also transmitted by ticks but 

with a different geographical distribution and inducing distinct symptomatology (6). 

 

Figure 1: Global distribution of the vectors (Ixodes ricinus species complex) of Lyme disease. Modified from 

Stanek G. et al., 2012. 

 

Transmission of the spirochete occurs through the bite of ticks. A feeding period of more 

than 40-48 hours is usually needed for transmission of B. burgdorferi by I. scapularis or I. 

pacificus ticks (1). Transmission of B afzelii by I. ricinus, however, may require less time (7). 

The clinical manifestations of the disease vary depending on the strain that causes the 

infection; While B. afzelii localizes to the skin, B. garinii is usually associated with nervous 

system disorders (4). B. burgdorferi rarely causes this disease in Europe; nevertheless, it is 

the sole agent of Lyme borreliosis in the United States, presenting with symptoms more 

associated with arthritic lesions in the northeaster region (4, 5). Furthermore, B. burgdorferi 

induces a broader symptomatology compared to the other two species, and more frequent 

hematogenous dissemination (8). The only hallmark symptom associated with the infection 

with these three species is a skin rash, erythema migrans, which appears at the site of 

infection within 7 to 10 days after the tick bite (Figure 5). 
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Figure 2: Infectious cycle of the European Borrelia burgdorferi sensu lato genospecies: Coloured circles 

represent each of the Borrelia genospecies, and their size indicates the implication of each vertebrate as a 

reservoir for the different genospecies. A red cross indicates a non-reservoir host. Figure modified from Steere 

A.C. et al., 2016. 

 

The epidemiology of Lyme disease is complex. The life cycle of B. burgdorferi depends 

intimately on the two-year life cycle of Ixodes ticks (Figure 2, 3), which consists of three 

developmental stages: larva, nymph and the adult. B. burgdorferi is maintained in Nature via 

transmission cycles between mammalian hosts and tick vectors. The host animals are small 

rodents and birds. The tick acquires the bacteria by feeding on a previously infected host 

and transmitting the bacteria to the subsequent host (2, 9). Mating of adult tick requires 

large animals, such as deer, which are essential for tick population maintenance. 
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Afterwards, the female tick lays the eggs, dies, and the cycle starts again. Larval ticks are not 

infected with B. burgdorferi, since the spirochete is not transmitted transovarially (1). Tick 

nymphs are the most responsible for spirochetal transmission to humans and dogs; 

however, they are not part of the enzootic life cycle of B. burgdorferi and they are 

considered dead-end hosts.  

 

Figure 3: Developmental stages of Ixodes ricinus. From left to right: larva, nymph, adult female, adult male. 

Figure modified from Stanek G. et al., 2012 

 

1.2  Clinical manifestations of the disease 

The hallmark symptom of Lyme borreliosis is a skin rash that appears at the site of infection 

in 70–80% of cases, called erythema migrans (EM) (11) (Figure 4, A). EM develops within 7 

to 10 days of infection and may be accompanied by flu-like symptoms, such as fatigue, 

malaise, fever, chills, myalgia and headache. In Europe, B. burgdorferi s. l. infection causes 

EM as well, but does rarely present other associated symptomatology (12). In rare cases, 

early Lyme borreolisis in Europe presents a skin manifestation called borrelial 

lymphocytoma that is most often caused by B. afzelii infection (Figure 4, C). EM lesions 

consist of perivascular infiltrates of lymphocytes, dendritic cells (DC), macrophages, and a 

small numbers of plasma cells (13). EM spontaneously resolves within weeks even in the 

absence of antibiotic treatment. 

If not properly treated, B. burgdorferi may then disseminate systemically via the lymphatic 

system or blood to the joints, nervous and cardiovascular system causing a variety of 

inflammatory symptoms such as arthritis, carditis and nervous system defects (i.e. 
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meningitis). During the early dissemination stage patients may experience numbness, Bell’s 

palsy, palpitations, chest pain or shortness of breath. The colonization of tissues occurs in a 

matter of weeks or a few months after infection (11). 

 

Figure 4: The stages and most common clinical features of Lyme borreliosis: Clinical manifestation of Lyme 

borreliosis in Europe or Europe and US. We can differentiate three stages, with different clinical manifestations 

at each stage. The initial symptoms are localized to the skin, however, as the disease progresses and as the 

immune response matures, the infection typically becomes more localized, such as to the knee joint, and is 

accompanied by minimal, if any, systemic symptoms. Figure modified from Steere A.C. et al., 2016. 

 

Late stage symptoms include chronic arthritis, neuroborreliosis, or cutaneous lesions such as 

acrodermatitis chronica atrophicans (14) (Figure 4, D). B. burgdorferi s.s. is most associated 

to arthritis, while in Europe and Asia, B. afzelii persists in the skin resulting in acrodermatitis 

chronica atrophicans, a skin condition that occurs primarily on sun-exposed surfaces (15). B. 

garinii appears to be the most neurotropic of the three Borrelia genospecies. It may cause 

an exceptionally wide range of neurologic abnormalities (16), including borrelial 

encephalomyelitis, a multiple sclerosis–like illness. 
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Figure 5: Dermatological manifestations of Lyme borreliosis. A and B) Skin lesion known as erythema 

migrans, which occurs at the site of the tick bite. The rash presents a brighter red outer border, partial central 

clearing and a bull’s eye centre. C) Borrelial lymphocytoma (arrow) is a subacute lesion that typically occurs on 

the nipple in adults or on the earlobe in children. D) Acrodermatitis chronica atrophicans is the most common 

late manifestation of Lyme borreliosis in Europe. These lesions have an inflammatory phase followed by 

fibrotic characteristics. Figure modified from Steere A.C. et al., 2016. 

 

1.3  Lyme disease diagnosis 

Because of the high antigen variability within B. burgdorferi genospecies and the lack 

of standardized test methods, the diagnosis of Lyme disease presents interpretation 

difficulties. Therefore, serological results should always be interpreted in the context of the 

patient’s clinical condition and the course of the disease. In general, Lyme disease diagnosis 

follows a two-tiered sero-diagnostics procedure: the first step searches for specific anti-

borrelial IgM and IgG by enzyme-linked immunosorbent assay (ELISA) as a screening test; 

then, positive or borderline results are confirmed using a immunoblot assay. Nevertheless, 

the interpretation of the Western blot varies between United States and Europe as no 

criteria provides results with high sensitivity and specificity for all countries. 

Due to the often delayed immune response, results may be false negative in the early stage 

of the disease; however, the presence of erythema and a reported tick bite is sufficient to 

initiate treatment without prior serological confirmation (17). 
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Figure 6: Lyme disease diagnosis; two tiered sero-diagnosis method. Image modified from Scheffold et al., 

2015 (17). 

 

1.4  Treatment 

During the early stages of Lyme disease oral administration of doxycycline (100 mg twice 

daily) or amoxicillin (500 mg thrice daily) for two weeks is recommended. When the disease 

is in a more advanced phase in which other organs are involved, the treatment might be oral 

or intravenous depending on the organ involved and the disease manifestation. The 

antibiotics used in these cases are ceftriaxone or cefotaxime, and the doses are variable 

(17). 

 

1.5  Borrelia cellular characteristics, genome and metabolism 

B. burgdorferi is a complex microaerophilic Gram-negative bacteria. It is 0.3 μm wide 

and 5 to 30 μm in length (Figure 7, A). Nevertheless, it differs from the typical Gram-

negative bacteria: the outer membrane does not contain lipopolysaccharide but is 

composed of phospholipids and glycolipids (18). Other components of the outer membrane 

are lipoproteins, which present a high variability and play a critical role in the interaction of 

the spirochete with the immune system. 

B. burgdorferi is a highly motile spirochete due the presence of axial filaments, a type of 

flagella attached to each pole that run lengthwise around the cell cylinder in the periplasm, 
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between the peptidoglycan layer and the outer membrane. This characteristic causes the 

twisting movement and typical shape of the bacterium (19). The flagellar motors are located 

at the cell poles along with chemotaxis proteins that sense nutrient concentration and direct 

the spirochete movement towards chemoattractants and away from harmful elements (20) 

(Figure 7, b). 

The genome of B. burgdorferi was the third microbial genome sequenced (21). The 

spirochete presents one of the most complex genomes known among prokaryotes, 

containing a linear chromosome of approximately 1 Mb in size as well as at least 12 linear 

and 9 circular plasmids totalling approximately 600 kb. The linear chromosome carries the 

majority of housekeeping genes, and is highly conserved among B. burgdorferi genospecies, 

whereas the plasmids show a high degree of variation, being some of them absent between 

genospecies.  

More than 90% of the plasmid-encoded genes are unique to B. burgdorferi s.l., without 

homologs in other organisms, suggesting that they encode proteins with functions pertinent 

to the distinctive lifestyle of the spirochete. The plasmids encode most of the expressed 

outer surface lipoproteins, and therefore, differences in plasmids among B. burgdorferi s.l. 

are thought to contribute to the clinical variability of Lyme borreolisis in different 

geographical regions (22). 

A large portion of the genome encodes lipoproteins, which suggests that they may be 

important for the survival and host colonization by the spirochete. Specifically, 5% of the 

chromosomal ORFs and 14.5 to 17% of plasmid ORFs of B. burgdorferi encode putative 

lipoproteins. (21). These lipoproteins include Outer surface proteins (Osp), A-F. The B. 

burgdorferi genome lacks any known toxins. B. burgdorferi presents very limited metabolic 

capabilities as a result of the adoption of a lifestyle that involves parasitizing nutrients from 

its hosts, therefore, it is highly dependent on its tick vector and vertebrate host for many 

essential factors (23). The bacterium is an auxotroph for all amino acids, nucleotides and 

fatty acids. To obtain these factors, the B. burgdorferi genome encodes 16 distinct 

membrane transporters, many of which have broad substrate specificity (Fraser et al., 

1997). It also lacks genes encoding enzymes for the tricarboxylic acid cycle and oxidative 

phosphorylation, relying exclusively on glycolysis for energy production and fermentation of 

sugars to lactic acid via the Embden–Meyerhof pathway (23). 
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1.6  Invasion, dissemination and immune evasion 

B. burgdorferi survival and adaptation to different host environments depends of gene 

expression. Adaptive changes occurring during the transmission of the bacterium from the 

tick midgut to the mammalian host occur in response to signals emanating from tick 

engorgement, such as temperature increase, the availability of nutrients, changes in oxygen 

tension and decreased pH (9). This process requires que combined action of the RNA 

polymerase alternative σ-factor (RpoS) and the Borrelia oxidative stress regulator (BosR) 

(24, 25). 

The majority of genes targeted by this two factors encode surface lipoproteins, and, in a fine 

tuned process, RpoS activates the transcription of mammalian-phase-specific genes (for 

example, ospC) (26). At the same time, BosR transcriptionally represses tick-phase-specific 

genes (for example, ospA) (27). OspA plays an important role in the location of the 

spirochete within the vector through its interaction with the tick receptor for OspA 

(TROSPA) in the gut (28). The replacement of OspA by OspC is crucial for mammalian 

colonization by B. burgdorferi (29). Nevertheless, not all lipoprotein regulation is due to the 

activity of the RpoS/ BosR system. Other components essential for the survival of the 

spirochete, such as VlsE and complement regulator-acquiring surface proteins (CRASPs) are 

regulated by still unknown mechanisms (Figure 7c). 
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Figure 7: A) Borrelia burgdorferi morphology: ~300 nm in diameter and 10–30 µm in length. B) 3D model of 

the spirochete: The flagellar filaments are confined to the periplasmic space and are anchored to each cell pole 

by the flagellar motors, which are located next to methyl-accepting chemotaxis proteins (MCPs) that direct 

movement. C) The outer membrane of B. burgdorferi show different sets of lipoproteins in the tick or 

mammalian environments. This fine-tuned machinery is mediated by Borrelia oxidative stress regulator (BosR) 

and the RNA polymerase alternative σ-factor RpoS. Figure modified from Steere A.C. et al., 2016. 

 

The colonization of the mammalian host by B. burgdorferi is aided by the tick both 

mechanically and biochemically. The insertion of the tick proboscide during feeding enables 
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the delivery of the spirochete deep into the dermis, close to blood vessels. Furthermore, tick 

saliva presents an armoury of proteins and molecules that can impede various mammalian 

defence responses, which the bacteria exploit to help establish infection (31). For example, 

the salivary protein, Salp15 binds B. burgdorferi OspC and protects the spirochete from 

antibody-mediated killing, Salp15 also inhibits T cell activation, (31) while sialostatin L blocks 

neutrophil chemotaxis (32, 33). 

B. burgdorferi can prevent host defence responses including complement-mediated killing. 

B. burgdorferi activates the classical and alternative pathways of the complement cascade 

which play a role in infection control by increasing opsonization and phagocytosis of the 

spirochete (34), although some Borrelia genospecies show resistance to this process. B. 

afzelii is particularly complement-resistant while B. garinii show complement-sensitivity, B. 

burgdorferi s.s. isolates are intermediate complement-sensitive (35). A group of surface 

lipoproteins called CRASPs (complement regulator-acquiring surface proteins) bind 

complement factor H recruiting a protease (factor I) that cleaves and inactivates the 

complement serum proteins, C3b and C4b. This process protects the bacterium against 

complement-mediated killing by preventing the activation of the alternative complement 

pathway (37, 37). B. burgdorferi also express a CD59-like molecule on the outer membrane 

that can inactivate the membrane attack complex (MAC) and prevent complement-

mediated lysis (38). More recently, it has been shown that B. burgdorferi expresses a 

protein on its surface, BBK32, that prevents activation of the classical pathway by blocking 

activation of the C1 Complement Complex (39). 
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Figure 8: The tick–mammal interface. The tick creates a feeding pit using a barbed protuberance called 

hypostome as an anchor to the skin of its host. While feeding, the tick secretes saliva containing a high variety 

of immune-regulator proteins, which help host colonization by B. burgdorferi.  Some of these bioactive agents 

are represented in the figure, as SALP15 and Sialostatin L.  A group of borrelial surface lipoproteins, called 

BbCRASPs, also play an important role by complement inhibitor. The spirochete is recognized by local immune 

cells as macrophages, neutrophils and dendritic cells (DCs). Pro-inflammatory cytokine production that will 

lead to the recruitment of more effector cells that will eventually lead to the development of erythema 

migrans. Modified from Radolf JD. et al., 2012. 

 

Once deposited in the skin, B. burgdorferi multiplies locally, penetrates the matrix between 

cells and spreads to blood vessels, allowing their migration to distant tissues (40). The 

motility presented by the spirochete and the adherence to host molecules and extracellular 

matrix components are critical for B. burgdorferi dissemination, evading immune responses 

and successfully colonizing the host. Many lipoproteins of the mammalian-phase play an 

important role in this process, since they are responsible for the interaction with 

components of the extracellular matrix and host tissues. For example, decorin-binding 
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protein A (DbpA) and DbpB can bind decorin, the main component of the matrix (41), while 

ErpX and BmpA bind to laminin (42, 43) and p66 and BBB07 can attach to cell surface 

integrins (44). Another critical lipoprotein is BBK32, which binds fibronectin and 

glycosaminoglycans and is responsible for the anchoring of the circulating spirochete to 

vascular surfaces allowing B. burgdorferi to transmigrate across the endothelium and 

disseminate into tissues (45). 

During the hematogenous dissemination phase, the major threat to the survival of the 

spirochete is the potential presence of circulating antibodies. As a mechanism to avoid 

them, the spirochete undergoes antigenic variation by altering the surface lipoproteins, 

replacing OspC by VlsE. These two lipoproteins share structural similarities, and therefore 

might serve the same purpose. Nevertheless, VlsE, presents high antigenic variability, since 

its gene sequence suffers random vsl cassette insertion generating many vlsE alleles (46). 

Therefore, the highly variable region of VlsE is located towards the cells surface allowing B. 

burgdorferi to evade host antibodies to one VlsE variant by expressing a different version. 

This is a very sophisticated method to avoid host adaptive immune responses that is 

responsible for the persistent infectious feature of this pathogen (Figure 7, C). 

Once in the joints and heart, clearance of the spirochete may be more dependent on 

cellular responses (such as macrophages in the heart), than antibodies, which are less able 

to penetrate into deep tissues. 

 

1.7  Host immune response 

Despite all the mechanisms that B. burgdorferi presents to avoid host immune defences, the 

spirochete is still recognized and killed by both innate and adaptive immune responses. 

Since this bacterium does not contain toxins or proteases, the majority of Lyme disease 

symptoms and tissue damage are caused by pro-inflammatory responses. During the early 

infection by B. burgdorferi, the majority of the response is mediated by T cells, neutrophils, 

dendritic cells and monocytes or macrophages. Cytokines produced at this stage are 

predominantly TNF, IL-2, IL-6 and type I IFN, as well as chemoattractants. In both, human 

and mice, neutrophils are absent in Erythema migrans (47).  
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During the dissemination stage, both innate and adaptive immune responses are important 

for controlling bacterial burdens and inflammation (50). Nevertheless, the sole action of the 

immune system is not sufficient to eradicate infection and B. burgdorferi colonizes distant 

tissues, generating infiltration of immune cells and developing a complex inflammatory 

symptomatology. 

A distinct innate cellular infiltration profile has been observed in B. burgdorferi-infected 

tissues. Carditis in mice and humans is predominantly caused by infiltration of monocytes or 

macrophages (48). In contrast, arthritic joints show a predominance of neutrophils, with 

some presence of macrophages and lymphocytes. In susceptible strains of mice, IFNγ 

appears to modulate carditis (48), whereas type I IFNs may be particularly important for the 

development of arthritis (49). This tissue-specific tropism complicates our understanding of 

the host defense against the spirochete, but might suggest that macrophages are more 

efficient at preventing successful colonization of B. burgdorferi, because carditis is a less 

frequent manifestation of Lyme disease. 

Since all Lyme borreolisis symptoms share a common pro-inflammatory signature, a great 

amount of research has been done trying to elucidate the mechanism by which B. 

burgdorferi causes inflammation, primarily mediated by recognition and phagocytosis by 

macrophages. 

 

1.8  Borrelia burgdorferi recognition by phagocytic cells 

The early recognition and inflammatory response to B. burgdorferi is mediated by pathogen-

associated molecular patterns (PAMPs) that are detected by pattern recognition receptors 

(PRR), such as Toll-like receptors (TLRs) and (NOD)-like receptors. TLRs receptors are 

expressed by leukocytes including dendritic cells, macrophages, natural killer cells, cells of 

the adaptive immunity (T and B lymphocytes) and non-immune cells (epithelial and 

endothelial cells, and fibroblasts). Most TLRs work as homodimers, except for TLR2, which 

can dimerize with TLR1 and TLR6. When activated, TLRs recruit adapter molecules within 

the cytoplasm in order to propagate the signal. Four adapter molecules are known to be 

https://en.wikipedia.org/wiki/Leukocyte
https://en.wikipedia.org/wiki/Dendritic_cells
https://en.wikipedia.org/wiki/Macrophages
https://en.wikipedia.org/wiki/Natural_killer_cells
https://en.wikipedia.org/wiki/Epithelial
https://en.wikipedia.org/wiki/Endothelial_cells
https://en.wikipedia.org/wiki/Fibroblasts
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involved in signalling: MyD88, TIRAP (also called Mal), TRIF, and Tram (TRIF-related adaptor 

molecule). All TLRs except TLR3 utilize MYD88, leading to NF-kB activation and resulting in 

the production of pro-inflammatory cytokines such as IL-1β, TNF, IL-6, IL-8 and IL-18. TRIF 

recruitment by TLR3 and TLR4 results in type I IFN production.  

Different PAMPs of B. burgdorferi are recognized by TLRs, including but not limited to 

lipoproteins (detected by TLR1/ TLR2 heterodimers) (51), flagellin (detected by TLR5) (52), 

RNA (detected by TLR7 and TLR8) (53) and CpG DNA (detected by TLR9) (52). It is 

remarkable that all PAMPS recognized by macrophages are only accessible once B. 

burgdorferi has been degraded inside the phagolysosomes, and thus, none of the TLR 

described play a role in the surface recognition of the spirochete. Specifically, TLR1/ TLR2 

heterodimers recognize tri-acylated lipoproteins, which are embedded in B. burgdorferi 

membrane and therefore only accessible to TLR1/2 after bacterial degradation.  

As mentioned before, all TLRs involved in B. burgdorferi recognition signal through MyD88 

(52). Furthermore, it has been demonstrated that the adaptor protein MyD88 is responsible 

for a considerable percentage of B. burgdorferi phagocytosis in mice, with no effect on the 

humoral response or antigen production (54). Hence, MyD88 triggers the inflammatory 

responses through both its effects on phagocytosis and its role in transducing signals from 

TLR. However, the phagocytic receptor mediating this effect remains unknown.  

 

https://en.wikipedia.org/wiki/MyD88
https://en.wikipedia.org/wiki/TIRAP
https://en.wikipedia.org/wiki/Trif
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Figure 9: Mechanisms of innate immune recognition of Borrelia burgdorferi 

The initial innate immune response is triggered by recognition of Borrelia burgdorferi or its pathogen-

associated molecular patterns (PAMPs) by Toll Like Receptors (TLR) of host immune cells. 

Figure modified from Steere A.C. et al., 2016. 

 

1.9  Phagocytosis mediated by macrophages 

Phagocytosis is the cornerstone of the innate immune system. It is a complex, fine-tuned 

process that bridges the innate and adaptive immunity, not only in charge of the clearance 

of the invading pathogens, but orchestrating the actuation of the downstream cells of the 

immune system. It only occurs in specialized cells such as macrophages, DCs and 

neutrophils. 

Defined as the engulfment of particles of 0.5 µm or bigger, phagocytosis is a multifarious 

process that requires the participation of several components in concert, from surface 

receptors to signalling elements that drive the internalization of the pathogen. Once the 

pathogen is internalized, the phagosome matures and fuses with lysosomes, becoming a 

phagolysosome, where the pathogen is killed by reactive oxygen and nitrogen intermediates 

and hydrolases. Afterwards, microbial peptides belonging to the pathogen are bound to the 

Major Histocompatibility complex (MHC) class II molecules and transported to the cell 

surface, where the peptide/MHC class II complex are presented to T cells to trigger the 

stimulation of the adaptive immune system. At the same time, macrophages activated by 

pathogen recognition via TLR will secrete inflammatory mediators, including cytokines that 

will further recruit and instruct the adaptive immune response (Figure 10). 

The stating point of phagocytosis is the recognition of the pathogen by cell surface 

receptors. Phagocytic receptors that recognize patterns on pathogens include the mannose 

receptor and DEC-205 that recognize mannans, dectins that recognizes b-glucans and 

integrins (e.g., CD11b/CD18), and scavenger receptors that recognize surface components 

on bacteria (55). Opsonin molecules (antibodies and complement proteins) also intervene in 

the recognition and phagocytosis of pathogens. Phagocytic cells contain Fc and Complement 

receptors, which are able to recognize the opsonin-pathogen complexes and trigger their 

internalization. 
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Up to date, few receptors are known to mediate B. burgdorferi phagocytosis: The scavenger 

receptor Macrophage Receptor with Collagenous Structure (MARCO), which plays a role in 

the internalization of a variety of microbial ligands, is involved in B. burgdorferi 

phagocytosis. MARCO is significantly up-regulated upon B. burgdorferi stimulation, a 

process that requires MyD88-induced signals (56). On the other hand, the absence of uPAR 

(a GPI-anchored protein) results in the impaired phagocytosis of the spirochete (57), 

although the signals and co-receptors mediating this function are unknown. Additionally, 

Mannose Receptor 1 (MRC1, CD206) has been involved in binding of Bb to human 

monocytes (58), although it is still unclear whether this receptor is involved in the 

internalization of the bacterium. Another GPI-anchored protein, CD14 collaborates with the 

integrin, CR3, inducing its translocation to lipid rafts (59). CR3 is a bona-fide phagocytic 

receptor for B. burgdorferi that does not require MyD88-induced signals to mediate the 

internalization of the spirochete (60). Interestingly, phagocytosis by CR3/CD14 results in a 

decreased inflammatory output by macrophages (60). Overall, our understanding of the 

phagocytic uptake of B. burgdorferi is still very limited, including the full complement of 

receptors involved, their contribution to the inflammatory response of innate immune cells, 

and the signals that mediate these processes. Particularly intriguing is the identity of the 

receptor(s) involved in the MyD88-dependent internalization of B. burgdorferi, since a large 

proportion of the process requires the adaptor protein. 
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Figure 10: Schematic representation of B. burgdorferi phagocytosis mediated by macrophages and the 

subsequent immune processes. The recognition of the spirochete by TLRs leads to macrophage activation and 

cytokine/chemokine production (IL-6, TNF). Bacteria degradation in the phagolysosome generates antigen 

presentation on the cell surface by MHCII molecules, activating downstream components of the immune 

response as T cells. 
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The increase of Lyme disease cases reported in the last decade in US and Europe along with 

climate changes favouring tick population growth predicts that this disease will be a public 

health concern. A recent publication estimates between 650,000 and 850,000 Lyme patients in 

Europe. The diagnosis difficulties and the absence of an effective vaccine clarifies that there is 

an emerging need for more detailed knowledge about the disease and the mechanisms of the 

immune response involved. The research in this area of study could contribute to the 

development of fully effective therapies, and specific diagnostic tools that facilitate the 

management of this disease, which remains in many cases underdiagnosed and ineffectively 

treated. 

 
We proposed as a general aim a multifaceted study of the macrophage response to Borrelia 

burgdorferi, focusing on the elements involved in the phagocytic activity and cell-mediated 

inflammatory response, to deepen into the understanding of the infections caused by this 

bacterium. Our starting hypothesis was that the response of macrophages to B. burgdorferi is 

mediated by a set of defined surface receptors that either directly or indirectly initiate signaling 

cascades that determine the overall inflammatory output of these cells.  

 

The specific objectives of this study were the following: 

 

1. To analyze the traits of Macrophage and Monocyte response to B. burgdorferi at 

proteomic and transcriptomic level, along with their differences upon the stimulation 

with the spirochete. 

 

2. To describe the full set of elements involved in the phagocytosis process mediated by 

Macrophages. 

 
3. To characterize new surface receptors directly implicated in the ingestion of the 

spirochete, along with their inflammatory signature, as novel targets for macrophage 

activity. 
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The regulatory role of CD180 during the response of 

macrophages to Borrelia burgdorferi 
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Carreras-González, A. et al. A multi-omic analysis reveals the regulatory role of CD180 

during the response of macrophages to Borrelia burgdorferi article. Emerg. Microbes Infect. 

7, (2018). 
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1. INTRODUCTION 

 Innate immune responses constitute the first host defense mechanism 

against infection. Phagocytic cells, particularly macrophages and dendritic cells, recognize 

and internalize bacteria by phagocytosis (1). In addition to the elimination of invading 

pathogens, the internalization of microorganisms via phagocytosis is the starting point for 

several downstream signaling pathways, including proinflammatory cascades, as well as 

those associated with antigen presentation and the activation of cells involved in acquired 

immune responses. Thus, phagocytosis has critical consequences for the overall response to 

an invading pathogen, and its coupling to inflammation must be tightly regulated. Innate 

immune responses to pathogens occur via the activation of different families of receptors, 

which collectively are referred to as pattern recognition receptors (PRRs). The best-known 

examples of PRRs are the families of toll-like receptors (TLRs), C-type lectin receptors, NOD-

like receptors, and RIG-I-like receptors (2). These molecules respond to specific pathogen 

components and (3) are ideal candidates as couplers of phagocytosis to inflammation since 

they are recruited to phagosomes.  

Extensive research has been performed in the last several years to identify the receptors 

and signals related to the internalization and immune responses to B. burgdorferi. TLRs play 

an important role in sensing spirochete constituents and triggering immune responses (12). 

The involvement of other surface receptors such as CR3-CD14 (13), MARCO (14) or uPAR 

(15) in both internalization and macrophage-dependent immune modulation has also been 

recently described. The importance of the phagocytic process during infection with B. 

burgdorferi is two-fold: first, it allows the control of spirochetal numbers during infection, 

especially in those organs susceptible to developing an inflammatory process, such as the 

heart, in which phagocytosis seems to outperform the elimination of the bacteria by 

circulating antibodies (16, 17); second, phagocytosis modulates both the quality and 

quantity of the inflammatory response by allowing the interaction of pathogen-associated 

molecular patterns (PAMPs) with their cognate PRRs upon degradation of the bacteria in 

phagolysosomal compartments (18-21). Phagocytosis of B. burgdorferi by macrophages and 

other cell types is, therefore, probably one of the most important mechanisms of control of 

the bacteria in the mammalian host. 
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 Large-scale analytical approaches to quantify gene expression (transcriptomics), proteins 

(proteomics) and metabolites (metabolomics) have emerged with a potential to advance 

the identification of biomarkers in early, disseminated and post-treatment disease stages 

(22). These technologies may permit a definition of the disease stage and facilitate its early 

detection to improve diagnosis. In this chapter, we employed different omic techniques to 

study innate immune responses to the spirochete using both murine macrophages and 

human monocytes to reveal new immune treats that are involved activation of 

macrophages upon B. burgdorferi stimulation.   
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2. MATERIALS AND METHODS 

2.1 Mice 

C57Bl/6 (B6) mice were purchased from Charles River Laboratories (Barcelona, Spain) and 

bred at CIC bioGUNE. All work performed with animals was approved by the competent 

authority (Diputación de Bizkaia) following European and Spanish directives. The CIC 

bioGUNE´s Animal Facility is accredited by AAALAC Intl. 

2.2 Bacteria 

B. burgdorferi Bb914, a clone derived from strain 297 that contains a constitutively 

expressed GFP reporter stably inserted into cp26 (23), along with wild-type B. burgdorferi 

297 were used for BMMs and RAW264.7 cells. B. burgdorferi clone 5A15 of strain B31 was 

used to stimulate human monocytes and monocyte-derived macrophages. Bacteria were 

grown in 5-ml tubes at 34 ºC in BSK-H medium (Sigma Aldrich Quimica SL, Madrid, Spain). All 

stimulations were performed for a period of 16 h unless otherwise stated. 

2.3 Cell culture 

The macrophage-like RAW264.7 cell line was maintained in DMEM (Lonza, Barcelona, Spain) 

supplemented with 10% FCS, 2.4 mM L-glutamine and 10% penicillin-streptomycin (Thermo 

Fisher Scientific, Waltham, MA). RAW264.7 cells were washed and resuspended in FCS- and 

penicillin-streptomycin-free DMEM 2 hours before use. 

Bone marrow-derived macrophages (BMMs) were generated from 8-12-week-old C57Bl/6 

(B6) mice as described (16). Bone marrow cells were collected from the femoral shafts and 

incubated in 100 mm x 15 mm Petri dishes (Thermo Fisher Scientific) for 8 days in DMEM 

supplemented with 10% FCS and 10% penicillin-streptomycin plus 30 ng/ml of M-CSF 

(Miltenyi Biotec, Bergisch Gladbach, GE). Following incubation, non-adherent cells were 

eliminated, and adherent macrophages were scraped, counted and seeded in 6-well tissue-

culture plates for stimulation at a density of 106 cells/ml. Macrophages were allowed to rest 

overnight prior to stimulation. 



 

 56 

 The regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi 

 
Lentiviral particles containing shRNA targeting Clec4e (Sigma Aldrich) and Cd180 (OriGene 

Technologies, Rockville, MD) were produced as previously described (24). Supernatants 

containing the virus were used to infect RAW264.7 cells, followed by incubation with 

puromycin at 3 µg/ml to generate stable lines. Cells containing the empty vector pLKO.1 

were used as controls. 

Human monocytes were purified from buffy coats of healthy blood donors by positive 

selection using a human CD14 purification kit (Miltenyi Biotec). Peripheral blood monocytic 

cells were isolated by Ficoll density centrifugation at 400 xg for 30 min without brakes. The 

monocyte layer was recovered, washed and processed according to the manufacturer´s 

protocol. Monocytes were allowed to rest for at least 4 h before stimulation. To obtain 

macrophages, purified human monocytes were incubated for 8 days in RPMI 1640 medium 

(Lonza) supplemented with 10% FCS, 2.4 mM L-glutamine, 10% penicillin-streptomycin and 

30 ng/ml of human M-CSF (Miltenyi Biotec). The cells were rested overnight before 

stimulation. All human samples were obtained after approval by the Basque Country’s 

Ethics committee following the Helsinki convention. Donors signed an informed consent 

form and were anonymized to the authors. 

2.4 Phagocytosis assays 

Phagocytosis assays were performed as previously described (13). Experiments were 

performed in DMEM medium without serum or antibiotics. The day before the assay, the 

cells were seeded at a density of 1 x 106 cells/ml. After 24 hours, B. burgdorferi was added 

to the cells at a multiplicity of infection (m.o.i.) of 25 and incubated at 4 ºC for 15 min 

followed by 37 ºC for 1.5 h. The cells were then washed to eliminate surface bacteria and 

analyzed by flow cytometry or confocal microscopy. 

2.5 Confocal microscopy 

Following incubation of the cells with bacteria, the cells were washed extensively, fixed in 

3.7% paraformaldehyde for 7 minutes and then washed with PBS. The cells were then 

permeabilized with 0.1% Triton-X for 5 minutes and washed. After blocking non-specific 

binding with 5% BSA for 60 minutes, the cells were stained with rhodamine phalloidin for 10 

minutes to visualize the actin cytoskeleton followed by DAPI for 10 minutes to stain the 
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nuclei (Thermo Fisher Scientific), both at 37 ºC. After extensive washing in PBS, the cells 

were mounted with Prolong Gold Anti-fade mounting reagent (Thermo Fisher Scientific). 

Photomicrographs were obtained using a Zeiss LSM 880 Confocal System. 

2.6 TNF ELISA 

 The levels of TNF produced by B. burgdorferi stimulation were determined by capture ELISA 

using the DuoSet II kit (R&D Systems, Minneapolis, MN) according to the manufacturer's 

recommendations.  

2.7 RNA extraction 

 Total RNA was extracted using the NucleoSpin® RNA kit (Macherey-Nagel, Düren, GE). The 

quantity and quality of the RNAs were evaluated using the Qubit RNA Assay Kit (Thermo 

Fisher Scientific) and RNA Nano Chips in a 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA), respectively. 

2.8 RNAseq transcriptomics 

Libraries for sequencing were prepared using the TruSeq RNA Sample Preparation Kit v2 

(Illumina Inc., San Diego, CA) following the manufacturer´s instructions. Single-read 50-nt 

sequencing of pooled libraries was carried out in a HiScanSQ platform (Illumina Inc.). The 

data were generated from macrophages differentiated from 3 independent mice. 

2.9 Gene expression array 

Total-RNA (200 ng) was used to characterize gene expression with Illumina Human HT12 v4 

BeadChips (GPL10558) containing 48,804 probes derived from Human RefSeq build 36.2. 

The cRNA synthesis, amplification, labeling and hybridization of the RNAs were performed 

following the Whole-Genome Gene Expression Direct Hybridization protocol (Illumina Inc.). 

cRNAs were then hybridized to the diverse gene-probes of the array, and the gene 

expression levels of the samples were detected using a HiScan scanner (Illumina Inc.). Raw 

data were extracted with GenomeStudio analysis software (Illumina Inc.) in the form of 

GenomeStudio’s Final Report (sample probe profile). The data were generated using 

purified monocytes from 3 donors. 
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2.10 Data analysis 

Quality control of the RNAseq sequenced samples was performed using FASTQC software 

(www.bioinformatics.babraham.ac.uk/projects/fastq). Reads were mapped against the 

whole mouse (mm10) reference genome by Tophat (25) to account for splice junctions. The 

resulting BAM alignment files for the samples were the input for the Differential Expression 

(DE) analysis carried out by DESeq2 (26) to account for differentially expressed genes 

between B. burgdorferi-stimulated and unstimulated macrophages. Alignment files were 

taken as input to generate a table of read counts via R/Bioconductor package 

GenomicAlignments through the sumarizeOvelaps function in ‘union’ mode for single 

reads/experiment. The number of uniquely mapped reads ranged from 23 to 25 x 106 per 

sample. 

For array data analysis, first, raw expression data were background-corrected, log2-

transformed and quantile-normalized using the lumi R package (27) available through the 

Bioconductor repository. Probes with a “detection p-value” lower than 0.01 in at least one 

sample were selected. For the detection of differentially expressed genes between B. 

burgdorferi-stimulated and unstimulated monocytes, a linear model was fitted to the probe 

data, and empirical Bayes moderated t-statistics were calculated using the limma package 

(28) from Bioconductor. Only genes with a differential fold change (FC) >2 or <-2 and a p-

value < 0.05 were considered differentially expressed.  

GO enrichment was tested using the clusterProfiler (29) Bioconductor package and the 

Panther Database (30). Gene Ontology enrichment assessment was achieved according to 

GO (31) and KEGG (32) database terms. The data were also analyzed using QIAGEN´s 

Ingenuity® Pathway Analysis (IPA, QIAGEN, Red Wood City, CA). 

2.11 Real-time RT-PCR 

 RNA was reverse-transcribed using M-MLV reverse transcriptase (Thermo Fisher Scientific). 

Real-time PCR was then performed using SYBR Green PCR Master Mix (Thermo Fisher 

Scientific) on a QuantStudio 6 real-time PCR System (Thermo Fisher Scientific). The fold 

induction of the genes was calculated using the 2ΔΔCt method relative to the reference 
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genes, Rpl19 (mouse) or RNABP1 and PLXNC1 (human). The primers used are listed in Table 

1. 

2.12 Label-free (LF) mass spectrometry proteomics analysis 

 Total protein from B. burgdorferi-stimulated and unstimulated BMMs (from 3 independent 

mice) was extracted using 3.5 M urea, 1 M thiourea and 2% CHAPS. The samples were 

incubated for 30 min at RT under agitation and digested following the filter-aided sample 

preparation (FASP) protocol described by Wisniewski et al (33) with minor modifications. 

Trypsin was added at a trypsin:protein ratio of 1:10, and the mixture was incubated 

overnight at 37 °C, dried in an RVC2 25 speedvac concentrator (Christ), and resuspended in 

0.1% formic acid. 

The equivalent of approximately 500 ng of each sample was analyzed by LC-MS label-free 

analysis. Peptide separation was performed on a nanoACQUITY UPLC System (Waters, 

Cerdanyola del Vallès, Barcelona, Spain) connected on-line to an LTQ Orbitrap XL mass 

spectrometer (Thermo Fisher Scientific). An aliquot of each sample was loaded onto a 

Symmetry 300 C18 UPLC Trap column (180 µm x 20 mm, 5 µm -Waters-). The pre-column 

was connected to a BEH130 C18 column (75 μm x 200 mm, 1.7 μm (Waters) and 

equilibrated in 3% acetonitrile and 0.1% FA. Peptides were eluted directly into an LTQ 

Orbitrap XL mass spectrometer (Thermo Finnigan, Somerset, NJ) through a 

nanoelectrospray capillary source (Proxeon Biosystems, Thermo Fisher Scientific) at 300 

nl/min and using a 120 min linear gradient of 3–50% acetonitrile. The mass spectrometer 

automatically switched between MS and MS/MS acquisition in DDA mode. Full MS scan 

survey spectra (m/z 400–2000) were acquired in the orbitrap with a mass resolution of 

30000 at m/z 400. After each survey scan, the six most intense ions above 1000 counts were 

sequentially subjected to collision-induced dissociation (CID) in the linear ion trap. 

Precursors with charge states of 2 and 3 were specifically selected for CID. Peptides were 

excluded from further analysis during 60 s using the dynamic exclusion feature. 

Progenesis LC-MS (version 2.0.5556.29015, Nonlinear Dynamics, Newcastle Upon Tyne, UK) 

was used for the label-free differential protein expression analysis. One of the runs was 

used as the reference to which the precursor masses in all other samples were aligned. Only 



 

 60 

 The regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi 

 
features comprising charges of 2+ and 3+ were selected. The raw abundances of each 

feature were automatically normalized and logarithmized against the reference run. 

Samples were grouped in accordance with the comparison being performed, and an ANOVA 

analysis was performed. A peak list containing the information for all the features was 

generated and exported to the Mascot search engine (Matrix Science Ltd., London, UK). This 

file was searched against a Uniprot/Swissprot database, and the list of identified peptides 

was imported back to Progenesis LC-MS. Protein quantification was performed based on the 

three most intense non-conflicting peptides (peptides occurring in only one protein), except 

for proteins with only two non-conflicting peptides. The significance of expression changes 

was tested at the protein level, and proteins with an absolute value of log2 (fold change) >= 

1 and ANOVA p-value ≤ 0.05 were selected for further analyses. 

2.13 Statistical analysis 

The results are presented as the means ± SE (standard error). Significant differences 

between means were calculated with the Student’s t test. A p value < 0.05 was considered 

significant. The Benjamini-Hochberg adjustment method was used for multiple hypothesis 

testing in DESeq2 (RNAseq) and limma (microarray). 

 

2.14 Data availability 
 
The transcriptomic and microarray data are deposited under GEO accession number 

GSE103483. The proteomics data are deposited in ProteomeXchange under the accession 

number PXD008228. 

  



 

 

Table 1 Primers used 

      Gene (m = mouse/ h 
= human) 

Forward Reverse Tm Purpose 

      Rpl19 (m) GACCAAGGAAGCACGAAAGC CAGGCCGCTATGTACAGACA 60.0 Reference, RNAseq validation 

Clec4e (m) CAACCACACATTTGACTTCTCTT TCAGTGAGGTGGATAGGAGCA  59/61 RNAseq validation 

Cd14 (m) ATAGGAACCCTAGCCCAGATGA ACAAGGCCACTGCTTGGGAT 62.2/60.0 RNAseq validation 

Clec4d (m) GGAAAGTCATTCCAGACCCA AAGACGCCATTTAACCCACA 58.0/56.0 RNAseq validation 

Cd180 (m) CTTGACTGCACTTGCTCAAACA CCCACAGCTGCCATACTACA 60.0 RNAseq validation 

Siglec5 (m) TGTGCGTCTTTGTAGCCTGC CACTGGAGAGCCGCTGAAT 60.0/59.0 RNaseq validation 

Syk (m) GATGGGCTCTACCTGCTACG CCATCAGGTTCCTGGGAGTG 63.0 RNAseq validation 

Ptpre (m) ACCAAGCCTTACTGGAATACTACC CTGTGCTATGGAGCGTCTGC 64.0/63.0 RNAseq validation 

Ly86 (m) TGGAACATCAAGTCCAGGGT TCCTATCCCCTTTGTGAGGA 58.0 RNAseq validation 

Itgam (m) TGTACCACTCATTGTGGGCA GTCCATCAGCTTCGGTGTTG 58/60 qRT-PCR 
 Clec10a (m) AACCTTCCGCTGGATCTGTG GTTGAGACCGGGTAGGAGGA 60.0/63 RNAseq validation 

RANBP1 (h) CATGACCCTCAGTTTGAGCCA CTCGCTCCTTCCATTCTGGG 60.2 Reference, mArray 

PLXNC1 (h) GGGAGCAAAATGGCTGCTTG ACAGAAGGGTTCCCACGGTA 60.4 Reference, mArray 

CD40 (h) AGGAGATCAATTTTCCCGACGA CTCACTGTCTCTCCTGCACT 59.5/58.7 mArray validation 

IL1A (h) AGGCATCCTCCACAATAGCAG GGACCAATTACTGGCTCAAGGT 59.8/60.2 mArray validation 

IL6 (h) GTGGCTGCAGGACATGACAA GCCCAGTGGACAGGTTTCTG 60.8 mArray validation 

FCGR1A (h) CTCCTTCTACATGGGCAGCAA GGCTGCGCTTAAGGACATTT 60/59.1 mArray validation 

ITGA5 (h) GCAGAATTTGGGTTCTGCCT GGGCACTGGGTCAGATTTATTG 58.7/59.3 mArray validation 

FCGR2A (h) CTTGGGGAAGACGAAGGGATG CACAGAAGGTGCAGTCAGTCA 60.4/60.2 mArray validation 

FCGRT (h) AGGCCCAGGATGCTGATTTG AACTAGGCCCAGAACCCCTT 60.4 mArray validation 

IL10 (h) GCTGTTGAGCTGTTTTCCCTG TCCGAGACACTGGAAGGTGA 60/60.2 mArray validation 

LY86 (h) AAAGAAGCGCCCCCAAAGAG GGGAGGCGACCAATTAGAGA 60.9/ 59 mArray validation 
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3. RESULTS 

3.1 Global transcriptional response of murine bone marrow-derived macrophages to B. 

burgdorferi stimulation. 

To unveil main transcriptional traits involved in the response of macrophages to the 

spirochete, we performed RNAseq comparing non-stimulated with B. burgdorferi-stimulated 

BMM. Principal component analysis (PCA) (Figure 1A) and sample distance matrix (Figure 

1B) showed a clear transcriptional signature derived from BMM exposure to the spirochete. 

A total of 2066 genes were upregulated and 2315 were downregulated when applying cut-

off values of 2-fold induction (absolute value of Log2 ratio >= 1) and a p value of 0.05 (Figure 

2A). Representative upregulated and downregulated genes were validated by qRT-PCR 

(Figure 3). We then performed an ingenuity pathway analysis (IPA) to obtain information 

about pathways that were triggered by B. burgdorferi exposure. As expected, the 

stimulation of BMMs with B. burgdorferi triggered a pattern of gene expression consistent 

with the recruitment, activation and proliferation of mononuclear leukocytes (Figure 2B). 

Overall, a large number of genes that were regulated by B. burgdorferi (317 genes) were 

related to inflammatory responses, and a sizeable amount (64 genes) identified 

phagocytosis as a hallmark of the response (Figure 2B). 

 

Figure 1 RNAseq analysis of murine bone marrow-derived macrophages stimulated with B. burgdorferi. A. 

Principal component analysis of BMMs stimulated with B. burgdorferi (black circles) or left unstimulated (gray 

circles). B. Sample distance matrix of BMMs stimulated with B. burgdorferi (Bb) and unstimulated controls (U) 
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Figure 2 A. Volcano plot showing genes upregulated (red dots) or downregulated (blue dots) upon stimulation 

of BMMs with B. burgdorferi. Ten of the most regulated genes are identified. B. Biological processes that are 

significantly regulated by the stimulation of BMMs with B. burgdorferi. The Z scores identify those processes 

that are differentially regulated (Z > 2). The number of genes corresponding to each process and the p value 

obtained by IPA is also shown. 

 

 

Figure 3 Validation of the RNAseq on selected genes. Fold induction changes by qRT-PCR of a group of 

selected genes differentially regulated in BMMs from 4 independent mice stimulated with B. burgdorferi (black 

bars) compared to unstimulated controls (grey bars). (A) Genes upregulated. (B) Genes downregulated. 
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The expression profile of macrophages exposed to the spirochete resembled the 

transcriptional fingerprint upon recognition of bacteria and viruses by pattern recognition 

receptors, including Toll-like receptor signaling or activation of IRF by cytosolic pattern 

recognition receptors (Figure 4A). Furthermore, the expression profile significantly 

resembled TREM1 receptor signaling events (Figure 4A) upon stimulation. This protein acts 

as an amplifier of monocyte inflammatory responses triggered by infections by stimulating 

the release of proinflammatory chemokines and cytokines. In contrast, signaling 

intermediates induced by PPAR, a well-recognized suppressor of inflammatory responses 

(34-36), were significantly repressed upon stimulation with B. burgdorferi (Figure 4A). We 

observed a significant overlap of the genes regulated by stimulation of BMMs with B. 

burgdorferi and those associated with gene expression dependent on LPS-, poly rI:C-RNA- 

and NOD2 (Table 2). These data confirmed the complex nature of the interaction signature 

between B. burgdorferi and PRRs that depends on several receptors. Indeed, although 

significant overlapping was also found when comparing genes regulated by PMA3CSK4 or 

TLR2-induction with stimulated BMMs (Table 2), the percentage of genes that were shared 

among these conditions was less than 10%, indicating that the overall response to the 

spirochete is dependent on a larger array of signaling receptors. 

Among the upstream regulators potentially involved in the observed transcriptional 

response, we found a significant overlap of the cytokines TNF, IL-1β, IL-6, MIF, and IFNβ1, as 

well as nitric oxide (Table 2, Figure 4B). These responses are probably a secondary activation 

boost launched after the initial bacterial exposure. Interestingly, even though Il10 

expression was significantly increased upon B. burgdorferi stimulation (3.568 Log2 fold 

induction, p = 1.42 x 10-59), the overall signature response significantly matched a repressed 

gene expression profile triggered by the IL-10 receptor (Table 2). These data support a 

proinflammatory response induced primarily by the interaction of B. burgdorferi with 

macrophages that is further amplified by secreted cytokines or the inhibition of anti-

inflammatory pathways. 
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Figure 4 RNAseq analysis of murine bone marrow-derived macrophages stimulated with B. burgdorferi. A. Z 

scores corresponding to genes regulated by B. burgdorferi in BMMs in response to specific PRRs and upstream 

regulators. Z scores >2 or < -2 were considered significant. B. Genes that are differentially regulated by B. 

burgdorferi in BMMs (red circles = upregulated; green circle = downregulated) corresponding to the interferon 

signaling pathway according to IPA. 

 

Table 2 Selected upstream upregulators showing a significant overlap with the stimulation of BMM with B. 

burgdorferi* 

* When appropriate, the induction of the corresponding gene is shown. 

  

Regulator Log2(Fold Induction) Z score p value Nº 
Molecules 

 Total (%) 

Lipopolysaccharide   11,582 2,07E-97 527 931 (57) 

Poly rI:C-RNA   8,706 1,49E-41 161 721 (22) 

Nod2 3,373 5,265 2,61E-19 41 743 (6) 

NFkB complex   6,403 2,07E-33 185 782 (24) 

p38 MAPK   3,655 5,28E-19 110 759 (15) 

Tnf 5,200 9,444 1,49E-68 474 837 (57) 

Il1b 7,704 7,637 2,90E-55 288 823 (35) 

Il6 7,634 4,026 2,96E-40 221 835 (27) 

Nos2 6,355 3,853 1,01E-10 59 869 (7) 

Mif 1,367 3,255 2,07E-07 36 751 (5) 

Ifnb1 2,673 5,798 1,39E-42 123 622 (20) 

Il10ra -0,688 -7,569 3,23E+00 137 498 (28) 

PAM3CSK4   4,754 1,47E-17 51 587 (9) 

Tlr2 1,556 4,662 2,29E-09 46 616 (8) 
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3.2 The human peripheral blood monocyte transcriptional profile shows a similar global 

response but distinctive species-specific pattern upon B. burgdorferi stimulation.  

 To corroborate the transcriptomic results obtained using murine BMMs and 

to test their biological relevance in the context of human innate immune responses to the 

spirochete, human CD14+ peripheral blood monocytes (hMon) were stimulated with B. 

burgdorferi. The transcriptional profile was obtained by microarray analysis and compared 

with BMM. Overall, 1962 genes were upregulated and 2096 downregulated (absolute value 

of Log2 fold induction >= 1; p < 0.05; Figure 5A), a selection of which were validated by qRT-

PCR (Figure 4) and represented clear patterns of expression (Figure 5B). Reflecting the 

different cell types and origins (human vs. mouse), the transcriptional fingerprints showed a 

limited number of genes that were regulated and in the same direction in both cell types. 

Thus, 195 genes were upregulated both in BMMs and hMon upon stimulation with B. 

burgdorferi, while 161 genes were downregulated according to the established criteria 

(Figure 5C). An additional 168 genes were regulated in opposite directions in both cells 

types (Figure 5C). In spite of this, IPA showed a regulation of similar expression pathways, 

including cell movement and recruitment of leukocytes, fatty acid metabolism, endocytosis 

and phagocytosis, as well as the synthesis of nitric oxide and reactive oxygen species (Figure 

5D).  
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Figure 4 (Previous page) Validation of the µArray on selected genes. Fold induction changes by qRT-PCR of a 

group of selected genes differentially regulated in human monocytes from 3 independent donors stimulated 

with B. burgdorferi (black bars) compared to unstimulated controls (grey bars). (A) Genes upregulated. (B) 

Genes downregulated. 

 Moreover, analysis of upstream regulators showed similar patterns of 

expression in response to pattern recognition engagement (TLR3, TRL9, TLR7, NOD2), 

signaling intermediaries (MyD88, NF-B complex, IKBKB) or secondary metabolites (TNF, IL-

1β, IL-1α, IFNα2) (Figure 5E). In both cases, the expression profile resembled the inhibition 

of gene expression initiated by IL-10Rα, while in a few cases the expression profile followed 

opposite directions in both cells types (i.e., MITF) (Figure 5E). These results show that in 

both murine BMMs and hMon, stimulation with B. burgdorferi results in an overlapping 

proinflammatory profile that, nevertheless, reveals distinct transcriptional specificities. 

 

 

 

 

 

 

 

 

 

Figure 5 Analysis of genes regulated by B. burgdorferi in human CD14
+
 blood monocytes. A. Volcano plot 

representing genes that are differentially regulated by stimulation with the spirochete. The red dots represent 

upregulated genes, while the blue dots correspond to those that are differentially downregulated. B. Heat map 

showing the 50 most regulated genes in response to B. burgdorferi stimulation of human monocytes (Bb) 

compared with unstimulated monocytes (Unst.).C. Venn diagram showing the overlap in gene regulation 
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(Figure 5 continued) between BMMs and human monocytes stimulated with B. burgdorferi. The number of 

upregulated genes is represented in red. Downregulated genes are marked in blue. D. Comparison of biological 

processes regulated in BMMs and hMon stimulated with B. burgdorferi. Processes that showed activation are 

indicated in orange, while those that were downregulated are presented in blue. The intensity of the colors is 

determined by the calculated Z value for each process. E. Upstream activator pathways regulated by B. 

burgdorferi in BMMs and hMon. The colors and intensities are presented according to calculated Z values as in 

D. 

3.3 The proteome of BMMs shows a distinct profile upon stimulation of BMMs with B. 

burgdorferi. 

We also assessed differences in protein levels between unstimulated and B. burgdorferi-

stimulated BMMs using label-free MS. We detected 810 proteins represented by at least 2 

peptides, 35 of which showed significantly different levels (p< 0.05) and were regulated at 

least 2-fold (absolute value of Log2 fold induction >= 1; 17 upregulated and 18 

downregulated) between unstimulated and B. burgdorferi-stimulated BMMs (Figure 6A; 

Supplementary Table S2). Of the 17 upregulated proteins, 13 corresponded to genes that 

were significantly upregulated upon stimulation in the transcriptomic approach, while 3 

corresponded to genes with no significant transcriptional change and 1 was downregulated 

at the gene expression level (Figure 6A, Table 3). In contrast, the majority of proteins that 

were downregulated upon stimulation with B. burgdorferi (11 of 18) corresponded to genes 

without changes in expression, and 7 also showed downregulation at the gene expression 

level (Figure 6A, Table 3). 

Despite the limited amount of proteins that were significantly changed at this time interval 

of stimulation, IPA showed that the majority corresponded to proteins that are known to be 

regulated by LPS- (17 proteins), CpG oligonucleotide- (7 proteins) or poly rI:C-RNA-induced 

stimulation (8 proteins; Figure 6B). Furthermore, several proteins corresponded to NOD2- (5 

proteins) or MyD88-induced pathways (8 proteins). The regulated proteins were also 

related to the stimulation with TNF (15 proteins) or IL-1β (10 proteins) (Figure 6B). As 

expected, the proteins that were regulated by IL-10Rα engagement (6 proteins) showed 

that this pathway is inhibited by B. burgdorferi stimulation (Figure 6B). Overall, the 

proteomics analysis of BMMs corroborated the activation pathways initiated by stimulation 

with the spirochete at the gene expression level both in BMMs and hMon. 
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Figure 6 Proteomic analysis of BMMs stimulated with B. burgdorferi A. Pie chart showing the upregulated 

(dark gray) or downregulated proteins (light gray) in response to stimulation with the spirochete. The smaller 

pie charts on each side represent the direction of the regulation corresponding to the genes encoding the 

differentially expressed proteins. B. Upstream regulators with significant Z scores (> 2, red circles or < -2, green 

circle) and the number of regulated proteins. .C. Flow cytometry analysis of CD14 expression in BMMs 

stimulated with B. burgdorferi (red histogram) compared with unstimulated cells (black histogram). The gray 

histogram represents the unstained control. The average of the mean fluorescence intensity (MFI) ± SE for 3 

independent mice is represented below. The experiment is representative of 3 performed. D. Upregulation of 

Cd14 expression levels determined by qRT-PCR of RNA extracted from B. burgdorferi-stimulated BMMs (black 

bar) or unstimulated controls (gray bar). The results represent the average ± SE of 4 independent mice and are 

representative of 3 experiments performed. E. Flow cytometry analysis of CD180 expression in BMMs 

stimulated with B. burgdorferi (red histogram) compared with unstimulated cells (black histogram). The gray 

histogram represents the unstained control. The average of the MFI ± SE for 3 independent mice is shown 

below and is representative of 3 experiments. F. Downregulation of Cd180 expression levels by qRT-PCR in 

BMMs stimulated with B. burgdorferi (black bar) or unstimulated controls (gray bar). The results are the mean 
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(Figure 6 continued) ± SE of 4 independent mice. G. Expression of CD14 (top histograms) and CD180 (bottom 

histograms) in human monocyte-derived macrophages stimulated with B. burgdorferi (red histograms) and 

unstimulated controls (black histograms). The gray histogram represents the unstained controls. The average 

of the mean fluorescence intensity (MFI) ± SE for 3 independent determinations is represented below. The 

results are representative of those obtained with 6 independent samples. H. Expression of CD14 (top 

histograms) and CD180 (bottom histograms) in hMon stimulated with B. burgdorferi (red histograms) and 

unstimulated controls (black histograms. The gray histogram represents the unstained controls. The average of 

the mean fluorescence intensity (MFI) ± SE for 3 independent determinations is represented below. The 

results are representative of those obtained with 9 independent samples. 

We then sought to identify proteins that are regulated by B. burgdorferi in macrophages 

and that may have a role in the response of these cells to the spirochete. Among the 

differentially expressed proteins, the majority represented plasma membrane-anchored 

proteins (12 proteins) (Table 4). Notably, we observed two proteins, CD14 and CD180, which 

were regulated in opposite directions. The stimulation of BMMs with B. burgdorferi resulted 

in increased levels of both surface CD14 and gene expression (Figure 6 C, D), while the levels 

of CD180, a non-canonical member of the TLR family of proteins, were significantly reduced 

(Figure 6 E, F). The downregulation of CD180 was corroborated in in vitro differentiated 

human macrophages (Figure 6G). In contrast, human monocytes isolated from blood 

showed an opposite phenotype, with reduced levels of CD14 and increased expression of 

CD180 in response to the spirochete (Figure 6H), evidencing the distinct role of both types 

of cells in tissue homeostasis and immunity (37). 

 

3.4 CD180 regulates the phagocytosis of B. burgdorferi and the production of TNF 

Among the surface proteins regulated by the stimulation with B. burgdorferi, 

Clec4e (Mincle) has been shown to be involved in the phagocytosis of several 

microorganisms (38). To address its potential role in the response of phagocytic cells to the 

spirochete, we silenced Clec4e (Mincle) in RAW264.7 cells by lentiviral infection (Figure 7A). 

The repression of Clec4e gene expression did not result in an appreciable reduction of the 

phagocytic capacity of RAW264.7 cells (Figure 7B). Furthermore, the analysis of TNF 

production upon stimulation with B. burgdorferi did not result in a differential production of 



 

 71 

 The regulatory role of CD180 in the response of macrophages to Borrelia burgdorferi 

 
this cytokine (Figure 7C), indicating that the C-type lectin receptor is not involved in the 

internalization or proinflammatory cytokine production in response to the spirochete. 

Phagocytosis of B. burgdorferi is largely dependent on MyD88-mediated signals (13, 39). 

However, the involved receptor(s) are still unknown. Since the stimulation with B. 

burgdorferi induced the downregulation of CD180 (Table 3), we sought to determine 

whether this TLR family member is involved in the internalization of the spirochete and/or 

the induction of proinflammatory responses. Silencing of Cd180 (Figure 7D) resulted in a 

significant increase in the capacity of RAW264.7 cells to internalize B. burgdorferi (Figure 

7E,F).  
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Figure 7 (previous page) CD180 regulates the response of macrophages to B. burgdorferi A. Downregulation 

of Clec4e expression in RAW264.7 cells infected with a lentivirus containing specific shRNA (black bar) or an 

empty vector (pLKO, gray), as determined by qRT-PCR. The results represent the average of 3 determinations. 

B. Phagocytosis of B. burgdorferi by RAW264.7 cells containing shRNA specific for Clec4a (red histogram) or an 

empty control (pLKO, black histogram). The gray histogram represents cells incubated at 4 C (control). The 

average MFI of 3 determinations is presented on the right. The results are representative of at least 3 

independent experiments. C. TNF production upon stimulation with B. burgdorferi by RAW264.7 cells with 

silenced Clec4a or controls. D. Silencing of CD180 in RAW264.7 cells (black bar) or pLKO controls (gray bar), as 

determined by qRT-PCR. The values correspond to the average ± SE of 3 determinations and are representative 

of 3 experiments. E. Phagocytosis of B. burgdorferi by shCd180 RAW 264.7 cells (red histogram) or pLKO-

infected controls (black histogram). The gray histogram represents the 4 C control. The average of 3 

determinations is presented on the right. The results are representative of at least 3 independent 

experiments. F. Confocal micrograph of RAW264.7 cells containing shRNA specific for Cd180 (shCD180) or an 

empty vector (pLKO). The cells were stained with phalloidin (red) and DAPI. B. burgdorferi are shown in green. 

G. TNF production upon stimulation with B. burgdorferi by RAW264.7 cells containing a shRNA specific for 

Cd180 or a vector control (pLKO). The average ± SE of 3 determinations is presented and represent at least 3 

independent experiments. H. Flow cytometry showing the expression of CD11b in unstimulated RAW264.7 

cells containing a shRNA specific for Cd180 (red histogram) or an empty vector (pLKO, black histogram). The 

gray histogram represents the unstained control. The average of the mean fluorescence intensity (MFI) ± SE 

for 3 determinations is represented on the right. I. qRT-PCR showing the expression of the Itgam gene in 

unstimulated RAW264.7 cells containing an shRNA specific for Cd180 (black bar) or the empty vector (pLKO, 

gray bar). The results represent the average ± SE of 3 determinations. 

 

Table 3 Proteins significantly regulated by B. burgdorferi stimulation of BMMs and their corresponding gene 

transcription profiles 

Protein Gene 

Proteomics Transcriptomics 

Log2(Ratio 
Borr/Unst) 

ANOVA 
Log2Fold 
(BMM) 

p value 

PGH2_MOUSE Ptgs2 4,845 2,65E-06 8,664 4,97E-113 

IRG1_MOUSE Irg1 4,215 4,48E-04 -5,283 1,27E-07 

CTR2_MOUSE Slc7a2 3,036 5,78E-03 6,219 1,89E-95 

CLC4E_MOUSE Clec4e 2,907 6,38E-04 5,157 9,73E-08 

GBP2_MOUSE Gbp2 2,683 6,24E-04 3,796 1,07E-06 

SQSTM_MOUSE Sqstm1 2,668 1,67E-03 2,502 1,62E-15 

IL1B_MOUSE Il1b 2,407 4,79E-03 7,704 7,83E-23 

DEOC_MOUSE Dera 2,347 1,18E-02 -0,773 3,33E-06 

FCGR2_MOUSE Fcgr2b 2,211 7,22E-03 2,708 2,48E-23 

HMOX1_MOUSE Hmox1 2,061 2,46E-03 3,722 3,37E-93 

ICAM1_MOUSE Icam1 1,673 6,87E-03 2,138 1,48E-03 
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DDX21_MOUSE Ddx21 1,509 5,48E-03 -0,259 3,74E-01 

PRDX5_MOUSE Prdx5 1,437 9,02E-03 3,180 1,35E-28 

VPS4B_MOUSE Vps4b 1,261 1,54E-02 -0,198 2,77E-01 

CD14_MOUSE Cd14 1,246 6,25E-03 2,320 7,36E-21 

ACSL1_MOUSE Acsl1 1,210 2,80E-03 4,649 2,12E-113 

4F2_MOUSE Slc3a2 1,135 6,33E-03 1,796 1,65E-16 

MYO1F_MOUSE Myo1f -1,080 3,01E-02 -1,489 3,71E-29 

CD36_MOUSE Cd36 -1,110 6,80E-03 0,679 4,99E-02 

NPC1_MOUSE Npc1 -1,126 4,35E-02 -0,288 2,73E-02 

AGAL_MOUSE Gla -1,133 4,46E-02 -0,253 6,35E-02 

LKHA4_MOUSE Lta4h -1,138 9,15E-03 -0,446 2,74E-03 

AP3B1_MOUSE Ap3b1 -1,147 4,69E-03 0,348 8,58E-03 

STOM_MOUSE Stom -1,150 1,17E-02 0,661 3,95E-05 

LRP1_MOUSE Lrp1 -1,166 3,84E-02 -1,059 4,17E-05 

CSF1R_MOUSE Csf1r -1,199 3,12E-02 -0,317 2,74E-02 

SCMC1_MOUSE Slc25a24 -1,218 9,82E-03 -0,692 2,25E-07 

ACL6A_MOUSE Actl6a -1,268 3,67E-02 -0,070 7,49E-01 

LGMN_MOUSE Lgmn -1,303 2,37E-02 -2,022 2,11E-26 

PP2BA_MOUSE Ppp3ca -1,349 2,60E-03 -1,163 6,13E-23 

CD180_MOUSE Cd180 -1,349 1,65E-02 -1,540 2,28E-15 

PLST_MOUSE Pls3 -1,418 4,58E-02 -0,961 6,00E-08 

WASP_MOUSE Was -1,665 4,06E-02 -0,421 1,72E-03 

NIBAN_MOUSE Fam129a -1,951 3,86E-02 -4,056 2,97E-43 

LIPL_MOUSE Lpl -2,430 1,55E-02 -1,376 4,57E-07 

* Proteins and genes that were regulated in the same direction are marked in green (downregulated) or orange 

(upregulated). IRG1 was regulated in opposite directions at the protein and gene expression levels (marked in 

gray). 

 

Strikingly, the repression of Cd180 also resulted in a significant reduction in TNF production 

by RAW264.7 cells in response to the spirochete (Figure 7G). The stimulation of Cd180-

silenced cells also resulted in lower mRNA levels of Tnf and Il6 (Figure 8). Phagocytosis of B. 

burgdorferi is mediated by several, largely unknown, phagocytic receptors, including 

complement receptor (CR) 3 (CD11b/CD18) (13). Interestingly, phagocytosis mediated by 

CR3 results in the attenuation of the inflammatory response, particularly the production of 

TNF (13). In concordance with our results, CD180 has been associated with the tempering of 

the proinflammatory response of macrophages (40, 41). We sought to determine whether 

the increased phagocytosis of B. burgdorferi in cells with repressed expression of Cd180 was 



 

 74 

 The regulatory role of CD180 in the response of macrophages to Borrelia burgdorferi 

 
due to the regulation of CR3. The analysis of CD11b surface expression by flow cytometry 

showed significantly increased levels in shCd180 cells compared with the controls (Figure 

7H). Furthermore, the analysis by qRT-PCR of shCd180 cells showed the upregulation of 

Itgam gene expression (Figure 7I). 

Overall, these data unravel a new role for CD180 in the regulation of expression of the 

phagocytic receptor for B. burgdorferi, CR3. The inhibition of CR3 expression by CD180 

attenuates phagocytosis and promotes proinflammatory responses. These results define 

CD180 as an important regulator of immune responses mediated by B. burgdorferi. 

Table 4 Proteins significantly regulated by B. burgdorferi stimulation of BMMs that are located in the plasma 

membrane 

 

 

 
 

Figure 8 (previous page) Tnf and Il6 gene expression induced by B. burgdorferi in RAW264.7 cells with 

silenced Cd180. Control- and Cd180-silenced cells (10
6
 cells /ml) were stimulated with B. burgdorferi at an 
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Protein Gene Name                                                        Function 

      
CTR2_MOUSE Slc7a2 ATRC2 Cationic aminoacid transporter. 

CLC4E_MOUSE Clec4e Mincle C-type lectin,  

FCGR2_MOUSE Fcgr2b CD32, FC gamma RIIB Low affinity IgG Fc receptor. 

ICAM1_MOUSE Icam1 CD54, Intercepllular adhesion 
molecule 1 

Adhesion molecule. 

CD14_MOUSE Cd14 CD14 Cooperates with TLR4 and CR3. 

4F2_MOUSE Slc3a2 CD98, Ly10 aminoacid and Ca2+ Transporter. 

CD36_MOUSE Cd36 CD36, Fatty acid translocase lipid binding. 

AP3B1_MOUSE Ap3b1 Pearl, Tsap4 Protein targetting to lysosome. 

STOM_MOUSE Stom Stomatin Regulation of ion channels and transporters. 

LRP1_MOUSE Lrp1 CD91, alpha-2-macroglobulin 
receptor 

Lipid homeostasis and clearance of apoptotic 
cells. 

CSF1R_MOUSE Csf1r CD115, CSF1 receptor Regulation of macrophage function. 

CD180_MOUSE Cd180 RP105, Ly78 Forms dimers with MD-1. Pattern recognition 
receptor. 
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m.o.i. of 25 for 4h. Total RNA was then extracted, reverse-transcribed and used to determine by qRT-PCR for 

the levels of Tnf and Il6 mRNA levels. The results represent the mean ± SE of triplicates. 
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4. DISCUSSION 

Macrophages can recognize, phagocytose, and eliminate invading pathogens and 

thus have a crucial role in host defense. These cells constitute a key component of the 

innate immune system with the ability to respond to a wide array of stimuli, both 

endogenous and pathogen-associated, showing an enormous capacity to adapt and respond 

to environmental cues. In the presence of pathogens, macrophages produce an array of 

inflammatory factors upon the engagement of pattern-recognition receptors (PRRs). The 

response of macrophages is further modulated by environmental signals, including 

cytokines such as TNF, IL-10, IL-6 or interferons, among other factors. The use of high-

throughput (omic) techniques has grown exponentially in recent years driven by marked 

improvement in analytical platforms, increasing resolution and sensitivity, high-throughput 

capabilities and reducing costs (42). These methodologies have allowed the elucidation of 

mechanisms of pathogenesis for disease-causing agents, identified disease biomarkers 

(biosignatures) or characterized the response to preventative and therapeutic interventions 

(42, 43). Omic technologies have been used in Lyme borreliosis patients, enabling the 

determination of a distinctive disease biosignature, particularly at the early disease stages 

(42-46). Here we employed high-throughput techniques to study biosignatures of both 

primary murine macrophages and human monocytes exposed to B. burgdorferi. Our results 

showed that while general transcriptional traits are shared between human monocytes and 

murine macrophages, there are several important differences between both cell types. 

However, both their expression profiles resemble the transcriptional fingerprint upon 

recognition of bacteria and viruses by PRRs, including TLR signaling or the activation of IRF, 

evidencing the complex nature of the interaction signature between B. burgdorferi and 

phagocytic cells, which depends on several receptors. Moreover, comparison of the 

signaling pathways activated by B. burgdorferi on isolated murine macrophages and human 

peripheral blood monocytes resemble those found in peripheral blood monocytic cells 

obtained from patients diagnosed with Lyme borreliosis (44) (Figure 9) and correlates with a 

previous description of the transcriptome induced by B. burgdorferi stimulation of the 

murine cell line J774 (47) (Figure 10). Overall, these data suggest that the identification of 

transcriptional traits in isolated cells stimulated with the spirochete can represent 

biosignatures that are present in infected individuals. 
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Figure 9 Comparison of the signaling pathways induced by B. burgdorferi in murine BMMs, human 

monocytes and PBMCs from Lyme borreliosis patients. Pathways identified by IPA induced by the stimulation 

with B. burgdorferi or human peripheral blood monocytes (A) or murine BMMs (B) compared to those 

identified in PBMCs isolated from diagnosed Lyme borreliosis patients (44). The colors represent the calculated 

z values and are indicated as activated (orange) or repressed (blue). Pathways marked in white were not 

identified by IPA as regulated. 
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Figure 10 Comparison between the transcriptome of the murine cell line J774 and BMM stimulated with B. 

burgdorferi. Correlation between the transcriptome of the murine macrophage cell line, J774 stimulated with 

B. burgdorferi for 24h (47) and BMMs stimulated with the spirochete for 16h. The data corresponding to the 

J774 cells correspond to a uArray analysis and extracted from the supplementary materials of the study. The 

correlation was calculated for those genes in which a change in transcriptional levels between stimulated and 

unstimulated cells was found, and correspond to those with an absolute value for the log2FoldInduction >= 1 

and p < 0.05. The genes most regulated are identified. 

 

Inherent to their killing capacity, macrophages produce numerous molecules that, 

while exerting functions related to host defenses, are also capable of damaging host tissue 

(48). Inflammation is, therefore, a two-edged sword and, thus, coupling of phagocytosis to 

inflammation must be tightly regulated. It is not surprising that many regulatory 

mechanisms are required to control the inflammatory response by preventing inappropriate 

activation or by a timely termination of the immune response. B. burgdorferi stimulation of 

TLR-dependent and independent signaling in host cells leads to transcriptional activation, 

the release of inflammatory mediators, and anti-microbial responses (49-52). The 

stimulation with B. burgdorferi also leads to the induction of several anti-inflammatory 

pathways, including IL-10 (53-56), PPAR (34-36) or the induction of phagocytic receptors 

with anti-inflammatory action, such as CR3 (13, 57). The relative contribution of each is 

unknown, but our results show that even though IL-10 production is highly induced by the 
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spirochete, IL-10R-dependent signaling is repressed at the time of analysis. However, our 

data show that the stimulation of macrophages with B. burgdorferi induces the 

downregulation of CD180. Furthermore, this stimulation also results in decreased 

expression of the Ly86 gene (encoding the CD180 accessory molecule MD-1; -1.902 Log2 fold 

induction, p = 1.09 x 10-15 in B. burgdorferi-stimulated BMMs compared with unstimulated 

cells), which is required for the function and surface expression of CD180 (58). In turn, the 

repression of CD180 expression results in the secondary upregulation of CR3 and the 

tempering of the inflammatory response. Overall, these results suggest that the initial 

stimulation with the spirochete sets the starting point for the control of the 

proinflammatory output of macrophages, which may be more evident further downstream 

in the activation process. Whether the sustained exposure of phagocytic cells with B. 

burgdorferi reflects the increased activation of these anti-inflammatory pathways will be the 

subject of further investigation. 

Our results unravel a mechanism involving CD180 to control the response of 

macrophages to B. burgdorferi. CD180 (also known as RP105) is a TLR-like protein that is 

expressed by B-lymphocytes, macrophages and dendritic cells (59). CD180 is unique in its 

role in both enhancing and suppressing TLR responses that seem to vary with the cell type 

(59). CD180 is required for full responsiveness to LPS in B cells (58-60), while it seems to 

differentially regulate TLR4- and TLR2-induced responses in dendritic cells and macrophages 

(59). The response to B. burgdorferi is more complex than the surface interaction between 

PAMPs and PRRs and is dependent on the internalization of the spirochete (12). In turn, 

different phagocytosis pathways lead to proinflammatory responses or the downregulation 

of the production of cytokines such as TNF (13). Silencing Cd180 increased B. burgdorferi 

phagocytosis by macrophages while reducing TNF synthesis, suggesting that the TLR 

molecule modulates the expression of phagocytic receptors. CR3 is a phagocytic receptor 

that recognizes and phagocytose the spirochete, leading to a decrease in TNF production 

(13). Similarly, engagement of CR3 during phagocytosis of apoptotic cells downregulates the 

production and secretion of proinflammatory cytokines (61). Now, we describe a novel 

functional interaction between CD180 and CR3 upon B. burgdorferi recognition. B. 

burgdorferi is able to modulate CD180 expression, which further regulates CR3 expression 

and subsequent CR3-mediated phagocytosis and cytokine production, providing an 
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additional mechanism for the regulation of the immune responses triggered by B. 

burgdorferi. This mechanism of inflammation modulation has the advantage of providing an 

increase phagocytic activity to macrophages (that is required while the presence of 

spirochetes is still high) while at the same time tempering the induced proinflammatory 

response. 

Overall, our data provide a global view of the intricate response mechanisms 

associated with the interaction of monocytes/macrophages with B. burgdorferi. These data 

also offer clues to mechanisms of control of the phagocytic and proinflammatory activity of 

these cells and suggest multiple mechanisms of control that may be relevant at different 

phases of the response. 
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1. INTRODUCTION 

Innate immune responses, including those by macrophages and neutrophils, not only 

constitute the first line of defense against the spirochete but also seem to play a critical role 

once the spirochete has disseminated to distant organs (9). Phagocytosis ensures the 

degradation of the pathogen and results in the induction of signaling events leading to the 

generation of pro-inflammatory cytokines and antigen presentation, which leads to the 

stimulation of adaptive immunity. In spite of its importance, there are large gaps in our 

understanding of the receptors involved in the process. While a few surface receptors have 

been nominally associated with the internalization of the spirochete, such as uPAR (10) or 

MARCO (11), the only bona fide phagocytic receptor described for B. burgdorfei is composed 

of the surface proteins Complement Receptor (CR) 3 and CD14 (12-14). A large proportion of 

phagocytosis of B. burgdorferi depends on signals emanating from MyD88. However, the 

receptors associated with this pathway are currently unknown. MyD88-induced signals are 

required, however, for the B. burgdorferi-induced upregulation of MARCO (11). In contrast, 

CR3/CD14-mediated phagocytosis is independent of MyD88-induced signals and results in 

the downmodulation of the proinflammatory responses (14). In fact, the repression of CR3 

surface expression by the TLR family member, CD180, results in the effective modulation of 

both phagocytosis and proinflammatory responses (15). Other signaling pathways have 

been described to be involved in the internalization of B. burgdorferi, including Syk 

activation elicited by MARCO (16).  

A wide array of surface receptors is involved in the phagocytic internalization of 

microorganisms, including integrins, C-type lectins, scavenger receptors or siglecs (17-19). In 

the presence of opsonins (complement-derived products and antibodies), phagocytosis can 

also occur through specific receptors. However, both complement (20) and Fc receptors (21) 

have been shown to mediate the internalization or cell invasion of pathogens in the absence 

of opsonins, including enteropathogenic E. coli (22), a process that requires the high affinity 

Fc receptor, CD64. For each particular pathogen, its interaction with phagocytic cells is likely 

to be complex and involve several independent interactions. These, in turn, would likely 

result in the initiation of several signaling pathways that converge and provide a specific 

cellular output. In the case of B. burgdorferi, we have previously demonstrated in the 

Chapter 2 that the response of macrophages to the spirochete is dependent on multiple 
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signaling pathways (15) indicating that the array of receptors that trigger these responses is 

more complex than those already described.  

In the previous chapter we identified a group of surface receptors that are involved 

in both the internalization and the induction of cytokines by B. burgdorferi. In this Chapter 

we ought to define a set of receptors that modulate the uptake and/or proinflammatory 

cytokine production of macrophages in response to B. burgdorferi by the analysis of the 

proteome of phagosome-enriched fractions containing the spirochete plus the use of multi-

omic data previously generated. 
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2. MATERIALS AND METHODS 

2.1 Mice 

C57Bl/6 (B6) mice were purchased from Charles River Laboratories (Barcelona, 

Spain) and bred at CIC bioGUNE. CD64-deficient mice (C.129P2-Fcgr1tm1Sjv/Cnrm), in a B6 

background (23) were obtained from Dr. J. S. Verbeek and bred at CIC bioGUNE. All work 

performed with animals was approved by the competent authority (Diputación de Bizkaia) 

following European and Spanish directives. CIC bioGUNE’s Animal Facility is accredited by 

AAALAC Intl.  

2.2 Bacteria 

B. burgdorferi wild type 297, Bb914, B31 clone 5A15 and BB0167-deficient clone 

5A15 strains were used for cell stimulations. Bb914 constitutively expresses a GFP cassette 

stably inserted into cp26 (24). Bacteria were grown in 5 ml tubes at 34 °C in BSK-H medium 

(Sigma Aldrich, Madrid, Spain) for 3-5 days. BB0167 deficient B. burgdorferi were obtained 

from Steven J. Norris (Department of Pathology and Laboratory Medicine, Houston, Texas). 

2.3 Cell culture 

RAW 264.7 cells were maintained in DMEM (Lonza, Barcelona, Spain) supplemented 

with 10% FCS and 1% penicillin–streptomycin (Thermo Fisher Scientific, Alcobendas, Madrid, 

Spain). CHO cells stably transfected with plasmids containing human Fcγ Receptor I Alpha 

(FcgRI, CD64) were generated using full open reading frames under the CMV promoter 

(Origene, Herford, Germany). The cells were maintained in Ham’s F-12 medium (Sigma 

Aldrich) supplemented with 10% FCS and 1% penicillin–streptomycin. Bone marrow-derived 

macrophages (BMMs) were generated from 8–12-week-old C57Bl/6 (B6) mice as described 

(25). Bone marrow cells were collected from the femoral shafts and incubated in 100 mm x 

15 mm Petri dishes (Thermo Fisher Scientific) for 6 days in DMEM supplemented with 10% 

FCS and 10% penicillin–streptomycin plus 30 ng/ml of M-CSF (Miltenyi Biotec, Bergisch 

Gladbach, GE). Following incubation, non-adherent cells were eliminated, and adherent 

macrophages were scraped, counted and seeded in 6-well tissue-culture plates for 

stimulation at a density of 106 cells per ml. Macrophages were allowed to rest overnight 

prior to stimulation. 
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Inhibition of Syk kinases was achieved using Piceatannol (26) (30 µM; Sigma Aldrich) 

one hour prior to the addition of B. burgdorferi. 

Lentiviral particles containing shRNA targeting different receptors (Mission shRNA, 

Sigma Aldrich) (Table 1) were produced as previously described (27). Supernatants 

containing the virus were used to infect RAW 264.7 cells, followed by selection with 

puromycin at a concentration of 3 μg/ml to generate stable lines. Cell lines infected with the 

empty vector, pLK0.1, were used as controls. Gene silencing in BMMs was achieved by 

lentivirus addition at days 3 and 6 of the differentiation process. 

The silencing of the genes was tested either by surface staining or qRT-PCR. Total 

RNA was purified by Trizol extraction and reverse transcribed with the M-MLV Kit (Thermo 

Fisher Scientific). Real-time PCRs were performed using perfeCTa SYBR Green SuperMix Low 

ROX (Quantabio, Beverly, MA) on a QuantStudio 6 real-time PCR System (Thermo Fisher 

Scientific). The mRNA relative quantification was calculated using the ΔΔCt method. PCR 

efficiency was always between 90 and 110%.  

The primers used are listed in Table 2. 

Human monocytes were purified from buffy coats of healthy blood donors by 

positive selection using a human CD14 purification kit (Miltenyi Biotec), as described (15). To 

obtain macrophages, purified human monocytes were incubated for 8 days in RPMI 1640 

medium (Lonza) supplemented with 10% FCS, 2.4 mM L-glutamine, 10% penicillin-

streptomycin and 30 ng/ml of human M-CSF (Miltenyi Biotec). The cells were rested 

overnight before stimulation. Blocking of human Fcγ Receptor I Alpha was performed by 

incubation of human monocyte-derived macrophages (hMAC) with 2 µg/ml of anti-human 

CD64 (Antibodies.com, Cambridge, UK) one hour prior to the addition of B. burgdorferi. All 

human samples were obtained after approval by the Basque Country’s Ethics committee 

following the Helsinki convention. Donors signed an informed consent form and were 

anonymized to the authors. 

  



  

93 
 

 Regulation of Borrelia burgdorferi-induced macrophage activity by spirochetal-regulated surface receptors 

 
Table 1 shRNAs used. 

Gene Gene Bank Accession Nº Mission shRNA catalogue Nº 

Fcer1g NM_010185.4 TRCN0000067588 

Fcgr1 NM_010186.5 TRCN0000067678 

Ptprc NM_011210.4 TRCN0000029929 

Inpp5d NM_010566.3 TRCN0000436483 

Clec4a3 NM_153197.2 TRCN0000109845 

Clec4b1 NM_027218.2 TRCN0000436087 

Clec4d NM_010819.4 TRCN0000304453 

Clec4n NM_020001.2 TRCN0000066787 

Clec10a NM_010796.3 TRCN0000067028 

Clec12a NM_177686.4 TRCN0000249250 

Cd302 NM_025422.4 TRCN0000176008 

Ly75 NM_013825.3 TRCN0000375342 

Stab1 NM_138672.2 TRCN0000215721 

Stab2 NM_138673.3 TRCN0000109510 

Marco NM_010766.3  TRCN0000424243 

Msr1 NM_031195.2 TRCN0000431188 

Siglec5 NM_145581.2 TRCN0000094304 

Cd33 NM_021293.1 TRCN0000094368 

Siglec1 NM_011426.1 TRCN0000094864 

Cd52 NM_013706.2 TRCN0000077003 

Ly6e NM_008529.2 TRCN0000101140 

Cd59a NM_007652.5 TRCN0000329358 

Cd24a NM_009846.2 TRCN0000332785 

Plaur NM_011113.3 TRCN0000362760 
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Table 2 Primers used. All primers were used at an annealing temperature of 60 ºC, except for Plaur (58 ºC). 

Gene Primers Gene Primers 

Ptprc 
5’-GATCCACTGCTGGGCTTCA-3’ 

5’-GAACATGCTGCCAATGGTTCT-3’ 
Stab2 

5’-GCTGCAAGTCCTCATGTCCT-3’ 

5’-TTCTGTGGCACAAACAGGGT-3’ 

Inpp5d 
5’-CCAGGGCAAGATGAGGGAGA-3’ 

5’-GGACCTCGGTTGGCAATGTA-3’ 
Marco 

5’-TTAGCAGCTATGGAGGTGGC-3’ 

5’-GACACACTGATGACCTCTCGG-3’ 

Clec4a3 
5’-GGGCAACAGCTCCAGACTT-3’ 

5’-TCTTATTCTCCGGTGCTCTGA-3’ 
Msr1 

5’-ACCTCCTGTTGCTTTGCTGT-3’ 

5’-ACACGGAACGCTTCCAGAAT-3’ 

Clec4b1 
5’-GGAACCAAGTAGCAGTGGGA-3’ 

5’-CCTCAGCACCTGTTTCATTG-3’ 
Siglec5 

5’-TGTGCGTCTTTGTAGCCTGC-3’ 

5’-CACTGGAGAGCCGCTGAAT-3’ 

Clec4d 
5’-GGAAAGTCATTCCAGACCCA-3’ 

5’-AAGACGCCATTTAACCCACA-3’ 
Cd33 

5’-CAGAGCCCAAGAATCAGGAG-3’ 

5’-CCTTCTCTGGAGCAGGTGTC-3’ 

Clec4n 
5’-AGAAGATTTACCTATGAGTGCCTGT-3’ 

5’-GGCTAGGAAAAGAACGGCCT-3’ 
Siglec1 

5’-GTCTCCAGGAAGGTGGTCAG-3’ 

5’-CAGGGCTGATACTGGCTTCT-3’ 

Clec10a 
5’-AACCTTCCGCTGGATCTGTG-3’ 

5’-GTTGAGACCGGGTAGGAGGA-3’ 
Cd52 

5’-GGTGGAGGTGCTGTTTTTGT-3’ 

5’-GCCCAGGAAGATTTCAGGAT-3’ 

Clec12a 
5’-GCAAAGGGCCAAGGAAGAAC-3’ 

5’-TATACAGCTCTCGGCACAGC-3’ 
Ly6e 

5’-TCAGGGAATGAACTTGCTCC-3’ 

5’-TCGGTATTATCTTCGGGGC-3’ 

Cd302 
5’-ATCCAGGATGGTTCCTGTTCTG-3’ 

5’-ACTTGCCACAAAAACTGAGCC-3’ 
Cd59a 

5’-GGAATGCAAGTGTATCAAAGGTGT-3’ 

5’-CCCCAAGGATCCGTCACTTT-3’ 

Ly75 
5’-GATAAGGCTGGGCACAAAGG-3’ 

5’-CTGTGACTCCACCGTCATGC-3’ 
Cd24a 

5’-CCCCAAATGGCAACCACAAG-3’ 

5’-TCAAACCTTTCACGCGTCCT-3’ 

Stab1 
5’-AGTTGCCTCCTGATAGCTGC-3’ 

5’-CCCTCCTTCTGCTCTGTGTC-3’ 
Plaur 

5’-AGCTCTGGTCCAAAGAGGTG-3’ 

5’-CCATGATCATCAGCCTGACA-3’ 
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2.4 Phagocytosis assays 

Phagocytosis assays were performed as previously described (14). Experiments were 

performed in DMEM medium without serum or antibiotics. The day before the assay, the 

cells were seeded at a density of 3 × 105 cells per ml in complete DMEM media. After 16 h, 

the cell medium was changed to DMEM without supplements and the cells were rested for 

1 h. GFP expressing B. burgdorferi were then added to the cells at a multiplicity of infection 

(m.o.i.) of 25 and incubated at 4 °C for 15 min followed by 37 °C for 2 h. The cells were then 

washed to eliminate surface bacteria and analyzed by flow cytometry in a BD FACS Canto II 

cytometer (BD Biosciences, San Agustín de Guadalix, Madrid, Spain). The data were analyzed 

using FlowJo for Mac, version 10.5.3 (FlowJo, Ashland, OR). The phagocytic index was 

calculated following the formula: %GFP cells (Test) x MFI (Test) - %GFP cells (4 ºC control) x 

MFI (4 ºC control) (10). 

2.5 Confocal microscopy 

Following incubation of CHO cells with B. burgdorferi-GFP 297 at 37 ºC, the cells 

were washed with PBS, fixed with 4% paraformaldehyde for 20 min, permeabilized with PBS 

containing 0,3% Triton X-100 (VWR, Llinars del Vallés, Barcelona, Spain) and stained with 

rhodamine phalloidin and DAPI for 10 min at 37 ºC (Thermo Fisher Scientific) (1:300). After 

extensive washing in PBS, the cells were mounted using the Prolong Gold Antifade mounting 

reagent (Thermo Fisher Scientific). The images were obtained employing a Leica TCS SP8 

confocal system (Leica Microsystems, Madrid, Spain). 

2.6 Phagosome purification 

Isolation of B. burgdorferi-containing phagosomes was performed as previously 

described (28). Twenty million BMMs were stimulated with B. burgdorferi-GFP at an m.o.i. 

of 50 for 2h. The cells were washed twice with PBS, scraped and centrifuged. The cell pellet 

was resuspended in 1 ml of homogenization buffer (20mM HEPES, 0.5mM EGTA, 8.5% 

sucrose plus a protease inhibitor cocktail (Sigma-Aldrich) and lysed by passage through a 27 

G needle until at least a 70% of breakage was observed. Cell debris and nuclei were 

removed by centrifugation at 500 x g and treated with DNAse I. The supernatant was 

layered on top of a discontinuous sucrose gradient (50%, 45%, 40%, 35%, 32%, 15%) and 

centrifuged at 100,000 x g for 1h at 4 ºC. One ml fractions were collected from the top and 
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centrifuged in 20 ml of homogenization buffer without sucrose at 110,000 x g for 1 h at 4 ºC. 

Each pellet was then resuspended in 100 μl of homogenization buffer without sucrose and 

analyzed. 

For B. burgdorferi-containing phagosome purification from hMAC, we followed a 

protocol from Vinet and Descoteaux (29) with some modifications.  The nuclei-free 

phagosome sample was mixed with an equal volume of 50% sucrose, placed in the sucrose 

gradient between the 15% and 40% sucrose layers, added an 8.5% sucrose layer, 

centrifuged at 100,000 x g for 1 h and the fractions recovered from the top to the bottom, 

as before. 

2.7 Immunoblotting 

Ten μl of each gradient fraction was loaded onto a 4-20% Bis-Tris protein gel 

(Thermo Fisher Scientific). The separated proteins were then transferred to nitrocellulose 

membranes and blocked with TBST-5% milk for 1h. The membranes were then incubated 

with the primary antibody followed by HRP-labeled secondary antibodies, and developed 

with ECL substrate (Bio-Rad, Alcobendas, Madrid). The following antibodies were used: Anti-

human CD64 (Antibodies.com; 1:2000), anti-GFP (Roche, Madrid, Spain; 1:1000), anti-

human CD11b (clone 23F-12; Santa Cruz Biotechnology, Heidelberg, Germany; 1:200), anti-

mouse CD11b (clone M-19; Santa Cruz Biotechnology; 1:1000), anti-human LAMP1 (clone 

H4A3; Developmental Studies Hybridoma Bank, University of Iowa, Iowa City, IA; 1:500), 

anti-mouse LAMP2 (clone GL2A7; Abcam, Cambridge, UK; 1:1000), anti-mouse FcγR (Merk, 

Tres Cantos, Madrid, Spain; 1:1000), anti-human and mouse MyD88 (clone HFL-296; Santa 

Cruz Biotechnology; 1:1000), anti-mouse CD14 (clone M-305; Santa Cruz Biotechnology). 

For CD64 ligand aproaches, B. burgdorferi B31 or BB0167-deficient B. burgdorferi 

were collected, washed and resuspended in PBS. Bacteria lysis was perform by 3 cycles of 

30s of sonication pulses. 30µg of Bacteria lysate was loaded onto a 4-20% Bis-Tris protein 

gel (Thermo Fisher Scientific). The separated proteins were then transferred to 

nitrocellulose membranes and blocked with TBST-5% milk for 1h. The membranes were then 

incubated with the primary antibody followed by HRP-labeled secondary antibodies, and 

developed with ECL substrate (Bio-Rad, Alcobendas, Madrid). The antibodies used were 

anti-BB0167 mouse serum (1:100) and anti-mouse IgG-HRP. 
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2.8 Proteomic analysis 

In solution digestion: Phagosome-enriched proteins were extracted using 7M urea, 2M 

thiourea and 4% CHAPS. Samples were incubated for 30 min at RT under agitation and 

digested following the filter-aided FASP protocol described by Wisniewski et al (30) with 

minor modifications. Trypsin was added to a trypsin:protein ratio of 1:10, and the mixture 

was incubated overnight at 37 ºC, dried in an RVC2 25 speedvac concentrator (Christ, 

Osterode am Harz, Germany), and resuspended in 0.1% Formic Acid. 

Mass spectrometry analysis: The samples were submitted to LC-MS label-free analysis using 

two different platforms. First, peptide separation was performed on a nanoACQUITY UPLC 

System (Waters, Cerdanyola del Vallés, Barcelona, Spain) connected on-line to an LTQ 

Orbitrap XL mass spectrometer (Thermo Fisher Scientific) using the same parameters 

described before (15). In addition, the samples were analyzed in a hybrid trapped ion 

mobility spectrometry – quadrupole time of flight mass spectrometer (timsTOF Pro with 

PASEF, Bruker, Rivas Vaciamadrid, Madrid, Spain) coupled online to a nanoElute liquid 

chromatograph (Bruker). This mass spectrometer takes advantage of a scan mode termed 

parallel accumulation – serial fragmentation (PASEF), which multiplies the sequencing speed 

without any loss in sensitivity (31) and has been proven to provide outstanding analytical 

speed and sensibility for proteomics analyses (32). The samples (200 ng) were directly 

loaded in a 25 cm, 75 μm ID Odyssey C18 nano column with an integrated emitter 

(IonOpticks, Parkville, Victoria, Australia) and resolved at 400 nl/min with a 90 min gradient. 

The column was heated to 50 ºC using an oven. 

Searches were carried out using the Mascot search engine (Matrix Science, London, 

UK) through Proteome Discoverer software 1.4 (Thermo Fisher Scientific). Orbitrap RAW 

files were directly loaded into the program, whereas mgf files generated by DataAnalysis 

software (Bruker) were used for timsTOF searches. Orbi searches were carried out with 

precursor and fragment tolerances of 10 ppm and 0.5 Da, whereas 50 ppm and 0.05 Da 

were used for TIMS TOF runs. A database consisting of human (Uniprot/Swissprot) and 

Borrelia burgdorferi (Uniprot/Swissprot and Uniprot/TrEMBL) entries (2018_10 release) was 

used for the searches. Only proteins identified with an FDR < 1% were considered. Spectral 

counts for each protein (the number of identified spectra matching to peptides from that 

protein, also named SpC or PSMs) were normalized against protein length. Then, these 
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values were converted to Normalized Spectral Abundance Factor (NSAF) values by 

normalizing them against the sum of normalized spectral counts in each of the runs. 

2.9 TNF ELISA 

The levels of TNF produced by B. burgdorferi stimulation were determined by 

capture ELISA using the DuoSet II kit (R&D Systems, Minneapolis, MN) according to the 

manufacturer’s recommendations. 

2.10 Statistical analysis 

The results are presented as the means ± SE (standard error). Significant differences 

between means were calculated with the Student’s t test. A p value < 0.05 was considered 

significant. 

2.11 Data availability 

The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE (39) partner repository with the dataset 

identifier PXD012854. All relevant data are within the manuscript and its Supporting 

Information files. 

2.12 Protein expression and purification 

His-tagged extracellular region of BB0167 was purchased from DNAsu, Arizona, in 

the pMCSG7 plasmid. The plasmid was transformed and expressed in E. coli BL21 (DE3) as 

described before (44), except that overnight autoinduction media of Studier was used (45). 

BB0167 extracellular peptide sequence: 

AIEVEKNNKGINLSFDIEFYPNSFQILQKEYKKIDLIAKLLEKFKKNNILIEGHTEQFGLEEEMHELSEKRARAI

GNYLIKMKVKDKDQILFKGWGSQKPKYPKSSPLKAKNRRVEITILNN 

Cells were lysed with hen-egg lysozyme and sonicated in 50 mM Tris-HCl (pH 8.0) 

buffer, NaCl was added at a final concentration of 500 mM, and cell debris was removed by 

centrifugation. The supernatant was loaded onto an immobilized metal affinity 

chromatography column (Histrap HP, Amersham Biosciences) equilibrated in 50 mM HEPES 

(pH 8.0) containing 500 mM NaCl. The column was washed with 50 mM HEPES (pH 8.0) 

containing 500 mM NaCl and 20 mM imidazole, and then the protein was eluted with 50 
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mM HEPES (pH 8.0) containing 500 mM imidazole. The protein was cleaved with thrombin 

(Novagen) to remove the N-terminal His-tag. The solution was dialyzed against 20 mM 

sodium acetate buffer (pH 4.6) and purified by cation-exchange chromatography (Resource 

S, Amersham Biosciences) using a linear gradient of NaCl. 

Purified BB0167 was labelled with Alexa Fluor 488 protein labelling kit (Life 

technologies), following the manufacturer’s recommendations. 

2.13 In vivo experiments 

Six to 8 week old B6 or CD64-deficient mice (C.129P2-Fcgr1tm1Sjv/Cnrm), in a B6 background 

were infected with 105 B. burgdorferi B31 or BB0167-deficient B. burgdorferi, 

subcutaneously, as described (43). The mice were sacrificed 3 weeks post infection. The 

hearts were cut in half through bisections across the atria and ventricles to isolate DNA 

using the AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN) following the manufacturer’s 

recommendations.  

Real-time PCRs were performed using perfeCTa SYBR Green SuperMix Low ROX (Quantabio, 

Beverly, MA) on a QuantStudio 6 real-time PCR System (Thermo Fisher Scientific). The DNA 

relative quantification was calculated using the ΔΔCt method. Bacterial burdens were 

measured from heart DNA by qPCR targeting recA relative to the murine gene, Rpl19. 
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3. RESULTS 

3.1 Isolation and characterization of B. burgdorferi-containing, phagosome-enriched 

fractions. 

In order to characterize the protein content of cellular fractions enriched in B. 

burgdorferi-containing phagosomes, we purified protein extracts of bone marrow-derived 

macrophages that had been exposed to GFP-containing spirochetes for 2 h by sucrose 

gradient centrifugation. Immunoblotting analysis showed, as expected (13), the presence of 

CD11b and CD14 in the LAMP-2-enriched fractions. These fractions were also positive for 

GFP (Figure 1A). Similar results were obtained when analyzing human monocyte-derived 

macrophages (Figure 1B). Further analysis showed the presence of MyD88 in the LAMP1-

enriched fractions (Figure 1B). We therefore hypothesized that these fractions would 

contain B. burgdorferi phagosomes. We determined the proteomic composition of fractions 

4, 6 and 8 of the hMac sucrose gradient preparation (Figure 1B). The identification of several 

borrelial proteins in these fractions confirmed the presence of phagosomes (Figure 1C). In 

fact, as observed in the immunoblots, the number of spirochetal proteins detected 

correlated with the level of degradation of B. burgdorferi (23 proteins in fraction 4, 50 in 

fraction 6 and 156 in fraction 8, representing normalized spectral abundance factors -NSAF- 

of 0.7, 2.4 and 6.7, respectively). This suggested that the differential buoyancy of the B. 

burgdorferi-containing fractions is related to the level of maturation of the 

phagosome/phagolysosome. A total of 2514 proteins were identified in fractions 4, 6 and 8, 

of which 961 were shared proteins (Figure 1D). Among the identified proteins, we 

determined the presence of the two components of the phagocytic receptor for B. 

burgdorferi, CR3 (ITGAM and ITGB2), as well as CD14, which were present in all fractions, 

confirming a major role for CR3/CD14 in the phagocytosis of B. burgdorferi (14). Of note, 

both TLR2 and TLR8 were present in the three fractions analyzed, while fraction 4 also 

contained TLR6 and TLR5. The TLR family member CD180, which regulates the phagocytosis 

of B. burgdorferi (15) was also present in the three fractions analyzed (Table 3). Analysis of 

the proteins identified showed the enrichment of components related to phagosome, 

endocytosis or antigen processing and presentation, particularly in fraction 6 and the pool of 

common proteins among the three fractions analyzed (Figure 1E). Surprisingly, 27 identified 

proteins common to the three fractions belonged to Fc gamma R-mediated phagocytosis 
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(Figure 1E). Since the phagocytosis assays were performed in the absence of serum, and 

therefore antibodies, these results suggest a role for this pathway in the internalization of 

opsonin (antibody)-free spirochetes. 

 

Figure 1 Proteomic characterization of B. burgdorferi-containing, phagosome-enriched fractions. 

Immunoblot analysis of B. burgdorferi-containing phagosome enriched sucrose fractions from murine BMMs 

(A) and human monocyte-derived macrophages (B). The numbers at the top indicate the number of fraction 

collected from the top. (C) Number of B. burgdorferi and human proteins contained in phagosome-enriched 

fractions 4, 6 and 8. (D) Venn diagram showing the overlap in protein composition of hMac phagosome-

enriched fractions 4, 6 and 8. A total of 2514 proteins were identified in all 3 fractions, with 961 shared 

proteins. (E) KEGG pathway analysis of the proteins identified in each fraction. The proteins analyzed 

correspond to those proteins represented only in each individual fraction, those shared by 2 fractions and the 

961 common proteins found in all 3, as in Fig. 1D.  
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Table 3 Identification of components of phagocytosis and TLRs in phagosome-containing fractions of human monocyte derived macrophages. ND, not detected 

Uniprot Description Fraction # Σ Coverage Σ# Proteins 
Σ# Unique 

Peptides 
Σ# Peptides Σ# PSMs SAF NSAF 

ITAM_HUMAN Integrin alpha-M 4 16.49 1 14 15 41 0.3226 0.1322 

6 23.78 1 21 22 57 0.4485 0.0746 

8 17.71 1 15 16 43 0.3383 0.0707 

ITB2_HUMAN Integrin beta-2 4 37.58 1 24 25 83 0.9796 0.4016 

6 44.47 1 26 27 125 1.4753 0.2455 

8 40.96 1 26 27 96 1.1331 0.2368 

CD14_HUMAN Monocyte differentiation antigen 

CD14 

4 22.40 1 8 8 32 0.7990 0.3275 

6 32.80 1 10 10 67 1.6729 0.2784 

8 32.80 1 10 10 47 1.1735 0.2452 

TLR2_HUMAN Toll-like receptor 2 4 13.65 1 10 10 32 0.3564 0.1461 

6 24.74 1 15 15 58 0.6460 0.1075 

8 14.80 1 10 10 33 0.3676 0.0768 

TLR8_HUMAN Toll-like receptor 8 4 3.94 1 4 4 4 0.0334 0.0137 

6 8.74 1 9 9 14 0.1169 0.0195 
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8 7.01 1 7 7 9 0.0752 0.0157 

TLR6_HUMAN Toll-like receptor 6 4 1.63 1 1 1 2 0.0218 0.0089 

6 ND ND ND ND ND ND ND 

8 ND ND ND ND ND ND ND 

TLR5_HUMAN Toll-like receptor 5 4 0.93 1 1 1 1 0.0102 0.0042 

6 ND ND ND ND ND ND ND 

8 ND ND ND ND ND ND ND 

CD180_HUMAN CD180 Antigen 4 2.42 1 1 1 1 0.0135 0.0055 

6 8.47 1 4 4 7 0.0944 0.0157 

8 2.42 1 1 1 2 0.0270 0.0056 
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3.2 The analysis of the B. burgdorferi-induced transcriptome reveals the regulation of 

several putative phagocytic receptors. 

We have recently described the regulation of macrophage surface receptors in 

response to the stimulation with B. burgdorferi that modulate both the capacity of these 

cells to phagocytose the spirochete and the ensuing inflammatory response (15). B. 

burgdorferi induces the downregulation of CD180, leading to increased expression of CR3, 

augmented phagocytosis and reduced pro-inflammatory cytokine production (15). On the 

other hand, the C-type lectin receptor, MINCL, did not influence either phagocytosis of, or 

TNF production in response to B. burgdorferi. In order to identify additional surface 

receptors that modulate either aspect of the macrophage response, we further analyzed the 

multi-omic murine and human data previously reported (15). Table 4 shows the 

comparative transcriptomic analysis of several members of different classes of receptors 

that may be involved in the response of monocytes/macrophages to B. burgdorferi. We 

analyzed the regulation of C-type lectins, GPI anchored proteins, Scavenger receptors, 

Siglecs and Fc receptors. Several receptors belonging to these families where regulated by 

the stimulation with B. burgdorferi (Table 4). The validation by flow cytometry of the surface 

upregulation of these receptors is presented in Figure 2. Importantly, several of these 

receptors were found in the phagosome-enriched fractions (Table 4), further suggesting a 

role in the interaction of macrophages and the spirochete. 

3.3 Silencing of the potential receptors in RAW 264.7 shows their implication in Borrelia 

burgdorferi phagocytosis and the inflammatory response.  

We next evaluated the role of several of the receptors identified in the response to B. 

burgdorferi by overexpression of specific shRNAs in RAW 264.7 cells (Figure 3). Stable cell 

lines established after selection of lentivirally infected RAW 264.7 cells were first analyzed 

for their phagocytic activity compared to vector-transduced controls. The results are 

presented in Figures 5-8 and summarized in Figure 4A. Of the receptors analyzed, several 

(CLEC4A3, CLEC13B, CLEC12A, CD52 and SIGLEC1) did not affect the phagocytosis of B. 

burgdorferi (Figure 4A, 5-8). Silencing of CLEC4N (Dectin 2), STABILIN 2, MARCO, CLEC13A, 

uPAR, CLEC4B1 or CD33 however, caused a diminished uptake of B. burgdorferi by RAW 

264.7 cells to different extents (Figure 4A, 5-8). These included receptors previously shown 
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to be involved in the internalization of the spirochete, such as MARCO (11) and uPAR (10). 

On the other hand, silencing of CLEC10A, STABILIN1, LY6E, CLEC4D, MSR1, CD24A, CD59A or 

SIGLEC5 resulted in the increased ability of the cells to internalize the spirochete (Figure 4A, 

5-8).  

 

Figure 2 Validation of the transcriptomic analysis of BMM receptors involved in the response to B. 

burgdorferi. Flow cytometry analysis of receptors after 16 h stimulation with B. burgdorferi (red histogram / 

grey bar) or non-treated controls (black histogram / black bar). The gray histogram represents the 4 C control.  
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Table 4 Regulation of surface receptors by stimulation of BMMs and hMon with B. burgdorferi, as reported (15). The last column indicates the identification of this 

receptors in phagosome-enriched fractions of hMACs stimulated with the spirochete. WB: immunoblotting, NP, not present. 

 

RNAseq BMM 

Fold 

Change 

 

p Value 

Proteomics 

BMM 

Fold 

Change 

 

Anova (p) 

 

ARRAY hMon 

Fold Change  

p Value 

 

Phagosome 

FcgR asocciated 

Fcer1g 1.03 8.40E-01 FCERG 0.91 8.39E-01 FCER1G 2.15 1.23E-04 YES 

Fcgr1 1.25 4.92E-01 FCGR1A 0.62 3.79E-02 FCGR1A 0.60 1.15E-03 YES (WB) 

NP   FCGR2 4.63 7.22E-03 FCGR2A 3.72 7.15E-05 YES 

Fcgr2b 6.54 2.48E-23 NP   FCGR2B 1.54 1.19E-01 YES 

Ptprc 0,82 8.54E-02 PTPRC 0.73 2.23E-01 PTPRC 0.83 8.94E-03 YES 

Syk 1.49 6.54E-24 KSYK 1.18 2.61E-01 SYK 0.87 1.06E-01 YES 

Inpp5d 0.61 1.03E-08 SHIP1 0.74 2.81E-01 INPP5D 0.38 3.49E-06 YES 

C-type lectins 

Clec1a 0.09 1.26E-03 NP   CLEC1A 0.84 1.72E-02 NO 

Clec4a3 0.50 1.89E-03 NP   CLEC4A 1.90 2.27E-04 YES 

Clec4b1 2.95 5.05E-06 NP   NP   NO 

Clec4d 3.79 8.21E-09 NP   CLEC4D 1.01 9.64E-01 NO 
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Clec4e 35.67 9.73E-08 CLC4E 7.50 6.38E-04 CLEC4E 2.26 2,.24E-05 NO 

Clec4n 27.08 7.15E-33 NP   CLEC4N 1.02 8.01E-01 NO 

Clec5a 1.95 9.87E-03 NP   CLEC5A 2.80 6.97E-06 YES 

Clec7a 0.15 1.84E-38 NP   CLEC7A 0.71 4.31E-04 YES 

Clec10a 0.34 2.29E-03 NP   CLEC10A 0.57 3.84E-03 NO 

Clec12a 0.11 3.46E-155 NP   CLEC12A 2.50 6.01E-03 NO 

Cd302 (Clec13a) 4.47 1.36E-08 NP   CD302 0.26 1.36E-04 YES 

Ly75 (Clec13b) 7.73 9.11E-06 NP   NP   YES 

Mrc1 0.11 4.95E-27 MRC1 0.77 5.33E-01    YES 

Scavenger receptors 

Stab1 0.45 7.75E-09 NP   STAB1 0.27 1.56E+05 YES 

Stab2 0.13 2.35E-04 NP   NP   NO 

Marco 2.00 4.87E-01 NP   MARCO 0.49 4.09E-03 YES 

Msr1 5.42 2.52E-61 NP   NP   YES 

Siglecs 

Siglec1 1.31 3.80E-01 NP   SIGLEC1 0.89 1.80E-01 YES 

Siglec5 0.04 1.57E-21 NP   SIGLEC5 1.26 3.19E-01 YES 



 

 
 

Cd33 2.27 3.08E-04 NP   CD33 0.23 4.45E-06 YES 

GPI Anchored proteins 

Cd52 0.62 3.23E-02 NP   CD52 0.06 5.33E-07 NO 

Ly6e 2.57 5.59E-05 NP   NP   NO 

Cd59a 0.34 3.67E-10 NP   CD59 1.74 1.43E-04 YES 

Cd24a 4.74 1.19E-03 NP   NP   NO 

Cd14 4.99 3.10E-22 CD14 2.37 6.25E-03 CD14 0.85 7.25E-01 YES 

Plaur 4.96 1.28E-47 NP   PLAUR 2.51 5.17E-05 YES 

Integrins 

Itgam 0.80 3.50E-01 ITGAM 1.17 4.27E-01 ITGAM 0.11 3.95E-07 YES 

Itgb2 1,56 6,69E-06 ITGB2 0,63 2,66E-02 ITGB2 0,17 7,19E-07 YES 
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Figure 3 Downregulation of receptor expression in RAW264.7. (A) Downregulation of surface receptors upon lentiviral 

infection containing specific shRNA (grey bar) compared to lentivirus containing the empty vector (pLKO.1, black), as 

determined by qRT-PCR. (B) Surface expression (MFI) of MSR1, SIGLEC1 and uPAR in shRNA- (grey bar) and pLKO.1 (black 

bar)-infected RAW 264.7 cells 
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Figure 4 Several surface receptors are involved in the phagocytosis of RAW 264.7 cells to B. burgdorferi and 

the induction of TNF. (A) Schematic representation of the role of the receptors involved positively or 

negatively in B. burgdorferi phagocytosis and the induction of TNF. TNF induction by RAW 264.7 cells silenced 

for the receptors involved positively (B), negatively (C) or not involved (D) in B. burgdorferi phagocytosis upon 

stimulation with the bacteria. The data corresponds to the average ± SE and are representative of at least 3 

independent experiments. 

We next analyzed the effect of shRNA overexpression on TNF induction in response 

to B. burgdorferi. Of the receptors positively associated with B. burgdorferi phagocytosis, 

CLEC4N, STABILIN 2 and MARCO were also involved in the positive regulation of TNF (Figure 
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4A, B), while CLEC4B1 and CD33 negatively regulated the induction of the cytokine (Figure 

4A, B). Interestingly, both CLEC13A and uPAR silencing had no effect on the induction of 

TNF, in spite of their positive regulation of phagocytosis (Figure 4A, B). Of the receptors 

negatively regulating the uptake of B. burgdorferi, CLEC10A, STABILIN 1 and LY6E positively 

regulated the induction of TNF (Figure 4A, C), while silencing of CLEC4D, MSR1, CD24A, 

CD59A and SIGLEC5 resulted in increased TNF levels (Figure 4A, C). Of note, although 

CLEC12A and CD52 silencing did not affect the phagocytic capacity of RAW 264.7 cells, it 

affected TNF production in response to the spirochete (Figure 4A, D). 

Because the regulation of CD11b would cause opposite effects on phagocytosis and 

TNF induction (14), as demonstrated by the CD180-mediated regulation of the integrin (15), 

we assessed the levels of expression of this protein on RAW 264.7 cells that showed 

opposite effects on spirochetal uptake and TNF production. We stained CD11b in RAW 264.7 

cells with stable expression of shClec10a, shStab1, shLy6e, shClec4b1 and shCd33 (Figure 

4A). A slight decreased on CD11b expression was observed in cells with silenced Clec4b1, 

consistent with the reduced phagocytic activity of these cells and increased TNF production 

(Figure 9). The rest of the analyzed silenced cells showed no obvious differences in the 

surface expression levels of CD11b, suggesting an alternative mechanism of modulation of 

the response. 

Overall, these data show that several surface receptors contribute to the overall 

response of phagocytic cells to B. burgdorferi. 

 



 

 
 

 

 

 

Figure 5 



  

 
 

 

Figure 6 

Figure 7 



 

 
 

 

Figures 5-8 Phagocytosis of B. burgdorferi by C-type Lectin- (Fig. S3), Scavenger receptors- (Fig. S4), Siglec- (Fig. S5) and GPI-anchored proteins- (Fig. S6), silenced 

RAW264.7 cells. (A) Percentage of GFP-positive RAW 264.7 cells in shRNA- (right panel) or pLKO.1-infected (middle panel) cells. The 4 ºC control is represented on the left 

panels. The numbers represent the average ± SE of 3 determinations. (B) Histograms representing phagocytosis by shRNA- (red histogram) and control-infected (black 

histograms) RAW 264.7 cells. The gray histogram represents the 4 C control. The numbers represent the average MFI ± SE of 3 determinations. (C) Phagocytic index of 

shRNA- (grey bars) and pLKO.1-infected (red bars) RAW 264.7 cells. The data represent the average ± SE of 3 determinations. 

Figure 8 



 

115 
 

Regulation of Borrelia burgdorferi-induced macrophage activity by spirochetal-regulated surface receptors 

 

 

 

Figure 9 Flow cytometry analysis of CD11b expression in shClec10a, 

shStab1, shLy6e, shClec4b1 and shCd33 RAW264.7 cell lines. ShRNA 

infected RAW 264.7 cells (red histogram) and pLKO.1-infected controls 

(black histogram) were analyzed for CD11b expression by flow 

cytometry. The gray histogram represents the unstained control. The 

data represent at least 3 independent determinations. 

 

 

 

 

 

 

3.4 CD64 mediates the phagocytosis of B. burgdorferi in absence of specific antibodies. 

The proteomics analysis of the phagosome-enriched fractions of hMACs showed a 

significant contribution to components of the Fcγ phagocytosis pathway (Figure 10A), 

including CD64 (Figure 1B). Because Fcγ Receptor I Alpha (FcgRI, CD64) has been shown to 

directly recognize Escherichia coli by murine macrophages in the context of meningeal 

infection (22) and to mediate bacterial invasion, we further assessed whether this receptor 

would mediate the internalization of B. burgdorferi in the absence of opsonins (antibodies). 

Silencing Fcgr1 in RAW 264.7 cells resulted in decreased phagocytosis of B. burgdorferi 

(Figure 11A) and TNF (Figure 11B). Cd64-silenced BMMs (Figure 10B) also showed reduced 

uptake of the spirochete in serum-free medium (Figure 10C). Furthermore, the use of a 

blocking antibody targeting CD64 resulted in the reduced phagocytic capacity of human 

blood monocyte-derived macrophages (Figure 10D). In addition, BMMs from CD64-deficient 

mice showed a diminished phagocytic capacity (Figure 10E) and TNF production in response 

to B. burgdorferi (Figure 10F). The attenuated capacity of silenced cells to internalize B. 

burgdorferi was not associated with variations in the expression of CD11b or CD14 (Figure 

10G). In order to demonstrate the capacity of CD64 to bind the spirochete, we expressed 

ectopically the receptor in CHO cells (Figure 10H). Compared to non-transfected controls, 

CHO-CD64 cells were able to bind B. burgdorferi, demonstrating the capacity of this 

receptor to anchor the spirochete (Figure 10I, J). 
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Figure 10 The Fc gamma Receptor phagocytosis pathway is implicated in the response of macrophages to B. 

burgdorferi. (A) Components of the KEGG Fc gamma Receptor pathway identified in the proteomics analysis of 

the phagosome-enriched fractions of hMAC. (B) Lower expression levels of CD64 on Fcgr1a-silenced BMMs 

(red histogram) compared to pLKO.1 lentivirally infected cells (black histogram), as determined by flow 

cytometry. The gray histogram represents the unstained control. (C) Phagocytosis of B. burgdorferi by 

shFcgr1a BMMs (red histogram) or pLKO.1-infected controls (black histogram). The gray histogram represents 

the 4 C control. The results are representative of at least 3 independent experiments. (D) Phagocytosis of B. 

burgdorferi by hMACs in the presence of a blocking antibody targeting CD64 (red histogram) or controls (black 

histogram). The gray histogram represents the 4 C control. The results are representative of 8 individual 
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(continued from previous page) donors. (E) Phagocytosis of B. burgdorferi by BMMs differentiated from CD64-

deficient mice (red histogram) or wildtype controls (black histogram). The gray histogram represents the 4 C 

control. The results are representative of at least 3 independent experiments. (F) TNF production upon 

stimulation of BMM from CD64-deficient mice (grey bar) or wildtype controls (black bar) with B. burgdorferi. 

The data represent the average ± SE of 3 mice per group. (G) Flow cytometry analysis showing the expression 

of CD11b and CD14 in BMMs from CD64-deficient mice (red histogram) or wildtype controls (black histogram). 

The gray histogram represents the unstained control. (H) Histogram representing the ectopic expression of 

human CD64 in CHO cells (red histogram) and un-transfected controls (black histogram). The gray histogram 

represents the unstained control. (I) Confocal micrograph of un-transfected CHO cells (CHO-Control) and CHO 

cells transfected with human CD64 (left). The cells were stained with phalloidin (red) and DAPI (blue). B. 

burgdorferi are shown in green. (J) Binding of B. burgdorferi to CHO cells ectopically expression human CD64 

(red histogram) compared to un-transfected cells (black histogram). The gray histogram represents the 4 C 

control. The average mean fluorescence intensity (MFI) of 3 determinations is presented on the right, as is 

representative of at least 3 independent experiments. 

 

 

 

 

 

 

 

 

 

 

Figure 11 Phagocytosis of B. burgdorferi by shCd64 RAW264.7 cells. (Left panels) Percentage of GFP-positive 

RAW 264.7 cells in shRNA- (right panel) or pLKO.1-infected (middle panel) cells. The 4 ºC control is represented 

on the left panels. The numbers represent the average ± SE of 3 determinations. (Middle panel) Histograms 

representing phagocytosis by shRNA- (red histogram) and control-infected (black histograms) RAW 264.7 cells. 

The gray histogram represents the 4 C control. The numbers represent the average MFI ± SE of 3 

determinations. (right panel) Phagocytic index of shRNA- (grey bars) and pLKO.1-infected (red bars) RAW 264.7 

cells. The data represent the average ± SE of 3 determinations. (B) TNF production by shFcgr1a RAW 264.7 cell 

(grey bar) and pLKO.1 controls (black bar) upon stimulation with B. burgdorferi. The average ± SE of 3 

determinations is represented. 
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3.5 The common gamma chain mediates the phagocytosis of B. burgdorferi. 

Fc and other receptors, including some C-type lectins require the recruitment and 

signals elicited by the common gamma chain (FCER1G, FcγR) (19, 21, 33). These include 

some of those that modulate the internalization of the spirochete, such as CLEC4N, or 

CLEC4D. We therefore assessed the role of FCER1G in the internalization of the spirochete. 

RAW 264.7 cells harboring shFcer1g (Figure 12A) showed a diminished capacity to 

internalize B. burgdorferi (Figure 12B) and resulted in decreased induction of TNF in 

response to the spirochete (Figure 12C). The same reduction in phagocytosis to B. 

burgdorferi was observed in silenced BMMs (Figure 13A). 

Figure 12 Phagocytosis of B. burgdorferi by shFcer1g RAW264.7 cells. (A) Downregulation of FcγR expression 

in RAW264.7 cells infected with lentivirus containing shFcer1g or the empty vector, as determined by Western 

blot analysis. (B) Phagocytosis of B. burgdorferi by shFcer1g RAW264.7 cells. (C) TNF production by shFcer1g 

RAW264.7 (grey bar) or pLKO.1 control (black bar) upon stimulation with B. burgdorferi. The data represent 

the average ± SE of 3 experiments. 
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The common FcR γ-chain mediates Syk recruitment, which is responsible for downstream 

signaling activation. Since Syk silencing resulted in the loss of viability of RAW 264.7 cells, we 

proceeded to the chemical inhibition of the kinase with Piceatannol (16). Both phagocytosis 

of B. burgdorferi (Figure 13B,C) and TNF induction (Figure 13D) were decreased in BMMs, 

confirming the implication of this enzyme in this process. Furthermore, Syk inhibition in 

hMac decreased the capacity of these cells to phagocyte B.burgdorferi (Figure 13E, F). 

FcgR phosphorylation and Syk recruitment requires the participation of CD45 

(PTPRC), through the initial dephosphorylation of Src kinases. Since CD45 was present in the 

phagosome-enriched fractions of hMac (Table 4), we also analyzed the involvement of this 

phosphatase on the internalization of B. burgdorferi and TNF induction. As expected, Ptprp 

silencing in RAW 264.7 cells resulted in diminished internalization of the spirochete (Figure 

14). Overall, these data show that the Fc gamma Receptor signaling pathway is involved in 

the internalization of and proinflammatory output in response to B. burgdorferi. 
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Figure 13 (previous page) The common gamma chain, Syk kinase and SHIP1 phosphatase are mediators of B. 

burgdorferi phagocytosis. (A) Phagocytosis of B. burgdorferi by shFcerig BMMs (grey bar) or controls (pLKO.1 

infected, black). The data represent the average ± SE of 3 mice. (B) Phagocytosis of B. burgdorferi by BMMs 

treated with Piceatannol (red histogram) or non-treated controls (black histogram). The gray histogram 

represents the 4 C control. (C) Phagocytosis index of BMMs treated with piceatannol (grey bar) or non-

treated controls (black bar). The data represent the average ± SE of 3 mice. (D) TNF production of piceatannol 

treated BMMs in response to B. burgdorferi stimulation (grey bar) and controls (black bar). The average ± SE of 

3 mice per group is presented. (E) Phagocytosis of B. burgdorferi by hMACs treated with Piceatannol (red 

histogram) and controls (black histogram). The gray histogram represents the 4 C control. (F) Phagocytosis 

index of hMACs treated with Piceatannol (grey bar) and controls (black bar). The data represent the average ± 

SE of 5 donors. (G) Downregulation of Ship expression in RAW 264.7 cells infected with a lentivirus containing 

specific shRNA (grey bar) or an empty vector (pLKO.1, black), as determined by qRT-PCR. (H) Phagocytosis of B. 

burgdorferi by shShip RAW264.7 cells (grey bar) and pLKO.1-infected controls (black bar). The average ± SE of 3 

independent experiments is shown. (I) TNF production upon stimulation with B. burgdorferi by shShip 

RAW264.7 cells (grey bar) or pLKO.1 controls (black bar). The data represent the average ± SE of 3 independent 

experiments.  

Figure 14 Phagocytosis of B. burgdorferi by shCD45 RAW264.7 cells. Phagocytosis of B. burgdorferi by shPtprc 

RAW 264.7 cells. The data were analyzed as in Fig. S8 and represent the average ± SE of 3 experiments. 

3.6 The phosphatase, SHIP1, represses the phagocytosis of B. burgdorferi but does not 

affect the induction of TNF. 

The myeloid specific phosphatase, SHIP1, modulates several signaling pathways, 

including those initiated by Fc gamma receptors (34) and other surface receptors (19). The 

stimulation of BMMs with B. burgdorferi induced the downregulation of Inpp5d (encoding 

SHIP1, Table 4) and the protein is present in the phagosomal enriched fractions of human 

macrophages (Table 4). To address the potential role of SHIP1 on the response of 

Cd45 
1.19% 21.6% ± 0.12 17.2% ± 0.6 

FS
C

 

GFP 

*

N
o

. C
el

ls
 

GFP 

P
h

ag
o

cy
ti

c 
In

d
ex

 

pLKO.1  shRNA 

-15% ± 3.0 



  

121 
 

Regulation of Borrelia burgdorferi-induced macrophage activity by spirochetal-regulated surface receptors 

 

 

macrophages to the spirochete, we silenced Inpp5d in RAW264.7 cells (Figure 13G). We 

observed an increased capacity of silenced cells to phagocyte B. burgdorferi (Figure 15, 

13H). However, the induction of TNF was not different between control and Inpp5d-silenced 

cells (Fig. 13I), indicating that the phosphatase is specifically involved in the internalization 

of B. burgdorferi. 

Figure 15 Phagocytosis of B. burgdorferi by shShip RAW264.7 cells. The data were analyzed as in Fig. S8 and 

represent the average ± SE of 3 experiments. 

3.7 The identification of the B. burgdorferi ligand that interacts with CD64 

We have demonstrated that CD64 binds to B. burgdorferi and probably participates in the 

internalization of the spirochete. We sought to identify the B. burgdorferi protein 

recognized by this receptor. There is only one published evidence describing the ability of 

CD64 to bind a pathogen in the absence of serum in the context of invasion of macrophages 

by E. coli, which is mediated by the surface protein, OmpA (40). B. burgdorferi contains an 

orthologue of OmpA, designated as BB0167 (Figure 16A).  

Intriguingly, mice infected with BB0167-deficient B. burgdorferi, generated in an infectious 

spirochete using a signature-tagged mutagenesis (STM) approach, harbored higher bacteria 

burdens in the heart (41) (Figure 16B). We therefore, hypothesized that BB0167 mediates 

the internalization of B. burgdorferi mediated by the Fc gamma receptor, CD64. 

We cloned and purified the soluble, extracellular region of BB0167 (Figure 17A). The purified 

protein was also used to immunize mice and generate anti-BB0167 antibodies (Figure 17B). 
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The recombinant protein was then labeled with Alexa Fluor-488. Labelled BB0167 was 

added to control and transfected hCD64 transfected CHO cells (Figure 17C). CHO cells 

expressing hCD64 showed binding of BB0167 while the control cells showed minimal 

binding (Figure 17C, D), suggesting that the lipoprotein is able to bind to the high affinity Fc 

receptor. To further confirm these results, we obtained B. burgdorferi deficient for BB0167 

from Lin and collaborators (41) (Figure 17F). Binding experiments showed that the BB0167-

deficient B. burgdorferi had a lower capacity to bind to hCD64-expressing CHO cells (Figure 

17G, H). 

Figure 16 A: Protein sequence alignment of E. coli OmpA (NP_415477.1) and B. burgdorferi BB0167. The region 

between the red lines corresponds to the extracellular domain. B: BB0167 deficient B. burgdorferi burdens are 

higher in the heart compared to WT B. burgdorferi. Data published by Lin and collaborators (41). 
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Figure 17 A: Coomasie blue staining of the purified extracellular domain of BB0167. B: Inmunoblot of anti-

BB0167 generated antibody in mice. C: CD64 expression in CHO cells (red histogram) and in un-transfected 

controls (grey histogram). CHO expressing the human version of CD64 show labeled BB0167 bound to the cell 

surface (E) compared to un-transfected CHO. F: Inmunoblot of BB0167 liproprotein in WT and KO B. 

burgdorferi. The results show non-specific bands since the available antibodies are mice serum. (D). CD64 

expressing CHO with Bb-WT (G) and Bb-KO (H). Confocal micrograph cells were stained with Rhodamine (red) 

and DAPI (blue), B. burgdorferi is shown in green. 

 

We argued that the absence of the CD64 ligand would result in decreased phagocytosis and 

hence, increased bacterial numbers in the heart of infected mice. We therefore, infected 

CD64-deficient and WT mice with BB0167-deficient and WT B. burgdorferi, and assessed 

bacterial burdens in the heart after 3 weeks of infection. CD64 deficient mice showed higher 

B. burgdorferi burdens (recA) compared to WT mice, confirming that CD64 has a role in 

bacterial clearance (Figure 18A). In contrast, the levels of BB0167-deficient bacteria 

(identified by barcode PCR) showed no differences (Figure 18B). These results suggested 

that the interaction between BB0167 and CD64 mediates the phagocytosis of B. burgdorferi. 
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Figure 18 In vivo experiments suggest that Bb0167 is the ligand of CD64. A. B. burgdorferi burdens (recA) in 

CD64
-/-

 mice heart (grey bar) versus WT-mice heart (black bar) determined by qRT-PCR. The DNA quantity was 

normalized to Rpl19 DNA. The data corresponds to the average ± SE of 5 mice. B. Bb0167 deficient B. 

burgdorferi (barcode) burdens in cardiac tissue of CD64
-/- 

and WT mice. The heart DNA quantity was 

normalized to Rpl19 DNA. The data represent the average ± SE of 5 mice. 
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1. DISCUSSION 

Macrophages are key elements of the immune response; they are not only involved 

in the clearance of the pathogens, but also act as a bridge between the innate and adaptive 

arms of the immune response. Macrophages harbor a large number of surface receptors, 

which confer this cell type a high level of plasticity. Upon engagement of pathogen-

recognition receptors (PRRs), macrophages produce an array of cytokine/chemokines that 

orchestrate the behavior of the downstream components of the inflammatory response. 

Surface receptors that specifically recognize the pathogen recruit signaling molecules that 

transduce signals and mediate the internalization and clearance of the pathogen. Multiple 

receptors may intervene in the phagocytosis of the same pathogen (19, 35). Thus, the 

overall signature response to a specific pathogen is dictated by the addition of the signals 

initially emanating from surface receptors, further modulated by the interaction of 

intracellular signals generated as a result of the internalization of the pathogen (15). 

We have identified a variety of receptors implicated in the response of macrophage 

to B. burgdorferi. For this purpose, we first analyzed the proteomic content of phagosome-

enriched fractions containing B. burgdorferi. We further complemented this approach with 

the identification of surface receptors regulated by the stimulation of macrophages with the 

spirochete (15), an approach previously used by Hu and collaborators that led to the 

identification of MARCO as a phagocytic receptor for B. burgdorferi (11). Our approach also 

allowed us to identify MARCO and uPAR, another receptor previously involved in the uptake 

of the spirochete (10), as proteins involved in the response of macrophages to B. 

burgdorferi. Furthermore, these results also confirmed the role of CR3/CD14 in the response 

of phagocytic cells to the microorganism. 

Our results show that the repertoire of surface proteins involved in this response is 

complex and composed of several classes of receptors, including C-lectins, scavenger 

receptors, siglecs and Fc receptors. The importance of the common FcR γ-chain in the 

control of spirochetal burdens in mice has been previously demonstrated albeit in the 

presence of antibodies (36). The results shown here suggest that at least partly, the role 

played by these receptors may not be solely mediated by antibody-mediated opsonization 

of the bacteria. In fact, we demonstrate that CD64, the high affinity Fc receptor, directly 

binds B. burgdorferi suggesting that Fc receptors mediate both antibody-dependent and 
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independent responses in macrophages. The role played by the opsonin-independent 

phagocytosis of B. burgdorferi mediated by Fc receptors may be more relevant at the tissue 

level, once the spirochetes have disseminated to tissues with poor antibody penetration 

(37).  

Our results are suggestive, but do not provide definitive proof of the role played by 

BB0167 as a ligand for CD64 in the internalization of B. burgdorferi. In order to fully define 

this lipoprotein as a ligand that mediates the interaction of the spirochete and the high 

affinity Fc receptor, we propose to cross the CD64-deficient mice with B cell-deficient mice 

( KO), and thus eliminate the interference provided by the presence of antibodies during 

infection with the spirochete. Another possibility to further clarify the role of BB0167 is to 

generate a reconstituted strain in order to unequivocally assign the phenotype of the KO 

strain to the absence of this proteins and not to polar effects, that have been observed in 

other gene deficient spirochetes (46, 47, 48). 

Our approach did not identify a surface receptor dependent on MyD88, a signaling 

molecule that accounts for a large portion of the phagocytic activity of macrophages to the 

spirochete (36, 38). In contrast, we further define the Syk-mediated pathway, probably 

elicited by Fc receptors and certain C-type lectins, as regulating both the internalization of 

and the induction of proinflammatory cytokines by B. burgdorferi. The role played by Syk in 

the internalization of the spirochete confirms previous findings (16). This signaling pathway 

is a positive regulator of the proinflammatory activity of macrophages, in contrast to 

CR3/CD14. This diversity in the role played by different surface receptors on the 

biosignature of macrophages is further reinforced by the presence of proteins with positive 

and negative modulatory effects both in the uptake of the spirochete and the ensuing 

induction of TNF. We previously demonstrated that phagosomes containing B. burgdorferi 

are diverse and include CR3 or not (14). It is feasible that the same would be true and a 

certain number of different phagosomal compositions would distinctly participate in the 

induction of proinflammatory cytokines. Overall, both the composition and the regulation of 

receptors involved in the response of macrophages to B. burgdorferi provide not only the 

capacity to eliminate the bacteria, but also the overall inflammatory output of these cells, 

which could be modulated over time in response to the signals that affect their expression, 

such as the bacterium itself. 
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 By the use transcriptomics and proteomics we have studied innate immune 

responses to the spirochete using both murine macrophages and human monocytes. Based 

on these approaches, we have described the regulation of CD180 in response to B. 

burgdorferi. Our results show that CD180 modulates both phagocytosis and inflammation in 

response to B. burgdorferi through the transcriptional repression of complement receptor 3 

(CR3) (Figure 1).  

 

We completed our studies by performing a proteomic profile of BMMs in response to the 

spirochete and the identification of proteins present within B. burgdorferi-containing 

phagosomes in human macrophages. Based on the data obtained we confirmed the 

importance of the already reported phagocytic receptors and signalling factors as CR3, 

MyD88, Syk and FcRγ, which were found in the B. burgdorferi contained phagosomes in the 

proteomics study, by Immunoblot analysis and also by confocal imaging (Figure 2). 

 

This project has also led to the identification of the Fc gamma receptor family as involved in 

phagocytosis of B. burgdorferi in the absence of antibodies. Although the common FcR γ-

chain has been previously implicated in the contest of mice immune defense against the 

spirochete, the alpha chain (CD64) has never been related to direct phagocytosis so far. The 

results obtained suggest that the role played by these receptors may not be solely mediated 

by antibodies. Furthermore, the behaviour of other receptors of the pathway, such as CD45 

and FcRG3 (low affinity α chain) or SyK/SHIP signalling molecules, confirms the relevance of 

this pathway (Figure 3). 

 

We have identified a group of surface receptors that are involved in both the internalization 

and the induction of cytokines by B. burgdorferi. Some of them are implicated positively in 

the ingestion of this pathogen (Figure 4), others may play a regulatory role by negatively 

influencing phagocytosis (Figure 5), whereas the last group seems not involved in the 

process (Figure 6). Albeit in each group we find receptors differently modulating the 

inflammatory response. 

Overall, our data define the specific expression traits in monocytes/macrophages in 

response to the spirochete, allowing the identification of components that modulate the 

specific interaction between the pathogen and innate immune cells.  
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Figure 1: Negative regulatory role played by CD180 over CR3 receptor. Under resting conditions, CD180 

represses CR3 expression, therefore decreasing phagocytosis and TNF production. In the presence of B. 

burgdorferi, CD180 expression decreases, releasing CR3 from its inhibitory effect and therefore increasing CR3 

expression, altogether with phagocytosis and proinflammatory cytokine production. 

DAPI  Bb  MYD88 

A B 

Figure 2: Confocal imagen of BMM phagosomes showing the co-localization of B. burgdorferi (green) 

and MyD88 (red) (A) and B. burgdorferi (green) and CD11b (blue) (B). Figure B modified from Hawley et 

al., 2012(3). 
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Figure 3: Simplified components of the KEGG Fc gamma Receptor pathway and the behavior of the 

silenced RAW 264.7 cell lines in B. burgdorferi phagocytosis. Bar graphics show the silencing of 

element positively involved in the pathway such as CD64, CD45 and FcgR3, and negatively involved, 

as SHIP phosphatase. The signaling molecules SyK and FcRγ show a consistent behavior when 

silenced (FcRγ) or when chemically inhibited (SyK) with Piceatannol. 
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SUMMARY OF THE RECEPTORS  

 

Figure 4: Representation of the receptors involved POSITIVELY in B. burgdorferi phagocytosis and their 

modulation in the TNF inflammatory response 

 

Figure 5: Representation of the receptors involved NEGATIVELY in B. burgdorferi phagocytosis and their 

modulation in the TNF production.  
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Figure 6: Representation of the receptors NOT INVOLVED in B. burgdorferi phagocytosis and 

their modulation in the TNF production.  
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Conclusions 

1. The use of large-scale analytical approaches revealed similar 

transcriptomics/proteomics profiles between human monocytes and murine 

macrophages in response to B. burgdorferi, showing the activation of the similar 

global traits and upstream activator pathways.  

 

2. The proteome analysis of B. burgdorferi-containing phagosomes unveiled the 

regulation of macrophage activity by surface receptors involved in the ingestion of 

the spirochete and cytokine production. 

 

3. CD180 modulates both phagocytosis and inflammation in response to B. 

burgdorferi through the transcriptional repression of complement receptor 3. This 

suggests the existence of multiple mechanisms of phagocytic and proinflammatory 

control that may be relevant at different phases of the response. 

 

4. Several components of Fc gamma receptor family have been identified as 

phagocytic receptors for B. burgdorferi in the absence of antibodies, such as CD64 

and CD45, revealing the implication of several signaling factors (SHIP1, FcRγ and 

Syk) in the process. 

 

5. The description of a wide set of receptors belonging to the families of GPI-

anchored proteins, Siglecs, C-type lectins and Scavenger receptors shows a 

complex mechanisms involved in B. burgdorferi phagocytosis and the ensuing 

inflammatory response. 

 

 

 

 

  



 

144 
 

 Conclusions 

 
 



 

 

 

 

 

 

 

 

 

 

Suplemmentary 

material 
  

 



 

146 
 

 Suplemmentary material 

 
  



 

147 
 

 Suplemmentary material 

 
Supplementary Table S1 Genes associated with phagocytosis and activation of phagocytes and their 

corresponding regulation in both BMMs and hMon stimulated with B. burgdorferi compared to 

unstimulated samples 

Values in bold represent significantly regulated genes. Those genes regulated in the same direction are 

marked either in orange (upregulated in both analysis) or green (downregulated). 

 

Mouse Human Entrez Gene Name BMM hMon 

Log2(Ratio) p-value Log2(Ratio) p-value 

Phagocytosis 

Cd38 CD38 CD38 molecule 9.924 3.33E-50 0.013 9.13E-01 

sf3 CSF3 colony stimulating factor 3 9.086 1.58E-52 1.385 3.75E-05 

Il1b IL1B interleukin 1 beta 7.704 7.83E-23 2.474 7.42E-07 

Il6 IL6 interleukin 6 7.634 2.72E-22 6.014 6.61E-08 

Saa1 SAA1 serum amyloid A1 6.811 2.75E-16 NA NA 

Syt7 SYT7 synaptotagmin 7 6.429 5.80E-18 -0.069 5.17E-01 

Cav1 CAV1 caveolin 1 6.385 8.93E-69 1.451 3.80E-04 

Adora2a ADORA2A adenosine A2a receptor 6.002 5.85E-70 2.929 3.23E-07 

Adora2b ADORA2B adenosine A2b receptor 5.632 9.01E-136 -0.391 1.40E-02 

Lcn2 LCN2 lipocalin 2 5.578 4.55E-11 -0.077 5.47E-01 

Tnf TNF tumor necrosis factor 5.2 5.17E-77 3.336 7.92E-05 

Clec4n CLEC6A 

C-type lectin domain family 6 

member A 4.759 7.15E-33 0.035 8.01E-01 

Isg15 ISG15 ISG15 ubiquitin-like modifier 4.731 2.97E-34 -1.692 1.93E-02 

Spic SPIC Spi-C transcription factor 4.584 1.06E-23 -0.078 3.98E-01 

F10 F10 coagulation factor X 4.091 7.04E-07 NA NA 

Mir125a mir-10 microRNA 100 4.054 3.78E-04 -0.053 7.18E-01 

Src SRC 

SRC proto-oncogene. non-receptor 

tyrosine kinase 3.85 2.93E-22 2.341 2.13E-07 

Hmox1 HMOX1 heme oxygenase 1 3.722 3.37E-93 -1.424 4.92E-06 

Fpr1 FPR1 formyl peptide receptor 1 3.666 1.18E-03 -1.858 1.12E-06 

Mirlet7e let-7 microRNA let-7a-1 3.642 2.10E-03 0.145 1.06E-01 

Il10 IL10 interleukin 10 3.568 1.42E-59 1.929 3.52E-05 

Ehd1 EHD1 EH domain containing 1 3.535 1.02E-29 1.261 4.08E-05 

Cxcl10 CXCL10 C-X-C motif chemokine ligand 10 3.487 1.09E-04 NA NA 

Nod2 NOD2 

nucleotide binding oligomerization 

domain containing 2 3.373 5.60E-62 -2.011 4.88E-05 

Pla2g4a PLA2G4A phospholipase A2 group IVA 3.261 4.82E-52 NA NA 

Fas FAS Fas cell surface death receptor 3.204 6.59E-05 NA NA 

Irf7 IRF7 interferon regulatory factor 7 3.163 5.20E-20 -0.353 2.17E-01 

Csf2 CSF2 colony stimulating factor 2 3.14 1.16E-02 3.814 9.01E-06 

Pf4 PF4 platelet factor 4 3.13 2.76E-48 NA NA 

Ly75 LY75 lymphocyte antigen 75 2.954 9.11E-06 NA NA 

Cebpb CEBPB 

CCAAT/enhancer binding protein 

beta 2.768 3.05E-28 0.332 5.43E-03 

Fcgr2b FCGR2B Fc fragment of IgG receptor IIb 2.708 2.48E-23 0.621 1.19E-01 

Camp CAMP cathelicidin antimicrobial peptide 2.677 8.79E-03 -0.293 8.35E-03 
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Pla2g5 PLA2G5 phospholipase A2 group V 2.588 7.69E-03 NA NA 

Ets2 ETS2 

ETS proto-oncogene 2. 

transcription factor 2.475 4.73E-94 1.896 1.80E-05 

Tlr1 TLR1 toll like receptor 1 2.446 3.21E-11 NA NA 

Msr1 MSR1 macrophage scavenger receptor 1 2.437 3.36E-59 NA NA 

Cd14 CD14 CD14 molecule 2.32 7.36E-21 -0.236 7.25E-01 

Slc11a1 SLC11A1 solute carrier family 11 member 1 2.316 1.79E-34 -1.139 1.24E-03 

Plaur PLAUR 

plasminogen activator. urokinase 

receptor 2.309 1.07E-45 1.326 5.17E-05 

Ccl2 Ccl2 chemokine (C-C motif) ligand 2 2.255 5.73E-12 NA NA 

Cd302 CD302 CD302 molecule 2.16 1.36E-08 -1.94 1.36E-04 

Icam1 ICAM1 intercellular adhesion molecule 1 2.138 1.48E-03 1.319 5.39E-05 

Abca1 ABCA1 

ATP binding cassette subfamily A 

member 1 1.953 3.56E-14 -1.215 2.49E-02 

Cybb CYBB cytochrome b-245 beta chain 1.765 3.11E-07 0.19 2.85E-01 

Mapkapk2 

MAPKAPK

2 

mitogen-activated protein kinase-

activated protein kinase 2 1.763 7.23E-16 -0.258 1.41E-02 

Eif2ak2 EIF2AK2 

eukaryotic translation initiation 

factor 2 alpha kinase 2 1.758 9.08E-23 -1.448 1.05E-03 

Csf2rb CSF2RB 

colony stimulating factor 2 

receptor beta common subunit 1.653 1.08E-28 0.074 4.47E-01 

Thbs1 THBS1 thrombospondin 1 1.613 8.43E-23 0.292 7.83E-01 

Hck HCK 

HCK proto-oncogene. Src family 

tyrosine kinase 1.561 3.80E-19 1.842 1.87E-05 

Tlr2 TLR2 toll like receptor 2 1.556 1.25E-02 0.316 1.11E-02 

Syk SYK spleen associated tyrosine kinase 1.491 1.74E-22 -0.2 1.06E-01 

Ptx3 PTX3 pentraxin 3 1.457 4.10E-02 NA NA 

Scarf1 SCARF1 

scavenger receptor class F member 

1 1.452 5.74E-07 0.562 1.65E-03 

Prkce PRKCE protein kinase C epsilon 1.378 1.14E-04 NA NA 

Mif MIF 

macrophage migration inhibitory 

factor (glycosylation-inhibiting 

factor) 1.367 3.53E-23 -0.241 2.29E-01 

Pip5k1a PIP5K1A 

phosphatidylinositol-4-phosphate 

5-kinase type 1 alpha 1.234 1.46E-14 0.013 9.21E-01 

Cat CAT catalase 1.223 2.50E-08 -1.656 7.41E-06 

Treml2 TREML2 

triggering receptor expressed on 

myeloid cells like 2 1.196 3.56E-03 NA NA 

Abca7 ABCA7 

ATP binding cassette subfamily A 

member 7 1.183 1.42E-04 -0.933 4.90E-04 

Serpine1 SERPINE1 serpin family E member 1 1.126 1.20E-02 0.075 4.50E-01 

Myh9 MYH9 myosin heavy chain 9 1.104 3.56E-21 -0.25 2.47E-02 

Ptger2 PTGER2 prostaglandin E receptor 2 1.093 1.01E-04 0.668 2.48E-03 

Coro1a CORO1A coronin 1A -1.034 2.36E-05 -2.956 8.71E-08 

Itgax ITGAX integrin subunit alpha X -1.042 3.89E-05 0.612 1.19E-02 

Swap70 SWAP70 

SWAP switching B-cell complex 

subunit 70 -1.062 4.54E-15 0.548 3.66E-03 

Rab31 RAB31 

RAB31. member RAS oncogene 

family -1.064 3.56E-13 1.144 4.86E-04 

Padi4 PADI4 peptidyl arginine deiminase 4 -1.096 4.00E-02 -3.58 1.82E-06 
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Mfge8 MFGE8 

milk fat globule-EGF factor 8 

protein -1.117 2.43E-06 -0.324 7.07E-02 

Cerk CERK ceramide kinase -1.159 5.82E-16 -0.401 2.35E-02 

Vwf VWF von Willebrand factor -1.173 1.75E-09 -0.323 8.45E-03 

P2rx7 P2RX7 purinergic receptor P2X 7 -1.208 8.56E-06 2.948 5.35E-05 

Lgals3 LGALS3 galectin 3 -1.215 7.76E-10 0.936 8.72E-04 

Fgr FGR 

FGR proto-oncogene. Src family 

tyrosine kinase -1.23 3.64E-02 -0.35 1.64E-02 

Ptger4 PTGER4 prostaglandin E receptor 4 -1.266 2.12E-04 0.485 1.76E-01 

Camk1d CAMK1D 

calcium/calmodulin dependent 

protein kinase ID -1.28 5.95E-10 -0.139 1.58E-01 

Dock1 DOCK1 dedicator of cytokinesis 1 -1.282 3.87E-06 NA NA 

Myc MYC 

v-myc avian myelocytomatosis viral 

oncogene homolog -1.288 9.08E-04 -0.578 7.59E-03 

Rora RORA RAR related orphan receptor A -1.292 1.26E-05 NA NA 

Mkl1 MKL1 

megakaryoblastic leukemia 

(translocation) 1 -1.326 1.58E-13 -0.285 7.14E-03 

Rras2 RRAS2 

related RAS viral (r-ras) oncogene 

homolog 2 -1.386 8.46E-03 NA NA 

Gsn GSN gelsolin -1.645 2.84E-13 -0.676 2.91E-03 

Elmo1 ELMO1 engulfment and cell motility 1 -1.783 3.43E-10 -0.868 1.36E-04 

Gp1ba GP1BA 

glycoprotein Ib platelet alpha 

subunit -1.814 5.75E-03 -0.07 5.32E-01 

Tecpr1 TECPR1 

tectonin beta-propeller repeat 

containing 1 -1.888 1.75E-32 -0.372 5.49E-02 

Trem2 TREM2 

triggering receptor expressed on 

myeloid cells 2 -2.026 7.70E-21 NA NA 

Fyn FYN 

FYN proto-oncogene. Src family 

tyrosine kinase -2.069 8.63E-14 -1.045 6.38E-05 

Mcoln3 MCOLN3 mucolipin 3 -2.07 1.08E-14 0.561 2.10E-02 

Colec12 COLEC12 collectin subfamily member 12 -2.108 2.00E-17 NA NA 

Plau PLAU plasminogen activator. urokinase -2.119 9.07E-10 0.574 3.43E-03 

Ucp2 UCP2 uncoupling protein 2 -2.129 5.52E-24 -1.085 1.34E-04 

Pros1 PROS1 protein S (alpha) -2.172 4.41E-23 -0.022 8.73E-01 

Osbp2 OSBP2 oxysterol binding protein 2 -2.175 1.77E-03 NA NA 

Rapgef3 RAPGEF3 

Rap guanine nucleotide exchange 

factor 3 -2.194 1.30E-08 NA NA 

Megf10 MEGF10 multiple EGF like domains 10 -2.239 2.74E-02 NA NA 

C1qa C1QA complement C1q A chain -2.259 1.05E-41 NA NA 

Klf2 KLF2 Kruppel like factor 2 -2.301 3.51E-10 -3.7 7.14E-08 

Pld4 PLD4 phospholipase D family member 4 -2.302 9.52E-12 0.049 6.26E-01 

Mex3b MEX3B 

mex-3 RNA binding family member 

B -2.38 1.29E-07 -0.166 1.43E-01 

Anxa1 ANXA1 annexin A1 -2.447 1.40E-51 -0.468 6.67E-02 

Hgf HGF hepatocyte growth factor -2.566 5.64E-17 NA NA 

Rsph1 RSPH1 radial spoke head 1 homolog -2.611 1.03E-02 NA NA 

Clec7a CLEC7A 

C-type lectin domain family 7 

member A -2.776 1.84E-38 -0.503 4.31E-04 

Fgf10 FGF10 fibroblast growth factor 10 -2.785 2.85E-02 NA NA 

Rab27a RAB27A RAB27A. member RAS oncogene -2.799 1.36E-06 0.072 4.95E-01 
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family 

Cd4 CD4 CD4 molecule -2.824 1.12E-14 -1.278 1.40E-06 

Ckb CKB creatine kinase B -2.906 1.61E-21 1.407 1.02E-05 

Itgb5 ITGB5 integrin subunit beta 5 -2.914 2.85E-20 0.002 9.93E-01 

Stab2 STAB2 stabilin 2 -2.97 8.38E-04 NA NA 

Gas6 GAS6 growth arrest specific 6 -3.014 7.17E-74 -0.645 1.88E-04 

Dock2 DOCK2 dedicator of cytokinesis 2 -3.063 2.16E-20 -1.4 1.16E-06 

Cd93 CD93 CD93 molecule -3.174 1.79E-50 0.019 9.79E-01 

Mrc1 MRC1 mannose receptor C-type 1 -3.179 4.95E-27 NA NA 

S100a9 S100A9 S100 calcium binding protein A9 -3.365 5.19E-03 -3.713 2.40E-05 

Sirpb1b SIRPB1 signal regulatory protein beta 1 -3.403 5.97E-22 -0.422 5.20E-04 

Cx3cl1 CX3CL1 C-X3-C motif chemokine ligand 1 -3.477 1.32E-04 NA NA 

Mertk MERTK 

MER proto-oncogene. tyrosine 

kinase -3.498 1.20E-19 -0.71 8.52E-04 

Tlr9 TLR9 toll like receptor 9 -3.755 1.24E-30 NA NA 

Pparg PPARG 

peroxisome proliferator activated 

receptor gamma -3.815 9.15E-30 0.307 8.52E-02 

Cyp2s1 CYP2S1 

cytochrome P450 family 2 

subfamily S member 1 -4.033 1.10E-06 -1.162 3.46E-05 

Activation of phagocytes 

Il1a IL1A interleukin 1 alpha 9.307 2.85E-222 6.543 1.43E-08 

Csf3 CSF3 colony stimulating factor 3 9.086 1.58E-52 1.385 3.75E-05 

Ptgs2 PTGS2 

prostaglandin-endoperoxide 

synthase 2 8.664 4.97E-113 4.006 1.95E-05 

Met MET 

MET proto-oncogene. receptor 

tyrosine kinase 7.953 3.43E-201 1.742 1.05E-05 

Ptges PTGES prostaglandin E synthase 7.764 1.94E-43 -1.006 8.68E-04 

Il1b IL1B interleukin 1 beta 7.704 7.83E-23 2.474 7.42E-07 

Il6 IL6 interleukin 6 7.634 2.72E-22 6.014 6.61E-08 

Il19 IL19 interleukin 19 7.603 4.65E-18 6.406 1.36E-08 

S100a8 S100A8 S100 calcium binding protein A8 7.377 2.15E-89 -4.124 1.18E-05 

Cxcl2 CXCL3 C-X-C motif chemokine ligand 3 6.888 1.71E-17 0.191 1.07E-01 

Saa1 SAA1 serum amyloid A1 6.811 2.75E-16 NA NA 

Inhba INHBA inhibin beta A subunit 6.679 3.02E-53 NA NA 

Il1rn IL1RN interleukin 1 receptor antagonist 6.515 3.81E-176 3.941 1.35E-06 

Nos2 NOS2 nitric oxide synthase 2 6.355 1.21E-09 NA NA 

Edn1 EDN1 endothelin 1 6.33 5.70E-26 1.159 9.09E-05 

Slc7a2 SLC7A2 solute carrier family 7 member 2 6.219 1.89E-95 NA NA 

Slpi SLPI 

secretory leukocyte peptidase 

inhibitor 5.956 5.72E-19 NA NA 

Hamp 

Hamp/Ha

mp2 hepcidin antimicrobial peptide 5.664 1.02E-08 NA NA 

Adora2b ADORA2B adenosine A2b receptor 5.632 9.01E-136 -0.391 1.40E-02 

Lcn2 LCN2 lipocalin 2 5.578 4.55E-11 -0.077 5.47E-01 

Socs1 SOCS1 suppressor of cytokine signaling 1 5.407 4.33E-46 1.15 5.85E-05 

Tnf TNF tumor necrosis factor 5.2 5.17E-77 3.336 7.92E-05 

Clec4e CLEC4E 

C-type lectin domain family 4 

member E 5.157 9.73E-08 1.178 2.24E-05 
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Saa3 Saa3 serum amyloid A 3 5.077 1.26E-06 NA NA 

Mir125a mir-10 microRNA 100 4.054 3.78E-04 -0.053 7.18E-01 

Ifi205 IFI16 

interferon gamma inducible 

protein 16 4.051 5.94E-61 0.544 5.86E-03 

Cd40 CD40 CD40 molecule 4.035 9.00E-59 1.229 1.87E-05 

Ahr AHR aryl hydrocarbon receptor 3.976 1.31E-20 0.309 3.38E-02 

Itga1 ITGA1 integrin subunit alpha 1 3.956 4.45E-12 2.582 6.55E-07 

Ccl5 CCL5 C-C motif chemokine ligand 5 3.917 1.69E-10 1.453 6.84E-04 

Src SRC 

SRC proto-oncogene. non-

receptor tyrosine kinase 3.85 2.93E-22 2.341 2.13E-07 

Hmox1 HMOX1 heme oxygenase 1 3.722 3.37E-93 -1.424 4.92E-06 

Fpr1 FPR1 formyl peptide receptor 1 3.666 1.18E-03 -1.858 1.12E-06 

Mirlet7e let-7 microRNA let-7a-1 3.642 2.10E-03 0.145 1.06E-01 

Il10 IL10 interleukin 10 3.568 1.42E-59 1.929 3.52E-05 

Cxcl5 CXCL6 C-X-C motif chemokine ligand 6 3.514 6.52E-11 0.582 4.29E-04 

Cxcl10 CXCL10 C-X-C motif chemokine ligand 10 3.487 1.09E-04 NA NA 

Fpr2 FPR2 formyl peptide receptor 2 3.427 3.96E-03 0.534 1.45E-04 

Mir146 mir-146 microRNA 146a 3.389 5.19E-03 0.05 7.80E-01 

Jak2 JAK2 Janus kinase 2 3.362 1.54E-71 -0.198 1.34E-01 

Fas FAS Fas cell surface death receptor 3.204 6.59E-05 NA NA 

Csf2 CSF2 colony stimulating factor 2 3.14 1.16E-02 3.814 9.01E-06 

Pf4 PF4 platelet factor 4 3.13 2.76E-48 NA NA 

Lta LTA lymphotoxin alpha 3.106 1.92E-03 0.245 4.64E-02 

Hc C5 complement C5 2.795 2.88E-02 -0.55 2.76E-04 

Cebpb CEBPB 

CCAAT/enhancer binding protein 

beta 2.768 3.05E-28 0.332 5.43E-03 

Tnfrsf1b TNFRSF1B 

TNF receptor superfamily 

member 1B 2.736 1.22E-38 0.875 2.12E-03 

Cd200 CD200 CD200 molecule 2.692 8.12E-28 0.186 8.65E-02 

Camp CAMP cathelicidin antimicrobial peptide 2.677 8.79E-03 -0.293 8.35E-03 

Ifnb1 IFNB1 interferon beta 1 2.673 3.87E-02 NA NA 

Notch1 NOTCH1 notch 1 2.611 1.09E-38 -0.962 1.85E-03 

Pla2g5 PLA2G5 phospholipase A2 group V 2.588 7.69E-03 NA NA 

Msr1 MSR1 

macrophage scavenger receptor 

1 2.437 3.36E-59 NA NA 

Ccl22 CCL22 C-C motif chemokine ligand 22 2.409 3.02E-04 1.048 4.38E-06 

Snca SNCA synuclein alpha 2.404 1.72E-02 1.564 7.40E-05 

Cd14 CD14 CD14 molecule 2.32 7.36E-21 -0.236 7.25E-01 

Slc11a1 SLC11A1 

solute carrier family 11 member 

1 2.316 1.79E-34 -1.139 1.24E-03 

H2-Q7 HLA-A 

major histocompatibility 

complex. class I. A 2.265 1.74E-22 0.368 2.67E-01 

Ccl2 Ccl2 chemokine (C-C motif) ligand 2 2.255 5.73E-12 NA NA 

Cd24a Cd24a CD24a antigen 2.246 3.61E-03 NA NA 

Cd1d1 CD1D CD1d molecule 2.191 1.81E-11 -3.53 7.41E-08 

Tnfrsf9 TNFRSF9 

TNF receptor superfamily 

member 9 2.189 2.86E-04 0.938 1.22E-05 

Icam1 ICAM1 intercellular adhesion molecule 1 2.138 1.48E-03 1.319 5.39E-05 

Nfil3 NFIL3 

nuclear factor. interleukin 3 

regulated 2.122 3.12E-23 -1.808 7.44E-07 
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Itga5 ITGA5 integrin subunit alpha 5 1.996 2.89E-29 0.999 7.08E-04 

Lgals9 LGALS9B galectin 9B 1.973 2.66E-27 NA NA 

Ccl4 CCL4 C-C motif chemokine ligand 4 1.919 3.46E-21 NA NA 

Stat1 STAT1 

signal transducer and activator of 

transcription 1 1.854 3.69E-12 -1.447 6.77E-03 

Il4ra IL4R interleukin 4 receptor 1.84 8.82E-40 -0.149 1.67E-01 

Tnfrsf10b 

TNFRSF10

A 

TNF receptor superfamily 

member 10a 1.768 9.57E-07 0.249 1.06E-02 

Cybb CYBB cytochrome b-245 beta chain 1.765 3.11E-07 0.19 2.85E-01 

Ccr7 CCR7 C-C motif chemokine receptor 7 1.705 2.59E-02 5.55 7.66E-08 

Thbs1 THBS1 thrombospondin 1 1.613 8.43E-23 0.292 7.83E-01 

Hck HCK 

HCK proto-oncogene. Src family 

tyrosine kinase 1.561 3.80E-19 1.842 1.87E-05 

Tlr2 TLR2 toll like receptor 2 1.556 1.25E-02 0.316 1.11E-02 

Gja1 GJA1 gap junction protein alpha 1 1.549 1.66E-13 NA NA 

Lcp2 LCP2 lymphocyte cytosolic protein 2 1.54 9.11E-15 0.454 2.64E-02 

Syk SYK spleen associated tyrosine kinase 1.491 1.74E-22 -0.2 1.06E-01 

Sbno2 SBNO2 strawberry notch homolog 2 1.489 7.00E-22 -0.199 1.76E-01 

Casp1 CASP1 caspase 1 1.403 1.42E-11 1.666 3.90E-06 

Lgals3bp LGALS3BP galectin 3 binding protein 1.389 9.84E-13 -0.378 5.48E-02 

Prkce PRKCE protein kinase C epsilon 1.378 1.14E-04 NA NA 

Trpm4 TRPM4 

transient receptor potential 

cation channel subfamily M 

member 4 1.374 6.02E-12 -0.836 3.36E-05 

Clcn7 CLCN7 chloride voltage-gated channel 7 1.372 1.34E-20 1.131 3.03E-05 

Mif MIF 

macrophage migration inhibitory 

factor (glycosylation-inhibiting 

factor) 1.367 3.53E-23 -0.241 2.29E-01 

Osm OSM oncostatin M 1.319 3.07E-09 1.894 4.00E-04 

Il1r1 IL1R1 interleukin 1 receptor type 1 1.216 4.88E-02 0.348 1.74E-03 

Treml2 TREML2 

triggering receptor expressed on 

myeloid cells like 2 1.196 3.56E-03 NA NA 

Bid BID 

BH3 interacting domain death 

agonist 1.114 4.72E-06 0.819 5.76E-05 

Rabgef1 RABGEF1 

RAB guanine nucleotide 

exchange factor 1 1.114 8.77E-14 0.098 2.78E-01 

Ptger2 PTGER2 prostaglandin E receptor 2 1.093 1.01E-04 0.668 2.48E-03 

Ulbp1 ULBP1 UL16 binding protein 1 -1.028 4.99E-04 -0.041 7.85E-01 

Lrp1 LRP1 LDL receptor related protein 1 -1.059 4.17E-05 -0.834 1.13E-04 

Cerk CERK ceramide kinase -1.159 5.82E-16 -0.401 2.35E-02 

P2rx7 P2RX7 purinergic receptor P2X 7 -1.208 8.56E-06 2.948 5.35E-05 

Lgals3 LGALS3 galectin 3 -1.215 7.76E-10 0.936 8.72E-04 

Apoe APOE apolipoprotein E -1.261 5.90E-15 NA NA 

Ptger4 PTGER4 prostaglandin E receptor 4 -1.266 2.12E-04 0.485 1.76E-01 

Rarres2 RARRES2 

retinoic acid receptor responder 

2 -1.279 1.82E-05 NA NA 

Rora RORA RAR related orphan receptor A -1.292 1.26E-05 NA NA 

Prnp PRNP prion protein -1.302 1.77E-12 -0.132 4.10E-01 

Tyrobp TYROBP 

TYRO protein tyrosine kinase 

binding protein -1.303 4.86E-31 -1.629 1.30E-05 
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Tpt1 TPT1 

tumor protein. translationally-

controlled 1 -1.354 1.28E-18 -0.68 3.60E-01 

Il18 IL18 interleukin 18 -1.358 2.47E-03 -0.424 7.07E-03 

Cd300ld CD300LD 

CD300 molecule like family 

member d -1.385 2.80E-24 NA NA 

Ltbp1 LTBP1 

latent transforming growth factor 

beta binding protein 1 -1.643 2.29E-03 NA NA 

Metrnl METRNL 

meteorin like. glial cell 

differentiation regulator -1.664 2.01E-25 -0.377 2.31E-02 

Shpk SHPK sedoheptulokinase -1.68 5.53E-05 -0.265 1.09E-01 

Tnfaip8l2 

TNFAIP8L

2 

TNF alpha induced protein 8 like 

2 -1.7 1.47E-29 0.158 2.01E-01 

Tspan32 TSPAN32 tetraspanin 32 -1.733 5.32E-07 -3.719 1.03E-07 

Tnfsf12 TNFSF12 

tumor necrosis factor superfamily 

member 12 -1.797 1.40E-23 -0.884 1.63E-04 

Cd300lb CD300LB 

CD300 molecule like family 

member b -1.815 1.13E-31 -1.19 3.00E-06 

Havcr2 HAVCR2 

hepatitis A virus cellular receptor 

2 -1.815 3.47E-06 0.649 2.55E-02 

C5ar1 C5AR1 complement C5a receptor 1 -1.943 9.62E-17 -1.549 2.09E-05 

Fn1 FN1 fibronectin 1 -1.95 1.80E-02 NA NA 

Igf1 IGF1 insulin like growth factor 1 -1.988 7.16E-35 NA NA 

Abhd12 ABHD12 

abhydrolase domain containing 

12 -1.992 1.57E-19 0.068 5.37E-01 

Trem2 TREM2 

triggering receptor expressed on 

myeloid cells 2 -2.026 7.70E-21 NA NA 

Kitl KITLG KIT ligand -2.035 6.29E-03 NA NA 

Pros1 PROS1 protein S (alpha) -2.172 4.41E-23 -0.022 8.73E-01 

Rapgef3 RAPGEF3 

Rap guanine nucleotide exchange 

factor 3 -2.194 1.30E-08 NA NA 

Il18rap IL18RAP 

interleukin 18 receptor accessory 

protein -2.394 1.37E-02 -0.218 2.28E-02 

Ptger3 PTGER3 prostaglandin E receptor 3 -2.406 2.31E-02 0.153 9.53E-02 

Rhoh RHOH ras homolog family member H -2.409 1.29E-16 0.531 1.84E-04 

Angpt2 ANGPT2 angiopoietin 2 -2.413 3.97E-07 NA NA 

Anxa1 ANXA1 annexin A1 -2.447 1.40E-51 -0.468 6.67E-02 

Maf MAF MAF bZIP transcription factor -2.499 9.61E-64 -0.647 5.29E-03 

Kit KIT 

KIT proto-oncogene receptor 

tyrosine kinase -2.538 4.13E-13 NA NA 

Cd300a CD300A CD300a molecule -2.55 1.79E-22 -1.196 7.74E-06 

Hgf HGF hepatocyte growth factor -2.566 5.64E-17 NA NA 

Tnfsf13 TNFSF13 

tumor necrosis factor superfamily 

member 13 -2.661 1.21E-08 NA NA 

Clec7a CLEC7A 

C-type lectin domain family 7 

member A -2.776 1.84E-38 -0.503 4.31E-04 

Tlr8 TLR8 toll like receptor 8 -2.796 2.88E-76 1.004 7.38E-03 

Rab27a RAB27A 

RAB27A. member RAS oncogene 

family -2.799 1.36E-06 0.072 4.95E-01 

Cd4 CD4 CD4 molecule -2.824 1.12E-14 -1.278 1.40E-06 

Hpse HPSE heparanase -2.855 1.86E-33 -0.433 2.08E-02 
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Ccr2 CCR2 C-C motif chemokine receptor 2 -2.876 1.33E-15 -0.226 2.17E-02 

Cd93 CD93 CD93 molecule -3.174 1.79E-50 0.019 9.79E-01 

S100a9 S100A9 S100 calcium binding protein A9 -3.365 5.19E-03 -3.713 2.40E-05 

Cnr2 CNR2 cannabinoid receptor 2 -3.431 4.98E-19 NA NA 

Cx3cl1 CX3CL1 C-X3-C motif chemokine ligand 1 -3.477 1.32E-04 NA NA 

Mertk MERTK 

MER proto-oncogene. tyrosine 

kinase -3.498 1.20E-19 -0.71 8.52E-04 

Cfh CFH complement factor H -3.522 1.72E-48 NA NA 

Tlr9 TLR9 toll like receptor 9 -3.755 1.24E-30 NA NA 

Cx3cr1 CX3CR1 

C-X3-C motif chemokine receptor 

1 -6.34 4.64E-47 -0.674 3.91E-04 
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Supplementary Table S2 Proteins identified by LnMS/MS in BMMs stimulated with B. burgdorferi 

or left unstimulated 

Those proteins represented by at least 2 peptides are included. Proteins differentially regulated are 

indicated (upregulated: shaded orange; downregulated: shaded green). 

     

Accession Description Unique peptides 
Log(Ratio 

Borr/Unst) 
ANOVA 

PGH2_MOUSE Prostaglandin G/H synthase 2 2 4.845 2.65E-06 

IRG1_MOUSE Cis-aconitate decarboxylase 4 4.215 4.48E-04 

CTR2_MOUSE Cationic amino acid transporter 2 3 3.036 5.78E-03 

CLC4E_MOUSE C-type lectin domain family 4 member E 3 2.907 6.38E-04 

GBP2_MOUSE Guanylate-binding protein 1 5 2.683 6.24E-04 

SQSTM_MOUSE Sequestosome-1 6 2.668 1.67E-03 

IL1B_MOUSE Interleukin-1 beta 4 2.407 4.79E-03 

DEOC_MOUSE Deoxyribose-phosphate aldolase 2 2.347 1.18E-02 

FCGR2_MOUSE 
Low affinity immunoglobulin gamma Fc region 

receptor II 
2 2.211 7.22E-03 

HMOX1_MOUSE Heme oxygenase 1 5 2.061 2.46E-03 

ICAM1_MOUSE Intercellular adhesion molecule 1 4 1.673 6.87E-03 

DDX21_MOUSE Nucleolar RNA helicase 2 3 1.509 5.48E-03 

PRDX5_MOUSE Peroxiredoxin-5, mitochondrial 9 1.437 9.02E-03 

VPS4B_MOUSE Vacuolar protein sorting-associated protein 4B 2 1.261 1.54E-02 

CD14_MOUSE Monocyte differentiation antigen CD14 7 1.246 6.25E-03 

ACSL1_MOUSE Long-chain-fatty-acid--CoA ligase 1 12 1.210 2.80E-03 

4F2_MOUSE 4F2 cell-surface antigen heavy chain 6 1.135 6.33E-03 

MYO1F_MOUSE Unconventional myosin-If 5 -1.080 3.01E-02 

CD36_MOUSE Platelet glycoprotein 4 4 -1.110 6.80E-03 

NPC1_MOUSE Niemann-Pick C1 protein 3 -1.126 4.35E-02 

AGAL_MOUSE Alpha-galactosidase A 2 -1.133 4.46E-02 

LKHA4_MOUSE Leukotriene A-4 hydrolase 6 -1.138 9.15E-03 

AP3B1_MOUSE AP-3 complex subunit beta-1 2 -1.147 4.69E-03 

STOM_MOUSE Erythrocyte band 7 integral membrane protein 4 -1.150 1.17E-02 

LRP1_MOUSE 
Prolow-density lipoprotein receptor-related 

protein 1 
15 -1.166 3.84E-02 

CSF1R_MOUSE Macrophage colony-stimulating factor 1 receptor 3 -1.199 3.12E-02 

SCMC1_MOUSE 
Calcium-binding mitochondrial carrier protein 

SCaMC-1 
2 -1.218 9.82E-03 

ACL6A_MOUSE Actin-like protein 6A 2 -1.268 3.67E-02 

LGMN_MOUSE Legumain 3 -1.303 2.37E-02 
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PP2BA_MOUSE 
Serine/threonine-protein phosphatase 2B 

catalytic subunit alpha isoform 
2 -1.349 2.60E-03 

CD180_MOUSE CD180 antigen 2 -1.349 1.65E-02 

PLST_MOUSE Plastin-3 4 -1.418 4.58E-02 

WASP_MOUSE Wiskott-Aldrich syndrome protein homolog 4 -1.665 4.06E-02 

NIBAN_MOUSE Protein Niban 2 -1.951 3.86E-02 

LIPL_MOUSE Lipoprotein lipase 2 -2.430 1.55E-02 

PEBP1_MOUSE Phosphatidylethanolamine-binding protein 1  2 2.607 1.05E-01 

TXNL1_MOUSE Thioredoxin-like protein 1  2 2.355 1.05E-01 

TMA16_MOUSE Translation machinery-associated protein 16  2 2.103 6.10E-02 

MYO1C_MOUSE Unconventional myosin-Ic  2 2.087 2.75E-01 

RS17_MOUSE 40S ribosomal protein S17  2 1.834 1.95E-01 

PROSC_MOUSE 
Proline synthase co-transcribed bacterial 

homolog protein  
2 1.417 3.03E-01 

SUCB1_MOUSE 
Succinyl-CoA ligase [ADP-forming] subunit 

beta, mitochondrial  
3 1.328 5.97E-02 

ASSY_MOUSE Argininosuccinate synthase  2 1.108 8.46E-02 

IFM3_MOUSE Interferon-induced transmembrane protein 3  2 1.083 1.17E-01 

TBA4A_MOUSE Tubulin alpha-4A chain  12 1.059 1.46E-01 

SODM_MOUSE Superoxide dismutase [Mn], mitochondrial  2 1.042 9.68E-02 

RL21_MOUSE 
60S ribosomal protein L21 OS=Mus musculus 

GN=Rpl21 PE=1 SV=3 
2 1.041 2.19E-01 

HNRL2_MOUSE 
Heterogeneous nuclear ribonucleoprotein U-like 

protein 2  
2 1.031 1.59E-01 

SMRC2_MOUSE SWI/SNF complex subunit SMARCC2  2 1.018 8.13E-02 

PTN1_MOUSE 
Tyrosine-protein phosphatase non-receptor type 

1  
4 1.003 1.03E-01 

FLII_MOUSE Protein flightless-1 homolog  4 0.988 5.40E-01 

XPP1_MOUSE Xaa-Pro aminopeptidase 1  2 0.960 2.16E-01 

LRC25_MOUSE Leucine-rich repeat-containing protein 25  4 0.944 7.71E-02 

VATD_MOUSE V-type proton ATPase subunit D  3 0.941 3.90E-01 

ACSL4_MOUSE Long-chain-fatty-acid--CoA ligase 4 4 0.879 2.03E-02 

TLR2_MOUSE Toll-like receptor 2  3 0.862 8.20E-02 

AGRE1_MOUSE Adhesion G protein-coupled receptor E1 3 0.851 1.73E-01 

EFHD2_MOUSE EF-hand domain-containing protein D2  6 0.839 2.04E-01 

ODP2_MOUSE 

Dihydrolipoyllysine-residue acetyltransferase 

component of pyruvate dehydrogenase complex, 

mitochondrial 

2 0.830 1.82E-01 

CY24B_MOUSE Cytochrome b-245 heavy chain  2 0.816 1.07E-01 

E2AK2_MOUSE 
Interferon-induced, double-stranded RNA-

activated protein kinase  
3 0.811 1.68E-01 

MANF_MOUSE 
Mesencephalic astrocyte-derived neurotrophic 

factor  
2 0.807 1.31E-01 

SH3K1_MOUSE SH3 domain-containing kinase-binding protein 1  2 0.775 3.29E-01 

EHD1_MOUSE EH domain-containing protein 1 6 0.771 4.01E-02 
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AMPD3_MOUSE AMP deaminase 3 3 0.765 1.08E-01 

TWF1_MOUSE Twinfilin-1  2 0.754 1.48E-01 

XDH_MOUSE Xanthine dehydrogenase/oxidase  2 0.753 3.46E-01 

PLEK_MOUSE Pleckstrin  2 0.726 2.02E-01 

PSD11_MOUSE 
26S proteasome non-ATPase regulatory subunit 

11  
5 0.725 9.64E-02 

IDE_MOUSE Insulin-degrading enzyme  2 0.712 2.79E-01 

PNPH_MOUSE Purine nucleoside phosphorylase  8 0.668 7.26E-02 

NCF1_MOUSE Neutrophil cytosol factor 1  2 0.667 2.27E-01 

AT1B3_MOUSE 
Sodium/potassium-transporting ATPase subunit 

beta-3  
2 0.661 2.34E-01 

FYB_MOUSE FYN-binding protein 3 0.659 3.06E-02 

IF5A1_MOUSE Eukaryotic translation initiation factor 5A-1  2 0.653 1.37E-01 

NAMPT_MOUSE Nicotinamide phosphoribosyltransferase  6 0.647 1.30E-01 

TRXR1_MOUSE Thioredoxin reductase 1, cytoplasmic  5 0.631 5.88E-02 

IFIT3_MOUSE 
Interferon-induced protein with tetratricopeptide 

repeats 3  
4 0.629 2.99E-01 

EIF3D_MOUSE 
Eukaryotic translation initiation factor 3 subunit 

D  
3 0.627 1.16E-01 

DCTN2_MOUSE Dynactin subunit 2  2 0.611 1.01E-01 

IFIT1_MOUSE 
Interferon-induced protein with tetratricopeptide 

repeats 1  
3 0.601 9.74E-02 

PSB3_MOUSE Proteasome subunit beta type-3 2 0.598 7.31E-03 

NP1L4_MOUSE Nucleosome assembly protein 1-like 4  3 0.579 5.27E-01 

OSTF1_MOUSE Osteoclast-stimulating factor 1  3 0.573 3.10E-01 

PROF1_MOUSE Profilin-1  4 0.569 2.63E-01 

TOIP1_MOUSE Torsin-1A-interacting protein 1  2 0.569 7.91E-02 

MP2K1_MOUSE 
Dual specificity mitogen-activated protein kinase 

kinase 1  
2 0.565 3.06E-01 

CHM4B_MOUSE Charged multivesicular body protein 4b 3 0.561 1.19E-01 

MIF_MOUSE Macrophage migration inhibitory factor  2 0.516 8.67E-01 

PURA2_MOUSE Adenylosuccinate synthetase isozyme 2 3 0.500 1.96E-01 

HCLS1_MOUSE Hematopoietic lineage cell-specific protein  8 0.500 1.43E-01 

VASP_MOUSE Vasodilator-stimulated phosphoprotein  3 0.498 2.88E-01 

BLVRB_MOUSE Flavin reductase (NADPH)  5 0.496 4.31E-01 

RS28_MOUSE 40S ribosomal protein S28  2 0.494 3.04E-01 

DSCR3_MOUSE 
Down syndrome critical region protein 3 

homolog  
2 0.492 2.86E-01 

LA_MOUSE Lupus La protein homolog  4 0.490 4.18E-01 

RL12_MOUSE 60S ribosomal protein L12  3 0.486 4.01E-01 

TPSN_MOUSE Tapasin  3 0.484 2.60E-01 

XPO2_MOUSE Exportin-2  4 0.481 3.01E-01 

PRS6A_MOUSE 26S protease regulatory subunit 6A  4 0.460 3.76E-01 

LEG3_MOUSE Galectin-3  4 0.454 5.17E-01 
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FPPS_MOUSE Farnesyl pyrophosphate synthase  3 0.452 1.48E-01 

PGM1_MOUSE Phosphoglucomutase-1  3 0.430 2.56E-01 

LEG9_MOUSE Galectin-9  2 0.423 4.22E-01 

RL13_MOUSE 60S ribosomal protein L13  5 0.407 4.84E-01 

ASNS_MOUSE Asparagine synthetase [glutamine-hydrolyzing] 2 0.398 5.52E-01 

RS29_MOUSE 40S ribosomal protein S29  2 0.395 5.96E-01 

TPM4_MOUSE Tropomyosin alpha-4 chain  9 0.375 6.88E-02 

TCTP_MOUSE Translationally-controlled tumor protein  2 0.369 7.86E-01 

MOES_MOUSE Moesin  19 0.360 2.20E-01 

AB1IP_MOUSE 
Amyloid beta A4 precursor protein-binding 

family B member 1-interacting protein  
2 0.353 1.73E-01 

PTGR1_MOUSE Prostaglandin reductase 1  4 0.344 5.43E-01 

DNPEP_MOUSE Aspartyl aminopeptidase 3 0.336 1.81E-01 

BROX_MOUSE BRO1 domain-containing protein BROX  2 0.332 2.64E-01 

6PGL_MOUSE 6-phosphogluconolactonase  2 0.326 4.25E-01 

COPB_MOUSE Coatomer subunit beta  5 0.321 4.32E-01 

BLMH_MOUSE Bleomycin hydrolase  3 0.320 8.07E-01 

DCTN1_MOUSE Dynactin subunit 1  4 0.310 4.72E-01 

CD44_MOUSE CD44 antigen  4 0.297 1.44E-01 

SYIC_MOUSE Isoleucine--tRNA ligase, cytoplasmic  4 0.292 3.84E-01 

PABP1_MOUSE Polyadenylate-binding protein 1  14 0.287 6.69E-02 

RS2_MOUSE 40S ribosomal protein S2  6 0.283 7.12E-01 

PRDX6_MOUSE Peroxiredoxin-6  6 0.281 4.71E-01 

IF4A1_MOUSE Eukaryotic initiation factor 4A-I  10 0.280 2.85E-01 

GNA13_MOUSE 
Guanine nucleotide-binding protein subunit 

alpha-13  
3 0.280 3.38E-01 

SH3L3_MOUSE 
SH3 domain-binding glutamic acid-rich-like 

protein 3  
2 0.275 6.63E-01 

TPIS_MOUSE Triosephosphate isomerase  5 0.266 3.47E-01 

COR1B_MOUSE Coronin-1B  6 0.265 5.54E-01 

NONO_MOUSE 
Non-POU domain-containing octamer-binding 

protein  
4 0.262 2.25E-01 

RS20_MOUSE 40S ribosomal protein S20  3 0.259 3.13E-01 

COPB2_MOUSE Coatomer subunit beta'  6 0.259 4.34E-01 

TCPZ_MOUSE T-complex protein 1 subunit zeta  10 0.252 2.30E-01 

EZRI_MOUSE Ezrin  9 0.249 2.40E-01 

MVP_MOUSE Major vault protein  13 0.247 2.05E-01 

IF4G1_MOUSE 
Eukaryotic translation initiation factor 4 gamma 

1  
4 0.240 4.64E-01 

PARP1_MOUSE Poly [ADP-ribose] polymerase 1  2 0.236 7.64E-01 

KSYK_MOUSE Tyrosine-protein kinase SYK  3 0.235 2.61E-01 

RAB32_MOUSE Ras-related protein Rab-32  3 0.235 3.29E-01 

CX6B1_MOUSE Cytochrome c oxidase subunit 6B1 2 0.228 4.85E-01 
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EIF3G_MOUSE 

Eukaryotic translation initiation factor 3 subunit 

G  
2 0.226 7.08E-01 

RS13_MOUSE 40S ribosomal protein S13  2 0.225 5.55E-01 

ITAM_MOUSE Integrin alpha-M  11 0.225 4.27E-01 

HCK_MOUSE Tyrosine-protein kinase HCK  6 0.225 2.42E-01 

RL4_MOUSE 60S ribosomal protein L4  9 0.223 5.19E-01 

RS19_MOUSE 40S ribosomal protein S19  5 0.222 4.97E-01 

RLA2_MOUSE 60S acidic ribosomal protein P2  3 0.221 7.54E-01 

IF4E_MOUSE Eukaryotic translation initiation factor 4E  2 0.221 4.36E-01 

GSH0_MOUSE Glutamate--cysteine ligase regulatory subunit  2 0.219 4.41E-01 

PSMD2_MOUSE 
26S proteasome non-ATPase regulatory subunit 

2  
9 0.216 5.72E-01 

KPCD_MOUSE Protein kinase C delta type  7 0.215 3.19E-01 

IDHP_MOUSE Isocitrate dehydrogenase [NADP], mitochondrial  5 0.209 5.16E-01 

SNP23_MOUSE Synaptosomal-associated protein 23  2 0.209 6.68E-01 

RS4X_MOUSE 40S ribosomal protein S4, X isoform  6 0.202 2.22E-01 

CAND1_MOUSE Cullin-associated NEDD8-dissociated protein 1 6 0.197 4.48E-01 

HMOX2_MOUSE Heme oxygenase 2  2 0.197 5.33E-01 

RS11_MOUSE 40S ribosomal protein S11  8 0.196 7.16E-01 

PGK1_MOUSE Phosphoglycerate kinase 1  16 0.193 5.69E-01 

EIF3F_MOUSE 
Eukaryotic translation initiation factor 3 subunit 

F  
2 0.186 6.16E-01 

EIF3C_MOUSE 
Eukaryotic translation initiation factor 3 subunit 

C  
4 0.178 1.32E-01 

TBB6_MOUSE Tubulin beta-6 chain  8 0.175 4.73E-01 

ANXA6_MOUSE Annexin A6  15 0.174 6.89E-01 

CAPR1_MOUSE Caprin-1  4 0.168 8.52E-01 

RL28_MOUSE 60S ribosomal protein L28  2 0.166 8.18E-01 

PSMD4_MOUSE 
26S proteasome non-ATPase regulatory subunit 

4  
3 0.165 1.32E-01 

LBR_MOUSE Lamin-B receptor  2 0.164 2.37E-01 

ESTD_MOUSE S-formylglutathione hydrolase  6 0.161 7.02E-01 

GPDM_MOUSE 
Glycerol-3-phosphate dehydrogenase, 

mitochondrial  
3 0.159 5.04E-01 

LEG1_MOUSE Galectin-1  4 0.157 8.38E-01 

PIPNA_MOUSE 
Phosphatidylinositol transfer protein alpha 

isoform  
4 0.155 7.26E-01 

ODO2_MOUSE 

Dihydrolipoyllysine-residue succinyltransferase 

component of 2-oxoglutarate dehydrogenase 

complex, mitochondrial  

2 0.151 5.27E-01 

AP2M1_MOUSE AP-2 complex subunit mu  4 0.151 5.43E-01 

VATH_MOUSE V-type proton ATPase subunit H  5 0.148 5.97E-01 

LAMP1_MOUSE Lysosome-associated membrane glycoprotein 1  4 0.146 7.10E-01 

RL7A_MOUSE 60S ribosomal protein L7a  8 0.139 9.74E-01 
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RS16_MOUSE 40S ribosomal protein S16  5 0.138 5.95E-01 

PP1A_MOUSE 
Serine/threonine-protein phosphatase PP1-alpha 

catalytic subunit  
4 0.137 9.48E-01 

RL8_MOUSE 60S ribosomal protein L8  3 0.127 7.39E-01 

AN32B_MOUSE 
Acidic leucine-rich nuclear phosphoprotein 32 

family member B  
2 0.125 6.60E-01 

LASP1_MOUSE LIM and SH3 domain protein 1  4 0.121 6.96E-01 

PSB2_MOUSE Proteasome subunit beta type-2  2 0.117 5.67E-01 

PRS8_MOUSE 26S protease regulatory subunit 8  3 0.105 7.83E-01 

BCAP_MOUSE Phosphoinositide 3-kinase adapter protein 1  3 0.101 5.58E-01 

RS3A_MOUSE 40S ribosomal protein S3a  8 0.101 8.46E-01 

DDX3X_MOUSE ATP-dependent RNA helicase DDX3X  5 0.101 6.12E-01 

SYDC_MOUSE Aspartate--tRNA ligase, cytoplasmic  5 0.100 5.35E-01 

SC11A_MOUSE 
Signal peptidase complex catalytic subunit 

SEC11A  
3 0.098 6.66E-01 

LPPRC_MOUSE 
Leucine-rich PPR motif-containing protein, 

mitochondrial  
4 0.096 5.92E-01 

ETFB_MOUSE Electron transfer flavoprotein subunit beta  3 0.096 9.30E-01 

FLNB_MOUSE Filamin-B  8 0.090 6.19E-01 

PEPD_MOUSE Xaa-Pro dipeptidase  3 0.090 9.77E-01 

G6PD1_MOUSE Glucose-6-phosphate 1-dehydrogenase X 14 0.087 8.46E-01 

ERLN2_MOUSE Erlin-2  3 0.086 6.08E-01 

HNRH1_MOUSE Heterogeneous nuclear ribonucleoprotein H  4 0.084 9.64E-01 

LRC59_MOUSE Leucine-rich repeat-containing protein 59  5 0.082 7.42E-01 

SQRD_MOUSE Sulfide:quinone oxidoreductase, mitochondrial  2 0.080 7.14E-01 

RHG17_MOUSE Rho GTPase-activating protein 17  4 0.080 6.88E-01 

TPD52_MOUSE Tumor protein D52  3 0.080 8.95E-01 

ROA1_MOUSE Heterogeneous nuclear ribonucleoprotein A1  3 0.078 7.46E-01 

RL23A_MOUSE 60S ribosomal protein L23a  6 0.077 9.91E-01 

MARCS_MOUSE Myristoylated alanine-rich C-kinase substrate  4 0.077 9.94E-01 

RL5_MOUSE 60S ribosomal protein L5  6 0.075 8.27E-01 

CPNS1_MOUSE Calpain small subunit 1  2 0.070 8.65E-01 

MACF1_MOUSE Microtubule-actin cross-linking factor 1  3 0.070 7.46E-01 

HSP7C_MOUSE Heat shock cognate 71 kDa protein 21 0.065 7.28E-01 

PSME2_MOUSE Proteasome activator complex subunit 2  5 0.064 8.78E-01 

DDX17_MOUSE Probable ATP-dependent RNA helicase DDX17  8 0.063 3.65E-01 

GLYG_MOUSE Glycogenin-1  2 0.060 7.73E-01 

LYN_MOUSE Tyrosine-protein kinase Lyn  6 0.060 7.81E-01 

SAR1B_MOUSE GTP-binding protein SAR1b  2 0.050 9.01E-01 

CASP1_MOUSE Caspase-1  5 0.045 8.07E-01 

PPCE_MOUSE Prolyl endopeptidase  7 0.045 8.17E-01 

SC31A_MOUSE Protein transport protein Sec31A  5 0.043 9.20E-01 
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RAB6A_MOUSE Ras-related protein Rab-6A  3 0.042 9.81E-01 

IF4G2_MOUSE 
Eukaryotic translation initiation factor 4 gamma 

2  
2 0.040 9.96E-01 

U520_MOUSE 
U5 small nuclear ribonucleoprotein 200 kDa 

helicase  
2 0.040 7.06E-01 

ITB1_MOUSE Integrin beta-1  8 0.038 8.67E-01 

RS3_MOUSE 40S ribosomal protein S3  9 0.037 8.36E-01 

COPZ1_MOUSE Coatomer subunit zeta-1  2 0.036 8.43E-01 

NPM_MOUSE Nucleophosmin  2 0.035 8.87E-01 

PSMD6_MOUSE 
26S proteasome non-ATPase regulatory subunit 

6 
3 0.029 9.21E-01 

RL22_MOUSE 60S ribosomal protein L22  2 0.026 9.88E-01 

RS15A_MOUSE 40S ribosomal protein S15a  2 0.025 8.13E-01 

ABR_MOUSE Active breakpoint cluster region-related protein 3 0.025 9.34E-01 

PSB1_MOUSE Proteasome subunit beta type-1  4 0.024 7.92E-01 

RL27A_MOUSE 60S ribosomal protein L27a  3 0.023 9.77E-01 

RN213_MOUSE E3 ubiquitin-protein ligase RNF213  5 0.021 9.52E-01 

SMD3_MOUSE Small nuclear ribonucleoprotein Sm D3  2 0.019 8.99E-01 

TAGL2_MOUSE Transgelin-2  9 0.017 9.70E-01 

DDX58_MOUSE Probable ATP-dependent RNA helicase DDX58  3 0.014 8.33E-01 

PSA5_MOUSE Proteasome subunit alpha type-5  3 0.013 9.87E-01 

RTN4_MOUSE Reticulon-4  4 0.009 8.91E-01 

HNRPQ_MOUSE Heterogeneous nuclear ribonucleoprotein Q 7 0.009 9.77E-01 

HNRPC_MOUSE Heterogeneous nuclear ribonucleoproteins C1/C2  6 0.008 8.94E-01 

ANXA7_MOUSE Annexin A7  4 0.008 9.67E-01 

KCD12_MOUSE BTB/POZ domain-containing protein KCTD12  6 0.007 9.47E-01 

PP2AA_MOUSE 
Serine/threonine-protein phosphatase 2A 

catalytic subunit alpha isoform  
2 0.005 7.41E-01 

YBOX1_MOUSE Nuclease-sensitive element-binding protein 1  3 0.003 8.58E-01 

VATE1_MOUSE V-type proton ATPase subunit E 1  7 0.002 9.33E-01 

MAP4_MOUSE Microtubule-associated protein 4  4 -0.007 9.48E-01 

RS26_MOUSE 40S ribosomal protein S26  2 -0.011 9.14E-01 

NDKB_MOUSE Nucleoside diphosphate kinase B  5 -0.011 8.24E-01 

RS12_MOUSE 40S ribosomal protein S12  4 -0.011 9.74E-01 

NICA_MOUSE Nicastrin  2 -0.017 9.72E-01 

EF2_MOUSE Elongation factor 2  19 -0.017 9.71E-01 

TBB4B_MOUSE Tubulin beta-4B chain  11 -0.019 9.98E-01 

RS10_MOUSE 40S ribosomal protein S10  2 -0.020 9.22E-01 

NDKA_MOUSE Nucleoside diphosphate kinase A  5 -0.020 8.98E-01 

RL31_MOUSE 60S ribosomal protein L31  3 -0.022 7.84E-01 

HSP74_MOUSE Heat shock 70 kDa protein 4  13 -0.024 8.98E-01 

SYG_MOUSE Glycine--tRNA ligase  3 -0.026 9.79E-01 
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BAX_MOUSE Apoptosis regulator BAX  3 -0.027 8.34E-01 

GDIR2_MOUSE Rho GDP-dissociation inhibitor 2  3 -0.028 9.94E-01 

PGAM1_MOUSE Phosphoglycerate mutase 1  6 -0.030 8.38E-01 

OAS1A_MOUSE 2'-5'-oligoadenylate synthase 1A  3 -0.031 7.97E-01 

RL26_MOUSE 60S ribosomal protein L26  3 -0.032 7.81E-01 

HXK2_MOUSE Hexokinase-2  8 -0.040 7.15E-01 

C1TM_MOUSE 
Monofunctional C1-tetrahydrofolate synthase, 

mitochondrial  
3 -0.042 9.64E-01 

EIF3B_MOUSE 
Eukaryotic translation initiation factor 3 subunit 

B  
4 -0.048 8.20E-01 

TM9S4_MOUSE Transmembrane 9 superfamily member 4  2 -0.049 9.13E-01 

EIF3L_MOUSE 
Eukaryotic translation initiation factor 3 subunit 

L  
5 -0.050 9.15E-01 

TENS3_MOUSE Tensin-3  2 -0.053 9.10E-01 

ERF3A_MOUSE 
Eukaryotic peptide chain release factor GTP-

binding subunit ERF3A  
2 -0.055 7.31E-01 

PUR2_MOUSE 
Trifunctional purine biosynthetic protein 

adenosine-3  
2 -0.057 7.85E-01 

RL24_MOUSE 60S ribosomal protein L24  4 -0.057 7.80E-01 

PRDX1_MOUSE Peroxiredoxin-1  11 -0.058 6.98E-01 

TBB5_MOUSE Tubulin beta-5 chain  10 -0.060 8.68E-01 

VAV_MOUSE Proto-oncogene vav  3 -0.060 7.60E-01 

SGPL1_MOUSE Sphingosine-1-phosphate lyase 1  6 -0.064 9.34E-01 

RRBP1_MOUSE Ribosome-binding protein 1  11 -0.064 7.75E-01 

MYH9_MOUSE Myosin-9  56 -0.064 9.23E-01 

ARPC2_MOUSE Actin-related protein 2/3 complex subunit 2  8 -0.065 6.73E-01 

UGPA_MOUSE UTP--glucose-1-phosphate uridylyltransferase  2 -0.065 7.14E-01 

NCF4_MOUSE Neutrophil cytosol factor 4  6 -0.065 8.68E-01 

COPD_MOUSE Coatomer subunit delta 7 -0.065 8.28E-01 

EF1G_MOUSE Elongation factor 1-gamma  7 -0.067 7.49E-01 

H2B1B_MOUSE Histone H2B type 1-B  6 -0.068 8.67E-01 

RS18_MOUSE 40S ribosomal protein S18  6 -0.070 7.10E-01 

SCOT1_MOUSE 
Succinyl-CoA:3-ketoacid coenzyme A 

transferase 1, mitochondrial  
4 -0.071 5.77E-01 

2ABA_MOUSE 
Serine/threonine-protein phosphatase 2A 55 kDa 

regulatory subunit B alpha isoform  
2 -0.072 8.97E-01 

LRRF1_MOUSE 
Leucine-rich repeat flightless-interacting protein 

1  
2 -0.073 6.46E-01 

PSME1_MOUSE Proteasome activator complex subunit 1  7 -0.075 7.22E-01 

SF3B3_MOUSE Splicing factor 3B subunit 3  3 -0.076 7.97E-01 

RAGP1_MOUSE Ran GTPase-activating protein 1 2 -0.076 9.33E-01 

RS27A_MOUSE Ubiquitin-40S ribosomal protein S27a  3 -0.080 8.23E-01 

PICAL_MOUSE 
Phosphatidylinositol-binding clathrin assembly 

protein  
3 -0.080 7.11E-01 
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TCPB_MOUSE T-complex protein 1 subunit beta  6 -0.081 7.31E-01 

HPCL1_MOUSE Hippocalcin-like protein 1  5 -0.085 8.05E-01 

RS8_MOUSE 40S ribosomal protein S8  6 -0.087 6.93E-01 

RAP1B_MOUSE Ras-related protein Rap-1b  5 -0.088 6.86E-01 

CAB39_MOUSE Calcium-binding protein 39 3 -0.089 6.75E-01 

TCPQ_MOUSE T-complex protein 1 subunit theta  14 -0.089 6.07E-01 

SND1_MOUSE 
Staphylococcal nuclease domain-containing 

protein 1  
7 -0.096 5.52E-01 

HNRPF_MOUSE Heterogeneous nuclear ribonucleoprotein F  4 -0.096 7.29E-01 

ADT2_MOUSE ADP/ATP translocase 2  9 -0.096 7.83E-01 

RL32_MOUSE 60S ribosomal protein L32  3 -0.101 7.49E-01 

PSA4_MOUSE Proteasome subunit alpha type-4  2 -0.103 9.94E-01 

GSHR_MOUSE Glutathione reductase, mitochondrial 3 -0.103 4.24E-01 

DIAP1_MOUSE Protein diaphanous homolog 1  4 -0.103 5.02E-01 

SKAP2_MOUSE Src kinase-associated phosphoprotein 2  3 -0.104 7.59E-01 

RACK1_MOUSE Receptor of activated protein C kinase 1 8 -0.104 3.92E-01 

PSMD1_MOUSE 
26S proteasome non-ATPase regulatory subunit 

1  
7 -0.105 5.77E-01 

PRS10_MOUSE 26S protease regulatory subunit 10B  5 -0.106 8.79E-01 

FLNA_MOUSE Filamin-A  50 -0.108 6.45E-01 

ARPC3_MOUSE Actin-related protein 2/3 complex subunit 3  4 -0.109 7.33E-01 

ADRM1_MOUSE Proteasomal ubiquitin receptor ADRM1 2 -0.109 5.51E-01 

EI3JA_MOUSE 
Eukaryotic translation initiation factor 3 subunit 

J-A  
2 -0.110 7.41E-01 

PAIRB_MOUSE 
Plasminogen activator inhibitor 1 RNA-binding 

protein  
2 -0.111 2.72E-01 

RLA0_MOUSE 60S acidic ribosomal protein P0  6 -0.112 5.90E-01 

RL7_MOUSE 60S ribosomal protein L7  8 -0.113 3.54E-01 

ANM1_MOUSE Protein arginine N-methyltransferase 1  3 -0.113 9.01E-01 

DNJC7_MOUSE DnaJ homolog subfamily C member 7 2 -0.115 7.28E-01 

RAB18_MOUSE Ras-related protein Rab-18  4 -0.116 7.22E-01 

CALX_MOUSE Calnexin  9 -0.118 5.63E-01 

EF1B_MOUSE Elongation factor 1-beta  4 -0.119 6.34E-01 

VINC_MOUSE Vinculin  5 -0.120 7.58E-01 

H4_MOUSE Histone H4  6 -0.121 7.46E-01 

LDHA_MOUSE L-lactate dehydrogenase A chain  9 -0.122 6.59E-01 

IF2A_MOUSE 
Eukaryotic translation initiation factor 2 subunit 

1  
6 -0.123 1.47E-01 

ARF1_MOUSE ADP-ribosylation factor 1 5 -0.123 6.48E-01 

PSB6_MOUSE Proteasome subunit beta type-6  2 -0.123 4.91E-01 

SEP11_MOUSE Septin-11 3 -0.125 9.68E-01 

IF2B_MOUSE 
Eukaryotic translation initiation factor 2 subunit 

2  
6 -0.125 8.32E-01 
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NACA_MOUSE 
Nascent polypeptide-associated complex subunit 

alpha  
2 -0.126 7.48E-01 

PPIA_MOUSE Peptidyl-prolyl cis-trans isomerase A  7 -0.129 5.89E-01 

ACTN4_MOUSE Alpha-actinin-4 14 -0.131 6.27E-01 

UBE2K_MOUSE Ubiquitin-conjugating enzyme E2 K  2 -0.132 8.50E-01 

LIS1_MOUSE 
Platelet-activating factor acetylhydrolase IB 

subunit alpha  
2 -0.134 5.84E-01 

TMED5_MOUSE 
Transmembrane emp24 domain-containing 

protein 5  
2 -0.134 7.15E-01 

ATPB_MOUSE ATP synthase subunit beta, mitochondrial  12 -0.134 5.31E-01 

ACADL_MOUSE 
Long-chain specific acyl-CoA dehydrogenase, 

mitochondrial  
4 -0.135 3.03E-01 

FCERG_MOUSE 
High affinity immunoglobulin epsilon receptor 

subunit gamma  
3 -0.135 8.39E-01 

PSA3_MOUSE Proteasome subunit alpha type-3  3 -0.136 5.87E-01 

PSA7_MOUSE Proteasome subunit alpha type-7 O 4 -0.141 6.26E-01 

GRP78_MOUSE 78 kDa glucose-regulated protein  17 -0.141 6.55E-01 

SPTB2_MOUSE Spectrin beta chain, non-erythrocytic 1  4 -0.142 8.02E-01 

NIBL1_MOUSE Niban-like protein 1 7 -0.142 5.65E-01 

RAB8B_MOUSE Ras-related protein Rab-8B  7 -0.146 6.15E-01 

RS25_MOUSE 40S ribosomal protein S25  3 -0.148 6.01E-01 

SERC_MOUSE Phosphoserine aminotransferase  4 -0.148 2.17E-01 

ERO1A_MOUSE ERO1-like protein alpha  3 -0.149 8.29E-01 

EF1D_MOUSE Elongation factor 1-delta  3 -0.149 4.68E-01 

AK1A1_MOUSE Alcohol dehydrogenase [NADP(+)] 7 -0.152 5.09E-01 

PSA6_MOUSE Proteasome subunit alpha type-6  3 -0.154 5.49E-01 

RL3_MOUSE 60S ribosomal protein L3  4 -0.156 5.61E-01 

G3BP1_MOUSE Ras GTPase-activating protein-binding protein 1  2 -0.158 4.00E-01 

RL30_MOUSE 60S ribosomal protein L30  3 -0.158 4.05E-01 

RL10_MOUSE 60S ribosomal protein L10  2 -0.160 9.72E-01 

AT2A2_MOUSE 
Sarcoplasmic/endoplasmic reticulum calcium 

ATPase 2 
10 -0.160 5.13E-01 

RL6_MOUSE 60S ribosomal protein L6  7 -0.160 5.85E-01 

RSU1_MOUSE Ras suppressor protein 1  3 -0.162 4.68E-01 

ILK_MOUSE Integrin-linked protein kinase  3 -0.163 4.10E-01 

ADHX_MOUSE Alcohol dehydrogenase class-3 2 -0.166 4.40E-01 

TECR_MOUSE Very-long-chain enoyl-CoA reductase  2 -0.167 9.52E-01 

SP16H_MOUSE FACT complex subunit SPT16 2 -0.167 6.01E-01 

NCF2_MOUSE Neutrophil cytosol factor 2  3 -0.167 6.41E-01 

IMB1_MOUSE Importin subunit beta-1  6 -0.169 9.97E-01 

RL34_MOUSE 60S ribosomal protein L34  2 -0.169 5.25E-01 

CAZA2_MOUSE F-actin-capping protein subunit alpha-2  3 -0.174 4.78E-01 

FAK2_MOUSE Protein-tyrosine kinase 2-beta  4 -0.178 3.68E-01 
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IPO5_MOUSE Importin-5  7 -0.178 5.00E-01 

TADBP_MOUSE TAR DNA-binding protein 43  3 -0.178 3.63E-01 

UGGG1_MOUSE UDP-glucose:glycoprotein glucosyltransferase 1  7 -0.178 4.59E-01 

HNRPK_MOUSE Heterogeneous nuclear ribonucleoprotein K  12 -0.179 5.76E-01 

DDX5_MOUSE Probable ATP-dependent RNA helicase DDX5  11 -0.179 2.32E-01 

RS6_MOUSE 40S ribosomal protein S6  3 -0.181 3.83E-01 

ALDOA_MOUSE Fructose-bisphosphate aldolase A 10 -0.182 5.18E-01 

K1C10_MOUSE Keratin, type I cytoskeletal 10  4 -0.185 5.24E-01 

IMA4_MOUSE Importin subunit alpha-4  2 -0.185 3.37E-01 

SARNP_MOUSE SAP domain-containing ribonucleoprotein  3 -0.185 6.79E-01 

GMFB_MOUSE Glia maturation factor beta  2 -0.186 6.50E-01 

1433Z_MOUSE 14-3-3 protein zeta/delta  9 -0.186 6.23E-01 

G3P_MOUSE Glyceraldehyde-3-phosphate dehydrogenase  8 -0.186 4.16E-01 

FRIL1_MOUSE Ferritin light chain 1  2 -0.189 2.24E-01 

FUMH_MOUSE Fumarate hydratase, mitochondrial  3 -0.190 5.51E-01 

SAC1_MOUSE Phosphatidylinositide phosphatase SAC1  3 -0.190 5.07E-01 

CATA_MOUSE Catalase  11 -0.190 7.26E-01 

RS27L_MOUSE 40S ribosomal protein S27-like  2 -0.191 5.14E-01 

COTL1_MOUSE Coactosin-like protein 3 -0.191 7.68E-01 

ENOA_MOUSE Alpha-enolase  14 -0.192 3.96E-01 

SYAC_MOUSE Alanine--tRNA ligase, cytoplasmic 2 -0.193 7.52E-01 

ARF5_MOUSE ADP-ribosylation factor 5 5 -0.196 6.98E-01 

AN32E_MOUSE 
Acidic leucine-rich nuclear phosphoprotein 32 

family member E  
2 -0.197 5.52E-01 

CISY_MOUSE Citrate synthase, mitochondrial 6 -0.199 4.20E-01 

6PGD_MOUSE 
6-phosphogluconate dehydrogenase, 

decarboxylating  
11 -0.201 4.97E-01 

SERA_MOUSE D-3-phosphoglycerate dehydrogenase  6 -0.202 5.72E-01 

CATB_MOUSE Cathepsin B  8 -0.203 4.53E-01 

RRAGC_MOUSE Ras-related GTP-binding protein C  3 -0.204 1.49E-01 

DC1L2_MOUSE Cytoplasmic dynein 1 light intermediate chain 2  2 -0.204 5.26E-01 

ROA3_MOUSE Heterogeneous nuclear ribonucleoprotein A3  5 -0.206 3.00E-01 

LAP2B_MOUSE 
Lamina-associated polypeptide 2, isoforms 

beta/delta/epsilon/gamma  
3 -0.208 3.28E-01 

CAPZB_MOUSE F-actin-capping protein subunit beta  5 -0.209 4.30E-01 

RHOA_MOUSE Transforming protein RhoA  3 -0.212 3.20E-01 

SYK_MOUSE Lysine--tRNA ligase  4 -0.212 4.24E-01 

RL27_MOUSE 60S ribosomal protein L27  3 -0.214 4.81E-01 

PYGB_MOUSE Glycogen phosphorylase, brain form  4 -0.215 3.96E-01 

DHX9_MOUSE ATP-dependent RNA helicase A 3 -0.216 5.73E-01 

ROA2_MOUSE Heterogeneous nuclear ribonucleoproteins A2/B1  9 -0.217 3.49E-01 

SYEP_MOUSE Bifunctional glutamate/proline--tRNA ligase 9 -0.219 3.73E-01 
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NSF_MOUSE Vesicle-fusing ATPase  5 -0.220 3.64E-01 

RAN_MOUSE GTP-binding nuclear protein Ran  5 -0.220 4.25E-01 

KINH_MOUSE Kinesin-1 heavy chain  5 -0.221 4.09E-01 

TCPA_MOUSE T-complex protein 1 subunit alpha  12 -0.221 3.34E-01 

RL35A_MOUSE 60S ribosomal protein L35a  2 -0.222 4.54E-01 

IDHC_MOUSE Isocitrate dehydrogenase [NADP] cytoplasmic  12 -0.223 5.14E-01 

HS90B_MOUSE Heat shock protein HSP 90-beta  20 -0.223 5.95E-01 

PRS4_MOUSE 26S protease regulatory subunit 4  3 -0.224 5.07E-01 

ANFY1_MOUSE Rabankyrin-5  3 -0.227 5.15E-01 

VATC1_MOUSE V-type proton ATPase subunit C 1  4 -0.228 5.19E-01 

TLN1_MOUSE Talin-1  47 -0.228 2.19E-01 

MBB1A_MOUSE Myb-binding protein 1A  5 -0.229 4.77E-01 

GSDMD_MOUSE Gasdermin-D  3 -0.233 2.65E-01 

PRS7_MOUSE 26S protease regulatory subunit 7  7 -0.234 4.85E-01 

PDC6I_MOUSE Programmed cell death 6-interacting protein  9 -0.235 1.18E-01 

EF1A1_MOUSE Elongation factor 1-alpha 1  12 -0.237 3.10E-01 

TCPG_MOUSE T-complex protein 1 subunit gamma  14 -0.239 1.25E-01 

CAZA1_MOUSE F-actin-capping protein subunit alpha-1  3 -0.239 2.98E-01 

FA49B_MOUSE Protein FAM49B  4 -0.240 4.14E-01 

ACTB_MOUSE Actin, cytoplasmic 1 12 -0.240 3.47E-01 

SWP70_MOUSE Switch-associated protein 70 2 -0.240 7.74E-01 

UBP5_MOUSE Ubiquitin carboxyl-terminal hydrolase 5  3 -0.241 1.95E-01 

RBBP4_MOUSE Histone-binding protein RBBP4  3 -0.241 4.85E-01 

SODC_MOUSE Superoxide dismutase [Cu-Zn]  2 -0.242 4.68E-01 

MATR3_MOUSE Matrin-3  3 -0.243 7.18E-01 

RAB1A_MOUSE Ras-related protein Rab-1A  6 -0.243 3.47E-01 

STAT1_MOUSE Signal transducer and activator of transcription 1  7 -0.244 4.45E-01 

SDHA_MOUSE 
Succinate dehydrogenase [ubiquinone] 

flavoprotein subunit, mitochondrial  
3 -0.245 9.44E-01 

CALM_MOUSE Calmodulin 5 -0.247 5.28E-01 

SYCC_MOUSE Cysteine--tRNA ligase, cytoplasmic  2 -0.248 4.47E-01 

RHOG_MOUSE Rho-related GTP-binding protein RhoG  7 -0.249 4.05E-01 

UBE2N_MOUSE Ubiquitin-conjugating enzyme E2 N  3 -0.250 3.83E-01 

GDIR1_MOUSE Rho GDP-dissociation inhibitor 1  5 -0.250 5.24E-01 

PCBP2_MOUSE Poly(rC)-binding protein 2  6 -0.251 5.08E-01 

F10A1_MOUSE Hsc70-interacting protein  6 -0.252 1.57E-01 

VATA_MOUSE V-type proton ATPase catalytic subunit A  10 -0.254 4.84E-01 

EIF3M_MOUSE 
Eukaryotic translation initiation factor 3 subunit 

M 
3 -0.254 2.17E-01 

UBP14_MOUSE Ubiquitin carboxyl-terminal hydrolase 14  3 -0.255 3.71E-01 

SAHH_MOUSE Adenosylhomocysteinase 5 -0.255 3.24E-01 
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VPS29_MOUSE Vacuolar protein sorting-associated protein 29  2 -0.256 4.83E-01 

HXK1_MOUSE Hexokinase-1  6 -0.258 5.56E-01 

AMRP_MOUSE 
Alpha-2-macroglobulin receptor-associated 

protein  
3 -0.258 6.16E-01 

ARP3_MOUSE Actin-related protein 3 9 -0.259 5.44E-01 

ELAV1_MOUSE ELAV-like protein 1  4 -0.260 4.02E-01 

PDLI5_MOUSE PDZ and LIM domain protein 5  2 -0.261 5.60E-01 

MYO1G_MOUSE Unconventional myosin-Ig  2 -0.261 6.86E-01 

PSA_MOUSE Puromycin-sensitive aminopeptidase  5 -0.261 1.47E-01 

ML12B_MOUSE Myosin regulatory light chain 12B  5 -0.262 5.23E-01 

TCPD_MOUSE T-complex protein 1 subunit delta  9 -0.265 5.40E-01 

CYB5_MOUSE Cytochrome b5  3 -0.265 5.27E-01 

DX39B_MOUSE Spliceosome RNA helicase Ddx39b  5 -0.268 4.54E-01 

1433G_MOUSE 14-3-3 protein gamma  5 -0.268 5.31E-01 

FKBP4_MOUSE Peptidyl-prolyl cis-trans isomerase FKBP4 3 -0.270 4.84E-01 

TR150_MOUSE Thyroid hormone receptor-associated protein 3  2 -0.270 4.61E-01 

DC1L1_MOUSE Cytoplasmic dynein 1 light intermediate chain 1  3 -0.271 9.48E-02 

GBB2_MOUSE 
Guanine nucleotide-binding protein 

G(I)/G(S)/G(T) subunit beta-2  
4 -0.274 4.25E-01 

ETFA_MOUSE 
Electron transfer flavoprotein subunit alpha, 

mitochondrial  
4 -0.276 4.87E-01 

DHRS1_MOUSE Dehydrogenase/reductase SDR family member 1  2 -0.280 3.86E-01 

GNS_MOUSE N-acetylglucosamine-6-sulfatase  6 -0.282 7.29E-01 

SMD2_MOUSE Small nuclear ribonucleoprotein Sm D2  3 -0.283 2.87E-01 

NOP56_MOUSE Nucleolar protein 56  3 -0.285 5.34E-01 

RISC_MOUSE Retinoid-inducible serine carboxypeptidase  2 -0.288 4.64E-01 

UAP1L_MOUSE 
UDP-N-acetylhexosamine pyrophosphorylase-

like protein 1  
5 -0.289 1.33E-01 

RS9_MOUSE 40S ribosomal protein S9  5 -0.289 6.01E-01 

RPN1_MOUSE 
Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit 1  
9 -0.289 5.39E-01 

PUR6_MOUSE Multifunctional protein ADE2 3 -0.290 3.16E-01 

SEPT7_MOUSE Septin-7 3 -0.291 1.14E-01 

SC22B_MOUSE Vesicle-trafficking protein SEC22b O 3 -0.292 1.77E-01 

1433B_MOUSE 14-3-3 protein beta/alpha  7 -0.299 4.18E-01 

ENPL_MOUSE Endoplasmin  22 -0.303 3.07E-01 

ERAP1_MOUSE Endoplasmic reticulum aminopeptidase 1 3 -0.304 8.41E-01 

RAB14_MOUSE Ras-related protein Rab-14  3 -0.306 3.64E-01 

NAGAB_MOUSE Alpha-N-acetylgalactosaminidase  3 -0.306 1.95E-01 

TNPO1_MOUSE Transportin-1  3 -0.308 3.76E-01 

DJB11_MOUSE DnaJ homolog subfamily B member 11  2 -0.309 3.24E-01 

HA1B_MOUSE 
H-2 class I histocompatibility antigen, K-B alpha 

chain  
5 -0.309 7.23E-01 
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SEPT9_MOUSE Septin-9 4 -0.311 3.40E-01 

AN32A_MOUSE 
Acidic leucine-rich nuclear phosphoprotein 32 

family member A  
3 -0.311 2.22E-01 

PFKAP_MOUSE 
ATP-dependent 6-phosphofructokinase, platelet 

type  
6 -0.313 1.61E-01 

FKB15_MOUSE FK506-binding protein 15  3 -0.313 3.85E-01 

BUB3_MOUSE Mitotic checkpoint protein BUB3  3 -0.314 3.95E-01 

ACTN1_MOUSE Alpha-actinin-1 15 -0.317 3.75E-01 

THIKA_MOUSE 3-ketoacyl-CoA thiolase A, peroxisomal 7 -0.319 3.09E-01 

ARF4_MOUSE ADP-ribosylation factor 4 4 -0.322 2.59E-01 

FABP5_MOUSE Fatty acid-binding protein, epidermal 3 -0.323 8.98E-02 

RL13A_MOUSE 60S ribosomal protein L13a  2 -0.323 2.61E-01 

PPIB_MOUSE Peptidyl-prolyl cis-trans isomerase B  7 -0.324 2.63E-01 

SSRD_MOUSE Translocon-associated protein subunit delta  2 -0.326 1.12E-01 

ACLY_MOUSE ATP-citrate synthase 7 -0.327 1.47E-01 

SRSF1_MOUSE Serine/arginine-rich splicing factor 1  3 -0.327 2.70E-01 

UBA1_MOUSE Ubiquitin-like modifier-activating enzyme 1  13 -0.327 9.80E-02 

OTUB1_MOUSE Ubiquitin thioesterase OTUB1  2 -0.327 3.17E-01 

LAMP2_MOUSE Lysosome-associated membrane glycoprotein 2  4 -0.328 8.61E-02 

ARP2_MOUSE Actin-related protein 2 5 -0.333 1.21E-01 

USP9X_MOUSE 
Probable ubiquitin carboxyl-terminal hydrolase 

FAF-X  
5 -0.339 3.18E-01 

AP2A1_MOUSE AP-2 complex subunit alpha-1  2 -0.340 4.38E-01 

RAP2B_MOUSE Ras-related protein Rap-2b  3 -0.341 2.62E-01 

SFPQ_MOUSE Splicing factor, proline- and glutamine-rich  6 -0.343 2.51E-01 

RL10A_MOUSE 60S ribosomal protein L10a  5 -0.345 6.81E-01 

SHPS1_MOUSE 
Tyrosine-protein phosphatase non-receptor type 

substrate 1 
3 -0.351 9.33E-01 

2AAA_MOUSE 
Serine/threonine-protein phosphatase 2A 65 kDa 

regulatory subunit A alpha isoform  
8 -0.351 2.00E-01 

RL14_MOUSE 60S ribosomal protein L14  4 -0.355 2.98E-01 

RB22A_MOUSE Ras-related protein Rab-22A  3 -0.359 1.83E-01 

DPYL2_MOUSE Dihydropyrimidinase-related protein 2  11 -0.359 2.27E-01 

SYVC_MOUSE Valine--tRNA ligase  3 -0.359 4.68E-01 

RL18_MOUSE 60S ribosomal protein L18  5 -0.360 3.51E-01 

DYHC1_MOUSE Cytoplasmic dynein 1 heavy chain 1  29 -0.361 3.32E-01 

HA11_MOUSE 
H-2 class I histocompatibility antigen, D-B alpha 

chain  
7 -0.364 4.47E-01 

DAB2_MOUSE Disabled homolog 2  3 -0.364 1.27E-01 

CALR_MOUSE Calreticulin 11 -0.365 1.46E-01 

TBB2A_MOUSE Tubulin beta-2A chain  10 -0.365 2.07E-01 

ROAA_MOUSE Heterogeneous nuclear ribonucleoprotein A/B  5 -0.365 2.60E-01 
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NUCL_MOUSE Nucleolin  13 -0.367 1.48E-01 

WDR1_MOUSE WD repeat-containing protein 1  11 -0.368 1.40E-01 

SPRE_MOUSE Sepiapterin reductase  2 -0.369 7.87E-01 

SSRA_MOUSE Translocon-associated protein subunit alpha  2 -0.370 9.22E-02 

WASF2_MOUSE 
Wiskott-Aldrich syndrome protein family 

member 2  
4 -0.373 1.42E-01 

TCPH_MOUSE T-complex protein 1 subunit eta  11 -0.373 1.91E-01 

SYTC_MOUSE Threonine--tRNA ligase, cytoplasmic  2 -0.374 1.73E-01 

UBC12_MOUSE NEDD8-conjugating enzyme Ubc12  3 -0.376 6.07E-01 

OST48_MOUSE 
Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase 48 kDa subunit  
6 -0.377 2.66E-01 

MK03_MOUSE Mitogen-activated protein kinase 3  7 -0.378 1.18E-01 

RAB5C_MOUSE Ras-related protein Rab-5C  4 -0.378 1.72E-01 

RL23_MOUSE 60S ribosomal protein L23  4 -0.379 9.87E-01 

SYFB_MOUSE Phenylalanine--tRNA ligase beta subunit 4 -0.380 1.22E-02 

MRC1_MOUSE Macrophage mannose receptor 1  5 -0.381 5.33E-01 

CYFP1_MOUSE Cytoplasmic FMR1-interacting protein 1  10 -0.381 2.16E-01 

CAP1_MOUSE Adenylyl cyclase-associated protein 1 12 -0.382 4.42E-01 

MYL6_MOUSE Myosin light polypeptide 6  6 -0.383 1.37E-01 

1433E_MOUSE 14-3-3 protein epsilon  10 -0.384 1.62E-01 

MPCP_MOUSE Phosphate carrier protein, mitochondrial 3 -0.384 4.77E-02 

PERM_MOUSE Myeloperoxidase  6 -0.385 1.81E-01 

CD166_MOUSE CD166 antigen 4 -0.386 2.01E-01 

RADI_MOUSE Radixin  8 -0.388 2.07E-01 

TERA_MOUSE Transitional endoplasmic reticulum ATPase 19 -0.389 1.09E-02 

RL15_MOUSE 60S ribosomal protein L15  5 -0.389 1.91E-01 

RSSA_MOUSE 40S ribosomal protein SA  6 -0.390 1.24E-01 

RL9_MOUSE 60S ribosomal protein L9  2 -0.391 4.65E-01 

VAT1_MOUSE 
Synaptic vesicle membrane protein VAT-1 

homolog  
7 -0.391 2.20E-01 

RL11_MOUSE 60S ribosomal protein L11  2 -0.392 2.36E-01 

CORO7_MOUSE Coronin-7 3 -0.393 2.59E-01 

EIF3E_MOUSE 
Eukaryotic translation initiation factor 3 subunit 

E  
4 -0.394 2.00E-01 

ARLY_MOUSE Argininosuccinate lyase 3 -0.394 7.89E-02 

MPRD_MOUSE Cation-dependent mannose-6-phosphate receptor  3 -0.395 1.38E-01 

PRAF3_MOUSE PRA1 family protein 3 2 -0.397 1.69E-02 

PRDX2_MOUSE Peroxiredoxin-2  4 -0.401 1.84E-01 

RBM39_MOUSE RNA-binding protein 39  2 -0.402 3.40E-01 

ADT1_MOUSE ADP/ATP translocase 1  7 -0.405 6.55E-02 

SET_MOUSE Protein SET  3 -0.406 2.40E-01 

PRP19_MOUSE Pre-mRNA-processing factor 19  2 -0.407 2.39E-01 
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LYRIC_MOUSE Protein LYRIC  2 -0.407 1.44E-01 

APEX1_MOUSE DNA-(apurinic or apyrimidinic site) lyase  3 -0.410 2.12E-01 

RL18A_MOUSE 60S ribosomal protein L18a  2 -0.411 6.12E-01 

PLD4_MOUSE Phospholipase D4  3 -0.413 7.90E-02 

CAPG_MOUSE Macrophage-capping protein  4 -0.414 1.58E-01 

ARPC4_MOUSE Actin-related protein 2/3 complex subunit 4  4 -0.415 7.39E-02 

RAB1B_MOUSE Ras-related protein Rab-1B  7 -0.417 1.88E-01 

ATPO_MOUSE ATP synthase subunit O, mitochondrial  4 -0.418 2.00E-01 

SYSC_MOUSE Serine--tRNA ligase, cytoplasmic  2 -0.419 1.53E-01 

KPYM_MOUSE Pyruvate kinase PKM  19 -0.421 8.69E-02 

PTN6_MOUSE 
Tyrosine-protein phosphatase non-receptor type 

6  
10 -0.425 2.43E-01 

ODO1_MOUSE 2-oxoglutarate dehydrogenase, mitochondrial 4 -0.425 2.34E-02 

PLEC_MOUSE Plectin  84 -0.425 6.37E-02 

HXK3_MOUSE Hexokinase-3  13 -0.427 2.00E-01 

HINT1_MOUSE Histidine triad nucleotide-binding protein 1  2 -0.428 1.76E-01 

SNX1_MOUSE Sorting nexin-1  11 -0.429 2.73E-01 

NMT1_MOUSE Glycylpeptide N-tetradecanoyltransferase 1  2 -0.429 2.28E-01 

H15_MOUSE Histone H1.5  6 -0.430 2.48E-01 

VDAC1_MOUSE 
Voltage-dependent anion-selective channel 

protein 1  
3 -0.434 1.19E-01 

TGM2_MOUSE Protein-glutamine gamma-glutamyltransferase 2  8 -0.438 2.58E-01 

EM55_MOUSE 55 kDa erythrocyte membrane protein  4 -0.442 1.25E-01 

RINI_MOUSE Ribonuclease inhibitor 16 -0.442 3.51E-02 

RALY_MOUSE RNA-binding protein Raly  2 -0.443 1.11E-01 

SNAA_MOUSE Alpha-soluble NSF attachment protein  3 -0.443 2.16E-01 

SHIP1_MOUSE 
Phosphatidylinositol 3,4,5-trisphosphate 5-

phosphatase 1  
2 -0.444 2.81E-01 

VP26A_MOUSE Vacuolar protein sorting-associated protein 26A  3 -0.444 2.18E-01 

GLU2B_MOUSE Glucosidase 2 subunit beta  3 -0.445 3.60E-01 

INO1_MOUSE Inositol-3-phosphate synthase 1  2 -0.447 5.93E-01 

GLCM_MOUSE Glucosylceramidase 4 -0.447 9.58E-02 

NDUA4_MOUSE Cytochrome c oxidase subunit NDUFA4  2 -0.448 8.49E-02 

COPA_MOUSE Coatomer subunit alpha  6 -0.451 1.47E-01 

RHG01_MOUSE Rho GTPase-activating protein 1  3 -0.453 3.57E-01 

RL19_MOUSE 60S ribosomal protein L19  2 -0.455 2.51E-01 

AMPB_MOUSE Aminopeptidase B  6 -0.457 1.23E-01 

VAPB_MOUSE 
Vesicle-associated membrane protein-associated 

protein B 
2 -0.459 5.00E-02 

AT1A1_MOUSE 
Sodium/potassium-transporting ATPase subunit 

alpha-1  
15 -0.460 2.35E-01 

CASP8_MOUSE Caspase-8  4 -0.461 2.66E-01 

PTPRC_MOUSE Receptor-type tyrosine-protein phosphatase C  12 -0.462 2.23E-01 
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CAN1_MOUSE Calpain-1 catalytic subunit  3 -0.464 5.97E-02 

BIEA_MOUSE Biliverdin reductase A  6 -0.467 1.84E-01 

FAM21_MOUSE WASH complex subunit FAM21  2 -0.468 5.31E-01 

GNPI1_MOUSE Glucosamine-6-phosphate isomerase 1 4 -0.470 5.17E-03 

PDXK_MOUSE Pyridoxal kinase 4 -0.471 1.74E-02 

HS90A_MOUSE Heat shock protein HSP 90-alpha  18 -0.471 3.14E-01 

ECHB_MOUSE Trifunctional enzyme subunit beta, mitochondrial  4 -0.472 1.42E-01 

LMAN2_MOUSE Vesicular integral-membrane protein VIP36  4 -0.473 1.33E-01 

HPRT_MOUSE 
Hypoxanthine-guanine 

phosphoribosyltransferase 
6 -0.474 1.37E-01 

CLIC1_MOUSE Chloride intracellular channel protein 1 10 -0.474 8.68E-02 

K2C1_MOUSE Keratin, type II cytoskeletal 1  3 -0.474 3.03E-01 

CDC37_MOUSE Hsp90 co-chaperone Cdc37 4 -0.477 4.17E-01 

PDIA4_MOUSE Protein disulfide-isomerase A4  10 -0.478 6.33E-02 

GRP75_MOUSE Stress-70 protein, mitochondrial  13 -0.478 1.87E-01 

SNX3_MOUSE Sorting nexin-3 3 -0.479 1.52E-02 

PA2G4_MOUSE Proliferation-associated protein 2G4  6 -0.480 9.49E-02 

TIF1B_MOUSE Transcription intermediary factor 1-beta 4 -0.481 1.83E-02 

GSTM1_MOUSE Glutathione S-transferase Mu 1  8 -0.484 8.51E-02 

AHSA1_MOUSE 
Activator of 90 kDa heat shock protein ATPase 

homolog 1 
6 -0.486 6.47E-02 

DOCK2_MOUSE Dedicator of cytokinesis protein 2  7 -0.487 1.16E-01 

TPP2_MOUSE Tripeptidyl-peptidase 2  7 -0.490 1.75E-01 

IDH3A_MOUSE 
Isocitrate dehydrogenase [NAD] subunit alpha, 

mitochondrial  
4 -0.492 5.32E-02 

STXB2_MOUSE Syntaxin-binding protein 2  2 -0.496 2.04E-01 

RUVB2_MOUSE RuvB-like 2  2 -0.496 3.13E-01 

DEK_MOUSE Protein DEK  2 -0.498 1.73E-01 

PDIA6_MOUSE Protein disulfide-isomerase A6  7 -0.501 2.10E-01 

RCC2_MOUSE Protein RCC2  2 -0.502 1.60E-01 

PSA1_MOUSE Proteasome subunit alpha type-1  3 -0.502 1.45E-01 

AP1M1_MOUSE AP-1 complex subunit mu-1 2 -0.508 1.06E-01 

CBR1_MOUSE Carbonyl reductase [NADPH] 1 2 -0.510 1.61E-02 

DEST_MOUSE Destrin  2 -0.510 6.28E-02 

URP2_MOUSE Fermitin family homolog 3 9 -0.512 2.72E-02 

CATZ_MOUSE Cathepsin Z  6 -0.512 4.25E-01 

EFTU_MOUSE Elongation factor Tu, mitochondrial  3 -0.513 8.45E-02 

GSLG1_MOUSE Golgi apparatus protein 1  2 -0.513 1.64E-01 

ARPC5_MOUSE Actin-related protein 2/3 complex subunit 5 5 -0.515 2.90E-02 

PP1R7_MOUSE Protein phosphatase 1 regulatory subunit 7  2 -0.517 3.55E-01 

PSB4_MOUSE Proteasome subunit beta type-4  3 -0.517 1.41E-01 

SRSF2_MOUSE Serine/arginine-rich splicing factor 2  2 -0.519 7.47E-02 
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VDAC2_MOUSE 
Voltage-dependent anion-selective channel 

protein 2  
7 -0.519 1.31E-01 

TCPE_MOUSE T-complex protein 1 subunit epsilon 8 -0.522 2.84E-02 

ASNA_MOUSE ATPase Asna1 2 -0.523 3.99E-01 

AATM_MOUSE Aspartate aminotransferase, mitochondrial 7 -0.523 8.62E-02 

PSMD3_MOUSE 
26S proteasome non-ATPase regulatory subunit 

3  
6 -0.524 2.91E-01 

CHIL3_MOUSE Chitinase-like protein 3  4 -0.525 2.80E-01 

SEPT2_MOUSE Septin-2 5 -0.525 7.63E-02 

ATG7_MOUSE Ubiquitin-like modifier-activating enzyme ATG7  3 -0.525 4.65E-01 

G6PI_MOUSE Glucose-6-phosphate isomerase  7 -0.526 1.40E-01 

SNX2_MOUSE Sorting nexin-2  11 -0.528 1.40E-01 

MYO5A_MOUSE Unconventional myosin-Va  3 -0.530 2.42E-01 

PDIA3_MOUSE Protein disulfide-isomerase A3 15 -0.530 4.25E-02 

VIME_MOUSE Vimentin  28 -0.537 6.49E-02 

TWF2_MOUSE Twinfilin-2  2 -0.538 1.04E-01 

EIF3A_MOUSE 
Eukaryotic translation initiation factor 3 subunit 

A  
13 -0.539 2.17E-01 

CLH1_MOUSE Clathrin heavy chain 1 34 -0.540 4.95E-02 

MDHM_MOUSE Malate dehydrogenase, mitochondrial 12 -0.544 1.81E-02 

VATB2_MOUSE V-type proton ATPase subunit B, brain isoform 7 -0.544 5.56E-02 

IQGA1_MOUSE Ras GTPase-activating-like protein IQGAP1 40 -0.545 3.25E-02 

MIC60_MOUSE MICOS complex subunit Mic60  6 -0.546 2.61E-01 

ANXA3_MOUSE Annexin A3 8 -0.548 6.09E-02 

NUDC_MOUSE Nuclear migration protein nudC  3 -0.551 2.50E-01 

H14_MOUSE Histone H1.4  6 -0.557 1.68E-01 

PCKGM_MOUSE 
Phosphoenolpyruvate carboxykinase [GTP], 

mitochondrial  
2 -0.559 5.97E-02 

PCBP1_MOUSE Poly(rC)-binding protein 1  7 -0.560 1.47E-01 

ANXA5_MOUSE Annexin A5  12 -0.563 5.98E-02 

1433F_MOUSE 14-3-3 protein eta  9 -0.566 9.81E-02 

ATP5H_MOUSE ATP synthase subunit d, mitochondrial  3 -0.569 2.30E-01 

RAB2A_MOUSE Ras-related protein Rab-2A  4 -0.570 6.10E-02 

HYOU1_MOUSE Hypoxia up-regulated protein 1  9 -0.571 1.55E-01 

ELMO1_MOUSE Engulfment and cell motility protein 1 5 -0.573 1.18E-01 

ERP29_MOUSE Endoplasmic reticulum resident protein 29 4 -0.575 1.20E-02 

PHB_MOUSE Prohibitin 5 -0.576 3.37E-03 

HNRPU_MOUSE Heterogeneous nuclear ribonucleoprotein U  11 -0.578 5.59E-02 

UD17C_MOUSE UDP-glucuronosyltransferase 1-7C  5 -0.578 2.04E-01 

AL5AP_MOUSE Arachidonate 5-lipoxygenase-activating protein 2 -0.578 1.32E-01 

ANXA4_MOUSE Annexin A4 14 -0.579 3.14E-02 

THIM_MOUSE 3-ketoacyl-CoA thiolase, mitochondrial 4 -0.579 1.08E-01 
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TALDO_MOUSE Transaldolase  10 -0.580 1.90E-01 

COPG1_MOUSE Coatomer subunit gamma-1  3 -0.582 1.78E-01 

NB5R3_MOUSE NADH-cytochrome b5 reductase 3  5 -0.583 1.42E-01 

NCPR_MOUSE NADPH--cytochrome P450 reductase  8 -0.584 2.65E-01 

STIP1_MOUSE Stress-induced-phosphoprotein 1  8 -0.585 6.27E-02 

RS14_MOUSE 40S ribosomal protein S14  5 -0.585 1.86E-01 

PDIA1_MOUSE Protein disulfide-isomerase  14 -0.590 1.15E-01 

PKHO2_MOUSE 
Pleckstrin homology domain-containing family 

O member 2  
3 -0.592 1.86E-01 

COF1_MOUSE Cofilin-1 7 -0.593 9.25E-02 

TPM3_MOUSE Tropomyosin alpha-3 chain  6 -0.595 5.45E-02 

DLDH_MOUSE Dihydrolipoyl dehydrogenase, mitochondrial 3 -0.597 2.97E-02 

LMNA_MOUSE Prelamin-A/C  23 -0.602 6.76E-02 

DHB11_MOUSE Estradiol 17-beta-dehydrogenase 11 2 -0.602 1.82E-02 

DHE3_MOUSE Glutamate dehydrogenase 1, mitochondrial  15 -0.602 9.26E-02 

GBG2_MOUSE 
Guanine nucleotide-binding protein 

G(I)/G(S)/G(O) subunit gamma-2  
2 -0.604 7.76E-02 

KCY_MOUSE UMP-CMP kinase 4 -0.604 1.08E-02 

FMNL1_MOUSE Formin-like protein 1 7 -0.606 2.50E-01 

COR1A_MOUSE Coronin-1A  9 -0.608 2.17E-01 

VPS35_MOUSE Vacuolar protein sorting-associated protein 35 10 -0.608 4.35E-02 

ERF1_MOUSE Eukaryotic peptide chain release factor subunit 1 5 -0.610 2.63E-03 

ESYT1_MOUSE Extended synaptotagmin-1  12 -0.610 2.48E-01 

C5AR1_MOUSE C5a anaphylatoxin chemotactic receptor 1 2 -0.611 3.73E-01 

MPEG1_MOUSE Macrophage-expressed gene 1 protein  10 -0.613 1.25E-01 

LMNB1_MOUSE Lamin-B1  8 -0.616 1.32E-01 

FAS_MOUSE Fatty acid synthase  9 -0.619 2.54E-01 

TMED9_MOUSE 
Transmembrane emp24 domain-containing 

protein 9 
3 -0.620 1.00E-02 

AP2B1_MOUSE AP-2 complex subunit beta  11 -0.620 7.95E-02 

ATPA_MOUSE ATP synthase subunit alpha, mitochondrial 12 -0.621 3.25E-02 

VA0D1_MOUSE V-type proton ATPase subunit d 1  3 -0.621 1.74E-01 

BIN2_MOUSE Bridging integrator 2  2 -0.623 7.42E-02 

1433T_MOUSE 14-3-3 protein theta  8 -0.624 1.51E-01 

USO1_MOUSE General vesicular transport factor p115 9 -0.624 1.06E-02 

HNRPD_MOUSE Heterogeneous nuclear ribonucleoprotein D0 3 -0.627 2.78E-02 

VPP1_MOUSE 
V-type proton ATPase 116 kDa subunit a 

isoform 1 
3 -0.630 6.09E-03 

QCR2_MOUSE 
Cytochrome b-c1 complex subunit 2, 

mitochondrial  
2 -0.633 2.00E-01 

SNX5_MOUSE Sorting nexin-5 9 -0.634 2.40E-02 

DHB4_MOUSE Peroxisomal multifunctional enzyme type 2  4 -0.635 8.01E-02 

PMM2_MOUSE Phosphomannomutase 2 2 -0.638 4.98E-02 
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PCNA_MOUSE Proliferating cell nuclear antigen  7 -0.640 3.07E-01 

SYLC_MOUSE Leucine--tRNA ligase, cytoplasmic 4 -0.642 1.66E-02 

MDHC_MOUSE Malate dehydrogenase, cytoplasmic 7 -0.642 1.29E-02 

SYNC_MOUSE Asparagine--tRNA ligase, cytoplasmic 7 -0.642 1.68E-02 

PAK2_MOUSE Serine/threonine-protein kinase PAK 2  3 -0.646 1.93E-01 

MPU1_MOUSE Mannose-P-dolichol utilization defect 1 protein  2 -0.647 7.72E-01 

GBB1_MOUSE 
Guanine nucleotide-binding protein 

G(I)/G(S)/G(T) subunit beta-1  
4 -0.649 9.40E-02 

CH60_MOUSE 60 kDa heat shock protein, mitochondrial  11 -0.651 5.98E-02 

ANXA2_MOUSE Annexin A2 13 -0.652 4.24E-02 

UB2V1_MOUSE Ubiquitin-conjugating enzyme E2 variant 1  2 -0.653 5.10E-02 

IMPA1_MOUSE Inositol monophosphatase 1  2 -0.654 1.34E-01 

IF2G_MOUSE 
Eukaryotic translation initiation factor 2 subunit 

3, X-linked  
6 -0.654 9.91E-02 

USMG5_MOUSE 
Up-regulated during skeletal muscle growth 

protein 5 
2 -0.658 1.12E-02 

GMIP_MOUSE GEM-interacting protein  2 -0.660 8.85E-02 

GPNMB_MOUSE Transmembrane glycoprotein NMB  4 -0.663 1.74E-01 

ANXA1_MOUSE Annexin A1  14 -0.664 6.04E-02 

SP100_MOUSE Nuclear autoantigen Sp-100  2 -0.664 1.14E-01 

HEXB_MOUSE Beta-hexosaminidase subunit beta 5 -0.666 1.04E-01 

ASAH1_MOUSE Acid ceramidase  6 -0.666 1.57E-01 

CO4B_MOUSE Complement C4-B 3 -0.667 2.07E-02 

ITB2_MOUSE Integrin beta-2 12 -0.671 2.66E-02 

GDIB_MOUSE Rab GDP dissociation inhibitor beta  14 -0.676 5.78E-02 

OSBL8_MOUSE Oxysterol-binding protein-related protein 8 6 -0.679 4.33E-03 

SAMH1_MOUSE 
Deoxynucleoside triphosphate 

triphosphohydrolase SAMHD1  
8 -0.686 9.29E-02 

APOBR_MOUSE Apolipoprotein B receptor 4 -0.688 1.30E-02 

PLXB2_MOUSE Plexin-B2  2 -0.689 7.24E-02 

FCGR1_MOUSE 
High affinity immunoglobulin gamma Fc 

receptor I 
2 -0.693 3.79E-02 

H2AY_MOUSE Core histone macro-H2A.1 3 -0.695 3.69E-02 

CALU_MOUSE Calumenin 2 -0.697 1.62E-02 

IST1_MOUSE IST1 homolog  2 -0.697 1.72E-01 

AP1G1_MOUSE AP-1 complex subunit gamma-1 3 -0.699 1.02E-01 

COR1C_MOUSE Coronin-1C  3 -0.699 1.39E-01 

TPD54_MOUSE Tumor protein D54  2 -0.699 6.88E-02 

VAMP3_MOUSE Vesicle-associated membrane protein 3  2 -0.704 9.36E-02 

GLTP_MOUSE Glycolipid transfer protein  2 -0.706 1.41E-01 

HP1B3_MOUSE Heterochromatin protein 1-binding protein 3  6 -0.706 1.66E-01 

MYO1E_MOUSE Unconventional myosin-Ie  10 -0.709 7.29E-02 

VMA5A_MOUSE von Willebrand factor A domain-containing 16 -0.710 1.17E-01 
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protein 5A  

AP2A2_MOUSE AP-2 complex subunit alpha-2  3 -0.711 9.54E-02 

BASP1_MOUSE Brain acid soluble protein 1  3 -0.714 1.04E-01 

GANAB_MOUSE Neutral alpha-glucosidase AB  3 -0.714 6.51E-02 

CNDP2_MOUSE Cytosolic non-specific dipeptidase 11 -0.715 3.49E-02 

CATD_MOUSE Cathepsin D 6 -0.717 2.58E-03 

ALDR_MOUSE Aldose reductase 8 -0.726 2.11E-03 

PSD12_MOUSE 
26S proteasome non-ATPase regulatory subunit 

12 
4 -0.735 3.07E-02 

GELS_MOUSE Gelsolin 11 -0.739 4.69E-02 

AP1B1_MOUSE AP-1 complex subunit beta-1 3 -0.739 2.64E-02 

SPB6_MOUSE Serpin B6 11 -0.745 4.20E-02 

ARC1B_MOUSE Actin-related protein 2/3 complex subunit 1B 6 -0.752 2.80E-02 

ARL8A_MOUSE ADP-ribosylation factor-like protein 8A 2 -0.762 3.13E-02 

AMPN_MOUSE Aminopeptidase N  19 -0.773 1.70E-01 

CASP3_MOUSE Caspase-3  2 -0.775 8.42E-02 

DYN2_MOUSE Dynamin-2 6 -0.782 4.44E-03 

PACN2_MOUSE 
Protein kinase C and casein kinase substrate in 

neurons protein 2  
2 -0.783 1.09E-01 

H3C_MOUSE Histone H3.3C  3 -0.785 1.34E-01 

ABD12_MOUSE Monoacylglycerol lipase ABHD12 2 -0.797 5.03E-01 

HNRPM_MOUSE Heterogeneous nuclear ribonucleoprotein M  8 -0.803 6.10E-02 

EHD4_MOUSE EH domain-containing protein 4 14 -0.811 1.58E-05 

LG3BP_MOUSE Galectin-3-binding protein  6 -0.813 1.26E-01 

PLCG2_MOUSE 
1-phosphatidylinositol 4,5-bisphosphate 

phosphodiesterase gamma-2  
3 -0.814 1.22E-01 

CATS_MOUSE Cathepsin S  4 -0.817 7.78E-01 

PLBL2_MOUSE Putative phospholipase B-like 2  2 -0.821 2.29E-01 

VATG1_MOUSE V-type proton ATPase subunit G 1  2 -0.822 6.24E-02 

CAN2_MOUSE Calpain-2 catalytic subunit 8 -0.822 1.51E-02 

DBNL_MOUSE Drebrin-like protein 2 -0.823 4.93E-02 

ALDH2_MOUSE Aldehyde dehydrogenase, mitochondrial 14 -0.826 2.95E-02 

SYHC_MOUSE Histidine--tRNA ligase, cytoplasmic 4 -0.831 3.90E-02 

ECHA_MOUSE 
Trifunctional enzyme subunit alpha, 

mitochondrial 
7 -0.837 1.75E-03 

PLD3_MOUSE Phospholipase D3  3 -0.842 7.59E-02 

KCRB_MOUSE Creatine kinase B-type 8 -0.843 9.61E-03 

LPXN_MOUSE Leupaxin  2 -0.848 7.88E-02 

ASPH_MOUSE Aspartyl/asparaginyl beta-hydroxylase 5 -0.852 2.68E-02 

MCM4_MOUSE DNA replication licensing factor MCM4 2 -0.857 1.12E-02 

FUBP2_MOUSE Far upstream element-binding protein 2  2 -0.860 6.05E-02 

DPP3_MOUSE Dipeptidyl peptidase 3  4 -0.866 5.21E-02 
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GNAI2_MOUSE 
Guanine nucleotide-binding protein G(i) subunit 

alpha-2  
9 -0.868 1.02E-01 

APOE_MOUSE Apolipoprotein E 2 -0.869 1.04E-01 

FEN1_MOUSE Flap endonuclease 1 2 -0.870 2.04E-02 

SRSF7_MOUSE Serine/arginine-rich splicing factor 7  4 -0.874 1.03E-01 

RMXL1_MOUSE RNA binding motif protein, X-linked-like-1  5 -0.877 9.14E-02 

ODPA_MOUSE 
Pyruvate dehydrogenase E1 component subunit 

alpha, somatic form, mitochondrial 
2 -0.879 4.14E-02 

COX2_MOUSE Cytochrome c oxidase subunit 2  2 -0.885 3.42E-01 

SRRT_MOUSE Serrate RNA effector molecule homolog  2 -0.888 1.26E-01 

NCEH1_MOUSE Neutral cholesterol ester hydrolase 1 4 -0.926 3.71E-03 

LSP1_MOUSE Lymphocyte-specific protein 1 5 -0.930 1.06E-02 

MYOF_MOUSE Myoferlin 6 -0.932 4.41E-02 

PHB2_MOUSE Prohibitin-2 3 -0.935 2.66E-02 

NUCB1_MOUSE Nucleobindin-1  4 -0.939 7.35E-02 

CPNE3_MOUSE Copine-3 4 -0.940 2.87E-02 

RB11B_MOUSE Ras-related protein Rab-11B 7 -0.942 4.40E-02 

LYZ2_MOUSE Lysozyme C-2 3 -0.946 1.03E-02 

CD68_MOUSE Macrosialin 2 -0.946 2.28E-02 

ACON_MOUSE Aconitate hydratase, mitochondrial 10 -0.949 8.89E-03 

AT2B1_MOUSE 
Plasma membrane calcium-transporting ATPase 

1 
3 -0.958 2.91E-01 

STT3A_MOUSE 
Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit STT3A 
5 -0.961 3.80E-02 

S61A1_MOUSE 
Protein transport protein Sec61 subunit alpha 

isoform 1 
3 -0.991 6.89E-02 

TRPV2_MOUSE 
Transient receptor potential cation channel 

subfamily V member 2  
4 -1.004 7.63E-02 

PSD13_MOUSE 
26S proteasome non-ATPase regulatory subunit 

13  
8 -1.018 1.93E-01 

AL9A1_MOUSE 4-trimethylaminobutyraldehyde dehydrogenase 9 -1.025 6.07E-02 

SAP_MOUSE Prosaposin  9 -1.027 5.80E-02 

DHX58_MOUSE Probable ATP-dependent RNA helicase DHX58 2 -1.052 5.39E-01 

MA2B1_MOUSE Lysosomal alpha-mannosidase  2 -1.059 1.12E-01 

SORCN_MOUSE Sorcin OS=Mus musculus GN=Sri PE=1 SV=1 3 -1.070 6.57E-02 

EEA1_MOUSE Early endosome antigen 1 6 -1.082 1.61E-01 

PUR9_MOUSE Bifunctional purine biosynthesis protein PURH  8 -1.133 9.01E-02 

BZW1_MOUSE 
Basic leucine zipper and W2 domain-containing 

protein 1 
3 -1.138 8.72E-02 

SH3L1_MOUSE 
SH3 domain-binding glutamic acid-rich-like 

protein  
2 -1.254 5.72E-01 

PKN1_MOUSE Serine/threonine-protein kinase N1  3 -1.510 5.76E-02 

HEXA_MOUSE Beta-hexosaminidase subunit alpha  5 -1.595 2.18E-01 
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