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Abstract: In this paper, we prove convergence theorems for viscosity approximation processes
involving ∗−nonexpansive multi-valued mappings in complete convex metric spaces. We also
consider finite and infinite families of such mappings and prove convergence of the proposed
iteration schemes to common fixed points of them. Our results improve and extend some
corresponding results.
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1. Introduction

Many of the real world known problems that scientists are looking to solve are nonlinear.
Therefore, translating linear version of such problems into their equivalent nonlinear version has a
great importance. Mathematicians have tried to transfer the structure of covexity to spaces that are
not linear spaces. Takahashi [1], Kirk [2,3], and Penot [4], for example, presented this notion in metric
spaces. Takahashi [1] introduced the following notion of convexity in metric spaces:

Definition 1. ([1]) Let (X, d) be a metric space and I = [0, 1]. A mapping W : X× X× I → X is said to be a
convex structure on X if for each x, y, u ∈ X and all t ∈ I,

d(u, W(x, y, t)) ≤ td(u, x) + (1− t)d(u, y).

A metric space (X, d) together with a convex structure W is called a convex metric space and is denoted by
(X, W, d).

A subset C of X is called convex if W(x, y, t) ∈ C, for all x, y ∈ C and all t ∈ I.

Example 1. Let X = M2(R). For any A =

[
a1 a2

a3 a4

]
and B =

[
b1 b2

b3 b4

]
and t ∈ I = [0, 1], we define the mapping W : X× X× I → X by

W(A, B, t) =

[
ta1 + (1− t)b1 ta2 + (1− t)b2

ta3 + (1− t)b3 ta4 + (1− t)b4

]
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and the metric d : X× X → [0,+∞) by

d(A, B) = Σ4
i=1|ai − bi|.

Then (X, W, d) is a convex metric space.

Example 2. Let X = R2 with the metric

d((x1, x2), (y1, y2)) = max{|x1 − y1|, |x2 − y2|},

for any (x1, x2), (y1, y2) ∈ X and define the mapping W : X× X× [0, 1]→ X by

W((x1, x2), (y1, y2), t) = (tx1 + (1− t)y1, tx2 + (1− t)y2),

for each (x1, x2), (y1, y2) ∈ X and t ∈ [0, 1]. Then (X, W, d)is a convex metric space.

Example 3. Let X = C([0, 1]) be the metric space with the metric d( f , g) =
∫ 1

0 | f (x)− g(x)|dx and define
W : X × X × [0, 1] → X by W( f , g, t) = t f + (1− t)g, for all f , g ∈ X and t ∈ [0, 1]. Then (X, W, d) is a
convex metric space.

This notion of convex structure is a generalization of convexity in normed spaces and allows us
to obtain results that seem to be possible only in linear spaces. One of its useful applications is the
iterative approximation of fixed points in metric spaces. All of the sequences that are used in fixed
point problems require linearity or convexity of the space. So, this concept of convexity helps us to
define various iteration schemes and to solve fixed point problems in metric spaces. In recent years,
many authors have established several results on the covergence of some iterative schemes using
different contractive conditions in convex metric spaces. For more details, refer to [5–14].

Now, let us recall some definitions and concepts that will be needed to state our results:

Definition 2. ([15]) Let (X, d) be a metric. A subset D is called proximinal if for each x ∈ X there exists an
element y ∈ D such that d(x, y) = d(x, D), where d(x, D) = inf{d(x, z) : z ∈ D}.

We denote the family nonempty proximinal and bounded subsets of D by P(D) and the family of
all nonempty closed and bounded subsets of X by CB(X).

For two bounded subsets A and B of a metric space (X, d), the Pompeiu–Hausdorff metric
between A and B is defined by

H(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(A, y)}.

Definition 3. ([16]) Let (X, d) be a metric space. A multi-valued mapping T : X → CB(X) is said to be
nonexpansive if H(Tx, Ty) ≤ d(x, y), for all x, y ∈ X.
An element p ∈ X is called a fixed point of T if p ∈ T(p). The set of all fixed points of T are denoted by F(T).

Definition 4. ([17]) Let (X, d) be a metric space and D be a nonempty subset of X. A multi-valued mapping
T : D → CB(D) is called ∗−nonexpansive if for all x, y ∈ D and ux ∈ T(x) with d(x, ux) = inf{d(x, z) :
z ∈ T(x)}, there exists uy ∈ T(y) with d(y, uy) = inf{d(y, w) : w ∈ T(y)} such that

d(ux, uy) ≤ d(x, y).

It is clear that if T is a ∗−nonexpansive map, then PT is a nonexpansive map, where PT for T : D → P(D) is
defined by

PT(x) = {y ∈ T(x) : d(x, y) = d(x, T(x))},
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for all x ∈ D.

Definition 5. ([16]) Let (X, d) be a metric space. A multi-valued mapping T : X → CB(X) is said to satisfy
condition (I) if there is a nondecreasing function f : [0, ∞)→ [0, ∞) with f (0) = 0, f (r) > 0 for r ∈ (0, ∞)

such that d(x, T(x)) ≥ f (d(x, F(T))), for all x ∈ X.

First of all, Moudafi [18] introduced the viscosity approximation method for approximating the
fixed point of nonexpansive mappings in Hilbert spaces. Since then, many authors have been extending
and generalizing this result by using different contractive conditions on several spaces. For some new
works in these fields, we can refer to [19–27]. Inspired and motivated by the research work going on in
these fields, in this paper we investigate the convergence of some viscosity approximation processes
for ∗−nonexpansive multi-valued mappings in a complete convex metric spaces. The convergence
theorems for finite and infinite family of such mappings are also presented. Our results can improve
and extend the corresponding main theorems in the literature.

2. Main Results

At first, we present two lemmas that are used to prove our main result. Since the idea is similar to
the one given in Lemmas 2.1 and 2.2 in [28], we only state the results without the proof:

Lemma 1. Let {un} and {vn} be sequences in a convex metric space (X, W, d) and {an} be a sequence in [0, 1]
such that lim supn an < 1. Set

d = lim sup
n→∞

d(un, vn) or d = lim inf
n→∞

d(un, vn).

Let un+1 = W(vn, un, an) for all n ∈ N. Suppose that

lim sup
n→∞

(d(vn+1, vn)− d(un+1, un)) ≤ 0,

and d < ∞.Then
lim inf

n→∞
|d(vn+k, un)− (1 + an + an+1 + . . . + an+k−1)d| = 0,

for all k ∈ N.

Lemma 2. Let {un} and {vn} be bounded sequences in a convex metric space (X, W, d) and {an} be a sequence
in [0, 1] with 0 < lim infn an ≤ lim supn an < 1. Suppose that un+1 = W(vn, un, an) and

lim sup
n→∞

(d(vn+1, vn)− d(un+1, un)) ≤ 0.

Then limn→∞ d(vn, un) = 0

Now, we state and prove the main theorem of this paper:

Theorem 1. Let D be a nonempty, closed and convex subset of a complete convex metric space (X, W, d) and
T : D → P(D) be a ∗−nonexpansive multi-valued mapping with F(T) 6= ∅, such that T satisfies condition
(I). Suppose that an ∈ [0, 1] such that 0 < lim infn an ≤ lim supn an < 1 and cn ∈ (0,+∞) such that
limn→∞ cn = 0. Let {xn} be the Mann type iterative scheme defined by

xn+1 = W(zn, xn, an), (1)

where d(zn+1, zn) ≤ H(PT(xn+1), PT(xn)) + cn for zn ∈ PT(xn). Then {xn} converges to a fixed point of T.
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Proof. Take p ∈ F(T). Then p ∈ PT(p) = {p} and we have

d(xn+1, p) = d(W(zn, xn, an), p)

≤ and(zn, p) + (1− an)d(xn, p)

≤ an H(PT(xn), PT(p)) + (1− an)d(xn, p)

≤ and(xn, p) + (1− an)d(xn, p) = d(xn, p).

Hence, {d(xn, p)} is a decreasing and bounded below sequence and thus limn→∞ d(xn, p) exists for
any p ∈ F(T). Therefore {xn} is bounded and so {zn} is bounded. On the other hand,

d(zn+1, zn) ≤ H(PT(xn+1), PT(xn)) + cn ≤ d(xn+1, xn) + cn.

Thus
lim sup

n→∞
(d(zn+1, zn)− d(xn+1, xn)) ≤ 0.

Applying Lemma 2, we get
lim

n→∞
d(zn, xn) = 0.

Hence, we have limn→∞ d(xn, T(xn)) = 0. Since T satisfies condition (I), we conclude that
limn→∞ d(xn, F(T)) = 0. Next, we show that {xn} is a Cauchy sequence. Since limn→∞ d(xn, F(T)) = 0,
thus for ε1 > 0, there exists n1 ∈ N such that for all n ≥ n1

d(xn, F(T)) ≤ ε1

3
.

Thus, there exists p1 ∈ F(T) such that for all n ≥ n1,

d(xn, p1) ≤
ε1

2
.

It follows that

d(xn+m, xn) ≤ d(xn+m, p1) + d(p1, xn) ≤ d(xn, p1) + d(p1, xn)

≤ ε1

2
+

ε1

2
= ε1,

for all m, n ≥ n1. Therefore {xn} is a Cauchy sequence and hence it is convergent. Let limn→∞ xn = p∗.
We will show that p∗ is a fixed point of T.
Since limn→∞ xn = p∗, thus for given ε2 > 0, there exists n2 ∈ N such that for all n ≥ n2,

d(xn, p∗) ≤ ε2

4
.

Moreover, limn→∞ d(xn, F(T)) = 0 implies that there exists a natural number n3 ≥ n2 such that for all
n ≥ n3,

d(xn, F(T)) ≤ ε2

12
,

and thus there exists p2 ∈ F(T) such that for all n ≥ n3,

d(xn, p2) ≤
ε2

8
.
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Therefore

d(T(p∗), p∗) ≤ d(T(p∗), p2) + d(p2, T(xn3)) + d(T(xn3), p2) + d(p2, xn3) + d(xn3 , p∗)

≤ H(PT(p∗), PT(p2)) + 2H(PT(p2), PT(xn3)) + d(p2, xn3) + d(xn3 , p∗)

≤ d(p∗, p2) + 2d(p2, xn3) + d(p2, xn3) + d(xn3 , p∗)

≤ d(p∗, xn3) + d(xn3 , p2) + 2d(p2, xn3) + d(p2, xn3) + d(xn3 , p∗)

= 2d(xn3 , p∗) + 4d(xn3 , p2) ≤
ε2

2
+

ε2

2
= ε2.

Thus, p∗ ∈ T(p∗) and therefore p∗ is a fixed point of T.

As a result of Theorem 1, Corollaries 1 and 2 are obtained:

Corollary 1. Let D be a nonempty, closed and convex subset of a complete convex metric space (X, W, d),
T : D → P(D) be ∗−nonexpansive multi-valued mapping with F(T) 6= ∅ such that T satisfies condition (I)
and f : D → D be a contractive mapping with a contractive constant k ∈ (0, 1). Then the iterative sequence
{xn} defined by

xn+1 = W(zn, f (xn), an)

where zn ∈ PT(xn) and 0 < lim infn an ≤ lim supn an < 1, converges to a fixed point of T.

Corollary 2. Let D be a nonempty, closed, and convex subset of a complete convex metric space (X, W, d) and
T : D → P(D) be ∗−nonexpansive multi-valued mapping with F(T) 6= ∅. Let {xn} be the Ishikawa type
iterative scheme defined by

xn+1 = W(z
′
n, xn, an)

yn = W(zn, xn, bn)

where z
′
n ∈ PT(yn), zn ∈ PT(xn), and {an}, {bn} ∈ [0, 1]. Then {xn} converges to a fixed point of T if and

only if limn→∞ d(xn, F(T)) = 0.

The above result can be generalized to the finite and infinite family of ∗−nonexpansive
multi-valued mappings:

Theorem 2. Let D be a nonempty, closed, and convex subset of a complete convex metric space (X, W, d) and
{Ti : D → P(D) : i = 1, . . . , k} be a finite family of ∗−nonexpansive multi-valued mappings such that
F := ∩k

i=1F(Ti) 6= ∅. Consider the iterative process defined by

y1n = W(z1n, xn, a1n),

y2n = W(z2n, xn, a2n),

. . .

y(k−1)n = W(z(k−1)n, xn, a(k−1)n),

xn+1 = W(zkn, xn, akn),

where ain ∈ [0, 1] and zin ∈ PTi (y(i−1)n) (y0n = xn), for all n ∈ N and i = 1, 2, . . . , k. Then {xn} converges
to a point in F if and only if limn→∞ d(xn, F) = 0.
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Proof. The necessity of conditions is obvious and we will only prove the sufficiency. Let p ∈ F.
we have

d(y1n, p) = d(W(z1n, xn, a1n), p)
≤ a1nd(z1n, p) + (1− a1n)d(xn, p)
≤ a1n H(PT1(xn), PT1(p)) + (1− a1n)d(xn, p)
≤ a1nd(xn, p) + (1− a1n)d(xn, p) = d(xn, p),

d(y2n, p) = d(W(z2n, xn, a2n), p)
≤ a2nd(z2n, p) + (1− a2n)d(xn, p)
≤ a2n H(PT2(y1n), PT2(p)) + (1− a2n)d(xn, p)
≤ a2nd(y1n, p) + (1− a2n)d(xn, p)
≤ a2nd(xn, p) + (1− a2n)d(xn, p) = d(xn, p),

...
d(y(k−1)n, p) = d(W(z(k−1)n, xn, a(k−1)n), p)

≤ a(k−1)nd(z(k−1)n, p) + (1− a(k−1)n)d(xn, p)
≤ a(k−1)n H(PTk−1(y(k−2)n), PTk−1(p)) + (1− a(k−1)n)d(xn, p)
≤ a(k−1)nd(y(k−2)n, p) + (1− a(k−1)n)d(xn, p)
≤ a(k−1)nd(xn, p) + (1− a(k−1)n)d(xn, p) = d(xn, p).

Thus

d(xn+1, p) = d(W(zkn, xn, akn), p)

≤ aknd(zkn, p) + (1− akn)d(xn, p)

≤ akn H(PTk (y(k−1)n), PTk (p)) + (1− akn)d(xn, p)

≤ aknd(y(k−1)n, p) + (1− akn)d(xn, p)

≤ aknd(xn, p) + (1− akn)d(xn, p) = d(xn, p).

Therefore, {d(xn, p)} is a decreasing sequence and so d(xn+m, p) ≤ d(xn, p), for all n, m ∈ N. As in
the proof of Theorem 1, {xn} is a Cauchy sequence and thus limn→∞ xn exists and equals to some
p∗ ∈ D. Again, with a similar process as in the proof of Theorem 1, we conclude that p∗ ∈ PTi (q) for
all i = 1, . . . , k. Hence p∗ ∈ F and this completes the proof of theorem.

Theorem 3. Let D be a nonempty, closed, and convex subset of a complete convex metric space (X, W, d) and
{Ti : D → P(D) : i = 1, . . .} be an infinite family of ∗−nonexpansive multi-valued mappings such that
F := ∩∞

i=1F(Ti) 6= ∅. Consider the iterative process defined by

xn+1 = W(z
′
n, xn, an)

yn = W(zn, xn, bn)

where z
′
n ∈ PTn(yn), zn ∈ PTn(xn) and {an}, {bn} ∈ [0, 1]. Then {xn} converges to a point in F if and only if

limn→∞ d(xn, F) = 0.
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