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Summary 

During the last century pollution generated in urban areas has become a prevalent impact in most 

streams and rivers worldwide. Although many waste water treatment plants (WWTP) have been 

implemented to reduce pollution, they do not eliminate it completely and their effluents still 

contribute complex mixtures of pollutants. The ecological effects of these effluents depend on their 

chemical composition and the final concentration in the receiving water body, which varies with the 

water flow of the receiving river or stream. While the effects of urban effluents on stream water 

quality are relatively well studied, we still lack a clear picture about their effects on ecosystem 

processes. This dissertation analysed the effects of urban pollution on stream ecosystem functioning, 

by combining observational and manipulative experiments.  

The effects of pollution can be exacerbated when stressors operate in concert. Among these, 

hydrological alterations are of special concern, either natural or human-induced, as low flows reduce 

the dilution capacity of the streams. Thus, I first assessed the joint effects of urban pollution and 

water stress on stream functioning. I studied several ecosystem processes in 13 Mediterranean 

streams of contrasting dilution capacity, and defined in each stream a control site and an impact site, 

upstream and downstream from the sewage inputs, respectively. Urban effluents caused complex 

effects on ecosystem functioning, but most ecosystem rates increased in proportion to pollutant 

subsidies of labile organic matter, nutrients and pharmaceutically active compounds. The main 

driver of the variability observed in ecosystem functioning, were variations in water chemistry, 

especially in the concentration of pharmaceutical drugs. These results show the effects of pollution 

to depend on the effluent nature and its dilution in the receiving stream, and that even highly 

concentrated urban effluents tend to subsidize biological activity. 

The effects of WWTP effluents are difficult to measure in the field by comparing reaches 

upstream and downstream from the effluent input, as the upstream sites are usually affected by other 

sources of pollution. This situation calls for a manipulative experiment, which I performed following 

a Before-After/Control-Impact design. Part of the effluent of a large tertiary urban WWTP was 

diverted into a small nearly unpolluted stream and the effects were assessed during a whole year. 

Despite of being highly diluted, the effluent subsidized most of the measured processes, only a few 

remained unaffected, and biofilm nutrient uptake capacity  was the only being reduced. These results 

show that even highly diluted effluents can exert significant effects on stream ecosystem 

functioning. 

Theoretically, we expected WWTP effluents to cause a subsidy-stress response on ecosystem 

functioning depending on their final dilution, but the two studies so far discussed showed no such a 

pattern. Therefore, we performed a laboratory experiment in which a series of artificial streams were 

subjected to a gradient of WWTP effluent concentration, ranging from pure stream water to pure 

effluent. Biofilm biomass accrual was the only process following the subsidy-stress pattern, whereas 

WWTP effluent subsidized most processes, although they showed complex responses to their 
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concentration. Biofilm nutrient uptake capacity was again the only process stressed by the effluent. 

Most of the processes showed clear legacy effects, although they followed contrasting patterns. 

These results can help to improve the understanding of the effects of urban pollution on ecosystem 

functioning, but highlight the complexity of the response. 

Overall, this dissertation showed that urban effluents exert significant but complex effects on 

stream ecosystem functioning, which can be especially detrimental for the processes mediated by 

microbial communities. Therefore, these results highlight that it is crucial to maintain environmental 

water flows and adjust to the thresholds proposed by current pollutant legislations, not to reduce the 

dilution capacity of streams and rivers. Further investigation is needed to determine the overall 

ecosystem effects of these mixtures of pollutants, in order to optimize treatment processes and 

reduce their ecological impacts.  
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CHAPTER 1 

 

General introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 

 

 

 

  



 

5 

 

1. Urban pollution: a global environmental problem 

1.1.  Something new under the sun 

Humans have been altering their physical environment throughout their 4 million years of history, 

although as McNeill (2000) reported, “there has never been anything like the 20
th

 century”. During 

this last century, the unprecedented growth in the human population has been accompanied by 

increases in resource extraction and economic development (Fig. 1; Krausmann et al., 2009). 

Furthermore, environmental change has kept rising during the first two decades of the 21
st
 century 

(Ripple et al., 2017). 

 

Figure 1. Exponential increase of human population, use of resources and economical development during the 20th 

century. From Krausmann et al., 2009.  

These changes, however, are not evenly distributed across the globe and usually, they are 

intensified associated to urban areas. Although cities only cover about 3% of the global terrestrial 

surface, they are responsible for more than 75% of the world consumption of resources (Madlener & 

Sunak, 2011). Urbanization is one of the main forces shaping this last century, prompting a dramatic 

shift from rural areas to cities. By the end of the last century, more than 50% of the global 

population were already urban dwellers and this percentage is still increasing (Jones & O´Neill, 

2016). Human activity is leaving a pervasive and persistent signature on Earth, to the point that some 

of the pre-defined boundaries for the resilience and sustainability of our planet have already been 

trespassed (Steffen et al., 2015). The vast extents of these transformations have encouraged scientists 

to propose that a new geological epoch has begun, coined by the name of Anthropocene (Waters et 

al., 2016), in which humans are the main geophysical force shaping the planet (Foley et al., 2005). 

The Anthropocene is characterized by changes in land use and cover, altered biogeochemical cycles, 

altered climate and air quality and by reduced biodiversity (Dudgeon et al., 2006). Therefore, it is 

irrefutable that human activities are drastically changing the environment and affecting every 

ecosystem on Earth (UNE, 2019).  

1.2. Streams and rivers: walking on thin ice 
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Streams and rivers are among the most threatened ecosystems on Earth, (Vörösmarty et al., 2010; 

Dudgeon, 2013). Running waters are dynamic ecosystems, which host a large biodiversity not only 

limited to the wetted channel. They occupy the lowest-lying areas of the landscape and thus, they 

can be influenced by the upstream drainage network, surrounding land, riparian and hyporheic zones 

and downstream reaches (Fig. 2) (Sabater et al., 2009).  

 

Figure 2. A three-dimensional structure of a riverbed, which takes into account the longitudinal, lateral and vertical 

dimensions. The figure is of public domain.  

Historically, cities have grown along river watercourses, floodplains and deltas due to their 

water availability (Grimm et al., 2008). Water is one of the most essential natural resources for 

humans, and necessary in many domestic, industrial or sanitation processes. But humans have 

radically adapted freshwater ecosystems to their needs and have threatened most streams and rivers 

worldwide, impairing ecosystem sustainability, energy reserves, water security and ecosystem health 

(Grant et al., 2012), to the point that few of these systems are unaltered right now. Vörösmarty and 

collaborators (2010) showed that nearly 65% of the freshwater ecosystems are already from 

moderately to highly threatened, and that water security is at stake for more than 80% of the 

worldwide population. The main threats for streams and rivers encompass among others over-

exploitation of water resources (Fig. 3a), water pollution and destruction or degradation of the 

drainage area (Fig. 3b), flow modification (Fig. 3c), stream channel simplification or channelization 

(Fig. 3d), invasion of non-native species (Fig. 3e) and climate change (Fig. 3f).  
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Figure 3. Photographs of different urban pressures threatening freshwater ecosystems: (a) irrigation canals for water 

exploitation, (b) point-source pollution and degradation of the riparian area, (c) diversion schemes for water 

abstraction, (d) simplification of the stream channel, (e) invasion of alien species and (f) water scarcity. All 

photographs are provided by Arturo Elosegi.  

1.3.  Forces acting at the same time: the role of multiple stressors 

Stressors do not act as single factors in river ecosystems but co-occur and trigger complex ecological 

responses (Sabater et al., 2018). Multiple stressors do affect riverine biological communities 

(Dudgeon, 2010; Sabater et al., 2016) and river ecosystem functioning (Johnston et al., 2015), which 

can ultimately affect goods and services the society derives from them (MEA, 2005). Sometimes, 

however, stressor interactions can produce ecological surprises, which can be driven by direct and 

indirect stressor interactions (Romero et al., 2018), the high variability among biological responses 

(Berthelsen et al., 2018) and by the different resistance and resilience of ecosystems (Jackson et al., 

2016). Overall, the number of stressors affecting river ecosystems and their geographical extent has 

increased dramatically during recent decades. For instance, the European Environment Agency 

(EEA, 2012) showed that the main pressures affecting European water bodies were pollution (both 

point and diffuse sources) and hydromorphological alterations. More recent reports also recognized 

nutrient pollution to be one of the most prevalent drivers shaping European streams and rivers (EC, 

2015). Nevertheless, these stressors are usually examined in isolation (O´Brien et al., 2019), which 

yields a simplistic view of the real situation (Dafforn et al., 2016). In order to face the constraints 

imposed by these single-stressor approaches, several projects and studies have been developed. For 

instance, Birk and collaborators (2018), in an exhaustive review of multistressor-impact across 

Europe, showed the interaction between nutrient stress and hydrological alteration to be the most 

common, affecting nearly 60% of the European rivers (Fig. 4).  



 

8 

 

 

Figure 4. Frequency of multiple stressors occurring in European streams and rivers (Y axis). In the X axis 

combinations among two different types of stressors are shown:  “Hydr” = hydrological alterations, “Nutr” = 

pollution by excessive nutrient concentrations, “Morph” = morphological alterations of the stream channel, “Tox” = 

pollution by toxic substances, “Therm/opt” = stress from warm water temperature, “Biol”= invasion of alien species, 

and “Chem” = chemical pollution. Modified from Birk et al., (2018). 

1.4. Increasing worldwide pollution 

During the last century huge amounts of biologically active compounds are being released into 

freshwater ecosystems (Petrovic et al., 2013), undermining their biodiversity and functioning 

(Kaushal et al., 2012; Rosi-Marshall et al., 2015). Chemical pollution is a multiple stressor on its 

own, due to the ever-changing mixture of compounds reaching aquatic environments (e.g., Jackson 

et al., 2016), which include organic matter (Carey & Migliaccio, 2009), excessive nutrient 

concentrations, such as nitrogen and phosphorus (Meyer et al., 2005), fine sediments (Miserendino 

et al., 2008) and organic micropollutants, including pesticides, metals, pharmaceutically active 

compounds, personal care products or illicit drugs (Rosi-Marshall et al., 2015; Sabater et al., 2016; 

Aymerich et al., 2016). Streams and rivers are net receivers of these substances and affect most 

streams and rivers across Europe. Many of these suffer from moderate to high concentrations of both 

nitrogen (Fig. 5a) and phosphorus (Fig. 5b) (Grizzetti et al., 2017). The composition and 

concentration of these substances, however, depend on different factors. On the one hand, their 

chemical composition varies according to the prevailing land use, such as agricultural practices, 

industrial activities or human conurbations (Posthuma et al., 2008), which are making up the mixture 

(Altenburger et al., 2015).  On the other hand, their final concentration varies according to the water 

flow of the receiving river or stream, as it will correspond to the dilution capacity of the receiving 

water body (Rice & Westerhoff, 2017). This situation is predicted to exacerbate in the near future 

corresponding to stream flow reductions due to climate change and increased water abstraction and 

increasing concentration of pollutants (Rice & Westerhoff, 2017), which will impair even more the 

ecological status of streams and rivers.  
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Figure 5. Concentrations of nitrogen (left) and phosphorus (right) across European streams and rivers. From Grizzetti 

et al., (2017).    

1.5.  Facing the problems 

During the last decades, the rising concern about the deterioration of freshwater ecosystems has 

resulted in new legislative frameworks, such as the Water Framework Directive (WFD) on the 

European Union (EU), the Clean Water Act (CWA) developed by the United States Environmental 

Protection Agency or the Canadian Protection Act (CPA). In the EU the WFD defined in the year 

2000 is an ambitious policy to reduce anthropogenic pressures and achieve good ecological status for 

the EU member water bodies. Accordingly, all EU member states must assess the ecological status 

of freshwater ecosystems in their territory and establish programs of measures to reduce impacts and 

improve ecological status. As a consequence, management and legislative objectives shifted from the 

control of pollution sources to ecosystem integrity (Borja et al., 2011; Birk et al., 2012). 

Furthermore, additional legislations have also been developed to reduce the amount of pollutants 

entering freshwater systems, with the aim of protecting the environment from any adverse effect 

caused by sewage inputs. For instance, the European Commission Directive 91/271/EEC established 

in the year 1991 the Urban Waste Water Treatment Directive (EC, 1991), which encouraged the 

collection, treatment and discharge of urban and industrial wastewater. Since its establishment, this 

legislation has been continuously updating and broadening the number of substances and compounds 

required fulfilling ecological rates. Examples include the legislation outlined by the European 

Commission in the year 2008 (EC, 2008) by which ecological control rates were defined for a wide 

range of organic and inorganic pollutants, or the one outlined in the year 2012 (EC, 2012), which 

described pharmaceuticals as emerging contaminants, and thus as priority hazardous substances. As 

a result, with the aim of achieving the standards established by these laws, there has been a boom in 

the infrastructures to collect, store, treat and transport wastewater of anthropogenic origin, especially 

in wastewater treatment plants (WWTP). During the last decades, for example, more than 2,500 and 

39,000 WWTPs have been put in operation in Spain (Serrano, 2007) and Europe (EUROSTAT, 

2017), respectively.  
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Wastewater treatment plants (WWTP) are the most important technological advances to 

treat the sewage generated in urban areas. During the 20
th
 century, they were introduced on a large 

scale to avoid public health risks derived from the high concentration of pollutants in residual water, 

so that countries that could afford their costs greatly benefited human health and water security 

(Vörösmarty et al., 2010). In year 2015, 7 out of 10 people in the world had access to safe drinking 

water, completely free of contamination, and 4 out of 10 people had safe sanitation services for an 

appropriate wastewater treatment (WHO & UNICEF, 2017). However, there are huge differences 

among countries in respect to drinking water and sanitation. In Europe, for example, the proportion 

of population connected to at least secondary WWTPs exceeds the 80%, and those connected to 

tertiary treatment ranges from 20 to 80%, depending on the EU member (EUROSTAT, 2017). The 

situation is much worse in developing countries, where around 850 million people still lack access to 

safe drinking water (Fig. 6a), 2.3 billions lack the access to basic sanitation services (Fig. 6b) and 

many millions die each year due to waterborne diseases (WHO & UNICEF, 2017). Existing 

pollution legislation in developing countries is generally weak and not adequately implemented due 

to its high economic cost (Beyene et al., 2009). Consequently, more than 160 million people collect 

drinking water directly from surface water sources in Sub-Saharan Africa and Oceania, and more 

than 900 million still practice open defecation in Sub-Saharan Africa, Oceania and Central-Southern 

Asia (WHO & UNICEF, 2017).  

 

Figure 6. Proportion of the global population using at least basic drinking water services (top) and basic sanitation 

services in 2015 (bottom). Modified from WHO & UNICEF (2017).  

Over the course of time, a significant progress has been made in improving wastewater 

treatment processes, and current sewage treatment systems can include primary, secondary and 
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tertiary stages (Fig. 7). Primary treatment consists of a set of physical processes to remove solid 

materials and floating substances such as oils. After separation of the heaviest and lightest solids, 

they are removed and the remaining liquid is subjected to secondary treatment. During the second 

stage, dissolved or suspended nutrients and organic compounds are digested through oxidation 

processes, reducing biochemical oxygen demand and toxicity of the wastewater. The slurry so 

produced is separated to remove microorganisms, organic matter and toxic substances from the 

treated water. Finally, the slurry is subjected to tertiary treatment, which involves a series of 

additional steps after secondary treatment to a further reduction of recalcitrant organic compounds, 

nutrients, turbidity, metals and pathogens (Gerba & Pepper, 2015).In general, tertiary treatment is 

applied by micro-filtration or synthetic membranes which involve physicochemical treatments, 

including coagulation, filtration, activated carbon adsorption of organic compounds, reverse 

osmosis, aerobic granulation, ozonation or photocatalytic degradation, among others (Gerba & 

Pepper, 2015; Ameta, 2018). Thanks to this final stage effluent water quality is greatly improved 

before being released into the environment.  

 

Figure 7. Schematic picture of a complex WWTP operation system which includes primary, secondary and tertiary 

treatments. The figure shown is of public domain. 

2. Urban pollution and river ecosystems 

2.1. Not all that glitters is gold 

WWTPs are a necessary step to improve wastewater quality before it is discharged to surface or 

groundwater and re-enter water supplies (Carey & Migliaccio, 2009), and to reduce the symptoms 

associated to high pollution levels, such as anoxia or eutrophication (Brack et al., 2007). For 

instance, Arroita et al. (2018) showed that stream water concentration of ammonium significantly 
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reduced from 1.02 ± 0.6 to 0.15 ± 0.1 mg N L
-1

 after putting in operation a WWTP in the Oria River, 

Spain (Fig. 8).   

 

Figure 8. Decline in monthly means of ammonium concentration (NH4) after putting in operation a wastewater 

treatment plant (dashed grey line) in the Oria River, Spain. From Arroita et al. (2018). 

Nevertheless, WWTPs are unable to effectively remove all contaminants from sewage and 

their effluents still contribute complex mixtures of substances to freshwater ecosystems (Rodriguez-

Mozaz et al., 2015). Substances that pass through biological wastewater treatments without being 

fully degraded include nutrients (Waiser et al., 2011), organic matter (Spänhoff et al., 2007), fine 

sediments (Wakelin et al., 2008), pathogens (Subirats et al., 2017), as well as other emerging 

contaminants, such as metals (Holeton et al., 2011), pesticides (Kuster et al., 2008), pharmaceuticals 

(Petrovic et al., 2005), personal care products (de Solla et al., 2016) or illicit drugs (Rosi-Marshall et 

al., 2015). As an example, Carey & Migliaccio (2009) reported that even a WWTP completing a 

secondary treatment can produce effluents with high nitrogen and phosphorus concentrations, 

ranging from 15 to 25 mg N L
-1

 and from 4 to 10 mg P L
-1

, respectively. As a consequence, WWTP 

effluents cannot match the characteristics of the water in the receiving systems and therefore, induce 

detrimental consequences on ecosystem health (Hubbard et al., 2016). On the one hand, effluents 

can alter water chemical properties, impairing physico-chemistry, by decreasing oxygen (Walsh et 

al., 2005) and increasing nutrient concentrations (Waiser et al., 2011). On the other hand, they can 

also modify hydrology of the receiving streams by disturbing their natural flow regime (Merseburger 

et al., 2011).  

2.2. Why should we care about ecosystem level responses? 

During the last decades, concern about ecosystem deterioration due to WWTP effluent inputs has 

greatly increased and with that, the research addressing this issue. According to a search in Science 

Direct for research articles published during the last decade (2009-2019) with the terms “wastewater 

treatment plant” or “wastewater treatment plant effluent”, a total of 67,200 articles were computed, 

among which 4,600 have been published only during the first months of the present year 2019. 

When including the term “effects of” to the previous search, the initial number was reduced to 

14,600 research articles. However, when analyzing the latter search, among the most relevant 100 

articles ranked by Science Direct, 40 articles focused on technological advances or methodological 

optimisations of the WWTPs. The next most abundant articles (35) analyzed the impacts of WWTP 
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effluents on water quality, focusing on both surface and drinking waters. Another 10 studies focused 

on restoration methods and tools for a safe reuse of these sewage waters. And finally, only 15 out of 

the 100 studies assessed ecological effects and impacts of WWTP effluents on ecosystem-level 

responses. While most of them focused on ecosystem structure (14), just a single study analyzed the 

effects on ecosystem functioning (1). This literature search highlights that, despite that many efforts 

have been channelled to mitigate the impacts of these anthropogenic inputs, there has been little 

evaluation of their success; even if rivers provide fundamental services that depend on their structure 

and functioning (Perrings et al., 2010). 

3. The crux of the matter: impacts on ecosystem structure and function 

Urban pollution can affect both ecosystem structure and functioning. Ecosystem structure refers to 

the physico-chemical features of the ecosystems, such as channel morphology, water quality or the 

composition of biological communities (from microbes to animals). Ecosystem functioning, on the 

other hand, refers to the set of processes that regulate the fluxes of energy and matter as a 

consequence of the joint activity of physical features and biological communities (von Schiller et al., 

2017). These include organic matter decomposition and retention, biofilm exo-enzymatic activities, 

nutrient retention and ecosystem metabolism, among others (Sandin & Solimini, 2009). Thus, both 

approaches range from purely physical processes to more biologically mediated ones (Palmer & 

Febria, 2012) and can cover different spatial and temporal scales, from patch/habitat to river segment 

(Frissell et al., 1986) and from hours to years.  

In general, all these processes respond to a wide variety of environmental stressors, such as 

chemical pollution (Aristi et al., 2015; Ferreira et al., 2015), flow regulation or water abstraction 

(Arroita et al., 2016; von Schiller et al., 2015) and water flow interruption (Acuña et al., 2005; 

Zoppini et al., 2016). Ecosystem structure and functioning influence each other and thus, they could 

be viewed as the two sides of the same coin  (von Schiller et al., 2017), but the relation among them 

is not always straightforward and often one cannot automatically inferred from the other (Cardinale 

et al., 2012). Traditionally, most efforts have been conducted to the development of methods for 

characterization of ecosystem structure, neglecting ecosystem functioning (Palmer & Febria, 2012). 

It has only been during the last decades that assessment of ecosystem functioning has gained 

popularity among scientists and managers (Jax, 2010), mainly because it is a key point of 

ecosystems services (MEA, 2005) and an integral component of ecological status (EC, 2000).  

3.1. Impacts on ecosystem structure 

As above-mentioned, WWTP effluents can alter hydrological and the chemical properties of the 

receiving streams. Concerning hydrological alterations, effluents can disturb the natural flow regime 

of streams, by increasing stream water flow, water velocity, mean channel depth and width 

(Merseburger et al., 2011). These inputs are especially relevant during periods of lower discharge 
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(Wakelin et al., 2008) or in arid regions (Brooks et al., 2006), where they can make up most of the 

stream water flow (Rice & Westerhoff, 2017) transforming intermittent streams into perennial 

systems. This situation represents a paradox in which the flow needed to support the development of 

biological communities is provided by urban effluents (Boyle & Fraleigh, 2003), which 

simultaneously affects water quality and development of the biological communities (Canobbio et 

al., 2009). In addition, WWTP effluents can also affect water quality, increasing temperature, 

electrical conductivity (Merbt et al., 2015) as well as the concentration of nutrients (Carey & 

Migliaccio, 2009) and pollutants (Rodriguez-Mozaz et al., 2015), while decreasing water pH 

(Englert et al., 2013) and oxygen concentration (Walsh et al., 2005). As mentioned above, all these 

conditions will undermine the structure of biological communities by affecting their growth, 

survival, dispersal and reproduction, from microbes (Drury et al., 2013) and algae (Corcoll et al., 

2015), to macrophytes (Gücker et al., 2006), benthic invertebrates (Ortiz & Puig, 2007) and fish 

(Northington & Hershey, 2006). These hydrological and chemical alterations induced by WWTP 

effluents condition the composition and relative abundance of riverine biological communities, as 

they establish environmental filters and additional selective pressures. As a consequence, some 

species abandon the reach and look for a refuge in other nearby reaches (James et al., 2008), while 

other are replaced by more tolerant and opportunistic species (Miserendino et al., 2008).  

3.2. Impacts on ecosystem functioning 

Even if all these structural changes are likely to affect stream ecosystem functioning (Elosegi & 

Sabater, 2013), we still lack a clear picture about the effects of urban pollution on ecosystem 

functioning. Ecosystem processes constitute a major pathway of energy transfer and nutrient cycling 

in rivers (Tank et al., 2010), which is mainly driven by the joint activity of the above-mentioned 

biological communities, from microbes to fish (Tilman et al., 2014). Consequently, as they depend 

on physical features and biological communities, they are likely to be also affected by WWTP 

effluents.  

 Biofilm activity and nutrient uptake are among the most sensitive processes to 

anthropogenic pollution, especially to wastewater discharges (Martí et al., 2009). Stream biofilms 

are complex biological communities formed by autotrophic and heterotrophic organisms, including 

algae, cyanobacteria, bacteria, fungi and microfauna, growing on solid substrata embedded in a 

matrix of polysaccharides and other polymers (Lock, 1993; Romaní, 2010). These organisms 

produce extracellular enzymes for the degradation of organic matter into smaller molecules, which 

then become available for bacterial growth and microbial nutrient uptake (Romaní et al., 2012). 

Biofilms are major sites for uptake, storage and transformation of dissolved organic matter and 

nutrients, and thus, play a key role in stream biogeochemistry, contributing to nutrient dynamics, 

primary production, CO2 emission and organic matter decomposition (Battin et al., 2016). Indeed, 

biofilms can contribute to transform and retain up to 50-75% of the nitrogen and 30% of the 

phosphorus entering streams (Mulholland, 2004), which can alleviate the effects of anthropogenic 
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nutrient inputs (Ribot et al., 2013). Therefore, biofilms can be highly responsive to environmental 

stressors (Sabater et al., 2007) and thus, respond to pollution derived from WWTP effluents (Proia et 

al., 2013).  

Likewise, biofilms occupy a key position at the basis of food webs, although their resource 

availability is usually determined by other ecosystem-level processes, such as carbon and nutrient 

retention (Rowe & Richardson, 2001). In particular, nutrient retention reflects the process by which 

dissolved nutrients are removed from the water column and immobilized in particulate form or 

transformed into gaseous form, leaving permanently the system (Newbold, 1996). It is strongly 

related to the self-purification capacity of running waters, one of the most important ecosystem 

services provided by rivers, as uptake can reduce the load of nutrients transported downstream 

(Schlesinger & Bernhardt, 2013). Whole-ecosystem nutrient uptake can be controlled by physical 

mechanisms such as turbulence or hyporheic flow, chemical mechanisms such as sorption processes, 

as well as by biological uptake (Mulholland & Webster, 2010). Nutrient uptake can also be assessed 

for specific compartments of the ecosystem, including biofilm growing on rocks, leaf litter, 

macrophytes or sediments among others (Mulholland & Webster, 2010), which allows disentangling 

their specific role or contribution relative to the whole-ecosystem  process (Hoellein et al., 2009). 

Both measurements for nutrient uptake are controlled by the biomass and activity of autotrophic and 

heterotrophic organisms, as well as by physico-chemical features, such as water discharge and 

nutrient concentrations. As a consequence, both can be strongly affected by multiple environmental 

stressors, such as water diversion or flow regulation (Arroita et al., 2016; von Schiller et al., 2016), 

altered sediment dynamic and siltation (Ryan et al., 2007), salinization (Arce et al., 2014) or WWTP 

derived effluents (Gücker et al., 2006; Proia et al., 2017). Stream nutrient uptake capacity is 

generally higher under relatively pristine conditions, but this capacity is easily overwhelmed while 

ambient nutrient concentrations increase (Ensign & Doyle, 2006).  

Ecosystem metabolism is another process potentially sensitive to urban inputs. It is an 

ecosystem process that integrates the joint metabolic activity of organisms and reflects the energy 

transfer and organic carbon fluxes along fluvial network (Battin et al., 2008). Ecosystem metabolism 

typically includes gross primary production (GPP), which is the synthesis of new organic matter 

from solar energy and inorganic carbon, and ecosystem respiration (ER), which is the oxidation of 

the organic matter to obtain energy (Odum, 1956). GPP is controlled by light availability (Hill et al., 

2001), temperature (Gillooly et al., 2001) and nutrient concentration (Mulholland et al., 2001; 

Roberts et al., 2007), whereas ER is mainly controlled by temperature (Yvon-Durocher et al., 2012) 

and organic matter availability (Acuña et al., 2004). Similar to nutrient uptake, ecosystem 

metabolism can also be assessed for specific compartments, such as the biofilm growing on rocks or 

the macrophytes (Tank et al., 2010), which allows disentangling their specific contribution to the 

whole ecosystem (Acuña et al., 2011). Both whole ecosystem and compartment specific 

approximations are good indicators of the ecological status of streams and rivers, as both have key 

implications for the energy flow and the cycling of materials in ecosystems and determine the life-
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supporting capacity of riverine biological communities (Young et al., 2008; Bunn et al., 2010). In 

most running waters, photosynthesis and aerobic respiration are predominant ways to synthesize and 

oxidize organic matter. Thus, as both processes affect oxygen concentration, most techniques to 

measure stream metabolism are based on oxygen changes (Izagirre et al., 2008; Demars et al., 2015). 

Due to the intrinsic characteristics above-mentioned, stream metabolism can be strongly affected by 

multiple environmental stressors, such as flow regulation (Uehlinger, 2000; Hall et al., 2015), 

drought (Timoner et al., 2012), channelization (Hope et al., 2014), altered sediment dynamics 

(Young et al., 2008) or WWTP derived effluents (Aristi et al., 2015; Corcoll et al., 2015). 

Ecosystem metabolism varies across seasons, years or rivers due to natural variations in 

environmental factors (Tank et al., 2010; Bernhardt et al., 2018). However, direct and indirect 

effects of human activities are likely to alter the potential or the efficiency of rivers to perform the 

key ecosystem services of nutrient assimilation and retention (Fellows et al., 2006; Mulholland et 

al., 2008), which could consequently exhacerbate the sensitivity of metabolism to human impacts by 

altering the magnitude and timing of both GPP and ER (Arroita et al., 2018; Bernhardt et al., 2018). 

Increased nutrient and organic matter loads, as well as exposure to contaminants, are among the 

most common impacts driving ecosystem metabolism (Arroita et al., 2018).  

In the same way, organic matter decomposition is another process sensitive to 

anthropogenic inputs. Decomposition of coarse particulate organic matter constitutes one of the 

major pathways of energy transfer and nutrient recycling in rivers (Tank et al., 2010). Organic 

matter entering streams suffers complex changes until it is finally decomposed to inorganic matter, 

this detritus pathway being essential for the recycling of nutrients and other materials (Gessner et al., 

2010). The process involves different biotic and abiotic processes, which include leaching of soluble 

compounds, microbial conditioning by fungi and bacteria, and fragmentation by invertebrates or 

physical abrasion (Hieber & Gessner, 2002), all of them overlapping in time (Wantzen et al., 2008). 

Organic matter decomposition generally involves placing pre-weighted substrates in the stream and 

estimating the mass lost over time (Benfield, 2006). Traditionally, the “leaf litter method” has been 

the most used approach, but during the last years artificial substrates, such as wooden sticks or 

standard cotton strips, have gained popularity among scientists, as a simpler, more standardised 

method that responds in the same way as leaf litter (Arroita et al., 2012; Tiegs et al., 2013). Organic 

matter decomposition is an integrative process that is a good indicator of impaired river ecosystem 

functioning (Young et al., 2008). It can be affected by a wide range of environmental factors 

(Chauvet et al., 2016), such as flow regulation (Arroita et al., 2015), channelization (Elosegi & 

Sabater, 2013), drought (Datry et al., 2011), salinization (Gómez et al., 2016) or effluents derived 

from WWTPs (Peters et al., 2013; Ferreira et al., 2015). Elevated nutrient concentrations have been 

shown to increase organic matter decomposition rates, which can be driven by an improvement in 

the palatability of leaves (Ferreira et al., 2015) and by an increase in the density of invertebrates 

(Pascoal et al., 2003). However, under other contaminants, such as heavy metals, decreased organic 
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matter breakdown rates have been reported (Niyogi et al., 2001), driven by deterioration in food 

resources and consumer communities.  

4. “Beautiful hypotheses and ugly facts” 

In 1996, Dennis Chitty (Chitty, 1996), a world-class population biologist, summarized his whole 

career in a book titled "Do lemmings commit suicide? Beautiful hypotheses and ugly facts". In this 

book, Professor Chitty told of the countless experiments he had performed over the years seeking to 

test hypotheses on the reasons behind large fluctuations in the populations of small rodents, such as 

lemmings and voles. Every time a "beautiful hypothesis" seemed too logical not to be true, the 

experimental facts went against that hypothesis. I guess most ecologists have experienced this 

feeling at times. I certainly have, what led me to think on the reasons behind facts contradicting 

seemingly impeccable hypotheses, and what could also explain contradictory results obtained under 

similar experimental settings. 

4.1. Reasons behind contrasting results 

Despite large efforts to understand the effects of urban pollution on ecosystem functioning, we still 

lack a clear, coherent picture (Peters et al., 2013; Kaushal et al., 2014, 2018; Ferreira et al., 2018). 

Many studies have been carried out on streams and rivers receiving urban inputs by measuring 

ecosystem processes such as nutrient uptake, ecosystem metabolism or organic matter 

decomposition. However, they often yield contrasting results. For instance, while most of the works 

report decreased uptake rates for both nitrogen and phosphorus (e.g., Martí et al., 2004, 2009; 

Merseburger et al., 2005, 2011; Kunz et al., 2017), some report enhanced nutrient uptake rates, 

especially for ammonium, below WWTP effluents (e.g., Ruggiero et al., 2006; Stutter et al., 2010), 

or no overall effects (e.g., Haggard et al., 2001, 2005; Sánchez-Perez et al., 2009). Similarly, most 

works show increased GPP and ER below effluent inputs (e.g., Izagirre et al., 2008; Aristi et al., 

2015; Arroita et al., 2018), although some works showed a reduction (e.g., Rodríguez-Castillo et al., 

2017) or non-significant changes (e.g., Sánchez-Perez et al., 2009). Finally, contrasting responses 

have also been shown for organic matter decomposition, which can either increase (e.g., Pascoal et 

al., 2003; Ferreira et al., 2015; Solagaistua et al., 2018), decrease (e.g., Lecerf et al., 2006; Piscart et 

al., 2009, 2011; Englert et al., 2013) or remain unaffected (e.g., Chadwick & Huryn, 2003; Abelho 

& Graça, 2006; Baldy et al., 2007).  

 These contrasting results suggest that the response of ecosystem functioning to urban 

pollution may also depend on other factors. On the one hand, most of the streams and rivers are 

simultaneously subjected to multiple stressors (Sabater et al., 2018), such as hydrological variability 

in freshwater ecosystems (Ponsatí et al., 2016), warmer temperatures (Acuña et al., 2008) or diffuse 

pollution (Brett et al., 2005), which can mask the effects of chemical pollution (Stevenson & Sabater 

2010). On the other hand, the effects of WWTP effluents can also vary depending on their final 
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concentration in the receiving water body, which is mainly determined by the size of the WWTP 

(i.e., the amount of people it services), and the dilution capacity of each river (Rice & Westerhoff, 

2017). The dilution capacity changes temporally with the hydrological regime of each river, which 

varies between climatic regions (Martí et al., 2009) and seasons (Petrovic et al., 2011). Therefore, 

the final concentration of WWTP effluents can span a large range. For instance, in the province of 

Gipuzkoa (northern Spain) it averages 35% (Province Government of Gipuzkoa, 2015), whereas it 

can reach 100% in Mediterranean regions during periods in which streams naturally cease to flow 

(e.g., Merseburger et al., 2011), leading to obviously different effects. Additionally, the effects can 

also vary depending on the composition of the biological community in the receiving freshwater 

system (Segner et al., 2014). Nevertheless, the effects of chemical pollution do not only depend on 

the intensity of the stress, but also on the timing of the exposure (Camargo & Alonso, 2006) as well 

as on the legacy effects that effluents can exert even when they are reduced or no longer received 

(Jarvie et al., 2013). For instance, Arroita et al. (2018) showed that adequate treatment of wastewater 

after the implementation of a WWTP greatly improved stream water quality and ecological status, 

although the recovery of the system can take a long time. Finally, most of the studies assessing the 

effects of urban pollution on ecosystem functioning, are limited to the comparison between reaches 

located up- and downstream from a WWTP effluent (e.g., Drury et al., 2013), neglecting the 

influence that can exert on the response all these potentially confounding factors affecting urban 

streams. 

4.2. The Subsidy-Stress Hypothesis 

Among all the possible reasons listed above, one of the most important factors behind contrasting 

results in ecosystem functioning is likely to be the final concentration of WWTP effluents in the 

receiving water body.  According to the classic “Subsidy-Stress hypothesis” (Odum et al., 1979), 

pollutants and other environmental factors can be grouped in two main groups according to their 

effects on stream biological communities (Fig. 9). Some substances, such as nutrients and organic 

matter, can promote biological activities up to a threshold, where they are no longer assimilable for 

the river biota, become toxic and start reducing biological activities below “normal” levels (i.e., 

Stress). Some other substances, such as heavy metals or pesticides, are always detrimental for the 

river biota and they tend to reduce biological activities roughly in proportion to their concentration.  
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Figure 9. The “Subsidy-Stress Hypothesis”. Modified from Odum et al. (1979). 

Both assimilable and toxic compounds affect stream ecosystem functioning (e.g., Aristi et 

al., 2015, 2016), although depending on their mixed composition and their resulting concentration in 

the receiving water body, the final effect of WWTP effluents is difficult to predict, either a subsidy 

or a stress for biological activity. Besides, it is also likely that pollution will have different effects 

depending on the biological activity and thus, different biological activities could show different 

response curves to the concentration of WWTP effluents (Fig. 10). For some biological activities 

(e.g., diversity of the biological community), pollution will be a stress and thus, it will decrease the 

process even at low concentrations of pollution. Otherwise, for some other biological activities 

pollution will play as a subsidy and promote them, although they could also differ in the response 

pattern. For instance, some of the processes (e.g., nutrient uptake, breakdown rates, gross primary 

production or Chlorophyll-a concentration) will follow the Subsidy-Stress scheme, being subsidized 

up to a maximum and afterwards, being reduced and decreased below “normal “ levels. 

Nevertheless, they could also differ according to the maximum concentration at which they reach 

peak activities, some substances reaching this peak at lower concentrations of pollution (e.g., 

nutrient uptake), while others reaching it at higher concentrations (e.g., Chlorophyll-a 

concentration). Finally, some other biological activities (e.g., ecosystem respiration or biofilm 

biomass), will be subsidized by the effluent without following the Subsidy-Stress pattern, but being 

permanently promoted. For this reason, in this dissertation I have analyzed a large variety of 

ecosystem processes, instead of analysing a single one, in order to obtain a more clear picture about 

the effects of urban pollution on ecosystem functions.  
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Figure 10. Schematic picture of the different response patterns that could be expected for different biological 

activities in relation to the concentration of WWTP effluent in the receiving water body. Therefore, I would expect 

urban effluents to stress some of the biological responses measured (e.g., diversity of biological communities), to 

subsidize some other responses (e.g., ecosystem respiration or biofilm biomass) or instead, cause subsidy-stress 

response patterns in some other biological responses (e.g., nutrient uptake, gross primary production or 

descomposition rates). 
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5. Objectives 

This PhD dissertation studies the effects of urban pollution on stream ecosystem functioning by 

combining field and laboratory experiments and by measuring the response at different levels, from 

the biofilm to the whole ecosystem. More specifically, we try to answer the following questions:  

1. What are the combined effects of urban pollution and water scarcity on the functioning of 

stream ecosystems?  

2. What are the effects of a well-treated and highly diluted WWTP effluent input on stream 

ecosystem structure and functioning?  

3. How do stream ecosystem processes respond to a gradient of WWTP effluent contribution? 

What are the pollution legacy effects and how can they modulate the recovery capacity of 

the system? 
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Abstract 

Urban streams are affected by pollution and hydrological alterations, which determine their dilution 

capacity and thus the final concentration of pollutants. We assessed the combined effects of urban 

pollution and water scarcity in 13 Mediterranean streams covering a wide range in their dilution 

capacity.  In each stream, we defined a control reach upstream and an impact reach downstream 

from an input of urban sewage. In each reach, we measured biofilm biomass accrual and phosphorus 

uptake capacity, organic matter decomposition, and whole-reach nutrient uptake and metabolism. 

Sewage caused complex effects on ecosystem functioning. It subsidized most functional processes, 

except organic matter decomposition and biofilm phosphorus uptake capacity, which decreased with 

increasing pollutant concentrations. Most processes showed a linear response to pollution, and none 

of them followed the subsidy-stress pattern we expected. The variability observed in ecosystem 

functioning was driven by chemical characteristics, especially the concentration of drugs, although 

the response depended on the process. Overall, the response of stream ecosystem functioning to 

urban pollution depended mainly on the nature of the effluent and on the dilution capacity of the 

receiving water body. 

Keywords: Wastewater; nutrients; pharmaceutically active compounds (PhACs); hydrology; 

subsidy-stress; ecosystem functioning. 
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Introduction 

Increasing urbanization and human population growth affect water quality and the ecosystem 

functioning of urban streams (Kaushal et al., 2015). Urban areas continuously release complex 

mixtures of biologically active compounds into aquatic environments (Rice & Westerhoff, 2017). 

While sewage is commonly treated in wastewater treatment plants (WWTPs) in more affluent 

countries, in less favored countries two thirds of urban wastewaters are still released to streams and 

rivers without any treatment (EEA, 2018). WWTPs greatly reduce nutrients, organic matter and 

pathogens reaching the environment but do not completely eliminate them, and their effluents still 

contain a wide range of pollutants, including nutrients and organic matter (Carey & Migliaccio, 

2009), heavy metals (Deycard et al., 2014), and organic micro-pollutants such as pesticides, personal 

care products or pharmaceutically active compounds (PhACs) (Kuzmanovic et al., 2015; Mandaric 

et al., 2018). Some of these substances, such as heavy metals, are toxic and particularly stress 

biological activity, whereas others, such as nutrients, can subsidize (i.e., promote) biological activity 

up to a threshold, but stress it at higher concentrations, resulting in the so-called Subsidy-Stress 

pattern (sensu Odum et al., 1979).  

 The effects of pollution can be exacerbated in streams subjected to co-occurring stressors, 

such as increased temperature or changes in hydrology (Sabater et al., 2018). Among these, 

hydrological stress is of special concern, especially where it converts perennial watercourses into 

temporary ones as a consequence of climate change and water abstraction (Acuña et al., 2014). Arid 

and semi-arid regions such as the Mediterranean are amongst the most threatened by hydrological 

stress, and further deterioration could lead to critical environmental problems. Under natural 

conditions, Mediterranean streams are characterized by large seasonal variations in discharge, with 

large floods during autumn and spring and strong flow reductions in summer (Sabater & Tockner, 

2010), when their dilution capacity is severely reduced. Under global change scenarios, WWTP 

effluents are expected to make up a larger proportion of water flow in many receiving ecosystems 

(Döll & Schmied, 2012; Rice & Westerhoff, 2017). Water use and management in these ecosystems 

makes them particularly sensitive to the combined effect of chemical and hydrological stressors 

(Skoulikidis et al., 2017). 

 While the effects of water pollution and hydrological alteration on stream biota have been 

relatively well studied (e.g., Sabater et al., 2016; Rodríguez-Castillo et al., 2017; Romero et al., 

2018; Tornés et al., 2018), implications for ecosystem functioning are still unclear. Ecosystem 

functioning reflects the fluxes of energy and matter in ecosystems, but its relevance is seldom 

considered in monitoring schemes aiming to assess the ecological river status (von Schiller et al., 

2017). Previous analyses of effects of chemical stress on ecosystem functioning have yield 

inconsistent results. For instance, among the works studying the effect on ecosystem metabolism, 

most of them show increased metabolic rates below sewage inputs (e.g., Aristi et al., 2015), although 



 

44 

 

there are some other works that show a reduction (e.g., Rodríguez-Castillo et al., 2017) or a non-

significant effect (e.g., Sánchez-Perez et al., 2009). Similarly, most of the works studying the effects 

of urban pollution on nutrient dynamics report decreased uptake rates below sewage inputs (e.g., 

Martí et al., 2004), although there are some others that report increased (Stutter et al., 2010) or 

unaffected (e.g., Haggard et al., 2005) uptake rates. In the same way, contrasting results have also 

been reported for organic matter decomposition, with increased (e.g., Pascoal et al., 2003), decreased 

(e.g., Englert et al., 2013) or even unaffected decomposition rates (e.g., Baldy et al., 

2007).Therefore, these inconsistencies likely derive from the specific characteristics of the effluents, 

the dilution capacity of each site, or the particular response of each ecosystem function, some being 

subsidized and others stressed (Pereda et al., 2019).  

 Here, we examined the combined effects of urban pollution and hydrological alteration on 

stream ecosystem functioning. With this purpose, we selected 13 Mediterranean streams that 

received either treated or untreated sewage inputs and differed in their dilution capacity. We 

assumed that the type of sewage as well as the final concentration in the receiving ecosystem would 

define the impact of urban pollution. We predicted that (i) sewage inputs would deteriorate physico-

chemical conditions and increase the concentration of pollutants, (ii) these changes in water 

chemical characteristics would alter ecosystem functioning below sewage inputs, by increasing 

metabolic rates, decomposition or biofilm biomass, while decreasing nutrient uptake capacity, and 

(iii) the interaction between urban pollution and hydrology would explain the variability in 

ecosystem functioning.  

Material and Methods 

Study sites and experimental design 

We conducted this study in small tributaries of the lower Ebro River (NE, Iberian Peninsula) (Fig. 

1). We selected 13 streams ranging in order from 2 to 4, which drained calcareous basins mainly 

dominated by forested and dry land agriculture. All streams experienced strong seasonal flow 

variability as a consequence of the Mediterranean climate, compounded by water abstraction and 

groundwater exploitation. In each stream we selected two reaches, one upstream (Control) and 

another downstream (Impact) from urban effluents. The sites were studied from autumn 2015 to 

spring 2016.  

The experiment followed a natural repeated measures complete block design (RCB, Casella, 

2008), on which the 13 streams acted as blocks, reaches represented the experimental manipulation, 

and the two sampling campaigns represented repeated measurements. While water chemical 

characteristics, including basic physico-chemical variables, nutrients and pharmaceutically active 

compounds (PhACs), were measured during both sampling campaigns (autumn 2015 and spring 

2016), hydrology and stream functioning were only measured during the second sampling campaign. 
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Control and Impact reaches were set as close as possible from each other, the distance among them 

ranging from a few hundred meters in the smaller streams to a few kilometres in the larger ones. 

Special care was taken not to include any dam or tributary along the watercourse, which could 

obscure the effect of the urban input. Impact reaches received either treated or untreated sewage 

from small towns ranging from 500 to 7,000 population equivalents (Fig. 1).   

 

Figure 1. Sampling sites in the lower Ebro River Basin. Black triangles represent streams receiving effluents from 

WWTPs, while dots represent untreated urban sewage inputs. Thicker line represents the main Ebro River and thinner 

lines tributary streams. The bottom right inset shows the location of the sampling sites within the Ebro River Basin, 

and its location in Europe.  

Water chemical characteristics 

Temperature (T), pH,  electrical conductivity (EC) and dissolved oxygen (DO) concentration were 

measured using hand-held probes (WTW multiparameter handheld meters Multi 350i and WTW 

340i SET, WTW Wissenschaftlich, Weilheim, Germany; YSI ProODO handled; YSI Incorporated, 

Yellow Springs, OH, USA). Collected water samples were immediately filtered (0.7-µm pore size 

pre-combusted glass-fiber filters, Whatman GF/F, Whatman International Ldt., Kent, UK) and 

frozen until analysis. We determined the concentration of soluble reactive phosphorus (SRP) 

[molybdate method (Murphy & Riley, 1962)], on a manual double-beam UV-1800 UV-Vis 

spectrophotometer (Shimadzu, Shimadzu Corporation, Kyoto, Japan). Concentrations of anions 

[nitrate (NO3
-
) and nitrite (NO2

-
)] and cations [ammonium (NH4

+
)] were determined by ion 

chromatography on a Dionex ICS-5000 (Dionex Corporation, Sunnyvale, USA). Dissolved organic 
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carbon (DOC) concentration was determined by catalytic oxidation using a Shimadzu TOC-V CSH 

coupled to a TNM-1 module (Shimadzu Corporation, Kyoto, Japan).  

We quantified the concentration of pharmaceutically active compounds (PhACs), as they are 

one of the most abundant groups of micro-contaminants in urban waters and are considered pseudo-

resistant contaminants causing adverse effects on living organisms and aquatic environment (Ellis, 

2006). We analysed the concentration of PhACs following the method described by Gros et al. 

(2012). Briefly, we carried out the analyses with an off-line solid phase extraction followed by ultra-

high-performance liquid chromatography coupled to ion trap tandem mass spectrometry (UHPLC-

QqLIT-MS2). Chromatographic separation was carried out with a Waters Acquity Ultra-

Performance™ liquid chromatography system, coupled to a 5500 QTRAP hybrid triple quadrupole-

linear ion trap mass spectrometer (Applied Biosystems, Foster City, CA, USA) with a turbo Ion 

Spray source. Quantification was carried out by isotope dilution. Finally, we acquired and processed 

all data using Analyst 1.5.1 software. Detailed information about method performance is described 

in Mandaric et al. (2018).  

Hydrology 

We estimated water velocity and discharge from the time vs. conductivity curves obtained with pulse 

additions of NaCl conducted on the same day in the Control and Impact reaches of the same stream. 

We calculated mean water velocity (m s
-1

) dividing reach length by the time elapsed between the 

pulse addition and the conductivity peak. We calculated water discharge based on the mass-balance 

approach, using electrical conductivity as a surrogate of the chloride concentration (Martí & Sabater, 

2009). Additionally, we characterized the physical habitat of the reaches measuring width and depth 

of the wet channel at ten equidistant transects. We also placed a water level datalogger per reach 

(Solinst Levelogger Edge 3001; Solinst Canada Ltd., Georgetown, USA), to measure absolute 

pressure and temperature during the experiment. These data were then corrected for the atmospheric 

pressure measured by additional loggers (Barologger, Solinst Levelogger Edge 3001) to obtain 

continuous water level data. Using these data we calculated a proxy of the hydrological stress per 

reach, which was computed as the total number of days during the study period in which the average 

water level remained below 5 cm (Acuña et al., 2005).  

Response processes 

We assessed the functional response of streams by measuring several ecosystem processes at both 

habitat and ecosystem scales. Habitat-scale functioning was analyzed by the activity of the biofilm, 

measuring its biomass accrual and its capacity to retain SRP, and of the microbial heterotrophic 

community, by measuring its capacity to decompose organic matter. Ecosystem scale measurements, 

on the other hand, included reach-scale nutrient uptake and metabolism. 

Biofilm functioning 
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We measured the biofilm biomass accrual rate and SRP uptake capacity in biofilm carriers. These 

are artificial substrata with high surface-to-volume ratio used in aquaria to promote biofilm 

attachment and which have been used as standard substrata in stream studies (Baldwin et al., 2003; 

Elosegi et al., 2018). We used plastic cubic carriers (2.5 cm in side, SERA GmbH D52518, 

Heinsberg, Germany). Five biofilm carriers per reach were deployed randomly during the first 

sampling campaign (October 2015), tied with nylon line to roots or to metal bars, and recovered after 

6 months of incubation (April 2016). After recovering, they were stored in stream water inside dark 

plastic containers and carried to the laboratory, where they were immediately subjected to a bioassay 

to measure SRP uptake capacity. Once this was performed, they were individually frozen in plastic 

bags for posterior biomass determination. 

To measure SRP uptake capacity (SRPUC, µg P h
-1

), biofilm carriers were first acclimated 

individually for 30 min in an orbital shaker (Agitator-Incubator INF-66123 Multitron Standard, 

BIOGEN Científica S.L., Madrid, Spain) at 100 rpm shaking speed, 20 ºC and 180 µmol m
-2

 s
-1

 

light. The carriers were immersed in an acclimation solution of 1:5 v/v mixture of Perrier carbonated 

mineral water (Nestlé, Vergèze, France) in deionized water designed to ensure a sufficient supply of 

micronutrients. After acclimation, biofilm carriers were individually incubated in 60-mL of the same 

solution but spiked with phosphate (K2HPO4, 10 mM = 310 mg P L
-1

) to achieve a final 

concentration of 5 µM P (155 µg P L
-1

), and incubated under the same conditions for 1 h. This 

concentration was chosen to ensure saturating conditions for the biofilm while allowing the nutrient 

decline during the incubation and the subsequent determination of uptake. After the incubation, 10 

mL from each vial were filtered (0.7-µm pore size, Whatman GF/F) and frozen until analysis. 

Control treatments using non-colonized biofilm carriers were also used. SRP uptake was calculated 

as the difference between the mean SRP concentration of the control and the colonized substrates, in 

the incubation volume (L) and time (h).  

To determine biomass accrual rates (BAT, g m
-2

 d
-1

) during the incubation period, biofilm 

from the carriers was detached in 100 mL of deionized water using a sonifier ultrasonic cell 

disruptor (Branson Ultrasonic TM, Branson Ultrasonic Corporation, Emerson Electric, USA) 

combining 3 min of pulses (70% of amplitude) and 2 min of continuous mode at the same amplitude. 

We filtered one subsample of the biofilm solution on pre-weighed filters (0.7-µm pore size, 

Whatman GF/F), which were oven-dried (70 ºC, 72 h), weighed, combusted (500 ºC, 5 h) and 

reweighed to obtain the ash-free dry mass (AFDM). AFDM values were then divided by the area of 

the artificial substrata and by the number of days incubated within the stream, in order to express the 

results per surface unit and day of accrual rate.  

Organic matter decomposition  

We measured organic matter decomposition (OMD) using tongue depressors (sticks, 15 x 1.8 x 0.2 

cm) made of untreated Canadian poplar wood (Populus nigra x canadensis, Moench) (Arroita et al., 
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2012). Wooden sticks were individually numbered, punched, oven-dried (70 ºC, 72 h) and weighed. 

Each depressor was individually tied with fishing line and deployed in the streams at five sites 

randomly distributed per reach, tied with nylon line to roots or to metal bars. Sticks were retrieved 

after 6 months of incubation. Upon removal, sticks were stored individually in laboratory filter paper 

and carried to the laboratory. Once there, depressors were washed and brushed to remove mineral 

particles, oven-dried (70 ºC, 72 h), weighed, combusted (500 ºC, 5 h) and re-weighed to estimate the 

ash-free dry mass (AFDM). Initial dry mass of sticks was corrected for leaching following Arroita et 

al. (2012). During the experiment, some of the sticks were broken, so we extrapolated the total mass 

of these sticks from the bits recovered using their remaining area as a reference. Organic matter 

decomposition rates were calculated following the negative exponential model (Petersen & 

Cummins, 1974). However, as streams differed significantly in temperature, we used the coefficients 

based on thermal sums (kdegree-day) to correct for its effect (Cummins et al., 1989). For degree-day 

calculations, we calculated the thermal sum in degree days above 0 ºC on the collection day (i.e., the 

sum of daily mean water temperature over the incubation period measured by water level 

dataloggers). 

Whole-reach nutrient uptake 

We measured whole-reach nutrient uptake for ammonium (NH4
+
, as NH4Cl) and soluble reactive 

phosphorus (SRP, as KH2PO4) using the pulse addition technique (Martí & Sabater, 2009). We 

dissolved both nutrients in 30 L of stream water together with NaCl as a hydrological conservative 

tracer (Bencala et al., 1987). Three reaches were dry or only presented some big and disconnected 

pools with stagnant water, so we could not measure the nutrient uptake. On each addition, we poured 

the solution to the stream in a single pulse at the head of the selected sub-reach, where appropriate 

mixing was ensured. At the downstream end, we automatically recorded EC every 10 s using a 

portable conductivity meter (WTW 340i SET) up to the return to basal conditions. During the 

breakthrough curve, we collected water samples for each nutrient, which were filtered (0.7-µm pore 

size, Whatman GF/F) and frozen until analysis. Finally, we used the mass-balance approach to 

estimate areal uptake (U, µg min
-1

 m
-2

) for SRP (SRPAU) and NH4
+
 (NH4AU), which reflects the 

nutrient uptake capacity at reach scale (Martí & Sabater, 2009).  

Metabolism 

We measured ecosystem metabolism from diel DO changes by the open-channel method (Odum, 

1956). We first set hydraulically homogeneous reaches in each of our study sites, and recorded DO 

and T at 5-min intervals during 24 h by means of optical oxygen probes (YSI 6150 connected to YSI 

600 OMS; YSI Inc., Yellow Springs, OH, USA) deployed at the beginning and end of each reach. 

Depending on the hydraulic conditions of each reach we analyzed the results with either the single-

station or the double-station method. We used the single-station method in five reaches that were 

longer than three times the ratio between water velocity (v) and re-aeration coefficient (k) (3v k
-1

) 
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and the two-station method in the rest of reaches (Reichert et al., 2009). Before the deployment and 

after field measurements, all probes were immersed together in the same bucket with aerated water 

to inter-calibrate them. We estimated reaeration coefficients with the night-time regression method 

(Hornberger & Kelly, 1975). We used the whole night data for the regression, but if it did not result 

significant we used different time intervals after sunset (e.g. 5 or 3 h) to improve the regression 

values. Nominal water travel time (T, min) was calculated by the time elapsed between the peaks of 

the breakthrough curves at the upstream and downstream sampling stations following several NaCl 

additions (Hubbard et al., 1982). Finally, we calculated ecosystem respiration (ER), net ecosystem 

metabolism (NEM) and gross primary production (GPP) from DO variations (all expressed in g O2 

m
-2

 d
-1

). ER was calculated as the sum of net metabolism rate during night and respiration rate 

during day, which was estimated by the linear interpolation between values of net metabolism rate of 

sunrise and sunset of the nights before and after the day of interest. NEM was calculated as the sum 

of the net metabolism over the 24 h of interest. GPP was calculated as the difference between ER 

and NEM.  

Data analysis 

Using the information above, we generated six data matrices. The first included the eight water 

chemical characteristics (i.e., pH, EC, DO and concentrations of NH4
+
, NO2, NO3, SRP and DOC). 

We classified the ca. 80 PhACs in water samples according to their chemical structure and 

mechanism of action, and derived new variables by summing the relevant concentrations (Table S1 

in Appendix S1). Thus, the second data matrix specified the eight groups of PhACs classified as 

biocides (i.e., AbMacrolide, Metronidazole, Ofloxacin, Ronidazole, Sulfamethoxazole, 

Tiabendazole, Trimethropin and Levamisole), whereas the third defined the twenty one groups 

classified as non-biocide drugs (i.e., Acetaminophen, ARBs, Benzodiazepine, BetaBlocker, 

Carbazepamine, CCB, Clopidogrel, Fibrate, Glibenclamide, H2Antagonist, Iopromide, LoopDiuretic, 

Loratadine, NSAID, Opioid, Salbutamol, SSRI, Statin, Tamsulosin, Trazodone and Venlafaxine). 

The fourth data matrix described the six hydrological properties (i.e., Temperature, Water flow, 

Width, Mean velocity, Depth and Hydrological stress). The fifth data matrix included the seven 

functional processes: biofilm biomass accrual (BAT), SRP uptake capacity (SRPUC), organic matter 

decomposition (OMD), whole-reach nutrient uptake of SRP (SRPAU) and NH4
+
 (NH4AU), and 

metabolism (GPP and ER). And finally, the sixth data matrix included the geographical location of 

the sampling units (i.e., latitude and longitude).  

Once the data shape and co-linearity were checked (Tukey, 1977), we applied univariate and 

multivariate techniques to test for the effects of factor Treatment (Control vs. Impact). Besides, in 

those variables linked to water chemical characteristics (i.e., physico-chemical variables and 

concentration of nutrients, biocides and non-biocide drugs), which were measured during both 

sampling campaigns, we also tested for the effect of factor Time (autumn vs. spring) to see whether 
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chemical differences depended on the season. The effect of Time was not tested on hydrology and 

stream functioning, as they were measured only during the second campaign.  

Non-metric multidimensional scaling (NMDS) (Legendre & Legendre, 2012), a technique 

for unconstrained ordination, was applied to disclose the main gradients in water chemical 

characteristics, hydrology and stream functioning, using the Euclidean distance. Multivariate 

analysis of variance (Anderson, 2001; McArdle & Anderson, 2001), also Euclidean-distance based, 

was applied to test for the main effects of Treatment and Time, as well as the interaction effect. This 

was achieved via functions metaMDS() and adonis2() of package vegan (Oksanen et al., 2018); p-

values were obtained using 9999 permutations. In the univariate case, to test for the same effects as 

in the multivariate case, we used mixed effects models (Pinheiro &Bates, 2000), obtaining the 

corresponding effect size. Effect size values were computed from parameter estimation obtained 

after linear mixed modelling applied to the individual environmental and functional variables. These 

were fitted with function lme of package nlme (Pinheiro et al., 2018). The packages MuMIn (Barton, 

2018) and sjPlot (Lüdecke, 2018) were used to obtain R
2
 statistics and graphs, respectively.  

Multivariate and univariate techniques were also applied to test for the relationship between 

stream functioning and water chemical characteristics together with hydrology. Redundancy analysis 

(RDA) (Legendre & Legendre, 2012), combined with stepwise variable selection and variation 

partitioning (Borcard et al., 1992), was used in the multivariate case. Since stream functioning 

variables were measured at differing scales, they were standardized by subtracting the mean and then 

dividing by the standard deviation prior to analysis. Likewise, since these variables were found to be 

spatially autocorrelated, they were spatially detrended prior to analysis (spatial autocorrelation 

unduly affects model selection procedures). Since we detrended the response matrix, we also 

detrended all potentially explanatory variables. Stepwise variable selection was applied in two steps. 

In the first step, this procedure was used to find the best (four) partial models, i.e. models explaining 

multivariate variation in stream ecosystem functioning in terms of only water physico-chemical 

variables, only biocides, only non-biocides drugs, and only hydrology. We call these explanatory 

models partial (independent) RDA models. By combining the variables selected in each of the above 

procedures we obtained a non-parsimonious model explaining ecosystem functioning in terms of 

thirteen explanatory variables of all four kinds. Since the procedure above described took into 

account co-linearity between explanatory variables in each group (biocides, hydrology…), but not 

between explanatory variables classified in different groups, variance inflation factors and 

subsequent partitioning of variation  showed that multiple sources of co-linearity were present in this 

non-parsimonious RDA model. For this reason, we applied a second stepwise selection procedure on 

the set of the previously selected 13 explanatory variables. As a result, we obtained a parsimonious 

RDA model. In the univariate case, generalised linear modelling was applied ( Madsen &Thyregod, 

2010).  
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R software was used for data analysis (R Core Team 2017). R coding (Appendix S2) and 

data (Appendix S3) sufficient to reproduce completely our methods are provided. 

Results 

Water chemical characteristics 

Sewage inputs affected significantly water chemical characteristics of the Impact reaches in the 

thirteen streams (Table 2A.1, Table S3 and Fig. S1). The pH and DO concentration significantly 

decreased below sewage inputs, while EC did not vary significantly between reaches (Table 1A.1, 

Tables S4-S5). Effluents increased significantly the concentrations of most nutrients, including NO2
-
, 

NH4
+
, SRP and DOC, with the only exception of NO3

-
, which did not vary significantly between 

control and impact reaches (Table 1A.1, Table S4-S5). Besides, some of these chemical 

characteristics differed significantly between seasons, although the interaction between treatment 

and time was not statistically significant, showing that differences among treatments were not season 

dependant (Table 2A.1, Tables S4-S5). Nonetheless, except in the case of DO (R
2
 = 37%), pH (R

2
 = 

24%) and NO2
- 

(R
2
 = 94%), the amount of variability in water chemical characteristics that was 

explained by sewage inputs or repeated sampling was minor. 

Table 1. Effect size of sewage inputs (Treatment) and sampling campaigns (Time) for environmental and functional 

variables, expressed as the percentage of change observed in Impact reaches with respect to Control reaches and in 

spring with respect to autumn, respectively. Note that the size of the effect for Time (i.e. autumn vs. spring) is 

computed only for Water chemical characteristics, because the rest of the variables were measured only once 

(spring). If either Treatment or Time were not significant, effect sizes are not shown (this is indicated by the hyphen 

mark). If either Treatment or Time was significant, effect sizes are specified by their corresponding values, with 

green upward looking arrows indicating a positive change and red down looking arrows indicating a negative change.  

Response EffectSizeTreatment (%) EffectSizeTime (%) 

A) Water chemical characteristics 

    1) Physico-chemical variables and nutrients 

pH ↓ 3 ↑ 2 

EC (µS cm
-1

)  -  ↓ 11 

DO (mg L
-1

) ↓ 40 ↑ 25 

NO3
-
 (mg N L

-1
)  -   -  

NO2
-
 (mg N L

-1
) ↑ 1000  -  

NH4
+
 (mg N L

-1
) ↑ 107 ↓ 0.3 

SRP (mg P L
-1

) ↑ 48 ↓ 3 

DOC (mg C L
-1

) ↑ 59 - 

    2) Biocide concentration 

AbMacrolide (ng L
-1

) ↑ 259  -  

Levamisole (ng L
-1

) ↑ 3071  -   

Metronidazole (ng L
-1

)  -  ↓ 31500 

Ofloxacin (ng L
-1

) ↑ 730 ↓ 48 
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Ronidazole (ng L
-1

)  -   -  

Sulfamethoxazole (ng L
-1

)  -  ↓ 87 

Tiabendazole (ng L
-1

)  -   -  

Trimethropin (ng L
-1

) - - 

    3) Non-biocide drugs concentration 

Acetaminophen (ng L
-1

) ↑ 23629 ↑ 93 

ARBs (ng L
-1

) ↑ 2369  -  

Benzodiazepine (ng L
-1

) ↑ 471  -  

BetaBlocker (ng L
-1

) ↑ 19840  -  

Carbazepamine (ng L
-1

) ↑ 1242  -  

CCB (ng L
-1

) ↑ 370  -  

Clopidogrel (ng L
-1

) ↑ 2000 ↓ 100 

Fibrate (ng L
-1

) ↑ 3836  -  

Glibenclamide (ng L
-1

)  -   -  

H2Antagonist (ng L
-1

)  -   -  

Iopromide (ng L
-1

) ↑ 800 ↑ 767 

LoopDiuretic (ng L
-1

) ↑ 1545  -  

Loratadine (ng L
-1

)  -   -  

NSAID (ng L
-1

) ↑ 2210  -  

Opioid (ng L
-1

) ↑ 4833  -  

Salbutamol (ng L
-1

)  -  ↑ 600 

SSRI (ng L
-1

)  -   -  

Statin (ng L
-1

) ↑ 912  -  

Tamsulosin (ng L
-1

)  -   -  

Trazodone (ng L
-1

) ↑ 2000  -  

Venlafaxine (ng L
-1

) ↑ 1350 - 

B) Hydrology 

Temperature (ºC)  -   -  

Water Flow (m
3
 s

-1
)  -   -  

Width (m)  -   -  

Mean Velocity (m s
-1

)  -   -  

Depth (m)  -   -  

Hydrological Stress (days) - - 

C) Ecosystem functioning 

Biofilm biomass accrual (g m
-2

 d
-1

) ↑ 83  -  

Biofilm SRP uptake capacity (µg P h
-1

) ↓ 111  -  

Whole-reach SRP areal uptake (µg P m
-2

 min
-1

)  -   -  

Whole-reach NH4 areal uptake (µg N m
-2

 min
-1

) ↑ 11650  -  

Gross primary production (mg O2 m
-2

 d
-1

)  -   -  

Ecosystem respiration (mg O2 m
-2

 d
-1

) ↑ 138  -  

Organic matter decomposition (dd
-1

.10
-5

) - - 

Sewage inputs (Treatment), season (Time), and Treatment:Time were found to affect water 

biocide concentration (Table 2A.2, Table S7 and Fig. S3). Some biocides, such as Metronidazole, 

Ronidazole, Sulfamethoxazole, Tiabendazole and Trimethoprim, showed no significant differences 
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between reaches, while others, including AbMacrolides, Levamisole and Ofloxacin, increased 

significantly in the Impact reaches (Table 1A.2, Tables S8-S9). Biocide concentration differed 

significantly between sampling campaigns, and the interaction between treatment and time was also 

statistically significant (Table 2A.2, Tables S8-S9), showing that the concentration of biocides 

depends on season. For Levamisole, Metronidazole and Ofloxacin, both sewage inputs and season 

explained more than 90% of observed variation.  

Table 2. Permutational multivariate analyses of variance applied to environmental and functional variables. In each 

case, multivariate variation was represented by an Euclidean distance matrix, which was partitioned among the 

factors Treatment (i.e. Control vs. Impact), Time (i.e. autumn vs. spring, only when possible) and the interaction 

between them. Two of the sampled streams (La Sènia and Els Reguers) were not included in the analyses due to 

missing data points (this technique cannot handle unbalanced data); thus, data for only eleven streams were 

considered. Degrees of freedom may differ according to the number of available sampling campaigns (one vs. two). 

Source n, d.f. MS F-value p-value R
2
 (%) 

A) Water chemical characteristics  

    1) Physico-chemical variables and nutrients  

Treatment 1, 43 44.67 8.92 0.014 13 

Time 1, 43 11.21 4.10 0.004 3 

Treatment x Time 1, 43 1.83 0.67 0.637 - 

    2) Biocide concentration  

Treatment 1, 43 17.87 3.05 0.110 - 

Time 1, 43 14.54 3.03 0.001 6 

Treatment x Time 1, 43 9.35 1.99 0.021 4 

    3) Non-biocide drugs concentration  

Treatment 1, 43 115.17 4.60 0.058 13 

Time 1, 43 22.19 2.28 0.041 3 

Treatment x Time 1, 43 21.67 2.23 0.046 2 

B) Hydrology  

Treatment 1, 21 178.60 1.06 0.331 - 

Time - - - -  -  

C) Ecosystem functioning  

Treatment 1, 21 19.31 4.76 0.002 16 

Time - - - -  -  

 The concentration of non-biocide drugs was higher in Impact than in Control reaches (Table 

2A.3, Table S11 and Fig. S5). Although most PhACs increased in the impact reaches, this was 

especially remarkable for Acetaminophen, ARBs, β-Blockers, Fibrates, Loop Diuretics and NSAIDs 

(Table 1A.3, Tables S12-S13). However, some PhACs, such as Glibenclamides, H2Antagonists, 

Loratidine, Salbutamol, SSRIs and Tamsulosin, did not significantly increase (Table 1A.3, Tables 

S12-S13). Season (Time), as well as the interaction between Treatment and Time, were found to be 

significant (Table 2A.3, Tables S12-S13), suggesting that season affected differences between 

reaches.  
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Hydrology 

All hydrological properties remained unaltered, including mean water velocity, flow, temperature, 

wet-channel width, depth and hydrological stress in the Impact reaches (Table 2B, Tables S16-S17). 

Therefore, sewage effluents had no significant overall effects on stream hydrology (Table 2B, Table 

S15 and Fig. S7). 

Ecosystem functioning 

Stream functioning was significantly altered by sewage inputs, although the effects were especially 

noticeable when streams received untreated sewage (Table 2C, Fig. 2 and Table S19). However, the 

direction of change differed among processes. While biofilm biomass accrual, whole-reach NH4
+
 

areal uptake and ecosystem respiration were subsidized, biofilm SRP uptake capacity decreased 

significantly. The rest of measured processes, including whole-reach SRP areal uptake, gross 

primary production and organic matter decomposition, remained unaltered (Table 1C, Tables S20-

S21).  

 

Figure 2. Main gradients in stream ecosystem functioning, as described with non-metric multidimensional scaling 

(NMDS). Impact reaches are indicated in red and Control reaches in blue. Note that distinction between streams 

receiving treated (triangles) and untreated (dots) sewage is also made. Stress = 0.12; non-metric goodness-of-fit of the 

ordination: R2 = 0.987; linear goodness-of-fit of the ordination: R2 = 0.961. Poboleda and Bisbal (not represented in 

the diagram to avoid crowding) are close to PratCompte and Prades, respectively. See also Table 2C. 
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Results-oriented to predict and explain stream functioning: non-parsimonious RDA models 

We built four partial (independent) RDA models to explain multivariate variation in stream 

ecosystem functioning in terms of heterogeneity in only: (A) water chemical characteristics (Table 

3A; adj.-R
2
 = 14%, using two explanatory variables: SRP and DOC), (B) biocides (Table 3B; adj.-R

2
 

= 52%, using four explanatory variables: AbMacrolides, Tiabendazole, Ofloxacin and 

Sulfamethoxazole), (C) non-biocide drugs (Table 3C; adj.-R
2
 = 64%, using five explanatory 

variables: Opioid, Iopromide, Salbutamol, NSAID and SSRI) and (D) hydrology (Table 3D; adj.-R
2
 

= 34%, using two explanatory variables: Water flow and Width). These partial models, which used 

only a subset of the available variables, differed greatly in their capacity to explain variability in 

ecosystem functioning and in the number of variables selected (Table 3).  

The partitioning of variation applied to a non-parsimonious RDA model obtained by the addition of 

the four partial models (Fig. 3) explained ca. 70% of the variation observed in stream ecosystem 

functioning using a total of 13 explanatory variables. The largest contribution corresponded to the 

fraction shared by physico-chemical variables and nutrients, and the concentrations of biocide and 

non-biocide drugs (adj.-R
2
 = 31%). The fraction shared by biocides and non-biocide drugs was 

second in importance (adj.-R
2
 = 17%).  

Table 3. Partial (independent) redundancy analysis (RDA) models explaining multivariate variation in stream 

ecosystem functioning according to heterogeneity in only water chemical characteristics (A), only biocides (B), only 

non-biocides drugs (C) and only hydrology (D). The response matrix is in every case constituted by the same 

spatially detrended and standardized functional variables. In each case (A-D), the explanatory variables were selected 

by means of a stepwise procedure. p-values were estimated using permutation tests (9999 permutations).  

Source d.f. Variance F-value p-value Variance inflation 

A. Model for water physico-chemical variables and nutrients  

SRP 1 1.847 10.4 < 0.0001 1.8 

DOC 1 0.408 2.3 0.060 1.8 

Residual 19 3.360    

Total 21 5.616    

Adjusted R
2
 = 34%  

B. Model for biocide concentrations   

AbMacrolides 1 1.888 14.7 < 0.0001 1.2 

Tiabendazole 1 0.657 5.1 0.009 1.2 

Ofloxacin 1 0.471 3.7 0.048 1.1 

Sulfamethoxazole 1 0.418 3.3 0.030 1.3 

Residual 17 2.181    

Total 21 5.616    

Adjusted R
2
 = 52%   

C. Non-biocides drugs model     

Opioid 1 2.305 23.6 < 0.0001 3.5 

Iopromide 1 0.323 3.3 0.042 1.5 

Salbutamol 1 0.460 4.7 0.016 4.8 

NSAIDs 1 0.472 4.8 0.018 4.6 
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SSRI 1 0.493 5.0 0.003 5.6 

Residual 16 1.563    

Total 21 5.616    

Adjusted R
2 
= 64%          

D. Hydrology model      

Water flow 1 0.611 2.7 0.050 1.3 

Width 1 0.646 2.8 0.036 1.3 

Residual 19 4.359    

Total 21 5.616    

Adjusted R
2
 = 14%       

 

Figure 3. Venn diagram showing the partitioning of multivariate variation in stream ecosystem functioning among 

hydrological, chemical, biocides (incl. antibiotics, antifungals, and parasiticides) and non-biocide drugs (i.e. 

pharmaceutical drugs other than biocides) components. The values shown correspond to adjusted R2 (%). This non-

parsimonious model, which explains ca. 70% of multivariate variation in stream ecosystem functioning, was obtained 

by the addition of four partial models (detailed in Table 3). The hydrological component includes Water flow and 

Width. The chemical component includes SRP and DOC. The biocides component includes AbMacrolides antibiotics 

(Clarithromycin and Erythromycin), the antibiotics Ofloxacin and Sulfamethoxazole, and the antifungal and 

parasiticide Tiabendazole. The non-biocide drugs component includes Opioids (Oxycodone and Codeine), Iopromide 

(a contrast medium), Salbutamol (a β2 adrenergic receptor agonist), NSAIDs (Diclofenac, Ibuprofen, Indomethacine, 

Ketoprofen, Naproxen, Piroxicam, Salicylic acid, and Phenazone), and SSRI (Seproxetine, Fluoxetine, and 

Citalopram). The variables AbMacrolides, Opioids, NSAIDs and SSRI were obtained by adding up the 

concentrations of the biocides and drugs named in parentheses. 
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Predicting stream ecosystem functioning: parsimonious RDA model 

The model above (Fig. 3) predicted and, to some extent, explained the observed multivariate 

variability in stream ecosystem functioning using a subset of 13 environmental variables (out of the 

originally considered ca. 100 potentially explanatory variables). This model, though, was non-

parsimonious and presented multiple co-linearities between the selected explanatory variables in the 

different groups (e.g. between biocide and non-biocide variables). Therefore, in order to just predict 

multivariate variation in stream ecosystem functioning in a parsimonious manner, as observed in the 

Baix Ebre area, we subsequently built a second (parsimonious) model.  

The subsequent application of a second variable selection procedure led to a parsimonious RDA 

model (Table 4, Figs. 4-5), which explained 65% of the observed variability in stream ecosystem 

functioning considering only four environmental variables: two biocides (AbMacrolide, a class of 

antibiotics that inhibit protein synthesis in microorganisms, and the antifungal Tiabendazole) and 

two non-biocide drugs (Iopromide, a contrast medium used in computerized tomography scan, and 

NSAIDs, which includes common nonsteroideal anti-inflammatory drugs, such as Diclofenac and 

Ibuprofen). The strongest associations occurred between AbMacrolide concentration and ecosystem 

respiration (positive), biomass accrual (positive), and biofilm SRP uptake capacity (negative); 

between NSAIDs and ecosystem respiration (positive) and biofilm SRP uptake capacity (negative); 

and between Tiabendazole concentration and SRP areal uptake (positive). Once these four variables 

were selected, all other variables presented in the four partial models were found to be statistically 

non-significant. Overall, excluding the shared fraction (adj.-R
2
 = 6%), in this parsimonious model, 

biocides contributed more than non-biocide drugs to the explanation of stream functioning 

variability (adj.-R
2
 = 34% vs. adj.-R

2
 = 25% respectively; Fig. 5).  

Table 4. Parsimonious redundancy analysis (RDA) model explaining multivariate variation in stream ecosystem 

functioning according to heterogeneity in four stepwise-selected environmental explanatory variables: Tiabendazole 

and AbMacrolides (biocides), and NSAIDs and Iopromide (non-biocide drugs). The response matrix is constituted by 

the spatially detrended and standardized functioning variables. The environmental explanatory variables were 

selected by means of a second stepwise procedure that started from the set of the thriteen variables (SRP, DOC, 

AbMacrolides, Tiabendazole, Ofloxacin, Sulfamethoxazole, Opiod, Iopromide, Salbutamol, NSAIDs, SSRIs, Water 

flow and Width) previously selected variables in the RDA partial models (Table 3).  

Source d.f. Variance F-value p-value Variance inflation 

NSAIDs 1 1.701 18.0 < 0.0001 1.4 

Tiabendazole 1 0.896 9.5 < 0.0001 1.8 

AbMacrolides 1 0.917 9.7 < 0.0001 1.4 

Iopromide 1 0.492 5.2 0.014 1.6 

Residual 17 1.610    

Total 21 5.616    

Adjusted R
2  

= 65%   
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Figure 4. Biplots corresponding to the parsimonious redundancy analysis (RDA) model summarized in Table 4: (a) 

axis 1 vs. axis 2; (b) axis 1 vs. axis 3. The strongest associations occur between AbMacrolides and ERp (positive), 

BAT (positive), and SRPUC (negative); between NSAID and ERp (positive) and SRPUC (negative); and between 

Tiabendazole and SRPAU (positive). Note that acronyms for ecosystem functioning mean the following: BAT = 

biofilm biomass accrual, SRPUC = biofilm SRP uptake capacity, SRPAU = SRP areal uptake, NH4AU = NH4
+ areal 

uptake, GPP = gross primary production, ER = ecosystem respiration and OMD = organic matter decomposition. See 

variance partitioning in Figure 5.  

 

Figure 5. Venn diagram showing the partitioning of multivariate variation in stream ecosystem functioning between 

a biocide component and a non-biocide drug component. The values correspond to adjusted R2 (%). This 



 

59 

 

parsimonious model, which explains ca. 65% of multivariate variation in stream ecosystem functioning, was obtained 

by further variable selection applied on the non-parsimonious model. The biocide component includes just 

AbMacrolide antibiotics and the antifungal and parasiticide Tiabendazole. The non-biocide drugs component includes 

only Iopromide and NSAIDs (Diclofenac, Ibuprofen, Indomethacine, Ketoprofen, Naproxen, Piroxicam, Salicylic 

acid, and Phenazone). The variables AbMacrolides and NSAIDs were computed by adding up the concentrations of 

the biocides and drugs named in parentheses. 

Predicted individual ecosystem processes vs. individual environmental predictors 

To analyse the form and strength of the relationships between the seven functional variables and the 

four environmental explanatory variables selected in the parsimonious RDA model, we applied 

GLMs (Table 5). Most significant relationships were linear (L), with the only exceptions of the 

relationships found between biofilm SRP uptake capacity and ecosystem respiration with 

AbMacrolide concentration. These relationships followed a curvilinear pattern (CL), but not the 

Subsidy-Stress pattern we expected. In addition, most relationships were positive, indicating that 

most processes were subsidized with increasing pollutant concentrations. However, there were also 

some negative relationships (i.e., between organic matter decomposition and NSAIDs, biofilm SRP 

uptake capacity and AbMacrolides, and between biofilm SRP uptake capacity and NSAIDs). The 

explained variation showed a large variability, ranging from R
2

GLM = 17%, in the case of gross 

primary production and AbMacrolide concentration, to R
2
GLM = 83%, in the case of whole-reach 

SRP areal uptake and Tiabendazole concentration. 

Table 5. Summary of GLMs used to test for the relationship between ecosystem functioning and environmental 

explanatory variables selected in the parsimonious RDA model. Note that the form of the response is also specified, 

either if it is linear (L) or curvilinear (CL), positive (+) or negative (-). Only significant relationships are shown.  

Functional var. Explanatory var. Null deviance (d,f.) Residual deviance (d.f.) R
2

GLM (%) p-value Form 

NH4
+
 areal uptake AbMacrolides 11.3 (21) 7.4 (20) 34 0.001 L+ 

NH4
+
 areal uptake NSAIDs 11.3 (21) 8.3 (20) 27 0.007 L+ 

NH4
+
 areal uptake Tiabendazole 11.3 (21) 6.9 (20) 39 < 0.0001 L+ 

NH4
+
 areal uptake Iopromide 11.3 (21) 8.8 (20) 22 0.018 L+ 

Biofilm SRP uptake capacity AbMacrolides 19.2 (21) 6.3 (19) 67 < 0.0001 CL- 

Biofilm SRP uptake capacity NSAIDs 19.2 (21) 9.8 (20) 49 < 0.0001 L- 

Ecosystem respiration AbMacrolides 19.4 (21) 9.5 (19) 51 < 0.0001 CL+ 

Ecosystem respiration NSAIDs 19.4 (21) 3.5 (20) 82 < 0.0001 L+ 

Biofilm accrual rates AbMacrolides 20.9 (21) 6.8 (20) 67 < 0.0001 L+ 

Gross primary production AbMacrolides 18.2 (21) 15.0 (20) 17 0.040 L+ 

Organic matter decomposition NSAIDs 18.9 (21) 14.3 (20) 24 0.011 L- 

SRP areal uptake Tiabendazole 10.0 (21) 1.7 (20) 83 < 0.0001 L+ 

SRP areal uptake Iopromide 10.0 (21) 7.6 (20) 24 0.012 L+ 
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Discussion 

 Water chemistry: main factor driving variability  

Pollution and hydrological alteration are some of the major pressures affecting European streams 

(EC, 2015). Among them, sewage inputs stand out as one of the most common stress factors, 

although it is often difficult to predict their effects because most streams are subjected to multiple 

stressors (Sabater et al., 2018). Our results showed that sewage inputs significantly altered stream 

ecosystem functioning, mainly via changes in water chemical characteristic. Two physico-chemical 

variables (SRP and DOC) and, specially, the concentration of nine biocides (including AbMacrolide 

antibiotics and the antifungal Tiabenzazole) and non-biocide drugs (including Iopromide and 

NSAIDs), accounted for most (ca. 70%) of the multivariate variation observed in stream ecosystem 

functioning, and were found to be associated with most of the ecological processes measured. In this 

non-parsimonious RDA model, the contribution of hydrological properties to the explanation of 

stream ecosystem functioning was minor.  

Additionally, we also used the data from this observational experiment to build a stringently 

parsimonious and purely predictive RDA model. This second RDA model, which is almost free of 

co-linearity issues, succeeded at accounting for 65% of multivariate variation in stream ecosystem 

functioning in terms of just four environmental variables (AbMacrolide antibiotics, Tiabendazole, 

Iopromide and NSAIDs), out of the nearly 100 originally measured. Since prediction is not the 

exactly the same as explanation, this parsimonious RDA model is not to be taken as an indication 

that stream ecosystem functioning can be explained in terms of just these four variables, i.e. this 

model does not indicate that these four variables caused 65% of the variation in ecosystem function. 

Rather, this model, which maximizes the amount of multivariate variation accounted for and 

minimizes the number of predictive variables, indicates that these four variables, taken together, 

summarize and optimize the predictive power of the nearly 100 environmental variables originally 

measured. It is optimized prediction, without explicit causal explanation.  

 Sewage inputs increased the concentration of nutrients and contaminants, as it is common in 

polluted streams subjected to the “Urban Stream Syndrome” (Walsh et al., 2005; Brack et al., 2007). 

Effluents decreased pH as well as DO up to anoxic conditions in some streams (< 1 mg L
-1

), but 

increased the concentration of DOC, and nutrients, especially of SRP and NH4
+
, with maximum 

values reaching 51, 2 and 22 mg L
-1

, respectively. These results agree with previous studies 

assessing the effects of urban effluents, in which pH (Englert et al., 2013) and DO (Walsh et al., 

2005) decreased, while concentrations of OM and nutrients increased (Carey & Migliaccio, 2009), 

especially those of phosphorus and nitrogen (Waiser et al., 2011). Concentrations in some of the 

sites are among the highest measured across European streams (Grizzetti et al., 2017). Besides, 

sewage inputs also increased the concentration of PhACs, especially those of non-biocide drugs. 

Biocides, on the contrary, did not show significant overall differences between reaches, appearing 
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also at high concentrations in some of the studied Control reaches (Mandaric et al., 2018). The most 

ubiquitous biocide was Ofloxacin, and the most ubiquitous non-biocide was NSAIDs. Their 

concentrations varied from a few ng L
-1

 to almost 9 µg L
-1

, within the ranges reported in previous 

studies analysing the occurrence of PhACs in urban wastewaters (Gros et al., 2012; Verlicchi et al., 

2012). These complex mixtures of contaminants can deteriorate physico-chemical conditions and 

induce other effects (Proia et al., 2013). They can increase biological oxygen demand and thus, 

accentuate oxygen depletion (Calapez et al., 2017). Furthermore, they can promote reductive 

conditions and proliferations of sulphate reductive and methanogenic microbial communities 

(Atashgahi et al., 2015). In any case, these indirect effects can overwhelm some of the direct effects 

and thus, exacerbate the effects of pollution in the receiving streams.  

 As a consequence of large inter-site variability, sewage inputs did not have an overall 

significant effect on the hydrology of the study sites, in contrast to results elsewhere (e.g., 

Merseburger et al., 2011). At some streams, such as Els Reguers, Prat de Compte or La Sènia, 

sewage inputs converted perennial streams into temporary, whereas in larger streams, such Caseres, 

Nonaspe, Maella and Vallderoures), urban effluents had no detectable effects on hydrology.   

 The dilution capacity of the receiving water body and the quality of the sewage input 

determined the effect on ecosystem functioning. Thus, changes in ecosystem processes between 

Control and Impact reaches were smaller when urban effluents were treated and released into larger 

streams. However, our results showed that chemical characteristics prevailed over hydrology 

explaining most of the variability observed in stream ecosystem functioning. These results agree 

with other studies that highlight the role of emerging contaminants on streams (Kuzmanovic et al., 

2015), and recognize pollution to be the main factor influencing the structure of biological 

communities (Karaouzas et al., 2018), the functioning of streambed biofilm (Proia et al., 2013) or 

whole-reach processes, such as nutrient uptake (Marcé et al., 2018).  

Predicting variability in stream ecosystem functioning 

Sewage inputs caused complex and process-specific responses in terms of ecosystem functioning. 

However, none of the processes followed the subsidy-stress pattern we expected and instead, most of 

them linearly increased with increasing levels of pollution. For instance, whole-reach NH4
+
 areal 

uptake significantly increased below sewage inputs and was positively correlated to the increasing 

concentration of drugs. Sewage inputs are an important source of emerging contaminants, OM and 

nutrients, especially of nitrogen and phosphorus (Waiser et al., 2011). In our experiment, sewage 

inputs increased ambient NH4
+
 concentrations up to 3.5 mg N L

-1
, which is in the lower range of 

concentrations described below effluents (0.1-10 mg N L
-1

) and still far from saturation (Bernal et 

al., 2017). Thus, these inorganic N loads could have stimulated stream nitrification, promoting 

ammonium areal uptake (Merbt et al., 2015; Bernal et al., 2017). In contrast, sewage inputs did not 

affect whole-reach SRP areal uptake in Impact reaches. However, individual relationships between 
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ecosystem processes and environmental explanatory variables, predicted that it could increase with 

increasing concentrations of certain drugs, such as biocides. According to the “Efficiency loss 

hypothesis” (O´Brien et al., 2007; Mulholland et al., 2008), most works report reduced SRP uptake 

in streams receiving sewage inputs, as P-demand decreases with increasing ambient concentration 

(e.g., Haggard et al., 2001, 2005; Martí et al., 2004; Merseburger et al., 2005; Gibson & Meyer, 

2007). Besides, this possible increase in SRP areal uptake also contrasts with the observed results at 

the biofilm scale, where the SRP uptake capacity was seriously reduced. Consequently, our results 

suggest that SRP uptake at whole-reach scale was compensated, and thus increased, by other 

ecosystem compartments and biological communities (Withers & Jarvie, 2008). Specifically, fine 

sediments (Withers & Jarvie, 2008) and macrophytes (Riis et al., 2012), either growing in the main 

channel or near stream banks, could have accounted for these differences.  

 Sewage inputs also promoted ecosystem metabolism. Ecosystem respiration significantly 

increased below urban effluents and besides, the individual relationships between ecosystem 

processes and environmental explanatory variables predicted that it could be positively correlated to 

increasing concentration of drugs. Conversely, gross primary production remained unaltered below 

sewage inputs and individual relationships only predicted a slight increase with increasing 

concentration of certain drugs, such as biocides. It is well known that nutrients and organic matter 

promote ecosystem respiration (Bernhardt et al., 2018), but we still lack a clear picture about how 

these substances interact with toxic compounds, such as heavy metals or pharmaceuticals. As 

observed in some previous studies (Izagirre et al., 2008; Aristi et al., 2015), ecosystem respiration 

increased with increasing pollutant concentrations. It has been suggested that ecosystem respiration 

can be promoted by pharmaceutical exposure (Corcoll et al., 2015), as well as by a mixture of 

assimilable and toxic compounds (Aristi et al., 2016). Gross primary production, on the other hand, 

was not significantly affected by urban effluents and only had a weak positive response to the 

concentration of certain drugs. While some authors describe increased primary production below 

urban effluents (e.g., Gücker et al., 2006), some others do not show  clear effects, and attribute this 

lack of response to the fact that primary production can be mediated by other environmental factors, 

such as light (Aristi et al., 2015), riparian vegetation (Bernot et al., 2010) or turbidity (Izagirre et al., 

2008). Among these factors, turbidity could have limited production rates in our streams (Hall et al., 

2015), especially in those receiving raw effluents, which can be very turbid. In addition, other 

authors (Hill et al., 2001; Acuña et al., 2004) showed increased ecosystem metabolic rates coupled 

with high biofilm biomass accrual rates below sewage inputs. In the present experiment, however, 

biofilm biomass was unexpectedly correlated to certain drugs, such as AbMacrolides, which are 

antibiotics that inhibit the protein synthesis in bacteria. Although we can only speculate about this 

correlation, our results suggest that sewage inputs affected the biofilm community, favouring more 

resistant and tolerant species, which maintained functional rates (Rosi et al., 2018); also, autotrophic 

biomass could have overwhelmed bacterial heterotrophic communities (Proia et al., 2013). Similar 

results were found in some parallel works to this experiment, in which pollution-tolerant diatom 
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(Tornés et al., 2018) and invertebrate (Mor et al., 2019) taxa prevailed in the studied reaches below 

sewage inputs. Another possible explanation is that biofilms developed antibiotic resistance genes, 

as shown in another parallel work to this experiment (Subirats et al., 2017).  

Contrary to ecosystem-level processes, which showed less evident and contrasting response 

patterns, biofilm-scale processes showed more consistent response. Biofilm biomass accrual rates 

were subsidized significantly below sewage inputs, whereas biofilm SRP uptake capacity and 

organic matter decomposition became stressed. Biofilm SRP uptake capacity significantly decreased 

below urban effluents and it was negatively correlated to increasing concentrations of drugs. 

Conversely, organic matter decomposition, even if it remained unaltered below sewage inputs, 

slightly decreased with increasing concentration of certain drugs, such as non-biocides. In the 

present experiment, SRP loads derived from sewage inputs could have made biofilm less effective in 

removing nutrients from the water column, even reducing uptake rates to zero due to biofilm 

saturation (Earl et al., 2006), as it has been shown in a laboratory experiment (Pereda et al., 2019). 

On the other hand, some of the toxic drugs derived from sewage inputs could have also reduced the 

biofilm capacity to retain dissolved nutrients, which has also been described in other studies (Proia et 

al., 2017). Additionally, our results are in line with other recent studies (e.g. Smeti et al., 2019), 

indicating  that urban effluents can have toxic effects on stream microbial communities and trigger 

detrimental effects on their functioning, not only deteriorating their capacity to retain nutrients, but 

also their ability to consume organic matter.  

Behind the Subsidy-Stress hypothesis 

Individual relationships between ecosystem functioning and environmental variables showed linear 

responses to the gradient of pollution, none of them following the Subsidy-Stress pattern we 

expected. Specifically, we predicted urban effluents to subsidize functional processes at high dilution 

rates, but to stress them at high concentrations, resulting in the hump-shape response observed in 

other field and laboratory experiments (Carmargo & Alonso, 2006; Niyogi et al., 2007; Wagenhoff 

et al., 2011, 2012, 2013; Woodward et al., 2012). However, functional processes only resulted in 

either positive or negative linear responses. Subsidy-stress patterns have been widely described 

when analyzing the effects of single stressors, such as fine sediment (Wagenhoff et al., 2012) or 

nutrient concentration (Woodward et al., 2012), but these patterns usually disappear when assessing 

the combined effects of multiple stressors (Wagenhoff et al., 2013). In that sense, urban wastewater 

pollution is recognized as a multiple stressor on its own, due to the complex and ever-changing 

mixture of contaminants (Jackson et al., 2016).   
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Conclusions 

In summary, our experiment shows that sewage inputs can seriously impair stream chemical 

characteristics and lead to complex effects on ecosystem functioning below sewage inputs. Urban 

effluents significantly affected most of the functional processes, although they did not follow the 

Subsidy-Stress pattern we expected, and instead showed either positive or negative responses to the 

gradient of pollution. Finally, biofilm-level processes showed more clear and consistent responses to 

sewage inputs than ecosystem-level ones.  
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Abstract 

There is growing concern about the ecological effects of waste water treatment plant (WWTP) effluents on 

stream ecosystems. However, it is difficult to detect and isolate these effects because most streams 

receiving WWTP effluents are also affected by other stressors. Here, we show the results of a whole-

ecosystem manipulation experiment following a BACI design (Before-After/Control-Impact), in which we 

diverted part of the effluent of a large tertiary urban WWTP into a small nearly unpolluted stream, and 

studied the structural and functional responses of the ecosystem. Despite of being highly diluted, the 

effluent caused an increase in biofilm chlorophyll-a and biomass, exo-enzymatic activities and 

invertebrate-mediated organic matter decomposition, whereas phosphorus uptake capacity of the biofilm 

was reduced. Biofilm metabolism, reach-scale nutrient uptake and microbial organic matter decomposition 

were not affected by the effluent. Our results indicate that even well treated and highly diluted WWTP 

effluents can have significant and complex effects on stream ecosystem structure and functioning.  

Keywords: Urban pollution; BACI; ecosystem-level manipulation; effluent dilution; ecosystem response.  
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Introduction 

Recent economic development and demographic changes have prompted an unprecedented growth of urban 

population (Jones & O´Neill, 2016). As a side effect of this expansion, complex mixtures of biologically 

active substances are continuously released into aquatic environments, threatening freshwater ecosystems 

worldwide. Developed countries have invested large sums in sanitation and implementation of wastewater 

treatment plants (WWTP). For example, in Europe over 80% of the population is already connected to 

WWTP facilities (EEA, 2018). Nevertheless, WWTP effluents still consist of complex mixtures of 

pollutants, including organic matter and nutrients, as well as metals, pesticides and organic micro-

pollutants (Aristi et al., 2015; Kuzmanović et al., 2015). Some of these substances are toxic and reduce 

biological activity, whereas others, such as nutrients, promote biological activity at low concentrations but 

reduce it above a threshold, resulting in the so-called Subsidy-Stress response (Odum et al., 1979). 

Effluents of WWTPs can affect all types of stream organisms, including microbes (Drury et al., 

2013), algae (Corcoll et al., 2015), macrophytes (Gücker et al., 2006), invertebrates (Ortiz & Puig, 2007) 

and fish (Northington & Hershey, 2006). Moreover, WWTP effluents impact stream ecosystem functioning 

by altering key processes, although the response can vary depending on the biological activity measured 

(Berthelsen et al., 2018). For instance, WWTP effluents can enhance biofilm accrual (Ribot et al., 2015) or 

exo-enzymatic activities (Carreiro et al., 2000), which can consequently subsidize ecosystem metabolism 

(Aristi et al., 2015) and litter decomposition (Ferreira et al., 2015), while they can decrease whole-reach 

nutrient uptake (Martí et al., 2009). However, some studies assessing the effects of WWTP effluents on 

stream ecosystem processes report contrasting results. For example, while some studies describe increased 

organic matter decomposition rates (e.g., Solagaistua et al., 2018), others show a reduction (e.g., Englert et 

al., 2013) or no effect (e.g., Baldy et al., 2007). These results suggest that the effects of WWTP effluents 

on streams ultimately depend on the concentration and chemical composition of the water in both the 

effluent and the receiving stream (Posthuma et al., 2008; Altenburger et al., 2015; Atashgahi et al., 2015), 

as well as the dilution capacity of the latter (Rice & Westerhoff, 2017). Other factors can also influence the 

effects of WWTP effluents, such as the composition of the biological communities in the receiving stream 

(Segner et al., 2014), the timing of the exposure (Camargo & Alonso, 2006), the legacy effects that 

effluents can exert even when they are reduced or no longer received (Jarvie et al., 2013) and the different 

resistance and resilience capacity of the ecosystem (Jackson et al., 2016). Finally, the fact that most streams 

can be simultaneously subjected to other co-occurring stressors will also modulate the effects of urban 

effluents (Sabater et al., 2018), as these effects can be driven by direct and indirect interactions between 

stressors (Romero et al., 2018).  

The ecological effects of poorly treated and highly concentrated WWTP effluents can be obvious, 

but detecting the effects of well treated and highly diluted effluents in the real world is more difficult, 

especially because receiving streams are almost always also affected by other co-occurring stressors. This 

is especially true when studies describe the temporal changes of a stream after the implementation of a 

WWTP (Arroita et al., 2018), or when we compare reaches located upstream and downstream from the 
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effluents (Drury et al., 2013), as such designs cannot exclude potentially confounding factors generally 

affecting urban streams (Underwood, 1991). This situation calls for a powerful experimental design, which 

includes long-term responses and covers a variety of structural and functional variables (Downes et al., 

2002).  

Here, we report the results of an unprecedented whole-ecosystem manipulation experiment, in 

which we assessed the effects of a well-treated and highly diluted effluent of a large tertiary urban WWTP 

on stream ecosystem structure and functioning following a BACI (Before-After/Control-Impact) design. 

Since the effluent was highly diluted in the receiving stream, thus precluding toxicity for the aquatic biota, 

we predicted that the effluent would subsidize ecosystem structure and functioning. Specifically, we 

predicted that the effluent addition would promote biofilm biomass, increasing equally both autotrophic 

and heterotrophic components. We also predicted that these structural changes would affect ecosystem 

functioning, subsidizing microbial activities, which would be metabolically more active, but at the same 

time reducing their capacity to retain dissolved nutrients. Finally, we predicted subsidized organic matter 

decomposition rates, as a consequence of enhanced microbial activity.   

Material and Methods 

Study site and experimental design 

The WWTP of Apraitz (N Iberian Peninsula, 43°13'41" N, 2º23'54'' W) consists of a sequential biological 

reactor (https://www.acciona-agua.com/areas-of-activity/projects/dc-water-treatment-plants/wwtp/apraitz/) 

that treats the sewage water of >90,000 population equivalents derived from urban and industrial sources. 

On average, 9,400 m
3
 of wastewater per day is treated in batch reactors (Gipuzkoa Water Consortium, 

unpublished data), where the sewage water is first mixed with activated sludge, and alternatively subjected 

to aerobic and anaerobic conditions to reduce organic matter content. Then, it is subjected to a tertiary 

treatment to reduce nitrogen (denitrification tank) and phosphorus (precipitation with ferric sulphate) 

concentrations. The resulting effluent is released into the Deba River (mean discharge during our study = 

10.9 ± 0.7 m
3
 s

-1
, http://gipuzkoa.eus/) through regularly pulsed releases of 20-40 min every 2 h. 

Ecotoxicological studies have shown this effluent to have little toxicity for microbes or invertebrates 

(Solagaistua et al., 2018) and to cause no clear ecological effects below the release point of Apraitz 

WWTP, as it does not significantly affect water chemical characteristics nor alter the composition of the 

biological communities (URA, 2017).  

Ten meters downstream from the WWTP effluent release point, the Deba River receives the waters 

of the Apraitz Stream, a small unpolluted stream draining a 7-km
2
 catchment over sandstone and shale, 

with a mean discharge of 0.12 m
3
 s

-1
. In its lowermost 300 m, the Apraitz Stream runs by the side of the 

WWTP in a riffle-pool reach dominated by bedrock and cobbles under a young closed riparian forest 

dominated by black alder (Alnus glutinosa), hazel (Corylus avellana) and ash (Fraxinus excelsior). 

https://www.acciona-agua.com/areas-of-activity/projects/dc-water-treatment-plants/wwtp/apraitz/
http://gipuzkoa.eus/)
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Average annual rainfall and air temperature in the area are 1613 mm y
-1 

and 12.7 ºC, respectively 

(http://gipuzkoa.eus/).  

To assess the effect of the WWTP effluent on stream ecosystem structure and functioning , we 

conducted a BACI experiment in the Apraitz Stream. In the lowermost part of this stream, we defined two 

100-m long reaches: a Control (upstream) and an Impact (downstream). We studied both reaches bimonthly 

for 2 years (04/04/2016 to 30/06/2018), one year Before and another year After diverting part of the 

WWTP effluent to the Impact reach. The diversion was constructed by digging a 12 m-long and 4 m-deep 

trench to reach the WWTP outlet gutter, and inserting a 125-mm diameter pipe into the gutter to allow a 

discharge of 10 L s
-1

 into the Apraitz Stream during the periods of WWTP effluent release. The resulting 

dilution rate in the Apraitz Stream was similar to the one observed in the Deba River (0.2-4% and 0.1-9%, 

respectively, both calculated from mean daily values during the After period, Fig. 1).  

Hydrology 

We estimated hydraulic parameters from the time vs. electrical conductivity (EC) curves obtained with 

pulse additions of NaCl during periods of no effluent release. We calculated mean water velocity (m s
-1

) 

dividing reach length by the time elapsed between the start of the pulse addition and the conductivity peak 

at the end of the reach. Water discharge was calculated based on a mass-balance approach, using EC as a 

surrogate of the chloride concentration (Martí & Sabater, 2009). On every sampling occasion, we obtained 

data for both reaches in less than 2 h. Additionally, we placed a water level datalogger (Solinst Levelogger 

Edge 3001; Solinst Canada Ltd., Georgetown, USA) per reach. These data were corrected for the 

atmospheric pressure measured with an additional datalogger (Barologger, Solinst Levelogger Edge 3001). 

Corrected water level was then regressed against discharge calculated from the time-EC curves, to obtain 

continuous discharge data. On each sampling occasion, we also measured wet channel width in equidistant 

transects every 10 m. 

Water characteristics 

We collected water samples and measured physico-chemical characteristics at the downstream end of both 

reaches and directly at the effluent during periods of effluent release (~10 min after the start of effluent 

release) and no release (~1 h after the end of the effluent release). We measured pH, temperature (T), EC 

and dissolved oxygen (DO) saturation using hand-held probes (WTW Multi 350i and WTW 340i SET, 

WTW Wissenschaftlich, Weilheim, Germany; YSI ProODO handled; YSI Incorporated, Yellow Springs, 

OH, USA). Water samples were immediately filtered (0.7-µm pore size pre-combusted glass-fiber filters, 

Whatman GF/F, Whatman International Ldt., Kent, UK) and frozen until analysis. We determined the 

concentration of soluble reactive phosphorus (SRP) [molybdate method (Murphy & Riley, 1962)] and 

ammonium (NH4
+
) [salicylate method (Reardon et al., 1966)], on a spectrophotometer (Shimadzu UV-1800 

UV-Vis, Shimadzu Corporation, Kyoto, Japan). The concentration of anions [nitrate (NO3
-
), nitrite (NO2

-
), 

sulphate (SO4
2-

) and chloride (Cl
-
)] was determined with capillary ion electrophoresis (Agilent G1600AX 

http://gipuzkoa.eus/)
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3D, Agilent Technologies, Wilmington, DE, USA) (Environmental Protection Agency, 2007). The 

concentration of dissolved inorganic nitrogen (DIN) was calculated as the sum of NO3
-
, NO2

-
 and NH4

+
. 

Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured by catalytic oxidation 

using a Shimadzu TOC-L analyzer coupled to a TNM-L unit (Shimadzu Corporation, Kyoto, Japan). 

Additionally, we measured the concentration of emergent pollutants (herbicides, hormones, life style 

products, industrial chemicals and pharmaceuticals) during the first month after diversion (see Solagaistua 

et al. 2018 for details).  

Biofilm 

Three months before the beginning of the experiment, we deployed artificial substrata (granite paving 

stones of 20 x 10 x 8 cm) along both reaches to allow for biofilm colonisation. On each sampling occasion, 

we sampled the biofilm from five artificial substrata randomly collected in the wet channel of each reach, 

three of which were previously used to measure metabolism (see below). To sample biofilm, we scraped 

the whole surface of the substrata and collected the slurry in filtered stream water (0.7-µm pore size, 

Whatman GF/F). We obtained one slurry per substratum and stored individually in pre-washed 

polyethylene containers. Once in the laboratory, we measured the initial volume of the slurry and 

homogenized it with a grinder (IKA Ultra-Turrax T25 Basic, Werke GmbH & Co. KG, Staufen, Germany). 

Each sample was split into three subsamples: two subsamples for biomass and chlorophyll-a (Chl-a) were 

frozen until analysis, whereas the one for exo-enzymatic activities was processed immediately after each 

sampling.  

To determine biofilm biomass, we filtered the corresponding subsamples trough pre-weighed 

filters (0.7-µm pore size, Whatman GF/F), which were then oven-dried (70 ºC, 72 h), weighed, combusted 

(500 ºC, 5 h) and reweighed to obtain the ash-free dry mass (AFDM). We corrected the obtained AFDM 

values by the volume of the filtered subsample and divided by the area of the artificial substrates, in order 

to express the results per surface unit (g AFDM m
-2

). To determine Chl-a concentration, we filtered the 

subsamples (0.7-µm pore size) and extracted the filters in 90% acetone (4 ºC, 12 h in the dark) (Steinman et 

al., 2006). To ensure the complete extraction of Chl-a, we sonicated (Selecta sonication bath, operating at 

360 W power, 50/60 Hz frequency, JP Selecta S.A., Barcelona, Spain) and centrifuged (2000 rpm, G-value 

= 657.4, P-Selecta Mixtasel, JP Selecta S.A.) the samples. Then, we determined Chl-a concentration 

spectrophotometrically (Shimadzu UV-1800 UV-Vis, Shimadzu Corporation, Kyoto, Japan) by measuring 

the absorbance at 665 and 750 nm, following Jeffrey & Humphrey (1975). We also corrected the obtained 

Chl-a values by the volume of the filtered subsample and expressed per surface unit (mg Chl-a m
-2

). We 

also calculated the biofilm autotrophic index (AI), computed as the ratio between AFDM and Chl-a 

concentration (Steinman et al., 2006). 

Exo-enzymatic activities related to the acquisition of organic phosphorus (alkaline phosphatase, 

AP) and the degradation of cellulose and hemicelluloses (β-glucosidase, BG) were determined following 

Saiya-Cork et al. (2002). We used the artificial fluorescent-linked substrata 4-methylumbelliferyl (MUF)-
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phosphatase and (MUF)-β-D-glucopiranoside. Assays were carried out using 96-well micro plates 

(BRANDplates® microplates, BRAND GMBH + CO KG, Wertheim, Germany), in which biofilm samples 

were blended with acetate buffer (50 mM, pH = 5) and incubated for 30 min in the dark. Blanks without 

biofilm and a standard curve of MUF (0-100 µmol L
-1

) were also incubated to correct for autofluorescence 

and quenching. NaOH buffer (1.0 M) was added (1/1, vol/vol) to stop the reaction. Fluorescence was 

measured at 365/455 nm excitation/emission (37 ºC) in a fluorometer microplate reader (Tecan GENios, 

Cavro Scientific Instruments Inc., Sunnyvale, California), and results were also corrected by the volume of 

the filtered subsample and expressed per surface unit (µmol h
-1

 m
-2

).  

To determine biofilm SRP uptake capacity, we used biofilm carriers, small artificial substrata (2.5 

cm in side, SERA GmbH D52518, Heinsberg, Germany) commonly used in aquaria to encourage biofilm 

attachment due to their high surface-to-volume ratio. Before the onset of the experiment, we deployed the 

biofilm carriers in five sites randomly distributed per reach, tied with nylon line to roots or metal bars. On 

each sampling occasion, we recovered 1 biofilm carrier per site (totalling 5 per reach) and we deployed 

more to be colonised for the following sampling occasion. After collection, we stored them in stream water 

inside dark plastic containers. Once in the laboratory, biofilm carriers were acclimated in 200 mL of an 

acclimation solution [1:5  Perrier carbonated mineral water (Nestlé, Vergèze, France): deionized water], 

designed to ensure a sufficient supply of micronutrients (30 min, 100 rpm shaking speed, 20 ºC and ~180 

µmol m
-2

 s
-1

 light) (Agitator-Incubator INF-66123 Multitron Standard, BIOGEN Científica S.L., Madrid, 

Spain). After acclimation, biofilm carriers were individually submersed in 45 mL of the same solution but 

spiked with phosphate (K2HPO4, 10 mM = 310 mg P L
-1

), to achieve a final concentration of 5 µM (155 µg 

P L
-1

), and incubated under the same conditions for 1 h. This concentration was chosen to ensure saturating 

conditions for the biofilm while allowing the nutrient decline during the incubation and the subsequent 

uptake estimation. After the incubation, 10 mL from each vial were filtered (0.7-µm pore size, Whatman 

GF/F) and frozen until analysis. Control treatments using non-colonised biofilm carriers were also used. 

SRP uptake capacity was calculated as the difference between the mean SRP concentration of the control 

and the colonised substrates, in the incubation volume and time (µg P h
-1

) (Elosegi et al., 2018).  

Biofilm metabolism was determined with closed chambers, since the high turbulence and the short 

length of our reaches prevented the use of open-channel methods (Bott et al., 1978). On each sampling 

occasion, we randomly selected three artificial substrata per reach and enclosed them individually in 

methacrylate chambers (20 x 30 x 15 cm). Incubations were always carried out during no effluent release 

periods in a single pool located at the downstream end of the Control reach and all chambers with the same 

Control reach water. Thus, we ensured that the effluent release would not affect the measurements and 

consequently, exactly the same conditions of light, temperature and water chemistry in all the chambers. 

Although we are aware that photosynthesis from light incubations can stimulate heterotrophic activity 

during dark conditions (Espeland et al., 2001), the number of chambers we had available prevented us from 

running simultaneously light and dark incubations while maintaining the same conditions in all the 

chambers. Inside the chambers, water was constantly recirculated by means of aquarium pumps (Syncra 
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Silent, Sicce, SICCE S.R.L., Pozzoleone, Italy). After 2 h of light incubation, we measured DO inside each 

chamber (YSI ProODO handled). After that, we covered all chambers with black opaque plastic and 

incubated them for 2 additional h and DO was measured again at the end. We used changes in DO 

concentration in dark conditions to calculate community respiration (CR) and those in light to calculate net 

community metabolism (NCM). Gross primary production (GPP) was calculated as the sum of NCM and 

CR (Fellows et al., 2001). All parameters were computed from the difference in DO concentration between 

two measurements, in a specific time interval, accounting for the water volume in the chamber and the 

surface of the artificial substrata (mg O2 h
-1 

m
-2

). Finally, we also scaled metabolic rates per unit of biofilm 

biomass (i.e., GPP per Chl-a concentration and CR per total biomass) to explore potential changes in 

biofilm metabolic efficiencies.  

Whole-reach nutrient uptake 

We measured whole-reach nutrient uptake for NH4
+
 (as NH4Cl) and SRP (as NaH2PO4.2H2O) using the 

pulse addition technique (Martí & Sabater, 2009). We dissolved both nutrients in 20 L of stream water 

together with NaCl as a hydrological conservative tracer (Bencala et al., 1987). On each sampling occasion, 

we added the solution to the stream in a single pulse at the head of each reach, where appropriate mixing 

was ensured, during no effluent release. At the downstream end of both reaches, we automatically recorded 

EC every 10 s using a portable conductivity meter (WTW 340i SET) from the beginning of the addition 

until return to basal conditions. During the breakthrough curve, we collected 25 water samples for each 

nutrient, which were filtered (0.7-µm pore size, Whatman GF/F) and frozen until analysis. We used the 

mass-balance approach to calculate three nutrient uptake metrics (Martí & Sabater, 2009): (i) uptake length 

(Sw, m), which reflects the distance travelled by a nutrient molecule before being removed from the water 

column, (ii) uptake velocity (Vf, m s
-1

), which reflects the velocity at which a nutrient molecule is removed 

from the water column, and (iii) areal uptake (U, µg min
-1

 m
-2

), which reflects the mass of nutrients taken 

up from the water column per surface area unit and time.  

Organic matter decomposition 

Freshly fallen black alder leaves (Alnus glutinosa) were collected in the field, air-dried to constant mass, 

and stored in dark plastic bags. For each sampling occasion, we enclosed leaves in fine (100 µm, 3 ± 0.05 g 

per bag) and coarse (5 mm, 4 ± 0.05 g per bag) mesh bags, to compare the contribution of different size 

consumers to organic matter decomposition. Fine bags were enclosed in coarse ones to ensure they were 

subject to the same conditions, and that invertebrates could only access the leaves in the coarse but not the 

fine-mesh bags, where decomposition was mainly microbial. In the field, bags were tied with nylon line in 

the same five sites randomly distributed per reach together with biofilm carriers and incubated for 3-4 

weeks. After incubation, we collected the bags, stored them individually and carried them to the laboratory 

in a cool box. Once there, the remaining leaf material was rinsed to remove invertebrates and mineral 

particles, oven-dried (70 ºC, 72 h), weighed, combusted (500 ºC, 5 h) and re-weighed to obtain AFDM. An 

additional set of five fine bags were also incubated for two weeks in the Control reach, to determine 
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leaching rates and correct the initial dry mass of leaves used in the experiment. Decomposition rates were 

calculated by the ratio between final and initial AFDM according to the negative exponential model 

(Petersen & Cummins, 1974), which was expressed as AFDM consumed per day (d
-1

).  

Data analysis 

For each variable, we calculated the effect size of the effluent addition following equation 1. Values <1 

indicate that the effluent reduced the process, while values >1 indicate that the effluent increased it. 

                     
           

            
 

We fitted our data to Gaussian models (Madsen & Thyregod, 2010; Zuur & Ieno, 2010), to test for 

the effect of the effluent addition on stream ecosystem response: biofilm structure (AFDM, Chl-a, AI) and 

functioning [AP, BG, SRP uptake capacity and metabolism (GPP, CR, GPP/Chl-a, CR/AFDM)], and 

organic matter decomposition (microbial, total). For parameter estimation, we used generalized least 

squares (Pinheiro & Bates, 2000), via the “gls” function of the nlme package (Pinheiro & Bates, 2016). The 

fixed structure of the model included period (Before/After) and reach (Control/Impact), fitted as discrete 

explanatory variables, and the interaction between them. We also added sampling occasion as random 

factor. The effect of the effluent addition was given by the interaction between period and reach (BA:CI). 

In some of the models, Akaike Information Criterion (AIC) comparisons revealed the need to add a 

variance structure to deal with heteroscedasticity and allow having different variances per sampling 

occasion. For water characteristics and whole-reach nutrient uptake (Sw, Vf and U for both SRP and NH4
+
), 

we analyzed the data using linear models and estimated the parameters using restricted maximum 

likelihood, via the “lme” function of the nlme package (Pinheiro & Bates, 2017), because we had a unique 

replicate per sampling occasion. The dataset was complete for all measured variables, except for whole-

reach nutrient uptake and metabolism, which we were unable to measure correctly on some dates due to 

technical problems (e.g. sensor malfunctioning, sample loss). When necessary, data were log-transformed 

to fulfil the requirements of parametric analyses. In all cases, we accepted significance when p < 0.05. All 

statistical analyses were conducted using R software, ver. 3.4.0. (R Development Core Team, Vienna, 

Austria). 

Results 

Hydrology 

During the experiment, the Apraitz Stream showed a flashy hydrograph with a mean water discharge of 118 

L s
-1

, a peak discharge of 1,095 L s
-1

 during periods of heaviest rainfall, and base flow values around 60 L 

s
-1

. The mean daily contribution of the effluent to the Impact reach flow was 3%, ranging from 0.2 to 4% 

(Fig. 1).  
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Figure 1. Daily mean stream discharge (Q) in the Control reach (L s-1) (grey series, left axis) and effluent contribution to the 

Impact reach during the After period (%) (black series, right axis). Black dots represent each sampling campaign day, while 

the dashed line marks the beginning of the effluent addition. 

Water characteristics 

The WWTP effluent was circumneutral, on average 3 °C warmer than stream water, and with 3 times 

higher EC, 2 times lower DO saturation and 4 to 90 times higher concentrations of nutrients and DOC, 

being substantially higher for both DIN and TDN as well as for SRP (Table 1). Additionally, the effluent 

also showed high concentrations of emergent pollutants, especially those of ARBs (Angiotensin II Receptor 

Blockers –ARBs- that modulate the renin-angiotensin system and are used to treat hypertension, such as 

Valsartan, Irbesartan, Eprosartan and Telmisartan), caffeine (the most consumed stimulant of the central 

nervous system) and calorie-free sugar substitutes (such as Acesulfame and Sucralose). Most water 

physico-chemical variables in the Impact reach changed significantly during effluent release periods (Table 

1, Table S1). The pH and DO saturation decreased to 0.9 times the initial values (BA:CI, p = 0.007 and p = 

0.04, respectively), EC was 1.5 times higher (BA:CI, p < 0.001), whereas T was not significantly affected 

(BA:CI, p = 0.20). Nutrient concentrations in the Impact reach significantly increased during effluent 

discharge events, especially NH4
+
 (5.2 times: BA:CI, p = 0.06) and SRP (2.4 times: BA:CI, p = 0.004). 

These differences, however, almost disappeared in the phases between effluent release periods (Table 1, 

Table S1), with the only exception of NH4
+
, which was still 2.3 times higher (BA:CI, p = 0.04). 
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Table 1. Water characteristics of Control and Impact reaches during Before and After periods, together 

with WWTP effluent characteristics. In the After period, distinction between effluent discharge and no 

discharge periods is also made. Values shown are mean ± standard error (SE), calculated from 6 surveys (n 

= 6) during each experimental period. 

 

Biofilm 

The WWTP effluent affected significantly biofilm structure, increasing both biofilm biomass and Chl-a 

(Tables S1). During the Before period, biofilm biomass was similar in both Control and Impact reaches 

(mean ± SE = 1.03 ± 0.25 and 0.84 ± 0.22 g AFDM m
-2

, respectively), but the effluent addition increased it 

2.1 times in the Impact reach (BA:CI, p < 0.001, Fig. 2a). Chl-a concentration showed a similar pattern, 

with similar values in both reaches during the Before period (Control: 5.62 ± 1.87 and Impact: 4.09 ± 1.38 

mg m
-2

), and an increase of 2.3 times in the Impact reach after the effluent addition (BA:CI, p = 0.005, Fig. 

2b). The effluent addition did not change significantly the AI, i.e. the balance between the heterotrophic 

and autotrophic component of the biofilm (BA:CI, p = 0.23, Table S1). 

 

 

 
Stream water 

 
WWTP effluent 

Period  Before  After  

 

Reach 
 

Control Impact  Control 
Impact- 

Effluent release 

Impact - 

No effluent release 

 

pH 
 

8.0 ± 0.1 7.9 ± 0.04 
 

7.7 ± 0.3 7.1 ± 0.3 7.8 ± 0.1 
 

7.1 ± 0.3 

T (ºC) 
 

14.1 ± 0.1 14.5 ± 0.04 
 

13.3 ± 0.01 15.1 ± 0.2 13.3 ± 0.02 
 

17.8 ± 0.02 

EC (µS cm
-1

) 
 

279 ± 18 277 ± 19 
 

289 ± 18 427 ± 58 320 ± 44 
 

791 ± 68 

DO (%) 
 

103 ± 2 101 ± 2 
 

100 ± 1 92 ± 1 97 ± 1 
 

57 ± 2 

Cl
-
 (mg Cl L

-1
) 

 
12 ± 1 13 ± 3 

 
15 ± 2 27 ± 6 17 ± 2 

 
107 ± 17 

SO4
2- 

(mg SO4
2-

 L
-1

) 
 

47 ± 4 43 ± 8 
 

43 ± 4 33 ± 2 46 ± 7 
 

46 ± 8 

NO2 (mg N L
-1

) 
 

0.02 ± 0.00 0.03 ± 0.004 
 

0.02 ± 0.00 0.5 ± 0.3 0.1 ± 0.1 
 

1.5 ± 0.9 

NO3 (mg N L
-1

) 
 

0.6 ± 0.1 0.7 ± 0.2 
 

0.6 ± 0.1 1.3 ± 0.3 0.7 ± 0.1 
 

6.2 ± 1.9 

NH4
+
 (mg N L

-1
) 

 
0.01 ± 0.001 0.01 ± 0.001 

 
0.01 ± 0.002 0.2 ± 0.1 0.04 ± 0.002 

 
0.5 ± 0.3 

DIN (mg N L
-1

) 
 

0.6 ± 0.1 0.8 ± 0.1 
 

0.7 ± 0.1 1.9 ± 0.3 0.8 ± 0.1 
 

8.2 ± 1.3 

DOC (mg C L
-1

) 
 

3.5 ± 0.2 3.9 ± 0.5 
 

3.4 ± 0.4 4.2 ± 0.9 3.0 ± 0.4 
 

13.8 ± 1.9 

TDN (mg N L
-1

) 
 

1.1 ± 0.1 1.3 ± 0.1 
 

1.1 ± 0.1 2.3 ± 0.4 1.1 ± 0.1 
 

10.2 ± 1.2 

SRP (mg P L
-1

)  0.01 ± 0.003 0.02 ± 0.004  0.02 ± 0.01 0.2 ± 0.1 0.01 ± 0.002  1.1 ± 0.4 
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Figure 2. Biofilm (a) biomass and (b) chlorophyll-a (Chl-a) concentration in Control and Impact reaches Before and After 

the effluent addition. The dashed line marks the beginning of the effluent addition. Mean ± SE values are shown. 

The effluent addition increased significantly biofilm exo-enzymatic activities (Table S1). During 

the Before period, AP values were higher in the Control than in the Impact reach (12.60 ± 5.10 and 7.78 ± 

3.83 µmol h
-1

 m
-2

, respectively). This pattern changed after the effluent discharge, as AP activity was 2.2 

times higher in the Impact reach, specially just after the effluent addition (BA:CI, p = 0.015, Fig. 3a). BG 

activity showed a similar response, with higher values in the Control reach before the effluent addition 

(Control: 8.46 ± 3.98 and Impact: 5.34 ± 3.29 µmol h
-1

 m
-2

) and an even more significant increase of 4.1 

times in the Impact reach after the effluent addition (BA:CI, p = 0.002, Fig. 3b). 

Figure 3. Biofilm (a) alkaline phosphatase (AP) and (b) β-glucosidase (BG) activities in Control and Impact reaches Before 

and After the effluent addition. The dashed line marks the beginning of the effluent addition. Mean ± SE values are shown. 

Biofilm SRP uptake capacity was significantly impaired by the effluent addition. During the 

Before period, biofilm SRP uptake capacity showed no differences between Control and Impact reaches 

(3.17 ± 0.43 and 3.27 ± 0.39 µg P h
-1

, respectively). However, this capacity was reduced to 0.5 times the 

initial values in the Impact reach after the effluent addition (BA:CI, p < 0.001, Fig. 4, Table S1).  
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Figure 4. Biofilm SRP uptake capacity in Control and Impact reaches Before and After the effluent addition. The dashed line 

marks the beginning of the effluent addition. Mean ± SE values are shown. 

Biofilm metabolism was not significantly affected by the WWTP effluent (Table S1). During the 

Before period, Control and Impact reaches showed similar rates of GPP (45 ± 18 and 29 ± 8 mg O2 h
-1

 m
-2

) 

and CR (-19 ± 6 and -15 ± 4 mg O2 h
-1

 m
-2

) , and the biofilm community was predominantly autotrophic 

(GPP:CR > 1). The effluent did not change this pattern, as it did not affect significantly neither GPP 

(BA:CI, p = 0.46, Fig. 5a), CR (BA:CI, p = 0. 96, Fig. 5b) nor the ratio between them (BA:CI, p = 0.28). 

The effluent significantly increased the ratio GPP/Chl-a, a proxy of the metabolic efficiency of biofilm 

autotrophs (BA:CI, p = 0.05). Conversely, the ratio CR/AFDM, a proxy of the metabolic efficiency of 

biofilm heterotrophs, was not significantly affected by the effluent addition (BA:CI, p = 0.65). 

 

Figure 5. Biofilm (a) gross primary production (GPP) and (b) community respiration (CR) in Control and Impact reaches 

Before and After the effluent addition. The dashed line marks the beginning of the effluent addition. Mean ± SE values are 

shown. 
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Whole-reach nutrient uptake 

The effluent addition did not affect significantly nutrient uptake metrics (Table S1). During the Before 

period, Control and Impact reaches showed similar Sw values for both SRP (499 ± 69 and 547 ± 107 m) 

and NH4
+
 (284 ± 50 and 297 ± 51 m), and the effluent addition did not affect them significantly (BA:CI, 

SRP p = 0.54 and NH4
+
 p = 0.16, Fig. 6a, b). Similarly, Control and Impact reaches also showed similar Vf 

values before the effluent addition for SRP (0.003 ± 0.002 and 0.004 ± 0.002 mm h
-1

) and NH4
+
 (0.005 ± 

0.002 and 0.005 ± 0.002 mm h
-1

). However, while the effluent addition did not affect NH4
+
 Vf (BA:CI, p = 

0.19, Fig. 6d), it caused a marginally significant reduction in SRP Vf below the input (BA:CI, p = 0.06, Fig. 

6c). Finally, U for both nutrients was not significantly affected by the effluent (BA:CI, SRP p = 0.13 and 

NH4
+
 p = 0.92, Fig. 6e, f).  

 

Figure 6. Whole reach nutrient uptake metrics (uptake length, Sw; uptake velocity, Vf ; areal uptake, U) for SRP (a, c, e) and 

NH4
+ (b, d, f) in Control and Impact reaches Before and After the effluent addition. The dashed line marks the beginning of 

the effluent addition. 
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Organic matter decomposition 

The effluent had different effects on microbial and total organic matter decomposition (Table S1). During 

the Before period, Control and Impact reaches showed similar rates of microbial (0.02 ± 0.004 and 0.03 ± 

0.005 d
-1

) and total decomposition (0.06 ± 0.02 and 0.05 ± 0.02 d
-1

), even if the latter showed a huge 

reduction from the second sampling campaign on. Microbial decomposition was not affected by the 

effluent addition (BA:CI, p = 0.76, Fig. 7a), whereas total decomposition rates increased 1.4 times in the 

Impact reach  (BA:CI, p = 0.003, Fig. 7b).  

 

Figure 7. Leaf litter (a) microbial and (b) total decomposition in Control and Impact reaches Before and After the effluent 

addition. The dashed line marks the beginning of the effluent addition. Mean ± SE values are shown. 

Discussion 

The effluents of WWTPs represent relevant pollution sources to freshwater ecosystems (Rice & 

Westerhoff, 2017). However, the ecological effects of WWTP effluents are difficult to detect because most 

streams are subject to other co-occurring stressors (Sabater et al., 2018). Our whole-ecosystem 

manipulation experiment following a BACI design isolated the effects of a WWTP effluent, thus allowing 

the detection of their impact on a wide range of variables at the different environmental conditions and over 

a relatively long time period. Our results show that, even if WWTP effluents are well treated and highly 

diluted, they can cause significant and complex effects on ecosystem structure and functioning, which 

could have remained unnoticed under less stringent experimental approaches. Overall, the effluent 

increased the measured biological activities, with only some of the measured activities showing no effect or 

a reduction (i.e. biofilm uptake capacity). These results suggest that the effluent investigated tends to 

subsidize biological activity, and has limited toxic or stress effects (sensu Odum et al., 1979).  

Our experiment was designed to mimic the high dilution rate of the Apraitz WWTP effluent in the 

Deba River, and thus, had a mean contribution of 3% to the Apraitz Stream flow. However, dilution rates 

of WWTP effluents in streams are highly variable and in cases of natural or human-induced water-scarcity 

the final concentration can be much higher. For example, mean effluent contribution can be as high as 35% 
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in other streams in the region, as a consequence of intensive human water exploitation (Province 

Government of Gipuzkoa, 2015). In the most extreme cases, effluents can make up most of the flow in the 

receiving streams (Rice & Westerhoff, 2017). It is likely that the environmental effects of WWTP effluents 

will depend on their final dilution rate, and thus, that the ecological impacts can be stronger than those 

detected in our experiment (Brooks et al., 2006).  

 Despite the high dilution during our experiment, the intermittent effluent diverted to Apraitz 

Stream significantly affected water characteristics during release periods, reducing pH and DO while 

increasing EC and the concentrations of nutrients (NH4
+
 and SRP) and emerging pollutants. Similar effects 

of WWTP inputs on stream water quality have been reported in other systems (Martí et al., 2009), usually 

linked to streams subjected to the “Urban Stream Syndrome” (sensu Walsh et al., 2005). However, 

excessive nutrient concentrations can trigger toxic effects in many aquatic organisms. In our experiment, 

the concentration of nutrients measured during effluent release periods (2.3 and 0.2 mg L
-1

 for TDN and 

SRP, respectively), corresponded to the low-medium pollution levels observed in European streams, which 

contained less than 2.4 mg N L
-1

 and 0.2 mg P L
-1

 (Grizzetti et al., 2017). In another parallel work to this 

experiment, Solagaistua et al. (2018) reported that the concentrations of emerging contaminants detected in 

the effluent were also high, even if they were in the range as those detected in large monitoring surveys 

across Europe (Loos et al., 2013). However, in our Impact reach, toxicity values established by Camargo & 

Alonso (2006) for salmonids, which are reported among the most sensitive organisms, were surpassed for 

NO2
-
 (i.e., 0.5 ± 0.3 mg L

-1
) and NH4

+
 (i.e., 0.2 ± 0.1 mg L

-1
), although no strong toxic effects on stream 

biota were observed, as none of the five fish species occurring in the reach (Salmo trutta, Phoxinus bigerri, 

Anguilla anguilla, Barbatula quignardi and Parachondrostoma miegii) disappeared in the After period (de 

Guzmán, unpublished data). Similarly, laboratory experiments at full effluent concentration and field 

incubations in our Impact reach showed that the WWTP effluent had little or no toxic signs for the 

amphipod Echinogammarus berilloni (Solagaistua et al., 2018). Altogether, these results suggest low 

toxicity of the Apraitz WWTP effluent under the dilution rates of our experiment, which could also be 

aided by the short effluent pulses and the fast water renewal rate of this fast-flowing stream.  

 Biofilms are highly sensitive to anthropogenic alterations (Battin et al., 2016) and thus, nutrient 

enrichment from WWTP effluents could have important consequences on their structure and functioning. 

In our experiment, the effluent increased significantly biofilm biomass as well as Chl-a concentration even 

if it did not affect significantly the autotrophic index, which could suggest a similar subsidy effect on both 

heterotrophs and algae, as has been reported elsewhere (e.g., Ribot et al., 2015). However, the effluent 

significantly increased the metabolic efficiency of biofilm autotrophs, which suggests that the effluent 

could have induced a change in the composition of the autotrophic community, favouring more resistant 

and physiologically more active taxa (Drury et al., 2013; Proia et al., 2013; Rosi et al., 2018). These 

changes in biofilm structure could also affect their functioning and increase microbial processes, such as 

exo-enzymatic activities, since their expression is usually regulated by nutrient imbalances in water or 

within the biofilm (Romaní et al., 2012). In general, AP activity decreases with increases in the ambient 
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concentrations of phosphorus due to a lower demand for it (Allison & Vitousek, 2005; Romaní et al., 

2012). However, we observed increased AP activity in response to the effluent addition, which could be 

explained by increased biological demand for phosphorus as a result of increased biofilm biomass (Romaní 

& Sabater, 2000). In addition, the thickness and complexity of the boundary layer likely increased with 

biofilm biomass, thereby reducing the hydraulic exchange and diffusion of nutrients (Battin et al., 2003) 

and promoting internal cycling of the biofilm (Earl et al., 2006), which can also contribute to increased AP 

activity. On the other hand, β-glucosidase activity is an exo-enzyme related to the degradation of carbon 

and it is involved in the last step of cellulose decomposition (Romaní et al., 2012). Its activity is usually 

correlated with the degradation of organic compounds, either of algal origin or those dissolved in water 

(Jones & Lock, 1993).  In our experiment, the effluent increased BG activity, which could also be 

explained by increased biofilm biomass, as cell lysis occurring during biofilm formation (Romaní et al., 

2008) and polysaccharides in algal exudates (Rier et al., 2014), both can promote the activity of this 

enzyme.  

 Although the chemical composition of the effluent did not reach toxicity and increased most 

measured biofilm processes, it decreased the biofilm SRP uptake capacity. As ambient nutrient 

concentrations increase, biofilms tend to become less effective in nutrient removal, even reducing nutrient 

uptake to zero in cases of biofilm saturation (Earl et al., 2006). In our experiment, the effluent addition 

substantially increased SRP concentrations in water (up to 2.4 times during periods of effluent release), 

which strongly decreased biofilm SRP uptake rates, even to negative values in which biofilm carriers 

released SRP, indicating biofilm saturation. Similar results of SRP release by biofilm carriers have been 

shown in a laboratory experiment with WWTP effluents (Pereda et al., 2019). Although SRP release 

reflects the specific conditions of our bioassay, not necessarily what occurs in the field, it suggests that the 

ability of the biofilm to take up phosphorus was seriously impaired by the effluent. These negative values, 

however  were only observed after long base flow periods, which is also when boundary layer thickness 

and complexity increase, reducing the hydraulic exchange and diffusion of nutrients (Battin et al., 2003) 

and promoting internal cycling and nutrient release (Earl et al., 2006).  

 The effluent had no significant effect on biofilm metabolism or whole-reach nutrient uptake, 

although both processes have been shown to respond to wastewater inputs (e.g. Gücker et al., 2006). In our 

experiment, we only observed some weak tendencies towards higher metabolic rates, with increased GPP 

and CR, and longer nutrient uptake lengths, together with lower uptake velocities and areal uptake rates for 

both NH4
+
 and SRP. These tendencies agree with some previous works, in which nutrient enrichment 

promoted ecosystem metabolism, especially respiration (Aristi et al., 2015), but limited nutrient uptake 

efficiency (Martí et al., 2009). However, the lack of significant responses in our work could be due to the 

low replication of metabolism, or the lack of replication and the role of unmeasured compartments (e.g., 

hyporheic sediments or the extensive roots of the riparian trees) in the case of whole-reach nutrient uptake.  

 The effluent addition did not affect microbial decomposition but increased total 

decomposition, although both have been shown to respond not only to toxic compounds, but also to 
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nutrient enrichment (Ferreira et al., 2015). The lack of response of microbial decomposition in our study 

probably reflects the good nutritional quality of alder leaves (Petersen & Cummins, 1974), which could 

have been less affected than other leaf species by nutrient inputs. Nutritional characteristics of leaf species 

have been shown to play a key role controlling the magnitude of response to environmental stressors 

(Ferreira et al., 2015). Invertebrate consumption, on the other hand, substantially decreased from the 

second sampling campaign on, a fact that could be attributed to the disappearance of the amphipod 

Echinogammarus berilloni in the studied reaches (Solagaistua, unpublished data). As expected, the effluent 

promoted invertebrate consumption, likely due to increased leaf palatability (Ferreira et al., 2015) or 

increased densities of more resistant shredders communities below urban effluents (Pascoal et al., 2003). 

These results agree with some other previous studies (e.g., Woodward et al., 2012), and suggest that leaf 

litter decomposition by invertebrates could be more responsive than microbial decomposition to urban 

pollution (Hieber & Gessner, 2002).  

Conclusions 

In conclusion, our experiment shows that even well treated and highly diluted WWTP effluents can cause 

subtle but complex responses in the structure of stream biological communities and ecosystem functioning. 

We believe that these effects could be exacerbated under more concentrated effluents, and even shift from 

subsidy to stress responses. Nevertheless, the fact that most receiving streams and rivers are already 

affected by other stressors may hamper detection of these effects under real field conditions. Whole-

ecosystem manipulation experiments are a powerful approach to unveil these effects and to point to the 

variables most likely to be affected under multiple-stress situations.  
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Abstract 

Effluents from urban wastewater treatment plants (WWTP) consist of complex mixtures of substances 

that can affect ecosystem processes. Some of their components (toxic contaminants) stress biological 

activity at all concentrations, while others (e.g., nutrients) subsidize it at low concentrations and stress it 

at high concentrations, causing subsidy-stress responses. Thus, the overall effects of WWTP effluents 

depend mostly on their composition and the dilution capacity of the receiving water bodies. We assessed 

the immediate and legacy effects of WWTP effluents in artificial streams, where we measured biofilm 

soluble reactive phosphorus (SRP) uptake, biomass accrual, benthic metabolism and organic matter 

decomposition (OMD). In a first phase (32 d), the channels were subjected to a gradient of effluent 

contribution, from pure stream water to pure effluent. WWTP effluent affected the ecosystem processes 

we measured, although we found no clear subsidy-stress patterns except for biofilm biomass accrual. 

Instead, most of the processes were subsidized, although they showed complex and process-specific 

patterns. Benthic metabolism and OMD were subsidized without saturation, as they peaked at medium 

and high levels of pollution, respectively, but they did not decrease below control levels. SRP uptake was 

the only process that decreased with increasing effluent concentration. In a second phase of the 

experiment (23 d), all channels were kept on pure stream water to analyse the legacy effects of the 

effluent. For most of the processes, there were clear legacy effects, which followed either subsidy, stress 

or subsidy-stress patterns. SRP uptake capacity was stressed with increasing pollution legacy, whereas 

algal accrual and benthic metabolism continued subsidized. Conversely, biofilm biomass accrual and 

OMD showed no legacy effects. Overall, the WWTP effluent caused complex and process-specific 

responses in our mesoscosm experiment, mainly driven by the mixed contribution of subsidizers and 

stressors. These results could help to improve our understanding of the effects of urban pollution on 

stream ecosystem functioning. 

Keywords: Pollution; stream; decomposition; metabolism; subsidy-stress; biofilm. 

Graphical Abstract 

 



 

107 

 

 

  



 

108 

 

Introduction 

Cities have been expanding exponentially as a consequence of population growth and migration 

from rural to urban areas (Jones & O´Neill, 2016). Associated to urban growth, inputs of sewage 

water, either raw or treated in waste water treatment plants (WWTPs), have become a relevant 

pollution point-source in river ecosystems (Vörösmarty et al., 2010). WWTPs reduce urban 

pollution (Tchobanoglous & Burton, 1991; Serrano, 2007), but their effluents still consist of  

complex mixtures of substances including organic matter, nutrients (Merseburger et al., 2005; Martí 

et al., 2009), metals, pesticides and emergent pollutants such as pharmaceuticals, personal care 

products, or even illicit drugs (Santos et al., 2013; Rosi-Marshall et al., 2015; Aymerich et al., 

2017), which entail that the ecological effects of WWTP effluents are still far from clear (Aristi et 

al., 2015). Given their content of assimilable and toxic compounds, they could either subsidise or 

stress ecosystem processes (sensu Odum et al., 1979) depending on their exact composition, on their 

final concentration (Cardinale et al., 2012; Rice & Westerhoof, 2017), as well as on the composition 

of the biological communities in receiving streams (Segner et al., 2014). For instance, inorganic 

nutrients promote (subsidize) biological activity up to a threshold where they become toxic and start 

reducing it below "normal" levels (stress), whereas most heavy metals, pesticides or even antibiotics 

tend to suppress biological activity roughly in proportion to their concentration (Rodríguez-Mozaz & 

Weinberg, 2010; Peters et al., 2013). Both assimilable and toxic compounds impair water quality 

(Beyene et al., 2009; Ribot et al., 2012), alter the structure of biological communities (Bundschuh et 

al., 2011; Rosi-Marshall et al., 2015), and affect the rates of different ecosystem processes (Aristi et 

al., 2015; Corcoll et al., 2015). On the other hand, the final concentration of these effluents depends 

on the dilution capacity of the receiving water body, which can be affected by human activities such 

as water abstraction (Arroita et al., 2016) or climate change (Hisdal et al., 2001; Englert et al., 

2013). 

Ecosystem functioning reflects the fluxes of energy and matter in ecosystems (Tilman et al., 

2014; von Schiller et al., 2017). Although explicitly included in the EU Water Framework Directive 

(WFD), which defines ecological status as "an expression of the structure and functioning of aquatic 

ecosystems associated with surface waters", ecosystem functioning is seldom considered in current 

monitoring schemes (Birk et al., 2012). In addition to being an essential component of ecosystem 

health, it is at the basis of the services provided by river ecosystems (Millennium Ecosystem 

Assessment, 2005). However, we still largely ignore how ecosystem functioning responds to WWTP 

effluents and their potential legacy effects. Contradictory responses have been reported depending 

on the processes measured; for instance, organic matter decomposition (OMD) has been shown to 

increase in stream reaches receiving effluent inputs (e.g. Pascoal et al., 2003), whereas nutrient 

retention can be unaffected (Haggard et al., 2001; 2005) or reduced (Martí et al., 2004; Merseburger 

et al., 2005; 2011). Besides, effects on autotrophic and heterotrophic processes may differ when 

estimated at the site or at the whole-ecosystem scales (e.g. Aristi et al., 2015), and the experimental 
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duration may also condition and modulate the response pattern (Aristi et al., 2016). In addition, these 

effects may persist even when effluents are reduced or no longer received, this legacy delaying the 

recovery capacity of the ecosystem. Although the importance of assessing the legacy effects of 

stressors has been widely emphasized (Holeton et al., 2011; Sharpley et al., 2013), very few works 

have experimentally addressed this issue (Alvarez et al., 2014). 

The effects of WWTP effluents on ecosystem functioning depend on their final 

concentration in the receiving water, and thus, are difficult to assess in the real world. This situation 

prompts for laboratory experiments under controlled conditions, which provide powerful 

experimental techniques to isolate and analyse particular mechanisms that would go undetected in 

situ due the high complexity of natural communities (Benton et al., 2007). In the case of river 

ecosystems, artificial indoor channels have been used to unveil complex ecological phenomena such 

as the interaction between nutrients and emerging contaminants (Aristi et al., 2016), the importance 

of the duration of no-flow periods in intermittent waterways (Acuña et al., 2015), the effect of 

warming and altered diel temperature patterns associated to Global Environmental Change (Freixa et 

al., 2017) or the effects of the exposure to pharmaceuticals and illicit drugs on stream biological 

communities (Hoppe et al., 2012; Lee et al., 2016). 

 We investigated the impact of WWTP effluents on ecosystem processes by conducting a 

laboratory experiment using artificial streams, in which potentially confounding environmental 

factors were strongly simplified. We aimed at testing the following predictions: (1) biological 

processes would respond to the gradient of effluent dilution capacity following a subsidy-stress 

scheme, i.e., showing an increase at low to moderate proportions of effluent, but a decrease below 

control (pure stream water) levels at high proportions; (2) the response pattern would diverge among 

processes; and (3) the effluent would produce legacy effects, i.e., affect the recovery capacity of the 

process, which would be roughly proportional to the effluent concentration. 

Material and methods 

Experimental design 

We conducted an experiment using a series of artificial streams located in the indoor Experimental 

Streams Facility of the Catalan Institute for Water Research (Girona, Spain). Each artificial stream 

was assigned to one of eight treatments, from non-polluted water (control treatment) to pure WWTP 

effluent (0, 14, 29, 43, 58, 72, 86 and 100% of WWTP effluent water). We used three replicates per 

treatment (8 treatments x 3 replicates = 24 artificial streams) distributed in four separate arrays of six 

artificial streams, with each treatment represented only once per array. The dilution values were 

designed to represent a regression design (Navarro et al., 2000) from an unpolluted stream scenario 

with no WWTP contribution, to a temporary stream scenario during the dry phase, when 100% of 
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the water flow comes from the WWTP effluent. The design was also aimed at detecting tip-points 

and thresholds between subsidy and stress for each of the measured processes. 

The experiment was developed between January 19
th

 and March 31
st
, 2017. After an 

acclimation phase of 15 d, artificial streams were subjected to the different treatments during a first 

exposure phase (32 d), followed by a recovery phase (23 d), in which the flow of clean water was 

restored in all the artificial streams. These two phases allowed assessing both the immediate and the 

legacy effects of the WWTP effluent.  

Experimental conditions 

Each artificial stream consisted of an independent methacrylate channel (length-width-depth: 200 cm 

- 10 cm -10 cm), and a 70-L water tank from which water was recirculated. Each stream received a 

constant flow of 50 mL s
-1

 and operated as a closed system for 72 h, so all the water in each channel 

was renewed every three days. Water mean velocity was 0.71 cm s
-1

 and water depth over the plane 

bed ranged from 3 to 3.5 cm. Each artificial stream was filled with 5 L of sand and 14 cobbles 

collected from an unpolluted segment of the nearby Llémena River. The Llémena is a permanent 

Mediterranean oligotrophic calcareous stream, which has been previously used as a reference site for 

ecotoxicological laboratory experiments on biofilms due to its relatively low concentration of 

contaminants (Bonnineau et al., 2010; Serra et al., 2010; Corcoll et al., 2015). The sediment and 

cobbles were transported in less than 1 h to the artificial streams and evenly distributed to create a 

plane bed to facilitate biofilm growth. During the acclimation phase, the biofilm was allowed to 

grow on the artificial streams from the inoculum present in these sediments and cobbles. After the 

exposure phase, additional cobbles from the Llémena River were included in the channels to mimic 

colonization from upstream reaches.  

The artificial streams were fed with rainwater filtered through activated carbon filters, and 

WWTP effluent water added to every set of them following the above dilution scheme. Treated 

effluents were collected at the WWTP of Quart (Girona, Spain), transported in 200-L tanks, and 

transferred to the artificial streams in less than 2 h. Daily cycles of photosynthetic active radiation 

(PAR) in the channels were defined as 10 h daylight (09:00-19:00) + 14 h darkness (19:00-09:00) 

using LED lights (120 W; Lightech, Girona, Spain). PAR was held constant at 174 ± 33 µE m
-2

 s
-1

 

during the daytime and recorded every 10 min using 4 quantum sensors located across the whole 

array of streams (sensor LI-192SA, LiCOR Inc, Lincoln, USA). Air temperature was maintained at 

10 ºC during the acclimation phase and at 15 ºC during the exposure and recovery phases, with an air 

humidity of 30%, to allow a gradual acclimation of the biofilm from the stream conditions to the 

artificial channel conditions. Additionally, water temperature was held constant at 20 ºC over the 

whole experiment and it was recorded every 10 min using VEMCO Minilog temperature data 

loggers (-5 to 35 ± 0.2 ºC) (TR model, AMIRIX Systems Inc, Halifax, NS, Canada). Overall, 
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physico-chemical conditions in the artificial streams (water velocity, temperature and light cycles) 

emulated those of the Llémena River during early spring. 

Water chemistry 

Background physico-chemical conditions [ pH, temperature (T), conductivity and dissolved oxygen 

(DO) concentration and saturation] were measured at noon every 3-4 d from water collected on the 

channel outlet of each artificial stream using hand-held probes (WTW multiline 3310, Weilheim, 

Germany; YSI ProODO handled, YSI Inc., Yellow Springs, OH, USA). 24 h after the renewal of the 

artificial streams concentrations of nutrients, major anions and cations, and dissolved organic carbon 

(DOC) were measured from water collected from the channel outlet. Water for nutrient analyses was 

immediately filtered through 0.2-µm pore size nylon filters (Whatman, Kent, UK) into pre-washed 

polyethylene containers. The concentration of soluble reactive phosphorus (SRP) was determined 

colorimetrically using a fully automated discrete analyzer Alliance Instruments Smartchem 140 

(AMS, Frépillon, France). The concentration of anions [nitrate (N-NO3
-
), nitrite (N-NO2

-
), sulphate 

(SO4
2-

), chloride (Cl
-
) and bromide (Br

-
)] and cations [ammonium (N-NH4

+
), calcium (Ca

2+
), 

magnesium (Mg
2+

),  sodium (Na
+
) and potassium (K

+
)] were determined on a Dionex ICS-5000 ion 

chromatograph (Dionex Corporation, Sunnyvale, USA). Water for DOC analysis was immediately 

filtered through ashed 0.7-µm pore size glass fibre filters (Whatman GF/F, Kent, UK). The 

concentration of DOC was determined using a Shimadzu TOC-V CSH (Shimadzu Corporation, 

Kyoto, Japan). Heavy metal concentrations were analyzed on water samples of the most polluted 

treatment (100%) filtered through 0.45-µm pore size nylon filters (Whatman, Kent, UK) collected 

the last day of the first experimental phase (32 d) and determined by ICP-MS (7500c Agilent 

Technologies, Inc. Willington, DE).    

Response processes 

The stream ecosystem functional response was assessed by measuring the SRP uptake capacity 

(USRP) of the biofilm, its biomass accrual [Chlorophyll-a (Chl-a) and ash-free dry mass (AFDM)] 

and the metabolism of the benthic community [gross primary production (GPP) and community 

respiration (CR)]. The activity of the microbial heterotrophic community was also assessed by the 

capacity to consume available organic matter (organic matter decomposition, OMD).   

Biofilm SRP uptake and biomass accrual 

SRP uptake and biomass accrual of the biofilm were measured on biofilm carriers. These are 

artificial plastic substrata with a high surface-to-volume ratio, which are used in WWTPs and 

aquaria to encourage biofilm attachment. We used cubic polyethylene carriers 2.5 cm in side (SERA 

GmbH D52518, Heinsberg, Germany), deployed at the beginning of the exposure phase and wired to 

each of the streams in batches of 8 cubes. At the end of each phase (32 d and 55 d of incubation), we 



 

112 

 

recovered 1 biofilm carrier per stream (3 replicates per treatment), which were immediately 

subjected to a bioassay to measure SRP uptake capacity (see below, in the same section) and then 

frozen in individual labelled plastic bags. After thawing, biofilm was detached from the biofilm 

carrier using a Branson sonifier ultrasonic cell disruptor (Branson Ultrasonic TM, Branson 

Ultrasonic Corporation, Emerson Electric, USA) combining 3 min of pulse mode at 70% of 

amplitude and 2 min of continuous mode at the same amplitude in 100 mL of deionized water. The 

biofilm solution was filtered onto ashed 0.7-µm pore size glass-fibre filters (Whatman GF/F, Kent, 

UK) for the determination of Chl-a and AFDM.  

The SRP uptake capacity (USRP) of the biofilm growing on the biofilm carriers was 

measured by a novel method developed by von Schiller et al. (in prep). Briefly, once the biofilm 

carriers were collected from each channel, they were individually incubated in 100-mL clean plastic 

vials with an acclimation solution (1:5 dilution of Perrier carbonated mineral water (Nestlé, France) 

in deionized water), designed to ensure a sufficient supply of micronutrients, for 30 min at 100 rpm 

shaking speed, 20 ºC and ~180 µmol m
-2

 s
-1

 light. After the acclimation phase, the biofilm carriers 

were placed individually in pre-washed 60-mL plastic vials with the same acclimation solution but 

spiked with a PO4 solution (K2HPO4, 10.000 µM = 3.1
.
10

5
 µg P L

-1
) to achieve a final concentration 

of 5 µM P (155 µg P L
-1

), and incubated under the same conditions for 1 h. This concentration was 

chosen as a compromise to ensure saturating conditions for the biofilm while allowing the nutrient 

decline during the incubation and the subsequent estimation of uptake. After the incubation, 20 mL 

of water were collected from each vial, and 10 mL were filtered through glass-fibre filters (0.7-µm 

pore size, Whatman GF/F, Kent, UK) into 15-mL plastic tubes and frozen until analysis. Together 

with the colonized substrates, control treatments using non-colonized biofilm carriers (n = 3 on each 

incubation) were also used. The SRP uptake capacity was calculated as the difference between the 

mean SRP concentration of the control treatments (non-colonized substrates) and the colonized 

substrates, in the incubation solution volume (L) per incubation time (h). Thus, uptake capacity 

results were expressed in µg P retained per h
-1

.  SRP uptake capacity was also standardized by the 

biofilm biomass (AFDM) to obtain a clear picture about the efficiency of the biofilm to take up 

phosphorus. SRP concentration was determined manually on a double-beam UV-1800 UV-Vis 

Spectrophotometer (Shimadzu, Shimadzu Corporation, Kyoto, Japan) following the method 

described by Murphy & Riley (1962). The high N/P ratio in our channels suggested phosphorus to 

be the limiting nutrient. 

Chl-a was measured for each filter after extraction in 90% acetone for 12 h in the dark at 4 

ºC (Steinman et al., 2006). To ensure the complete extraction of Chl-a, samples were sonicated for 

30 s, twice (30 s, 360 W power, 50/60 Hz frequency, JP Selecta S.A., Barcelona, Spain). After that, 

Chl-a concentration was determined spectrophotometrically (U-2000 Spectrophotometer; Hitachi, 

Tokyo, Japan) by measuring the absorbance at 665 and 750 nm wavelengths, following the method 

described in Jeffrey & Humphrey (1975). Results were expressed as µg of Chl-a cm
-2

 of biofilm 
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carrier surface area. Besides, AFDM was used as an estimate of biofilm biomass. For its 

determination, another subsample of the biofilm extract was filtered on pre-weighed filters, dried at 

70 ºC for 72 h to constant weight, weighed, combusted at 500 ºC for 5 h using a muffle furnace 

(AAF 1100, Carbolite, UK) and reweighed. Results were expressed as mg of AFDM cm
-2

 of biofilm 

carrier surface area.  

Benthic metabolism 

We measured biofilm net community metabolism (NCM) and community respiration (CR) analysing 

the changes in DO concentration inside cylindrical (0.96 L) recirculating chambers, as described by 

Acuña et al. (2008). One tray (64 cm
2
 in surface area) made of stainless-steel wire mesh (1 mm mesh 

size) was located on each channel at the beginning of the acclimation phase to allow for biofilm 

colonization. All the trays were filled with coarse sand (d50 = 0.74 mm median diameter grain size 

(48 cm
2
 surface area)) and included a pebble c.a. 4.5-cm in diameter (16 cm

2
 surface area), to collect 

the performance of epipsammic and epilythic biofilm. At the end of each phase, trays were extracted 

from the channels, placed in the recirculating chambers, filled with water from the corresponding 

treatment and incubated for 1 h in light plus 1 h in darkness. All the chambers were deployed inside 

an incubator chamber (Radiber AGP-700-ESP, Barcelona, Spain) to maintain the water temperature 

analogous to that of the artificial streams (20 ºC). NCM was measured under light conditions 

(constant PAR of 168 ± 2 µE m
-2

 s
-1

, which was similar to the irradiance at the artificial streams), 

while CR was measured in darkness. Once metabolism measurements were performed, trays were 

returned to their corresponding artificial stream. DO concentration inside the chambers was 

measured every 15 s with oxygen sensors (PreSens OXY-10mini, Regensburg, Germany). 

Metabolism rates were calculated following Acuña et al. (2008), in which NCM and CR were 

computed from the difference in oxygen concentration between two consecutive measurements (mg 

O2 L
-1

), in a specific time interval (h), accounting for the water volume used in the chamber (L) and 

the active surface of the substrate used for the incubation (m
2
). Gross primary production (GPP) was 

estimated as the sum of NCM and CR. In all cases, results were expressed in mg O2 produced or 

consumed per surface area (m
-2

) and time (h
-1

).  

Organic matter decomposition 

We measured OMD using 12-mm diameter discs from freshly fallen leaves of black alder (Alnus 

glutinosa (L.) Gaertner). Discs were cut using a cork borer, arranged in sets of 15, weighed and 

enclosed all together in black PVC tubes to prevent algal growth. PVC tubes (2 cm diameter and 5 

cm long) were individually numbered and covered with a fine mesh (400 µm mesh size) to preclude 

losing the disks while allowing microbial colonisation and water flow. PVC tubes were placed flat 

and longitudinally on the bed of the artificial streams at the beginning of the exposure phase in 

groups of 9, which allowed having 3 replicates per channel. At the end of the exposure phase, leaf 

discs inside PVC tubes were collected, oven-dried (72 h, 70 ºC), weighed, combusted (5 h, 500 ºC) 
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and weighed again to estimate AFDM. In the recovery phase, the same process was repeated with 

another set of discs previously prepared under the same conditions. To correct the initial mass of the 

leaves used during the experiment, the leaching rate was determined in the laboratory from an 

additional set of 20 tubes (10 per each experimental phase) incubated under the same experimental 

conditions. Decomposition rates were calculated according to the negative exponential model 

(Petersen & Cummins, 1974), and were expressed as the OM consumed per day (d
-1

) on each 

experimental phase.   

Data analysis 

We aimed at identifying the response type of the functional processes we measured by comparing 

the fit of 8 different models (linear, exponential, power, logistic, logit, Monod, Haldane and 

quadratic, Table 1, Fig. S1) to the data. These models were selected to encompass the most common 

relationships between ecosystem processes and environmental factors. The linear and quadratic 

models were adjusted using linear models with the "lm" R function (Chambers, 1992), whereas the 

other models were adjusted using non-linear models with generalized least squares with the "gnls" R 

function (Pinheiro et al., 2018). The number of models fitted was not the same for all the variables, 

as the specific conditions necessary to run some of the models were not always fulfilled. Thus, 

results for the models [i.e., Akaike Information Criterion (AIC) and Relative Standard Errors (RSE)] 

were only computed when the data of each variable fulfilled these conditions. However, the simplest 

response (the linear model) was always computed. Among all the computed models, we selected the 

most appropriate in each case following a standard selection criterion: 1) lowest AIC value, 2) 

lowest RSE value and 3) the model computed must have ecological sense. This means that models 

without ecological sense, such as inverse Haldane or Quadratic models, although computed, were 

disregarded. Equally, when none of the models fit the data, the linear model was selected by default. 

Normality of the residuals was checked for the adjusted models in each case, to ensure a correct 

utilization of the AIC values. Pearson moment correlation analyses were also used with the averaged 

values of water characteristics (i.e., physico-chemical variables and concentrations of nutrients, 

anions and cations and DOC) to identify the direction and strength of the response to the gradient of 

WWTP effluent. All statistical analyses were performed using R software, ver. 3.4.0. (R 

Development Core Team, Vienna, Austria). 

Table 1. Conception of the different models tested, with their corresponding mathematical equations, the meaning of 

the parameters on each equation, their ecological interpretation in our experiment and some examples from the 

literature describing each type of response. The y variable corresponds to the measured functional process, while the 

x variable represents effluent concentration.  
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Model Equation Parameters Interpretation References 

Linear        

a, intercept - rate at 

concentration 0 

b, slope 

Functional response changes at a 

constant rate with effluent 

concentration, showing either 

direct subsidy (positive slope) or 

stress (negative slope). 

Wagenhoff et al., 2011 

Aristi et al., 2016 

Exponential         
a, rate at concentration 0 

b, increase rate 

Subsidy or stress effects increase 

by equal ratio with each increase 

in effluent concentration  

 

Vandermeer, 2010 

Wagenhoff et al., 2011, 2012 

 

Power       

a, coefficient 

b, exponent (defines 

curvature of function) 

Subsidy or stress effects increase 

potentially with effluent 

concentration 

Peters, 1983 

Marquet et al., 2005 

Logistic   
 

           
 

a, maximum rate 

b, slope of the curve 

x0, x value of the sigmoid’s 

midpoint 

Subsidy effect initially increases 

exponentially but then levels 

because of a limiting factor  

Ricklefs, 1967 

Vandermeer, 2010 

Wagenhoff et al., 2011 

 

Logit y = y0 + 
 

 
 + log 

   

       
 

a, maximum rate 

b, slope of the curve 

y0, y value of the inverse 

sigmoid´s midpoint 

Inverse to the logistic, it shows 

stress to increase exponentially 

with concentration until it levels 

McFadden, 1974 

Hanley et al., 1998 

Carl & Kühn, 2007 

Monod    
 

   
 

a, maximum rate 

b, concentration value when 

the rate is at its half 

maximum 

Similar to Michaelis-Menten 

equation, describes a subsidy 

effect that saturates as effluent 

concentration increases  

Monod, 1949 

Mogens et al., 2000 

Haldane 
   

 

    
  

 

 

a, maximum rate 

b, concentration value when 

the rate is at its half 

maximum 

c, concentration value when 

the inhibition is at its half 

maximum 

Subsidy-stress dynamics: 

functional response peaks at 

intermediate effluent 

concentrations but falls below 

normal at high concentrations. 

Rising and falling limbs can be 

asymmetric 

Haldane, 1930 

Camargo & Alonso, 2006 

Woodward et al., 2012 

Wagenhoff et al., 2011, 2012, 2013 

 

Quadratic y = ax2 + bx + c 

a, concentration values 

when the inhibition is 

maximum 

b, slope 

c, intercept, the rate at 

concentration zero 

Similar to Haldane, but the rising 

and falling limbs are symmetric 

Otto & Day, 2007 

Weir & Pettit, 2000 

Austin, 2002 
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Results 

Water chemistry 

The effluent used throughout the experiment had 7.9 ± 0.1 pH, 1348 ± 61 µS cm
-1

 conductivity and 

6.9 ± 0.4 mg L
-1

 DO. Nutrient and DOC concentrations were high: 5.8 ± 2.0 mg N L
-1

 of N-NO2
-
, 

16.1 ± 3.2 mg N L
-1

 of N-NH4
+
, 16.1 ± 4.2 mg N L

-1
 of N-NO3

-
, 0.70 ± 0.13 mg P L

-1
 of SRP and 

14.3 ± 0.5 mg C L
-1

 of DOC (see Table 2 and Table S1 for more details). Copper (81.9 ± 1.6 µg L
-1

), 

zinc (71.8 ± 4.8 µg L
-1

), iron (51.9 ± 3.9 µg L
-1

) and arsenic (7.3 ± 0.2 µg L
-1

) were the most 

abundant heavy metals in the effluent (Table S1). Increased effluent contribution linearly reduced 

DO and pH (R
2
 = 0.87, p < 0.001 and R

2
 = 0.93, p < 0.001, respectively), and increased conductivity 

(R
2
 = 0.99, p < 0.001), nutrients (R

2
 = 0.94 , p < 0.001 for N-NO2

-
; R

2
 = 0.99 , p < 0.001 for N-

NH4
+
; R

2
 = 0.98 , p < 0.001 for N-NO3

-
; R

2
 = 0.95 , p < 0.001 for SRP) and DOC concentration (R

2
 

= 0.99, p < 0.001). However, T did not vary between treatments (R
2
 = 0.01, p = 0.84; Table 3). The 

solutes increased linearly but in different proportion: N-NO2
-
 increased up to 100-fold, N-NH4

+
 up to 

400-fold, whereas N-NO3
-
, SRP and DOC increased up to 5- to 20-fold. The entrance of unpolluted 

water in the recovery phase eliminated the differences among treatments (Table 2). 
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Table 2. Water characteristics in each treatment during the exposure and the recovery phases (all treatments pooled). Values shown are mean ± standard error (SE) calculated for pH, T, 

conductivity and DO concentration from 3 replicates per treatment, during 10 surveys in the exposure phase (n = 30) and 6 surveys in the recovery phase (n = 18)). Values for N-NO2
-, N-NH4

+, 

N-NO3
-, SRP and DOC were calculated from 3 replicates per treatment during 12 surveys in the exposure phase (n = 36, except DOC where n = 30), and during 8 surveys in the recovery phase 

(n = 24, except DOC where n = 12).

Treatment 0% 14% 29% 43% 58% 72% 86% 100% Recovery 

pH 8.4 ± 0.1 8.4 ± 0.1 8.3 ± 0.1 8.2 ± 0.1 8.1 ± 0.1 8.0 ± 0.1 8.0 ± 0.1 7.9 ± 0.1 8.6 ± 0.0 

T (ºC) 21.1 ± 0.3 21.0 ± 0.2 19.4 ± 0.2 19.1 ± 0.2 19.7 ± 0.2 19.9 ± 0.2 21.0 ± 0.2 21.2 ± 0.2 20.2 ± 0.3 

Conductivity (µS cm
-1

) 220 ± 4 398 ± 9 584 ± 20 766 ± 28 934 ± 37 1112 ± 45 1205 ± 53 1348 ± 61 302 ± 4.3 

DO (mg L
-1

) 8.9 ± 0.1 9.0 ± 0.1 9.2 ± 0.1 8.7 ± 0.2 8.3 ± 0.3 7.8 ± 0.4 7.3 ± 0.4 6.9 ± 0.4 9.2 ± 0.1 

N-NO2
- 
(mg N L

-1
) 0.05 ± 0.0 0.4 ± 0.1 1.8 ± 0.4 2.9 ± 0.8 4.7 ± 1.2 5.5 ± 1.6 6.5 ± 2.0 5.8 ± 2.0 0.003 ± 0.0 

N-NH4
+
 (mg N L

-1
) 0.04 ± 0.02 2.0 ± 0.5 5.4 ± 1.1 7.7 ± 1.6 9.4 ± 2.1 11.8 ± 2.5 13.4 ± 2.8 16.1 ± 3.2 0.002 ± 0.0 

N-NO3
- 
(mg N L

-1
) 1.2 ± 0.0 3.7 ± 0.5 4.4 ± 0.9 6.9 ± 1.7 8.6 ± 2.3 11.9 ± 3.2 12.6 ± 3.6 16.1 ± 4.2 1.0 ± 0.1 

SRP
 
(mg P L

-1
) 0.04 ± 0.03 0.03 ± 0.01 0.06 ± 0.01 0.21 ± 0.06 0.31 ± 0.09 0.44 ± 0.11 0.53 ± 0.12 0.70 ± 0.13 0.03 ± 0.01 

DOC (mg C L
-1

) 1.2 ± 0.1 3.0 ± 0.1 5.0 ± 0.1 7.1 ± 0.2 9.1 ± 0.3 11.3 ± 0.4 12.2 ± 0.5 14.3 ± 0.5 2.0 ± 0.0 
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Biofilm SRP uptake and biomass accrual 

The WWTP effluent caused an immediate stress effect on SRP uptake capacity, which peaked in the 

control treatment (5.6 µg P h
-1

, 0%) and decreased with increasing pollution proportions (Fig. 2a) to 

the point that above 70% of effluent contribution, it became negative, i.e. biofilm carriers released 

SRP (Fig. 2a, 2b). This decrease in the uptake capacity followed a logit model (Table 3, Fig. S2), 

which showed the most abrupt decrease at the lower levels of pollution and a more stable but 

negative response from medium levels of effluent contribution. The effluent also caused important 

legacy effects on SRP uptake capacity, which followed the same decreasing pattern from the control 

treatment (5.7 µg P h
-1

, 0%) to the most polluted one (1.4 µg P h
-1

, 100%), fitting again the logit 

model (Table 3, Fig. S2). 

The immediate effects of the WWTP effluent on biofilm SRP uptake efficiency (i.e., uptake 

capacity standardized by biofilm biomass) consisted on a decreased uptake efficiency (Fig. 2b), 

which was again the highest in the control treatment (1.0 µg P mg AFDM
-1

 h
-1

, 0%), and decreased 

down to -0.2 µg P mg AFDM
-1

 h
-1

 in the most polluted treatment. Once more, data fitted best the 

logit model (Table 3, Fig. S3), suggesting a pure stress effect. Legacy effects also peaked at low 

levels of effluent contribution (highest uptake: 0.8 µg P mg AFDM
-1

 h
-1

, 14%; lowest uptake: 0.2 µg 

P mg AFDM
-1

 h
-1

, 100%). This relationship, however, followed the Haldane model, which suggested 

a possible subsidy-stress legacy effect (Table 3, Fig. S3). 

Maximum Chl-a values during the exposure phase occurred at medium levels of effluent 

contribution (17.5 µg cm
-2

, 29%, Fig. 2c), while the lowest values (3.9 µg cm
-2

) were observed in the 

control treatment. Thus, the immediate effects of pollution consisted on subsidizing Chl-a at all 

proportions of pollution tested, but the data fitted best the Haldane model (Table 3, Fig. S4), thus 

suggesting a saturating subsidy effect which became inhibited at higher levels of effluent 

contribution. The WWTP effluent had a noticeable legacy effect on Chl-a, as values were lower in 

the control treatment (14.9 µg cm
-2

) and peaked at intermediate levels of pollution (45.1 µg cm
-2

, 

58%). However, although the pattern was best described by the quadratic model (Table 3, Fig. S4), 

the falling limb of the hump did not fall below the control, which showed again a saturating subsidy 

legacy effect with inhibition at higher levels of pollution legacy. 

Immediate effects of pollution on biofilm biomass accrual (AFDM) suggested a subsidy-

stress response (Fig. 2d): AFDM peaked at low-medium levels of effluent (1.8 mg cm
-2

, 14%) and 

the lowest values occurred in the most polluted treatment (0.9 mg cm
-2

), the data fitting best the 

Haldane model (Table 3, Fig. S5). Thus, AFDM showed a saturating subsidy effect which became 

stressed in the highest levels of effluent contribution. Pollution also showed important legacy effects 

for AFDM, as biofilm biomass accrual peaked in treatments previously exposed to medium levels of 

effluent contribution (2.9 mg cm
-2

, 58%), being the lowest again in the most polluted treatment (1.2 
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mg cm
-2

). The data best fitted the quadratic model (Table 3, Fig. S5), thus showing similar legacy 

effects of subsidy-stress. 

 

Figure 2.  Immediate (exposure phase, shaded columns) and legacy effects (recovery phase, white columns) of 

WWTP effluent pollution on processes measured on biofilm carriers. (a) Soluble reactive phosphorus (SRP) uptake 

capacity (b) SRP uptake efficiency (SRP uptake standardized by biofilm biomass), (c) chlorophyll-a (Chl-a) and (d) 

biofilm biomass accrual (AFDM). Values shown are mean ± standard error (SE).  

Benthic metabolism 

Immediate effects of the WWTP effluent promoted GPP from 225 mg O2 m
-2

 h
-1

 in the control 

treatment to 785 mg O2 m
-2

 h
-1 

at medium levels of effluent contribution (58%), following the 

quadratic model (Table 3, Fig. S6). However, as values of the most polluted treatments did not fall 

below the control ones, it showed a saturating subsidy effect, which was most accentuated at 

medium concentrations and became inhibited at high levels of effluent contribution. The legacy 

effects followed a similar pattern (lowest production rate: 298.2 mg O2 m
-2

 h
-1

, 0%; highest 

production rate: 499.3 mg O2 m
-2

 h
-1

, 58%). Data fitted best the quadratic model (Table 3, Fig. S6), 

and treatments with the highest legacy did not provide values below the control ones, suggesting the 

same subsidy effect accentuated at medium concentrations. 

Immediate effects of the WWTP effluent promoted CR from -83.8 mg O2 m
-2

 h
-1

 in the 

control treatment to -518.4 mg O2 m
-2

 h
-1

 in the most polluted, fitting a logit model which suggested 

a pure subsidy effect (Table 3, Fig. S7). A pollution legacy effect could also be seen, by the similar 



 

120 

 

pattern followed by the treatments at the end of the recovery phase (lowest oxygen consumption 

rate: -76.8 mg O2 m
-2

 h
-1

, 0%; highest oxygen consumption rate: -183.2 mg O2 m
-2

 h
-1

, 100%). Data 

fitted best again the logit model (Table 3, Fig. S7), indicating the same pure subsidy legacy effect. 

All treatments were predominantly autotrophic, since the average production-to-respiration 

ratio (GPP:CR) calculated for exposure and recovery phases (mean ± standard error) were above 1, 

i.e. of 2.17 ± 0.21 and 3.52 ± 0.30, respectively, and peaked at intermediate levels of pollution and 

pollution legacy. 

 

Figure 3. Immediate (exposure phase, shaded columns) and legacy effects (recovery phase, white columns) of 

WWTP effluent pollution on benthic metabolism. (a) Gross primary production (GPP) and (b) Community respiration 

(CR) measured on epipsammic and epilithic biofilm. Values shown are mean ± standard error (SE). 

Organic matter decomposition  

Immediate effects of the WWTP effluent promoted OMD to values up to 0.005 d
-1

 in the most 

polluted treatment (Fig. 4), whereas it was lowest at medium levels of effluent contribution (0.003 d
-

1
, 43%). The results best fitted a linear model (Table 3, Fig. S8), indicating a non-saturating subsidy 
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effect on OMD. Legacy effects were weak: the slowest OMD rate (0.011 d
-1

) occurred at medium 

levels of effluent contribution (in the treatment 43%) and the fastest (0.013 d
-1

) in the control 

treatment.  However, process fitted best a weak linear pattern (Table 3, Fig. S8), showing almost no 

legacy effect. 

 

Figure 4. Immediate (exposure phase, shaded columns) and legacy effects (recovery phase, white columns) of 

WWTP effluent pollution on organic matter decomposition (OMD). Values shown are mean ± standard error (SE).
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Table 3. Linear and best-fitting model results for soluble reactive phosphorus (SRP) uptake capacity (USRP), SRP uptake efficiency (USRP/AFDM), chlorophyll-a (Chl-a), total biomass (AFDM), 

gross primary production (GPP), community respiration (CR) and organic matter decomposition (OMD), for immediate (measured at the end of the exposure phase) and legacy effects (measured 

at the end of the recovery phase). Akaike Information Criterion (AIC) and Relative Standard Errors (RSE) results are shown for the best fitted model on each case (Best fit model, Best AIC, Best 

RSE), but also for the simplest response, given by default in all the cases (Lin. AIC, Lin. RSE). These values verify whether the best fitted model improved the linear response results or not. 

Finally, pollution and legacy effects refer to whether the WWTP effluent increases (Subsidy), reduces (Stress) or produces both outcomes (Subsidy-Stress) beyond the control values (pure stream 

water). For more detailed information about the fitting models see Figures 2-8, available as Supplementary Material to this paper (Fig. S2- S8). 

Immediate effects 

Process USRP USRP/AFDM Chl-a AFDM GPP CR OMD 

Lin. AIC 78.4 3.2 158.1 16.7 317.5 274.5 -248.2 

Lin. RSE 1.14 0.24 6.01 0.32 166.36 67.95 0.001 

Best fit model Logit Logit Haldane Haldane Quadratic Logit Linear 

Best AIC 77.2 -3.3 145.3 11.5 315.1 259.8 -248.2 

Best RSE 1.09 0.20 4.51 0.28 155.35 49.11 0.001 

Pollution effects Stress Stress Subsidy Subsidy-Stress Subsidy Subsidy Subsidy 

Legacy effects 

Lin. AIC 59.3 -13.3 202.6 64.3 291.4 221.4 -258.9 

Lin. RSE 0.77 0.17 15.18 0.85 96.48 22.47 0.001 

Best fit model Logit Haldane Quadratic Quadratic Quadratic Logit Linear 

Best AIC 56.9 -22.8 192.3 62.5 286.6 214.5 -258.9 

Best RSE 0.72 0.14 12.02 0.81 85.73 19.12 0.001 

Legacy effects Stress Subsidy-Stress Subsidy Subsidy-Stress Subsidy Subsidy No legacy 
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Discussion 

Ecosystem response to rising concentrations of WWTP effluents 

The gradient of effluent contribution in our experiment mimicked the situation occurring in the field, where 

in extreme cases wastewater discharges can contribute most of the in-stream flow, transforming these 

streams into effluent dominated systems (Rice & Westerhoff, 2017). Despite our extreme gradient, the 

expected subsidy-stress scheme was only followed by biofilm biomass accrual. Otherwise, the effluent 

acted as a subsidy for most processes, except SRP uptake, which decreased dramatically with increasing 

effluent concentration. However, the patterns as well as the concentrations at which activities peaked 

followed process-specific responses. 

Some studies (e.g. Clapcott et al., 2011; Woodward et al., 2012) have reported stream variables to 

show hump-shaped responses to stressors such as nutrient inputs, and this pattern has been often attributed 

to the subsidy-stress scheme described by Odum et al. (1979). Nevertheless, Odum defined stress as values 

of biological activity below "normal", which means that not all hump-shaped curves reflect subsidy-stress. 

In our case, most measured processes did not follow the subsidy-stress scheme, but were rather subsidized 

by the WWTP effluent, even at 100% effluent contribution. Only a few functional processes were impaired 

by the effluent, such as, the biofilm SRP uptake capacity and the biofilm biomass accrual, although they 

showed different thresholds of stress. While the biofilm SRP uptake capacity was purely stressed from the 

lowest levels of effluent contribution, biofilm biomass accrual followed the subsidy-stress pattern, shifting 

from being subsidized to be stressed at medium levels of effluent contribution. These results suggest that 

the WWTP effluent used in the present experiment had low toxicity for microbially-mediated processes. 

According to the EU-funded ENERWATER research project (ENERWATER European Project 2018, 

URL: http://www.enerwater.eu/), the effluents from WWTPs worldwide span a very large range of nutrient 

concentration (0.1-95 mg N L-1 and 0.1-9 mg P L-1 for total nitrogen and total phosphorus, respectively) 

(ENERWATER Benchmarking Database, 2018). Our effluent fits in the low range of both nutrients, 

meaning that more stress responses could have been detected with effluents fitting higher ranges of nutrient 

concentrations.  

The response of some of the functional processes measured (quadratic for GPP, logit for CR and 

linear for OMD) were best fitted by models indicating that the effluent produced a non-saturating subsidy 

effect. In those cases, the effluent did not become toxic, even at the highest concentrations, and also none 

of the experimental abiotic factors became limiting. Probably, the high nutrient supply (up to 400-fold 

times higher than in the control), absence of light limitation and warm water temperature in our experiment 

promoted these microbially-mediated processes, as has been shown in open streams placed below WWTP 

effluents (Stelzer et al., 2003; Albek, 2003; Martí et al., 2004). These results are in line with previous 

studies where high nutrient concentrations and warm water temperatures were reported as the main drivers 

of faster decomposition rates in effluent-dominated streams (Spänhoff et al., 2007). Still, we expected that 

the high concentrations of both assimilable and toxic compounds in the treatments with lower dilution 
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capacity (i.e., higher levels of effluent contribution), would have stress effects and limit processing rates, 

but this was not the case. Our results for benthic metabolism also support that the higher nutrient 

concentrations derived from wastewater effluents would promote overall ecosystem metabolism (Gücker et 

al., 2006; Izagirre et al., 2008). At medium pollution levels, however, primary production became saturated 

while respiration increased dramatically. After 15 d of exposure to the WWTP effluent, some of the most 

polluted treatments started to show hypoxic conditions during the night (DO concentrations down to 4 mg 

L
-1

), and reached anoxic conditions (1 mg L
-1

) after 25 d of exposure. Overall, these are signals of 

eutrophication in the most polluted treatments (Smith, 2003; Brack et al., 2007). 

Some other response models (Haldane for Chl-a and AFDM) indicate that the effluent had a 

saturating subsidy effect on these processes, with inhibition at higher levels of effluent contribution. 

Medium pollution concentrations were saturating for both processes and the highest pollution levels 

induced inhibition, and even toxicity in the case of biofilm biomass. This saturating subsidy effect has been 

widely described in the literature (Paul & Meyer, 2001), together with the toxic effects that could be 

produced by higher nutrient concentrations (Ribot et al., 2015). Interestingly, this saturation threshold was 

achieved at lower levels of effluent contribution for both Chl-a and AFDM than for GPP, suggesting that 

structural variables could be more sensitive than those related to ecosystem functioning. However, the 

decreasing tendencies caused by inhibition at higher levels of effluent contribution, do not fit the non-

saturating tendencies observed for both OMD and CR, which suggests that effects might depend on the 

type of organism. It is well known that nutrients may induce changes in species composition (Bernhardt & 

Likens, 2004; Domingues et al., 2011), and this could affect both the primary producers as well as the 

heterotrophs existing in our artificial streams, which could have favoured the presence of a more resistant 

community. 

Finally, the logit model showed that the effluent had a pure stress effect on SRP uptake capacity 

and efficiency, as both activities decreased since the lowest levels of pollution. The demand for nutrients 

dissolved in the water column is affected by the balance between the biofilm and the water column, as 

internal recycling gains importance when the external supply is comparatively low (Mulholland, 1996; Hall 

et al., 2002). Thus, under high external nutrient supply, biofilms become less efficient in nutrient removal 

from the water column (Proia et al., 2017), to the most extreme cases where no nutrient removal occurs due 

to a saturation of the system (Earl et al., 2006). Moreover, in our experiment, SRP concentrations in the 

most polluted treatments were higher than in the bioassay standard solution, which could have led to abiotic 

desorption of SRP by the biofilms. Therefore, our results point to a combination of biotic saturation of SRP 

removal and shifts in abiotic sorption-desorption mechanisms as the main causes of the observed decline in 

SRP uptake capacity and efficiency along the gradient of increasing pollution contribution. 
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Legacy effects 

Most processes showed clear legacy effects of pollution, despite a higher biological activity at the end of 

the recovery phase than at the end of the exposure phase. However, these legacy effects followed either 

subsidy, stress, or subsidy-stress dynamics. 

For most of the processes, the response model for the legacy effect was the same as for the 

immediate effect despite the inclusion of colonized cobbles from the unpolluted Llémena River at the onset 

of the recovery phase. This fact suggests some degree of resistance to change of the old biofilm community 

to the new inoculum. During the whole experiment, the water flow was very slow, which has been shown 

to enhance biofilm biomass, thickness and complexity (Battin et al., 2003). These thick biofilm structures 

reduce the hydraulic exchange between the biofilm and the water column, promoting internal cycling 

processes (Earl et al., 2006; Johnson et al., 2015). Thus, thick biofilm can store large concentrations of 

nutrients, as we observed in the experiment even weeks after the effluent flow ceased. The storage of 

nutrients and other pollutants within the biofilm could be the main cause for the persistence of the similar 

subsidy, stress or subsidy-stress patterns for immediate and legacy responses. Results found by Acuña et al. 

(In prep.) in another add-on work to this experiment support this idea, as they found phosphate desorption 

from the sediment and biofilm during the recovery phase.  

Most studies assessing the effects of urban pollution on stream ecosystem functioning are usually 

based on the comparison between reaches located upstream and downstream from existing point-source 

inputs (e.g., Sánchez-Pérez et al., 2009). Although field studies offer greater realism than laboratory 

experiments, the latter offer the opportunity to ask questions impossible to answer with just observational 

studies, such as the effect of the dilution rate of WWTP effluents.  
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Conclusions 

Urban pollution from WWTPs affected the functioning of our mesocosm ecosystems, although mostly not 

following the subsidy-stress scheme we expected. Instead, subsidy responses were the most common 

among the variables measured, even though complex and process-specific patterns were observed. Legacy 

effects occurred for most of the studied processes and followed a similar pattern to that of immediate 

effects, although responses became more complex, mainly driven by the internal cycling occurring within 

biofilms. Overall, the effluent used in the present experiment produced complex effects, and we could, thus 

suspect even more complex responses in real-world freshwater ecosystems.  
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1. Stream and effluent characteristics: crucial role determining the effects 

The present dissertation studied contrasting stream types that received different types of urban effluents, 

under a relatively large geographical area and followed several ecosystem processes seeking to describe a 

consistent functional response. However, functional processes showed contrasting response patterns. While 

urban effluents subsidized most of the processes measured, the only being consistently stressed was the 

biofilm nutrient uptake capacity (Chapters 2, 3 and 4), and biofilm biomass accrual was the only process 

showing a clear subsidy-stress pattern during the laboratory experiment (Chapter 4). This suggests that 

some other factors could have influenced our results and therefore, that should be considered to assess the 

global magnitude of urban pollution.  

1.1. How could multiple stressors modulate the effects of urban pollution?  

Freshwater ecosystems are usually subjected to the joint pressure of multiple stressors (Sabater et 

al., 2018b), and thus during the last decades the concern about their ecological effects on biological 

communities (Sabater et al., 2016) and ecosystem functioning (Johnston et al., 2015) has significantly 

increased. Interactions among stressors, however, are not always straightforward and sometimes yield 

unexpected results, due to the indirect relationships among stressors (Romero et al., 2018), the variability 

on the biological response (Berthelsen et al., 2018) and the resistance capacity of each ecosystem (Jackson 

et al., 2016). Indeed, our field observational experiment which assessed the joint effects of urban pollution 

and hydrology (Chapter 2) showed that even if effluents subsidized most functions, the response pattern 

was complex and process-specific.  Nevertheless, this complexity was maintained when the number of 

stressors was reduced to the minimum (Chapters 3 and 4), emphasizing that the balance between pollutants 

can also affect differently ecosystem processes. In both studies urban effluents stressed microbially-

mediated functional processes, although it was not translated into ecosystem-level responses.  

Many stressors can exacerbate the effects of urban pollution on stream ecosystem functioning. For 

instance, diffuse nutrient inputs derived from agricultural practices can increase stream background 

concentrations of nutrients and pesticides, which could increase toxicity levels. As a consequence, these 

pollutants can saturate stream biotic uptake, decreasing the efficiency of nutrient removal (Merseburger et 

al., 2011) and increasing the load of nutrients downstream (Earl et al., 2006). On the other hand, most 

freshwater ecosystems are also intensively managed by human practices such as weirs, dams, 

channelization, groundwater exploitation or water abstraction (Elosegi & Sabater, 2013; Sabater et al., 

2018a). All these impacts decrease stream flows, alter sediment transport and channel morphology, 

increase water temperature and impair water chemistry (Arroita et al., 2016), all of which are likely to 

interact with pollution. In the field observational experiment (Chapter 2), lower stream flows reduced the 

dilution capacity of streams, increasing the concentrations of pollutants (Rice & Westerhoff, 2017), which 

affected key ecosystem processes, such as the biofilm capacity to retain nutrients. However, at the same 

time, lower stream flows enhance hydrological stability and hydraulic retention, which could favour the 

transformation, degradation and assimilation of pollutants (Arenas-Sánchez et al., 2016). Some authors 
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described a significant growth of biological communities during periods of hydrological stability (Aristi et 

al., 2014), which can promote ecosystem processes, such as nutrient retention or metabolism (Sabater et al., 

2018a). Finally, human practices, such as agriculture, intensive forestry or mineral extraction, promote 

sediment erosion and increase the proportion of fine sediments on streams and rivers (Wood & Armitage, 

1997). Fine sediments can interact with urban effluents, also recognized to be an important source of them 

(Miserendino et al., 2008), and alter the structure of biofilm (Wagenhoff et al., 2013) and invertebrate 

communities (Piggot et al., 2015), which can ultimately affect key ecosystem processes (Niyogi et al., 

2003; Young et al., 2008). In that sense, field experiments showed that urban effluents stressed biofilm 

capacity to retain nutrients, but these responses were not translated into whole-ecosystem processes, 

suggesting that other compartments could have played a key role mitigating the negative effects observed at 

the biofilm scale.  

 

Figure 1. Some of the stressors that can interact with urban pollution: pesticides, channelization, siltation. Photographs 

provided by Arturo Elosegi.  

In streams and rivers a wide variety of compartments can be biogeochemically active and play a 

determinant role on ecosystem processes, including nutrient uptake and metabolism (Fig. 2). In our field 

manipulative experiment (Chapter 3), the effluent contribution was low and the stream was relatively little 

affected by additional human activities. The streambed sediment was dominated by bedrock, hyporheos 

seemed to be of little importance, but the riparian trees there had extensive roots protruding into the 

channel, which could have played a role on nutrient retention. In our field observational experiment, on the 

contrary, reed-type macrophytes were likely major players for ecosystem functioning at some streams. 

Additionally, urban effluents (Miserendino et al., 2008) and agricultural practices (Wood & Armitage, 

1997) caused thick deposits of fine sediments on some reaches. Fine sediments can clog top sediment 

layers and reduce the connectivity between ecosystem compartments, including the hyporheos (Descloux et 

al., 2013). Because of that, in those streams other compartments such as fine sediments (Withers & Jarvie, 

2008) or macrophyte communities (Riis et al., 2012), could have played a key role explaining the 

differences observed between biofilm and whole-reach scales. Nevertheless, as I only measured the 

ecosystem functional response at two levels, without considering other compartments that could also be 

involved, I can only speculate about it. Therefore, I think that it would be interesting to measure the role of 

other ecosystem compartments in the Apraitz Stream and in the lower Ebro River tributaries, in order to 

disentangle their specific contribution to the whole-ecosystem processes and thus, detect the main 
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compartment modulating the ecosystem response under multiple stress scenarios (Hoellein et al., 2009; 

Acuña et al., 2011).   

 

Figure 2. Ecosystem compartments that can play a key role in whole-reach nutrient uptake and metabolism. The figure is of 

public domain.  

1.2. How can the nature of the effluent modulate the response?  

During the last years, there have been many technological advances and optimisation of WWTPs. 

Consequently, human health and water security have improved in those countries able to afford their 

economic costs (Vörösmarty et al., 2010). However, huge amounts of wastewater are still released into the 

environment without any treatment, especially in developing countries (WHO & UNICEF, 2017).  Even if 

WWTPs do not remove all contaminants, they are necessary to reduce the loads of pollutants and pathogens 

to acceptable levels before releasing the effluents into the environment (Alfonsín et al., 2014; Aymerich et 

al., 2016). Some authors, comparing raw and treated effluents, showed how WWTPs reduce the 

concentrations of pollutants, such as pharmaceuticals (Mandaric et al., 2018), personal care products 

(Kasprzyk-Horden et al., 2009), heavy metals (Cantinho et al., 2016) and pathogens (Vaz-Moreira et al., 

2014; Subirats et al., 2017). Due to this ever-changing mixture of pollutants, chemical pollution is widely 

considered a multiple stressor on its own (Jackson et al., 2016). But many authors highlight the need for 

assessing the exact composition of these mixtures (Altenburger et al., 2015), as the mode of action of each 

compound (Cleuvers, 2003) could determine the balance between pollutants and thus, affect ecosystem 

functioning in different ways. In that sense, prevailing land-use in the surrounding area is one of the main 

factors influencing the chemical composition of sewage inputs (Posthuma et al., 2008), as agricultural 

practices can increase the loads of nutrients and pesticides (Kuster et al., 2008), industrial activities heavy 

metal concentrations (Holeton et al., 2011), while urban areas the loads of other micro-contaminants, such 

as pharmaceuticals, personal care products or illicit drugs (Kuzmanovic et al., 2015; Rosi-Marshall et al., 
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2015; de Solla et al., 2016). Finally, the effects of WWTP effluents depend on their final concentration in 

the receiving water body, which depends on the dilution capacity of the receiving stream, the wastewater 

treatment efficiency and the volume of effluents released. Also, temporal variability in effluent release can 

have important effects. For instance, Nyman et al. (2013) showed in a laboratory experiment that the 

exposure to a constant insecticide concentration reduced the activity and physiology of the amphipod 

Gammarus pulex, but that the same concentration added in pulses did not exert any significant effect.  

  In the present dissertation I have not directly assessed these above-mentioned factors. Therefore, I 

can only speculate about it. Nevertheless, I think that the precise nature of the effluent must be considered 

when assessing the effects of urban pollution on stream ecosystem functioning (Jackson et al., 2016). In 

fact, if we assume that functional processes or biological activities respond to a gradient of pollution 

following the Subsidy-Stress pattern (Odum et al., 1979), inconsistent results from different studies could 

simply derive from the specific effluent contribution or from the balance between assimilable and toxic 

compounds. Some studies can describe promoted biological activities below urban effluents, as a 

consequence of lower effluent concentration or because assimilable substances prevail over toxic ones 

(Green box, Fig. 3). On the contrary, other studies can describe stressed biological activities, due to higher 

effluent concentration or because toxic substances prevail over assimilables (Red box, Fig. 3). Whereas 

some other studies, can report unaffected ecosystem processes as a consequence of intermediate levels of 

effluent contribution or of a balance between assimilable and toxic substances (Blue box, Fig. 3).  

 

Figure 3. Hypothetical Subsidy-Stress type response of biological activity to the concentration of urban pollutants, and 

potential sources of contrasting results among studies focusing on the effects of pollutant concentration on ecosystem 

functioning. An experiment in the range of the green box would conclude that urban pollution subsidizes biological activity, 
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an experiment in the range of the red box would conclude there is an stress effect, whereas an study with two concentrations, 

one in the green range and one in the red range, would conclude that urban pollution has no effect on biological activity. 

1.3. How does stream dilution capacity modulate the effluent effects? 

The proportion of effluent in the total river flow defines the dilution capacity of a river (Rice & 

Westerhoff, 2017) and it does modulate the effects on ecosystem functioning. The  study sites used in the 

present dissertation covered a large gradient of effluent contribution, from 3% to more than 90% in natural 

streams, in Apraitz Stream and tributaries of the lower Ebro River (e.g., Els Reguers or La Sènia), 

respectively, and from 0 to 100% in laboratory artificial streams. Although impacts should increase with 

increasing effluent contribution, sometimes results yield ecological surprises (Jackson et al., 2016) showing 

non-linear responses (Pereda et al., 2019). Therefore, here we look at the effect of effluent contribution on 

stream ecosystem functional processes measured through the three chapters of the dissertation (Figs. 4-5), 

by computing the ratio between Impact and Control reaches (I:C) against the effluent contribution.  
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Figure 4. I:C ratios of some of the functional processes measured in the lower Ebro River vs. the I:C ratio of SRP 

concentration (Chapter  2). In this experiment we could not calculate the effluent contribution to the receiving stream. Thus, 

we show the ration of SRP concentration on Impact versus Control reaches as a proxy of the effluent contribution. Results are 

shown in logarithmic scale.  

 Results from the field observational experiment (Chapter 2, Fig. 4) showed that effluent 

contribution caused different effects on stream ecosystem processes. On the one hand, biofilm biomass 

accrual, ecosystem respiration and phosphorus areal uptake increased with increasing levels of effluent 

contribution, although they followed different response patterns. While biomass accrual and ecosystem 

respiration showed weak non-linear responses which were more accentuated at higher levels of effluent 

contribution (from I:C ratios between 5 and 10), phosphorus areal uptake showed a strong linear positive 

relationship to increasing effluent contribution. On the other hand, biofilm capacity to retain phosphorus 

was the only process significantly stressed by the effluent and showed a strong non-linear negative 

response from the lowest levels of effluent contribution (I:C ratios smaller than 5). Finally, primary 

production and organic matter decomposition did not show any significant relationship to increasing levels 

of effluent contribution, which would indicate that other external factors exert stronger influence.  
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Figure 5. I:C ratios of some of the functional responses measured vs. the effluent contribution in the field manipulative 

(Chapter 3, grey series) and laboratory channel experiments (Chapter 4, black series). Results are shown in logarithmic scale. 

Results from the field manipulative (Chapter 3, Fig. 5 grey series) and laboratory experiments 

(Chapter 4, Fig.5 black series) showed that the effluent exerted also different effects on stream functions. 

Results from the field manipulative experiment described similar patterns to the ones of the field 

observational experiment (Fig. 4), such as increased biofilm biomass, community respiration and 

phosphorus areal uptake, although in this case all showed non-linear responses (from c.a. 2% of effluent 

contribution). Similarly, biofilm phosphorus uptake capacity was the only process significantly stressed by 

the effluent, showing also a strong non-linear negative response (from smaller effluent contributions than 

2%). Finally, gross primary production and organic matter decomposition were again unaffected by 

increasing levels of effluent contribution. However, these results contrast with the laboratory experiment 
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(Chapter 4, Fig. 5 black series). In the latter case, effluent contribution promoted not only community 

respiration but also gross primary production and organic matter decomposition (from 10-30% of effluent 

contribution). Biofilm phosphorus uptake was again stressed by increasing effluent concentration (effluent 

below 10%), showing a strong non-linear negative response. Finally, biofilm biomass was the only process 

showing the expected subsidy-stress pattern, as it increased up to a maximum effluent contribution (around 

15%), where it became saturated and stressed below control levels.   

Therefore, urban effluents exerted similar effects on both field experiments, but response patterns 

slightly differed among experiments. Field experiments showed similar results, although relationships were 

more clear in the observational experiment (Figs. 4 vs.5). This can be attributed to the larger gradient of 

effluent contribution, from nearly unpolluted streams (I:C ratio of SRP concentration = 1) to others in 

which effluents constituted almost all the stream water flow (I:C ratio of SRP concentration = 129). In 

addition, in the manipulative experiment, the closed riparian canopy caused strong light limitation, which 

could probably cause weak functional responses in the biofilm (von Schiller et al., 2007; Bernot et al., 

2010). On the other hand, the laboratory experiment yielded clearer response patterns, likely as a 

consequence of the larger concentration gradient, and the generally better conditions for biofilm growth 

(higher light and temperature) (Stelzer et al., 2003).  

Altogether, these results suggest that urban effluents should be diluted to concentrations below 

30% to avoid impairing the functioning of the receiving ecosystems. This threshold could be useful when 

planning the implementation of WWTPs.  

2. Overview of the main results 

In this dissertation, I combined observational and manipulative, field and laboratory experiments (Table 1). 

The field observational experiment (Chapter 2) focused on the joint effects of urban pollution and 

hydrology on stream ecosystem functioning. I compared the ecosystem functioning in reaches upstream 

and downstream from sewage inputs, which differed in their dilution capacity. Sewage inputs, even if they 

were small and did not affect noticeably stream hydrology, caused detrimental consequences on water 

quality and altered ecosystem functioning. The changes on ecosystem functioning seemed especially 

related to organic micro-contaminants. None of the measured processes, however, followed the expected 

Subsidy-Stress pattern, being mostly subsidized instead. The only processes being stressed were those 

directly regulated by microbial communities, suggesting that some compensatory mechanisms could 

mitigate ecosystem-level responses. These results emphasise the complexity of effects of urban pollution 

under multiple stress scenarios.  

To eliminate confounding factors, I performed a field manipulative experiment (Chapter 3), 

unprecedented to my knowledge,   following a BACI design. Despite being highly diluted, the effluent 

subsidized most of the ecosystem processes measured and only a few remained unaffected. As in the 

previous chapter (Chapter 2), biofilm functioning was the only process stressed by the WWTP effluent. 
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Altogether, our results indicate that WWTP effluents, even if they are adequately processed and highly 

diluted by the receiving water body, can exert significant and complex effects on stream ecosystem 

structure and functioning.  

Both field studies failed to detect Subsidy-Stress responses for most variables measured, what 

raised the question of which is the response to a full gradient of WWTP effluent concentration, a question I 

addressed in a laboratory experiment (Chapter 4). Biofilm biomass accrual was the only process following 

the subsidy-stress pattern, whereas most processes showed complex subsidy responses. Here again, biofilm 

nutrient uptake capacity was the only process stressed by effluent concentration. Most of the processes 

showed clear legacy effects, although they followed contrasting patterns. These results can help to improve 

the understanding of the effects of urban pollution on ecosystem functioning, but highlight the complexity 

of the response. 
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Table 1. Main results obtained in this dissertation: effects of urban effluents on the response patterns (Subsidy, Stress, Subsidy-Stress or No effect) of each functional process. 

 

Biofilm accrual 

Enzymatic activities 

Biofilm SRP uptake 

capacity 

 

Nutrient uptake 

  

Metabolism 
Organic matter 

decomposition 

NH4
+
 SRP  GPP ER / CR 

Chapter 2 ↑ Subsidy AFDM ↓Stress ↑ Subsidy ≈ No effect  ≈ No effect ↑ Subsidy ≈ No effect 

Chapter 3 

↑ Subsidy AFDM 

↑ Subsidy Chl-a 

↑ Subsidy AP 

↑ Subsidy BG 

↓ Stress ≈ No effect ≈ No effect 

 

≈ No effect ≈ No effect 

≈ No effect microbial 

↑ Subsidy total 

 

Chapter 4 

∩  Subsidy-stress AFDM 

↑ Subsidy Chl-a 

↓ Stress uptake 

↓ Stress efficiency 

-  -  

 

↑ Subsidy ↑ Subsidy ↑ Subsidy 

Recovery 

∩ Subsidy-stress AFDM 

↑ Subsidy Chl-a 

Recovery 

↓ Stress uptake 

↓ Stress efficiency 

-  -  

 

Recovery 

↑ Subsidy 

Recovery 

↑ Subsidy 

Recovery 

≈ No effect 
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3. Mechanisms responsible for the observed results 

Streambed biofilms process and transform nutrients and organic matter through a combination of 

assimilatory and dissimilatory processes (Romaní, 2010; Battin et al., 2016), what can reduce their 

concentration, at least temporarily, thus alleviating the environmental problems associated with excess 

nutrients (Bernhardt et al., 2003; Ribot et al., 2013). I showed that urban effluents subsidized biofilm 

structure by enhancing total biomass and chlorophyll-a (Chapters 2, 3 and 4), which suggests a similar 

subsidy effect for both heterotrophic and autotrophic communities (Ribot et al., 2015). These results were 

especially noticeable in field experiments, but less clear in the laboratory experiment, where biofilm 

biomass followed the subsidy-stress pattern (i.e., increased up to a threshold where the effluent became 

toxic and decreased below “normal” levels), and chlorophyll-a followed a saturating subsidy effect. 

Therefore, although I can only speculate about it, these results lead me to think that urban effluents induced 

a change in biofilm community, favouring more resistant communities (Drury et al., 2013; Rosi et al., 

2018) by developing antibiotic resistance genes (Subirats et al., 2017), in which autotrophs could have 

prevailed over heterotrophs (Proia et al., 2013). Finally, in the field manipulative experiment the urban 

effluent also increased biofilm exo-enzymatic activities, although enhanced nutrient availability usually 

decrease their expression (Romaní et al., 2012). Therefore, it is likely that altered ecosystem functioning is 

a result of changes in the structure of biofilm community.  

 Biofilm SRP uptake capacity was consistently stressed in all the experiments of the dissertation 

(Chapters 2, 3 and 4). Demand for nutrients is affected by the nutrient balance between the biofilm and the 

water column (Hall et al., 2002). As nutrient ambient concentrations increase, biofilms tend to become less 

effective in nutrient removal, even reducing uptake to zero in cases of saturation (Earl et al., 2006). Our 

results showed that biofilm below urban effluents were less effective in removing nutrients from the water 

column, and even released SRP under the experimental conditions. Urban effluents contribute excessive 

loads of organic matter and nutrients to freshwater ecosystems (Meyer et al., 2005; Carey & Migliaccio, 

2009). In all the experiments of the present dissertation urban effluents significantly increased phosphorus 

concentration, which could have driven the saturation of the biofilm uptake capacity. Nevertheless, urban 

effluents are also an important source of organic micro-pollutants (Rosi-Marshall et al., 2015; Sabater et 

al., 2016; Aymerich et al., 2016), which might also affect biofilm SRP uptake capacity (Chapter 2), as has 

been previously shown (Proia et al., 2017). As a consequence, this decline in biofilm nutrient uptake could 

increase the nutrient transport to sensitive receiving waters, such as reservoirs or coastal ecosystems, where 

they can enhance cause eutrophication (Brack et al., 2007; Alexander et al., 2008).  

 The response detected at the biofilm level contrasts with nutrient uptake results obtained at the 

reach scale. It has been reported that the capacity to transform and retain nutrients is high in pristine 

streams, but it decreases when ambient nutrient concentrations increase (Ensign & Doyle, 2006). Our field 

experiments, however, contrast with those in the literature. In our observational experiment phosphorus 

uptake capacity was not significantly influenced by sewage inputs, whereas ammonium uptake increased. 
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Our field manipulative experiment, on the other hand, showed no significant effects on nutrient uptake, 

apart from a marginally significant reduction in phosphorus uptake velocity. Probably, the main reason 

behind these contrasting results is that, even if urban pollution impairs biofilm capacity to retain nutrients, 

it can be compensated by other ecosystem compartments such as the hyporheic zone, fine sediments or 

macrophytes (Newbold et al., 1981; Covino et al., 2010; Johnson et al., 2015). Urban effluents are an 

important source of fine sediments (Miserendino et al., 2008), and in the field observational experiment, in 

particular, fine sediments could have played a key role retaining nutrients (Withers & Jarvie, 2008), as well 

as the macrophyte communities growing in the main channel or stream banks (Riis et al., 2012). In the 

manipulative experiment, stream substrata were dominated by bedrock and cobbles and macrophytes were 

absent, but the roots from riparian trees could have been determinant mitigating the results observed at the 

biofilm level.  

 Ecosystem metabolism also showed contrasting results when compared to the biofilm scale. River 

metabolism can also be assessed for specific compartments, which allows disentangling their contribution 

to the whole ecosystem (Acuña et al., 2011). Our field observational experiment showed ecosystem 

metabolism to increase below sewage inputs, especially ER, and that both ER and GPP increased 

significantly with pollutant concentrations. These results agree with the ones obtained in the laboratory 

experiment, where WWTP effluent exposure also increased biofilm metabolic activity. This increase was 

higher for CR than for GPP, as the latter became saturated at intermediate concentrations of effluent. 

Nevertheless, both results contrast with those observed in the field manipulative experiment. Our results 

only showed a weak, statistically non-significant, tendency towards increased CR and GPP. As we 

mentioned over this third chapter, different reasons could have precluded from seeing clearer effects, such 

as the lack of enough replication, the low contribution of the effluent and the fact that it was released 

through pulses. So, results from Chapter 3 could reflect the specific experimental conditions, but results 

from the other two chapters (2 and 4) agree with the previously observed in the literature. Many studies 

describe an increase in overall ecosystem metabolism below urban effluents (e.g., Gücker et al., 2006), 

although most report ER to be especially responsive to pollution (Izagirre et al., 2008; Aristi et al., 2015). 

In general, ecosystem or community-level GPP responses are less clear, a fact that has been widely 

attributed to the dependence of GPP on other environmental factors, such as light (Aristi et al., 2015), 

riparian vegetation (Bernot et al., 2010) or turbidity (Izagirre et al., 2008). As a consequence, these changes 

in stream metabolism could alter the balance between autotrophic and heterotrophic processes, which could 

carry the system towards heterotrophy and aggravate the signals of streams stressed by pollution (Brack et 

al., 2007). 

 Finally, urban pollution affected differently the microbial and invertebrate contribution to organic 

matter decomposition. Decomposition of organic matter consists of a series of consecutive processes that 

are influenced by diverse biotic and biotic factors, which make it highly responsive to environmental 

factors (Young et al., 2008; Chauvet et al., 2016). The field observational experiment showed that 

microbial decomposition was not significantly affected below sewage inputs, although it showed a weak 
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tendency to decrease with increasing concentrations of pollutants. These results agree with those of the 

field manipulative experiment, in which the effluent addition did not affect microbial decomposition, but 

increased significantly the one mediated by invertebrates. Both results, however, contrast with the results 

observed in the laboratory experiment, where microbial decomposition increased significantly with effluent 

contribution. Several authors showed increased decomposition rates in laboratory experiments (Biasi et al., 

2017), although these responses are not always translated into field (Solagaistua et al., 2018). These results 

suggest that the abiotic factors employed in the present laboratory experiment, which included high nutrient 

concentrations, absence of light limitation and warm water temperatures, played a key role enhancing 

decomposition rates (Spänhoff et al., 2007). Thus, as reported by other authors (Ferreira et al., 2015), well-

controlled laboratory experiments usually show stronger and clearer response patterns than field 

experiments, as their simplistic nature offers a better control of other confounding factors that can play a 

determinant role behind the inconsistencies observed in the field. Finally, in the only chapter where 

invertebrate organic matter decomposition was assessed (Chapter 3), it was faster with increasing effluent 

concentration, which could be due to increased leaf palatability (Ferreira et al., 2015) or enhanced 

invertebrate density (Pascoal et al., 2003). These results agree with previous works that suggest that 

invertebrates can be more responsive than microbes to pollution (Hieber & Gessner, 2002).  WWTP 

effluents can subsidize microbial activities, such as exo-enzymatic activities and respiration, which can 

promote organic matter decomposition (Ferreira et al., 2006). As invertebrates depend on microbial 

communities to condition leaf litter and increase its palatability, invertebrate decomposition can be affected 

by either direct and indirect effects (Bundschuh et al., 2011, 2013), which could be one of the reasons of 

being more responsive. Besides, the role of microbial and invertebrate communities can be altered under 

pollution (Hieber & Gessner, 2002). In fact, some authors report invertebrate communities to attain their 

highest densities under moderate concentrations of pollution (Friberg et al., 2011), which suggests that the 

role of invertebrates can prevail over microbes under certain levels of pollution.  

4. The future of urban streams 

Urban pollution is one of the most common stressors threatening freshwater ecosystems, often 

operating in concert with other stressors, such as hydromorphological alterations (EC, 2015; Birk et al., 

2018). The types and effects of stressors can be classified from an energy-based perspective, taking into 

account their intensity, frequency and spatial scale (Fig. 6; Stevenson & Sabater, 2010). According to this 

hierarchy, nutrients and pollutants are classified as a kind of stressor that occurs at high frequency but 

usually with low intensity and thus, they are considered highly reversible impacts (Fig. 6). According to 

this classification, these stressors only move biological communities outside their normal physiological 

state but their adaptive mechanisms usually are enough to cope with stress and thus, they only result in 

subtle changes (Segner et al., 2014), which allows the recovery of the system (Sabater et al., 2018b).  
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Figure 6. Classification of stressors according to their associated energy, measured by their intensity and frequency. From 

Sabater et al. (2018b).  

Nevertheless, results of the present dissertation do not agree with this classification. In fact, in 

some of the studied streams, we showed that urban effluents greatly impaired water quality, inducing 

anoxic conditions and nutrient concentrations comparable to the most polluted streams described across 

Europe (Grizzetti et al., 2017). These changes in water quality lead to detrimental consequences on 

biological communities, inducing abrupt alterations on invertebrate community composition, as we showed 

in a parallel work to our field observational experiment (Mor et al., 2019), and on ecosystem functioning, 

impairing key ecosystem processes such as the biofilm nutrient uptake capacity and ecosystem respiration. 

Therefore, our results suggest that urban pollution should be classified as a very intense impact that can 

occur at high frequency in time, causing strong legacy effects and thus, low capacity to recover (Jarvie et 

al., 2013).  

Future predictions do not forecast optimistic scenarios, as these effects can be exacerbated when 

stressors occur at larger spatial and temporal scales or when they are subjected to novel stressors, including 

the global expansion of pesticides and pharmaceuticals (Ricart et al., 2010). On the one hand, from the end 

of the last century the number of urban dwellers is increasing dramatically, and over the next decades the 

projected size and spatial distribution of the population is expected to continue increasing and 

concentrating even more around cities (Jones & O´Neill, 2016). As a consequence, effects of urban 

pollution will be enlarged, increasing the number of streams and rivers subjected to the “Urban Stream 

Synd  m ” (sensu Walsh et al., 2005). On the other hand, increasing drought is expected to exacerbate the 

effects of urban pollution, as an increasing number of streams and rivers are expected to become temporary 

over the next years due to climate change and water abstraction (Acuña et al., 2014). Under these scenarios, 

the dilution capacity of streams and rivers will be severely reduced and thus, urban effluents are expected 

to make up a larger proportion of the water flow (Rice & Westerhoff, 2017), leading to a huge increase in 

the number of effluent-dominated streams (Döll & Schmied, 2012). In addition, associated with the 

predicted global changes scenarios (Hisdal et al., 2001), rainfall patterns are expected to alter and become 

more torrential, which involves alternation between drier conditions and extreme rainfall events (Räisänen 
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et al., 2004). These periods of heavy rainfalls can difficult the functioning of WWTPs, as they can generate 

uncontrolled spills of untreated wastewater (Corada-Fernández et al., 2017). These accidental releases of 

untreated sewage can seriously impair stream water quality, as they can significantly increase the 

concentration of contaminants, including nutrients, heavy metals and other emerging pollutants, such as 

pharmaceuticals or personal care products (Canobbio et al., 2009; Guasch et al., 2010; Corada-Fernández 

et al., 2017). On the contrary some other authors classify the huge increase in the production and 

diversification of new synthetic chemicals as the main drivers of global change (Bernhardt et al., 2017). 

Although during the last decades they have been ignored when assessing the effects of global change 

(Stehle & Schulz, 2015), these stressors have greatly increased in quantity, diversity and geographical 

expansion (Fig. 7). Their production and diversification rates, specifically those of pesticides and 

pharmaceuticals, have exceeded the increasing rates of most agents previously recognized as the main 

drivers of global change, such as elevated atmospheric CO2, nutrient pollution, land-use change or 

biodiversity loss (Fig. 7a vs. Figs. 7b, 7c), and they have been described to create long-term environmental 

problems. Similarly, massive accumulation of plastic particles in aquatic environments is becoming a 

concerning environmental problem (Geyer et al., 2017). Most of the studies regarding this issue have 

focused on marine ecosystems and the risks associated to aquatic biota, whereas freshwater ecosystems 

have received less attention. However, recent studies have demonstrated not only the presence of plastic 

particles in freshwater ecosystems, but also that the contamination can be as severe as in the oceans, which 

can also cause severe toxic effects on freshwater biota (Wagner et al., 2014; Dris et al., 2015; Eerkes-

Medranos et al., 2015). Therefore, the massive synthesis of these new chemical compounds, is expected to 

lead detrimental effects on biological communities, which could ultimately affect ecosystem functioning 

(Malaj et al., 2014; Bernhardt et al., 2017).  

 

Figure 7. Increasing trends of (a) the agents previously recognized as drivers of global environmental change, (b) the 

diversity and application of pesticides and pharmaceuticals within the US and globally, and (c) the global trade value of 

synthetic chemicals as well as for the pesticide and pharmaceutical sectors individually. From Bernhardt et al., (2017). 
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In order to face and prevent the environmental problems associated with these worrisome 

scenarios, it is clear that we must develop and improve the existing management strategies. On the one 

hand, universal sanitation and purification are necessary to establish in developing countries but also in 

developed countries where direct discharges of polluted water still exist. On the other hand, it is necessary 

to improve wastewater treatment by the development of more sophisticated tertiary treatment processes, 

specifically adapted to novel contaminants, such as pharmaceuticals. Although nowadays, this sounds 

prohibitively expensive, prices will undoubtedly decrease as novel plants become more abundant. Finally, 

the entire worldwide population should be concerned about individual actions that can reduce the loads of 

contaminants. Much can be gained by reducing to the strictly necessary the use of potential pollutants, such 

as pharmaceuticals or plastics. This might sound naive, and often one hears that reducing river pollution 

even more would be too expensive for today's economy. But the same thing was said in the past of other 

ambitious programs of environmental stewardship. A few decades ago, Basque rivers were among the most 

polluted in the world (Fig. 8), their poor status was perceived as the price to live in an advanced society, 

and investments in environmental improvement as a threat to our economy and well-being. We could not 

be more wrong. Of course, it took a large amount of money to implement adequate sanitation and treatment 

procedures at the regional level, but this opened the gate for a more advanced society and more dynamic 

economy. I would like to believe that worldwide population walks on the same direction, and thus, that 

important ecological improvements will occur within the next decades, as well.  

 

Figure 8. Urumea River at its way through the city of San Sebastian (NE, Spain) circa 1960 (left) and 2018 (right). 

Photographs provided by Arturo Elosegi.  
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CHAPTER 6 

 

General conclusions 
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1. Urban effluents studied in the present dissertation had low pH and dissolved oxygen concentration but 

high electrical conductivity, whereas they showed higher concentrations of nutrients and other micro-

pollutants, such as pharmaceuticals and heavy metals.  

2. Urban effluents significantly altered the functioning of the studied streams. In general, they subsidized 

most of the ecosystem processes we measured, although they followed complex and process-specific 

response patterns.  

3. Our observational approximation showed complex response patterns of Mediterranean stream 

functioning, which were mainly driven by the interaction between urban pollution and water stress. The 

most significant relationships observed during the experiment were linked to pharmaceutically active 

compounds, although the complex nature of urban effluents preclude from establishing direct causality.  

4. Our field manipulative approximation revealed that even highly diluted urban effluents can trigger 

complex responses on ecosystem structure and functioning, which could have remained unnoticed 

under less stringent experimental approaches.  

5. Overall, both field experiments showed urban effluents to subsidize most ecosystem processes, with the 

only exception of biofilm nutrient uptake capacity. Functional responses can differ between biofilm and 

whole-ecosystem levels. 

6. A laboratory experiment across a full gradient of pollution showed no generalized subsidy-stress 

response, most processes being instead subsidized across all effluent concentrations. We hypothesize 

that subsidy-stress responses can be found under poorly treated urban effluents.  

7. These results highlight that it is crucial to maintain the dilution capacity of streams and rivers, and 

reveal the need to optimize wastewater treatment processes, in order to reduce the overall ecological 

impacts of these complex mixtures of pollutants.  
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CHAPTER 7 

 

Supporting information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

168 

 

 



 

169 

 

Chapter 2 – Joint effects of urban pollution and hydrological alterations on the functioning of 

Mediterranean streams 

Additional supporting information may be found in the online version of this article.   

Appendix S1. Supplementary tables and figures. 

Appendix S2. R code (Available online upon publication). 

Appendix S3. Dataset (Available online upon publication).  
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Appendix S1 

Table S1. Biocide (AbMacrolide, Levamisole, Metronidazole, Ofloxacin, Ronidazole, Sulfamethoxazole, Tiabendazole, and 

Trimethoprim) and non-biocide drug (Acetaminophen, ARBs, Benzodiazepine, BetaBlocker, Carbamazepine, CCB, 

Clopidogrel, Fibrate, Glibenclamide, H2Antagonist, Iopromide, LoopDiuretic, Loratadine, NSAID, Opioid, Salbutamol, 

SSRI, Statin, Tamsulosin, Trazodone, and Venlafaxine) variables derived from the PhACs measured in water samples. All 

PhACs were measured in nanograms per litre. 

Denomination Variable description 

AbMacrolide 

Sum of the concentrations of clarithromycin and erythromycin, two macrolide antibiotics that inhibit 

protein synthesis in gram+ bacteria 

Levamisole Concentration of levamisole, a parasiticide that works as a nicotinic acetylcholine receptor agonist 

Metronidazole 

Concentration of metronidazole and active metabolites, an antibiotic and parasiticide that inhibits 

DNA synthesis in anaerobic organisms 

Ofloxacin Concentration of ofloxacin, a quinolone that kills gram +/- bacteria by fragmenting bacterial DNA 

Ronidazole Concentration of ronidazole, antiprotozoal agent used in veterinary medicine 

Sulfamethoxazole Concentration of sulfamethoxazole, a sulfanilamide that interferes with the synthesis of folic acid 

Tiabendazole Concentration of tiabendazole, antifungal and parasiticide that inhibits mitochondrial pathways 

Trimethoprim Concentration of trimethoprim, antibiotic that inhibits the synthesis of tetrahydrofolic acid.  

Acetaminophen Concentration of paracetamol 

ARBs The sum of all ARB (Angiotensin II Receptor Blocker) drugs (irbesartan, losartan, and valsartan) 

Benzodiazepine The sum of the concentrations of all benzodiazepines (alprazolam, diazepam, and lorazepam) 

BetaBlocker The sum of all beta blockers (atenolol, metoprolol, nadolol, propranolol, and sotalol) 

Carbamazepine Carbamazepine, a sodium channel blocker, and active metabolites 

CCB The sum of all CCB (calcium channel blockers) (amlodipine, diltiazem, and verapamil) 

Clopidogrel The only antiplatelet found in wáter samples 

Fibrate 

The sum of all fibrates, carboxylic acids used as hypolipidemic agents, often together with statins 

(bezafibrate and gemfibrozil) 

Glibenclamide The only sulfonylurea found in wáter samples 

H2Antagonist The sum of the concentrations of all H2 agonists (cimetidine, famotidine and ranitidine) 

Iopromide A contrast médium, used in computed tomography scan 

LoopDiuretic The sum of the concentrations of all loop diuretics (furosemide and torasemide) 

Loratadine The only histamine H1 inverse agonist found in wáter samples 

NSAID 

The sum of the concentrations of all NSAIDs (nonsteroideal anti-inflammatory drug) (diclofenac, 

ibuprofen, indomethacine, ketoprofen, naproxen, piroxicam, salicylic acid, and phenazone) 

Opioid The sum of the concentrations of all opioids found in wáter samples (oxycodone and codeine) 

Salbutamol The only beta 2 agonist found in wáter samples 

SSRI 

The sum of all SSRIs (selective serotonin reuptake inhibitors) (norfluoxetine = seproxetine, fluoxetine, 

and citalopram) 

Statin 

The sum of all statins (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors) (atorvastatin 

and pravastatin) 

Tamsulosin The only alpha blocker found in wáter samples 

Trazodone The only serotonin antagonist found in wáter samples 

Venlafaxine The ony SNRI (serotonin–norepinephrine reuptake inhibitor) found in wáter samples 
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Table S2. Descriptive statistics of the measured stream water physicochemical properties. IQR = interquartile range; Min = 

minimum measured value; Max = maximum measured value.  

Response Mean StDev Median IQR Min Max Range 

pH 7.8 0.3 7.9 0.4 7.1 8.4 1.3 

EC (µS cm
-1

) 1139 730 862 764 454 3020 2566 

DO (mg L
-1

) 7.5 3.2 7.8 3.9 0.0 13.5 13.5 

NO3
-
 (mg N L

-1
) 1.9 2.2 1.1 2.0 0.0 9.4 9.4 

NO2
-
 (mg N L

-1
) 0.0 0.1 0.0 0.0 0.0 0.3 0.3 

NH4
+
 (mg N L

-1
) 1.8 4.4 0.0 2.1 0.0 22.3 22.3 

SRP (mg P L
-1

) 0.3 0.5 0.0 0.3 0.0 2.3 2.3 

DOC (mg C L
-1

) 6.0 10.3 2.0 5.1 0.6 51.4 50.8 
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Table S3. Permutational multivariate analysis of variance for stream water physicochemical properties. Multivariate 

variation in chemical properties was represented by a Euclidean distance matrix. This matrix was partitioned among factors 

Treatment (two levels: control and impact) and Time (two levels: autumn and spring), and the Treatment x Time interaction, 

according to the statistical model (split plot anova) that is appropriate for the present experimental design (a repeated 

measurements Randomized Complete Block design or RCB). The appropriate error term for the above-the-line analysis is the 

Stream x Treatment interaction, whereas the appropriate error term for the below-the-line analysis is a pooled error term that 

includes both the Stream x  Time and the Stream x Treatment x Time interactions. Two of the sampled streams (Reguers and 

Senia) were not included in the anova due to too many missing data points (the technique cannot handle unbalance), so only 

data for eleven streams have been considered (11 streams x 2 stations x 2 sampling occasions = 44 measurements). 

 

 

Source df SS MS F-value p-value 

Stream 10 181.54 18.15 - 

 
Treatment 1 44.67 44.67 8.92 0.014 

Streams x  Treatment [ = "Whole Plot" Error] 10 50.09 5.01     

Time 1 11.21 11.21 4.10 0.004 

Treatment × Time 1 1.83 1.83 0.67 0.637 

"Split Plot" [pooled] Error 20 54.68 2.73     

Total 43 
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Table S4. Hypothesis testing results, after linear mixed modelling, for the individual water chemical properties measured in 

thirteen streams. The first two columns report F-values together with degrees of freedom (among parentheses); significance 

(p-value < 0.05) is indicated with asterisks. The interaction between Treatment and Time was not significant in any case. 

Degrees of freedom differ among variables because, in some cases (streams Reguers and Senia), there are missing values. 

Parameter estimation is reported in Table S5. 

Response Treatment Time Fixed factors R
2
 (%) 

pH 18.2 (1, 34)*** 6.6 (1, 34)* 23.5 

EC (µS cm
-1

) 0.4 (1, 34) 8.2 (1, 34)** 0.8 

DO (mg L
-1

) 28.4 (1, 34)*** 10.8 (1, 34)*** 36.5 

NO3
-
 (mg N L

-1
) 1.3 (1, 33) 1.2 (1, 33) - 

NO2
-
 (mg N L

-1
) 13.87 (1, 33)** 0.42 (1, 33) 93.5 

NH4
+
 (mg N L

-1
) 19.54 (1, 33)*** 9.32 (1, 33)** 2.5 

SRP (mg P L
-1

) 13.1 (1, 33)** 4.4 (1, 33)* 1.33 

DOC (mg C L
-1

) 9.9 (1, 33)** 1.1 (1, 33) 1.8 

     



 

175 

 

Table S5. Parameter estimation, after linear mixed modelling, for the individual water chemical properties measured in thirteen streams. The interaction between Treatment and Time was not 

significant in any case. In the cases of ammonium concentration and nitrite concentration, modelling of error variance using two additional δ parameters was insufficient and it was hence needed 

to use four additional coefficients, one per Treatment : Time combination, as follows. Ammonium concentration: δCA = 1.00; δCS = 0.01; δIA = 358.10; and δIS = 311.90. Nitrite concentration: δCA 

= 1.00; δCS = 2.47 10-5; δIA = 13.41; and δIS = 14.22. Hypothesis testing is reported in Table S4. 

Response Intercept Impact vs Control Spring vs Autumn σb σ δC δI 

pH 7.84 (7.70, 7.99)  -0.25 (-0.37, -0.13) 0.15 (0.03, 0.27) 0.17 (0.10, 0.31) 0.21 (0.16, 0.26)  -   -  

EC (µS cm
-1

) 1179.4 (768.6, 1590.2)  -   -128.8 (-220.2, -37.5) 713.3 (475.8, 1069.5) 156.8 (123.6, 198.8)  -   -  

DO (mg L
-1

) 8.11 (6.72, 9.50)  -3.26 (-4.52, -1.99) 2.02 (0.77, 3.27) 1.42 (0.67, 3.01) 2.15 (1.68, 2.75)  -   -  

NO3
-
 (mg N L

-1
) 2.17 (0.92, 3.43)  -   -  1.93 (1.25, 2.97) 1.20 (0.85, 1.69) 1.0 0.82 

NO2
-
 (mg N L

-1
) 0.005 (0.001, 0.009) 0.05 (0.02, 0.08)  -  0.004 (0.003, 0.009) 0.005 (0.002, 0.006) - - 

NH4
+
 (mg N L

-1
) 1.55 (-1.44, 4.54) 1.66 (0.90, 2.43)  -0.005 (-0.008, -0.002) 5.27 (3.44, 8.08) 0.005 (0.003, 0.008) - - 

SRP (mg P L
-1

) 0.29 (-0.06,  0.64) 0.14 (0.06, 0.22)  -0.009 (-0.017, -0.0003) 0.62 (0.41, 0.94) 1.01 (0.79, 1.29) 1.0 19.41 

DOC (mg C L
-1

) 5.52 (-1.36, 12.40) 3.24 (1.14, 5.34)  -  12.03 (7.80, 18.55) 1.41 (0.90, 2.22) 1.0 3.30 
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Table S6. Descriptive statistics of the measured stream water antibiotic concentrations. IQR = interquartile range; Min = 

minimum measured value; Max = maximum measured value.  

Response Mean StDev Median IQR Min Max Range 

AbMacrolide (ng L
-1

) 2.7 9.8 0.0 0.0 0.0 65.0 65.0 

Levamisole (ng L
-1

) 6.4 21.6 0.0 2.9 0.0 142.1 142.1 

Metronidazole (ng L
-1

) 1.22 6.1 0.0 0.9 0.0 44.3 44.3 

Ofloxacin (ng L
-1

) 19.9 48.9 1.6 10.5 0.5 281.5 281.0 

Ronidazole (ng L
-1

) 0.02 0.1 0.0 0.0 0.0 0.4 0.4 

Sulfamethoxazole (ng L
-1

) 3.4 7.4 0.4 3.2 0.0 38.9 38.9 

Tiabendazole (ng L
-1

) 0.3 1.8 0.0 0.0 0.0 11.4 11.4 

Trimethropin (ng L
-1

) 0.5 2.7 0.0 0.0 0.0 19.0 19.0 
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Table S7. Permutational multivariate analysis of variance for stream water biocide concentrations. Multivariate variation in 

water biocide concentrations was represented by a Euclidean distance matrix. This matrix was partitioned among factors 

Treatment (two levels: control and impact) and Time (two levels: autumn and spring), and the Treatment x Time interaction, 

according to the statistical model (split plot anova) that is appropriate for the present experimental design (a repeated 

measurements Randomized Complete Block design or RCB). The appropriate error term for the above-the-line analysis is the 

Stream x Treatment interaction, whereas the appropriate error term for the below-the-line analysis is a pooled error term that 

includes both the Stream x  Time and the Stream x Treatment x Time interactions. Two of the sampled streams (Reguers and 

Senia) were not included in the anova due to too many missing data points (the technique cannot handle unbalance), so only 

data for eleven streams have been considered (11 streams x 2 stations x 2 sampling occasions = 44 measurements). 

Source df SS MS F-value p-value 

Stream 10 61.62 6.16  ----  

 Treatment 1 17.87 17.87 3.05 0.110 

Streams x  Treatment [ = "Whole Plot" Error] 10 58.51 5.85     

Time 1 14.54 14.54 3.03 0.001 

Treatment × Time 1 9.53 9.53 1.99 0.021 

"Split Plot" [pooled] Error 20 95.95 4.80     

Total 43 
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Table S8. Hypothesis testing results, after linear mixed modelling, for the individual water biocide concentrations measured 

in thirteen streams. The first two columns report F-values together with degrees of freedom (among parentheses) and 

significance (p-value < 0.05) is indicated with asterisks. The interaction between Treatment and Time was not significant in 

any case. Degrees of freedom differ among variables because, in some cases (streams Reguers and Senia), there are missing 

values. Parameter estimation is reported in Table S9. 

Response Treatment Time Fixed factors R
2
 (%) 

AbMacrolide (ng L
-1

) 4.29 (1, 37)* 2.57 (1, 37) 11.7 

Levamisole (ng L
-1

) 4.29 (1, 34)* 1.43 (1, 34) 98.4 

Metronidazole (ng L
-1

) 1.18 (1, 37) 27.77 (1, 37)*** 91.0 

Ofloxacin (ng L
-1

) 6.42 (1, 34)* 8.89 (1, 34)** 96.9 

Ronidazole (ng L
-1

) 0.04 (1, 34) 3.95 (1,34)  -  

Sulfamethoxazole (ng L
-1

) 3.04 (1, 34) 5.49 (1, 34)* 23.2 

Tiabendazole (ng L
-1

) 1.59 (1, 34) 0.23 (1, 34)  -  

Trimethropin (ng L
-1

) 1.64 (1, 34) 1.24 (1, 34) - 
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Table S9. Parameter estimation, after linear mixed modelling, for the individual water biocide concentrations measured in thirteen streams. The interaction between Treatment and Time was not 

significant in any case. In this case, due to the structure of the data, only two additional δ parameters were used to model the error variance, being only possible for Levamisole, Metronidazole, 

Ofloxacin and Sulfamethoxazole. Hypothesis testing is reported in Table S8. 

Response Intercept Impact vs Control Spring vs Autumn σb σ CoefC CoefI 

AbMacrolide (ng L
-1

) 2.06 (-2.51, 6.63) 5.33 (0.12, 10.54)  -  1.27 (0.004, 458.49) 9.27 (7.42, 11.59)  -   -  

Levamisole (ng L
-1

) 0.38 (-0.09, 0.85) 11.67 (0.21, 23.13)  -  0.03 (1.59E-72, 4.47E+68) 0.76 (0.53, 1.09) 1.00 37.71 

Metronidazole (ng L
-1

)  -0.002 (-0.17, 0.17)  -  0.63 (0.39, 0.87) 0.04 (7.43E-11, 1.75E+07) 0.30 (0.20, 0.45) 1.00 28.15 

Ofloxacin (ng L
-1

) 4.31 (2.60, 6.01) 31.44 (6.17, 56.71)  -2.08 (-3.50, -0.66) 2.31 (1.35, 3.94) 1.65 (1.07, 2.53) 1.00 38.45 

Ronidazole (ng L
-1

) 0.01 (-0.04, 0.07)  -   -  0.07 (0.04 - 0.13) 0.07 (0.06 - 0.09)  -   -  

Sulfamethoxazole (ng L
-1

) 3.15 (0.86, 5.43)  -   -2.75 (-5.13, -0.37) 2.43 (1.13, 5.23) 2.97 (1.87, 4.70) 1.00 2.92 

Tiabendazole (ng L
-1

)  -0.13 (-1.06, 0.81)  -   -  0.0002 (2.92E-171, 1.10E+163) 1.79 (1.46, 2.20)  -   -  

Trimethropin (ng L
-1

) 0.47 (-0.94, 1.87) - - - - - - 
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Table S10. Descriptive statistics of the measured concentrations of stream water non-biocide drugs. IQR = interquartile 

range; Min = minimum measured value; Max = maximum measured value.  

Response Mean StDev Median IQR Min Max Range 

Acetaminophen (ng L
-1

) 701.8 1615.5 17.6 307.2 0.0 6504.6 6504.6 

ARBs (ng L
-1

) 293.7 797.5 10.6 192.1 0.0 4081.0 4081.0 

Benzodiazepine (ng L
-1

) 6.1 11.4 0.7 5.05 0.0 62.7 62.7 

BetaBlocker (ng L
-1

) 51.4 160.1 1.4 15.8 0.0 934.3 934.3 

Carbazepamine (ng L
-1

) 39.3 118.6 0.3 13.7 0.0 656.6 656.6 

CCB (ng L
-1

) 3.7 9.3 0.0 1.6 0.0 38.2 38.2 

Clopidogrel (ng L
-1

) 0.3 0.8 0.0 0.2 0.0 4.3 4.3 

Fibrate (ng L
-1

) 50.4 106.4 0.9 33.27 0.0 479.2 479.2 

Glibenclamide (ng L
-1

) 1.8 6.3 0.0 0.0 0.0 35.4 35.4 

H2Antagonist (ng L
-1

) 8.1 32.8 0.1 0.8 0.0 225.8 225.8 

Iopromide (ng L
-1

) 5.8 14.8 2.7 2.7 0.0 83.9 83.9 

LoopDiuretic (ng L
-1

) 114.2 240.3 23.1 88.7 0.0 955.2 955.2 

Loratadine (ng L
-1

) 0.02 0.1 0.0 0.0 0.0 0.6 0.6 

NSAID (ng L
-1

) 838.7 1892.2 95.8 495.1 0.0 9844.2 9844.2 

Opioid (ng L
-1

) 14.3 38.6 0.1 7.2 0.0 238.0 238.0 

Salbutamol (ng L
-1

) 1.3 6.5 0.1 0.1 0.0 43.7 43.7 

SSRI (ng L
-1

) 16.0 69.9 0.2 3.8 0.0 495.1 495.1 

Statin (ng L
-1

) 27.8 102.6 0.0 6.3 0.0 686.0 686.0 

Tamsulosin (ng L
-1

) 0.3 1.0 0.0 0.0 0.0 6.6 6.6 

Trazodone (ng L
-1

) 1.3 3.6 0.0 0.3 0.0 21.1 21.1 

Venlafaxine (ng L
-1

) 25.4 67.3 1.7 19.6 0.0 347.0 347.0 
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Table S11. Permutational multivariate analysis of variance for stream water non-biocide drug concentrations. Multivariate 

variation in water non-biocide drug concentrations was represented by a Euclidean distance matrix. This matrix was 

partitioned among factors Treatment (two levels: control and impact) and Time (two levels: autumn and spring), and the 

Treatment x Time interaction, according to the statistical model (split plot anova) that is appropriate for the present 

experimental design (a repeated measurements Randomized Complete Block design or RCB). The appropriate error term for 

the above-the-line analysis is the Stream x Treatment interaction, whereas the appropriate error term for the below-the-line 

analysis is a pooled error term that includes both the Stream x  Time and the Stream x Treatment x Time interactions. Two of 

the sampled streams (Reguers and Senia) were not included in the anova due to too many missing data points (the technique 

cannot handle unbalance), so only data for eleven streams have been considered (11 streams x 2 stations x 2 sampling 

occasions = 44 measurements). 

Source df SS MS F-value p-value 

Stream 10 299.10 29.91  ----  

 Treatment 1 115.17 115.17 4.60 0.058 

Streams x  Treatment [ = "Whole Plot" Error] 10 250.39 25.04     

Time 1 22.19 22.19 2.28 0.041 

Treatment × Time 1 21.67 21.67 2.23 0.046 

"Split Plot" [pooled] Error 20 194.48 9.72     

Total 43 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

182 

 

Table S12. Hypothesis testing results, after linear mixed modelling, for the individual water non-biocide drug concentrations 

measured in thirteen streams. The first two columns report F-values together with degrees of freedom (among parentheses) 

and significance (p-value < 0.05) is indicated with asterisks. The interaction between Treatment and Time was only 

significant in the case of Clopidogrel. Degrees of freedom differ among variables because, in some cases (streams Reguers 

and Senia), there are missing values. Parameter estimation is reported in Table S13. 

Response Treatment Time Fixed factors R
2
 (%) 

Acetaminophen (ng L
-1

) 10.6 (1, 34)** 4.4 (1, 34)* 99.9 

ARBs (ng L
-1

) 6.9 (1, 37)** 0.7 (1, 37) 95.2 

Benzodiazepine (ng L
-1

) 14.6 (1, 37)*** 0.03 (1, 37) 44.4 

BetaBlocker (ng L
-1

) 6.2 (1, 37)* 1.2 (1, 37) 99.96 

Carbazepamine (ng L
-1

) 4.5 (1, 37)* 1.4 (1, 37) 83.7 

CCB (ng L
-1

) 11.1 (1, 37)** 3.1 (1, 37) 19.7 

Clopidogrel (ng L
-1

) 8.8 (1, 33)** 6.3 (1, 33)* 98.4 

Fibrate (ng L
-1

) 13.5 (1, 37)*** 2.6 (1, 37) 97.4 

Glibenclamide (ng L
-1

) 3.9 (1, 34) 1.0 (1, 34) - 

H2Antagonist (ng L
-1

) 3.2 (1, 37) 0.1 (1, 37) - 

Iopromide (ng L
-1

) 8.2 (1, 34)** 8.4 (1, 34)** 80.6 

LoopDiuretic (ng L
-1

) 12.1 (1, 37)** 0.4 (1, 37) 90.9 

Loratadine (ng L
-1

) 1.3 (1, 34) 0.5 (1, 34) - 

NSAID (ng L
-1

) 10.7 (1, 37)** 3.6 (1, 37) 98.5 

Opioid (ng L
-1

) 5.9 (1, 37)* 0.5 (1,37) 97.5 

Salbutamol (ng L
-1

) 1.8 (1, 34) 14.3 (1, 34)*** 99.9 

SSRI (ng L
-1

) 2.7 (1, 37) 1.6 (1, 37) - 

Statin (ng L
-1

) 5.0 (1, 37)* 0.2 (1, 37) 7.5 

Tamsulosin (ng L
-1

) 3.8 (1, 34) 1.3 (1, 34) - 

Trazodone (ng L
-1

) 6.9 (1, 34)* 1.3 (1, 34) 95.3 

Venlafaxine (ng L
-1

) 6.4 (1, 34)* 3.5 (1, 34) 91.0 
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Table S13. Parameter estimation, after linear mixed modelling, for the individual water non-biocide drug concentrations measured in thirteen streams. The interaction between Treatment and 

Time was only significant in the case of Clopidogrel. For some specific substances modelling of error variance using two additional δ parameters was insufficient and hence, it was needed to use 

four additional coefficients, one per Treatment:Time interaction, as follows. Acetominophen concentration: δCA = 1.00; δCS = 1.76; δIA = 515.76; and δIS = 478.33. Benzodiazepine concentration: 

δCA = 1.00; δCS = 4.99E+05; δIA = 2.88E+06; and δIS = 5.18E+06. BetaBlocker concentration: δCA = 1.00; δCS = 1.31; δIA = 216.89; and δIS = 313.04. Carbazepamine concentration: δCA = 1.00; 

δCS = 1.13E-04; δIA = 44.10; and δIS = 34.98. Fibrate concentration: δCA = 1.00; δCS = 2.75E-04; δIA = 222.19; and δIS = 220.65. Glibenclamide concentration: δCA = 1.00; δCS = 4.00E-05; δIA = 

3.56; and δIS = 0.14. Iopromide concentration: δCA = 1.00; δCS = 3.15; δIA = 34.77; and δIS = 6.85. Opioid concentration: δCA = 1.00; δCS = 2.38; δIA = 91.93; and δIS = 30.22. Hypothesis testing is 

reported in Table S12. 

Response Intercept Impact vs Control Spring vs Autumn σb σ δC δI 

Acetaminophen (ng L
-1

) 5.5 (2.2, 8.7) 1299.6 (487.7, 2111.4) 5.1 (0.2, 10.1) 3.3 (1.0, 11.3) 4.1 (1.7, 9.7)  -   -  

ARBs (ng L
-1

) 23.2 (-11.9, 58.4) 549.6 (126.0, 973.3) - 56.9 (36.5, 88.7) 25.9 (17.4, 38.7) 1.00 41.10 

Benzodiazepine (ng L
-1

) 1.7 (-0.9, 4.2) 8.0 (3.7, 12.2) - 4.5 (3.0, 6.7) 2.90E-06 (9.87E-12, 0.85)  -   -  

BetaBlocker (ng L
-1

) 0.5 (-0.1, 1.0) 99.2 (18.8, 179.7) - 0.6 (0.2, 1.6) 0.8 (0.4, 1.5)  -   -  

Carbazepamine (ng L
-1

) 5.2 (-2.9, 13.2) 64.6 (2.7, 126.5) - 13.8 (9.0, 21.1) 4.0 (2.6, 6.2)  -   -  

CCB (ng L
-1

) 2.0 (-2.2, 6.2) 7.4 (2.9, 11.8) - 2.9 (0.8, 9.9) 8.0 (6.3, 10.0)  -   -  

Clopidogrel (ng L
-1

) 0.05 (0.02, 0.09) 1.0 (0.5, 1.5)  -0.05 (-0.10, -0.01) 7.29E-03 (2.05E-10, 2.59E+05) 0.06 (0.04, 0.08) 1.00 16.15 

Fibrate (ng L
-1

) 2.5 (-2.0, 7.0) 95.9 (43.0, 148.9) - 7.9 (5.3, 11.8) 0.6 (0.3, 1.1)  -   -  

Glibenclamide (ng L
-1

) 3.1 (-2.4, 8.7)  -  - 9.8 (6.6, 14.6) 1.3 (0.8, 2.0)  -   -  

H2Antagonist (ng L
-1

) 0.1 (-0.01, 0.2)  -  - 0.05 (6.94E-04, 3.3) 0.2 (0.1, 0.3) 1.00 255.41 

Iopromide (ng L
-1

) 0.3 (-0.2, 0.8) 2.4 (-1.0, 5.9) 2.3 (0.7, 3.8) 1.01E-04 (6.51E-286, 1.58E+277) 0.8 (0.5, 1.3)  -   -  

LoopDiuretic (ng L
-1

) 13.5 (-5.2, 32.2) 208.6 (87.3, 329.9) - 15.8 (4.6, 55.1) 29.4 (19.9, 43.2) 1.00 10.35 

Loratadine (ng L
-1

) 0.014 (-0.005, 0.033)  -  - 0.02 (0.01, 0.06) 0.02 (0.01, 0.04) 1.00 5.09 

NSAID (ng L
-1

) 70.9 (15.9, 126.0) 1567.0 (596.6, 2537.3) - 88.3 (56.4, 138.3) 42.5 (28.5, 63.4) 1.00 57.40 

Opioid (ng L
-1

) 0.3 (-0.3, 1.0) 14.5 (2.1, 26.9) - 0.9 (0.4, 2.1) 0.8 (0.2, 2.4)  -   -  

Salbutamol (ng L
-1

) 0.01 (-0.02, 0.03)  -  0.06 (0.03, 0.09) 0.018 (0.003, 0.107) 0.004 (0.002, 0.006) 1.00 237.34 
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SSRI (ng L
-1

) 0.6 (-0.2, 1.5)  -  - 1.4 (0.9, 2.1) 0.7 (0.4, 1.0) 1.00 145.32 

Statin (ng L
-1

)  -6.1 (-56.8, 44.6) 55.6 (5.4, 105.8) - 46.3 (20.8, 103.2) 89.4 (71.2, 112.3)  -   -  

Tamsulosin (ng L
-1

) 0.03 (-0.01, 0.07)  -  - 6.25E-03 (1.28E-15, 3.06E+10) 0.06 (0.04, 0.09) 1.00 21.15 

Trazodone (ng L
-1

) 0.12 (-0.04, 0.3) 2.4 (0.5, 4.3) - 5.37E-05 (1.30E-305, 2.22E+296) 0.27 (0.20, 0.37) 1.00 17.26 

Venlafaxine (ng L
-1

) 3.2 (-0.9, 7.2) 43.2 (8.4, 78.0) - 6.6 (4.3, 10.3) 1.7 (1.1, 2.7) 1.00 49.97 
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Table S14. Descriptive statistics of the measured stream hydrological properties. IQR = interquartile range; Min = minimum 

measured value; Max = maximum measured value.  

Response Mean StDev Median IQR Min Max Range 

Temperature (ºC) 14.8 1.2 14.6 1.4 12.5 17.9 5.4 

Water Flow (m
3
 s

-1
) 0.06 0.09 0.03 0.09 0.00 0.34 0.3 

Width (m) 4.1 3.2 3.0 4.3 0.0 10.6 10.6 

Mean Velocity (m s
-1

) 0.06 0.05 0.06 0.06 0.00 0.17 0.2 

Depth (m) 0.22 0.24 0.15 0.19 0.00 0.93 0.93 

Hydrological Stress (days) 11.8 20.1 0.0 18.6 0.0 60.0 60.0 
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Table S15. Permutational multivariate analysis of variance for stream hydrological properties, represented by a Euclidean 

distance matrix. This matrix was partitioned among the only factor Treatment (two levels: control and impact) according to 

the statistical model (split plot anova) that is appropriate for the present experimental design (a repeated measurements 

Randomized Complete Block design or RCB). Two of the sampled streams (Reguers and Bot Canaleta) were not included in 

the anova due to too many missing data points (the technique cannot handle unbalance), so only data for eleven streams have 

been considered (11 streams x 2 stations = 22 measurements). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source df SS MS F-value p-value 

Stream 10 5423.6 542.36  ----  

 Treatment 1 178.6 178.60 1.06 0.331 

Streams x  Treatment [ = "Whole Plot" Error] 10 1680.7 168.07     

Total 21 
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Table S16. Hypothesis testing results, after linear mixed modelling, for the individual hydrological properties measured in 

the thirteen streams. The first two columns report F-values together with degrees of freedom (among parentheses) and 

significance (p-value < 0.05) is indicated with asterisks. Degrees of freedom differ among variables because, in some cases 

(streams Reguers and Bot Canaleta), there are missing values. Parameter estimation is reported in Table S17. 

Response Treatment Fixed factors R
2
 (%) 

Temperature (ºC) 0.3 (1,11) 0.4 

Water Flow (m
3
 s

-1
) 0.01 (1,11) 9.54E-04 

Width (m) 3.23E-04 (1,11) 3.69E-04 

Mean Velocity (m s
-1

) 0.06 (1,12) 0.1 

Depth (m) 0.06 (1,12) 0.02 

Hydrological Stress (days) 1.98 (1,12) 2.4 
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Table S17. Parameter estimation, after linear mixed modelling, for the individual physical properties measured in thirteen streams. In this case, due to the structure of the data, only two 

additional δ parameters were used to model the error variance. Hypothesis testing is reported in Table S16.  

Response Intercept Impact vs Control σb σ δC δI 

Temperature (ºC) 14.77 (14.04, 15.50) - 1.09 (0.64, 1.86) 0.47 (0.10, 2.29) 1.00 1.82 

Water Flow (m
3
 s

-1
) 0.06 (0.01, 0.11) - 0.08 (0.05, 0.12) 0.02 (0.01, 0.03) 1.00 3.64E-05 

Width (m) 4.00 (1.90, 6.11) - 2.68 (1.64, 4.39) 2.12 (1.13, 3.97) 1.00 0.61 

Mean Velocity (m s
-1

) 0.06 (0.03, 0.09) - 0.03 (0.02, 0.07) 0.04 (0.02, 0.07) 1.00 0.81 

Depth (m) 0.22 (0.07, 0.37) - 0.23 (0.15, 0.35) 0.11 (0.05, 0.22) 1.00 0.29 

Hydrological Stress (days) 15.32 (1.41, 29.24) - 14.40 (9.64, 21.52) 17.97 (12.06, 26.77) 1.00 8.19E-06 
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Table S18. Descriptive statistics of the measured stream functional processes. IQR = interquartile range; Min = minimum 

measured value; Max = maximum measured value.  

Response Mean StDev Median IQR Min Max Range 

BAT (g m
-2

 d
-1

) 0.03 0.03 0.03 0.05 0.01 0.10 0.10 

SRPUC (µg P h
-1

) 1.93 5.30 1.46 4.77 -17.09 10.70 27.78 

SRPAU (µg P m
-2

 min
-1

) 570.4 1598.9 41.1 230.8 -97.4 7556.8 7654.2 

NH4AU (µg N m
-2

 min
-1

) 1310.8 2298.2 78.2 1625.1 2.3 9562.7 9560.4 

GPP (mg O2 m
-2

 d
-1

) 4.84 4.68 3.38 4.26 0.58 21.28 20.7 

ER (mg O2 m
-2

 d
-1

) 9.04 10.05 -5.57 11.51 -40.27 -0.28 39.99 

OMD (dd
-1

.10
-5

) 12.24 9.01 12.16 14.69 0.49 29.90 29.42 
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Table S19. Permutational multivariate analysis of variance for stream functional processes, represented by a Euclidean 

distance matrix. This matrix was partitioned among the only factor Treatment (two levels: control and impact) according to 

the statistical model (split plot anova) that is appropriate for the present experimental design (a repeated measurements 

Randomized Complete Block design or RCB). Two of the sampled streams (Reguers and La Sènia) were not included in the 

ANOVA due to too many missing data points (the technique cannot handle unbalance), so only data for eleven streams have 

been considered (11 streams x 2 stations = 22 measurements). 

Source df SS F-value p-value 

Stream 11 62.13 ---- 

 Treatment 1 19.31 4.76 0.002 

Streams x  Treatment [ = "Whole Plot" Error] 9 36.49     

Total 21 
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Table S20. Hypothesis testing results, after linear mixed modelling, for the individual functional processes measured in the 

thirteen streams. The first two columns report F-values together with degrees of freedom (among parentheses) and 

significance (p-value < 0.05) is indicated with asterisks. Degrees of freedom differ among variables because, in some cases 

(streams Reguers and La Sènia), there are missing values. Parameter estimation is reported in Table S21. 

Response Treatment Fixed factors R
2
 (%) 

BAT (g m
-2

 d
-1

) 4.3 (1,10)
.
 48.1 

SRPUC (µg P h
-1

) 39.0 (1,10)*** 38.5 

SRPAU (µg P m
-2

 min
-1

) 1.6 (1,9) 0.02 

NH4AU (µg N m
-2

 min
-1

) 9.5 (1,9)** 99.9 

GPP (mg O2 m
-2

 d
-1

) 3.4 (1,10) 41.1 

ER (mg O2 m
-2

 d
-1

) 4.8 (1,10)* 34.5 

OMD (dd
-1

.10
-5

) 0.02 (1,12) 0.07 
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Table S21. Parameter estimation, after linear mixed modelling, for the individual functional processes measured in thirteen streams. In this case, due to the structure of the data, only two 

additional δ parameters were used to model the error variance. Hypothesis testing is reported in Table S20.  

Response Intercept Impact vs Control σb σ δC δI 

BAT (g m
-2

 d
-1

) 0.023 (0.016, 0.029) 0.019 (-0.002, 0.040) 7.54E-07 (1.88E-279, 3.03E+266) 0.010 (0.007, 0.016) 1.00 3.12 

SRPUC (µg P h
-1

) 4.95 (2.73, 7.17)  -5.50 (-7.46, -3.54) 3.54 (2.36, 5.32) 1.51E-04 (9.57E-17, 2.40E+08) 1.00 2.0E+04 

SRPAU (µg P m
-2

 min
-1

) 809.26 (-441.52, 2060.05)  -  2064.54 (1383.63, 3080.52) 129.70 (81.72, 205.87) 1.00 7.8E-04 

NH4AU (µg N m
-2

 min
-1

) 19.61 (-1.61, 40.82) 2284.50 (603.70, 3965.30) 30.79 (19.40, 48.87) 0.02 (3.7E-15, 9.2E+10) 1.00 1.4E+05 

GPP (mg O2 m
-2

 d
-1

) 3.15 (1.85, 4.46)  -  1.02 (0.01, 90.56) 1.68 (0.32, 8.73) 1.00 3.46 

ER (mg O2 m
-2

 d
-1

)  -5.21 (-8.55, -1.86)  -7.20 (-14.54, 0.13) 5.02 (1.71, 14.69) 0.75 (3.4E-20, 1.7E+19) 1.00 15.05 

OMD (dd
-1

.10
-5

) 12.01 (6.78, 17.24)  -  3.21 (0.31, 32.82) 8.04 (4.67, 13.81) 1.00 1.14 
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Figure S1. Main physicochemical gradients in stream water described by the unconstrained ordination technique NMDS 

(non–metric multidimensional scaling) using the Euclidean distance; stress = 0.03. Impact (black dots) and control (grey 

dots) stations are indicated. The ellipsoid hulls enclose all points in the same stream. Two of the sampled streams (Reguers 

and Senia) were not included in the analysis due to too many missing data points. See Table S3 for hypothesis testing for the 

multivariate case and Table S2 for acronym descriptions. 
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Figure S2. Mean effects of Treatment and Time with 95% confidence intervals on dissolved oxygen (left) and nitrite 

concentration (right), as fitted via linear mixed modeling using restricted maximum likelihood (see also Tables S4-S5).  
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Figure S3. Main gradients of biocide concentrations in stream water described by the unconstrained ordination technique 

NMDS (non–metric multidimensional scaling) using the Euclidean distance; stress = 0.08. Impact (black dots) and control 

(grey dots) sampling stations are indicated. The ellipsoid hulls enclose all points in the same stream. Two of the sampled 

streams (Reguers and Senia) were not included in the analysis due to too many missing data points. See Table S7 for 

hypothesis testing for the multivariate case and Table S6 for acronym descriptions. 
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Figure S4. Mean effects of Treatment and Time with 95% confidence intervals on stream AbMacrolide concentration (left) 

and ofloxacin concentration (right), as fitted via linear mixed modeling using restricted maximum likelihood (see also Tables 

S8-S9).  
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Figure S5. Main gradients of non-biocide drug concentrations in stream water described by the unconstrained ordination 

technique NMDS (non–metric multidimensional scaling) using the Euclidean distance; stress = 0.06. Impact (black dots) and 

Control (grey dots) reaches are indicated. The ellipsoid hulls enclose all points in the same stream. Two of the sampled 

streams (Reguers and Senia) were not included in the analysis due to too many missing data points. See Table S11 for 

hypothesis testing for the multivariate case and Table S12 for acronym descriptions. 
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Figure S6. Mean effects of Treatment and Time with 95% confidence intervals on stream Acetaminophen concentration 

(left) and CCB concentration (right), as fitted via linear mixed modeling using restricted maximum likelihood (see also 

Tables S12-S13).  
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Figure S7. Main gradients of stream hydrological properties described by the unconstrained ordination technique NMDS 

(non-metric multidimensional scaling) using the Euclidean distance; stress = 0.02. Impact (black dots) and Control (grey 

dots) reaches are indicated. In this case, as there are not replicated measurements per stream and treatment, ellipsoids cannot 

be drawn. Two of the sampled streams (Reguers and Bot Canaleta) were not included in the analysis due to too many missing 

data points. See Table S15 for hypothesis testing for the multivariate case and Table S14 for acronym descriptions. 
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Figure S8. Mean effects of Treatment with 95% confidence intervals on stream Hydrological Stress (left) and Water flow 

(right), as fitted via linear mixed modeling using restricted maximum likelihood (see also Tables S16-S17).  
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Appendix S2 

Appendix S2. R Code. Joint effects of urban pollution and hydrological alterations on the 

functioning of Mediterranean streams by Olatz Pereda, Daniel von Schiller, Gonzalo García-

Baquero, Jordi-René Mor, Vicenç Acuña, Sergi Sabater and Arturo Elosegi.  

########################################################################## 

# Title: "Joint effects of urban pollution and hydrological          # 

#         alterations on the functioning of Mediterranean streams"   # 

#                                                                    # 

#                                                                    # 

#                                                                    # 

# Authors: O. Pereda, D. von Schiller, G. García-Baquero, J.-R. Mor, # 

# V. Acuña, S. Sabater & A. Elosegi                                  # 

#                                                                    # 

# Appendix S2: Supplementary material (R Coding)                     # 

#                                                                    # 

# Data analysis was carried out by O. Pereda*, G. García-Baquero and # 

# Daniel Von Schiller                                                # 

# *email: olatz.pereda@ehu.eus                                       # 

########################################################################## 

 

# Data analysis was carried out using R software v.3.4.0. (R Core Team.  

# 2017. R: A language and environment for statistical computing. version  

# 3.4.0. R Foundation for Statistical Computing, Vienna, Austria. 

 

# This file was created using Tinn-R Editor [Faria J.C., Grosjean P.  

# & Jelihovschi E. (2014). Tinn-R Editor - GUI for R Language and 

# Environment. Tinn-R Editor is free software. 

 

# R packages  

# ********** 

# John Fox and Sanford Weisberg (2011). An {R} Companion to Applied  

# Regression, Second Edition. Thousand Oaks CA: Sage. URL: 

# install.packages("car") # run if needed 

library(car) 

 

# Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.(2018).  

# cluster: Cluster Analysis Basics and Extensions. R package version 

2.0.7-1. 

# install.packages("cluster") # run if needed 

library(cluster) 

 

# John Fox (2003). Effect Displays in R for Generalised Linear Models.  

# Journal of Statistical Software, 8(15), 1-27. URL 

# install.packages("effects") # run if needed 

library(effects) 

 

# Catherine Hurley (2012). gclus: Clustering Graphics. R package  

# version 1.3.1. https://CRAN.R-project.org/package=gclus 

# install.packages("gclus") # run if needed 

library(gclus) 

 

# Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis.  

# New York: Springer-Verlag. 

# install.packages("ggplot2") # run if needed 

library(ggplot2) 

mailto:olatz.pereda@ehu.eus
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# Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R-Core-Team. 2018.  

# nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137. 

# install.packages("nlme") # run if needed 

library(nlme) 

 

# Barton, K. 2018. MuMIn: Multi-Model Inference. R package version 1.40.4. 

# install.packages("MuMIn") # run if needed 

library(MuMIn) 

 

# Lüdecke, D. 2018. sjPlot: Data Visualization for Statistics in Social Science. 

# R package version 2.6.2. 

# install.packages("sjPlot") # run if needed 

library(sjPlot) 

 

# J. Oksanen, F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, 

# P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens,  

# E. Szoecs and H. Wagner (2018). vegan: Community Ecology Package. R package 

# install.packages("vegan") # run if needed 

library(vegan) 

 

# John M Chambers (2013). SoDA: Functions and Examples for "Software for  

# Data Analysis". R package version 1.0-6. 

# install.packages("SoDA") # run if needed 

library(SoDA) 

 

# J. Oksanen, F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, 

# D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos,  

# M.H.H. Stevens, E. Szoecs and H. Wagner (2018). vegan: Community  

# Ecology Package. R package version 2.4-1. 

# install.packages("vegan") # run if needed 

library(vegan) 

# CONTENTS OF THIS SCRIPT: 

# ************************ 

# 1. Step 1: Preparing the data. Observed patterns in stream functioning  

# 2. Step 2: The relationship between stream functioning and the 

#          environment: a multivariate point of view 

# 3. Step 3: The relationship between stream functioning and the  

#             environment: Generalised Linear Modelling (GLM) 

# ********************************************************************* # 

# ********************************************************************* # 

########## 

# Step 1 #  

########## 

 

# A Randomized Complete Block (RCB) design  

# **************************************** 

# We begin by exploring multivariate variation in stream functioning.  

# The statistical design used to collect data corresponds to a Randomized 

# Complete Block (RCB) design, where the surveyed streams are "blocks"  

# and the effluent is the experimental treatment [with two levels: 

# Control and Impact]. 

 

# 1.1. Load and prepare the dataset  

# ********************************* 

# Set up working directory (change as required)  

# setwd(dir) 
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# Load the dataset (change as required) 

BaixEbre <- read.csv("C:/…/Appendix S3.csv", row.names = 1, sep =";") 

str(BaixEbre) 

## 'data.frame': 26 obs. of 54 variables (two categorical variables 

and  

## 52 numerical variables) 

## (...) 

## Bisbal, Canaleta, Caseres, Corbera, Gandesa, Maella, Nonaspe, Poboleda, 

## Prades, PratCompte, Reguers, Senia, and Vallderoures are the names of  

## the surveyed streams. 

 

# First construct a geographic matrix (location of the sample units): 

names(BaixEbre[,c(3:4)]) 

## [1] "Latitude" "Longitude" 

loc <- BaixEbre[-c(3, 21:22, 23),c(3:4)] 

## Rows 3, 21, 22, and 23 are here deleted because they contain NAs. 

 

# Transform Lat/Lon data into Cartesian coordinates (X and Y) 

library(SoDA) 

spa <- as.data.frame(geoXY(loc$Latitude, loc$Longitude)) head(spa) 

##        X      Y  

## 1 49273.989  72641.94 

## 2 49301.065  72425.37 

## 3 21151.784  42265.74 

## 4  9527.528  45749.51 

## 5  8808.310  46539.11 

## 6 29175.712  50645.92 

 

# Construct a matrix of functional variables: 

names(BaixEbre[,c(5:11)]) 

## [1] "Biomassaccrual" "SRPuptake" "SRPU" "NH4U" 

## [5] "GPP" "ER" "Decomposition"  

## We will consider seven functional variables 

 

# We will construct the matrix of functional variables, 

# considering only the following seven functional variables  

# and excluding the NA values for some of the streams 

funct <- BaixEbre[-c(3, 21:22, 23),c(5:11)] names(funct) 

## [1] "Biomassaccrual" "SRPuptake" "SRPU" "NH4U"  

## [5] "GPP" "ER" "Decomposition" 

## Biomassaccrual: Biomass accrual rate on biofilm carriers  

## (g AFDM m^-2 day^-1) 

## SRPuptake: SRP uptake capacity on biofilm carriers (µg P h^-1)  

## SRPU: Whole-reach SRP areal uptake (µg P m^-2 min^-1) 

## NH4U: Whole-reach NH4 areal uptake (µg N m^-2 min^-1) 

## GPP: Whole-reach gross primary production (mg O2 m^-2 day^-1)  

## ER: Whole-reach ecosystem respiration (mg O2 m^-2 day-1) 

## Decomposition: Decomposition rate of wooden sticks (dd^-1 10^-5) 

 

# Change the names of the variables 

colnames(funct)[1] <- "BAT" # Biomassaccrual = BAT  

colnames(funct)[2] <- "SRPUC" # SRPuptake = SRPUC  

colnames(funct)[3] <- "SRPAU" # SRPU = SRPAU  

colnames(funct)[4] <- "NH4AU" # NH4U = NH4AU  

colnames(funct)[7] <- "OMD" # Decomposition = OMD  

## GPP = GPP 

## ER = ER 

names(funct) 

## [1] "BAT" "SRPUC" "SRPAU" "NH4AU" "GPP" "ER" "OMD" 
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# Tranform the negative signs of ER to positive signs 

ERp <- (funct$ER)*(-1) funct$ERp <- ERp 

funct <- funct[, -c(6)] 

 

# Explore whether transformations are needed  

funct.z.boxplot <- as.data.frame(scale(funct)) boxplot(funct.z.boxplot) 

## No transformations are needed, since the variables do not deviate much 

## from symmetry 

 

# Construct a water chemical characteristics matrix: 

names(BaixEbre[,c(12:19)]) 

## [1] "pH" "EC" "DO" "NH4" "NO2" "NO3" "SRP" "DOC" 

chem <- BaixEbre[-c(3, 21:22, 23),c(12:19)] 

 

# Explore whether transformations are needed  

chem.z.boxplot <- as.data.frame(scale(chem))  

boxplot(chem.z.boxplot) 

## NH4, NO2, and SRP are right-skewed 

 

# Square-root transform the following variables 

sqrtNH4 <- sqrt(chem$NH4)  

chem$sqrtNH4 <- sqrtNH4  

sqrtNO2 <- sqrt(chem$NO2)  

chem$sqrtNO2 <- sqrtNO2  

sqrtSRP <- sqrt(chem$SRP)  

chem$sqrtSRP <- sqrtSRP  

chem <- chem[,-c(4:5,7)] 

boxplot(scale(chem)) 

 

# Change the names of some variables 

colnames(chem)[6] <- "Ammonium" # sqrtNH4 = Ammonium 

colnames(chem)[7] <- "Nitrite" # sqrtNO2 = Nitrite 

colnames(chem)[8] <- "SRP" # sqrtSRP = Soluble reactive 

phosphorus (SRP) 

names(chem) 

## [1] "pH" "EC" "DO" "NO3" "DOC" "Ammonium" 

## [7] "Nitrite" "SRP" 

 

# Construct a hydrological properties matrix: 

names(BaixEbre[,c(20:25)]) 

## [1] "Temperature" "WaterFlow" "Width" 

## [4] "MeanVelocity" "Depth" "HydrologicalStress" 

hydr <- BaixEbre[-c(3, 21:22, 23),c(20:25)] 

 

# Explore whether transformations are needed  

hydr.z.boxplot <- as.data.frame(scale(hydr)) boxplot(hydr.z.boxplot) 

## HydrologicalStress is right-skewed 

 

# Square-root transform the following variable and change its name 

HydrStr <- sqrt(hydr$HydrologicalStress)  

hydr$HydrStr <- HydrStr 

hydr <- hydr[,-c(6)]  

boxplot(scale(hydr)) 

 

names(hydr) 

## [1] "Temperature" "WaterFlow" "Width" "MeanVelocity" "Depth"  

## [6] "HydrStr" 

 

# Construct a biocides matrix: 

names(BaixEbre[,c(26:33)]) 
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## [1] "AbMacrolide" "Metronidazole" "Ofloxacin" "Ronidazole" 

## [5] "Sulfamethoxazole" "Tiabendazole" "Trimethoprim" "Levamisole" 

bioc <- BaixEbre[-c(3, 21:22, 23),c(26:33)] 

 

# Explore whether transformations are needed  

bioc.z.boxplot <- as.data.frame(scale(bioc)) boxplot(bioc.z.boxplot) 

## AbMacrolide, Trimethoprim, and Levamisole are right-skewed 

 

# Square-root transform the aforementioned variables  

sqrtAbMacrolide <- sqrt(bioc$AbMacrolide)  

bioc$sqrtAbMacrolide <- sqrtAbMacrolide  

sqrtTrimethoprim <- sqrt(bioc$Trimethoprim)  

bioc$sqrtTrimethoprim <- sqrtTrimethoprim  

sqrtLevamisole <- sqrt(bioc$Levamisole)  

bioc$sqrtLevamisole <- sqrtLevamisole 

bioc <- bioc[,-c(1,7,8)]  

boxplot(scale(bioc)) 

names(bioc) 

## [1] "Metronidazole" "Ofloxacin" "Ronidazole" 

## [4] "Sulfamethoxazole" "Tiabendazole" "sqrtAbMacrolide"  

## [7] "sqrtTrimethoprim" "sqrtLevamisole" 

 

# Change the names of some variables 

colnames(bioc)[6] <- "Macrolide" # Macrolide = sqrtAbMacrolide 

colnames(bioc)[7] <- "Trimethoprim" # Trimethoprim = sqrtTrimethoprim  

colnames(bioc)[8] <- "Levamisole" # Levamisole = sqrtLevamisole 

 

names(bioc) 

## [1] "Metronidazole" "Ofloxacin" "Ronidazole"  

## [4] "Sulfamethoxazole" "Tiabendazole" "Macrolide"  

## [7] "Trimethoprim" "Levamisole" 

 

# Construct a non-biocide drugs matrix (pharmaceuticals, except biocides): 

names(BaixEbre[,c(34:54)]) 

#  [1] "Acetaminophen"    "ARBs"    "Benzodiazepine"   "BetaBlocker" 

# [5] "Carbamazepine" "CCB" "Clopidogrel" "Fibrate" 

# [9] "Glibenclamide" "H2Antagonist" "Iopromide" "LoopDiuretic" 

# [13] "Loratadine" "NSAID" "Opioid" "Salbutamol" 

# [17] "SSRI" "Statin" "Tamsulosin" "Trazodone" 

# [21] "Venlafaxine"    

drug <- BaixEbre[-c(3, 21:22, 23),c(34:54)] 

 

# Explore whether transformations are needed 

drug.z.boxplot <- as.data.frame(scale(drug))  

boxplot(drug.z.boxplot) 

## Acetaminophen, BetaBlocker, and other variables are right-skewed 

 

# Square-root transform the aforementioned variables  

sqrtAcetaminophen <- sqrt(drug$Acetaminophen)  

drug$sqrtAcetaminophen <- sqrtAcetaminophen  

sqrtBetaBlocker <- sqrt(drug$BetaBlocker)  

drug$sqrtBetaBlocker <- sqrtBetaBlocker  

sqrtCarbamazepine <- sqrt(drug$Carbamazepine)  

drug$sqrtCarbamazepine <- sqrtCarbamazepine 

sqrtCCB <- sqrt(drug$CCB)  

drug$sqrtCCB <- sqrtCCB 

sqrtClopidogrel <-sqrt(drug$Clopidogrel)  

drug$sqrtClopidogrel <- sqrtClopidogrel  
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sqrtGlibenclamide <- sqrt(drug$Glibenclamide)  

drug$sqrtGlibenclamide <- sqrtGlibenclamide  

sqrtH2Antagonist <- sqrt(drug$H2Antagonist)  

drug$sqrtH2Antagonist <- sqrtH2Antagonist  

sqrtSalbutamol <- sqrt(drug$Salbutamol)  

drug$sqrtSalbutamol <- sqrtSalbutamol  

sqrtSSRI <- sqrt(drug$SSRI) 

drug$sqrtSSRI <- sqrtSSRI  

sqrtStatin <- sqrt(drug$Statin)  

drug$sqrtStatin <- sqrtStatin 

sqrtTamsulosin <- sqrt(drug$Tamsulosin)  

drug$sqrtTamsulosin <- sqrtTamsulosin  

sqrtTrazodone <- sqrt(drug$Trazodone)  

drug$sqrtTrazodone <- sqrtTrazodone 

drug <- drug[,-c(1,4,5,6,7,9,10,16,17,18,19,20)] 

boxplot(scale(drug))  

 

names(drug) 

## [1] "ARBs" "Benzodiazepine" "Fibrate" 

## [4] "Iopromide" "LoopDiuretic" "Loratadine"  

## [7] "NSAID" "Opioid" "Venlafaxine" 

## [10] "sqrtAcetaminophen" "sqrtBetaBlocker" "sqrtCarbamazepine"  

## [13] "sqrtCCB" "sqrtClopidogrel" "sqrtGlibenclamide"  

## [16] "sqrtH2Antagonist" "sqrtSalbutamol" "sqrtSSRI" 

## [19] "sqrtStatin" "sqrtTamsulosin" "sqrtTrazodone" 

 

# In summary, so far we have loaded the dataset and generated six 

# data matrices: <funct> (the response matrix); <chem>, <hydr>, <bioc>,  

# and <drug> (four candidate explanatory matrices); and <spa> (a 

# geographic matrix). Several candidate explanatory variables were sqrt-  

# transformed, so that they are now in a form more amenable to linear 

# modelling purposes. 

 

# Finally, create the design matrix: this contains the statistical design 

design <- BaixEbre[-c(3, 21:22, 23), c(1:2)] names(design) 

## [1] "Stream" "Treatment" 

 

## We have excluded data from streams Canaleta, Reguers and Senia, which 

## contain too many NAs. Hence only ten streams will be here  

## considered. 

 

# 1.2. Standardize the variables in the response matrix  

# *****************************************************  

library(vegan) 

funct.stand <- decostand(funct, method = "standardize", MARGIN = 2)  

## This is necessary/convenient, since the variables in <funct> are  

## expressed in differing scales 
 

# 1.3. Testing for linear spatial depencies  

# *****************************************  

# Test for linear trend 

anova(rda(funct.stand ~ X + Y, data = spa), by = "term") 

## Permutation test for rda under reduced model  

## Terms added sequentially (first to last) 

## Permutation: free 

## Number of permutations: 999 

## Model: rda(formula = funct.stand ~ X + Y, data = spa)  

## Df Variance F Pr(>F) 

## X 1 0.3284 1.1111 0.338 

## Y 1 1.0561 3.5734 0.029 * 

## Residual 19 5.6155 
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## The test is based in permutations, hence slightly different p-values  

## may be obtained each time the analysis is run. Nonetheless, the test  

## conclusions will not vary. In this case, we observe that a linear 

## trend along the spatial variable Y is present. For this reason, we  

## now detrend the response matrix. 

 

# A linear trend is present along Y; therefore detrending is necessary: 

funct.stand.det <- resid(lm(as.matrix(funct.stand) ~ ., data = spa)) 

head(funct.stand.det) 

##        BAT       SRPUC      SRPAU       NH4AU         GPP        OMD 

## 1 -0.2303217  0.49758446  0.2346490  0.02559649 -0.50141593  0.8547350 

## 2 -0.8859398 -0.18648303  0.2214001  0.01965860  0.03675215  0.6247857 

## 4 -0.1169370 -0.01173786 -0.5320835 -0.48212607 -0.38923558  1.0650851 

## 5 -0.6313876  1.44804093 -0.2380926 -0.48014040 -0.34220177 -1.1844621 

## 6  0.6819762  0.41680055 -0.1993361 -0.40292349 -0.99352815  0.5537806 

## 7 -0.8162993 -0.95895827  0.6104441 -0.57520951  0.17251374  1.1824363 

##        ERp 

## 1 -0.51524529 

## 2 -0.44349135 

## 4 -0.50530436 

## 5 -0.53369149 

## 6 -1.06746540 

## 7  0.09934069 

 

## This is the detrended response matrix. 

 

# Having detrended the response matrix, we are now compelled to detrend  

# also the four environment matrices, as follows: 

chem.det <- as.data.frame(resid(lm(as.matrix(chem) ~ ., data = spa))) 

head(chem.det) 

 

hydr.det <- as.data.frame(resid(lm(as.matrix(hydr) ~ ., data = spa))) 

head(hydr.det) 

 

bioc.det <- as.data.frame(resid(lm(as.matrix(bioc) ~ ., data = spa))) 

head(bioc.det) 

 

drug.det <- as.data.frame(resid(lm(as.matrix(drug) ~ ., data = spa))) 

head(drug.det) 

## Hence chem.det, hydr.det, bioc.det, and drug.det are the new  

## potentially explanatory matrices. 

 

# 1.4. Nonmetric Multidimensional Scaling (NMDS)  

# ********************************************** 

 

# ****************************************************************************    

# The following steps (1.4, 1.5 and 1.6) have been applied also to each of 

# the matrices <chem>, <hydr>, <bioc> and <drug>. However, just for brevity, 

# here we demonstrate data analysis for just the functional variables.  

# ************************************************************************ 

 

# Create the ordination using function metaMDS {vegan}, which finds a  

# stable solution using random starts. 

 

# Create the ordination: notice that only the response matrix is used  

# here, using the Euclidean distance. For more on NMDS, see Legendre &  

# Legendre (2012). Numerical Ecology. Elsevier. 

funct.stand.det.nmds <- metaMDS(funct.stand.det, 

                                 distance = "euclidean", autotransform = FALSE) 
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## 'comm' has negative data: 'autotransform', 'noshare' and 'wascores'  

## set to FALSE 

## Run 0 stress 0.1178499 

## Run 1 stress 0.1156765  

## ... New best solution  

## (...) 

## 

## Run 18 stress 0.1198991 

## Run 19 stress 0.1178506 

## Run 20 stress 0.1156808 

## ... Procrustes: rmse 0.001000095 max resid 0.003285652  

## ... Similar to previous best 

## *** Solution reached 

 

## Run 20 stress is 0.1157, which is perfectly adequate and indicates that 

## a more than acceptable ordination has been obtained. 

 

# Now that the ordination has been created, without external reference and 

# using only information contained in funct.stand.det, we prepare the data to 

# plot these non-constrained ordination results in a manner that includes the 

# statistical design information. Hence this information, which is contained 

# in matrix design, is "overlaid" onto the ordination a posteriori. 

 

# Check the adequacy of the ordination: Shepard plot and NMDS goodness of fit: 

windows(6,6) par(mfrow = c(1,1)) 

stressplot(funct.stand.det.nmds, main = "Shepard plot") 

# Non-metric goodness-of-fit of the ordination: R2 = 0.987.  

# Linear goodness-of-fit of the ordination: R2 = 0.961. 

 

# Define colours for the "sites" (to be used in plotting the diagram) 

form <- factor(c(1,2,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,2,1,2), 

levels = c(1,2), 

labels = c("Control","Impact")) colvec <- c("blue", "red") 

stcol = colvec[form] 

## Black points indicate impact 

 

# Plot the ordination (full page) 

plot(funct.stand.det.nmds, display = "sites", type = "n", 

# xlim = c(-0.15, 0.35), 

ylim = c(-3, 2), cex = 0.7) 

points(funct.stand.det.nmds, display = "sites", cex = 0.9, col = stcol,     

      pch = 19) 

 

# Lines join points in the group Stream 

with(design, ordiellipse(funct.stand.det.nmds, groups = Stream, 

                           kind = "se", draw = "line", label = T,  

                           cex = 0.8, col = "grey40", 

                           font = 1, lwd = 1, lty = 3, 

                           show.groups = c("Corbera", "Bisbal", "Senia",  

                           "Prades", "Gandesa", "Caseres", "Maella", "Nonaspe",  

                           "Canaleta", "Vallderoures", "Reguers"))) 

 

## Poboleda (not represented to avoid crowding) is close to Bisbal 

## PratCompte (not represented to avoid crowding) is close to Prades 

## The graph shows how Impact points (in black) run through 

## the whole NMDS1 axis, whereas Control points do not. On the other  

## hand, Impact points run through the whole urban-agricultural NMDS2 axis, 

## but Control points do not. So Control points appear to exhibit less  

## variability than Impact points. 
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# 1.5. Permutational Multivariate Analysis of Variance Using Distance Matrices 

# *********************************************************************************    

# We are now to carry out analysis of variance (that is anova) using distance 

# matrices using vegan function adonis2(). This technique partitions distance 

# matrices among sources of variation (Treatment and Time, in our case) and 

# fitting linear models to distance matrices. 

 

# McArdle, B.H. and M.J. Anderson. 2001. Fitting multivariate models to  

# community data: A comment on distance-based redundancy analysis. 

# Ecology, 82: 290-297. 

 

# Anderson, M.J. 2001. A new method for non-parametric multivariate analysis 

# of variance. Austral Ecology, 26: 32-46. 

 

# Legendre & Legendre (2012). Numerical Ecology. Elsevier. 

 

adonis2(funct.stand.det ~ Stream + Treatment,  

         data = design, 

method = "euclidean", permutations = 999) 

##           Df  SumOfSqs      R2      F   Pr(>F)    

## Stream    11   62.132  0.52687  1.3933  0.162     

## Treatment  1   19.308  0.16373  4.7628  0.002 **  # This test is meaningless 

## Residual   9   36.485  0.30939                  

## Total     21  117.925  1.00000                  

## Hence Treatment is significant. 

 

# Now we need to express correctly the table above: 

 

## Source                          | df |   SS   |   F  | p-value | 

## --------------------------------|----|--------|------|---------- 

## Stream                          | 11 | 62.132 | ---- |         | 

## Treatment                       |  1 | 19.308 | 4.76 |  0.002  | 

## Streams x  Treatment            |  9 | 36.485 |      |         | 

## [ = "Whole Plot" Error]         |    |        |      |         | 

## --------------------------------|----|--------|------|---------- 

## Total                           | 21 | 

## In summary, we find evidence to reject the null hypotheses of no  

## Treatment effect on multivariate variation in stream funcionality. 

# ********************************************************************* # 

 

# 1.6. Mixed modelling for functional variables  

# ********************************************** 

 

# Definition of function for later use  

# ************************************ 

# The next function was provided by Borcard, D., F. Gillet & P. Legendre. 

# 2001. Numerical Ecology with R. New York, Springer, as part of the  

# electronic material accompanying the book. 

# See http://adn.biol.umontreal.ca/~numericalecology/numecolR/. 

 

# panelutils.R  

# License: GPL-2 

# Author: Francois Gillet, February 2007  

## Put Pearson, Spearman or Kendall correlations on the upper panel 

panel.cor <- function(x, y, method="pearson", digits=3, cex.cor=1.2) 

{ 

usr <- par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) 

r <- cor(x, y, method=method) 

ra <- cor.test(x, y, method=method)$p.value txt <- round(r, digits) 

sig <- 1 prefix <- "" 

http://adn.biol.umontreal.ca/~numericalecology/numecolR/
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if(ra <= 0.1) prefix <- "." if(ra <= 0.05) prefix <- "*" if(ra <= 0.01) 

prefix <- "**" if(ra <= 0.001) prefix <- "***" if(ra <= 0.001) sig <- 2 

color <- 2 

if(r < 0) color <- 4 

# color <- "gray10" 

# if(r < 0) color <- "gray50" 

txt <- paste(txt, prefix, sep="\n") 

text(0.5, 0.5, txt, cex = cex.cor, font=sig, col=color) 

} 

 

## Put histograms on the diagonal 

panel.hist <- function(x, ...) 

{ 

usr <- par("usr"); on.exit(par(usr)) 

par(usr = c(usr[1:2], 0, 1.5) ) h <- hist(x, plot = FALSE) 

breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) 

rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...) 

# rect(breaks[-nB], 0, breaks[-1], y, col="gray", ...) 

} 

 

# Usage: 

# pairs(num.mat, lower.panel=panel.smooth, upper.panel=panel.cor,  

# diag.panel=panel.hist) 

# pairs(num.mat, lower.panel=panel.smooth, upper.panel=panel.cor,  

# method="kendall") 

 

# Double Check suitability of variables for linear modelling purposes  

# *******************************************************************  

# Previously, a matrix <func> was generated. It is the matrix that we will 

# use here. 

str(funct) 

## 'data.frame': 22 obs. of 7 variables: 

## $ BAT: num 0.027 0.01 0.012 0.033 0.019 0.053 0.014 0.099 0.028 0.017 

... 

## $ SRPUC: num 4.076 0.335 6.67 1.446 10.695 ... 

## $ SRPAU: num 13 9.8 NA 249.6 48.1 ... 

## $ NH4AU: num 4.7 15.2 NA 875.4 13.9 ... 

## $ GPP: num 1.21 3.77 6.22 2.98 4.45 1.44 5.3 9.48 1.85 1.54 ... 

## $ ER: num -2.41 -3.12 -9.56 -3.63 -5.57 ... 

## $ OMD: num 24.54 22.53 6.02 22.25 1.89 ... 

## funct: the stream functional data. This matrix describes the  

## functional responses of streams for each sample unit. 

 

# Explore the variables: box plots of the standardized variables; 

funct.z.boxplot <- as.data.frame(scale(funct))  

boxplot(funct.z.boxplot) 

## Most variables are about symmetrical. 

 

# Investigate the presence of large values: Cleveland dotplots 

windows(title = "Cleveland dotplots", 7, 7)  

op <- par(mfrow = c(2,4), mar = c(4,3,3,2))  

dotchart(funct$BAT, main = "BAT")  

dotchart(funct$SRPUC, main = "SRPUC")  

dotchart(funct$SRPAU, main = "SRPAU")  

dotchart(funct$NH4AU, main = "NH4AU")  

dotchart(funct$GPP, main = "GPP")  

dotchart(funct$ER, main = "ER") d 

otchart(funct$OMD, main = "OMD") 

par(op) 

## Some relatively large values are present in the cases of SRPAU and NH4AU. 
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# Investigate colinearity among the relevant functional variables  

# *************************************************************** 

 

# Kendall tau rank correlation among functional variables 

library(cluster) library(gclus) 

funct.ken <- cor(funct[ , ], method = "kendall", 

                   use = "na.or.complete") 

round(funct.ken , 2) 

##          BAT  SRPUC  SRPAU  NH4AU   GPP   OMD     ERp 

## BAT     1.00  -0.10   0.30  0.24   0.00  -0.16   0.02 

## SRPUC  -0.10   1.00  -0.44 -0.56  -0.26  -0.08  -0.37 

## SRPAU   0.30  -0.44   1.00  0.57   0.15  -0.10   0.24 

## NH4AU   0.24  -0.56   0.57  1.00   0.30  -0.24   0.41 

## GPP     0.00  -0.26   0.15  0.30   1.00   0.06   0.49 

## OMD    -0.16  -0.08  -0.10 -0.24   0.06   1.00  -0.29 

## ERp     0.02  -0.37   0.24  0.41   0.49  -0.29   1.00 

## The untransformed variables are not, in general, strongly correlated 

## among them. 

 

# Bivariate plots with smooth curves, histograms and Kendall correlations 

(funct.o <- order.single(funct.ken)) 

## [1] 2 6 5 7 4 3 1 

windows(title = "Rank correlation matrix", 7, 7)  

op <- par(mfrow = c(1,1), pty = "s") 

pairs(funct[ , ][,funct.o], 

       lower.panel = panel.smooth, upper.panel = panel.cor,       

       method = "kendall", diag.panel = panel.hist, 

       main = "Bivariate plots with smooth curves, histograms and Kendall  

               correlations", 

      cex.main = 0.9) par(op) 

## Correlations are Kendall correlations. 

 

# Summarise the (untransformed) functional variables  

# ***************************************************  

summary(funct) 

 

##      BAT              SRPUC              SRPAU             NH4AU         

##  Min.   :0.00700   Min.   :-17.0890   Min.   : -97.40   Min.   :   2.30   

##  1st Qu.:0.01750   1st Qu.:  0.2465   1st Qu.:  11.65   1st Qu.:  13.15   

##  Median :0.02850   Median :  1.4550   Median :  38.90   Median :  49.65   

##  Mean   :0.03505   Mean   :  1.7605   Mean   : 553.86   Mean   :1232.56   

##  3rd Qu.:0.04225   3rd Qu.:  4.1867   3rd Qu.: 223.12   3rd Qu.:1603.97   

##  Max.   :0.10400   Max.   : 10.6950   Max.   :7556.80   Max.   :9562.70   

## 

##       GPP              OMD              ERp         

##  Min.   : 0.580   Min.   : 0.487   Min.   : 0.280   

##  1st Qu.: 1.640   1st Qu.: 5.811   1st Qu.: 1.880   

##  Median : 3.180   Median :14.735   Median : 4.600   

##  Mean   : 4.774   Mean   :13.945   Mean   : 9.013   

##  3rd Qu.: 5.607   3rd Qu.:21.298   3rd Qu.:13.963   

##  Max.   :21.280   Max.   :29.902   Max.   :40.270 

 

# Standard deviations of the (untransformed) environmental variables 

sqrt(var(funct$BAT, use = "na.or.complete")) 

## [1] 0.02596972 

sqrt(var(funct$SRPUC, use = "na.or.complete")) 

## [1] 5.440586 

sqrt(var(funct$SRPAU, use = "na.or.complete")) 

## [1] 1634.51 

sqrt(var(funct$NH4AU, use = "na.or.complete")) 

## [1] 2320.692 
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sqrt(var(funct$GPP, use = "na.or.complete")) 

## [1] 4.780021 

sqrt(var(funct$ER, use = "na.or.complete")) 

## [1] 10.28797 

sqrt(var(funct$OMD, use = "na.or.complete")) 

## [1] 8.724429 

 

# 1.6.1. Modelling biomass accrual - BAT (g m-2 d-1)  

# **************************************************  

Functioning <- cbind(design,funct) 

Functioning 

 

# a. Inspect the data  

# ********************  

names(funct) 

## [1] "BAT" "SRPUC" "SRPAU" "NH4AU" "GPP" "OMD" "ERp" 

 

library(ggplot2) 

ggplot(Functioning, aes(y = BAT, x = Treatment)) +     

       geom_point() + facet_wrap(~Stream) 

## Canaleta and Senia have no control data 

 

# Explore normality and homogeneity of variance 

ggplot(Functioning) + geom_boxplot(aes(y = BAT, x = Treatment)) 

## We observe heterogeneity in the group variances control data are less  

## variable than impact data 

 

# Interaction: In the case of the functional variables, the field survey  

# was not repeated in time, so there cannot be any interaction between 

# Treatment and Time. However, this was not the case for explanatory  

# variables in <chem>, <phys>, <bioc>, and <drug>. 

 

# b. Fit the model  

# ***************** 

# Fit the model: since there is a single value per Treatment, 

# only one random structure is possible ("random = ~1 | Stream"); 

# "na.action = na.omit" causes NAs to be omitted, but the presence of  

# lack of balance does not serioulsy affect estimation.   

library(nlme) 

BAT.lme.ad.REML <- lme(fixed = BAT ~ Treatment, 

                        data = Functioning, 

                        random = ~1 | Stream,  

                        method = "REML",  

                        na.action = na.omit) 

plot(BAT.lme.ad.REML) 

## The residual plot indicates there is heterogeneity of variance, so  

## re-fitting the model with control of heterogeneity is needed. 

 

# We will re-fit the model, this time ncluding a structure for the control 

# of variance heterogeneity 

BAT.lme.ad.REML.vs <- lme(fixed = BAT ~ Treatment, 

                           data = Functioning,  

                           random = ~1 | Stream, 

                           method = "REML",  

                           na.action = na.omit, 

                           weights = varIdent(form = ~ 1 | Treatment)) 

 

# Before accepting the model above, let us check model assumptions:  

# homogeneity of variance 

plot(BAT.lme.ad.REML.vs) 

## The residual plot now indicates no violation of the homogeneity assumption 
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# Check model assumptions: normality  

qqnorm(resid(BAT.lme.ad.REML.vs))  

qqline(resid(BAT.lme.ad.REML.vs)) 

## Overall, model assumptions are about OK. 

 

# Inspect fit 

summary(BAT.lme.ad.REML.vs) 

## Linear mixed-effects model fit by REML  

## Data: Functioning 

##       AIC       BIC   logLik  

## -87.43014 -82.45147 48.71507  

## 

## Random effects: 

## Formula: ~1 | Stream 

##        (Intercept)    Residual  

## StdDev: 6.723985e-07 0.009949316  

## 

## Variance function: 

## Structure: Different standard deviations per stratum  

## Formula: ~1 | Treatment 

## Parameter estimates: 

## Control Impact ##  1.000000  3.177616 

## Fixed effects: BAT ~ Treatment 

##  Value      Std.Error   DF    t-value   p-value  

## (Intercept) 0.02390000 0.003146250  11   7.596345 0.0000 

## TreatmentImpact   0.02043333 0.009653591   9   2.116656 0.0634 

## Correlation: 

## (Intr) 

## TreatmentImpact   -0.326  

## 

## Standardized Within-Group Residuals: 

##        Min        Q1        Med        Q3        Max  

## -1.1808700 -0.7715482 -0.3426632 0.4092295 2.1207488  

## 

## Number of Observations: 22 

## Number of Groups: 12 

 

# c. Inference  

# ************* 

# Hypothesis testing 

anova(BAT.lme.ad.REML.vs) 

## numDF denDF F-value p-value 

## (Intercept) 1 11 76.82100 <.0001 

## Treatment 1 9 4.48023 0.0634 

## There is weak evidence against the null hypothesis of no treatment effect 

 

# Approximate 95% CI for model parameters  

intervals(BAT.lme.ad.REML.vs, which = "fixed")  

## Fixed effects: 

## lower         est.     upper  

## (Intercept)      0.016975150 0.02390000  0.03082485 

## TreatmentImpact -0.001404607 0.02043333  0.04227127 

## The estimates are quite precise. For instance, the effect size of Impact 

## (vs. control) is 0.02 with 95% confidence interval (0.00, 0.04). 

 

# Approximate 95% CI for model parameters 

intervals(BAT.lme.ad.REML.vs, which = "var-cov") 

## In this particular case, confidence intervals on var-cov components can 

## not be obtained, since the approximate variance-covariance is non- positive 

## definite. 
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## Nonetheless, from the summary we know that the variability due to Stream 

## is a normal random variable with mean 0 and variance (6.72E-07)^2,  

## i.e. b_i ~ N(0, (7.54E-07)^2). Unexplained variability has variance 0.01^2. 

 

# Approximate R^2 explained by the random factor Site, and the fixed factors 

# Year and Fencing 

library(MuMIn)  

r.squaredGLMM(BAT.lme.ad.REML.vs)  

## R2m R2c 

##    0.5227978   0.5227978 

## R2m is the 'marginal' R^2 and represents the variance explained by only 

## the fixed factors. In this case, R^2_marginal = 52.3%. Hence Treatment 

## explains 52.3% of the observed variability in stream BAT. 

## R2c is the 'conditional' R^2 and represents the variance explained by both 

## fixed and random factors. In this case, R^conditional = 52.3%. Therefore, 

## the random factor Stream does not contribute, in this case, to the  

## explanation of variation in BAT. 

 

# Plot model: marginal effects 

library(sjPlot) 

plot_model(BAT.lme.ad.REML.vs, type = "eff", terms = c("Treatment"),  

           title = "Baix Ebre predicted values of biofilm biomass accrual rate", 

            axis.title = "Biofilm biomass accrual rate –  

                         (g AFDM per square m per day)", 

            colors = "bw") 

## Close plotting device 

## As we knew, effluent appears to cause BAT to increase by 0.02 units.  

## However, as we also knew, this effect (vs. control) is 0.02 with 95%  

## confidence interval (0.00, 0.04) and the corresponding p-value is rather 

## marginal (p-value = 0.0634). This is reflected in the confidence intervals 

## plotted in this graph, which reflect the uncertainty in the observed  

## estimates for the group typical values (estimated via ML, not just by  

## observed means) 

 

# The typical values plotted above, but in numbers: 

library(effects) 

data.eff = as.data.frame(Effect(c("Treatment"), BAT.lme.ad.REML.vs, 

                          xlevels = list(Treatment = 2))) 

data.eff 

##  Treatment     fit          se     lower      upper  

## 1  Control  0.02390000 0.003146250 0.01733704 0.03046296 

## 2 Impact  0.04433333 0.009126496 0.02529580 0.06337087  

# ************************************************************************ 

 

 

# *********************************************************************************    

# This step (1.6.1) has been applied to each functional variable (SRPUC, SRPAU, 

# NH4AU, GPP, OMD and ER). However, here, for the sake of brevity, we do not 

# write down every procedure.  

# ***************************************************************************** 

 

########## 

# Step 2 #  

########## 

 

# In what follows, we apply model selection procedures within the framework 

# of Redundancy Analysis (RDA). Prior to this (step 1.3), we tested for linear 

# spatial dependencies in the response matrix, which turned out to be  

# significant. For this reason, here we use not only standardized variables, 

# but also detrended (spatially correlated variables tend to be selected in 

# procedures of variable selection, just because they are positively spatially 
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# correlated, but the issue disappears if the variables are previously  

# detrended.) 

 

# Finally, we also will carry out partitioning of multivariate variation  

# in stream functioning to determine the unique contributions of 

# environmental properties (chem, hydr, bioc, and drug) to the explanation 

# of change in stream functioning. 

 

# 2.1. The relationship between stream functioning and environment 

# **************************************************************** 

 

# 2.1.1. Stepwise selection of chem variables using ordistep()  

# ************************************************************  

model.rda.allchem <- rda(funct.stand.det ~ ., 

                         data = chem.det) 

step <- ordistep(rda(funct.stand.det ~ 1, data = chem.det), 

                  scope = formula(model.rda.allchem), steps = 9999) 

 

## (...) 

## Step: funct.stand.det ~ SRP  

##  

##             Df    AIC      F     Pr(>F)    

## - SRP       1   38.938  9.8031  0.005 ** 

##  

##             Df    AIC     F      Pr(>F)   

## + DOC       1   31.641  2.3077  0.060 . 

## + Nitrite   1   31.711  2.2401  0.085 . 

## + Ammonium  1   32.259  1.7171  0.090 . 

## + DO        1   32.240  1.7351  0.125   

## + EC        1   32.249  1.7266  0.160   

## + pH        1   33.399  0.6714  0.625   

## + NO3       1   33.586  0.5046  0.805 

 

## Model selection suggests that SRP (sqrtSRP), and perhaps 

## either DOC or Nitrite (sqrtNO2), but not both, should provide a 

## parsimonious model. The solution is slightly unstable in the sense  

## that either DOC or Nitrite are also selected in some runs. This is due 

## to the limiting p-values corresponding to these variables. 

 

# Fit the model 

funct.rda.chem.model <- rda(funct.stand.det ~ SRP + DOC, 

                         data = chem.det) 

# Before accepting the model above, we need to examine variance inflation. 

# This is always necessary, but even more when managing highly co-linear  

# explanatory variables. Let us examine variance inflation factors 

vif.cca(funct.rda.chem.model) 

##  SRP  DOC  

##   1.798093   1.798093 

## The variance inflation factors values are well below 5, which  

## indicate that the model should be valid. 

 

# Global significance of the model: anova.cca(funct.rda.chem.model, 

permutations = 9999)  

## Permutation test for rda under reduced model 

## Permutation: free 

## Number of permutations: 9999 

## Model: rda(formula = funct.stand.det ~ SRP + DOC,  

## data = chem.det) 

##  Df  Variance      F     Pr(>F) 

## Model  2 2.2552    6.3759   1e-04 *** 

## Residual   19 3.3603 
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# Examine significance of terms (same as above, in this case, since  

# only one explanatory variable has been included in the model) 

anova.cca(funct.rda.chem.model, by = "term", permutations = 9999) 

## Model: rda(formula = funct.stand.det ~ SRP + DOC,  

## data = chem.det) 

## Df  Variance       F     Pr(>F) 

## SRP  1  1.8471    10.4441 0.0001 *** 

## DOC 1  0.4081    2.3077 0.0696 . 

## Residual 19  3.3603 

 

# Amount of variance explained by the model above: 

(R2a.funct.rda.chem.model <- 

RsquareAdj(funct.rda.chem.model)$adj.r.squared) 

## [1] 0.3386215 

## Water SRP + DOC heterogeneity explains 33.8% of multivariate  

## variation in stream functioning. Once that SRP has been 

## selected, the inclusion of further variables is a matter of opinion,  

## although the inclusion in this (partial) "chemical" model of DOC 

## would clearly be within reason. It is important to bear in mind that  

## SRP, here, does not represent just the contribution of only 

## SRP to the explanation of stream functioning. On the contrary,  

## since this is an observational study in which no orthogonality exists, 

## it also conveys information about other highly co-linear chemical  

## descriptors. 

 

# 2.1.2. Stepwise selection of hydr variables  

# *******************************************  

model.rda.allhydr <- rda(funct.stand.det ~ ., 

                         data = hydr.det) 

step <- ordistep(rda(funct.stand.det ~ 1, data = hydr.det), 

                  scope = formula(model.rda.allhydr), permutations = 9999) 

## The last step of the model selection procedure shows:  

## Start: funct.stand.det ~ 1 

##                 Df    AIC      F      Pr(>F)   

## + Width          1  38.480   2.3644  0.0557 . 

## + WaterFlow      1  38.403   2.4426  0.0604 . 

## + Temperature    1  39.331   1.5157  0.1939   

## + MeanVelocity   1  39.789   1.0729  0.3503   

## + Depth          1  40.010   0.8618  0.4179   

## + HydrStr        1  40.253   0.6328  0.6317 

## Width and WaterFlow have nearly significant p-values in the procedure. 

## We will fit a model using these two predictors. 

 

# Fit the model 

funct.rda.hydr.model <- rda(funct.stand.det ~ WaterFlow + Width, 

                             data = hydr.det) 

 

# Examine variance inflation using a model with WaterFlow and Width: 

vif.cca(funct.rda.hydr.model) 

##  WaterFlow  Width  

## 1.269221  1.269221 

## The variance inflation factors values are well below 5, which  

## indicate that the model should be valid. 

 

# Global significance of the model: 

anova.cca(funct.rda.hydr.model, permutations = 9999) 

## Model: rda(formula = funct.stand.det ~ WaterFlow + Width,  

## data = hydr.det) 

##  Df   Variance F     Pr(>F)  

## Model   2  1.2568   2.7394  0.0203 * 

## Residual   19  4.3587 
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# Examine significance of terms 

anova.cca(funct.rda.hydr.model, by = "term", permutations = 9999) 

 

## Model: rda(formula = funct.stand.det ~ WaterFlow + Width,  

## data = hydr.det) 

##  Df   Variance F     Pr(>F)  

## WaterFlow   1    0.6112   2.6642  0.0495 * 

## Width  1  0.6457   2.8146  0.0358 * 

## Residual  19  4.3587 

 

# Amount of variance explained by the model 

(R2a.funct.rda.hydr.model <- 

RsquareAdj(funct.rda.hydr.model)$adj.r.squared) 

## [1] 0.1421124 

## Heterogeneity in these two variables explains c.14% of multivariate  

## variation in stream functioning. 

 

# 2.1.3. Stepwise selection of bioc variables  

# ********************************************  

model.rda.allbioc <- rda(funct.stand.det ~ ., 

                         data = bioc.det) 

step <- ordistep(rda(funct.stand.det ~ 1, data = bioc.det), 

                  scope = formula(model.rda.allbioc), steps = 9999) 

 

## (...) 

## Step: funct.stand.det ~ Macrolide + Tiabendazole + 

## Ofloxacin + Sulfamethoxazole 

## Df AIC    F      Pr(>F) 

## - Sulfamethoxazole 1 27.990  3.2546 0.040 * 

## - Ofloxacin 1 28.439  3.6720 0.025 * 

## - Tiabendazole 1 30.908  6.1274 0.005 ** 

## - Macrolide 1 33.231  8.7023 0.005 **  

## --- 

##    Df   AIC  F      Pr(>F) 

## + Trimethoprim    1 25.875  1.7318   0.160 

## + Metronidazole    1 26.987  0.8582   0.490 

## + Levamisole    1 27.183  0.7088   0.585 

## + Ronidazole    0 26.137 

## Model selection repetition suggests that Macrolide, and either  

## Tiabendazole or Ronidazole (but not both), together with 

## Sulfamethoxazole and Ofloxacin, contribute to explain stream 

functioning. 

 

# Fit the model 

funct.rda.bioc.model <- rda(funct.stand.det ~ 

                             Macrolide + Tiabendazole + Ofloxacin +  

                             Sulfamethoxazole, data = bioc.det) 

 

 

# Global significance of the model: 

anova.cca(funct.rda.bioc.model, permutations = 9999) 

## Model: rda(formula = funct.stand.det ~ Macrolide + Tiabendazole +  

## Ofloxacin + Sulfamethoxazole, data = bioc.det) 

 

##  Df   Variance     F     Pr(>F) 

## Model  4  3.4340   6.6903  1e-04 *** 

## Residual   17  2.1815 

 

# Significance of terms 

anova.cca(funct.rda.bioc.model, by = "term", permutations = 9999) 
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##                   Df  Variance      F      Pr(>F)     

## Macrolide          1  1.88840   14.7161  0.0001 *** 

## Tiabendazole       1  0.65701    5.1200  0.0085 **  

## Ofloxacin          1  0.47098    3.6703  0.0483 *   

## Sulfamethoxazole   1  0.41763    3.2546  0.0297 *   

## Residual          17  2.18147                    

## As usual, since this is a test based on permutations, the p-values  

## may vary slightly each time that the analysis is run. The conclusions, 

## though, should not vary. 

 

# Amount of variance explained by the bioc model 

(R2a.funct.rda.bioc.model <- 

RsquareAdj(funct.rda.bioc.model)$adj.r.squared) 

## [1] 0.5201212 

## Heterogeneity in water biocides explains c.52% of multivariate  

## variation in stream functioning. 

 

# 2.1.4. Stepwise selection of drug variables  

# ******************************************* 

model.rda.alldrug <- rda(funct.stand.det ~ ., 

                         data = drug.det) 

step <- ordistep(rda(funct.stand.det ~ 1, data = drug.det), 

scope = formula(model.rda.alldrug), steps = 9999) 

 

## (...) 

## Step: funct.stand.det ~ Opioid + NSAID + sqrtSalbutamol +  

## Iopromide + sqrtSSRI 

## Df AIC       F     Pr(>F)  

## - sqrtSSRI          1   24.835   5.0469  0.015 *  

## - NSAID             1   25.239   5.4375  0.010 ** 

## - sqrtSalbutamol    1   27.447   7.7002  0.010 ** 

## - Iopromide         1   25.189   5.3886  0.005 ** 

## - Opioid            1   27.312   7.5555  0.005 ** 

## --- 

##                     Df    AIC       F     Pr(>F)   

## + sqrtCarbamazepine  1  19.909   2.1093  0.085 . 

## + sqrtH2Antagonist   1  19.857   2.1498  0.090 . 

## + ARBs               1  20.637   1.5519  0.150   

## + Benzodiazepine     1  20.465   1.6819  0.155   

## + sqrtGlibenclamide  1  20.689   1.5130  0.160   

## + sqrtCCB            1  20.866   1.3810  0.240   

## + sqrtTamsulosin     1  20.713   1.4948  0.265   

## + Fibrate            1  21.174   1.1533  0.350   

## + sqrtBetaBlocker    1  21.322   1.0446  0.415   

## + Loratadine         1  21.544   0.8840  0.430   

## + sqrtTrazodone      1  21.735   0.7463  0.560   

## + Venlafaxine        1  21.720   0.7574  0.590   

## + LoopDiuretic       1  21.760   0.7282  0.600   

## + sqrtClopidogrel    1  21.787   0.7093  0.675   

## + sqrtStatin         1  22.095   0.4908  0.765   

## + sqrtAcetaminophen  1  22.185   0.4278  0.825 

 

# Fit the model and examine variance inflation factors 

funct.rda.drug.model <- rda(funct.stand.det ~ Opioid + Iopromide +   

                            sqrtSalbutamol + NSAID + sqrtSSRI,  

                            data = drug.det) 

 

vif.cca(funct.rda.drug.model) 

##   Opioid  Iopromide   sqrtSalbutamol    NSAID      sqrtSSRI  

## 3.513848  1.538899  4.779396      4.581612    5.601394 

## The variance inflation factors values are well below 10, tough  
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## some are around or over 5. 

 

# Global significance of the model:  

anova.cca(funct.rda.drug.model, permutations = 9999)  

##  Df  Variance    F       Pr(>F) 

## Model  5 4.0524   8.2961  1e-04 *** 

## Residual   16 1.5631 

 

# Examine significance of terms 

anova.cca(funct.rda.drug.model, by = "term", permutations = 9999) 

 

## Model: rda(formula = funct.stand.det ~ Opioid + Iopromide +  

## sqrtSalbutamol + NSAID + sqrtSSRI, data = drug.det) 

##                 Df  Variance    F       Pr(>F)     

## Opioid           1  2.30490  23.5931  0.0001 *** 

## Iopromide        1  0.32281   3.3043  0.0418 *   

## sqrtSalbutamol   1  0.45997   4.7082  0.0160 *   

## NSAID            1  0.47167   4.8281  0.0180 *   

## sqrtSSRI         1  0.49305   5.0469  0.0027 **  

## Residual        16  1.56310 

 

# Amount of variance explained by the model above 

(R2a.funct.rda.drug.model <- 

RsquareAdj(funct.rda.drug.model)$adj.r.squared) 

## [1] 0.6346591 

## Heterogeneity in these variables explains 63.5% of multivariate  

## variation in stream functioning. 

 

# 2.1.5. A "saturated" model  

# ************************** 

# One way to proceed further would be building a model including all the  

# variables selected in each group, as follows: 

 

# Construct an environmental variable including all selected  

# environmental descriptors in the above procedures 

 

# Generate an <env> matrix with only the previously selected variables 

env <- BaixEbre[-c(3, 21:22, 23),c(18,19,21:22,26,28,30:31,44,47:50)] 

names(env) 

## [ 1] "SRP"            "DOC"           "WaterFlow"        "Width"            

##  [5] "AbMacrolide"    "Ofloxacin"     "Sulfamethoxazole" "Tiabendazole"     

##  [9] "Iopromide"      "NSAID"          "Opioid"           "Salbutamol"       

## [13] "SSRI" 

 

# Square-root transform the appropriate variables 

sqrtSRP <- sqrt(env$SRP)  

env$sqrtSRP <- sqrtSRP 

sqrtAbMacrolide <- sqrt(env$AbMacrolide)  

env$sqrtAbMacrolide <- sqrtAbMacrolide  

sqrtSalbutamol <- sqrt(env$Salbutamol)  

env$sqrtSalbutamol <- sqrtSalbutamol  

sqrtSSRI <- sqrt(env$SSRI) 

env$sqrtSSRI <- sqrtSSRI 

# Delete the untransformed variables 

env <- env[,-c( 1, 5, 12, 13)] 

 

# Change the names of some variables  

colnames(env)[10] <- "SRP"  

colnames(env)[11] <- "Macrolide"  

colnames(env)[12] <- "Salbutamol"  

colnames(env)[13] <- "SSRI" 
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# Inspect the new <env> matrix 

names(env) 

##  [1] "DOC"    "WaterFlow"        "Width"            "Ofloxacin"        

##  [5] "Sulfamethoxazole"  "Tiabendazole"   "Iopromide"    "NSAID"            

##  [9] "Opioid"    "SRP"   "Macrolide"      "Salbutamol"       

## [13] "SSRI" 

# Detrend <env> 

env.det <- as.data.frame(resid(lm(as.matrix(env) ~ ., data = spa))) 

 

# Fit the "saturated" model 

funct.rda.saturated.model <- rda(funct.stand.det ~ SRP + DOC + WaterFlow +                 

                                 Width + Macrolide + Tiabendazole +   

                                  Sulfamethoxazole + Ofloxacin + Salbutamol 

                                  + Opioid + NSAID + Iopromide + SSRI,                            

                                  data = env.det) 

 

# Variance inflation factors 

vif.cca(funct.rda.saturated.model) 

##  SRP              DOC             WaterFlow          Width  

##  11.349494        12.061142       3.749383           4.255335  

##  Macrolide        Tiabendazole    Sulfamethoxazole   Ofloxacin  

##  13.437680        14.148958       8.017241           11.210461  

##  Salbutamol       Opioid          NSAID              Iopromide  

##  19.553308        27.504902       14.283877          5.860342  

##  SSRI  

##  29.389190 

## As expected, not all variance inflation factors values are below 5! 

 

# Amount of variance explained by the model above: 

(R2a.funct.rda.saturated.model <-  

  RsquareAdj(funct.rda.saturated.model)$adj.r.squared) 

## [1] 0.6787031 

 

# Examine significance of terms 

anova.cca(funct.rda.saturated.model, by = "term", permutations = 9999) 

##                  Df   Variance      F      Pr(>F)     

## SRP               1   1.84711   21.4989  0.0001 *** 

## DOC               1   0.40813    4.7504  0.0164 *   

## WaterFlow         1   0.49241    5.7312  0.0045 **  

## Width             1   0.44064    5.1287  0.0056 **  

## Macrolide         1   0.52227    6.0788  0.0048 **  

## Tiabendazole      1   0.41069    4.7801  0.0063 **  

## Sulfamethoxazole  1   0.06858    0.7982  0.5211     

## Ofloxacin         1   0.10161    1.1826  0.3331     

## Salbutamol        1   0.12538    1.4594  0.2399     

## Opioid            1   0.27403    3.1895  0.0365 *   

## NSAID             1   0.10783    1.2550  0.2747     

## Iopromide         1   0.08632    1.0047  0.3904     

## SSRI              1   0.04317    0.5025  0.7482     

## Residual          8   0.687 

## As a result, we obtain a model in which NOT ALL explanatory variables  

## are significant. This occurs because, so far, we took into account 

## co-linearity among the variables within each matrix (i.e. among the  

## variables in chem, hydr...), but not co-linearity between variables  

## placed in the different matrices. 

 

# 2.1.6. "Saturated" model: partitioning of variation  

# *************************************************** 

# So far we have fitted a RDA "saturated" model using four sets of 

# variables: chem component, hydr component, drug component, and bioc 
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# component. We already know that this "saturated" model is not 

# parsimonious and now set ourselves to study the unique contributions  

# of each component 

 

# Define the components 

hydrcomp <- env.det[, c(2:3)] # X1: hydrcomp 

names(hydrcomp) 

## [1] "WaterFlow" "Width" 

chemcomp <- env.det[,c(1,10)] # X2: chemcomp 

names(chemcomp) 

## [1] "DOC" "SRP" 

bioccomp <- env.det[, c(4:6,11)] # X3: bioccomp 

names(bioccomp) 

## [1] "Ofloxacin" "Sulfamethoxazole" "Tiabendazole" "Macrolide"  

drugcomp <- env.det[, c(7:9,12,13)] # X4: drugcomp  

names(drugcomp) 

## [1] "Iopromide" "NSAID" "Opioid" "Salbutamol" "SSRI" 

 

# Variation partitioning using function varpart() of vegan 

(funct.varpart <- varpart(funct.stand.det, hydrcomp, chemcomp, bioccomp,   

                          drugcomp)) 

## (...) 

## The results are best understood if plotted 

 

plot(funct.varpart, cex = 1.0, digits = 1, cutoff = 0.01, bg = 1:4)  

## The model explains about 70% (68%) of multivariate variation in stream 

## functioning. Also, we see that the unique contribution of X2 (chem)  

## and X3 (bioccomp) in this model is null. This is but another indication 

## that we must reduce the number of <explanatory> variables. 

 

# A better graph of the results above: 

showvarparts(4, cex = 0.95, bg = 1:4, Xnames = NA, 

              labels = c("Hydrological\nproperties\n\n3%", 

                         "Water chemical\ncharacteristics", 

                         "Biocides", 

                         "Non-biocides\ndrugs\n\n6%",  

                         "", "2%", "1%", "3%", 

                         "", "17%", "5%", "", 

                         "31%", "4%", "", "32%")) 

text("Response is stream functioning", x = 0.05, y = 1.20, cex = 1.0)   

# ********************************************************************* # 

 

# 2.2. Fitting a parsimonious model  

# ********************************* 

 

# 2.2.1. Backwards procedure  

# ************************** 

# A simple way to build a parsimonious model in which all terms are 

# significant is to apply a BACKWARDS procedure to the saturated model  

# (the one obtained in step 2.2.6). 

funct.rda.saturated.model <- rda(funct.stand.det ~ ., data = env.det) 

model.rda.parsimonious.back <- ordistep(funct.rda.saturated.model, 

                                         Pin = 0.01, Pout = 0.05, steps = 999) 

## In conclusion, even with the stringent conditions set, the solution  

## provided is relatively unstable. Nonetheless, Macrolide, Salbutamol,  

## NSAID and Iopromide are always in the final solution. 

 

# 2.2.2. Stepwise procedure  

# ************************* 

# Another simple way to build a parsimonious model in which all terms are 

# significant is to apply a STEPWISE procedure, considering as candidate 
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# explanatory variables only the 13 variables previously selected. This  

# procedure is similar to the procedures already applied to obtain the  

# partial models. 

# Stepwise procedure 

funct.rda.saturated.model <- rda(funct.stand.det ~ ., data = env.det) 

model.rda.parsimonious.stepwise <-  

ordistep(rda(funct.stand.det ~ 1, data = env.det), 

            scope = formula(funct.rda.saturated.model), , steps = 999) 

 

## As shown by the next last step, a model with Iopromide, Macrolide,  

## Tiabendazole and NSAID is always selected. Occasionally, also 

## Sulfamethoxazole may creep into the model, albeit supported by only  

## a marginal p-value: 

 

## (...) [only last step here reported] 

##                      Df   AIC     F     Pr(>F)    

## - Sulfamethoxazole   1  19.451  2.1928  0.075 .  

## - Iopromide          1  20.673  3.2312  0.030 *  

## - Macrolide          1  25.026  7.4392  0.005 ** 

## - Tiabendazole       1  26.898  9.5211  0.005 ** 

## - NSAID              1  28.009 10.8423  0.005 ** 

## --- 

##               Df    AIC     F     Pr(>F)   

## + Salbutamol  1   17.974  1.9220  0.090 . 

## + Ofloxacin   1   18.891  1.2309  0.225   

## + Width       1   19.007  1.1453  0.325   

## + DOC         1   18.991  1.1568  0.355   

## + SSRI        1   19.172  1.0247  0.480   

## + Phosphate   1   19.598  0.7176  0.535   

## + WaterFlow   1   19.437  0.8328  0.555   

## + Opioid      1   19.595  0.7193  0.655   

## --- 

 

# 2.2.3. A parsimonious model  

# *************************** 

 

# Fit the parsimonious model 

funct.rda.parsimonious.model <- rda(funct.stand.det ~ NSAID + Tiabendazole  

                                    + Macrolide + Iopromide,  

                                    data = env.det) 

 

# Variance inflation factors 

vif.cca(funct.rda.parsimonious.model) 

##    NSAID Tiabendazole Macrolide Iopromide 

## 1.403777 1.775565 1.379471  1.558568 

 

# Global significance of the model: 

anova.cca(funct.rda.parsimonious.model, permutations = 9999) 

## Df  Variance      F    Pr(>F) 

## Model 4 4.0057   10.575 1e-04 *** 

## Residual  17 1.6098 

 

# Amount of variance explained by parsimonious model: 

(R2a.funct.rda.parsimonious.model <- 

RsquareAdj(funct.rda.parsimonious.model)$adj.r.squared) 

## [1] 0.6458682 

 

# Examine significance of terms 

anova.cca(funct.rda.parsimonious.model, 

            by = "term", permutations = 9999) 
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##               Df  Variance     F      Pr(>F)     

## NSAID         1   1.70099   17.9626  0.0001 *** 

## Tiabendazole  1   0.89583    9.4600  0.0001 *** 

## Macrolide     1   0.91733    9.6871  0.0001 *** 

## Iopromide     1   0.49151    5.1904  0.0144 *   

## Residual     17   1.60984 

 

# Contribution of axes 

funct.rda.parsimonious.model 

## Inertia    Proportion  Rank 

## Total 5.6155      1.0000 

## Constrained 4.0057 0.7133 4 

## Unconstrained 1.6098 0.2867 7 

## Inertia is variance 

 

## Eigenvalues for constrained axes:  

## RDA1 RDA2 RDA3 RDA4 

##  2.3959  0.8402  0.4742  0.2953 

 

## Eigenvalues for unconstrained axes: 

## PC1 PC2 PC3 PC4 PC5 PC6 PC7  

##  0.5942  0.4202  0.2720  0.1980  0.0823 0.0305 0.0127 

 

# First axis 

(2.3959/4.0057)*100; (2.3959/5.6155)*100 

## [1] 59.81227 

## [1] 42.66584 

## The first axis accounts for 59.8% of explained variation  

## (42.7% of total var.) 

 

# Second axis 

(0.8402/4.0057)*100; (0.8402/5.6155)*100 

## [1] 20.97511 

## [1] 14.96216 

## The second axis accounts for 20.9% of explained variation  

## (14.9% of total var.) 

# Third axis 

(0.4742/4.0057)*100; (0.4742/5.6155)*100 

## [1] 11.83813 

## [1] 8.444484 

## The third axis accounts for 11.8% of explained variation  

## (8.4% of total var.) 

 

# Plot the model (axis 1 and 2) 

windows(title = "RDA - scaling 2 - stream funcionality-environment RDA") 

plot(funct.rda.parsimonious.model, type = "none", 

choices = c(1, 2), scaling = "species", 

main = "(a) RDA Parsimonious model: axes 1 and 2", cex.main = 1.4, 

xlab = "RDA1: 59.8% of constrained variance (42.7% of total variance)", 

xlim = c(-2.0, 3.0), 

ylab = "RDA2: 20.9% of constrained variance (15.0% of total variance)", 

ylim = c(-2.0, 2.0)) 

text(funct.rda.parsimonious.model, dis = "cn", scaling = "species", cex = 1.2, 

    col = "red", choices = c(1, 2))  

points(funct.rda.parsimonious.model, pch = 21, col = "black", bg = black", 

    cex = 0.8, scaling = "species", choices = c(1, 2)) 

text(funct.rda.parsimonious.model, "species", col = "forestgreen", cex = 1.2, 

    scaling = "sites", choices = c(1, 2)) 

 

# Plot the model (axis 1 and 3) 

windows(title = "RDA - scaling 2 - stream funcionality-environment RDA") 
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plot(funct.rda.parsimonious.model, type = "none", 

choices = c(1, 3), scaling = "species", 

main = "(b) RDA Parsimonious model: axes 1 and 3", cex.main = 1.4, 

xlab = "RDA1: 59.8% of constrained variance (42.7% of total variance)", 

xlim = c(-2.0, 3.0), 

ylab = "RDA3: 11.8% of constrained variance (8.4% of total variance)", 

ylim = c(-1.5, 2.0)) 

text(funct.rda.parsimonious.model, dis = "cn", scaling = "species", cex = 1.2, 

    col = "red", choices = c(1, 3))  

points(funct.rda.parsimonious.model, pch = 21, col = "black", bg = black", 

    cex = 0.8, scaling = "species", choices = c(1, 3)) 

text(funct.rda.parsimonious.model, "species", col = "forestgreen", cex = 1.2, 

    scaling = "sites", choices = c(1, 3), 

    select = c("ERp", "SRPUC", "NH4AU", "OMD", "BAT")) 

text(funct.rda.parsimonious.model, "species", col = "forestgreen", cex = 1.2, 

    scaling = "sites", choices = c(1, 3), select = c("GPP"), adj = c(0.5,-0.5)) 

text(funct.rda.parsimonious.model, "species", col = "forestgreen", cex = 1.2, 

    scaling = "sites", choices = c(1, 3), select = c("SRPAU"), adj = c(0.5,0.5)) 

 

## The antifungical Tiabendazole is positively associated with SRPAU  

## (strongly) and NH4AU (weakly); Tiabendazole is also negatively 

## associated with OMD (weakly). 

 

## The biocide Macrolide is associated with BAT (positively) 

## and SRPUC (negatively). It is also positively and weakly associated  

## with NH4AU, GPP and ERp. 

 

## NSAID (nonsteroideal anti-inflammatory drugs) are negatively associated 

## with SRPUC (strongly) and OMD (weakly). These drugs are also associated 

## positively with ERp (strongly) and NH4AU (weakly). 

 

## Iopromide, a contrast medium used in computed tomography scan, is  

## positively associated with both SRPAU and NH4AU (weakly). 

## Iopromide, NSAID, Tiabendazole, and Macrolide are given in nano grams  

## per L. 

 

## SRPAU = SRP areal uptake (µg per m^2 per minute).  

## NH4U = NH4 areal uptake (µg per m^2 per minute)  

## OMD = Organic Matter Descomposition. 

## BAT = Biomass accrual rate (g per m^2 per day)  

## SRPUC = SRP uptake capacity (µg P per hour). 

## GPP = Gross Primary Production (mg O_2 per m^2 per day) 

## ERp = Ecological Respiration "positive" (mg O^2 per m^2 and day) 

 

## Summary of monotonic associations: 

##        Macrolide    NSAID      Tiabendazole   Iopromide 

##        ------------------------------------------------- 

## NH4AU  Weak (+)     Weak (+)   Weak (+)       Weak (+) 

## SRPUC  Strong (-)   Strong (-)   

## ERp    Weak (+)     Strong (+)   

## BAT    Strong (+)    

## GPP    Weak (+)    

## OMD                 Weak (-)   

## SRPAU                          Strong (+)    Weak (+) 

# Joint graph (a and b together)  

# ****************************** 

windows(title = "Joint graph", 16, 8.9)  

par(mfrow = c(1,2)) 
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plot(funct.rda.parsimonious.model, type = "none",  

     choices = c(1, 2), scaling = "species", 

main = "(a) RDA Parsimonious model: axes 1 and 2", cex.main = 1.4, 

xlab = "RDA1: 59.8% of constrained variance (42.7% of total variance)", 

xlim = c(-2.0, 3.0), 

ylab = "RDA2: 20.9% of constrained variance (15.0% of total variance)", 

ylim = c(-2.0, 2.0)) 

text(funct.rda.parsimonious.model, dis = "cn", scaling = "species", cex = 1.2, 

    col = "red", choices = c(1, 2))  

points(funct.rda.parsimonious.model, pch = 21, col = "black", bg = "black", 

     cex = 0.8, scaling = "species", choices = c(1, 2)) 

text(funct.rda.parsimonious.model, "species", col = "forestgreen", cex = 1.2, 

    scaling = "sites", choices = c(1, 2)) 

 

plot(funct.rda.parsimonious.model, type = "none", choices = c(1, 3), 

scaling = "species", 

main = "(b) RDA Parsimonious model: axes 1 and 3", cex.main = 1.4, 

xlab = "RDA1: 59.8% of constrained variance (42.7% of total variance)", 

xlim = c(-2.0, 3.0), 

ylab = "RDA3: 11.8% of constrained variance (8.4% of total variance)", 

ylim = c(-1.5, 2.0)) 

text(funct.rda.parsimonious.model, dis = "cn", scaling = "species", cex = 1.2, 

     col = "red", choices = c(1, 3))  

points(funct.rda.parsimonious.model, pch = 21, col = "black", bg = "black", 

     cex = 0.8, scaling = "species", choices = c(1, 3)) 

text(funct.rda.parsimonious.model, "species", col = "forestgreen", cex = 1.2, 

    scaling = "sites", choices = c(1, 3), 

    select = c("ERp", "SRPUC", "NH4AU", "OMD", "BAT")) 

text(funct.rda.parsimonious.model, "species", col = "forestgreen", cex = 1.2, 

    scaling = "sites", choices = c(1, 3), select = c("GPP"), adj = c(0.5,-0.5)) 

text(funct.rda.parsimonious.model, "species", col = "forestgreen", cex = 1.2, 

    scaling = "sites", choices = c(1, 3), select = c("SRPAU"), adj = c(0.5,0.5)) 

 

# Define components for variation partitioning 

bioccomp <- env.det[, c(6,11)] # X1: Tiabendazole and Macrolide 

drugcomp <- env.det[, c(7:8)] # X2: NSAID and Iopromide 

 

# Variation partitioning using function varpart() of vegan 

(funct.varpart <- varpart(funct.stand.det, bioccomp, drugcomp)) 

## Partition of variance in RDA  

## 

## Call: varpart(Y = funct.stand.det, X = bioccomp, drugcomp) ## 

## Explanatory tables: 

## X1: bioccomp ## X2: drugcomp ## 

## No. of explanatory tables: 2  

## Total variation (SS): 117.93  

##             Variance:   5.6155 

##  No. of observations:  22  

##  

## Partition table: 

##                      Df  R.squared   Adj.R.squared  Testable 

## [a+b] = X1            2   0.45328       0.39573         TRUE 

## [b+c] = X2            2   0.37133       0.30515         TRUE 

## [a+b+c] = X1+X2       4   0.71332       0.64587         TRUE 

## Individual fractions                                     

## [a] = X1|X2           2                 0.34072         TRUE 

## [b]                   0                 0.05502        FALSE 

## [c] = X2|X1           2                 0.25013         TRUE 

## [d] = Residuals                         0.35413        FALSE 
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# Plot the results 

plot(funct.varpart, cex = 1.0, bg = 2:3) 

 

# A better graph of the results above: 

showvarparts(2, cex = 0.87, bg = c("green", "blue"), Xnames = NA,  

             labels = c("Biocide component\n(Tiabendazole \nand Macrolide) 

                        \n= 34%","Shared\nfraction\n= 6%", "Drug       

                        component\n(NSAID \nand Iopromide)\n= 25%",    

                        "35%")) 

text("Response is stream functioning", x = 0.5, y = 0.95, cex = 1.0) 

## The values indicated in the Venn diagram are proportions of variation  

## in stream functioning explained by model components (adj.-R2). 

 

# Test the unique contribution of the fraction corresponding to the pure  

# bioccomp 

anova(rda(funct.stand.det, bioccomp, drugcomp)) 

## Model: rda(X = funct.stand.det, Y = bioccomp, Z = drugcomp) 

##           Df  Variance    F      Pr(>F)     

## Model      2   1.9205   10.14  0.001 *** 

 ## Residual  17   1.6098 

# Test the unique contribution of the fraction corresponding to the pure  

# drugcomp 

anova(rda(funct.stand.det, drugcomp, bioccomp)) 

## Model: rda(X = funct.stand.det, Y = drugcomp, Z = bioccomp) 

##           Df  Variance    F       Pr(>F)     

## Model      2   1.4603   7.7101  0.001 *** 

## Residual  17   1.6098 

# ********************************************************************* # 

# ********************************************************************* # 

########## 

# Step 3 #  

########## 

 

# Finally, we will test the relationship between the individual functional 

# variables and the selected environmental predictors via Generalised  

# Linear Models (GLM). The goal is to visualize the form of the relationships, 

# and quantify the variability explained, rather than testing for the 

# relationships themselves. This is so because we already know that the  

# following relationships are statistically significant: 

 

## Summary of monotonic associations: 

## Macrolide NSAID Tiabendazole Iopromide  

## ----------------------------------------------------- 

## NH4AU Weak (+) Weak (+) Weak (+) Weak (+)  

## SRPUC Strong (-) Strong (-) 

## ERp Weak (+) Strong (+) ## BAT Strong (+) 

## GPP Weak (+) 

## OMD Weak (-) 

## SRPAU Strong (+) Weak (+) 

 

# 3.1. Generalised Linear Modelling (GLM)  

# *************************************** 

# The variables in <funct.stand.det> have been standardized and detrended 

names(as.data.frame(funct.stand.det)) 

## [1] "BAT" "SRPUC" "SRPAU" "NH4AU" "GPP" "OMD" "ERp" 

## SRPAU = SRP areal uptake (µg per m^2 per minute).  

## NH4U = NH4 areal uptake (µg per m^2 per minute)  

## OMD = Organic Matter Descomposition. 

## BAT = Biomass accrual rate (g per m^2 per day)  
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## SRPUC = SRP uptake capacity (µg P per hour). 

## GPP = Gross Primary Production (mg O_2 per m^2 per day) 

## ERp = Ecological Respiration "positive" (mg O^2 per m^2 and day) 

## These variables have been standardized and detrended, hence negative  

## values are possible. 

 

# The variables in <env.det> have been detrended 

names(env.det) 

##  [1] "DOC"     "WaterFlow"     "Width"         "Ofloxacin"        

##  [5] "Sulfamethoxazole"   "Tiabendazole"  "Iopromide"     "NSAID"            

##  [9] "Opioid"    "SRP"     "Macrolide"     "Salbutamol"       

## [13] "SSRI"  

## Iopromide, NSAID, Tiabendazole, and Macrolide were measured in nanog  

## per L. These variables have been detrended; for this reason, negative  

## values are possible. 

 

# Merge the funct with env to generate the data frame <glm,data>  

glm.data <- merge(funct.stand.det, env.det, by = "row.names")  

head(glm.data) 

## This dataframe <glm.data> is the dataframe that we will use to test  

## for relationships between individual functional variables and the  

## selected environmental predictors (Macrolide, Tiabendazole, NSAID,  

## and Iopromide). We will limit ourselves to relationships identified  

## in step 2. 

 

# 3.3.1. NH4AU 

# ************ 

# Macrolide  

# ********* 

model.NH4AU.Macrolide <- glm(NH4AU ~ Macrolide, 

                             family = gaussian, data = glm.data)  

summary(model.NH4AU.Macrolide) 

## Null deviance:   11.3316 on 21 degrees of freedom ## Residual 

deviance: 7.4379 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (7.4379/11.3316))*100, 1) 

## [1] 34.4 

 

# Analysis of deviance table 

anova(model.NH4AU.Macrolide, test = "Chisq") 

## Df  Deviance Resid.  Df   Resid. Dev   Pr(>Chi)  

## NULL  21     11.3316 

## Macrolide 1   3.8937 20 7.4379   0.001213 ** 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.NH4AU.Macrolide), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.NH4AU.Macrolide.pred <- predict(model.NH4AU.Macrolide, 

                                       se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$Macrolide, glm.data$NH4AU, type = "p", 

      xlab = "Macrolide concentration (nanograms per litre)",  

      ylab = "Ammonium areal uptake") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$Macrolide) 
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lines(glm.data$Macrolide[I], model.NH4AU.Macrolide.pred$fit[I], lwd = 1)  

lines(glm.data$Macrolide[I],model.NH4AU.Macrolide.pred$fit[I] + 

      1.96 * model.NH4AU.Macrolide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Macrolide[I], model.NH4AU.Macrolide.pred$fit[I] - 

1.96 * model.NH4AU.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 

 

# NSAID 

# ***** 

model.NH4AU.NSAID <- glm(NH4AU ~ NSAID, 

                         family = gaussian, data = glm.data)  

summary(model.NH4AU.NSAID) 

## Null deviance:   11.3316 on 21 degrees of freedom  

## Residual deviance: 8.2806 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (8.2806/11.3316))*100, 1) 

## [1] 26.9 

 

# Analysis of deviance table 

anova(model.NH4AU.NSAID, test = "Chisq") 

##  Df  Deviance Resid. Df   Resid. Dev   Pr(>Chi)  

## NULL  21  11.3316 

## NSAID 1   3.051 20  8.2806   0.006636 ** 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.NH4AU.NSAID), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.NH4AU.NSAID.pred <- predict(model.NH4AU.NSAID, 

                                   se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$NSAID, glm.data$NH4AU,type = "p", 

      xlab = "NSAIDs concentration (nanograms per litre)",  

      ylab = "Ammonium areal uptake") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$NSAID) 

lines(glm.data$NSAID[I], model.NH4AU.NSAID.pred$fit[I], lwd = 1)  

lines(glm.data$NSAID[I],model.NH4AU.NSAID.pred$fit[I] + 

      1.96 * model.NH4AU.NSAID.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$NSAID[I],model.NH4AU.NSAID.pred$fit[I] - 

       1.96 * model.NH4AU.NSAID.pred$se.fit[I], lty = 2, lwd = 1) 

 

# Tiabendazole  

# ************ 

model.NH4AU.Tiabendazole <- glm(NH4AU ~ Tiabendazole, 

                                family = gaussian, data = glm.data)  

summary(model.NH4AU.Tiabendazole) 

## Null deviance:   11.3316 on 21 degrees of freedom  

## Residual deviance: 6.9577 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (6.9577/11.3316))*100, 1) 

## [1] 38.6 

 

# Analysis of deviance table 

anova(model.NH4AU.Tiabendazole, test = "Chisq") 
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## Df  Deviance Resid. Df     Resid. Dev    Pr(>Chi)  

## NULL  21  11.3316 

## Tiabendazole 1   4.3739 20 6.9577    0.0003914 *** 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.NH4AU.Tiabendazole), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.NH4AU.Tiabendazole.pred <- predict(model.NH4AU.Tiabendazole, 

                                          se = TRUE, type = "response") 

# Draw the base plot with the observed data points 

plot(glm.data$Tiabendazole, glm.data$NH4AU,type = "p", 

      xlab = "Tiabendazole concentration (nanograms per litre)",  

      ylab = "Ammonium areal uptake") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$Tiabendazole) 

lines(glm.data$Tiabendazole[I], model.NH4AU.Tiabendazole.pred$fit[I], lwd = 1) 

lines(glm.data$Tiabendazole[I], model.NH4AU.Tiabendazole.pred$fit[I] + 

       1.96 * model.NH4AU.Tiabendazole.pred$se.fit[I], lty = 2, lwd = 1) 

lines(glm.data$Tiabendazole[I],model.NH4AU.Tiabendazole.pred$fit[I] - 

       1.96 * model.NH4AU.Tiabendazole.pred$se.fit[I], lty = 2, lwd = 1) 

 

# Iopromide  

# ********* 

model.NH4AU.Iopromide <- glm(NH4AU ~ Iopromide, 

                             family = gaussian, data = glm.data)  

summary(model.NH4AU.Iopromide) 

## Null deviance:   11.3316 on 21 degrees of freedom  

## Residual deviance: 8.8536 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (8.8536/11.3316))*100, 1) 

## [1] 21.9 

 

anova(model.NH4AU.Iopromide, test = "Chisq") 

##           Df Deviance Resid. Df   Resid. Dev  Pr(>Chi)   

## NULL                         21    11.3316            

## Iopromide  1    2.478        20     8.8536   0.01798 * 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.NH4AU.Iopromide), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.NH4AU.Iopromide.pred <- predict(model.NH4AU.Iopromide, 

                                       se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$Iopromide, glm.data$NH4AU, type = "p", 

     xlab = "Iopromide concentration (nanograms per litre)",  

     ylab = "Ammonium areal uptake") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$Iopromide) 

lines(glm.data$Iopromide[I], model.NH4AU.Iopromide.pred$fit[I], lwd = 1)  

lines(glm.data$Iopromide[I], model.NH4AU.Iopromide.pred$fit[I] + 

      1.96 * model.NH4AU.Iopromide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Iopromide[I],model.NH4AU.Iopromide.pred$fit[I] - 

      1.96 * model.NH4AU.Iopromide.pred$se.fit[I], lty = 2, lwd = 1)  
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# ********************************************************************* # 

 

# 3.3.2. SRPUC 

# ************ 

# Macrolide  

# ********* 

model.SRPUC.Macrolide <- glm(SRPUC ~ Macrolide + I(Macrolide^2), 

                             family = gaussian, data = glm.data)  

summary(model.SRPUC.Macrolide) 

## Null deviance:   19.2075 on 21 degrees of freedom  

## Residual deviance: 6.2721 on 19 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (6.2721/19.2075))*100, 1) 

## [1] 67.3 

 

anova(model.SRPUC.Macrolide, test = "Chisq") 

## Df Deviance Resid.   Df    Resid. Dev     Pr(>Chi)  

## NULL  21 19.2075 

## Macrolide 1   10.3112 20 8.8963   2.285e-08 *** 

## I(Macrolide^2) 1   2.6242 19 6.2721  0.00481 ** 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.SRPUC.Macrolide), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.SRPUC.Macrolide.pred <- predict(model.SRPUC.Macrolide, 

                                       se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$Macrolide, glm.data$SRPUC, type = "p", 

     xlab = "Detrended macrolide (nanograms per litre)", 

     ylab = "Standardized and detrended SRP uptake capacity") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$Macrolide) 

lines(glm.data$Macrolide[I], model.SRPUC.Macrolide.pred$fit[I], lwd = 1)  

lines(glm.data$Macrolide[I],model.SRPUC.Macrolide.pred$fit[I] + 

      1.96 * model.SRPUC.Macrolide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Macrolide[I],model.SRPUC.Macrolide.pred$fit[I] – 

      1.96 * model.SRPUC.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 

 

# NSAID 

# ***** 

model.SRPUC.NSAID <- glm(SRPUC ~ NSAID, 

                         family = gaussian, data = glm.data)  

summary(model.SRPUC.NSAID) 

## Null deviance:   19.2075 on 21 degrees of freedom  

## Residual deviance: 9.8192 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (9.8192/19.2075))*100, 1) 

## [1] 48.9 

 

anova(model.SRPUC.NSAID, test = "Chisq") 

##        Df  Deviance Resid. Df  Resid. Dev    Pr(>Chi)     

## NULL                       21    19.2075               

## NSAID   1      9.3883      20     9.8192   1.226e-05 *** 
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# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.SRPUC.NSAID), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.SRPUC.NSAID.pred <- predict(model.SRPUC.NSAID, 

                                   se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$NSAID, glm.data$SRPUC, type = "p", 

     xlab = "Detrended NSAIDs (nanograms per litre)", 

     ylab = "Standardized and detrended SRP uptake capacity") 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$NSAID) 

lines(glm.data$NSAID[I], model.SRPUC.NSAID.pred$fit[I], lwd = 1)  

lines(glm.data$NSAID[I],model.SRPUC.NSAID.pred$fit[I] + 

      1.96 * model.SRPUC.NSAID.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$NSAID[I],model.SRPUC.NSAID.pred$fit[I] – 

      1.96 * model.SRPUC.NSAID.pred$se.fit[I], lty = 2, lwd = 1) 

# ********************************************************************* # 

 

# 3.3.3. ERp 

# ********** 

# Macrolide  

# ********* 

model.ERp.Macrolide <- glm(ERp ~ Macrolide + I(Macrolide^2), 

                           family = gaussian, data = glm.data)  

summary(model.ERp.Macrolide) 

## Null deviance:   19.4029 on 21 degrees of freedom ## Residual 

deviance: 9.5399 on 19 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (9.5399/19.4029 ))*100, 1) 

## [1] 50.8 

 

anova(model.ERp.Macrolide, test = "Chisq") 

## Df  Deviance Resid.   Df    Resid. Dev   Pr(>Chi) 

## NULL   21 19.4029 

## Macrolide 1  5.5065 20 13.8964  0.0009276 *** 

## I(Macrolide^2) 1  4.3565 19 9.5399  0.0032233 ** 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.ERp.Macrolide), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.ERp.Macrolide.pred <- predict(model.ERp.Macrolide, 

                                     se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$Macrolide, glm.data$ERp, type = "p", 

     xlab = "Detrended macrolide (nanograms per litre)", 

     ylab = "Standardized and detrended ecological respiration") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$Macrolide) 

lines(glm.data$Macrolide[I], model.ERp.Macrolide.pred$fit[I], lwd = 1)  

lines(glm.data$Macrolide[I], model.ERp.Macrolide.pred$fit[I] + 

      1.96 * model.ERp.Macrolide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Macrolide[I], model.ERp.Macrolide.pred$fit[I] – 

      1.96 * model.ERp.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 
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# NSAID 

# ***** 

model.ERp.NSAID <- glm(ERp ~ NSAID, 

                       family = gaussian, data = glm.data)  

summary(model.ERp.NSAID) 

## Null deviance:   19.4029 on 21 degrees of freedom  

## Residual deviance: 3.4986 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (3.4986/19.4029 ))*100, 1) 

## [1] 82.0 

 

anova(model.ERp.NSAID, test = "Chisq") 

## Df Deviance Resid.   Df    Resid. Dev   Pr(>Chi)  

## NULL  21 19.4029 

## NSAID 1  15.904 20 3.4986   < 2.2e-16 *** 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.ERp.NSAID), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.ERp.NSAID.pred <- predict(model.ERp.NSAID, 

                                 se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$NSAID, glm.data$ERp, type = "p", 

     xlab = "Detrended NSAIDs (nanograms per litre)", 

     ylab = "Standardized and detrended ecological respiration") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$NSAID) 

lines(glm.data$NSAID[I], model.ERp.NSAID.pred$fit[I], lwd = 1) 

lines(glm.data$NSAID[I], model.ERp.NSAID.pred$fit[I] +  

      1.96 * model.ERp.NSAID.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$NSAID[I], model.ERp.NSAID.pred$fit[I] –  

      1.96 * model.ERp.NSAID.pred$se.fit[I], lty = 2, lwd = 1) 

# ********************************************************************* # 

 

# 3.3.4. BAT 

# ********** 

# Macrolide  

# ********* 

model.BAT.Macrolide <- glm(BAT ~ Macrolide, 

                           family = gaussian, data = glm.data)  

summary(model.BAT.Macrolide) 

## Null deviance: 20.8784 on 21 degrees of freedom  

## Residual deviance: 6.8544 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (6.8544/20.8784))*100, 1) 

## [1] 67.2 

 

anova(model.BAT.Macrolide, test = "Chisq") 

##  Df Deviance Resid.  Df    Resid. Dev    Pr(>Chi)  

## NULL  21 20.8784 

## Macrolide 1    14.024 20 6.8544   1.586e-10 *** 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.BAT.Macrolide), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 
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# Obtain the values predicted by the fitted model 

model.BAT.Macrolide.pred <- predict(model.BAT.Macrolide, 

                                     se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$Macrolide, glm.data$BAT, type = "p", 

     xlab = "Detrended macrolide (nanograms per litre)", 

     ylab = "Standardized and detrended biomass accrual rate") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$Macrolide) 

lines(glm.data$Macrolide[I], model.BAT.Macrolide.pred$fit[I], lwd = 1)  

lines(glm.data$Macrolide[I], model.BAT.Macrolide.pred$fit[I] + 

      1.96 * model.BAT.Macrolide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Macrolide[I], model.BAT.Macrolide.pred$fit[I] – 

      1.96 * model.BAT.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 

# ********************************************************************* # 

 

# 3.3.5. GPP 

# ********** 

# Macrolide  

# ********* 

model.GPP.Macrolide <- glm(GPP ~ Macrolide, 

                           family = gaussian, data = glm.data)  

summary(model.GPP.Macrolide) 

## Null deviance: 18.221 on 21 degrees of freedom  

## Residual deviance:  15.042 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (15.042/18.221))*100, 1) 

## [1] 17.4 

 

anova(model.GPP.Macrolide, test = "Chisq") 

##  Df Deviance Resid.  Df    Resid. Dev  Pr(>Chi)  

## NULL  21 18.221 

## Macrolide 1   3.1788 20 15.043 0.0398 * 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.GPP.Macrolide), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.GPP.Macrolide.pred <- predict(model.GPP.Macrolide, 

                                     se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$Macrolide, glm.data$GPP, type = "p", 

     xlab = "Detrended macrolide (nanograms per litre)", 

     ylab = "Standardized and detrended gross primary production") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$Macrolide) 

lines(glm.data$Macrolide[I], model.GPP.Macrolide.pred$fit[I], lwd = 1)  

lines(glm.data$Macrolide[I], model.GPP.Macrolide.pred$fit[I] + 

      1.96 * model.GPP.Macrolide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Macrolide[I], model.GPP.Macrolide.pred$fit[I] – 

      1.96 * model.GPP.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 

# ********************************************************************* # 
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# 3.3.6. OMD 

# ********** 

# NSAID 

# ***** 

model.OMD.NSAID <- glm(OMD ~ NSAID, 

                       family = gaussian, data = glm.data)  

summary(model.OMD.NSAID) 

## Null deviance: 18.905 on 21 degrees of freedom  

## Residual deviance:  14.302 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (14.302/18.905))*100, 1) 

## [1] 24.3 

 

anova(model.OMD.NSAID, test = "Chisq") 

 

## Df Deviance Resid.  Df   Resid. Dev   Pr(>Chi)  

## NULL  21     18.904 

## NSAID 1  4.6029 20     14.302 0.01118 * 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.OMD.NSAID), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.OMD.NSAID.pred <- predict(model.OMD.NSAID, 

                                 se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$NSAID, glm.data$OMD, type = "p", 

     xlab = "Detrended NSAIDs (nanograms per litre)", 

     ylab = "Standardized and detrended organic matter decomposition") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$NSAID) 

lines(glm.data$NSAID[I], model.OMD.NSAID.pred$fit[I], lwd = 1)  

lines(glm.data$NSAID[I], model.OMD.NSAID.pred$fit[I] + 

      1.96 * model.OMD.NSAID.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$NSAID[I], model.OMD.NSAID.pred$fit[I] – 

      1.96 * model.OMD.NSAID.pred$se.fit[I], lty = 2, lwd = 1) 

# ********************************************************************* # 

 

# 3.3.7. SRPAU 

# ************ 

# Tiabendazole  

# ************ 

model.SRPAU.Tiabendazole <- glm(SRPAU ~ Tiabendazole, 

                                family = gaussian, data = glm.data)  

summary(model.SRPAU.Tiabendazole) 

## Null deviance: 9.9793 on 21 degrees of freedom  

## Residual deviance:  1.6590 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (1.6590/9.9793))*100, 1) 

## [1] 83.4 

 

anova(model.SRPAU.Tiabendazole, test = "Chisq") 

## Df Deviance Resid.   Df    Resid. Dev    Pr(>Chi)  

## NULL  21 9.9793 

## Tiabendazole 1   8.3203 20 1.6590   < 2.2e-16 *** 
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# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.SRPAU.Tiabendazole), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

 

# Obtain the values predicted by the fitted model 

model.SRPAU.Tiabendazole.pred <- predict(model.SRPAU.Tiabendazole, 

                                          se = TRUE, type = "response") 

 

# Draw the base plot with the observed data points 

plot(glm.data$Tiabendazole, glm.data$SRPAU, type = "p", 

     xlab = "Detrended tiabendazole (nanograms per litre)",  

     ylab = "Standardized and detrended SRP areal uptake") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$Tiabendazole) 

lines(glm.data$Tiabendazole[I], model.SRPAU.Tiabendazole.pred$fit[I], lwd = 1) 

lines(glm.data$Tiabendazole[I], model.SRPAU.Tiabendazole.pred$fit[I] + 

      1.96 * model.SRPAU.Tiabendazole.pred$se.fit[I], lty = 2, lwd = 1) 

lines(glm.data$Tiabendazole[I], model.SRPAU.Tiabendazole.pred$fit[I] – 

      1.96 * model.SRPAU.Tiabendazole.pred$se.fit[I], lty = 2, lwd = 1) 

 

# Iopromide  

# ********* 

model.SRPAU.Iopromide <- glm(SRPAU ~ Iopromide, 

                             family = gaussian, data = glm.data)  

summary(model.SRPAU.Iopromide) 

## Null deviance: 9.9793 on 21 degrees of freedom  

## Residual deviance:  7.6026 on 20 degrees of freedom 

 

# R^2_GLM (%): 1 - (Residual Deviance/Null Deviance) 

round((1 - (7.6026/9.9793))*100, 1) 

## [1] 23.8 

 

anova(model.SRPAU.Iopromide, test = "Chisq") 

##           Df  Deviance Resid. Df R  esid. Dev  Pr(>Chi)   

## NULL                          21     9.9793            

## Iopromide  1    2.3767        20     7.6026    0.0124 * 

 

# Peruse whether (spatial) autocorrelation is present in model residuals 

acf(residuals(model.SRPAU.Iopromide), main = "Raw residual ACF") 

## No significant autocorrelation is present in model residuals. 

# Obtain the values predicted by the fitted model 

model.SRPAU.Iopromide.pred <- predict(model.SRPAU.Iopromide, 

                                       se = TRUE, type = "response") 

# Draw the base plot with the observed data points 

plot(glm.data$Iopromide, glm.data$SRPAU, type = "p", 

     xlab = "Detrended iopromide (nanograms per litre)",  

     ylab = "Standardized and detrended SRP areal uptake") 

 

# Draw model fit with approximate 95% confidence bands 

I <- order(glm.data$Iopromide) 

lines(glm.data$Iopromide[I], model.SRPAU.Iopromide.pred$fit[I], lwd = 1)  

lines(glm.data$Iopromide[I], model.SRPAU.Iopromide.pred$fit[I] + 

      1.96 * model.SRPAU.Iopromide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Iopromide[I], model.SRPAU.Iopromide.pred$fit[I] – 

      1.96 * model.SRPAU.Iopromide.pred$se.fit[I], lty = 2, lwd = 1)  

# ********************************************************************* # 
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## So we have learned that all associations are monotonic, as follows:  

##        Macrolide    NSAID        Tiabendazole   Iopromide 

##        ---------------------------------------------------- 

## NH4AU  34.4% (L+)    26.9% (L+)   38.6% (L+)     21.9% (L+) 

## SRPUC  67.3% (CL-)   48.9% (L-)   

## ERp    50.8% (CL+)   82.0% (L+)   

## BAT    67.2% (L+)     

## GPP    17.4% (L+)     

## OMD                  24.3% (L-)   

## SRPAU                             83.4% (L+)    23.8% (L+) 

 

## CODE: L = linear; CL = curvilinear; "+" = increasing; "-" = decreasing 

## The numbers indicate the R^2_GLM corresponding to each relationship.  

## Hence it seems clear that the single most important explanatory 

## variable is the sum of the concentrations in stream water of the  

## macrolide biocides, followed by the sum of the concentrations in  

## stream water of the NSAIDs (non-steroids anti-inflamatory drugs).Most 

## relationships are linear and positive, though negative and curvilinear 

## relationships do arise. 

 

# 3.2. Joint graph  

# **************** 

windows(title = "Joint graph", 8.3, 9.7) par(mfrow = c(3,3)) 

 

# 1. SRPAU ~ Tiabendazole  

# ************************ 

plot(glm.data$Tiabendazole, glm.data$SRPAU, type = "p", pch = 20, 

     xlab = "Tiabendazole concentration", ylab = "SRPAU") 

I <- order(glm.data$Tiabendazole) 

lines(glm.data$Tiabendazole[I], model.SRPAU.Tiabendazole.pred$fit[I], lwd = 1) 

lines(glm.data$Tiabendazole[I], model.SRPAU.Tiabendazole.pred$fit[I] + 

      1.96 * model.SRPAU.Tiabendazole.pred$se.fit[I], lty = 2, lwd = 1) 

lines(glm.data$Tiabendazole[I], model.SRPAU.Tiabendazole.pred$fit[I] – 

      1.96 * model.SRPAU.Tiabendazole.pred$se.fit[I], lty = 2, lwd = 1) 

 

# 2. ER ~ NSAIDs 

# *************** 

plot(glm.data$NSAID, glm.data$ERp, type = "p", pch = 20, 

xlab = "NSAIDs concentration", ylab = "ER") 

I <- order(glm.data$NSAID) 

lines(glm.data$NSAID[I], model.ERp.NSAID.pred$fit[I], lwd = 1)  

lines(glm.data$NSAID[I], model.ERp.NSAID.pred$fit[I] + 

      1.96 * model.ERp.NSAID.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$NSAID[I], model.ERp.NSAID.pred$fit[I] – 

      1.96 * model.ERp.NSAID.pred$se.fit[I], lty = 2, lwd = 1) 

 

# 3. SRPUC ~ AbMacrolides  

# ************************ 

plot(glm.data$Macrolide, glm.data$SRPUC, type = "p", pch = 20, 

xlab = "Macrolide concentration", ylab = "SRPUC") 

I <- order(glm.data$Macrolide) 

lines(glm.data$Macrolide[I], model.SRPUC.Macrolide.pred$fit[I], lwd = 1)  

lines(glm.data$Macrolide[I], model.SRPUC.Macrolide.pred$fit[I] + 

      1.96 * model.SRPUC.Macrolide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Macrolide[I], model.SRPUC.Macrolide.pred$fit[I] – 

      1.96 * model.SRPUC.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 

 

# 4. BAT ~ AbMacrolides  

# ********************** 

plot(glm.data$Macrolide, glm.data$BAT, type = "p", pch = 20, 



 

237 

 

xlab = "Macrolide concentration", ylab = "BAT") 

I <- order(glm.data$Macrolide) 

lines(glm.data$Macrolide[I], model.BAT.Macrolide.pred$fit[I], lwd = 1)  

lines(glm.data$Macrolide[I], model.BAT.Macrolide.pred$fit[I] +  

      1.96 * model.BAT.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 

lines(glm.data$Macrolide[I], model.BAT.Macrolide.pred$fit[I] – 

      1.96 * model.BAT.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 

 

# 5. ER ~ AbMacrolides  

# ********************* 

plot(glm.data$Macrolide, glm.data$ERp, type = "p", pch = 20, 

xlab = "Macrolide concentration", ylab = "ER") 

I <- order(glm.data$Macrolide) 

lines(glm.data$Macrolide[I], model.ERp.Macrolide.pred$fit[I], lwd = 1)  

lines(glm.data$Macrolide[I], model.ERp.Macrolide.pred$fit[I] + 

      1.96 * model.ERp.Macrolide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Macrolide[I], model.ERp.Macrolide.pred$fit[I] – 

      1.96 * model.ERp.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 

 

# 6. SRPUC ~ NSAIDs 

# ****************** 

plot(glm.data$NSAID, glm.data$SRPUC, type = "p", pch = 20, 

xlab = "NSAIDs concentration", ylab = "SRPUC") 

I <- order(glm.data$NSAID) 

lines(glm.data$NSAID[I], model.SRPUC.NSAID.pred$fit[I], lwd = 1)  

lines(glm.data$NSAID[I], model.SRPUC.NSAID.pred$fit[I] + 

      1.96 * model.SRPUC.NSAID.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$NSAID[I], model.SRPUC.NSAID.pred$fit[I] – 

      1.96 * model.SRPUC.NSAID.pred$se.fit[I], lty = 2, lwd = 1) 

 

# 7. NH4AU ~ Tiabendazole  

# ************************ 

plot(glm.data$Tiabendazole, glm.data$NH4AU, type = "p", pch = 20, 

xlab = "Tiabendazole concentration", ylab = "NH4AU") 

I <- order(glm.data$Tiabendazole) 

lines(glm.data$Tiabendazole[I], model.NH4AU.Tiabendazole.pred$fit[I], lwd = 1) 

lines(glm.data$Tiabendazole[I], model.NH4AU.Tiabendazole.pred$fit[I] + 

      1.96 * model.NH4AU.Tiabendazole.pred$se.fit[I], lty = 2, lwd = 1) 

lines(glm.data$Tiabendazole[I], model.NH4AU.Tiabendazole.pred$fit[I] – 

      1.96 * model.NH4AU.Tiabendazole.pred$se.fit[I], lty = 2, lwd = 1) 

 

# 8. OMD ~ NSAIDs 

# **************** 

plot(glm.data$NSAID, glm.data$OMD, type = "p", pch = 20, 

xlab = "NSAIDs concentration", ylab = "OMD") 

I <- order(glm.data$NSAID) 

lines(glm.data$NSAID[I], model.OMD.NSAID.pred$fit[I], lwd = 1)  

lines(glm.data$NSAID[I], model.OMD.NSAID.pred$fit[I] +  

      1.96 * model.OMD.NSAID.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$NSAID[I], model.OMD.NSAID.pred$fit[I] – 

      1.96 * model.OMD.NSAID.pred$se.fit[I], lty = 2, lwd = 1) 

 

# 9. GPP ~ AbMacrolides  

# ********************** 

plot(glm.data$Macrolide, glm.data$GPP, type = "p", pch = 20, 

xlab = "Macrolide concentration", ylab = "GPP") 

I <- order(glm.data$Macrolide) 

lines(glm.data$Macrolide[I], model.GPP.Macrolide.pred$fit[I], lwd = 1)  

lines(glm.data$Macrolide[I], model.GPP.Macrolide.pred$fit[I] + 

      1.96 * model.GPP.Macrolide.pred$se.fit[I], lty = 2, lwd = 1)  

lines(glm.data$Macrolide[I], model.GPP.Macrolide.pred$fit[I] – 
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      1.96 * model.GPP.Macrolide.pred$se.fit[I], lty = 2, lwd = 1) 

 

# ********************************************************************* # 

# ************************ END OF THE SCRIPT ************************** # 
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Chapter 3 - Ecosystem manipulation reveals effects of a highly diluted WWTP effluent on 

stream ecosystem structure and functioning 

Appendix S1. Statistical results obtained for all the structural and functional variables measured.  

Appendix S2. Dataset of the water characteristics (Available online upon publication).  

Appendix S3. Dataset of the response variables (Available online upon publication). 

Appendix S4. R code (Available online upon publication).  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

240 

 

 

 



 

241 

 

Appendix S1 

Table S1. Effect size and the interaction between period and reach (BA:CI) obtained for all the variables. Statistical results 

are obtained from linear mixed-effects models and linear models for the variables with or without replicates, respectively. 

Note that distinction between effluent discharge and no discharge periods is also made for the variables related with water 

characteristics. p values and d.f. were obtained by means of likelihood ratio tests. Bold values indicate statistically significant 

results with p < 0.05. 

Variable Effect size      d.f.    FBA:CI p-value 

pH - Effluent release period 0.92 1,7 14.40 0.007 

pH - During no effluent release  0.99 1,8 0.27 0.619 

T (ºC) - Effluent release period  1.09 1,7 2.00 0.201 

T (ºC) - During no effluent release 0.97 1,9 0.70 0.426 

Conductivity (µS cm
-1

) - Effluent release period 1.52 1,5 66.66 <0.001 

Conductivity (µS cm-1) - During no effluent release 0.97 1,8 0.02 0.899 

DO (%) Effluent release period 0.94 1,7 6.27 0.041 

DO (%) - During no effluent release 0.99 1,9 0.09 0.768 

DO (mg L
-1

) - Effluent release period 0.92 1,7 6.13 0.042 

DO (mg L-1) - During no effluent release 1.00 1,9 0.01 0.914 

Cl
-
 (mg L

-1
) - Effluent release period 1.24 1,9 1.61 0.237 

Cl
-
 (mg L

-1
) - During no effluent release 1.00 1,10 0.02 0.886 

SO4
2-

 (mg L
-1

) - Effluent release period 0.83 1,10 0.64 0.443 

SO4
2-

 (mg L
-1

) - During no effluent release 1.14 1,10 0.49 0.500 

NO2
-
 (mg N L

-1
) - Effluent release period 16.97 1,10 2.12 0.176 

NO2
-
 (mg N L

-1
) - During no effluent release 3.01 1,10 0.86 0.375 

NO3
-
 (mg N L

-1
) - Effluent release period 1.67 1,10 2.21 0.168 

NO3
-
 (mg N L

-1
) - During no effluent release 0.93 1,10 0.04 0.838 

NH4
+
 (mg N L

-1
) - Effluent release period 5.18 1,9 4.71 0.058 

NH4
+
 (mg N L

-1
) - During no effluent release 2.34 1,9 5.61 0.042 

DIN (mg N L
-1

) - Effluent release period 2.38 1,10 8.27 0.017 

DIN (mg N L
-1

) - During no effluent release 1.03 1,10 0.02 0.893 

TDN (mg N L
-1

) - Effluent release period 1.55 1,9 6.16 0.035 

TDN (mg N L
-1

) - During no effluent release 0.89 1,9 1.64 0.233 

DOC (mg C L
-1

) - Effluent release period 1.13 1,10 0.33 0.578 

DOC (mg C L
-1

) - During no effluent release 0.79 1,10 1.78 0.212 

SRP (mg P L
-1

) - Effluent release period 2.39 1,9 14.24 0.004 

SRP (mg P L
-1

) - During no effluent release 0.60 1,9 2.52 0.147 

Biofilm biomass (g m
-2

) 2.07 1,102 16.77 <0.001 

Chlorophyll-a (mg m
-2

) 2.32 1,102 8.34 0.005 

Alkaline phosphatase activity (µmol h
-1

 m
-2

) 2.23 1,96 6.12 0.015 

β-glucosidase activity (µmol h
-1

 m
-2

) 4.15 1,96 9.82 0.002 
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Biofilm SRP uptake capacity (μg P h
-1

) 0.47 1,102 51.07 <0.0001 

Gross primary production (mg O2 h
-1

 m
-2

) 1.12 1,51 0.55 0.460 

Community respiration (mg O2 h
-1

 m
-2

) 1.08 1,52 0.16 0.688 

Production-to-respiration ratio (GPP:CR) 1.28 1,51 1.18 0.283 

Phosphate uptake length (m) 1.34 1,8 0.41 0.542 

Phosphate uptake velocity (mm min
-1

) 0.52 1,8 4.96 0.057 

Phosphate areal uptake (μg P min
-1

 m
-2

) 0.28 1,8 2.87 0.129 

Ammonium uptake length (m) 1.40 1,10 2.27 0.163 

Ammonium uptake velocity (mm min-1) 0.44 1,10 1.97 0.191 

Ammonium areal uptake (μg N min
-1

 m
-2

) 1.04 1,10 0.01 0.921 

Microbial decomposition (day
-1

) 0.96 1,100 0.09 0.761 

Total decomposition (day
-1

) 1.41 1,103 9.15 0.003 
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Appendix S4 

Appendix S4. R Code. Ecosystem manipulation reveals effects of a highly diluted WWTP effluent on 

stream ecosystem structure and functioning by Olatz Pereda, Libe Solagaistua, Miren Atristain, Ioar de 

Guzmán, Aitor Larrañaga, Daniel von Schiller and Arturo Elosegi. 

####################################################################### 

# Title: "Ecosystem manipulation reveals effects of a highly diluted  #  

#         wastewater treatment plant (WWTP) effluent on stream        #  

#         ecosystem structure and functioning"                        # 

#                                                                     # 

# Authors: O. Pereda, L. Solagaistua, M. Atristain, I. de Guzmán,     #  

#          A. Larrañaga, D. von Schiller & A. Elosegi                 # 

#                                                                     # 

# Appendix S4: Supplementary material (R Coding)                      # 

#                                                                     # 

# Data analysis was carried out by O. Pereda* and Libe Solagaistua    #  

# *email: olatz.pereda@ehu.eus                                        # 

####################################################################### 

 

# Data analysis was carried out using R software v.3.4.0. (R Core Team.  

# 2017. R: A language and environment for statistical computing. Version  

# 3.4.0. R Foundation for Statistical Computing, Vienna, Austria. 

# URL http://www.R-project.org/). 

 

# This file was created using Tinn-R Editor [Faria J.C., Grosjean P.  

# & Jelihovschi E. (2014). Tinn-R Editor - GUI for R Language and 

# Environment. Tinn-R Editor is free software. 

 

# References  

# *********** 

# The analysis presented here was written with the fundamental aid of the  

# next: 

 

# Madsen H. & Thyregod P. (2010). 

# Introduction to General and Generalized Linear Models. CRP press.  

# ISBN: 978-1420091557 

 

# Pinheiro J. & Bates D. (2000). 

# Mixed-effects models in S and S-PLUS. Springer-Verlag, New York.  

# ISBN: 978-0-387-98957-0. doi: 10.1007/b98882 

 

# Pinheiro J. & Bates D. (2016). 

# nlme: Linear and Nonlinear Mixed Effects Models. 

 

# Pinheiro J. & Bates D. (2017). 

# nlme: Linear and Nonlinear Mixed Effect Models. 

# R package version 3.1-131. https://CRAN.R-project.org/package=nlme. 

 

# Zuur A.F., Ieno E.N., Walker N., Saveliev A.A. & Smith G.M. (2010).  

# Mixed Effects Models and Extensions in Ecology with R. Springer-Verlag,  

# New York. ISBN: 978-0-387-87457-9. doi: 10.1007/978-0-387-87458-6  

# ************************************************************************    

# Contents of the script: 

# ************************ 

# This R code exemplifies the analysis described in the main body of the  

# paper. 

mailto:olatz.pereda@ehu.eus
http://www.r-project.org/)
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# The code uses a dataset from an ecosystem-level manipulation experiment  

# following a BACI (Before-After/Control-Impact) design, in which we  

# diverted part of the effluent of a large tertiary urban WWTP effluent  

# into a small nearly unpolluted stream. 

 

# 1. Step 1: The effects of the effluent addition are studied on Water  

# Characteristics. 

# This data includes: - Water physico-chemical characteristics: 

# - pH 

# - Temperature 

# - Conductivity 

#  - Dissolved oxygen saturation and concentration 

#                     - Main nutrient concentrations: 

# - Chloride (Cl) 

# - Sulfate (SO4) 

# - Nitrite (N-NO2) 

# - Nitrate (N-NO3) 

# - Ammonium (N-NH4) 

# - Dissolved inorganic nitrogen (DIN) 

# - Total dissolved nitrogen (TDN) 

# - Dissolved organic carbon (DOC) 

# - Soluble reactive phosphorus (SRP)  

# ***This data is provided in the Appendix S2*** 

 

# 2. Step 2: After this exploration, effects of the effluent addition are  

# studied on ecosystem structure and functioning. 

#  2.1. Biofilm structure: - Chlorophyll-a concentration  

#                          - Biofilm biomass 

# 

#  2.2. Ecosystem functioning: - Biofilm exo-enzymatic activities:  

#                                - Alkaline phosphatase (AP) 

#                                - ß-glucosidase (BG) 

#                              - Biofilm capacity to uptake SRP 

#                              - Biofilm metabolism: 

#                                - Gross primary production (GPP) 

#                                - Community respiration (CR) 

#                              - Whole-reach nutrient uptake (SRP, NH4): 

#                                - Uptake length 

#                                - Uptake velocity 

#                                - Areal uptake 

#                              - Organic matter decomposition:  

#                                - Microbial 

#                                - Total 

# ***This data is provided in the Appendix S3*** 

########################################################################## 

# In all cases, the effect of the effluent addition is given by the  

# interaction between period (Before/After) and Reach (Control/Impact) 

# BA*CI 

########################################################################## 

 

# Ecosystem-level manipulation experiment: BACI design  

# ***************************************************** 

 

# R packages: 

# *********** 

# Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R-Core-Team. 2018.  

# nlme: Linear and Nonlinear Mixed Effects Models.  

# R package version 3.1-137. 

# install.packages("nlme") # run if needed 

library(nlme) 
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# Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis.  

# New York: Springer-Verlag. 

# install.packages("ggplot2") # run if needed 

library(ggplot2) 

 

# Wickham H., François R., Henry L. & Müller K. 2018. 

# dplyr: a grammar of data manipulation. 

# install.packages("dplyr") # run if needed 

library(dplyr) 

 

# Wickham H., Henry L. & and R-Core-Team. 2019. 

# Tidyr: Easily tidy data with "spread()" and "gather()" functions.  

# install.packages("tidyr") # run if needed 

library(tidyr) 

 

# Hope R.M. 2013. Rmisc: Ryan Miscellaneous. 

# install.packages("Rmisc") # run if needed 

library(Rmisc) 

########################################################################  

 

# ********************************************************** 

# 1. Effects of effluent addition on Water Characteristics.  

# 1.1.: Physico-chemical characteristics.  

# ************************************************************* 

 

######################################## 

#     EFFLUENT RELEASE PERIOD - ER     #  

######################################## 

 

# *************  

# Conductivity 

# ************* 

# Load the data (Change the directory as required): 

data<-read.csv("C:/.../Pereda et al.                 

                Ecosphere_Data.WaterCharacteristics.csv",                 

                h=T,sep=";",dec=".") 

# We will only work with "Effluent release period" data 

data <- subset(data,data$Period!="NR")  

data<- na.omit(data) 

str(data)  

summary(data)  

names(data) data 

 

# We will define the model 

model<- lme(Conductivity ~ 1+B.A*C.I, random= ~1|Day, na.action=na.omit,  

            data=data) 

 

anova(model) 

## Analysis of Variance Table  

## Response: Conductivity 

## numDF denDF F-value p-value 

# (Intercept) 1 9 231.35101 <.0001 

# B.A 1 9 2.22214 0.1702 

# C.I 1 7 8.71176 0.0214 

# B.A:C.I 1 7 10.82559 0.0133 

 

# Before accepting the model above, check model assumptions: 

plot(resid(model))  

hist(resid(model)) 

shapiro.test(resid(model)) # p-value = 0.01467   
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## Overall, model assumptions do not look good. 

## There could be some influent large observation. 

 

# Check if there is some large observation:  

# *****************************************  

lowerq = quantile(resid(model))[2] 

upperq = quantile(resid(model))[4]  

iqr = upperq - lowerq 

extreme.threshold.upper = (iqr * 3) + upperq  

extreme.threshold.upper #75%: 78.12594  

extreme.threshold.lower = lowerq - (iqr * 3)  

extreme.threshold.lower #25%: -78.03266 

# Give residual values to each data of the data.frame 

data$resid<- resid(model)  

# Order residual values from the lowest to the largest 

data[order(data$resid),]  

# 34, 38 data seem to be large observations. 

 

# If we do not consider these large observations: 

data<-read.csv("C:/.../Pereda et al.                  

                Ecosphere_Data.WaterCharacteristics.csv", 

                h=T,sep=";",dec=".") 

data <-data [-c(34,38),] 

 

# We will only work with "Effluent release period" data 

data <- subset(data,data$Period!="NR")  

data<- na.omit(data) 

 

# Re-define the model 

model<- lme(Conductivity ~ 1+B.A*C.I, random= ~1|Day, na.action=na.omit,  

            data=data) 

anova(model) 

## Analysis of Variance Table  

## Response: Conductivity 

## numDF denDF F-value p-value 

# (Intercept) 1 9 461.8757 <.0001 

# B.A 1 9 1.4505 0.2592 

# C.I 1 5 24.7170 0.0042 

# B.A:C.I 1 5 66.6609 0.0004 

 

# Before accepting the model above, check model assumptions: 

plot(resid(model))  

hist(resid(model)) 

shapiro.test(resid(model)) # p-value = 0.271 

## Overall, model assumptions look better. 

 

# But before accepting it, check again if there is still any influent  

# large observation  

# *********************************************************************** 

lowerq = quantile(resid(model))[2] 

upperq = quantile(resid(model))[4]  

iqr = upperq - lowerq 

extreme.threshold.upper = (iqr * 3) + upperq  

extreme.threshold.upper #75%: 20.7689  

extreme.threshold.lower = lowerq - (iqr * 3)  

extreme.threshold.lower #25%: -20.54186 

# Give residual values to each data of the data.frame 

data$resid<- resid(model)  

# Order residual values from the lowest to the largest 

data[order(data$resid),]  

## There is not any influent large observation. 
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## So, we will select the latter model for the results.  

 

# Effect size: 

# ************ 

Treatment <- unite(data, Treatment, c(B.A, C.I), remove=FALSE)  

dataSE<- summarySE(Treatment, measurevar="Conductivity",   

                   groupvars=c("Treatment")) 

Effect.size <- ((dataSE$Conductivity[2])/(dataSE$Conductivity[1]))/    

                ((dataSE$Conductivity[4])/(dataSE$Conductivity[3])) 

Effect.size # 1.516933 

 

# ***********************************************************  

# This same step has been repeated for each of the variables: 

# - pH 

# - Water mean temperature 

# - Dissolved oxygen saturation 

# - Dissolved oxygen concentration 

# However, just for brevity, we demonstrate a single analysis.  

# *********************************************************** 

 

############################################  

#      DURING NO EFFLUENT RELEASE – NR     # 

############################################ 

# The same step followed in 1.1. section has been repeated for all  

# variables during periods of no effluent release: 

# - Conductivity  

# - pH 

# - Water mean temperature 

# - Dissolved oxygen saturation 

# - Dissolved oxygen concentration 

# Although, for brevity, we do not demonstrate all the analyses.  

# ************************************************************* 

 

# ********************* END OF STEP 1.1 **************************# 

####################################################################### 

 

# ********************************************************** 

# 1. Effects of effluent addition on Water Characteristics.  

# 1.2.: Water chemistry - Nutrient concentrations.  

# ************************************************************* 

 

#########################################  

#      EFFLUENT RELEASE PERIOD - ER     #  

######################################### 

 

# *************  

# Chloride (Cl)  

# ************* 

# Load the data (Change the directory as required): 

data<-read.csv("C:/.../Pereda et al.  

                Ecosphere_Data.WaterCharacteristics.csv", 

                h=T,sep=";",dec=".") 

# We will only work with "Effluent release period" data 

data <- subset(data,data$Period!="NR")  

str(data) 

summary(data)  

names(data)  

data 
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# We will define the model 

model<- lme(Cl ~ 1+B.A*C.I, random= ~1|Day, na.action=na.omit,  

            data=data) 

anova(model) 

## Analysis of Variance Table 

 

#

# 

Response: Cl  

numDF 

 

denDF 

 

F-value 

 

p-value 

# (Intercept) 1 10 79.01936 <.0001 

# B.A 1 10 5.03658 0.0487 

# C.I 1 10 4.12016 0.0698 

# B.A:C.I 1 10 2.40063 0.1523 

 

# Before accepting the model above, check model assumptions: 

plot(resid(model))  

hist(resid(model)) 

shapiro.test(resid(model)) # p-value = 9.985e-05 

## Overall, model assumptions do not look good. 

## There could be some influent large observation. 

 

# Check if there is some large observation: 

#******************************************  

lowerq = quantile(resid(model))[2] 

upperq = quantile(resid(model))[4]  

iqr = upperq - lowerq 

extreme.threshold.upper = (iqr * 3) + upperq  

extreme.threshold.upper #75%: 12.65418  

extreme.threshold.lower = lowerq - (iqr * 3)  

extreme.threshold.lower #25%: -14.85002 

# Give residual values to each data of the data.frame 

data$resid<- resid(model)  

# Order residual values from the lowest to the largest 

data[order(data$resid),]  

# 34 data seem to be large observation. 

 

# If we do not consider this large observation: 

data<-read.csv("C:/.../Pereda et al.  

                Ecosphere_Data.WaterCharacteristics.csv", 

                h=T,sep=";",dec=".") 

data <-data [-c(34),] 

# We will only work with "Effluent release period" data 

data <- subset(data,data$Period!="NR") 

 

# Re-define the model 

model<- lme(Cl ~ 1+B.A*C.I, random= ~1|Day, na.action=na.omit,  

            data=data) 

anova(model) 

## Analysis of Variance Table 

#

# 

Response: Cl  

numDF 

 

denDF 

 

F-value 

 

p-value 

# (Intercept) 1 10 219.42109 <.0001 

# B.A 1 10 6.17686 0.0322 

# C.I 1 9 4.56911 0.0613 

# B.A:C.I 1 9 1.60572 0.2369 

 

# Before accepting the model above, check model assumptions: 

plot(resid(model))  

hist(resid(model)) 

shapiro.test(resid(model)) # p-value = 0.1365 

## Overall, model assumptions looks better. 
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# Before accepting, check again the presence of influent large observations  

# ***************************************************************************** 

lowerq = quantile(resid(model))[2]  

upperq = quantile(resid(model))[4]  

iqr = upperq - lowerq 

extreme.threshold.upper = (iqr * 3) + upperq  

extreme.threshold.upper #75%: 13.43141  

extreme.threshold.lower = lowerq - (iqr * 3)  

extreme.threshold.lower #25%: -13.29397 

# Give residual values to each data of the data.frame 

data$resid<- resid(model)  

# Order residual values from the lowest to the largest 

data[order(data$resid),]  

# There is not any influent large observation. 

 

## So, we will select the latter model for the results.  

 

# Effect size: 

# ************ 

Treatment <- unite(data, Treatment, c(B.A, C.I), remove=FALSE) 

dataSE<- summarySE(Treatment, measurevar="Cl", groupvars=c("Treatment")) 

 

Effect.size <- ((dataSE$Cl[2])/(dataSE$Cl[1]))/ 

                  ((dataSE$Cl[4])/(dataSE$Cl[3])) 

Effect.size # 1.241563 

 

# *********************************************************** 

# This same step has been repeated for each of the variables: 

# - Sulfate (SO4) 

# - Nitrite (N-NO2)  

# - Nitrate (N-NO3)  

# - Ammonium (N-NH4) 

# - Dissolved inorganic nitrogen (DIN)  

# - Total dissolved nitrogen (TDN) 

# - Dissolved organic carbon (DOC) 

# - Soluble reactive phosphorus (SRP) 

# However, just for brevity, we demonstrate a single analysis.  

# *********************************************************** 

 

############################################  

#      DURING NO EFFLUENT RELEASE - NR     # 

############################################ 

# The same step followed in 1.2. section has been repeated for all  

# variables during periods of no effluent release: 

# - Sulfate (SO4) 

# - Nitrite (N-NO2)  

# - Nitrate (N-NO3)  

# - Ammonium (N-NH4) 

# - Dissolved inorganic nitrogen (DIN)  

# - Total dissolved nitrogen (TDN) 

# - Dissolved organic carbon (DOC) 

# - Soluble reactive phosphorus (SRP) 

# Although, for brevity, we do not demonstrate all the analyses.  

# ************************************************************* 

 

# ********************* END OF STEP 1.2 ***************************# 

########################################################################  
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# *************************************************************************    

# 2. Effects of effluent addition on Response Variables. 

#   2.1.: Biofilm structure:  - Chlorophyll-a concentration  

#                             - Biofilm biomass 

# 

# * Note that there is no distinction between effluent release periods  

# (ER) and periods of no effluent release (NR) for response variables.  

# ************************************************************************* 

 

# ************************************************** 

# Biofilm chlorophyll-a concentration (mg Chl-a m-2) 

# ************************************************** 

# Load the data (Change the directory as required): 

data<-read.csv("C:/.../Pereda et al.  

                Ecosphere_Data.ResponseVariables.csv", 

                h=T,sep=";",dec=".") 

str(data)  

summary(data)  

names(data)  

data 

 

# We will define the model 

# On a first step, we will explore the need to add a variance structure  

# to deal with heteroscedasticity (Only applicable in the case of  

# variables with replicates per sampling day) and allow having  

# different variances per sampling day. 

var.str <-varIdent(form= ~ 1|Date) 

model1<- lme(Chl.a_m2 ~ 1+B.A*C.I, random=~1|Date, weight= var.str,   

             na.action=na.omit, data=data) 

model2<- lme(Chl.a_m2 ~ 1+B.A*C.I, random=~1|Date,  

             na.action=na.omit, data=data) 

AIC(model1, model2) 

## df  AIC  

## model1 17  603.6298 

## model2 6 650.9037 

## As it had lower value of AIC, we will choose the first model. 

 

anova(model1) 

## Analysis of Variance Table 

## Response: Biofilm chlorophyll-a concentration 

 

## numDF denDF F-value p-value 

## (Intercept) 1 106 24.212884 <.0001 

## B.A 1 10 0.000206 0.9888 

## C.I 1 106 0.014598 0.9041 

## B.A:C.I 1 106 10.132288 0.0019 

 

# Before accepting the model above, check model assumptions: 

plot(resid(model1))  

hist(resid(model1)) 

shapiro.test(resid(model1)) # p-value = 2.453e-10 

## Overall, model assumptions do not look good. 

## There could be some influent large observations. 

 

options(max.print = 99999) 

# Check if there is some large observation: 

# ***************************************** 

lowerq = quantile(resid(model1))[2]  

upperq = quantile(resid(model1))[4]  

iqr = upperq - lowerq 

extreme.threshold.upper = (iqr * 3) + upperq  
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extreme.threshold.upper #75%: 8.092743  

extreme.threshold.lower = lowerq - (iqr * 3)  

extreme.threshold.lower #25%: -8.593109 

# Give residual values to each data of the data.frame 

data$resid<- resid(model1)  

# Order residual values from the lowest to the largest 

data[order(data$resid),]  

# 96, 40, 107 data seem to be influent large observations 

 

# If we do not consider these large observations 

data<-read.csv("C:/.../Pereda et al.  

                Ecosphere_Data.ResponseVariables.csv", 

                h=T,sep=";",dec=".") 

data <-data [-c(96, 40, 107),] 

 

# Re-define the model 

model1<- lme(Chl.a_m2 ~ 1+B.A*C.I, random=~1|Date, weight= var.str,  

             na.action=na.omit, data=data) 

anova(model1) 

## Analysis of Variance Table  

## Response: Biofilm chlorophyll-a concentration 

## numDF denDF F-value p-value 

## (Intercept) 1 103 23.483828 <.0001 

## B.A 1 10 0.061625 0.8090 

## C.I 1 103 0.294258 0.5887 

## B.A:C.I 1 103 8.165571 0.0052 

 

# Before accepting the model above, check model assumptions: 

plot(resid(model1))  

hist(resid(model1)) 

shapiro.test(resid(model1)) # p-value = 0.002054 

## Overall, model assumptions look better. 

 

options(max.print = 99999) 

# Before accepting, check again the presence of influent large observations 

# ************************************************************************* 

lowerq = quantile(resid(model1))[2]  

upperq = quantile(resid(model1))[4]  

iqr = upperq - lowerq 

extreme.threshold.upper = (iqr * 3) + upperq  

extreme.threshold.upper #75%: 8.699495  

extreme.threshold.lower = lowerq - (iqr * 3)  

extreme.threshold.lower #25%: -8.802737 

# Give residual values to each data of the data.frame 

data$resid<- resid(model1)  

# Order residual values from the lowest to the largest 

data[order(data$resid),]  

# 99 data continue being influent large observation. 

 

# If we do not consider this large observation 

data<-read.csv("C:/.../Pereda et al.  

                Ecosphere_Data.ResponseVariables.csv", 

                h=T,sep=";",dec=".") 

data <-data [-c(96, 40, 107, 99),] 

 

# Re-define the model 

model1<- lme(Chl.a_m2 ~ 1+B.A*C.I, random=~1|Date, weight= var.str,              

             na.action=na.omit, data=data) 

anova(model1) 

## Analysis of Variance Table 

## Response: Biofilm chlorophyll-a concentration 
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#  numDF denDF F-value p-value 

# (Intercept) 1 102 23.267484 <.0001 

# B.A 1 10 0.124159 0.7319 

# C.I 1 102 0.216022 0.6431 

# B.A:C.I 1 102 8.339581 0.0047 

 

# Before accepting the model above, check model assumptions: 

plot(resid(model1))  

hist(resid(model1)) 

shapiro.test(resid(model1)) # p-value = 0.08627 

## Overall, model assumptions look much better. 

 

options(max.print = 99999) 

# Before accepting, check again the presence of influent large observations 

# ************************************************************************* 

lowerq = quantile(resid(model1))[2]  

upperq = quantile(resid(model1))[4]  

iqr = upperq - lowerq 

extreme.threshold.upper = (iqr * 3) + upperq  

extreme.threshold.upper #75%: 7.864986  

extreme.threshold.lower = lowerq - (iqr * 3)  

extreme.threshold.lower #25%: -7.698185 

# Give residual values to each data of the data.frame 

data$resid<- resid(model1)  

# Order residual values from the lowest to the largest 

data[order(data$resid),]  

# There are no more influent large observations. 

## So, we will select the latter model for the results.  

 

# Effect size: 

# ************ 

Treatment <- unite(data, Treatment, c(B.A, C.I), remove=FALSE)  

dataSE<- summarySE(Treatment, measurevar="Chl.a_m2",  

                   groupvars=c("Treatment")) 

Effect.size <- ((dataSE$Chl.a_m2[2])/(dataSE$Chl.a_m2[1]))/            

                ((dataSE$Chl.a_m2[4])/(dataSE$Chl.a_m2[3])) 

Effect.size # 2.314528 

 

# **************************************************************************   

# This same step has been repeated for all response variables: 

#  2.1. Biofilm structure: - Chlorophyll-a concentration  

#                          - Biofilm biomass 

#  2.2. Ecosystem functioning: - Biofilm exo-enzymatic activities:  

#                                - Alkaline phosphatase (AP) 

#                                - ß-glucosidase (BG) 

#                              - Biofilm capacity to uptake (SRP) 

#                              - Biofilm metabolism: 

#                                - Gross primary production (GPP) 

#                                - Community respiration (CR) 

#                              - Whole-reach nutrient uptake (SRP,NH4): 

#                                - Uptake length 

#                                - Uptake velocity 

#                                - Areal uptake 

#                              - Organic matter decomposition:  

#                                - Microbial 

#                                - Total 

# However, just for brevity, we demonstrate a single analysis.  

# ******************************************************************** 

# ********************** END OF STEPs 2.1 and 2.2 ******************** 

 

#                            END OF THE ANALYSIS                     # 
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Chapter 4 -  Immediate and legacy effects of urban pollution on river ecosystem functioning: a 

mesocosm experiment 

Appendix S1. Supplementary tables and figures. 

Appendix S2. R code.   
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Appendix S1 

Table S1. Characterization of the WWTP effluent water used during the experiment (100% treatment). Mean values ± 

standard error (SE) of the physico-chemical conditions (n = 30), concentrations of nutrients, major anions and cations, 

dissolved organic carbon (DOC) (n = 36, except DOC where n = 30) and heavy metals (n = 3 after 32 days of exposure).  

 

 

 

 

Physico-chemical conditions 
Nutrient concentration 

(mg L
-1

) 

Heavy metals 

(µg L
-1

) 

pH 7.9 ± 0.1 N-NO3
-
 16.1 ± 4.2 Mn 6.8 ± 0.8 

Temperature (º C) 21.2 ± 0.2 N-NO2
-
 5.8 ± 2.0 Fe 51.9 ± 3.9 

Conductivity (µS cm
-

1
) 

1348 ± 60.5 N-NH4
+
 16.1 ± 3.2 Co 1.46 ± 0.3 

DO concentration 

(mg L
-1

) 
6.9 ± 0.4 SRP 0.7 ± 0.1 Ni 5.39 ± 1.1 

DO saturation (% 

Sat.) 
78 ± 4.6 S-SO4

2-
 21.1 ± 0.7 Cu 81.9 ± 1.6 

  Br
-
 0.1 ± 0.0 Zn 71.8 ± 4.8 

  Na
+
 154.2 ± 4.6 As 7.3 ± 0.2 

  Cl
-
 198.8 ± 5.89 Cd 0.06 ± 0.0 

  K
+
 22.4 ± 0.7 Hg 0.06 ± 0.0 

  Mg
2+

 12.9 ± 0.4 Pb 0.08 ± 0.0 

  Ca
2+

 60.0 ± 2.9   

  DOC 14.3 ± 0.5   
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Figure S1. Representation of the models potentially fitting the different process rates measured along the gradient of WWTP 

effluent concentration: a) Linear, b) Exponential, c) Power, d) Logistic, e) Logit, f) Monod, g) Haldane, h) Quadratic. The 

Haldane and Quadratic models were used as a proxy of the subsidy-stress scheme. See Table 1 for a detailed description of 

the models. 
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Figure S2. Fitted models for soluble reactive phosphorus (SRP) uptake capacity on biofilm carriers during the exposure 

phase (6 figures above dotted line) and the recovery phase (8 figures below dotted line). Labels on X axis denote the SRP 

uptake capacity of the biofilm (µg P h-1) and the labels on Y axis denote the gradient of effluent dilution (%). Each figure is 

computed with its corresponding Akaike Information Criterion (AIC) and Relative Standard Error (RSE) values.  
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Figure S3. Fitted models for soluble reactive phosphorus (SRP) uptake efficiency on biofilm carriers during the exposure 

phase (7 figures above dotted line) and the recovery phase (8 figures below dotted line). Labels on X axis denote the SRP 

uptake efficiency of the biofilm (µg P mg AFDM-1 h-1) and the labels on Y axis denote the gradient of effluent dilution (%). 

Each figure is computed with its corresponding Akaike Information Criterion (AIC) and Relative Standard Error (RSE) 

values. 
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Figure S4. Fitted models for Chlorophyll-a (Chl-a) concentration on biofilm carriers during the exposure phase (5 figures 

above dotted line) and the recovery phase (7 figures below dotted line). Labels on X axis denote the Chl-a concentration of 

the biofilm (µg cm-2) and the labels on Y axis denote the gradient of effluent dilution (%). Each figure is computed with its 

corresponding Akaike Information Criterion (AIC) and Relative Standard Error (RSE) values. 
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Figure S5. Fitted models for total biomass on biofilm carriers during the exposure phase (8 figures above dotted line) and the 

recovery phase (6 figures below dotted line). Labels on X axis denote the total biomass (mg cm-2) and the labels on Y axis 

denote the gradient of effluent dilution (%). Each figure is computed with its corresponding Akaike Information Criterion 

(AIC) and Relative Standard Error (RSE) values. 
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Figure S6. Fitted models for benthic gross primary production (GPP) during the exposure phase (2 figures above dotted line) 

and the recovery phase (3 figures below dotted line). Labels on X axis denote the GPP (mg O2 m -2 h-1) and the labels on Y 

axis denote the gradient of effluent dilution (%). Each figure is computed with its corresponding Akaike Information 

Criterion (AIC) and Relative Standard Error (RSE) values. 

  



 

262 

 

 

 

Figure S7. Fitted models for benthic community respiration (CR) during the exposure phase (5 figures above dotted line) and 

the recovery phase (6 figures below dotted line). Labels on X axis denote the CR (mg O2 m -2 h-1) and the labels on Y axis 

denote the gradient of effluent dilution (%). Each figure is computed with its corresponding Akaike Information Criterion 

(AIC) and Relative Standard Error (RSE) values.  
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Figure S8. Fitted models for organic matter decomposition (OMD) during the exposure phase (7 figures above dotted line) 

and the recovery phase (8 figures below dotted line). Labels on X axis denote the rates of OMD (d-1) and the labels on Y axis 

denote the gradient of effluent dilution (%). Each figure is computed with its corresponding Akaike Information Criterion 

(AIC) and Relative Standard Error (RSE) values. 
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Appendix S2 

Appendix S2. R Code. Immediate and legacy effects of urban pollution on river ecosystem functioning: a 

mesocosm experiment by Olatz Pereda, Vicenç Acuña, Daniel von Schiller, Sergi Sabater and Arturo 

Elosegi.  

########################################################################   

#                                                                  # 

# Title: "Immediate and legacy effects of urban pollution on river # 

#  ecosystem functioning: A mesocosm experiment"           # 

#                                                                   # 

 #                                                                   #  

# Authors: O. Pereda, V. Acuña, D. von Schiller, S. Sabater &      # 

#          A. Elosegi                                              # 

#                                                                   # 

# Appendix S2: Supplementary material (R Coding)                   # 

#                                                                  # 

# Data analysis was carried out by O. Pereda*, Vicenç Acuña and    # 

# Carme Font                                                         # 

# *email: olatz.pereda@ehu.eus                                     # 

######################################################################## 

 

# Data analysis was carried out using R software v.3.4.0. (R Core Team.  

# 2017. R: A language and environment for statistical computing. version  

# 3.4.0. R Foundation for Statistical Computing, Vienna, Austria. 

 

# This file was created using Tinn-R Editor [Faria J.C., Grosjean P.  

# & Jelihovschi E. (2014). Tinn-R Editor - GUI for R Language and 

# Environment. Tinn-R Editor is free software. 

 

# R packages  

# ********** 

 

# Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R-Core-Team. 2018.  

# nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137. 

# install.packages("nlme") # run if needed 

library(nlme) 

 

# CONTENTS OF THIS SCRIPT: 

# ************************ 

# 1. Step 1: Selection of the most appropriate model to explain the  

# observed patterns in ecosystem functions measured in 

# artificial stream channels # 

# ********************************************************************* # 

# ********************************************************************* # 

 

########## 

# Step 1 #  

########## 

selection_model<-function(){ # Load package 'nlme' library("nlme") 

 

# 1.1. Load and prepare the dataset  

# ********************************* 

# Set up working directory (change as required)  

# Setwd("C:/.../DataAnalysis") 

# Load the dataset (change the mane as required) 

name_file<-"SRP_BioboxCubes.csv" 

 

 

mailto:olatz.pereda@ehu.eus
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# ***************************************************************  

# Herein, just for brevity, we demonstrate data analysis 

# for just one group of the functional variables. 

# The same steps were repeated for the other groups of variables:  

# "Metabolism.csv" and "LeafLitter_Decomposition.csv". 

# *************************************************************** 

 

# Include names of the variables names 

if(name_file == "SRP_BioboxCubes.csv") 

var_names <- c("USRP", "Chla", "AFDM", "USRPAFDM", "ELAPA", "ESAPA") 

if(name_file == "Metabolism.csv") 

var_names <- c("CR", "GPP", "NM", "PR", "CRAFDM", "GPPChla", 

               "ChlaES", "ChlaEL", "AFDMES", "AFDMEL") 

if(name_file == "LeafLitter_Decomposition.csv")  

  var_names <- c("k_day", "ConsumedAFDM") 

# *************************************************************** 

 

# Read data from file 

data<-read.csv(name_file, header=TRUE, sep=";") 

 

if(name_file=="SRP_BioboxCubes.csv"){ i=which(data$Date=="T22") 

j=which(data$Date=="T56") 

data<-data[c(i,j),] 

} 

 

n<-length(var_names) # Number of variables 

phase<-c("Exposure", "Recovery") 

 

for(l in 1:length(phase)){ 

file<-subset(data, data$Phase==phase[l]) X<-file$Treatment # Define X 

values 

N<-length(X) # Sample size 

 

for(i in 1:n){ # For each variable 

# Column in file corresponding to var i 

j<-which(colnames(file)==var_names[i]) 

# Define variable Y 

Y<-file[,j] 

# Total sum of squares 

SST<-sum((Y-mean(Y))**2) 

 

# File name with the results of each model 

if(name_file == "Metabolism.csv") 

file_name <- paste0("results_Metabolism/", phase[l], "_model_", 

var_names[i], ".txt")  

if(name_file == "SRP_BioboxCubes.csv") 

file_name <-paste0("results_SRP/", phase[l], "_model_", 

var_names[i], ".txt")  

if(name_file == "LeafLitter_Decomposition.csv") 

file_name <- paste0("results_Decomposition/", phase[l], 

"_model_",  

                     var_names[i], ".txt") 

# File name for the figures of the models 

if(name_file == "Metabolism.csv") 

plot_name <- paste0("results_Metabolism/", phase[l],                      

                    "_regressions_plot_", 

                     var_names[i], ".png")  

if(name_file == "SRP_BioboxCubes.csv") 

plot_name <- paste0("results_SRP/", phase[l],  

                    "_regressions_plot_", 

var_names[i], ".png")  
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if(name_file == "LeafLitter_Decomposition.csv") 

plot_name<-paste0("results_Decomposition/", phase[l],  

                  "_regressions_plot_", 

                           var_names[i], ".png") 

# From now, all plots are saved in this file  

# It can also be pdf, jpeg, tiff or bmp 

png(plot_name, width=1000, height = 1000, res=100)  

if(name_file == "SRP_BioboxCubes.csv" & var_names[i] == "AFDM") 

par(mfrow=c(4,3),mar=c(3,4,2,0), las=1, cex=1, cex.lab=1,            

    font.lab=1, 

cex.axis=0.8, family="serif") 

else 

par(mfrow=c(3,3),mar=c(3,4,2,0), las=1, cex=1, cex.lab=1,  

    font.lab=1, 

            cex.axis=0.8, family="serif") 

 

# Writes first line in output file 

cat(" Phase: ", phase[l], " Variable: ", var_names[i], "\n\n",  

    file = file_name) 

mod=NULL 

 

# 1.2. Selection of the most appropriate model  

# ******************************************** 

 

# a. Logistic  

# ************ 

mod <- tryCatch(gnls(Y~a/(1+exp(-(X-X0)*b)), start=c(a=mean(c(Y[N-

2],  

                          Y[N-1], Y[N])), b=1/sd(X), X0=mean(X))), 

                          error=function(e) NULL ) 

if(!is.null(mod)) out<-func(mod, X, Y, "Logistic", k=3, SST, N,      

file_name) 

mod=NULL 

 

# b. Exponential  

# *************** 

mod <- tryCatch(gnls(Y~a*exp(b*X), start=c(a=abs(min(Y)), 

b=log(max(abs(Y))/abs(min(Y)))/max(X))), 

error=function(e) NULL ) 

if(!is.null(mod)) out<-func(mod, X, Y, "Exponential", k=2, SST, N,  

file_name) 

mod=NULL 

 

# c. Power  

# ********* 

mod <- tryCatch(gnls(Y~a*X**b, start=c(a=mean(c(Y[N-2],  

                     Y[N-1], Y[N])), 

b=sd(X))), error=function(e) NULL ) 

if(!is.null(mod)) out<-func(mod, X, Y, "Power", k=2, SST, N, 

   file_name) 

mod=NULL 

 

# d. Linear  

# **********  

mod <- lm(Y~X) 

 

if(!is.null(mod)) out<-func(mod, X, Y, "Linear", k=2, SST, N,  

   file_name) 

mod=NULL 
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# e. Monod  

# ********* 

mod <- tryCatch(gnls(Y~a*X/(b+X), 

                    start=c(a=sign(Y[which.max(abs(Y))])*max(abs(Y)), 

                    b=mean(X))), error=function(e) NULL ) 

if(!is.null(mod)) out<-func(mod, X, Y, "Monod", k=2, SST, N,  

   file_name) 

mod=NULL 

 

# f. Haldane  

# ***********  

X[1:3]<-0.001 X2<-X**2 

 

mod <- tryCatch(nls(Y~a*X/(b+c*X+X2), 

                

start=list(a=sign(Y[which.max(abs(Y))])*mean(abs(Y[1:3])), 

                b=X[1]*X[1], c=mean(Y)), algorithm="port", 

lower=c(0,0,0)), 

                      error=function(e) NULL ) 

if(!is.null(mod)) out<-func(mod, X, Y, "Haldane", k=3, SST, N,  

   file_name) 

mod=NULL 

X[1:3]<-0 

 

# g. Quadratic  

# *************  

mod <- lm(Y~X+X2) 

if(!is.null(mod)) out<-func(mod, X, Y, "Quadratic", k=3, SST, N,  

   file_name) 

mod=NULL 

 

# h. logit  

# ********* 

b = sign(mean(Y[(N-2):N])-mean(Y[1:3]))*1/sd(Y)  

         if(n>4 && var_names[i]=="CRAFDM") b=-2000 

mod <- suppressWarnings(tryCatch(gnls(Y~X0+1/b*log((X+1)/(a-(X+1))), 

                               start=start=list(X0=mean(Y),  

                               a=mean(c(X[N-2], X[N-1], 

      X[N]))-1, b=b)), 

      error=function(e) NULL ))  

if(!is.null(mod)) out<-func(mod, X, Y, "Logit", k=3, SST, N,      

   file_name) 

mod=NULL 

 

dev.off() # Stop saving plots 

} 

} 

} 

 

func <- function(mod, X, Y, name_mod, k=2, SST, N, file_name){  

  plot(X, Y, pch=20, main=name_mod, ylab="", xlab="", xlim=c(min(0,  

       min(X)), max(0,max(X))), ylim=c(min(0, min(Y)), max(0,max(Y))))     

   if(is.null(mod)==FALSE){ 

    lines(X, predict(mod)) # Regression line 

 

# Compute the fitness index for each model 

AIC_val <- AIC(mod) 

SSE <- sum((predict(mod)-Y)**2, na.rm=TRUE) # Sum of squared errors 

RSE_val <- sqrt(SSE/(N-k)) # Root (mean) squared errors 
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SSR<-sum((mod$fitted-mean(Y))**2) # 

R2_val <-1-SSE/SST #linear and quadratic models 

# Writing the result in file 

cat("\n \n model: ", name_mod," \n", file=file_name, sep='', 

append=TRUE) 

a=mod$coefficients[1] 

if(is.null(a)) 

a=summary(mod)$coefficients[1,1] 

b=mod$coefficients[2] 

if(is.null(b)) 

b=summary(mod)$coefficients[2,1] 

if(name_mod=="Haldane"){ 

c=summary(mod)$coefficients[3,1] 

if(is.null(c)) 

  c=summary(mod)$coefficients[3,1] 

# a=a/c 

# b=b/c 

} 

if(name_mod=="Quadratic")  

c=mod$coefficients[3] 

cat(" parameters: a = ", a, "; b = ", b, file=file_name, sep='', 

append=TRUE) 

if(name_mod=="Logistic" || name_mod=="Logit") 

cat(" ; X0 = ", mod$coefficients[3], file=file_name, sep='', 

append=TRUE) 

if(name_mod=="Haldane" || name_mod=="Quadratic") 

cat(" ; c = ", c, file=file_name, sep='', append=TRUE) 

cat("\n AIC = ", AIC_val, "; RSE = ", RSE_val, 

file=file_name, sep='', append=TRUE) 

if(name_mod=="Linear" || name_mod=="Quadratic") 

   cat("; R^2 = ", R2_val, 

file=file_name, sep='', append=TRUE)  

list(AIC_val=AIC_val, RSE_val=RSE_val, R2_val=R2_val) 

residuals=predict(mod)-Y  

residuals=residuals[which(!is.na(residuals))]  

a="no-test" 

p=-1 

if(!is.na(var(residuals)) & var(residuals)>0){ 

p=shapiro.test(residuals)$p.value if(p>=0.05) { 

a="norm" 

} 

if(p<0.05) a="no-norm" 

} 

cat("\n residuals distr: ", a, ", p-value = ",p, " \n", 

file=file_name, 

sep='', append=TRUE) 

} 

} 

#  ************************************************************************ # 

#  ************************ END OF THE SCRIPT ************************* # 
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