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Abstract: In this paper, we present a Jungck type common fixed point result in extended rectangular
b-metric spaces. We also give some examples and a known common fixed point theorem in extended
b-metric spaces.
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1. Introduction

The notion of b-metric spaces was first introduced by Bakhtin [1] and Czerwik [2]. This metric
type space has been generalized in several directions. Among of them, we may cite, extended b-metric
spaces [3], controlled metric spaces [4] and double controlled metric spaces [5]. Within another
vision, Branciari [6] initiated rectangular metric spaces. In same direction, Asim et al. [7] included a
control function to initiate the concept of extended rectangular b-metric spaces, as a generalization of
rectangular b-metric spaces [8].

Definition 1 ([7]). Let X be a nonempty set and e : X× X → [1, ∞) be a function. If de : X× X → [0, ∞)

is such that

(ERbM1) de(ω, Ω) = 0 iff ω = Ω;
(ERbM2) de(ω, Ω) = de(Ω, ω);
(ERbM3) de(ω, Ω) ≤ e(ω, Ω)[de(ω, ζ) + de(ζ, σ) + de(σ, Ω)];

for all ω, Ω ∈ X and all distinct elements ζ, σ ∈ X\{ω, Ω}, then de is an extended rectangular b-metric on X
with mapping e.

Definition 2 ([7]). Let (X, de) be an extended rectangular b-metric space, {Ωn} be a sequence in X and
Ω ∈ X.

(a) {Ωn} converges to Ω, if for each τ > 0 there is n0 ∈ N so that de(Ωn, Ω) < τ for any n > n0. We write it
as lim

n→∞
Ωn = Ω or Ωn → Ω as n→ ∞.

(b) {Ωn} is Cauchy if for each τ > 0 there is n0 ∈ N so that de(Ωn, Ωn+p) < τ for any n > n0 and p > 0.
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(c) (X, d) is complete if each Cauchy sequence is convergent.

Note that the topology of rectangular metric spaces need not be Hausdorff. For more examples,
see the papers of Sarma et al. [9] and Samet [10]. The topological structure of rectangular metric spaces
is not compatible with the topology of classic metric spaces, see Example 7 in the paper of Suzuki [11].
Going in same direction, extended rectangular b-metric spaces can not be Hausdorff. The following
example (a variant of Example 1.7 of George et al. [8]) explains this fact.

Example 1. Let X = Γ1 ∪ Γ2, where Γ1 = { 1
n , n ∈ N} and Γ2 is the set of all positive integers. Define de :

X× X → [0, ∞) so that de is symmetric and for all Ω, ω ∈ X,

de(Ω, ω) =


0, if Ω = ω,

8, if Ω, ω ∈ Γ1,
2
n , if Ω ∈ Γ1 and ω ∈ {2, 3},
4 otherwise.

Here, (X, de) is an extended rectangular b-metric space with e(Ω, ω) = 2. Note that there exist no
τ1, τ2 > 0 such that Bτ1(2) ∩ Bτ2(3) = ∅ (where Bx(τ) denotes the ball of center x and radius τ). That is,
(X, de) is not Hausdorff.

The main result of Jungck [12] is following.

Theorem 1 ([12]). If f and H are commuting self-maps on a complete metric space (X, d) such that
f (X) ⊆ H(X), H is continuous and

d( f Ω, f ω) ≤ δd(HΩ, Hω), (1)

for all Ω, ω ∈ X, where 0 < δ < 1, then there is a unique common fixed point of f and H.

Our goal is to get the analogue of Theorem 1 in the setting of extended rectangular b-metric spaces.
Some examples are also provided.

2. Main Results

Definition 3. Let X be a nonempty set and f , H be two commuting self-mappings of X so that f (X) ⊆ H(X).
Then ( f , H) is called a Jungck pair of mappings on X.

Example 2. Let X = R× R. Define f , H : X → X by f (ω, Ω) = (2ω, (Ω/2) + 3) and H(ω, Ω) =

(3ω, (Ω/3) + 4). Then f (H(ω, Ω)) = (6ω, (Ω/6) + 5) = H( f (ω, Ω)), so that ( f , H) is a Jungck pair of
mappings on X.

Lemma 1. Let X be a nonempty set and ( f , H) be a Jungck pair of mappings on X. Given Ω0 ∈ X. Then there
is a sequence {Ωn} in X so that HΩn+1 = f Ωn, n ≥ 0.

Proof. For such Ω0 ∈ X, f Ω0 and HΩ0 are well defined. Since f Ω0 ∈ H(X), there is Ω1 ∈ X so that
HΩ1 = f Ω0. Going in same direction, we arrive to HΩn+1 = f Ωn.

Definition 4. Let ( f , H) be a Jungck pair of mappings on a nonempty set X. Given e : X× X → [1, ∞). Let
{Ωn} be a sequence such that HΩn+1 = f Ωn, for each n ≥ 0. Then {Ωn} is called a ( f , H) Jungck sequence
in X. We say that {Ωn} is e-bounded if lim sup

n,m→∞
e(HΩn, HΩm) < ∞.
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Remark 1.
1. If H = id, (id(ω) = ω, ω ∈ X) then a ( f , id) Jungck sequence is a Picard sequence.
2. Note that each sequence in a rectangular b-metric space with coefficient s ≥ 1 (see [8]) is e-bounded
(e(Ωm, Ωn) = s, for all m, n ∈ N).

Theorem 2. Let ( f , H) be a Jungck pair of mappings on a complete extended rectangular b-metric space (X, de)

so that
de( f Ω, f ω) ≤ ρde(HΩ, Hω), (2)

for all Ω, ω ∈ X, where 0 < ρ < 1. If H is continuous and there is an e-bounded ( f , H) Jungck sequence, then
there is a unique common fixed point of f and H.

Proof. Let {Ωn} be an e-bounded ( f , H) Jungck sequence. Then for Ω0 ∈ X, f Ωn+1 = HΩn, for each
n ≥ 0. We show that { f Ωn} is Cauchy. From (2), we have

de(HΩm+k, HΩn+k) = de( f Ωm+k−1, f Ωn+k−1)

≤ ρde(HΩm+k−1, HΩn+k−1).

So,
de(HΩm+k, HΩn+k) ≤ ρkde(HΩm, HΩn), (3)

for each k ∈ N.

Case 1:

If HΩn = HΩn+1 for some n, define θ := f Ωn = HΩn. We claim that f θ = Hθ = θ and θ

is unique. First,
f θ = f HΩn = H f Ωn = Hθ.

Let de(θ, f θ) > 0. Here,

de (θ, f θ) = de ( f Ωn, f θ)

≤ ρde (HΩn, Hθ)

= ρde (θ, Hθ)

= ρde (θ, f θ)

< de (θ, f θ) ,

which is a contradiction. Recall that (2) yields that f Ωn = HΩn = θ is the unique common fixed point
of f and H.

Case 2:

If HΩn 6= HΩn+1 for all n ≥ 0, then HΩn 6= HΩn+k for all n ≥ 0 and k ≥ 1. Namely, if HΩn =

HΩn+k for some n ≥ 0 and k ≥ 1, we have that

de(HΩn+1, HΩn+k+1) = de( f Ωn, f Ωn+k)

≤ ρde(HΩn, HΩn+k)

= 0.

So, HΩn+1 = HΩn+k+1. Then (3) implies that

de(HΩn+1, HΩn) = de(HΩn+k+1, HΩn+k) ≤ ρkde(HΩn+1, HΩn) < de(HΩn+1, HΩn).
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It is a contradiction. Thus we assume that HΩn 6= HΩm for all integers n 6= m. Note that
HΩm+k 6= HΩn+k for any k ∈ N. Also, HΩn+k, HΩm+k ∈ X\{HΩn, HΩm}. Since (X, de) is an
extended rectangular b-metric space, by (ERbM3), we get

de(HΩm, HΩn) ≤ e(HΩm, HΩn)[de(HΩm, HΩm+n0) + de(HΩm+n0 , HΩn+n0)

+ de(HΩn+n0 , HΩn)],

where n0 ∈ N so that lim sup
n,m→∞

e(HΩm, HΩn) <
1

ρn0 . Then

de(HΩm, HΩn) ≤ e(HΩm, HΩn)[ρ
mde(HΩ0, HΩn0) + ρn0 de(HΩm, HΩn)

+ ρnde(HΩ0, HΩn0)].

So,

(1− e(HΩm, HΩn)ρ
n0)de(HΩm, HΩn) ≤ e(HΩm, HΩn)(ρ

m + ρn)de(HΩ0, HΩn0).

From this, we obtain

de(HΩm, HΩn) ≤
e(HΩm, HΩn)(ρm + ρn)

1− e(HΩm, HΩn)ρn0
de(HΩ0, HΩn0). (4)

Thus {HΩn} is Cauchy in H(X), which is complete, so there is u ∈ X so that

lim
n→∞

HΩn = lim
n→∞

f Ωn−1 = u. (5)

The continuity of H together with (2) implies that f is itself continuous. The commutativity of f
and H leads to

Hu = H( lim
n→∞

f Ωn) = lim
n→∞

H f Ωn = lim
n→∞

f HΩn = f ( lim
n→∞

HΩn) = f u. (6)

Let v = Hu = f u. Then
f v = f Hu = H f u = Hv. (7)

If f u 6= f v, by (2) we find that

de( f u, f v) ≤ ρde(Hu, Hv)

= ρde( f u, f v)

< de( f u, f v).

It is a contradiction, hence f u = f v. Thus,

f v = Hv = v.

Condition (2) yields that v is the unique common fixed point.

Example 3. If we take in Example 3.1. of [7], H = id and f as

f 1 = f 2 = f 3 = f 4 = 2 and f 5 = 1,

then all the other conditions of Theorem 2 are satisfied, and so f and H have a unique fixed point, which is,
θ = 2. Here, the space (X, de) is extended rectangular b-metric space, but it is not extended b-metric space.
Hence Theorem 2 generalizes, compliments and improves several known results in existing literature.
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A variant of Banach theorem in extended rectangular b-metric spaces is given as follows.

Theorem 3. Let (X, de) be a complete extended rectangular b-metric space and f : X → X be so that

de( f Ω, f ω) ≤ ρde(Ω, ω) (8)

for all Ω, ω ∈ X, where ρ ∈ [0, 1). If there is an e-bounded Picard sequence in X, then f has a unique fixed point.

Remark 2. Theorem 3.1 in [7] is a consequence of Theorem 3. Indeed, instead of condition lim
n,m→∞

de(Ωn, Ωm) <
1
ρ

of Theorem 3.1 in [7], we used a weaker condition, that is, lim sup
n,m→∞

de(Ωn, Ωm) < ∞.

3. A Jungck Theorem in Extended b-Metric Spaces

Let (X, de) be an extended b-metric space (see Definition 3 in [3]) and {Ωn} be a ( f , H) e-bounded
Jungck sequence in X. Then

de(HΩm, HΩn) ≤ e(HΩm, HΩn)[de(HΩm, HΩm+n0) + de(HΩm+n0 , HΩn)]

≤ e(HΩm, HΩn)[de(HΩm, HΩm+n0) +

e(HΩm+n0 , HΩn)[de(HΩm+n0 , HΩn+n0) + de(HΩn+n0 , HΩn)]]

≤ e(HΩm, HΩn)e(HΩm+n0 , HΩn)[de(HΩm, HΩm+n0) +

de(HΩm+n0 , HΩn+n0) + de(HΩn+n0 , HΩn)].

Since {Ωn} is a ( f , H) e-bounded Jungck sequence, we find that

lim sup
m,n→∞

e(HΩm, HΩn)e(HΩm+n0 , HΩn) < ∞.

By Theorem 2, we obtain the following.

Theorem 4. Let ( f , H) be a Jungck pair of mappings on a complete extended b-metric space (X, de) so that

de( f Ω, f ω) ≤ ρde(HΩ, Hω), (9)

for all Ω, ω ∈ X, where 0 < ρ < 1. If H is continuous and there is an e-bounded ( f , H) Jungck sequence, then
f and H have a unique common fixed point.

Remark 3. By Theorem 4, we obtain the Banach contraction principle in extended b-metric spaces. It improves
Theorem 2.1 in [13], Theorem 2 in [3] and Theorem 2.1 in [14]. Also Theorem 3 generalizes an open problem
raised by George et al. [8].

Example 4. Let X = [0, ∞), e : X× X → [1, ∞). Consider de : X× X → [0, ∞) as

de(Ω, ω) = (Ω−ω)2,

where e(Ω, ω) = Ω + ω + 2. Then (X, de) is an extended b-metric space. Define f Ω = 3Ω
4 . Then (8) holds for

ρ = 9
16 . Let Ω0 ∈ X and Ωn = f nΩ0, n ∈ N. Then lim

m,n→∞
e(Ωm, Ωn) = 2. So, lim

m,n→∞
e(Ωm, Ωn) >

16
9 and

Theorem 3.1 in [7] is not applicable. Applying Theorem 3, we conclude that f has a unique fixed point.

Author Contributions: All authors contributed equally and significantly in writing this paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by Basque Governmnet through Grant IT1207-19.

Conflicts of Interest: The authors declare no conflict of interest.



Axioms 2020, 9, 4 6 of 6

References

1. Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst.
1989, 3, 26–37.

2. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
3. Kamran, T.; Samreen, M.; UL Ain, Q. A Generalization of b-metric space and some fixed point theorems.

Mathematics 2017, 5, 19. [CrossRef]
4. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed

point results. Mathematics 2018, 6, 320. [CrossRef]
5. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction

principle. Mathematics 2018, 6, 194. [CrossRef]
6. Branciari, A. A fixed point theorem of Banach-Caccippoli type on a class of generalised metric spaces.

Publ. Math. Debr. 2000, 57, 31–37.
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