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ABREVIATIONS 

 

A: Accession 

AAT: Aspartate aminotransferase 

ACD6: Accelerated Cell Death 6  

AIC: Akaike’s information criterion  

AMP: Adenosine monophosphate 

AMT: Ammonium transporters 

ARD: Acireductone dioxygenase or 2-keto-methylthiobutyric-acid-forming enzyme  

AS: Asparagine synthetase 

Asn: Asparagine 

Asp: Aspartate 

BR: Brassinosteroid  

C: Control condition Fe 

CCoAOMT1: Caffeoyl CoA 3-O-methyltransferase 1 

Chl: Clorophyll 

CS: Citrate synthase 

CSm: Mitochondrial citrate synthase 

D: Deficiency Fe 

DAP: Differentially abundant proteins 

DEP: Methylthioribulose-1-phosphate dehydratase-enolase-phosphatase  

DW: Dry weight 

FarmCPU: Fixed and random model circulating probability unification model  

FDR: False discovery rate  

FK: Fructokinase 

FW: Fresh weight 

GABA: γ-Aminobutyric acid 

GAX: Glucuronoarabinoxylans 

GDH: Glutamate dehydrogenase 

GK: Glucokinase  

GLM: General-linear model 

Gln: Glutamine 

Glu: Glutamate 

GOGAT: Glutamate synthase 
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GS: Glutamine synthetase  

GSH: Glutation 

GS1: Cytosolic glutamine synthetase 

GS2: Chloroplastic glutamine synthetase 

GST: Glutathione-S-transferases 

GWAS: Genome Wide Association Studies 

HRS1: Hypersensitive to low Pi-elicited primary root shortening 

ICDH: Isocitrate dehydrogenase 

IMP: Inosine monophospahte 

IRT: Iron-regulated transporter 

L: Leaves 

MAs: Mugineic acid compounds 

MA: Mugineic acid 

MD: Moderate deficiency Fe 

MDH: Malate dehydrogenase 

ME: Malic enzyme 

Met: Methionine  

MLM: Mixed-linear models  

MLMM: Multi loci linear mixedmodel  

MTA: 5-methylthioadenosine 

MTI: 5 methylthioribose-1-phosphate isomerase  

MTK: 5-methylthioribose kinase 

MTN: MTA nucleosidase 

MTR: 5-methylthioribose  

MTR-P: 5-methylthioribose-1-phosphate 

MTRu-P: 5-methylthioribulose-phosphate 

NA: Nicotianamine 

NAD-ME: NAD-dependent malic enzyme 

NADP-GDH: NADP-dependent glutamate dehydrogenase 

NADP-ME: NADP-dependent malic enzyme 

NADP- ICDH: NADP-dependent isocitrate dehydrogenase 

NAS: Nicotianamine synthase 

NUE: Nitrogen use efficiency 

OAA: Oxaloacetate 

OD: absorbance  

2-OG: 2-Oxoglutarate 
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PCA: Principal component analysis 

PEPC: Phosphoenolpyruvate carboxylase 

PEP: Phosphoenolpyruvate 

3-PGA: 3-Phosphoglyceric acid 

PHO1: Phosphate 1  

PHT: Putrescine hydroxycinnamoyl transferase  

PK: Pyruvate kinase 

PME: Pectin methylesterase 

PS: Phytosiderophores 

PSI: Photosystem I 

PSII: Photosystem II 

Pyr: Pyruvate 

Q-Q: Quantile-quantile 

QTL: Quantitative trait loci  

R: Root 

ROS: Reactive oxygen species 

RSA1: Root System Architecture 1   

SAM: S-adenosylmethionine 

SAMS: S-adenosyl-Met synthetase 

SNP: Single nucleotide polymorphism 

Strategy I: Reduction-based strategy 

Strategy II: Chelation-based strategy  

T: Toxicity Fe 

TCA: Tricarboxylic acid  

TOM1: Transporter of mugineic acid family phytosiderophores 1 

XTHs: Xyloglucan endotransglucosylase/hydrolases  

YS/YSL: Yellow Stripe/Yellow Stripe-Like transporters 
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ABSTRACT 

 

Nitrogen nutrition in agriculture 

Nitrogen (N) is an essential nutrient for plants since is a component of DNA, amino acids, 

proteins and secondary metabolites. Its availability is decisive for plant growth and productivity. 

Agricultural soils are often N deficient and maintain crops yield farmers need to apply great 

amounts of N fertilizers. However, the use of fertilizers entails N losses that provoke detrimental 

effects for the environment, including the contamination of water resources because of nitrate 

(NO3
-) leaching and the emission of nitrogenous gases, such as N2O, with great impact for global 

warming. Using of ammonium (NH4
+)-based fertilizers combined with nitrification inhibitors 

delays the conversion of ammonium to nitrate, thus maintaining NH4
+ inputs in the soil for longer 

periods. This type of enhanced-efficiency fertilizers show promise in mitigating the 

environmental pollution associated with nitric fertilization from agrosystems. Unfortunately, 

when NH4
+ is present in the soil at high concentrations, or as sole source of N, plants may display 

stress symptoms that commonly imply suppressed growth. The causes of ammonium stress in 

the plant are still not fully understood but are related to pH deregulation, cation imbalance and 

to the excessive energetic cost associated with maintaining cytosolic NH3/NH4
+ homeostasis. 

Therefore, understanding the mechanisms underlying ammonium tolerance is of special interest 

for a proper selection/generation of genotypes adapted to this fertilization management.  

Brachypodium distachyon: a genetic model system to study grasses biology 

Model organisms are vital resources for research, providing a number of advantages respect to 

non-model organisms. Over the last decade, Brachypodium distachyon has gained attention as 

model plant for C3 grasses. B. distachyon is a small grass with short-life cycle, a highly 

homozygous and small diploid genome and ease to be cultured in growth chambers. Being a 

model species, a number of tools are available for its study including an increasing number of 

sequenced accessions, collection of mutants, etc. 

The family of grasses (Poaceae) encompasses the world’s most important staple, feed, and 

bioenergy crops. Phylogenetically, B. distachyon lies between rice and wheat and possesses high 

degree of synteny with most grasses. The fact that B. distachyon is a non-domesticated make 

itself of special relevance in the case of ammonium nutrition, since the high nitrification rates 

common in agricultural soils jointly the huge nitric fertilizer inputs have favoured  varieties 

selection has been nearly exclusively performed in the scenario of nitric nutrition. Besides, 
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although there is variation in N use efficiency traits among modern cereal varieties, it is clear 

that a much greater potential of variation exist among the ancient/historical varieties and wild 

species that may allow identifying alleles that have been lost in the modern germplasm pool. 

Indeed, probably related to the fact that B. distachyon is a wild plant, its pangenome contains 

nearly twice the number of genes found in an individual genome. 

In this context, the general objective of this PhD Thesis was to better decipher the plant response 

upon ammonium nutrition focusing on the metabolic and molecular basis that may lead to 

improve ammonium tolerance in cereals, using Brachypodium distachyon as a model.  

Metabolic and molecular response to ammonia nutrition confirms the role of the root in 

ammonia tolerance 

To first evaluate the suitability of Brachypodium distachyon as model plant for the study of 

ammonium nutrition, plants of Bd21, the reference genotype/accession of B. distachyon, were 

grown hydroponically in 1 or 2.5 mM NO3
− or NH4

+. We determined plant performance and the 

interaction between nitrogen and carbon metabolisms associated with primary NH4
+ 

assimilation in root and leaves. Regarding whole-plant performance, the concentration of 1 mM 

of N represented a condition of ammonium-tolerance for Bd21 since plants grew equally 

regardless the N-source. In contrast, with 2.5 mM NH4
+ supply the plants showed lower biomass 

and symptoms of stress. Overall, B. distachyon appeared as a species with moderate tolerance 

towards ammonium nutrition. 

In general, a strong metabolic adaptation of carbon and nitrogen metabolisms was observed 

when B. distachyon faced ammonium nutrition. Notably, the roots behaved as a physiological 

barrier preventing the translocation of NH4
+ to aerial parts, as indicated by a sizeable 

accumulation of NH4
+, Asn and Gln in the roots. The tuning of the tricarboxylic acid (TCA) cycle 

and its associated anaplerotic pathways in root cells enabled to match 2-oxoglutarate and 

oxaloacetate demand for the continuing high NH4
+ assimilation rate into Gln and Asn synthesis. 

This metabolic adjustment appears to be a mitigating strategy of ammonium stress as long as 

imposes an energetic cost for the cell that limits plant growth under toxic ammonium conditions 

(2.5 mM NH4
+). These results are completely in line with the response previously reported for 

cereal crops such as wheat, barley or sorghum. Thus, B. distachyon reveals as a highly suitable 

tool for the study of the physiological, molecular and genetic basis of ammonium nutrition in 

cereals.  

To exploit the benefits of working with B. distachyon to gain insight on grasses adaptation to 

ammonium nutrition, we focused on evaluating the potential intraspecific variability of B. 
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distachyon towards ammonium tolerance. For aim, a large panel of 52 de novo sequenced B. 

distachyon natural accessions, already shown as genetically diverse, was selected to be cultured 

with 2.5 mM NH4
+ or NO3

- supply. The ratio between the total plant biomass under NH4
+ vs. NO3

- 

conditions was considered to estimate the degree of ammonium tolerance. We observed an 

extensive natural variability of B. distachyon towards ammonium nutrition, with tolerant 

accessions that grew similarly with NO3
- or NH4

+ supply and with accessions that showed high 

sensitivity experiencing more than 50% of grown reduction under ammonium. In addition, to 

evaluate whether B. distachyon intraspecific variability was related to the metabolic adaptation 

of leaves and root in function of the N source provided, we analyzed a panel of 22 metabolic 

markers, including 9 enzyme activities and the content of 13 metabolites in both organs. The 

overall results highlighted, as it was the case for Bd21, the importance of primary carbon 

metabolism to sustain NH4
+ assimilation in the root. We report besides TCA cycle, that the 

adjustment of the glycolytic pathway, as evidenced by sugars content, fructokinase, glucokinase 

and pyruvate kinase activities was also of great importance for plant response to ammonium 

nutrition. 

To further explore the biochemical data obtained and to define the relationships between 

variables we performed different statistical analysis: principal component analysis (PCA), 

Pearson correlations visualized by clustered matrices, heat map plots that included two-way 

hierarchical clustering and multiple regression models. Importantly Under ammonium nutrition, 

genotypes clustering under ammonium nutrition split the 52 accession in two groups, showing 

that the most tolerant and sensitive accessions segregated in different groups. In contrast, under 

nitrate nutrition the distribution of tolerant and sensitive accessions was disperse. This 

observation indicates the importance of the metabolic adaptation under ammonium nutrition 

in relation with B. distachyon natural variability towards ammonium stress. 

Finally, data exploration together with stepwise multiple-regression allowed to extract the 

activity of PEPC and NH4
+ content in ammonium-fed leaves together with the sucrose content in 

the root of ammonium-fed plants as key variables to explain B. distachyon tolerance to 

ammonium stress. Besides, glutathione content also appeared closely related to B. distachyon 

performance under ammonium source, suggesting a protective role for this metabolite under 

ammonium stress. 
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A quantitative proteomic study in the root reveals the interaction between ammonium 

nutrition and iron homeostasis in B. distachyon 

To deep into the molecular changes occurring in the root, a comparative proteomic approach 

was carried in plants grown under ammonium or nitrate nutrition with 2.5 mM or 1 mM N 

supply. Among others, the gene ontology analysis performed with the identified differentially 

expressed proteins confirmed the adaptation of primary carbon and nitrogen metabolisms, but 

also identified other processes that potentially participates in the root response to ammonium 

nutrition, such as cell wall biogenesis and cell redox balance.  

Interestingly, a great number of proteins associated with iron homeostasis were more 

predominant in ammonium compared to nitrate nutrition, notably those participating in 

methionine cycle and phytosiderophores synthesis. Indeed, the accumulation of 

phytosiderophores in relation with a concomitant increase in Fe and Zn was confirmed in 

ammonium-fed roots  

Besides, when the impact of the N-source in plant response to changes in Fe availability in the 

nutrient solution was analyzed, it was evidenced a higher sensitivity of ammonium-fed plants to 

limited Fe availability respect to nitrate-fed plants. One can hypothesize that this behavior could 

be related with the huge amounts of NH4
+ accumulated in the tissues and with impaired Fe 

translocation to the aerial part. These results in Brachypodium differ with a number of previous 

reports showing a beneficial effect of ammonium under Fe deficiency in both dicots and 

monocots. The discrepant behavior observed in the literature could be to the fact that in some 

of these studies NH4
+ was applied in the presence of NO3

- or that the plants were not subjected 

to ammonium stress. On the other hand, the high levels of Zn observed in ammonium-fed plants 

suffering from Fe-deficiency condition could be also responsible for the higher sensitivity 

observed in B. distachyon Bd21. Future research is indispensable to further understand the 

mechanistic underlying the interaction between the N-source and the Fe and Zn.  

Genome wide association mapping reveals significant genetic association potentially related 

with the natural adaptation of B. distachyon towards ammonium nutrition  

Genome-wide association studies (GWAS) are a great means to decipher the genetics underlying 

of naturally occurring phenotypic variation in populations, in this case with the aim of identifying 

candidate genes associated to B. distachyon natural variation towards ammonium nutrition. 

Indeed, the combination of GWAS and metabolic analysis has also emerged as an alternative to 

study the genetic and biochemical bases of plant metabolism with impact in agronomical traits. 
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Among others, because of the reduced number of genotypes used, we performed GWAS with 

the data obtained for B. distachyon natural accessions using the multiple loci linear mixed model 

(MLMM) that controls false positives at the same time without compromising true positives. The 

multi-locus approach ensures that trait variance is associated with the most significant markers, 

whereas closely similar markers anywhere in the genome will not be selected by this model. 

Firstly, we performed GWAs with plant growth parameters, as they are considered the most 

important and integrative traits indicative of plant performance. No strongly significant marker 

were found for these traits. In general, the effect of genetic associations with complex, highly 

polygenic traits are often small and in many cases missing, such as for physical measurements 

like biomass. However, the use of alternative traits, such as metabolites and enzyme activities 

that themselves may explain the biomass may be particularly important for studying the GWAS 

and thus, it may be useful to find loci that ultimately contribute to explain the trait of interest. 

In this sense, when performing GWAS out of every determined metabolic trait it was found a 

number of genomic regions where causal genes related to B. distachyon ammonium tolerance 

may be located. Notably, we focused on the most explanatory variables underlined by the 

multiple regression models, PEPC activity and NH4
+ content in the leaf and sucrose content in 

the root of plants grown under ammonium nutrition. 

Looking into genomic regions surrounding the significantly associated SNPs (20 kb up- and down-

stream each SNP), several genes located in those regions were found. Among them, a number 

of genes have been previously associated in the literature with carbon and nitrogen metabolism. 

For instance, associated with the content of sucrose in the root two genes encoding for cysteine 

synthases were disclosed. Associated to the activity of PEPC in the leaf genes encoding for 

glutamate carboxypeptidase and for NADP-malic enzyme were found. Finally, a potential 

association with a gene encoding a probable adenosine monophosphate deaminase was found 

for leaf NH4
+ accumulation. Future research will be essential to further identify and validate the 

causal genes involved in ammonium nutrition. 

Concluding remarks 

B. distachyon is an emerging genetic model system for C3 grasses. Here, we report that B. 

distachyon responds to ammonium nutrition similarly to important cereal crops and thus it 

reveals as an excellent model to study the molecular and genetic basis of ammonium tolerance 

in grasses. Furthermore, we report the key role of the root in plant adaptation to ammonium 

nutrition, notably revealing an outstanding interaction between NH4
+ and Fe homeostasis. 

Finally, the metabolic adaptation to ammonium nutrition appears as a key aspect to understand 
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B. distachyon natural variability towards ammonium stress and an important means to find 

novel genes associated to the observed variability. 
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RESUMEN 

 

La nutrición nitrogenada en la agricultura 

El nitrógeno (N) es un elemento esencial para las plantas ya que es parte estructural de 

moléculas importantes como el ADN, aminoácidos, proteínas y metabolitos secundarios. No 

obstante, en la mayoría de los suelos agrícolas el nitrógeno no se encuentra disponible para las 

plantas, por lo que los agricultores se ven en la necesidad de aplicar grandes cantidades de 

fertilización nitrogenada. Sin embargo, gran parte de este nitrógeno aplicado se pierde al 

ambiente, produciendo daños ambientales tales como la contaminación de recursos hídricos 

debido a la lixiviación de nitratos y la emisión de gases de efecto invernadero, como el N2O, que 

incrementan el calentamiento global. Los fertilizantes de base amoniacal (NH4
+) en combinación 

con inhibidores de la nitrificación han surgido como estrategia para mantener el nitrógeno en 

forma de amonio durante mayor tiempo en el suelo, destacando su eficacia para mitigar la 

contaminación ambiental asociada a las fuentes nítricas. No obstante, cuando el amonio se 

encuentra en el suelo a altas concentraciones, o como fuente única, las plantas normalmente 

desarrollan síntomas de estrés que consecuentemente llevarían a una reducción de la 

produccion. Las causas del estrés, amoniacal aún no están esclarecidas, pero están relacionadas 

con la desregulación del pH, al desbalance catiónico y el excesivo costo energético asociado con 

el mantener la citosolica homeostasis del NH3/NH4
+. Por lo tanto, entender los mecanismos que 

regulan la tolerancia al amonio es de especial interés para la selección y generación de genotipos 

adaptados a este tipo de fertilización.  

Brachypodium distachyon: un sistema de modelo genético para el estudio de la biología en 

gramíneas 

Los organismos modelo son una fuente vital de investigación y proveen una gran cantidad de 

ventajas en comparación con los organismos no modelo. En la última década, Brachypodium 

distachyon ha generado interés como planta modelo de las gramíneas C3. Esta es una planta 

herbacea con ciclo corto, altamente homocigota, con genoma diploide pequeño y fácil de crecer 

en condiciones controladas en el laboratorio. Al igual que un gran número de especies modelos 

existe una gran cantidad de herramientas disponibles para la investigación, de las cuales se 

destaca un creciente número de accesiones secuenciadas, colección de mutantes, etc.  

La familia de las gramíneas (Poaceae) comprende los cultivos más importantes para la 

alimentación mundial, producción de forraje y biodiesel. Filogenéticamente, B. distachyon se 
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encuentra relacionada estrechamente al arroz y el trigo y posee un alto grado de sintenia con la 

mayoría de las gramíneas. B. distachyon es una especie no domesticada, lo cual es de especial 

relevancia para el estudio de la nutrición amoniacal ya que las altas tasas de nitrificación en los 

suelos agrícolas han provocado la selección de cultivares adaptados al nitrato. Además, aunque 

existe una variabilidad fenotípica en uso eficiente del nitrógeno entre las variedades modernas 

de cereales, es de destacar que existe un gran potencial de las  variedades ancestrales y especies 

silvestres para identificar alelos que se han perdido en los bancos de germoplasma de los 

cultivos actuales. De hecho, probablemente debido a que B. distachyon es una planta silvestre, 

su pangenoma contiene aproximadamente dos veces el número de genes encontrado en un 

genotipo. 

En este contexto, el objetivo general de este estudio es mejorar el entendimiento de la respuesta 

de las plantas sobre la nutrición amoniacal, colocando especial atención a los aspectos 

metabólicos y moleculares que regulan la tolerancia a la nutrición amoniacal en cereales y 

usando a B. distachyon como planta modelo.  

La respuesta metabólica y molecular a la nutrición amoniacal confirma la importancia de la 

raíz en la tolerancia al amonio. 

En primer lugar, para evaluar la idoneidad de B. distachyon como modelo de estudio en la 

nutrición amoniacal, plantas de la accesión Bd21, considerada como el genoma de referencia, 

se cultivarón hidropónicamente a 1 o 2.5 mM de NO3
- o NH4

+, con lo cual se determinó su 

comportamiento y el metabolismo del carbono y nitrógeno asociados a la asimilación del 

amonio en hoja y raíz. En función del comportamiento general de las plantas de Bd21, la 

concentración de 1 mM de N representó una condición de tolerancia al amonio, ya que no se 

observaron diferencias en el crecimiento en comparación con la nutrición nítrica. En general, las 

plantas crecidas a 2.5 mM de NH4
+ redujeron su crecimiento a la vez que mostraron síntomas de 

estrés amoniacal. Teniendo en cuenta lo anterior, B. distachyon se mostra como una especie 

con tolerancia moderada a la nutrición amoniacal. 

En este sentido, se observó una fuerte adaptación metabólica de B. distachyon en el 

metabolismo del carbono y el nitrógeno durante la nutrición amoniacal. En particular, la raíz se 

comporta como una barrera fisiológica para prevenir la translocación de NH4
+ hacia la parte 

aérea, como lo indica los altos contenido de NH4
+acumulado en este órgano, asi como los niveles 

de Asn y Gln. El ajuste en el funcionamiento del ciclo de los acidos tricarboxilicos (CAT) y las rutas 

anapleroticas asociadas permite el aporte continuado de 2 oxoglutarato y oxalacetato y asi 

mantener la asimilación del amonio en Glu y Asn. 
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Este ajuste metabólico sería probablemente una estrategia para mitigar el estrés amoniacal, a 

la vez que impone un coste energético para la célula, lo que limitaría el crecimiento de la planta 

en condiciones de toxicidad. Esto estaría de acuerdo con lo descrito para otras especies de 

cereales, como trigo, cebada y sorgo. De esta forma, B. distachyon mostraría ser una 

herramienta idónea para el estudio de los mecanismos fisiológicos, moleculares y genéticos de 

la nutrición amoniacal en cereales.  

Aprovechando los beneficios de trabajar con B. distachyon para adquirir información detallada 

de la adaptación a la nutrición amoniacal, este trabajo se ha centrado en evaluar el potencial de 

la variabilidad intra-espescifica de B. distachyon. Para ello, se creció un panel de 52 accesiones 

naturales de B. distachyon secuenciadas de novo y descritas como genéticamente diversas, con 

2.5 mM de NH4
+ o NO3

- como fuente de nitrógeno. El ratio de la biomasa entre las plantas 

crecidas con NH4
+ y NO3

- (NH4
+:NO3

-) se usó como marcador de tolerancia. Los resultados 

mostraron una extensiva variabilidad natural de B. distachyon a la nutrición amoniacal, con 

accesiones que crecieron de forma similar comparando plantas crecidas con NH4
+ y NO3

-  y con 

accesiones que mostraron una alta sensibilidad, reduciendo en más de un 50  % su crecimiento. 

Además, para evaluar si la variabilidad intra-especifica de B. distachyon estaba relacionada con 

la adaptación metabólica de la hoja y la raíz en función de la fuente de N suministrada, se analizó 

un panel de 22 marcadores metabólicos incluyendo la actividad de 9 enzimas y el contenido de 

13 metabolitos en cada órgano. Los resultados resaltan, como fue el caso para la Bd21, la 

importancia del metabolismo del carbono en mantener la asimilación de amonio en la raíz. Se 

observó que además del CAT, el ajuste de la ruta glucolítica, como lo evidencia los contenidos 

de azúcar, las actividades fructoquinasa, glucoquinasa y piruvato kinasa serían de gran 

importancia en la respuesta a la nutrición amoniacal. 

Con el objetivo de realizar una mayor exploración de los datos obtenidos y entender la relación 

entre las variables medidas, se llevarón a cabo diferentes análisis estadísticos: análisis de 

componentes principales (ACP), correlación de Pearson visualizado a través de matrices de 

asociación, Heat Maps (mapas de colores) que incluyeron 2 jerárquicas agrupaciones y modelos 

de regresión múltiple. Importantemente, en condiciones de nutrición amoniacal, la agrupación 

de los genotipos diferenció las 52 accesiones en dos grupos, mostrando que las más tolerantes 

y sensibles accesiones estaban separadas en ambos grupos. Esta observación indica la 

importancia de la adaptación metabólica en condiciones de nutrición amoniacal en relación con 

la variabilidad natural de B. distachyon al estrés amoniacal. 
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Finalmente, el análisis exploratorio de los datos junto con el análisis de regresión lineal por 

pasos, revelaron la actividad de la PEPC y el contenido de amonio en la hoja, junto con el 

contenido de sacarosa en la raíz de las plantas crecidas con amonio como las principales 

variables para explicar la tolerancia de B. distachyon al estrés amoniacal. Además, el contenido 

de glutatión también apareció estrechamente relacionado con el comportamiento de B. 

distachyon en función de la fuente de nitrógeno. 

Estudio de proteomica cuantitativa en la raíz revela la interacción entre la nutrición amoniacal 

y la homeostasis del hierro en B. distachyon. 

Profundizando en los cambios moleculares que ocurren en este órgano se realizó un enfoque 

comparativo de la proteómica en plantas crecidas con nutrición amoniacal o nítrica con 2.5 mM 

o 1 mM de N. El análisis ontológico de los genes realizó con las proteínas diferencialmente 

expresadas y sé confirmo el ajuste del metabolismo del carbono y nitrógeno, pero identifico 

también otros procesos que potencialmente participarían en la respuesta de la raíz a la nutrición 

amoniacal, tales como la biogénesis de la pared celular y el balance redox en la célula. 

Interesantemente, un gran número de proteínas asociadas a la homeostasis del hierro 

predominaron en nutrición amoniacal en comparación con la nítrica, particularmente aquellas 

proteínas que participan en el ciclo de la metionina y la síntesis de fitosidoforos. De hecho, se 

confirmó que la nutrición amoniacal induce la acumulación de fitosidoforos en relación con el 

incremento concomitante en la acumulación de Fe y Zn en las raíces.  

Posteriormente, se analizó el impacto de la fuente nitrogenada en respuesta a la disponibilidad 

de hierro en la solución nutritiva de las plantas y se evidenció una mayor sensibilidad de las 

plantas crecidas con nutrición amoniacal a limitada disponibilidad de hierro en comparación con 

nutrición nítrica. Se plantea la hipótesis de que este comportamiento podría estar asociado a la 

alticima acumulación de amonio observada en los tejidos y a la translocación interrumpida de 

Fe a la parte aérea. Estos resultados difieren con una variedad de resultados previos que 

muestran un efecto beneficioso del amonio bajo condiciones de deficiencia de hierro en 

dicotiledóneas y monocotiledóneas. Este comportamiento discrepante observado en la 

literatura podría ser por el hecho de que en algunos de estos estudios el NH4
+ se aplicó en 

presencia de NO3
- o a que las plantas no estuvieran a condiciones de estrés amoniacal. Por otra 

parte, los altos niveles de Zn observados en las plantas crecidas con nutrición amoniacal en 

condiciones de deficiencia de hierro podría ser también responsable de la mayor sensibilidad 

observada en B. distachyon Bd21. Futuras investigaciones son necesarias que conduzcan a 
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entender los mecanismos que gobierna la interacción entre la fuente de nitrógeno y los 

micronutrientes Fe y Zn 

Los estudio de asociación del genoma completo revela asociaciones genéticas significantes 

potencialmente relacionadas con la adaptación natural de B. distachyon a la nutrición amoniacal 

Los estudio de asociaciones del genoma completo (Genome Wide Association Studies GWAS) 

son una gran herramienta para descifrar los rasgos genéticos de la variación fenotípica que 

ocurre naturalmente, en este caso con el objetivo de identificar los genes candidatos a la 

variabilidad natural de B. distachyon a la nutrición amoniacal. De hecho, la combinación del 

GWAS y el análisis metabólico ha emergido también como una alternativa para estudiar las 

bases genéticas y bioquímicas vegetaly su impacto en caracteres agronómicos de interes.  

Entre otras cosas, debido al número reducido de genotipos usados, se desarrolló el GWAS con 

los datos obtenidos para las accesiones naturales de B. distachyon usando el modelo mixto 

multilocus (MLMM) el cual controla falsos positivos, al mismo tiempo que no compromete 

verdaderos positivos. El enfoque multilocus asegura que la variabilidad de las características 

esté asociada con el marcador más significativo, mientras que marcadores estrechamente 

similares en cualquier parte del genoma no son seleccionados por el modelo. 

En primer lugar, se desarrolló el GWAS con los parámetros de crecimiento de las plantas, los 

más importantes e integradores relacionados con el comportamiento de la planta, aunque no 

se encontraron marcadores significativos. En general, el efecto de las asociaciones genéticas con 

caracteres complejos y altamente poligenicos, tales como lo son las medidas físicas como la 

biomasa, es frecuentemente pequeño y en muchos casos se pierde. Sin embargo, sería 

particularmente interesante realizar el GWAS con los caracteres alternativos, tales como los 

metabolitos y las actividades enzimáticas. Estas características por sí mismas podrían determinar 

la variabilidad de la biomasa y de esta forma, ser útiles para encontrar loci que finalmente 

contribuyan a explicar la característica de interés. En este sentido, se desarrolló el GWAS para 

cada uno de los caracteres metabólicos determinados y se encontró un número de regiones 

genómicas donde los genes causales relacionados a la tolerancia al amonio de B. distachyon 

Bd21 podrían estar localizados. Particularmente, se centró este estudio en las variables más 

explicativas resaltadas por el modelo de regresión lineal, que fueron la actividad PEPC y el 

contenido de NH4
+ en las hojas y el contenido de sacarosa en la raíz de plantas crecidas con 

nutrición amoniacal. 

Buscando asociaciones significativas dentro de las regiones adyacentes a los SNPs (20 kb de 

ventana), se encontraron un número de genes, que han sido previamente asociados en la 
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literatura con el metabolismo del carbono y el nitrógeno. Por ejemplo, en asociaciones con el 

contenido de sacarosa en la raíz se encontraron dos genes que codifican para la cisteína sintasa. 

En relación a la actividad PEPC en la hoja se encontraron asociados genes que codifican para la 

glutamato carboxipeptidasa y la enzima málico-NADP. Finalmente, para la acumulación de 

amonio en la hoja se encontraron potenciales asociaciones con un gen que codifica para una 

probable adenosina monofosfato desaminasa. Futuras investigaciones serian esenciales para 

identificar y validar los genes causales involucrados en la nutrición amoniacal. 

Conclusiones  

B. distachyon es un modelo genético emergente de las gramíneas C3. En el presente estudio se 

reporta que B. distachyon responde a la nutrición amoniacal de forma similar a otras gramíneas 

consideradas de gran interés agrícola como trigo y cebada. Por lo tanto, esta especie resulta un 

excelente modelo para estudiar los mecanismos moleculares y genéticos de la tolerancia al 

amonio en las gramíneas. Además, se destaca el papel esencial de la raíz en la adaptación de las 

plantas a la nutrición amoniacal, revelando una interacción importante entre la homeostasis del 

NH4
+ y del Fe. Finalmente, la adaptación metabólica de la nutrición amoniacal es un aspecto 

clave para entender la variabilidad natural de B. distachyon al estrés amoniacal y esta adaptación 

resulta prometedora para encontrar genes nuevos asociados a la variabilidad observada. 
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INTRODUCTION 

1. NITROGEN REQUIREMENT BY PLANTS 

Nitrogen (N) is an essential nutrient for a living organism since it is a component of several 

organic compounds, such as proteins, nucleic acids, coenzymes, chlorophyll and pyrrole rings, 

and secondary metabolites (Miller and Cramer, 2005). In plants it represents around 1-7 % of 

dry matter, being the nutrient required in the largest quantity, after C, H and O. Nitrogen is one 

of the elements that most likely limits the plant growth and crop productivity. Even though a 

huge amount of N is present in the Earth´s atmosphere as inorganic gaseous compound (N2), it 

is largely unavailable directly for most plants. Plants take N from soil, which content ranges from 

0.1 to 0.6 % in 0-15 cm topsoil (Cameron et al., 2013). Inorganic nitrogen (nitrate and 

ammonium) are the main N forms taken up by plants, but they do not represent more than 10 % 

of the total N in the soil, what makes that almost all natural soils, except tropical and subtropical 

ecosystems, are considered as N-limited. Agricultural soils are commonly N-deficient. Therefore, 

to maintain crops yield farmer need to supplement soils with external N input, mainly in the 

form of manures, crop residues and synthetic fertilizers in the form of nitrate, ammonium or 

urea. For instance, according to estimations up to 26 % production increased in the 6-top non-

leguminous crops in the US thanks to the use of fertilizers (Cao et al., 2018). 

Nitrogen fertilizers are derived from the reaction of atmospheric N2 with H2 to produce NH3, 

using a feedstock source at elevated pressure and temperature (Miller and Cramer, 2005). 

Fertilizers contain mineral nitrogen as ammonium and nitrate. Uptake of nitrate is rapid due to 

the high particle mobility (Miller and Cramer, 2005). On the other hand, due to its positive 

charge ammonium is bound to clay particles in the soil and roots have to reach it. However, most 

of the ammonium is rapidly oxidized by nitrifiers in few weeks. (Huérfano et al., 2015). The more 

relative presence of nitrate respect to ammonium is the reason that has made most of plants 

show a preference for nitrate over ammonium. And this is especially evident for crop plants 

since they have been selected upon nitrate-based fertilization. However, plants are not too 

much efficient in the use of N applied and is estimated that 30-50 % of N applied as fertilizer is 

taken up by plants (Cassman et al., 2002).  

Among all the different kinds of nitrogen fertilizers, urea is the most used in agriculture (Miller 

and Cramer, 2005). Hydrolysis of urea by soil microorganism converts urea into ammonium and 

CO2 a relatively short period of time, depending on the temperature (Sigurdarson et al., 2018). 

The soil pH around the urea granules strongly increases during this process, leading to 

ammonium volatilization and consequently to the loss of N. If ammonium volatilization takes 
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place at the soil surface, the losses are even higher (Al-Kanani et al., 1991). In the case of nitrate 

fertilization, nitrate ion is very soluble in water and easily leached polluting groundwater, rivers 

and oceans (Paramasivam and Alva, 1997). These are the main causes of why more than half of 

the N used in agriculture are lost (Kanter and Searchinger, 2018). 

The amount of N fertilizer used in agriculture represents as inputs to the agrosystems as 3-fold 

the natural sources of nitrogen (Bowles et al., 2018). Therefore, a lot of nitrogen could be lost 

to the environment creating imbalance in the ecosystems. The amount of loses depends on the 

soil condition, weather and agriculture practice. For instance, leaching of nitrate occurs mainly 

during rainfall periods when percolating water washes residual and mineralized nitrates bellow 

the root zone.  

Nitrogen loss from agrosystems is an environmental concern, since it contributes to the 

contamination of soil, water resources and the emission of greenhouse gases. Furthermore, 

climate change is aggravating these losees due to the changes in precipitation patterns and 

temperature increases (Bowles et al., 2018). Nitrogen pollution is very disquieting, since affects 

terrestrial, aquatic and marine biodiversity (Bowles et al., 2018). For example, an elevated 

concentration of nitrate in drinking water is related to methemoglobinemia and gastric cancer 

in humans (Fewtrell, 2004). Nitrogen eutrophication provokes loss of seagrasses, blooms of 

blue-green algae, degradation of recreational opportunities and hypoxia (Chislock et al., 2013). 

In the USA, the damages caused for eutrophication are estimated in approximately $2.2 billion 

annually (Dodds et al., 2008).  

The continuous growing in the World´s population will require huge inputs of N in agriculture to 

supply the food demand, which is projected to increase 50-100 % by 2050 (Kanter and 

Searchinger, 2018). Therefore, in order to match the N demand by the plant during the 

vegetative phase and to increase crop yield, but minimizing the environmental impact of the 

application of fertilizers, it is necessary to increase N use efficiency (NUE) by crops. Strategies to 

improve N capture and avoid loss by leaching include improving agronomic practice like 

placement, timing, crop rotation and accurate N source (Robertson and Vitousek, 2009). 

Placement refers to apply subsurface or incorporated enough nitrogen in the root zone to meet 

the nutrient demands, which reduces the risk of leaching during the growth and afterward 

(Bowles et al., 2018). Timing refers to apply N fertilizer when crops have their highest use for 

nitrogen. For example, nitrogen fertilization after 40 days of sowing and at eight-leaf growth 

stage is reported to increase biomass and grain yield in sorghum (Khosla et al., 2000; Adu-Gyamfi 

et al., 1997). Crop rotation improves NUE in different forms, for example, after the harvest of 
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one crop, nitrogen will normally be found in deeper soil layers, which could be utilized by placing 

deep-rooted crops. Finally, among the forms of improving N fertilizers are the enhanced-

efficiency fertilizers (Kanter and Searchinger, 2018). In this place, we can find slow and 

controlled-release fertilizers, which mix traditional fertilizers with polymers that delay the 

availability of free nitrogen in the soil. Another strategy is the use of urease inhibitors, which 

reduce the conversion of urea to NH3 by inhibiting the urease enzyme. Nitrification inhibitors 

also help to retain the N by delaying the transformation of ammonium to nitrate (Kanter and 

Searchinger, 2018). NH4
+-based fertilizers are the second most used after urea. Their low prices 

and elevated N concentration (46 % of mass) reduce transport and distribution costs (Miller and 

Cramer, 2005). In this sense, ammonium nutrition with the use of inhibitors of nitrification 

constitutes a good strategy to mitigate pollution. 

2. NITROGEN CYCLE 

Nitrogen (N) is the most abundant element in the atmosphere with almost 79 % of dry air in the 

form of N2 (Robertson and Vitousek, 2009). However, N2 consists of a triple bond difficult to 

break that makes N unavailable for most organisms to metabolize. Fortunately, N2 gas is 

converted to more accessible forms thanks to a complex biogeochemical cycle that moves 

nitrogen through abiotic and biotic parts of ecosystems. From a chemical point-of-view, N is an 

incredibly versatile element, existing in many oxidation states as well as in many inorganic and 

organic forms. The N cycle involves successive changes in redox states of atomic N, from +5 in 

nitrate to -3 in ammonia or organic compounds (Robertson and Vitousek, 2009).  

The biogeochemical N cycle could be started with nitrogen fixation, in which electric shocks 

(lightning), combustion processes, chemical synthesis of fertilizers or microorganisms break the 

triple bond of N2 to produce NH3. The biological nitrogen fixation into nodules of legumes (and 

non-legume such as Parasponia sp.) thanks to a symbiotic relationship with restricted 

prokaryotes (diazotrophs) play an important input of available nitrogen (Vessey et al., 2005). In 

this manner, N2 gas is able to incorporate into the composition of the soil, organisms or 

converted to other forms very actives (Miller and Cramer, 2005). Besides the nitrogen fixation, 

there are other three main pathways that reduce the N oxidation state. The denitrification is the 

reduction of NO3
- or NO2

- to produce gaseous nitrogen compounds (N2, NO and N2O), carried out 

by a diverse group of prokaryotes. The other two reduction pathways are assimilatory nitrate 

reduction and dissimilatory nitrate reduction, both for the conversion of nitrate and nitrite to 

ammonium (Bernhard, 2010). Both are carried by microorganisms and plants. 
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On the other hand, there are two oxidation pathways in the cycle, called nitrification and 

anaerobic ammonium oxidation (anammox). Nitrification is the aerobic oxidation of ammonium 

(NH4
+)/ammonia (NH3) to nitrite NO2

-, followed by the oxidation of NO2
- to produce NO3

-, carried 

out by microorganisms (Miller and Cramer, 2005). In general, this process takes place from a few 

days to a few weeks in the soil. The other oxidation pathway is the anammox, acronym of 

anaerobic ammonium oxidation carried out by prokaryotes belonging to Planctomycetes 

phylum which converts NH3/NH4
+ to N2, using NO2

- as an acceptor of electrons (Bernhard, 2010). 

Thus, anammox is comproportionation reaction, where NO2
 and NH3/NH4

+ ions are converted 

directly into diatomic nitrogen and water.  

Additionally to the pathways mentioned, there are other factors that determine the availability 

of nitrogen for most organisms. For instance, since all the living organisms need nitrogen, the 

immobilization of N by microorganism makes this unable for plants. Nevertheless, 

mineralization is the reverse process by which microorganisms convert the organic N to 

ammonium. Leaching is a pathway of loss by which water-soluble N is washed through the 

profile of the soil due to rain and irrigation. Leaching is a natural environment concern since it 

can contribute to groundwater contamination. In general, the availability of N in the ecosystems 

depends on its inputs (e.g. fixation, mineralization and nitrification) and its outputs (e.g. 

denitrification, volatilization, immobilization, and leaching) 

3. NITROGEN AND CARBON METABOLISM 

In plants, nitrogen assimilation is the formation of organic nitrogen compounds like amino acids 

and proteins from nitrate or ammonium. For the absorption of nitrogen forms, plants possess 

numerous types of transporters of NH4
+ or NO3

-, which can be classified into two categories: the 

systems of transport of high affinity (HATS) and low affinity (LATS) (Glass et al., 2002). HATs are 

characterized by their ability to take up ions when they are present at low concentrations, 

around ten micromolar. However, these systems are very sensitive to temperature and 

metabolic inhibitors (Crawford and Glass, 1998). Regarding LATs, they operate at relatively high 

concentrations nutrient in the media and are less sensitive to the physical and metabolic factors 

that affect HATs (Crawford and Glass, 1998). In plant tissues, NH4
+/NH3 can also enter into the 

cell by diffusion, via aquaporins, by potassium channels or via non-selective cation channels 

(Bittsánszky et al., 2015). The ammonium absorbed from soil is mostly assimilated in the root 

and 41 % introduced to the cytoplasm, 20% stored into the vacuole, 19% metabolized and 20 % 

returned to the environment (Wang et al., 1993). Regarding nitrate, after its absorption, it can 

be stored in vacuoles, reduced, exported to the leaves or returned to the environment. Unlike 
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ammonium, most of the nitrate is stored into the vacuoles, working as N-pool reserve and 

participating in the maintenance of the cell turgor (Touraine et al., 2001). Contrasting to 

ammonium, the use of nitrate requires to be reduced previously the incorporation into organic 

molecules and biomass. The nitrate reduction in most of the plants occurs mainly in 

photosynthetic parts (Glass et al., 2002). The nitrate reduction in the cell is carried out by nitrate 

reductase (E.C.1.7.1.2), an iron-sulfur molybdoprotein protein that catalyzes the reduction of 

nitrate (NO3
-) to nitrite (NO2

-) using NADP(H) as an electron donor. Then, nitrite is reduced to 

ammonium by nitrite reductase (E.C.1.7.1.4), a flavoprotein that contains also iron, 

molybdenum and pterin. This enzyme catalyzes the direct reduction of nitrite to nitrate using 

reduced ferredoxin (Fd) or NADPH, a step that requires 6 electrons. The form using ferredoxin 

is characteristic of leaves, meanwhile, the NADP-H isoform is characteristic of roots.  

The NH4
+ derived either from absorption, coming from nitrate reduction, or released by a 

catabolic process, is incorporated into amino acids by a tandem of two enzymes, the glutamine 

synthetase and glutamate synthase, in a well-known cycle so-called the GS/GOGAT pathway. 

This incorporation consists of the amination of glutamate to produce glutamine catalyzed by GS, 

with consumption of ATP. Subsequently, the amide group of glutamine is transferred to 2-

oxoglutarate to produce 2 molecules of glutamate by GOGAT (Miller and Cramer, 2005). In 

plants, the GS is present as two isoforms, GS1 located in the cytoplasm and GS2, placed in the 

plastids. In the root GS1 acts in the assimilation of the ammonium taken-up directly from the 

soil or coming from the reduction of nitrate (Miller and Cramer, 2005) and reassimilation 

ammonium derived from catabolic processes. The chloroplastic isoform (GS2) assimilates the 

ammonium from the nitrate reduction and it is the predominant isoform in photosynthetic 

tissues. For GOGAT, there are two isoforms, one is dependent on NADH and the other 

dependent on ferredoxin (Fd). The ferredoxin-dependent GOGAT (Fd-GOGAT) is found in 

chloroplasts and serves in primary nitrogen assimilation and photorespiratory nitrogen 

metabolism (Miller and Cramer, 2005). 

Besides the route GS/GOGAT, the enzymes glutamate dehydrogenase (GDH) and asparagine 

synthase (AS) also combine NH4
+ with carbon skeletons (Miller and Cramer, 2005). GDH catalyzes 

reversibly the oxidative deamination of glutamate and the reductive amination of 2-

oxoglutarate. The low affinity for NH4
+ (Km of 5.8 mM) showed by this enzyme suggests that it 

functions as desaminating enzyme at physiological conditions. GDH is located in roots, but 

although also shows high activities in shoots. An NADH-dependent form of GDH is located in 

mitochondria, and a NADPH-dependent form is located in the chloroplasts of photosynthetic 

organs. For decades, a symbolical role has been attributed to this enzyme in the primary nitrate 
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reduction in plants. In this sense, it is well accepted that primary nitrogen assimilation is mainly 

incorporated into organic compounds via GS/GOGAT (Miflin and Lea; 1977)  

Asparagine synthase (AS) catalyzes the formation of asparagine with ATP consumption. This 

reaction involves the transfer of the amide group of glutamine to aspartate, rendering 

asparagine and glutamate with the concomitant ATP consumption. AS and GDH activities are 

suggested as complementary routes to the GS/GOGAT for ammonium assimilations. Especially 

relevant is the reported role of both enzymes under environmental stress conditions (Dubois et 

al., 2003; Wang et al., 2007).  

The nitrogen assimilation pathways are closely interconnected with primary carbon metabolism 

since carbon skeletons are highly demanded the amino acid synthesis. The glycolysis and more 

directly tricarboxylic acid (TCA) cycle, provide the carbon skeletons necessary to incorporate the 

ammonium and produce amino acids. The main carbon skeleton required for glutamine (amide 

that has 5 C and 2 N) and asparagine (amide that has 4 C and 2 N) are alfa-oxoglutarate and 

oxaloacetate, respectively. Carbon entrance to TCA cycle occurs mainly in the form of pyruvate 

and oxaloacetate (OAA) provided via glycolysis but can also enter in the form of malate coming 

from phosphoenolpyruvate carboxylation (PEP). The TCA cycle is said to be versatile, in such a 

way that it can operate in cyclic mode providing of energy (NADPH and APT) for the cell 

metabolism, but it can also operate in non-cyclic mode providing of carbon skeletons for cell 

anabolic reactions. When ammonium is assimilated, the cycle operates more in non-cyclic mode, 

since α-cetoglutarate and oxaloacetate are retired from the TCA intermediates pool. Thus, 

carbon extra is demanded to fuel the continuous functioning of the cycle (Tcherkez et al., 2005; 

Sweetlove et al, 2010). 

4. AMMONIUM NUTRITION 

Ammonium and nitrate are the main N inorganic forms available in soils for plants. Despite 

ammonium is metabolically cheaper for the cell to be assimilated, plants have generally 

preference to use nitrate over ammonium. Moreover, elevated concentrations of NH4
+ in the 

media are detrimental for plant growth (Britto and Kronzucker, 2002). Ammonium accumulation 

in the cell happens when the amount of ammonium produced from nitrate reduction and 

catabolic processes (amino acids deamination proteolysis, phenylpropanoid metabolism) and 

photorespiration exceeds the ammonium assimilating capacity (Bittsánszky, et al., 2015). Above 

certain thresholds, ammonium results toxic for cell metabolism. This ammonium toxicity is 

paradoxical because ammonium is a common and ubiquitous metabolite in plant cell pathways, 

and its assimilation has lower energetic cost. Symptoms of NH4
+ toxicity include reduction of 
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growth, leaf chlorosis, decreasing in the root: shoot ratio, and nutrients imbalance, among 

others (Esteban et al., 2016). 

Plants response to ammonium toxicity is intra and interspecies-dependent. The causes of 

ammonium toxicity are still unclear, but some studies related to disorders in pH regulation, 

deficiency of mineral cations and carbohydrate limitation due to excessive consumption of 

soluble sugars for NH4
+ assimilation (Britto et al., 2001; Esteban et al., 2016). In the long term, 

ammonium nutrition can cause oxidative stress, and consequently cellular damage. This is 

indicated by the activation of glutathione‐ascorbate cycle enzymes, an increase of lipid 

peroxidation and changes in the redox state of low‐mass scavengers (Podgorska et al 2013). 

However, in spinach and pea plant, it was reported that ammonium stress diminishes oxidative 

damage to proteins (Domínguez‐Valdivia et al., 2008). Therefore, investigations whether 

ammonium causes oxidative stress are necessary (Bittsánszky, et al., 2015).  

Accumulation of NH4
+ stimulates the synthesis of amino acids and amines with a high N:C ratio 

(Roosta and Schjoerring, 2007). Although this accumulation of specific amino acids consumes 

energy and carbohydrates, rarely is inhibited under ammonium nutrition (Roosta and 

Schjoerring, 2007). Most of the plant accumulate and assimilate ammonium in the root to avoid 

damage in leaf photosynthesis (Esteban et al., 2016). For example, when ammonium 

assimilation overpasses plant capacity, ammonium is accumulated in leaves of spinach and 

sunflower, causing damage to the photosynthetic apparatus and consequently, decreasing the 

growth rate (Lasa et al., 2001). In pea, the tolerance of ammonium stress is associated with 

decreasing growth potential and increasing respiratory rates and activity of the alternative 

pathways (Cruz et al., 2011). In this manner, ammonium can be rapidly metabolized, producing 

organic compounds (Loqué et al., 2005). Ammonium can also be stored into the vacuoles, by 

passive and active transporters, to the maintenance of ammonium homeostasis. The pH of the 

vacuoles can acidify 2 units more than the cytosol, therefore vacuoles can store 100-fold higher 

concentrations (Bittsánszky et al., 2015). Active transport of ammonium into the vacuole 

depends on membrane-bound ATP-driven pumps. Passive transport is given mainly via 

aquaporin, which passes NH4
+ through the membrane in the form of NH3 and once into the 

vacuole, this is protonated to NH4
+, being compartmented (Bittsánszky et al., 2015).   

Previous studies reported that NH4
+ and NO3

− act differently on ions homeostasis (Roosta and 

Schjoerring, 2007). Every nitrate ion reduced to ammonia produces one OH− ion, leading to 

alkalization. Meanwhile, ammonium assimilation results in the production of H+, leading to 

acidification. To maintain a pH balance, the plant must either excrete OH- or H+ into the 
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surrounding medium or neutralize it with organic acids (Roosta and Schjoerring, 2007). 

Ammonium nutrition tends to acidify soil solution since plant expulses ions of H+ to compensate 

NH4
+ uptake. The rate of this pH change is faster than the alkalization produced by nitrate 

nutrition (Miller and Cramer, 2005). When the accumulation of ammonium in the cell is very 

high, there is an imbalance of mineral anions that cannot be compensated with the absorption 

of H2PO4
-2 and SO4

-2, while the absorption of ammonium depolarizes the cell and reduces the 

absorption of Ca+2 and K+ (Chaillou and Lamaze, 2001). 

It is possible to enhance ammonium tolerance by buffering of the external pH (Sarasketa, et al., 

2016), increasing the supply of cations (Gerendás et al., 1997), optimization of the light regime 

(Setién et al., 2013), increasing CO2 in the atmosphere (Vega-Mas et al., 2015) and application 

of inhibitors of ethylene biosynthesis (Britto and Kronzucker, 2002). Maintenance of 

carbohydrate synthesis is a major prerequisite for NH4
+ tolerance. A provision of α-ketoglutarate 

or bicarbonate ion to roots may in some cases increase NH4
+ assimilation (Roosta and 

Schjoerring, 2007). However, these methods are difficult to apply in the field (Esteban et al., 

2016). 

In this sense, a combination of physiological and genomic approaches (genomics, proteomics, 

metabolomics, genome-wide association and QTLs) may lead to the optimization of the traits 

and nitrogen use in new crops. For example, it is widely accepted that plants with elevated GS 

activity are more tolerant when NH4
+ is accumulated (Magalhäes and Huber, 1989). The 

identification of orthologue genes responsible for ammonium tolerance in different plant 

species could allow to clone the most active genes, and been transferred into susceptible traits 

(Bittsánszky et al., 2015). The use of molecular biology tools is a viable option for the selection 

of enzyme mutants that present a better tolerance to ammonium nutrition. 

5. Brachypodium distachyon AS MODEL PLANT 

The Poaceae family is a group of plants of monocotyledonous that include cereals such as wheat, 

rice, maize and barley, which are the basis of world food. It is predicted that in 2050 the 

population will increase by 20-50 % and that the demand for food will exceed current production 

capacities (Taiz, 2013). As crop fields are limited, grain production must be improved (David et 

al., 2019). Fortunately, scientific advances in molecular biology have allowed characterizing new 

genes of interest that allow genetic engineers to improve crop yields (Taiz, 2013). In this sense, 

the improvement of the nitrogen fertilization is one of the most important targets since 

practically nitrogen drives yield but also produces a lot of pollution. Although the use of 

ammonium sources with nitrification inhibitors reduces the environmental impact, they produce 
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stressful condition at high concentrations (Britto and Kronzucker, 2002). Ammonium nutrition 

response varies among closely related species or even within the same species (Ariz et al., 2011). 

It is known that in general crops are more sensitive to ammonium toxicity than wild species (Cruz 

et al., 2006), reflecting a loss of natural variability due to the domestication and consequently 

limiting the discovery of new genes. To elucidate then the genes related to ammonium nutrition 

in cereal, it desirable to adopt a model that meets the requirements of intraspecific variability, 

conservation of natural traits and whose metabolic response is similar to cereals. The study of 

non-domesticated species or native varieties is of special relevance in the case of ammonium 

nutrition because the high nitrification rates common in agricultural soils have led to a selection 

of cultivars practically performed under the use of nitrate.  

Brachypodium distachyon represents an excellent model plant for the study of cereals 

physiology and genetics (Brutnell et al., 2015; Scholthof et al., 2018). B. distachyon is a grass 

native to the Mediterranean region that has been spread by human movement throughout the 

world. Like Arabidopsis thaliana, B. distachyon is a model plant without economic importance, 

which is phylogenetically close to the large-genome cereal crops, especially to wheat. The term 

model implies that the plant has certain advantages to study the group of cereals that otherwise 

would be difficult or expensive. In fact, B. distachyon is a small plant, easy to grow and use, and 

has a shorter life cycle and smaller genome than their relatives. For this reason, a set of 

resources such as genome sequenced and accompanying annotations, a collection of mutants, 

microarrays, a set of wild accessions, among others, are available to elucidate the molecular 

biology and genetic basis of agronomic traits (Tyler et al., 2016). 

The accession Bd21 was the first line sequenced in 2010. Its genome of 272 Mbp includes, 

approximately, 25,000 genes (Kellogg, 2015). Over 5.6 % of these genes are specific only for 

grass. It is notable that the pan-genome of 54 accessions studied by Gordon et al., (2017) is more 

than twice the size of genes of a particular accession. This is the largest pan-genome found in 

plants for that number of lines, taking into account that the population of B. distachyon is mainly 

homozygote, showing that possesses a big genetic diversity.   

As stated, genetic variability is useful to identify traits of agronomic interest and to elucidate 

their genetic bases. In this sense, cereals have lost natural diversity since due to domestication 

processes. Since B. distachyon is not a domesticated plant, phenotypic variation in vernalization 

and flowering among populations has been described (Tyler et al., 2016). In this sense, B. 

distachyon has emerged as a powerful model for studying genetic variability. A new tool of the 

molecular biology known as genome-wide association (GWAS) correlates allele markers of the 
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genome of a population with phenotypes of interest (Tyler et al., 2016). The power of this 

analysis depends on the number of individuals, the variability among individuals and the well-

characterized germplasm collections. Around 250 lines of B. distachyon are available in the U.S. 

Department of Agriculture’s Germplasm Resources Information Network (GRIN) 

(https://www.ars-grin.gov/) or from other parts of the world. Although these resources do not 

represent so many lines by the moment, it is compensated for the big pan-genome. Resources 

for Brachypodium are publically available in Phytozome (http://phytozome.jgi.doe. gov/), 

BrachyBio (http://bti.cornell.edu/Brachybio), Brachypodium genome information 

(http://mips.helmholtzmuenchen.de/plant/brachypodium/ brachypodium/),  Brachypodium 

resources (http://jgi.doe.gov/our-sci ence/science-programs/ plant-genomics/), CoGe 

(http://synteny.cnr.berke ley.edu/CoGe/), ELEMENT (http://element.cgrb. oregonstate.edu/), 

Gramene (http://www.gramene.org), PlantGDB (http://www.plantgdb.org/), PlexDB 

(http://www.plexdb.org/), TILLING database (http://urgv.evry.inra.fr/ UTILLdb), USDA NPGS 

(http://www.ars-grin.gov/ npgs/).  

Taking into account the intraspecific variability in B. dystachyon, the characteristics shown as a 

model for the monocotyledonous in different kind of studies and the genetic resources available 

we consider appropriate B. distachyon to carry out the present project. The aim of the present 

project is firstly to test the metabolic and physiological response of B. distachyon upon 

ammonium. Secondly, to better understand the root physiology in plants grown with 

ammonium as the ºsole source of N. Finally, to explore the genetic and metabolic natural 

intraspecific variability of B. distachyon. 
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GENERAL OBJECTIVES 

Intensive nitrogen fertilization has an important negative impact on the environment. For 

instance, the loss of nitrate through leaching causes water eutrophication. Moreover, associated 

to soil microbial activity, N-fertilization is also responsible for the emission of nitrogenous gases 

with high contribution to global warming, notably N2O. The combination of ammonium 

fertilizers with nitrification inhibitors, which maintains NH4
+ content in the soil for longer 

periods, has been extensively proven as efficient strategy to mitigate these N losses. Thus, 

understanding ammonium nutrition for a proper selection/generation of genotypes adapted to 

this fertilization management is essential in order to increase crops yield.  

In this context, the general objective of this PhD thesis is to better understand plant response 

upon ammonium nutrition focusing on the metabolic and molecular basis that may lead to 

ammonium tolerance in cereals, using Brachypodium distachyon as a model.  

This general objective is supported in three specific objectives, each one corresponding to a 

different chapter: 

1) To assess the suitability of B. distachyon as a model plant for the study of ammonium nutrition 

in C3 grasses. 

2) To gain insight on the molecular mechanisms of B. distachyon root response upon ammonium 

nutrition by means of a proteomic analysis. 

3) To decode the genetic basis of the metabolic adaptation underlying ammonium tolerance by 

the exploitation of B. distachyon natural variability towards ammonium nutrition. 
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CHAPTER 1 

Providing carbon skeletons to sustain amide synthesis in roots 

underlines the suitability of Brachypodium distachyon for the study of 

ammonium stress in cereals 

Marlon de la Peña, María Begoña González-Moro,  Daniel Marino (2019) 

AoB PLANTS 11(3) 
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1. ABSTRACT  

Plants mainly acquire N from the soil in the form of nitrate (NO3
−) or ammonium (NH4

+). 

Ammonium-based nutrition is gaining interest because it helps to avoid the environmental 

pollution associated with nitrate fertilization. However, in general, plants prefer NO3
− and 

indeed, when growing only with NH4
+ they can encounter so-called ammonium stress. Since 

Brachypodium distachyon is a useful model species for the study of monocot physiology and 

genetics, we chose it to characterize performance under ammonium nutrition. Brachypodium 

distachyon Bd21 plants were grown hydroponically in 1 or 2.5 mM NO3
− or NH4

+. Nitrogen and 

carbon metabolism associated with NH4
+ assimilation was evaluated in terms of tissue contents 

of NO3
−, NH4

+, K, Mg, Ca, amino acids and organic acids together with tricarboxylic acid (TCA) 

cycle and NH4
+-assimilating enzyme activities and RNA transcript levels. The roots behaved as a 

physiological barrier preventing NH4
+ translocation to aerial parts, as indicated by a sizeable 

accumulation of NH4
+, Asn and Gln in the roots. A continuing high NH4

+ assimilation rate was 

made possible by a tuning of the TCA cycle and its associated anaplerotic pathways to match 2-

oxoglutarate and oxaloacetate demand for Gln and Asn synthesis. These results show 

B. distachyon to be a highly suitable tool for the study of the physiological, molecular and genetic 

basis of ammonium nutrition in cereals. 

2. INTRODUCTION  

Over the last decade, Brachypodium distachyon has gained attention as model plant for C3 

grasses. Phylogenetically, it lies between rice and wheat, with a high degree of sequence 

similarity with wheat, and high degree of synteny with most grasses (Brutnell et al., 2015). Given 

B. distachyon is not domesticated, it shows great intra-species diversity; its pan-genome 

containing nearly twice the number of genes found in any individual genome (Gordon et al., 

2017). Although many aspects of Brachypodium development and responses to biotic and 

abiotic stresses have been studied, little has been published concerning Brachypodium nitrogen 

(N) signalling and metabolism (Ingram et al., 2012; Poiré et al., 2014; Barhoumi 2017) and, to 

our knowledge, no report is available on how B. distachyon deals with different N sources. This 

point is crucial since N is the major mineral nutrient demanded by plants and its availability is 

yield-limiting in many agronomic soils (Xu et  al., 2012). Plants take up N mainly in form of 

ammonium (NH3/ NH4
+) and nitrate (NO3

−). Nitrate is usually the preferred source but is a source 

of pollution because anions are readily lost through leaching. Besides, nitrous oxide (N2O), one 

of the strongest greenhouse gases, is emitted during bacterial denitrification (Huérfano et al., 

2015). Ammonium salts, when combined with nitrification inhibitors, are more stable in the soil 

and have been proved useful in mitigating some of the unwanted effects of nitrate fertilization 
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(Huérfano et al., 2015). Moreover, ammonium nutrition can sometimes confer positive effects 

on plant performance, for example by increasing sorghum and rice tolerance to osmotic stress 

(Gao et al., 2010; Miranda et al., 2016). It has also been suggested that ammonium nutrition 

may improve the response of some species to high concentrations of atmospheric CO2 (Bloom 

et al., 2010). In addition, a frequent characteristic associated with ammonium nutrition is an 

enrichment with N-containing compounds (Marino et al., 2016; Coleto et al., 2017). However, 

ammonium nutrition is also known to decrease plant growth. This is the main symptom of 

ammonium stress, the so-called ‘ammonium syndrome’ (Liu and Von Wirén, 2017). The 

energetic cost associated with maintaining cytosolic NH3/NH4
+ homeostasis, mainly by pumping 

NH3/NH4
+ out of the cytosol and by increasing NH4

+assimilation, is considered to be one of the 

major causes of biomass reduction (Britto and Kronzucker 2002; Esteban et al., 2016). If the 

concentration of NH3/ NH4
+ exceeds the capacity for efflux and assimilation, NH4

+ is, in most 

species, preferentially accumulated in root cells to avoid damaging the photosynthetic 

apparatus (Esteban et al., 2016). Overall, the study of the metabolic adaptation to ammonium 

stress is crucial to increase plant N use efficiency while reducing N losses associated with nitrate 

fertilization.  

Ammonium is mainly assimilated via the glutamine synthetase/glutamate synthase (GS/GOGAT) 

cycle. To sustain GS/GOGAT activity, the tricarboxylic acid (TCA) cycle and its associated routes 

regulate the continuous supply of carbon skeletons. Indeed, proper management of carbon 

supply has been shown to be essential for ammonium tolerance (Roosta and Schjoerring, 2008; 

Vega-Mas et al., 2015). Although controlling NH3/NH4
+ entry/efflux and its assimilation is crucial 

for NH4
+ homeostasis, ammonium stress is also related to other processes such as pH control, 

ion imbalance and nitrate signalling (Liu and Von Wirén, 2017). The study of the co-ordination 

and regulation of all these mechanisms is essential to understand fully how they determine the 

extent of tolerance/sensitivity to ammonium nutrition in a given species or genotype. For 

instance, there is considerable inter- and intraspecific variability in the extent of ammonium 

stress amongst grass species such as maize (Schortemeyer et al., 1997), rice (Chen et al., 2013) 

and wheat (Wang et al., 2016a). 

In this work, we undertook a comprehensive physiological and metabolic characterization of 

B.  distachyon (reference genotype Bd21) grown with exclusive access to NH4
+ or NO3

− as N 

source. We focused on leaf and root carbon metabolism and on nitrogen assimilatory pathways. 
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3.  EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS 

Brachypodium distachyon Bd21 seeds were sterilized in 100 % ethanol for 1 min, rinsed three 

times with deionised water and incubated in deionised water for 2 h. Then, seeds were placed 

in trays filled with a perlite:vermiculite (1:1) mixture moistened with deionised water. After 4 

days of stratification at 4°C in the dark, the trays were transferred to a growth chamber (60/70 % 

of relative humidity, 23 °C day (14 h) with a light intensity of 350 μmol m-2 s-1 and 18 ºC night 

(10 h)). Eleven days after sowing, seedlings were transferred to 4.5 L hydroponic tanks (10 

plants/tank). The nutrient solution contained 1.15 mM K2HPO4, 0.85 mM MgSO4, 0.7 mM CaSO4, 

2.68 mM KCl, 0.5 mM CaCO3, 0.07 mM NaFeEDTA, 16.5 μM Na2MoO4, 3.7 μM FeCl3, 3.5 μM 

ZnSO4, 16.2 μM H3BO3, 0.47 μM MnSO4, 0.12 μM CuSO4, 0.21 μM AlCl3, 0.126 μM NiCl2 and 0.06 

μM KI, pH 6.8. The nitrogen source was (NH4)2SO4 for ammonium-fed plants and Ca(NO3)2 for 

nitrate-fed ones. Each N source was supplied at 1 or 2.5 mM of total N. To compare both N 

sources within each concentration, NO3
--fed plants were supplied with CaSO4 to match the SO4

2- 

supplied with the NH4
+. The pH of the solution was checked every two days and the nutrient 

solution replaced every four days. Four tanks were set up per treatment; thus, a total of 40 

plants were grown per condition. Twenty-four days after transfer to hydroponic conditions, 

plants were harvested. Shoots and roots were separated and individually weighed. For 

metabolic measurements, plants grown in the same tank were pooled and immediately frozen 

in liquid nitrogen, homogenized in a Tissue Lyser (Retsch MM 400) and stored at -80 °C until use. 

Statistical analysis 

All the results presented are given as means with standard errors. Data were analysed with SPSS 

17.0 (Chicago, IL, USA). Normality and homogeneity of variance were analysed by Kolmogorov–

Smirnov and Levene’s tests. The significance of the results was assessed using independent 

samples t-test or two-way ANOVA. 

4. RESULTS  

We compared the performance of B. distachyon Bd21 growing under the exclusive supply of 

NH4
+ as N source with that of plants given an exclusive supply of NO3

− as the control condition. 

Concentrations of 1 or 2.5  mM of each N source were given. Statistical analyses indicated that 

biomass was affected by the N source, its concentration and there was also a significant 

statistical interaction (Figure 1.1A). Notably, when plants were grown in 1 mM ammonium 

growth by roots or shoots was closely similar to that by plants in 1 mM nitrate. When NH4
+ was 

increased to 2.5 mM, plants showed symptoms of ammonium stress, i.e. a lower biomass 

compared to plants in 2.5 mM nitrate (Figure 1A). Chlorophyll content was not affected by the 
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treatment (Figure 1.1B). Therefore, 1 mM ammonium represented a non-toxic supply while 

2.5 mM was toxic. 

 

Figure 1.1 Comparison of B. distachyon fresh weight and chlorophyll content in response to N source after 24 days. 
(A) Plant biomass. (B) Chlorophyll content. Plants were grown with nitrate or ammonium as N source at 1 or 2.5 mM. 
Columns represent mean ± SE (n = 40 for biomass data and n = 4 for chlorophyll). Whenever significant differences 
according to two-way ANOVA, S indicates N source effect; C indicates N concentration effect and S × C indicates 
interaction effect (P < 0.05). 

 

To analyse N metabolism we determined contents of NH4
+, NO3

−, protein, total N, individual 

amino acids and the activity of enzymes related to N metabolism: GS, GOGAT, AAT and 

glutamate dehydrogenase (GDH) in both leaf and root (Figures 1.2 and 1.3). The accumulation 

of ammonium (NH4
+) is the most common metabolic marker of ammonium stress. In agreement 

with biomass and chlorophyll content, NH4
+ content did not accumulate in plants fed with 1 mM 

ammonium (Figures 1.2 and 1.3). However, with 2.5 mM supply, root tissue accumulated ca. 25 

times more NH4
+ compared to equivalent nitrate nutrition (Figure 1.3) whereas in leaf tissue, 

little NH4
+ accumulated (Figure 1.2). As expected, NO3

− content was affected by the N source 

with NO3
− levels being much higher for plants grown in nitrate. Indeed, in plants fed with 

ammonium NO3
− content was so low it approached the limit of detection of the methodology 

used (Figure S1.1).  
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Figure 1.2. Ammonium assimilation in B. distachyon leaf tissue. Plants were grown with nitrate or ammonium as N 
source for 24 days at 1 or 2.5 mM. Ammonium, total amino acids, Asn, Glu, Gln, Asp and 2-OG content are expressed 
µmol g−1 FW. For enzyme activities, GOGAT, GDH and AAT are expressed as µmol NADH g−1 FW h−1 and GS as µmol γ-
GHM g−1 FW h−1. Protein content is expressed as mg BSA g−1 FW and total N content as % dry wt. Columns represent 
mean ± SE (n = 3–4). Significant differences according to two-way ANOVA are indicated by S for N source effects, C 
for N concentration effects and S × C for interactions (P < 0.05). 

Asn and Gln were the most abundant amino acids in root and leaf under both NO3
− and NH4

+, 

with Glu also being abundant in plants fed with nitrate (Figures 1.2 and 1.3; Tables S1.2 and 

S1.3). At 1 mM, differences between NO3
−- and NH4

+-fed plants were small. Exceptions were Asn 

and Phe contents which were markedly higher in roots of plants grown with ammonium (Figure 

1.3; Table S1.3). With 2.5 mM NH4
+ supply a large accumulation of NH4

+ in the roots was 

associated with much increased levels of amino acids (Table S1.3), mainly in form of Asn and Gln 

where contents increased ca. 17 and 19 times, respectively (Figure 1.3). Overall, total amino 

acids content was ca. 8 times higher compared to nitrate nutrition (Figure 1.3).  
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Figure 1.3. Ammonium assimilation in B. distachyon root tissue. Plants were grown with nitrate or ammonium as N 
source at 1 or 2.5 mM for 24 days. Ammonium, total amino acids, Asn, Glu, Gln, Asp and 2-OG content are expressed 
µmol g−1 FW. For enzyme activities, GOGAT, GDH and AAT are expressed as µmol NADH g−1 FW h−1 and GS as µmol γ-
GHM g−1 FW h−1. Protein content is expressed as mg BSA g−1 FW and total N content as % dry wt. Significant differences 
according to two-way ANOVA are indicated by S for N source effects, C for N concentration effects and S × C for 
interactions (P < 0.05). 

A substantial N source effect was observed in root GDH (NADH- and NADPH-dependent) and GS 

enzyme activities (Figure 1.3; Figure S1.2A) under both 1 and 2.5 mM. Glutamate dehydrogenase 

showed high activity in the root of plants fed with ammonium, while the contrary was the case 

for GS activity (Figure 1.3). The stimulation of N assimilation in plants fed with ammonium was 

also evident in terms of Gln/ Glu and Asn/Asp ratios (Figure S1.3). Importantly, the increase in 

Gln/Glu and Asn/Asp ratios in the leaves of plants grown with 2.5 mM of ammonium was not 

only due to Gln and Asn increase but also to a decrease in Glu and Asp (Figure 1.2). 

To evaluate the regulation of ammonium assimilation enzymes, we looked for genes encoding 

GS, GDH and AS in B. distachyon Bd21. We carried out BLAST analysis in GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/) and Phytozome (https://phytozome.jgi.doe.gov/) 

databases, using available sequences for Oryza sativa, Triticum aestivum and Arabidopsis 

thaliana GS, GDH and ASN genes as queries. We found complete sequences for four genes 

encoding for GS (three GS1 and one GS2), two genes encoding for GDH and one for NADP-GDH 

and three genes encoding for AS (Table S1.1). We performed a phylogenetic analysis for the 
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three families including sequences for A.  thaliana, T.  aestivum, O. sativa, Hordeum vulgare and 

Aegilops tauschii (Figs S1.4–S1.6). In general, B.  distachyon genes lie between Triticeae and rice 

genes. Arabidopsis genes were more difficult to position (Figs S1.4–S1.6). We analysed gene 

expression by qPCR in leaf and root tissue of plants grown for 24 days with 2.5 mM nitrate or 

ammonium supply. In roots, expression of BdGLN1;3 (Figure 1.4A), BdGDH2 (Figure 1.4B), 

BdASN1 and BdASN3 (Figure 1.4C) was higher in plants under ammonium nutrition. In contrast, 

the expression of BdGLN2 was higher in roots of plants fed with nitrate (Figure 1.4A). In leaves, 

only BdASN3 expression significantly increased in plants grown with ammonium (Figure 1.4C).  

The TCA cycle and its associated pathways are essential to supply carbon skeletons for N 

assimilation, especially under ammonium nutrition. Thus, we determined the contents of 

relevant organic acids and the activity of a number of TCA-related enzymes (Figures 1.5 and 1.6; 

Figure S1.2B). In the leaf, no differences were observed in the activity of TCA-related enzymes, 

except for NAD-ME (Figure 1.5; Figure S1.2B).  

Nevertheless, ammonium nutrition provoked a remarkable decrease in the content of each 

organic acid (Figure 1.5). In roots, we observed higher activity of NADP-dependent isocitrate 

dehydrogenase (ICDH), NADP-dependent malic and phosphoenolpyruvate carboxylase (PEPC) 

enzymes in plants grown with ammonium supply (Figure 1.6; Figure S1.2B). Access to nitrate or 

ammonium as N source brought about notable alterations in the content and distribution of 

organic acids in the root. Changes were mostly observed in 2.5 mM ammonium nutrition, where 

3-PGA, PEP, 2-OG and malate contents were lower in plants grown with nitrate (Figure 1.6). On 

the contrary, a significant source × concentration interaction was observed for pyruvate + 

oxaloacetate (Pyr + OAA) and citrate, whose levels were higher in plants fed with 2.5 mM 

ammonium compared to those fed with nitrate (Figure 1.6). Finally, since ammonium has been 

shown by others to provoke an imbalance of essential cations, we assessed whether this was 

also the case for B. distachyon. In roots of plants grown with 2.5 mM of ammonium, Ca, Mg, and 

K contents were diminished compared to their nitrate counterparts (Table S1.4). In leaves, K also 

decreased significantly in plants fed with ammonium (Table S1.4). 
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Figure 1.4. GLN, GDH and ASN gene expression pattern in leaves and roots of plants grown for 24 days with 2.5 mM 
ammonium or nitrate as exclusive source of nitrogen. (A) GLN genes expression. (B) GDH genes expression. (C) ASN 
genes expression. The insets in panels A and B show the details for GLN1;3 expression. Columns represent mean ± SE 
(n = 4). Asterisk (*) indicates significant nitrogen source effect within each nitrogen concentration (t-test, P < 0.05). 
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Figure 1.5. Organic acids and enzyme activities associate to TCA cycle in the leaf of B. distachyon grown for 24 days 
with nitrate or ammonium as N source at two different concentrations (1 and 2.5 mM). Organic acids content are 
given as nmol mg−1 FW. ICDH activity is given as μmol NADPH g−1 FW h−1, MDH as mmol NADH g−1 FW h−1 and ME, 
PEPC as μmol NADH g−1 FW h−1. Columns represent mean ± SE (n = 4). Significant differences according to two-way 
ANOVA are indicated by S for N source effects, C for N concentration effects and S × C for interactions (P < 0.05). 
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Figure 1.6. Organic acids and enzyme activities associate to TCA cycle in the root of B. distachyon grown for 24 days 
with nitrate or ammonium as N source at two different concentrations (1 and 2.5 mM). Organic acids content are 
given as nmol mg−1 FW. ICDH activity is given as μmol NADPH g−1 FW h−1, MDH as mmol NADH g−1 FW h−1 and ME, 
PEPC as μmol NADH g−1 FW h−1. Columns represent mean ± SE (n = 4). Significant differences according to two-way 
ANOVA are indicated by S for N source effects, C for N concentration effects and S × C for interactions (P < 0.05). 

 

5. DISCUSSION  

Ammonium stress is considered universal in most if not all biological systems (Britto and 

Kronzucker, 2002). However, great variability in ammonium-use efficiency has been reported 

(Britto and Kronzucker, 2013; Sarasketa et al., 2014) and there are plant species and genotypes 

which display high tolerance of ammonium. Indeed, the Poaceae is considered to be relatively 

tolerant. For instance, ryegrass (Lolium perenne), wheat and notably rice are able to manage 

adequately the presence of high NH4
+ concentrations in the external medium (Britto et al., 2001; 

Belastegui-Macadam et al., 2007; Setién et al., 2013). Additionally, intraspecific variability in 
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ammonium toxicity has also been reported amongst different species, including cereals 

(Schortemeyer et al., 1997; Chen et al., 2013; Wang et al., 2016a).  

Brachypodium distachyon has emerged as an excellent model species to study different aspects 

of development in C3 grasses and responses to a number of environmental constraints (Brutnell 

et al., 2015). However, studies of nitrogen metabolism remain scarce. Accordingly, we 

characterized the performance of Bd21, the reference accession for B.  distachyon, supplied with 

nitrate or ammonium as N source with a special focus on interactions between carbon and 

nitrogen metabolisms. Brachypodium distachyon Bd21 appeared to be moderately tolerant to 

ammonium. Indeed, in hydroponic culture it grew equally in 1 mM N regardless of N source. 

Importantly, 1 mM represented a N-sufficient condition, since raising NO3
− supply to 2.5  mM 

did not further increase plant biomass (Figure 1.1). However, when NH4
+ was raised to 2.5  mM 

plants displayed moderate symptoms of ammonium toxicity in terms of slower growth (Figure 

1.1).  

A high NH4
+ concentration in the medium is known to affect the homeostasis of essential cations 

in the cell. For instance, NH4
+ affects K+ transport directly by competitive inhibition and indirectly 

via effects on membrane potential (Coskun et al., 2017a). Moreover, NH4
+ may also stimulate K+ 

efflux (Coskun et  al., 2017a). Among others, a decrease in K+ levels has been observed in grasses 

such as ryegrass (Belastegui-Macadam et al., 2007), rice (Balkos et al., 2010) or sorghum 

(Miranda et al., 2017). Indeed, when the available concentration of K+ in the nutrient solution is 

limiting, the provision of supplementary K+ improves ammonium tolerance (Balkos et al., 2010; 

Li et al., 2012). In contrast, this is not the case when the concentration of K+ is already sufficient 

(Balkos et al., 2010). In our work, despite the fact that we report a significant decrease in Ca, K 

and Mg content in the root of plants grown with 2.5  mM NH4
+ (Table S1.4), the internal 

concentrations of these elements remained within the limits of an adequate nutrient supply 

(Marschner 2012). Therefore, under our growth conditions, ion imbalance does not seem to be 

the primary cause for the growth inhibition observed in B. distachyon fed with 2.5 mM NH4
+. 

However, further experiments are needed to completely discard the potential role of cationic 

imbalance in the response of B. distachyon to ammonium toxicity.  

The main metabolic symptom of ammonium toxicity, and the probable cause of subsequent 

disorders, is the disruption of cytosolic NH4
+ homeostasis. Thus, one of the obvious cell strategies 

for keeping NH4
+ cytosolic levels under control is to intensify its assimilation into organic 

molecules. It has already been reported that a prevalent response of many species, including 

grasses, is an accumulation of free amino acids primarily in the roots, e.g. in wheat and sorghum 
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(Setién et al., 2013; Miranda et al., 2016). Alternatively, other species such as rapeseed (Coleto 

et al., 2017) tend to accumulate amino acids in shoot tissues. The amino acids in which NH4
+ is 

preferentially stored also vary between species. As in other monocots such as wheat (Setién et 

al., 2013), NH4
+ is scavenged in B. distachyon root systems in the form of amides, mainly Asn 

followed by Gln (Figure 1.3).  

Glutamine synthetase/glutamate synthase is the main NH4
+ assimilation pathway and its 

importance during ammonium stress has been highlighted by the fact that mutants such as rice 

gln1;1 or Arabidopsis gln1;2 mutants show hypersensitivity to ammonium nutrition (Kusano et 

al., 2011; Guan et al., 2016). In B. distachyon Bd21, GS is encoded by four genes (Table S1.1, 

Figure S1.4). Various studies have revealed that GS is regulated at multiple levels: 

transcriptional, translational and post-translational. Moreover, GS members are differentially 

regulated (i) in space, according to cell type and function of the organ; (ii) in time, according to 

circadian rhythm and phenology; and (iii) in response to growth conditions (Swarbreck et  al. 

2011). Accordingly and in contrast to the decrease of GS activity observed in roots of plants fed 

with ammonium (Figure 1.3), the expression of BdGLN1;1 and BdGLN1;2 did not vary and only 

BdGLN1;3 expression was enhanced by NH4
+ (Figure 1.4A) thereby underlining the probable 

post-translational regulation of GS. A further and interesting finding is that in roots of barley, 

HvGS1.3, homologue of BdGLN1;3 was also induced by NH4
+ nutrition (Goodall et al., 2013), 

indicating that the function and regulation of these isogenes can be similar for both monocot 

species. Thus, it will be of interest to explore whether the role of BdGLN1;3 is significant under 

ammonium stress. The decrease in root GS activity observed in plants fed with ammonium 

(Figure 1.3) could be related to a feedback regulation by the accumulation of amino acids 

(Watanabe et al., 1997; Oliveira and Coruzzi 1999) as represented by the high Asn/Asp and 

Gln/Glu ratios (Figure 1.3; Figure S1.3, Table S1.3).  

Asparagine synthetase (AS) catalyses the ATP-dependent synthesis of Asn and Glu from Gln and 

Asp. Asn has a high ratio N:C and plays a key role in nitrogen transport and storage (Lea et al., 

2007). BdASN1 and BdASN3 were induced by ammonium treatment (Figure 1.4C) and thus, 

probably control Asn synthesis in B. distachyon fed with ammonium. Indeed, in plants fed with 

2.5 mM NH4
+, Asn accounted for ca. 51 and 70 % of total leaf and root amino acid content, 

respectively (Tables S1.2 and S1.3). The higher expression of BdASN1 and its specific up-

regulation by ammonium nutrition in roots suggest a prominent role of this gene when 

ammonium is the only source of N (Figure 1.4C). In support of this, OsAS1, a homologue of 

BdASN1 (Figure S1.6), was previously shown responsible for Asn accumulation in rice grown 

under ammonium nutrition (Ohashi et al., 2015).  
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To sustain amino acid synthesis in the root an adequate supply of carbon is essential, 

necessitating adjustments in carbon metabolism elsewhere. Specifically, TCA cycle adjustment 

has been shown to be crucial, as well as its associated anaplerotic routes (Setién et al., 2014; 

Sarasketa et al., 2016). The significant effect of ammonium nutrition on PEPC activity (Figure 

1.6) was presumably essential to guarantee the flux of carbon towards OAA that can yield Asp 

or follow the Krebs cycle. Moreover, ME activity would also collaborate, through pyruvate 

entrance in the cycle, in the provision of citrate + isocitrate to generate 2-OG in co-ordination 

with ICDH (Figure 1.6). Indeed, low malate and PEP contents indicate a higher consumption 

under ammonium nutrition; therefore, confirming the prioritization of the pathway generating 

TCA intermediates, mainly OAA and 2-OG. The role of PEPC, ME and ICDH in root response to 

ammonium nutrition has been highlighted in different species including pea and sorghum (Ariz 

et al., 2013; Arias-Baldrich et al., 2017). Moreover, the relevance of PEPC agrees with a report 

where Arabidopsis ppc1/ppc2 double mutant was impaired in ammonium assimilation (Shi et 

al., 2015). Complementary evidence that the plant is prioritizing carbon provision to the roots is 

also evidenced by a general decrease of leaf organic acids (Figure 1.5) and additionally of Glu 

and Asp (Figure 1.2). As a consequence, we observed a clear N source and concentration effect 

in total root C content that increased in plants grown with ammonium and provoked a decrease 

in C:N ratio compared to plants fed only with nitrate (Figure S1.7).  

The enhancement of GDH activity in relation with the up-regulation of GDH2 gene expression is 

one of the best metabolic markers of ammonium nutrition. Indeed, this GDH response has been 

reported in different monocots including wheat (Setién et al., 2013; Wang et al., 2016b), rice 

(Xuan et al., 2013) and B. distachyon in the present study (Figs 1.2–1.4). It has been hypothesized 

that GDH induction could be related to direct NH4
+ assimilation because of GDH aminating 

activity and there are published hints for such a role (Skopelitis et al., 2006). However, other 

evidence also supports the idea that the role of GDH is to deaminate glutamate, thus 

collaborating in 2-OG provision (Labboun et al., 2009). We also report higher levels of NADP-

GDH activity in B. distachyon fed with ammonium (Figure S1.1A). This enzyme is still poorly 

characterized in plants compared to GDH. Whether NAD(H)- and NADP(H)dependent GDH 

enzymes possess differential functions in plant metabolism in general and in relation with 

ammonium nutrition in particular remains to be elucidated.  

In conclusion, we report that B. distachyon Bd21 is a species with moderate tolerance to 

ammonium nutrition. We observed a strong metabolic adaptation of B. distachyon carbon and 

nitrogen metabolism when facing ammonium-only N nutrition. The root system is shown as a 

physiological barrier acting as a reservoir for free NH4
+ and increasing NH4

+ assimilation to 
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amides. This was possible since TCA enzyme activities together with anaplerotic routes were 

adjusted to increase 2-OG and OAA provision thereby sustaining Gln and Asn synthesis in the 

root. This metabolic adjustment appears to be a strategy mitigating ammonium stress while 

imposing an energetic cost for the cell that limits plant growth under 2.5 mM NH4
+ supply. 

Overall, these responses of B. distachyon to ammonium nutrition are in line with previous 

studies with cereals crops. Our work underlines the potential of B. distachyon as a useful tool 

for analysing the molecular basis of ammonium tolerance in monocots. Such work is of 

paramount importance in view of the desirability of increasing the use of ammonium-based 

fertilizers to lessen environmental pollution associated with nitrate-based nutrition. 
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6. SUPPLEMENTARY INFORMATION 

Table S1.1. Brachypodium distachyon Bd21 genes encoding for GLN, AS and GDH enzymes.  

Name Locus name Gene symbol Forward Reverse E 

BdGLN1;1 Bradi3g59970 LOC100845598 aagctgcccaagtggaactacg tccttgaagatagcctgtgggtag 1.76  

BdGLN1;2 Bradi1g69530 LOC100824429 tcgtcgagtacttgtgggttgg ccattcacggtccttgctttgc 1.80  

BdGLN1;3 Bradi1g11450 LOC100837122 caagccatcttcagggatccattc tgcatagcagtcacacataaccag 1.92  

BdGLN2 Bradi5g24550 LOC100842712 tcgcttcacaagtgccatggtatg agaggccagttcacatctctctgg 1.76  

BdASN1 Bradi1g65540 LOC100830770 tgccgaagcatatcctctac tttcatcatctcatcggtgac 1.93  

BdASN2 Bradi2g21050 LOC100830419 tctcttgtctggtggacttg tcaggagaacccttcaaacc 2.02  

BdASN3 Bradi4g45010 LOC100839462 cagtgttcaggatggcattg gcgacttgatcttgcgtgac 2.05  

BdGDH1 Bradi1g05680 LOC100831066 agtttcatggttactcgcctgctg tcccagagatcctccaaggtcaac 1.89  

BdGDH2 Bradi5g17330 LOC100828452 acatgggaactaatgcacagacc agtggcagcatccctacctaatg 1.91  

BdNADP-GDH Bradi2g41130 LOC100833076 cgatgccgatctacgtcaaagc tgaaccacctcctggatagactg 1.95  

BdSamDC Bradi5g14640 LOC100821874 tgctaatctgctccaatggc gacgcagctgaccacctaga 2.04  

BdACT3 Bradi4g41850 LOC100834364 cctgaagtccttttccagcc agggcagtgatctccttgct 2.05  

The primers used for qPCR expression together with their efficiencies (E) are shown. BdSamDC and BdACT3 are the 
genes that served as reference for relative gene expression quantification. 
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Table S1.2. Individual amino acid content (μmol . g FW−1) of leaf of B. distachyon grown for 24 days with nitrate or 
ammonium as N source.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values represent mean ± SE (n = 3). The column “Variance analysis” shows significant differences according to two-
way ANOVA. S indicates N source effects, C N concentration effects and SxC interactions P < 0.05). 

  

 Leaf 

 1 mM 2.5 mM Variance 

  NO3
- NH4

+ NO3
- NH4

+ analysis 

 Ala  3.16 ± 0.21 3.84 ± 0.43 3.6 ± 0.15 3.32 ± 0.17  

 Arg  0.15 ± 0.03 0.51 ± 0.17 0.24 ± 0.03 0.91 ± 0.26 S 

 Asn  8.42 ± 3.3 20.3 ± 4.88 13.17 ± 0.86 28.74 ± 6.84 S 

 Asp  2.43 ± 0.45 2.17 ± 0.32 2.85 ± 0.13 1.19 ± 0.08 S, SxC 

 GABA  0.4 ± 0.05 0.61 ± 0.07 0.44 ± 0.03 0.49 ± 0.08  

 Gln  6.2 ± 1.41 6.91 ± 1.39 8.82 ± 0.63 11.44 ± 2.17 C 

 Glu  6.94 ± 1.01 6.44 ± 0.67 8.11 ± 0.13 4.72 ± 0.26 S, SxC 

 His  0.11 ± 0.01 0.13 ± 0.02 0.12 ± 0.01 0.12 ± 0.02  

 Ile  0.06 ± 0.01 0.08 ± 0.01 0.07 ± 0.00 0.10 ± 0.02 S 

 Leu  0.09 ± 0.01 0.11 ± 0.02 0.10 ± 0.00 0.16 ± 0.03  

 Lys  0.09 ± 0.03 0.23 ± 0.07 0.13 ± 0.01 0.46 ± 0.15 S 

 Met  0.06 ± 0.02 0.07 ± 0.01 0.09 ± 0.01 0.06 ± 0.01  

 Phe  0.08 ± 0.01 0.09 ± 0.02 0.10 ± 0.00 0.10 ± 0.02  

 Ser-Gly  2.38 ± 0.09 2.67 ± 0.14 2.58 ± 0.06 2.90 ± 0.30  

 Thr  1.52 ± 0.14 1.52 ± 0.25 1.71 ± 0.05 1.26 ± 0.10  

 Trp  0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 S, C, SxC 

 Tyr  0.12 ± 0.01 0.12 ± 0.03 0.14 ± 0.01 0.16 ± 0.02  

 Val  0.23 ± 0.02 0.25 ± 0.02 0.24 ± 0.01 0.35 ± 0.06  
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Table S1.3. Individual amino acid content (μmol . g FW−1) of root of B. distachyon grown for 24 days with nitrate or 
ammonium as N source.  

 

 Root 

 1 mM 2.5 mM Variance 

  NO3
- NH4

+ analysis NH4
+ analysis 

 Ala  1 ± 0.07 1.43 ± 0.16 0.93 ± 0.02 1.64 ± 0.36 S 

 Arg  0.12 ± 0.01 0.12 ± 0.02 0.1 ± 0.01 0.32 ± 0.07 S, C, SxC 

 Asn  3.85 ± 0.19 13.89 ± 2.9 2.93 ± 0.76 48.47 ± 10.28 S, C, SxC 

 Asp  0.7 ± 0.01 0.83 ± 0.08 0.54 ± 0.08 1.01 ± 0.14 S 

 GABA  0.52 ± 0.06 0.77 ± 0.13 0.42 ± 0.05 0.71 ± 0.04 S 

 Gln  1.49 ± 0.03 3.23 ± 0.51 1.09 ± 0.14 20.37 ± 2.97 S, C, SxC 

 Glu  1.44 ± 0.04 1.43 ± 0.05 1.16 ± 0.16 1.17 ± 0.15 C 

 His  0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.2 ± 0.06 SxC 

 Ile  0.12 ± 0.01 0.12 ± 0.00 0.10 ± 0.00 0.22 ± 0.03 S, C, SxC 

 Leu  0.16 ± 0.01 0.16 ± 0.01 0.14 ± 0.00 0.3 ± 0.03 S, C, SxC 

 Lys  0.07 ± 0.00 0.06 ± 0.01 0.06 ± 0.00 0.23 ± 0.08  

 Met  0.09 ± 0.00 0.05 ± 0.01 0.07 ± 0.01 0.04 ± 0.01 S 

 Phe  0.04 ± 0.00 0.05 ± 0.00 0.03 ± 0.00 0.15 ± 0.02 S, C, SxC 

 Ser-Gly  0.74 ± 0.00 0.8 ± 0.06 0.67 ± 0.04 1.25 ± 0.02 S, C, SxC 

 Thr  0.69 ± 0.01 0.61 ± 0.04 0.59 ± 0.03 0.92 ± 0.03 S, C, SxC 

 Trp  0.04 ± 0 0.04 ± 0.01 0.04 ± 0.00 0.1 ± 0.02 S, C, SxC 

 Tyr  0.08 ± 0.01 0.05 ± 0.01a 0.07 ± 0.00 0.17 ± 0.02 S, C, SxC 

 Val  0.56 ± 0.03 0.59 ± 0.04 0.41 ± 0.03 0.94 ± 0.1 S, SxC 

 

Values represent mean ± SE (n = 3). The column “Variance analysis” shows significant differences according to two-
way ANOVA. S indicates N source effects, C N concentration effects and SxC interactions P < 0.05). 
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Table S1.4. K, Ca, Mg and Na content (mg. g DW-1) of roots and leaves of B. distachyon grown for 24 days with 2.5 
mM nitrate or ammonium as N source.  

 

 

 

 

 

 

 

 

Values represent mean ± SE (n = 4). Significant nitrogen source effect within each dose (t-test, p < 0.05) is highlighted 
in bold. 

  

 

Leaf Root 

 

NO3
- NH4

+ NO3
- NH4

+ 

Ca 6.80 ± 0.50 6.62±1.15 21.31 ± 4.66 5.62 ± 2.03 

K 42.23 ± 0.46 30.29±3.68 58.27 ± 4.53 24.24 ± 2.39 

Mg 2.46 ± 0.11 2.81±0.26 4.65 ± 0.14 2.11 ± 0.23 

Na 0.22 ± 0.02  0.21 ± 0.02 0.44 ± 0.04   0.45 ± 0.06 
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Figure S1.1. Nitrate content in leaf and root of B. distachyon Bd21 grown for 24 days with 1 or 2.5 mM of nitrate or 
ammonium as N source. Values represent mean ± SE (n = 4). Significant differences according to two-way ANOVA are 
indicated by S for N source effects, C for N concentration effects and SxC for interactions (P < 0.05). 
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Figure S1.2. NADP-GDH and NADP-dependent ME enzyme activities (B) in leaf and root of B. distachyon Bd21 grown 
for 24 days with 1 or 2.5 mM of nitrate or ammonium as N source. (A) NADP-GDH enzyme activity. (B) NADP-ME 
enzyme activity. Values represent mean ± SE (n = 4). Significant differences according to two-way ANOVA are 
indicated by S for N source effects, C for N concentration effects and SxC for interactions (P < 0.05). 
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Figure S1.3. Gln/Glu and Asn/Asp ratio of leaf and root of B. distachyon grown for 24 days with nitrate or ammonium 
as N source. (A) Gln/Glu ratio. (B) Asn/Asp ratio. Values represent mean ± SE (n = 3). Significant differences according 
to two-way ANOVA are indicated by S for N source effects, C for N concentration effects and SxC for interactions (P < 
0.05). 
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Figure S1.4. Phylogenetic tree of glutamine synthetase genes.  

Six plant species were used Oryza sativa (Os), Arabidopsis thaliana (At), Aegilops tauchii (Aet), Hordeum vulgare (Hv), 
Triticum aestivum (Ta), and Brachypodium distachyon (Bd). The genes used for the analysis are OsGS1;1 (AB037595), 
OsGS1;2 (AB180688), OsGS1;3 (AB180689), OsGS2 (X14246), AtGLN1;1 (At5g37600), AtGLN1;2 (At1g66200), 
AtGLN1;3 (At3g17820), AtGLN1;4 (At5g16570), AtGLN1;5 (At1g48470), AtGLN2 (At5g35630), AetGS1;1 
(XM_020314490) AetGS1;2 (XM_020336960), AetGS1;3 (XM_020323172), AetGS2 (XM_020309033), HvGS1;1 
(JX878489), HvGS1;2 (JX878490), HvGS1;3 (JX878491), HvGS2 (AK360336), TaGS1a (DQ124209), TaGS1b (DQ124210), 
TaGS1c (DQ124211), TaGSr1 (AY491968), TaGSr2 (AY491969), TaGSe1 (AY491970), TaGSe2 (AY491971), TaGS2a 
(DQ124212), TaGS2b (DQ124213), TaGS2c (DQ124214). Bd genes are shown in the tree with their respective codes.  
Numbers indicate branch support values.  
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Figure S1.5. Phylogenetic tree of glutamate dehydrogenase genes.  

Six plant species were used Oryza sativa (Os), Arabidopsis thaliana (At), Aegilops tauchii (Aet), Hordeum vulgare (Hv), 
Triticum aestivum (Ta), and Brachypodium distachyon (Bd). The genes used for the analysis are OsGDH1 (AB024962), 
OsGDH2 (AB189166), OsNADP-GDH (XM_015764008), AtGDH1 (At1g51720), AtGDH2 (At5g07440), AtGDH3 
(At3g03910), AtNADP-GDH (At1g51720), AetGDH1 (XM_020327456), AetGDH2 (XM_020324446), AetNADP-GDH 
(XM_020298560), HvGDH1 (AK369720), HvGDH2 (AK366146), HvNADP-GDH (AK369992). For wheat a gene 
representative of each GDH type was selected TaGDH1 (AK449125), TaGDH2 (AK331666) and TaNADP-GDH 
(AK455316). Bd genes are shown in the tree with their respective codes.  Numbers indicate branch support values. 
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Figure S1.6. Phylogenetic tree of asparagine synthetase genes.  

Six plant species were used Oryza sativa (Os), Arabidopsis thaliana (At), Aegilops tauchii (Aet), Hordeum vulgare (Hv), 
Triticum aestivum (Ta), and Brachypodium distachyon (Bd). The genes used for the analysis are OsAS1 
(XM_015776603), OsAS2 (XM_015787697), AtASN1 (At3g47340), AtASN2 (At5g65010), AtASN3 (At5g10240), HvASN1 
(AK359770), HvASN2 (AK357350), HvASN3 (AK353762), HvASN4 (AK363899), HvASN5 (AK361923), TaASN2 
(KY937996), TaASN1 (KY937995), TaASN3 (KY937997), the five AetASN genes found in the databases are shown with 
their gene codes in the tree. Bd genes are shown in the tree with their respective codes.  Numbers indicate branch 
support values. 
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Figure S1.7. C:N ratio and carbon content of leaf and root of B. distachyon grown for 24 days with nitrate or 
ammonium as N source. (A) C:N ratio. (B) Carbon content. Values represent mean ± SE (n = 4). Significant differences 
according to two-way ANOVA are indicated by S for N source effects, C for N concentration effects and SxC for 
interactions (P < 0.05). 
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CHAPTER 2 

Root proteomics reveal that ammonium nutrition influences 

Brachypodium distachyon response to iron availability 
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1.  ABSTRACT  

B. distachyon has revealed as a highly suitable tool for the study of the physiological, molecular 

and genetic basis of ammonium nutrition in cereals. The root behaves as a physiological barrier 

preventing ammonium translocation to aerial parts. To do so, key metabolic adaptations occur, 

among others, to sustain ammonium (NH4
+) assimilation into organic compounds. To deep into 

the molecular changes occurring in this organ, a comparative proteomic approach was carried 

in roots of plants grown under ammonium or nitrate nutrition with 2.5 mM or 1 mM N supply.  

Among others, the proteome data confirmed the adjustment of carbon and nitrogen 

metabolisms, but identified other processes potentially participating in root response to 

ammonium nutrition such as cell wall biogenesis and cell redox balance. Interestingly, a great 

number of proteins associated with iron homeostasis were predominant in ammonium 

compared to nitrate nutrition, notably those participating in methionine cycle and 

phytosiderophores synthesis. Indeed, we confirmed that ammonium nutrition induced de 

accumulation of phytosiderophores in relation with a concomitant increase in Fe and Zn 

accumulation in the roots. Besides, we analyzed the impact of the N-source in plant response to 

changes in Fe availability in the nutrient solution and evidenced a higher sensitivity of 

ammonium-fed plants to limited Fe availability respect to nitrate-fed plants. This behavior could 

be related with an increased NH4
+ accumulation in the tissues and with impaired Fe translocation 

to the aerial part. Future research are necessary to further understand the mechanistic 

underlying the interaction between the N-source and the Fe and Zn. Notably, both 

micronutrients are key for the quality of cereal grains. 

2.  INTRODUCTION 

B. distachyon has been described as a highly suitable tool for the study of the physiological, 

molecular and genetic basis of ammonium nutrition in cereals, as shown in chapter 1 (De la Peña 

et al., 2019). The metabolic response of B. distachyon to ammonium nutrition occurred mostly 

in the root, as also shown in other monocot species like wheat (Setién et al., 2013) or sorghum 

(Miranda et al., 2016). The root behaves as a physiological barrier preventing NH4
+ translocation 

to aerial parts, as indicated by a sizeable NH4
+ accumulation and assimilation increase. The 

continuous high NH4
+ assimilation rate required the tuning of the TCA cycle and its associated 

anaplerotic pathways to match the demand of ketoacids for Gln and Asn synthesis (Chapter 1; 

De la Peña et al., 2019).  

To further study B. distachyon root adaptation to ammonium nutrition in this chapter a 

proteomic analysis was conducted to identify molecular players helpful to gain insight on the 
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molecular mechanism of B. distachyon ammonium response. Recent studies have explored root 

proteome response to ammonium nutrition in different species such as Medicago truncatula 

(Royo et al., 2019), Arabidopsis thaliana (Coleto et al., 2019; Menz et al., 2016) or maize (Prinsi 

and Espen, 2018). Although important differences appear among species, as expected, these 

proteomic studies found that nitrogen assimilation and carbon metabolism were regulated by 

the nitrogen source. Common responses in these studies also include alterations in proteins 

involved in cell redox and the phenylpropanoid metabolism associated to cell wall biogenesis.  

B. distachyon cell wall content and vascular anatomy are similar to economically important C3 

grasses (Bouvier d’Yvoire et al., 2013, Matos et al., 2013). For instance, B. distachyon has been 

used to model the transcriptional regulation of the cell wall in grasses (Handakumbura and 

Hazen, 2012). The fact that under ammonium nutrition plants are reported to alter the cell wall 

deserves further studies since it may represent a nutritional strategy to enhance bioenergy-

related traits in grasses. 

Apart from N, plants need 15 other essential nutrients to complete their life-cycle. These 

nutrients interact between each other and genetic, physiological and biochemical interactions 

among elements have been reported (Bouain et al., 2019). In particular, the N source is known 

to interact with the acquisition and homeostasis of other macronutrients and also 

micronutrients. For instance, it has been extensively reported that plants grown under 

ammonium nutrition display lower content of cations such as K+, Ca2+ and Mg+ respect to nitrate 

nutrition because of their direct competition with the uptake of NH4
+ (Van Beusichem et al., 

1988; Serna et al., 1992; Roosta and Schjoerring, 2007). As shown in chapter 1, this is also the 

case for B. distachyon, since under ammonium nutrition presented a diminished content of 

these cations compared to nitrate nutrition (Chapter 1; De la Peña et al., 2019). Notably, when 

K+ availability is limiting the exogenous application of K+ has been shown to greatly mitigate 

ammonium stress symptoms (Balkos et al., 2010; Li et al., 2012). As another example of N source 

interaction with other nutrients, molecular players that connect nitrate signaling to P deficiency 

have been identified, such as the NO3
- transporter NPF7.3/NRT1.5 (Cui et al., 2018) or the 

transcription factor HRS1 (hypersensitive to low Pi-elicited primary root shortening (Medici et 

al., 2015) an, at the same time NH4
+ promotes P remobilization of the cell wall (Zhu et al., 2016). 

The N source also interacts with S, for instance, ammonium nutrition enhances sulphate 

assimilation and uptake (Van Beusichem et al., 1998; Gerendás et al., 1997; Coleto et al., 2017). 

Overall, the N source interaction with macronutrients is clear and their study has attracted 

important interest. However, less attention has been paid to the interaction between the N 

source and micronutrients homeostasis. 
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In another line of evidence of N source interaction with other nutrients, H+ production during 

NH4
+ assimilation leads to enhanced net extrusion of H+ and thus to the acidification of the 

rhizosphere (Van Beusichem et al., 1988). Particularly in neutral and alkaline soils, this 

acidification may increase the availability of some macronutrients, such as phosphate (Gahoonia 

et al., 1992) or micronutrients such as Fe or Mn (Thomson et al., 1993). Regarding Fe, recent 

works have provided support for the interaction between NH4
+ and Fe homeostasis in rice (Zhu 

et al., 2018) and Arabidopsis (Zhu et al., 2019), suggesting that NH4
+ somehow promotes the 

release of Fe bound to the cell wall, notably hemicellulose.  

Fe is an essential micronutrient for plant growth as well as for human nutrition. Fe is an 

important determinant in building prosthetic groups of proteins such as Fe-S clusters and hemo 

groups, which makes Fe participate in many essential plant functions (e.g. chlorophyll synthesis, 

electron transfer between PSI and PSII). Thus, any defect in Fe availability has a great impact in 

plant growth and quality (Briat et al., 2015). Although Fe is one of the most abundant 

micronutrients in soils, often it cannot be used by plants because it is present as insoluble 

complexes with low bioavailability, particularly in calcareous/alkaline soils since Fe is hardly 

soluble at pH higher than 7.4 (Lindsay and Schwab, 1982; Briat et al., 2015). To face this 

limitation, plants have developed two strategies to make Fe soluble. Most flowering plants 

display the named Strategy I or reduction-based strategy. However, only graminaceous species, 

and thus B. distachyon, display the so-called Strategy II or chelation-based strategy. 

Exceptionally, rice has acquired a combined strategy (Ricachenevsky and Sperotto, 2014). 

Strategy I is a three-step process that starts with proton release from the roots to increase local 

Fe3+ solubility. Ferric form (Fe3+) is reduced to ferrous ion (Fe2+) by a plasma membrane-bound 

ferric reductase and then Fe2+ is taken up by the root via IRT transporters (iron-regulated 

transporter) (Hindt and Guerinot, 2012; Kobayashi et al., 2019). In Strategy II, graminaceous 

plants synthesize compounds of the mugineic acid family called phytosiderophores (PS) that are 

released into the rhizosphere via TOM1 (transporter of mugineic acid family phytosiderophores 

1). Mugineic acid compounds (MAs) derive from nicotianamine (NA) and bind Fe3+ with high 

affinity forming Fe3+-PS complexes that enter into root cells by a Yellow Stripe/Yellow Stripe-Like 

(YS/YSL) transporters. Once inside the plant, Fe3+ binds other compounds to be translocated to 

the rest of the plant. Carboxylates (notably citric acids), NA, MAs and phenolic compounds are 

involved in Fe3+ translocation (Kobayashi et al., 2019). 

Both Fe uptake strategies are induced upon iron deficiency (Hindt and Guerinot, 2012; 

Kobayashi et al., 2019). In Strategy II, Fe deficiency stimulates the synthesis of NA and MAs. NA 

is synthesized by NA synthase (NAS) from the combination of three units of S-
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adenosylmethionine (SAM). SAM is an abundant co-factor in plant metabolism and is the 

precursor of many other biomolecules such as polyamines and ethylene. In these reactions, e.g. 

NA synthesis, 5-methylthioadenosine (MTA) is released and can be recycled again to Met or SAM 

thanks to the Met cycle, also known as Met salvage cycle or Yang cycle in plants (Kobayashi et 

al., 2005; Sauter et al., 2013). The increase of SAM synthesis leads, among others, to increased 

synthesis of ethylene and NA (Li and Lan, 2017). Indeed, Met cycle is highly active in the root 

and it is also induced under Fe deficiency to enable this organ to meet the increased demand of 

SAM required for the synthesis of MAs (Ma et al., 1995; Kobayashi et al., 2005; Li and Lan, 2017).  

In the present chapter we aimed to better understand the root physiology in plants grown with 

ammonium as a sole source of N. To do so, we engaged a proteomic approach that revealed 

several processes potentially involved in root adaptation to ammonium nutrition respect to 

plants fed with nitrate. Among others, cell wall biogenesis, carbon and nitrogen metabolism and 

cell redox balance were affected by the nutrition type. Importantly, we found a great number of 

proteins associated to iron homeostasis, notably in relation with Met cycle and PS synthesis. In 

this sense, we hypothesized that NH4
+ could be playing a role in the control of Fe homeostasis 

in B. distachyon and thus, we focused on the study of the interaction between ammonium 

nutrition and Fe homeostasis. 

3.  EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS 

Growth conditions for the proteome analysis were as described in section 3 of chapter 1. To 

study the interaction between ammonium nutrition and Fe homeostasis B. distachyon Bd21 

seeds were treated following the methodology described in Tyler et al. (2016). Seeds were 

peeled by removing the lemma, washed for 4 min in a solution containing 15 % bleach plus 0.1 

% Triton-X 100 (Sigma-Aldrich) and thoroughly rinsed with sterile deionised water. To 

synchronise germination, seeds were placed in Petri dishes on damp paper towels and stratified 

in the dark at 4°C for 7 days. After stratification, the plates covered with aluminum foil were 

transferred into a growing chamber for 3 days. Germinated seeds were then sowed in trays filled 

with perlite:vermiculite (1:1) misted with deionised water. After 7 days, seedlings with a uniform 

appearance were transferred to hydroponic tanks filled with 4.5 L of nutrient solution (10 

plants/tanks) with a 2.5 mM N provision in the form of NO3
- or NH4

+. Plants grew in hydroponic 

conditions during 19 days. The interaction between nitrogen and Fe nutrition was studied 

supplying different Fe(III)EDTA-treatments to the nutrient solutions either with ammonium or 

nitrate. Fe(III)EDTA-treatment consisted of free-NaFe(III)-EDTA or 0.01 mM NaFe(III)-EDTA for 

deficiency (D) or moderate Fe deficiency (MD), respectively 0.1 mM NaFe(III)-EDTA for Fe control 
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conditions, and 2.5 mM NaFe(III)-EDTA for Fe  toxicity (T). During the first 7 days, treatments of 

Fe deficiency were grown in the same nutritional regime with optimal Fe supply (0.1 mM 

NaFe(III)-EDTA). At 7th day, Fe control plants were kept under the same conditions, but Fe was 

removed for deficiency treatments (D) or supplied at 0.01 mM for moderate deficiency (MD). 

For Fe toxicity treatment the plants were provided with 2.5 mM Fe since the transfer of seedlings 

to hydroponic tanks. As in chapter 1, to maintain the pH and the concentration of mineral 

elements of the hydroponic medium constant, the nutrient solution was replaced three times 

on days 7, 11 and 15. After every change, the stability of pH in the nutrient solution was 

confirmed. The plants were harvested between 10 and 12 a.m. Shoots and roots were separated 

and individually weighed. Plants grown within the same tank were pooled, immediately frozen 

in liquid nitrogen, homogenized in a Tissue Lyser (Retsch MM 400) and stored at -80 °C until use. 

Three tanks were set up per treatment, 10 plants/tank, thus a total of 30 plants were grown for 

each condition. 

Statistical analysis 

All the results presented are given as means with standard errors. Data were analysed with SPSS 

17.0 (Chicago, IL, USA) or R software v. 3.4.4. Normality and homogeneity of variance were 

analysed by Kolmogorov–Smirnov and Levene’s tests. Statistical analysis for proteomics analysis 

was performed as described in general materials and methods section. For the rest of data two-

way ANOVA was used for multiple comparisons, while for paired comparison of independent 

samples t-student test was performed. 

4.  RESULTS 

A label-free quantitative proteomic analysis was used to analyze the relative abundance of 

proteins in B. distachyon roots grown under four different conditions, with ammonium or nitrate 

supplied at 1 or 2.5 mM concentration. A total of 4506 distinct proteins were identified with a 

false discovery rate (FDR) < 1 % (Table S2.1). For quantification, only proteins identified in the 

three replicates of, at least, one condition were selected. Following these criteria, 4109 were 

quantified (Table S2.1). Principal component analysis (PCA) and hierarchical clustering 

demonstrated a strong correlation among the replicates within each N treatments, with greater 

homogeneity among replicates for 1 mM N treatments (Figure S2.1 and S2.2). N source 

treatments were separated along PC1 and N concentration along PC2. Besides, the effect of the 

source was more evident at 2.5 mM N dose, these two treatments being more distant to 1 mM 

N concentration (Figure S2.1). Four comparisons were made to analyze, on one hand, the effect 

of the N source and, on the other hand, that of the N concentration. Volcano plots resume the 



  Chapter 2 

74 
 

proteins quantified for each comparison and highlight the differentially abundant proteins (DAP) 

between groups with a significant level of p < 0.05 and 1.5-fold change (FC) cut-off (Figure S2.3).  

When comparing the effect of the N concentration within each N source we found that under 

nitrate nutrition 128 proteins were affected by the N dose with 48 DAPs showing higher 

abundance at 2.5 mM and 80 proteins at 1 mM. The N dose had greater effect under ammonium 

nutrition and 243 DAPs were found, 126 DAPs with higher abundance at 2.5 mM and 117 more 

abundant at 1 mM. Only, 19 proteins were significantly regulated by the N dose regardless the 

N source (Figure 2.1; Table S2.1). 

Regarding the N source effect, and in agreement with the PCA, the number of DAPs is much 

higher with 2.5 mM N supply compared with 1 mM N. With 2.5 mM, 475 proteins showed 

differential abundance. Among them, 243 showed higher abundance in roots of ammonium-

grown plants, whereas 232 showed a higher abundance in roots of nitrate-grown ones (Figure 

2.1B, Table S2.1). With 1mM, 195 DAPs were found, 142 being more abundant in ammonium 

condition and 53 in nitrate condition. Regarding proteins commonly regulated in both 

comparison (72 DAPs), 47 DAPs were always more abundant under ammonium nutrition and 25 

under nitrate nutrition (Figure 2.1; Table S2.1, Table S2.2).  

 

Figure 2.1. Venn diagrams showing the number of differentially abundant proteins identified for the comparison of 
different nutritional conditions in roots of B. distachyon. 
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Gene ontology functional classification of the differentially abundant proteins  

As a first exploratory approach of the data obtained with the proteomic study, we analysed the 

DAPs of the four comparisons using the PANTHER classification system (PANTHER 14.1; 

www.pantherdb.org) and classified them following the three classic ontologies: biological 

process, cellular component and molecular function. The more general categories/terms are 

shown in Figures 2.2 and 2.3 and the more specific ones are described in Table S2.3. Regarding 

biological process, the greatest number of proteins was classified into “metabolic process”, 

category, followed by “cellular process”, “biological regulation” and “localization”. As 

ammonium nutrition is considered a stressful situation also an important number of DAPs were 

associated to “response to stimulus” notably when comparing ammonium at 2.5 mM 

concentration (Figures 2.2, 2.3). Molecular component ontology revealed a great number of 

enzymes (category “catalytic activity”) among the DAPs discovered together with an important 

amount of proteins associated to “binding” and “transporter activity” (Figures 2.2, 2.3). 

To further understand the proteome changes observed, we performed a gene ontology 

enrichment analysis focused on biological process ontogeny across the four comparisons 

between N treatments (Figures 2.4, 2.5, S2.4, S2.5; Table S2.4). In agreement with the fact that 

2.5 mM NH4
+ represents a stressful situation for B. distachyon (Chapter 1, De la Peña et al., 2019) 

most of the enriched categories were found when comparing NH4
+ vs. NO3

- at 2.5 mM N and 2.5 

mM vs. 1 mM for NH4
+ nutrition, finding 139 (68 with the up-shifted and 71 with the down-

shifted DAPs) and 103 enriched processes/terms (59 with the up-shifted and 44 with the down-

shifted DAPs), respectively (Table S2.4). Among the significantly enriched processes/terms 

found some are very general and often comprise more specific, and also enriched, processes 

that form groups of processes/terms (Table S2.4). In general, most of the information is obtained 

from the more specific terms rather than with higher-level terms. Thus, we concentrated in the 

most specific terms within each group (Figures 2.4, 2.5, S2.4, S2.5; Table S2.4). Importantly, 

many similarities were found between both comparisons at 2.5 mM NH4
+ vs. NO3

- and NH4
+ 2.5 

mM vs. 1 mM because in both cases we are comparing a situation where ammonium stress is 

taking place (2.5 mM NH4
+) vs. a non-stressful situation (2.5 mM NO3

- or 1 mM NH4
+). Indeed, 

both comparisons shared an important number of DAPs (167) (Figure S2.5, S2.6, Table S2.3).  



  Chapter 2 

76 
 

Figure 2.2. Gene ontology classification of the DAPs found when comparing N concentration within each N source. 
Classification was done based on three ontologies: biological process, cellular component and molecular function. 

 

Figure 2.3. Gene ontology classification of the DAPs found when comparing N source within each N concentration. 
Classification was done based on three ontologies: biological process, cellular component and molecular function. 
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Gene ontology enrichment analysis of the differentially abundant proteins  

Most of the enriched categories were related to carbon and nitrogen metabolism, sulphur/Met 

metabolism, cell redox balance, cell wall biogenesis and metabolism and ion homeostasis, 

notably iron. Ammonium nutrition is known to stimulate NH4
+ assimilation supported by the TCA 

cycle (Chapter 1); in agreement, the categories related to carbon and nitrogen metabolism (e.g. 

glycolytic process, glutamine metabolic process or carboxylic acid catabolic process) were 

mostly found when analyzing the DAPs with higher abundance in 2.5 mM NH4
+ (Figures 2.4, 2.5). 

Specifically looking for example to classic enzymes related to NH4
+ assimilation in 2.5 mM: NH4

+ 

vs NO3
- comparison, we found that chloroplastic glutamine synthetase (I1J2T4) showed lower 

abundance in 2.5 mM NH4
+. In contrast, an asparagine synthetase isoform (I1IV86) and a 

glutamate dehydrogenase 2 (I1J084) were more abundant in 2.5 mM NH4
+. Regarding enzymes 

connected to C metabolism, among others, pyruvate kinase (I1HEH4), a cytosolic triose 

phosphate isomerase (I1HC04), hexokinase (A0A0Q3IMN1) and citrate synthase (I1HYA2) were 

up-shifted in 2.5 mM NH4
+ (Tables S2.1, S2.3) 

Figure 2.4. Gene ontology enrichment analysis of down-shifted (A) and up-shifted (B) DAPs in 2.5 vs. 1 mM NH4
+ 

comparison in B. distachyon roots. The fold enrichment is the ratio of the number of DAPs observed over the expected 
number of proteins associated to a particular category/term based in the reference proteome. Only the more 
significant specific categories/terms are represented. The full list is available in the Table S2.4. 

A 

B 
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Figure 2.5. Gene ontology enrichment analysis of down-shifted (A) and up-shifted (B) DAPs in 2.5 mM, comparing 
ammonium vs. nitrate nutrition in B. distachyon roots. The fold enrichment is the ratio of the number of DAPs 
observed over the expected number of proteins associated to a particular category/term based in the reference 
proteome. Only the more significant specific categories/terms are represented. The full list is available in the Table 
S2.4. 

Categories related to the cell wall metabolism and biogenesis were found in the enrichment test 

performed with the down-shifted DAPs, comparing 2.5 mM NH4
+ vs. 2.5 mM NO3

- and also 2.5 

mM NH4
+ vs 1mM NH4

+ (e.g. xyloglucan metabolic process, cinnamic acid biosynthetic process) 

(Figures 2.4, 2.5). For instance, three phenylalanine ammonia-lyase involved in the biosynthesis 

of lignin were found down-shifted in both comparisons (I1IZQ0, I1IBR8, I1IBR6) (Tables S2.1, 

S2.3). Besides, three xyloglucan endotransglucosylase/hydrolases were down-shifted in 2.5 mM 

NH4
+ respect to 1 mM NH4

+ (I1I257, I1GTU3, I1I258). Cell wall peroxidases play an active role in 

the polymerization of lignin and redox processes are also associated with cell wall loosening 

(Tenhaken, 2015). In this line, this could be in relation with the categories related to cell redox 

balance (e.g. oxidation-reduction process, response to oxidative stress or cellular oxidant 

detoxification) that were mostly found with the DAPs showing lower abundance in 2.5 mM NH4
+ 

(Figures 2.4, 2.5). For instance, an important number of peroxidases, mostly including non-

specific peroxidases but also an ascorbate peroxidase (I1H6P1), appeared as less abundant in 

A 

B 
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2.5 mM NH4
+ respect to 2.5 mM NO3

- (Tables S2.1, S2.3). Also a number of DAPs related with 

glutathione were found; in particular, several glutathione-S-transferases were found more 

abundant in 2.5 mM NH4
+ condition, as it has also been highlighted in previous proteomic 

analysis of plants grown under ammonium nutrition (Prinsi and Espen, 2018; Coleto et al., 2019; 

Royo et al., 2019). 

Ion transport was affected by ammonium stress since among the DAPs a number of ion 

transporters appeared. In agreement with the nutrition type, high-affinity nitrate transporters 

(I1IB70, I1HW98) were down-shifted in 2.5 mM ammonium-fed plants, while ammonium 

transporter 1;2 was up-shifted (I1IBN3). In contrast, two NRT1/PTR family transporters were also 

up–shifted in ammonium-fed plants. This could be related to the reported nitrate-independent 

function of Arabidopsis NRT1;1 in the alleviation of ammonium toxicity (Hachiya and Noguchi, 

2011; Jian et al., 2018). The higher abundance of potassium transporter 1-like (A0A0Q3P0Y8), 

homolog to barley HvHAK1 also reported as induced upon ammonium nutrition (Fulgenzi et al., 

2008), may be trying to compensate the lower tissue K content (Chapter 1). In addition, among 

others, a Mg transporter (A0A0Q3EIQ9), two Cu transporters (copper transporter 5.1, I1IQG8; 

probable copper-transporting ATPase HMA5, I1HYC6), and a metal transporter Nramp2 (I1H8C0) 

were also more abundant with 2.5 mM NH4
+ supply respect to 2.5 mN NO3

- supply.  

When the highest ammonium concentration in the nutrient solution was considered in the 

comparisons, this is both in 2.5 mM NH4
+ vs 2.5 mM NO3

- and 2.5 mM NH4
+ vs 1mM NH4

+, the up-

shifted categories with the highest fold enrichment were related to the  Met cycle and 

nicotianamine biosynthesis (“L-methionine salvage from methylthioadenosine”, “S-

adenosylmethionine biosynthetic process” and “nicotianamine biosynthetic process” 

categories). Notably, as shown in Figure 2.6, almost every protein of the Met cycle was up-

shifted in the ammonium stress condition. Met cycle and nicotianamine biosynthesis are related 

with the uptake of metals, notably Fe and Zn (Kobayashi et al., 2005). Looking deeper into the 

full list of DAPs (Table S2.1) an important number of proteins related to Fe homeostasis were 

found regulated (Table 2.1). Besides, “sulfur compound metabolic process” category was 

highlighted in 2.5 mM NH4
+ vs. 2.5 mM NO3

- comparison (Figure 2.5A). S-adenosylmethionine 

(SAM), in addition of being the precursor of mugineic acids (MAs), it is also the precursor of 

ethylene; indeed, 1-aminocyclopropane-1-carboxylate oxidase (I1IMV2), in charge of ethylene 

synthesis, was also up-shifted under ammonium nutrition. Interestingly, ethylene is also an 

important signal of Fe deficiency and PS synthesis (Divte et al., 2019). 
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Figure 2.6. The methionine cycle in graminaceous plants. Enzymes are shown in boxes and those found among the 
DAPs identified in 2.5 mM NH4

+ vs 2.5 mM NO3
- in B. distachyon roots are shown in green color. Met, methionine; 

SAM, S-adenosyl-Met; SAMS, S-adenosyl-Met synthetase; NA, nicotianamine;  NAS, nicotianamine synthase; MTA, 5-
methylthioadenosine; MTN, MTA nucleosidase; MTR, 5-methylthioribose; MTK, 5-methylthioribose kinase; MTR-P, 5-
methylthioribose-1-phosphate; MTI, 5 methylthioribose-1-phosphate isomerase; MTRu-P, 5-methylthioribulose-
phosphate; DEP, methylthioribulose-1-phosphate dehydratase-enolase-phosphatase; DHKMP, 1,2-dihydro-3-keto-5-
methylthiopentene; ARD, acireductone dioxygenase or 2-keto-methylthiobutyric-acid-forming enzyme; KMTB, 2-oxo-
4-methylthiobutyrate; Transaminase, putative aminotransferase catalysing the synthesis of Met from 2-keto-
methylthiobutyric acid. 

Table 2.1. DAPs related to the Met cycle, phytosiderophores synthesis and iron homeostasis found in 2.5 mM NH4+ 
vs 2.5 mM NO3

- and 2.5 mM NH4
+ vs 1 mM NH4

+ comparisons in B. distachyon roots. The log2FC values shown in red 
were not significantly regulated (p < 0.05). 

 

2.5 mM NH4+
vs 2.5 mM NO3-

2.5 mM NH4
+

vs 1 mM NH4
+

Uniprot ID Gene ID Description log2FC log2FC

I1HF18 LOC100843457 S-adenosylmethionine synthase 1 1.22 0.86

I1HF17 LOC100844978 S-adenosylmethionine synthase 3-like 0.99 0.88

I1H1W0 LOC100839737 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase 2-like 1.00 0.52

I1IMJ2 LOC100834960 methylthioribose-1-phosphate isomerase 1.60 0.68

I1IES2 LOC100828599 probable bifunctional methylthioribulose-1-phosphate dehydratase 1.87 1.03

I1J366 LOC100837535 methylthioribose kinase 2 1.93 1.00

I1GTE3 LOC100837759 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase 2 2.15 1.50

I1IAD2 LOC100829217 nicotianamine synthase-like 5 protein 2.50 1.70

I1HZL5 LOC100822873 nicotianamine synthase 2-like 2.52 0.95

I1H680 LOC100832895 probable nicotianamine synthase 2 1.18 0.08

I1HZX5 LOC100831451 nicotianamine aminotransferase A-like 3.60 1.15

I1GYH1 LOC100822209 nicotianamine aminotransferase A-like 0.74 0.41

I1IL44 LOC100841166 nicotianamine aminotransferase A-like 0.68 0.63

I1IUR4 LOC100823408 2'-deoxymugineic-acid 2'-dioxygenase-like 2.67 0.79

I1J071 LOC100826305 probable metal-nicotianamine transporter YSL9-like 3.52 0.26

I1IP67 LOC100837011 ferrochelatase-2, chloroplastic 0.95 0.87

I1H8C0 LOC100845842 metal transporter Nramp2 1.40 0.47

I1IV67 LOC100837024 ferritin-1, chloroplastic -4.67 -3.60

I1GUN7 LOC100837457 CDGSH iron-sulfur domain-containing protein NEET -2.41 -2.43

I1HBL2 LOC100825497 Uncharacterized protein (SUF_FeS_clus_asmbl_SufBD) -1.07 -0.66
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Ammonium nutrition enhances the synthesis of phytosiderophores and leads to higher Fe and Zn 

accumulation  

In view of the great amount of up-shifted DAPs found in ammonium stressed plants (2.5 mM 

NH4
+) in relation with Met cycle and Fe homeostasis we aimed to further study the potential 

relationship between ammonium stress and Fe homeostasis in B. distachyon. To do so, firstly we 

decided to confirm the proteome data that suggested the stimulation of the synthesis of MAs 

analyzing the PS content in roots. We focused on 2.5 mM concentration (NH4
+ vs NO3

-) and we 

measured the content of NA and MAs: avenic acid, mugineic acid, 2´-deoxymugineic acid, 3 -

hydroxymugineic acid, distichonic acid A and deoxydistichonic acid A. In addition, we 

determined glutathione (GSH) content because some studies reported a key role for glutathione 

in iron metabolism, notably for Fe-S clusters assembly (Kumar et al., 2011; Couturier et al., 

2013). In agreement with the proteome profile, 5 out 6 of the MAs were higher in ammonium 

nutrition (Figure 2.7). Among them, the content of MA, which represented around 90 % of total 

MAs content, was 7.6-fold higher upon ammonium nutrition. Moreover, the accumulation of NA 

was 13.5-fold higher under ammonium respect to nitrate nutrition. Similarly, the content of 

citrate, Fe chelator, nearly doubled under ammonium nutrition (Figure 2.7). However, the 

content of Met was significantly lower in ammonium nutrition, meanwhile the content of total 

glutathione was not affected by the N source (Figure 2.7). 
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Figure 2.7.  Phytosiderophores and metabolites involved in Fe uptake and transport in roots of B. distachyon 
Phytosiderophores (nicotianamine, mugineic acid 2´-deoxymugineic acid, 3-Hydroxymugineic acid, distichonic acid A, 
deoxydistichonic acid A, and avenic acid), citrate, and total glutathione (expressed as GSSG equivalents) are given as 
nmol g-1 FW. Met is given as µmol g-1 FW. Proteins shown in red represent the up-shifted DAPs related to MAs 
synthesis in the proteomic comparison between 2.5 mM NH4

+ vs 2.5 mM NO3
-. Met and citrate data correspond to 

those already presented in chapter 1. Values are the mean ± SE (n = 4). The statistical significance was assessed by t 
student (p<0.05). 

Both the proteome data and the PS analysis suggest a potential capacity to increase of Fe uptake 

under ammonium nutrition. Thus, we determined Fe content in roots and leaves. Moreover, 

because MAs are also chelators of Zn, we also determined its content. Accordingly, both the 

content of Fe and Zn was higher in the root of plants grown with 2.5 mM NH4
+ respect to those 

grown with NO3
- (Figure 2.8). In leaves Zn was also accumulated in ammonium-fed plants while 

no differences were found for Fe (Figure 2.8). MAs synthesis requires an active sulphur 

assimilation machinery to provide their precursor SAM. In this sense, the content of sulphur and 

sulphate was increased under ammonium nutrition both at the root and aerial part level (Figure 

2.8). 
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Figure 2.8. Contents of Fe, Zn, sulphur and sulphate in leaves and roots of B. distachyon grown with 2.5 mM NH4
+ 

(white bars) and 2.5 mM NO3
- (grey bars). Values are the mean ± SE (n = 4). The statistical significance was assessed 

by t student (p<0.05). 
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The nitrogen source influences the plant response to Fe availability 

Following the higher Fe and MAs content in B. distachyon root under ammonium nutrition, we 

hypothesized that NH4
+ may affect the plant response to changes in Fe availability. To test this 

hypothesis, we performed an experiment growing the plants under Fe deficiency (D) and also 

under Fe toxicity (T) and determined plant growth, chlorophyll, NH4
+ and total amino acids 

content together with Fe and Zn accumulation (Figure 2.9).  

As expected, we found that D condition provoked a substantial decrease in plant growth in 

chlorophyll content independently of the N source provided (Figure 2.9). However, the growth 

inhibition provoked by ammonium nutrition in the root was more evident in Fe deficiency 

compared to C, suggesting a synergistic effect of both nutrients, Fe and NH4
+ (Figure 2.9). 

Interestingly, this higher sensitivity to combined Fe deficiency and ammonium nutrition was 

correlated with higher NH4
+ accumulation in the tissues (Figure 2.9), which is indicative of a 

higher ammonium stress. As commonly happens under ammonium nutrition amino acids level 

followed the same trend as NH4
+ content (Figure 2.9). 

As previously observed, Fe and Zn contents in root were higher in C condition under ammonium 

nutrition and this higher Fe content was observed both in D and T treatments (Figure 2.9). 

Regarding Zn levels, the accumulation observed in ammonium nutrition in C was promoted 

under Fe deficiency but was absent under Fe toxicity (Figure 2.9). Overall, ammonium-fed plants 

appeared more sensitive to Fe deficiency at the root level regardless the Fe accumulation. As 

suggested by the proteomic study, physiological data and micronutrient analysis confirm the 

interaction between Fe homeostasis and ammonium nutrition in B. distachyon.  
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Figure 2.9. Biomass and content of chlorophyll, NH4
+, total amino acids, Fe and Zn  in response to the interaction 

between the N source (2.5 mM NH4
+ represented in white bars and 2.5 mM NO3

- in grey bars) and Fe supply (Fe3+ 
Deficiency, D in X-axis;  Fe3+ Control condition, C; Fe3+ toxicity, T) in B. distachyon. Columns represent the mean values 
± SE (n = 3). Asterisk (*) indicates either significance of the two-way ANOVA (N for nitrogen source, Fe for iron 
condition) or significance between nitrogen source at the same iron condition analysed by the t-student test (p<0.05).  

Finally, we decided to perform a last experiment again growing B. distachyon plants in C and D 

conditions but adding a new condition that we called Fe moderate deficiency or MD. In MD 

condition plants were grown with 10 µM Fe3+, which corresponds to 10% of the Fe3+ supplied in 

C condition. The results found in D condition confirm the previous experiment with a higher 

sensitivity of the root under ammonium nutrition in association with NH4
+ accumulation in the 
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root. Interestingly, in view of the biomass and chlorophyll data, MD treatment represented a Fe-

sufficient condition for nitrate-fed plants that performed as in C condition. In contrast, for 

ammonium-fed plants MD represented an important stress evidenced by a lower biomass and 

an important decrease in the chlorophyll content.  

Figure 2.10. Biomass, and content of chlorophyll, NH4
+ and total amino acids in response to the interaction between 

the N source (2.5 mM NH4
+ represented in white bars and 2.5 mM NO3

- in grey bars) and Fe supply (Fe3+ Deficiency, 
D in X-axis; Moderate Fe3+ Deficiency, MD; and Fe3+ Control condition, C) in B. distachyon. Columns represent the 
mean values ± SE (n = 3). Asterisk (*) indicates either significance of the two-way ANOVA (N for nitrogen source, Fe 
for iron condition) or significance between the N sources at the same iron condition analysed by the t-student test 
(p<0.05).  
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5.  DISCUSSION 

Proteomic analyses in roots of B. distachyon exposed to ammonium nutrition indicates 

adaptation of carbon and nitrogen metabolism and changes in the cell wall. 

Proteome analysis offers one of the best options for the functional analysis of translated regions 

of the genome and generates detailed information about the essential mechanisms of plant 

stress response. Previous studies have already used proteomics to study root adaptation to 

ammonium nutrition in different species (Menz et al., 2016; Prinsi and Espen, 2018; Coleto et 

al., 2019; Royo, et al., 2019). The proteome analysis carried out in B. distachyon confirmed a 

number of processes already shown relevant in plant response to ammonium nutrition such as 

redox homeostasis control or the adaptation of root carbon and nitrogen metabolism. The major 

differences were found when comparing NH4
+ vs NO3

- at high N concentration (2.5 mM). Thus, 

proteomic data are in agreement with the physiological characterization performed in Chapter 

1 (De la Peña et al., 2019), since most changes occurred with the 2.5 mM NH4
+, which 

represented a stressful situation, compared for instance to 1 mM NH4
+, which meant a situation 

of ammonium tolerance.  

Among others, the proteome data corroborated the down-regulation of GS2 (“glutamine 

synthetase chloroplastic” I1J2T4) already observed in ammonium-fed B. distachyon (Chapter 1) 

at the gene expression level and in other species, such as Arabidopsis (Sarasketa et al., 2016). 

The stimulation of asparagine synthetase (I1IV86) is also in agreement with the huge 

accumulation of Asn reported in chapter 1. Besides, the induction of GDH is a classical marker 

of plant response to ammonium nutrition (Loulakakis and Roubelakis-Angelakis, 1991; De la 

Peña et al., 2019) and accordingly GDH2 (I1J084) was up-shifted in root of ammonium-fed 

plants. Although long-studied, the physiological role of GDH under ammonium nutrition remains 

still controversial, notably regarding its working sense. Notably with the use of labeling 

techniques, a number or works advocate for its function deaminating Glu for 2-OG provision, 

e.g. in tobacco and wheat (Labboun et al., 2009; Vega-Mas et al., 2019a). This skeleton-supplier 

role is in agreement with its low affinity for NH4
+, which suggests its function to be linked to 

compensate carbon depletion in the cell under stressful conditions (Robinson et al, 1991; 

Fontaine et al., 2012). However, other studies have provided evidence for GDH function in NH4
+ 

assimilation, e.g. in tomato (Ferraro et al., 2015; Vega-Mas et al., 2019b). 

The cell wall is key for cell expansion; loosening of the wall allows the cell to expand, whereas 

crosslinking between their polymers inhibits cell expansion. Several reports have shown a 

relationship between ammonium nutrition and cell wall biogenesis and organization. 
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Transcriptomic and proteomic studies have shown that ammonium treatment down-regulates 

the expression of genes encoding cell wall-modifying enzymes that contribute to cell expansion 

(Patterson et al., 2010). In this line, Prinsi and Espen et al. (2018) and Royo et al. (2019) also 

identified a number of cell wall-related proteins, notably associated to the lignification and 

suberization of the secondary cell wall. Xyloglucan is a major hemicellulosic structural 

component of the cell-wall matrix of dicotyledons and non-commelinid monocotyledons and 

xyloglucan endotransglucosylase/hydrolases (XTHs) have a double catalytic activity mediating 

both the splitting and the reconnection of the xyloglucan crosslinks in the cell wall, what stiffen 

and loose the cell wall respectively (Hara et al., 2014). Xyloglucan is not a major component of 

the cell wall of Poales, including B. distachyon, which is characterized by increased amount of 

glucuronoarabinoxylans (GAX) and (1,3;1,4)-β-D-glucans. However, the importance of 

xyloglucan and XTHs has been reported even in commelinoid monocots, which include Poales 

(Hara et al., 2014). In our work we found decrease abundance of three XTHs in ammonium-fed 

roots (I1I257, I1I258, I1GTU3). We also report a decreased abundance in a number of proteins 

associated to phenylpropanoid biosynthesis including lignin; among others, three PAL enzymes, 

a probable 4-coumarate-CoA ligase 3 (I1HXV5) and a caffeoyl-CoA O-methyltransferase 1 

(I1H0Q2). These results are in line with the proteome changes of Medicago truncatula root 

under ammonium nutrition reported by Royo et al., (2019). In addition, it is known that ROS are 

involved in cell wall loosening and stiffening (Gapper and Dolan, 2006). In particular, Class III 

peroxidases are a source of ROS to form lignified tissues and strengthen cell walls (Yan et al., 

2019). Podgórska et al. (2017a) and Royo et al. (2019) reported higher peroxidase activity in 

ammonium-grown A. thaliana and M. truncatula plants, respectively. Indeed, Royo et al., (2019) 

showed increased lignin production and Podgórska et al. (2017a) reported a higher cell wall 

stiffness under ammonium nutrition, overall suggesting that NH4
+-mediated growth inhibition 

could be related to a more rigid cell wall structure. In our proteome, we also identified several 

peroxidases but most of them were down-shifted in ammonium-grown plants (Table S2.1, S2.3). 

Future studies will be helpful to further go into depth in the cell wall dynamics in B. distachyon 

depending on the N source provided, which may be important to better exploit bioenergy 

production in grasses. 

Phytosiderophores synthesis, Fe and Zn uptake are promoted in B. distachyon roots under 

ammonium nutrition 

Graminaceous species, including B. distachyon, acquire Fe using a chelation-based strategy. To 

do so, PS are secreted and chelate Fe(III) in the rhizosphere that becomes soluble as Fe(III)–PS 

complexes, which are then taken up by YS/YSL transporters (Hindt and Guerinot, 2012; 
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Kobayashi et al., 2019). Proteome data showed a higher abundance of proteins involved in the 

synthesis of PS, thus suggesting the higher capacity of plants grown under ammonium nutrition 

to acquire metals (Table 2.1). This was confirmed both by the quantification of PSs and Fe in 

plant tissues, that were higher under ammonium nutrition (Figures 2.7, 2.8). Indeed, MAs are 

also chelators of Zn and notably this metal was also accumulated at the whole-plant level under 

ammonium nutrition. SAM is the precursor for the synthesis of PSs, therefore to sustain PS 

synthesis a proper SAM availability is needed, which in turn demands sulphate uptake and 

assimilation. Ammonium nutrition has been suggested to enhance sulphate uptake probably to 

provide anionic equivalents and charge balance to ammonium-fed plants, which contain less 

low-molecular weight anions such as NO3
− or carboxylates (Van Beusichem et al., 1988; 

Gerendas et al., 1997; Zhang et al., 2005). Furthermore, Coleto et al., (2017) observed enhanced 

sulphur assimilation under ammonium nutrition in Brassica napus. In this line of evidence, we 

reported higher levels of S and sulphate (Figure 2.8) and higher abundance of ATP sulfurylase 1 

(I1GNF6) and other sulfur-related proteins under ammonium nutrition (Tables S2.1, S2.3). 

Moreover, almost all the enzymes taking part in the Met cycle, in charge of recycling Met 

derivatives for SAM replenishment, were up-regulated under ammonium nutrition (Figure 2.6; 

Table 2.1). This activation of the Met cycle would explain the diminished content of Met in 2.5 

mM NH4
+ and could indicate that Met Cycle would be diverted towards SAM recycling (Figure 

2.7). Overall, present results suggest a coordination between sulphur metabolism and PS 

synthesis, potentially to enhance Fe uptake under ammonium nutrition.  

Fe uptake stimulation under ammonium nutrition has been already observed in the context of 

the acidification of apoplastic/rhizosphere pH that increases the solubility of Fe3+ and in the case 

of Strategy I plant also activating ferric reductase enzyme (Mengel and Geurtzen, 1988; Alloush 

et al., 1990; Kosegarten et al., 1998, 1999). In our work the nutrient solution was buffered and 

often replaced thus, the medium pH remained quite stable (6.9-7.4) during the whole 

experiment regardless the treatment. Indeed, several reports indicate that pH acidification of 

the rhizophere is unlikely the sole reason for the Fe uptake stimulation observed under 

ammonium nutrition (Zhu et al., 2018; Zhu et al., 2019). In agreement, Zhu et al. (2018) reported 

a higher expression of genes for Fe transporters in ammonium-fed rice. In our work, although a 

pH effect cannot be completely discarded the differences found in Fe levels seem mainly related 

to enhanced MAs synthesis rather than to an increase of Fe solubility related to pH in the 

rhizosphere.  
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The N source modifies B. distachyon response to Fe availability  

Following the higher capacity of ammonium-fed roots to take up Fe, we hypothesized that NH4
+ 

might affect the Brachypodium´s response to changes in Fe availability. To test this hypothesis, 

we performed experiments combining the N source with altered Fe availability. 

Fe is an essential micronutrient for plants and both its deficiency and excess represent stressful 

situations for the plant. Among others, the excess of Fe provokes leaf bronzing, poor root 

growth, suppression of cations levels and induction of ROS levels (Becker and Asch, 2005). 

Tolerance mechanisms to Fe toxicity include, among others, formation of Fe plaques in the 

rhizosphere, limitation of Fe acquisition regulating PS synthesis, Fe confinement at the root 

level, sequestering Fe in the vacuole or joined to ferritins, and increasing the plant antioxidant 

defence (Briat et al., 2010; Kabir et al., 2016; Siqueira-Silva et al., 2019). 

In our study, T treatment produced an important accumulation of Fe, mainly at the root level 

accompanied by a sharp decrease in Zn levels, suggesting a high competition for the uptake of 

both microelements. Notably under ammonium nutrition the uptake of Fe was still higher with 

30% more Fe being accumulated in the root. However, since at the leaf level no differences were 

found in Fe accumulation, it appears that ammonium-induced growth decrease respect to 

nitrate nutrition was partially mitigated in T treatment. The underlying reasons for this 

difference remain to be elucidated in future studies but one could hypothesize a higher Fe-

chelating or compartmentalization capacity of ammonium-fed plants. Indeed, NA avoids Fe 

precipitation and minimizes Fe toxicity as the chelation of Fe prevents ROS production via the 

Fenton reaction (Hell and Stephan, 2003). In Brachypodium roots fed with ammonium, the clear 

promotion of NA synthesis could act in this sense, shielding the cell machinery from the Fe 

excess stress (Figure 2.7). Besides, ammonium is known to sometimes induce the plant 

antioxidant-machinery (Dominguez-Valdivia et al., 2008; Podgórska et al., 2017b), that could be 

helping to prevent from the excess of Fe. Overall, our proteome data do not highlight an 

induction of the antioxidant machinery at the root level, although, for example 

monodehydroascorbate reductase (I1I9F4) was accumulated. 

Because of Fe involvement in chlorophyll synthesis, leaf chlorosis is one of the most common 

symptoms of Fe deficiency. In our work we detected almost no-interaction between Fe 

deficiency and N source at the shoot level since the behavior of ammonium-fed plants respect 

to nitrate-fed ones in D was similar as observed in C conditions (Figures 2.9, 2.10). At the root 

level we observed a lower biomass of ammonium-fed plants, suggesting higher sensitivity to D. 

Moreover, NH4
+ content in the root notably increased in D respect to C. The excessive 
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accumulation of NH4
+ in tissues is an undesirable effect of ammonium nutrition and is considered 

one of the main factors governing plants sensitivity towards ammonium nutrition (Britto and 

Kronzucker, 2002; Esteban et al., 2016). Thus, despite the root enhances the ammonium 

assimilation into amino acids (Figure 2.9, 2.10) in D, the observed huge NH4
+ accumulation could 

be responsible for the strongly impaired growth of B. distachyon roots. In this line, Zhu et al. 

(2019) recently reported an increase NH4
+ uptake in Arabidopsis thaliana under Fe deficiency, 

that was correlated with the induction of AMT1;1 and AMT1;3 NH4
+ transporters. Moreover, 

amt1;3 mutant displayed increased sensitivity to Fe deficiency respect to wild type plants (Zhu 

et al., 2019).  

In a second experiment, in MD condition we observed again the negative effect of ammonium 

nutrition in root physiology when Fe availability is limiting. Interestingly, we also observed this 

effect at the shoot level, notably in chlorophyll content that decreased respect to C condition in 

ammonium-fed plants, whereas, in nitrate-fed ones the chlorophyll contents remained constant 

despite the lower Fe availability (Figure 10B). These results differ with a number of previous 

results showing a beneficial effect of ammonium under Fe deficiency in both dicots and 

monocots (Alloush et al., 1990; Kosegarten and Englisch, 1994; Kosegarten et al., 1998; Zhu et 

al., 2018; Zhu et al., 2019; Zou et al., 2001). 

To our knowledge, the present work is the first one studying Fe-NH4
+ interaction in B. distachyon 

and thus, to explain the contrasting behavior found a potentially different physiology of B. 

distachyon respect to other species cannot be discarded. Additionally, the discrepant behavior 

observed could be also to the fact that in some of these studies ammonium was applied in the 

presence of nitrate (Kosegarten et al., 1998; Zhu et al., 2019; Kosegarten and Englisch, 1994). 

Besides, in our study B. distachyon plants grown with the supply of 2.5 mM NH4
+ were clearly 

subjected to ammonium stress, which differs from other studies where exclusive ammonium 

nutrition did not provoke a stressful situation because of the NH4
+ concentration used, the 

timing of exposure to NH4
+ or the species of study, such as rice that is highly tolerant to 

ammonium nutrition (Alloush et al., 1990; Zou et al., 2001; Zhu et al., 2018). The reported 

beneficial effect of NH4
+ on Fe deficiency would be supported by the increased Fe uptake of 

ammonium-fed plants and by the capacity of NH4
+ to make soluble the Fe bound to 

hemicelluloses in the cell wall (Zou et al., 2001; Zhu et al., 2018; Zhu et al., 2019). In addition, 

NH4
+ has also been shown to promote remobilization of the P from the cell wall (Zhu et al., 2016). 

Both in the case of Fe and P, the release of these nutrients from the cell wall appears to be 

dependent on NH4
+-triggered production of nitric oxide (NO) (Zhu et al., 2018; Zhu et al., 2016).  
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In our study, ammonium nutrition also promoted Fe uptake independently of the Fe supply 

(Figures 2.8, 2.9), however we observed a higher sensitivity of ammonium-fed plants to limiting 

Fe availability, in particular in MD, compared to nitrate-fed plants (Figures 2.9, 2.10). As stated, 

this could be due to higher tissue NH4
+ content (Figures 2.9, 2.10). Alternatively, the capacity of 

plants to properly utilize the available Fe could be compromised, thus provoking leaf chlorosis 

(Figure 2.10). Indeed, a number of works have observed that the alteration of Fe utilization 

capacity yields chlorotic symptoms without affecting total tissue Fe content (Kosegarten et al., 

1998; Haydon et al., 2012). Among others, this can be due to an improper loading of the Fe from 

the xylem/apoplast into the cells or to perturbations in subcellular partitioning of Fe (Haydon et 

al., 2012). Supporting the idea of an impaired Fe utilization capacity, we found for instance that 

a CDGSH iron-sulfur domain-containing protein (I1GUN7) and notably ferritin-1 (I1IV67) were 

less abundant under ammonium nutrition (Table 2.1; Table S2.1). In this line of evidence, citrate 

is a key Fe chelator for its transport from the root to the leaf. Under ammonium nutrition it is 

known that citrate pool in the root is mainly diverted to 2-OG supply for NH4
+ assimilation (Setién 

et al., 2013; Vega-Mas et al., 2019a), as also s discussed in B. distachyon in chapter 1 (De la Peña 

et al., 2019). Thus, we may hypothesize that the withdrawal of citrate for NH4
+ assimilation 

would suppose a trade-off for proper Fe transport within the plant. Indeed, in view of low Fe-

content shoot/root ratio (Figure S2.8), the long-distance transport appears compromised under 

ammonium nutrition.  

On the other hand, the high levels of Zn observed in ammonium-fed plants in Fe deficiency 

condition could be also responsible for the higher sensitivity observed in Brachypodium. 

Changes in gene expression to facilitate the availability of Fe are known to promote the uptake 

of other essential and non-essential metals (Li and Lan, 2017). To avoid toxicity of these 

micronutrients, genes encoding transporters to sequester these metals into vacuoles are also 

commonly induced, including Zn (Haydon et al., 2012), but also Cu (Perea-García et al., 2013) or 

Mn transporters (Arrivault et al., 2006). As Zn is strongly accumulated both in root and leaf, Zn 

stress cannot be discarded.  

Concluding remarks 

The proteome analysis revealed important root adaptation to ammonium nutrition involving 

among others: carbon and nitrogen metabolism, cell wall metabolism, redox homeostasis and 

interaction with other ions. In particular, ammonium-nutrition induced MAs synthesis and Fe 

and Zn uptake. Besides, the interaction between ammonium nutrition and Fe metabolism was 

evidenced by the increased sensitivity of ammonium-fed plants to suboptimal Fe availability. 
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The overall results suggest that impaired Fe transport to shoots and utilization would be 

responsible for the observed phenotype. Future research is needed to further elucidate the 

mechanisms underlying the interaction between these nutrients. Studying the partitioning of 

Fe, Zn and its chelators, in different tissues and subcellular compartments will be of especial 

interest. Besides, further integrating the metabolism of other nutrients, notably Zn, is also 

necessary to get the whole picture of Fe-NH4
+ interaction and the potential applications of 

ammonium nutrition, since both micronutrients Fe and Zn are key in the grain cereal quality and 

also essential for animal nutrition. 
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SUPPLEMENTARY TABLES LEGENDS (available in attached USB flash drive) 

Table S2.1. List of proteins identified, quantified, and differentially expressed in roots of B. distachyon grown under 

nitrate or ammonium nutrition. 

Table S2.2. Proteins significantly regulated in common way in different comparisons in roots of B. distachyon. 

Table S2.3. Functional categorization in three ontologies: biological process, cellular component and molecular 

function of differentially abundant proteins in every comparison in roots of B. distachyon. 

Table S2.4. Full list of enriched GO categories/terms in every comparison in roots of B. distachyon. 
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6.  SUPPLEMENTARY INFORMATION 

 

Figure S2.1. Principal component analysis (PCA) of protein expression profiles of the 12 samples analyzed (three 
biological replicates per N condition) in Brachypodium distachyon roots. 
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Figure S2.2. Hierarchical clustering of protein expression profiles of the 12 samples analyzed (three biological 
replicates per N condition) in Brachypodium distachyon roots. 
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Figure S2.3. Volcano plots representing the proteins quantified in the four nitrogen nutritional comparisons analysed 
in Brachypodium distachyon roots. Proteins are ranked according to their statistical –log10 (p-value) (y-axis) and their 
relative abundance ratio (log2 fold change). Red and blue dots represent differentially abundant proteins (DAPs) with 
a fold-change greater than 1.5 and a p-value < 0.05. 
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Figure S2.4. Gene ontology enrichment analysis of down-shifted DAPs in 1 mM NH4
+ vs 1 mM NO3

- comparison (No 
significant enrichment was found for up-shifted DAPs) in roots of B. distachyon. The fold enrichment is the ratio of 
the number of DAPs observed over the expected number of proteins associated to a particular category/term based 
in the reference proteome. Only the more significant specific categories/terms are represented. The full list is 
available in the Table S2.4. 
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Figure S2.5. Gene ontology enrichment analysis of down-shifted (A) and up-shifted (B) DAPs in 2.5 mM NO3
- vs 1 mM 

NO3
- comparison in roots of B. distachyon. The fold enrichment is the ratio of the number of DAPs observed over the 

expected number of proteins associated to a particular category/term based in the reference proteome. Only the 
more significant specific categories/terms are represented. The full list is available in the Table S2.4. 
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Figure S2.6. Venn diagram showing the number of common differentially abundant proteins (DAP) identified between 
2.5 mM NH4

+ vs 1 mM NH4
+ , and 2.5 mM NH4

+ vs 2.5 mM NO3
- comparisons in Brachypodium distachyon roots. 
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Figure S2.7. Gene ontology enrichment analysis performed with the down-shifted (A) and up-shifted (B) DAPs 
commonly identified both in 2.5 mM NH4

+ vs 1 mM NH4
+ and 2.5 mM NH4

+ vs 2.5 mM NO3
- comparisons in B. 

distachyon roots. The fold enrichment is the ratio of the number of DAPs observed over the expected number of 
proteins associated to a particular category/term based in the reference proteome. Only the more significant specific 
categories/terms are represented. The full list is available in the Table S2.4. 
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Figure S2.8. Shoot-to-root Fe (A) and Zn (B) contents (Figure S10), for the experiments 1 and 2. Values are the mean 

± SE (n = 3-4). Asterisk (*) indicates either significance of the two-way ANOVA (N for nitrogen source, Fe for iron 

condition) or significance between nitrogen source at the same iron condition analysed by the t-student test (p<0.05). 
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CHAPTER 3 

Exploiting natural metabolic variability in Brachypodium distachyon to 

define the genetic basis of adaptation to ammonium nutrition 
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1. ABSTRACT 

Ammonium (NH4
+) is a fundamental substrate for the synthesis of many biomolecules. However, 

when present in excess it results toxic for most species develop symptoms of stress although a 

great inter- and intraspecific variability in ammonium tolerance has been reported. Today, the 

causal genes underlying the observed variability are far of being discovered. In this work, we 

explored the genetic and metabolic natural intraspecific variability of the model grass 

Brachypodium distachyon. To do so, we characterized a panel of 52 sequenced B. distachyon 

natural accessions, shown as genetically diverse, when growing under ammonium or nitrate 

nutrition. We determined plant growth and depicted the metabolic adaption to the N source of 

every genotype determining a panel of 22 metabolic markers, including enzyme activities and 

metabolite content. In general, we observed extensive natural variation in B. distachyon 

response to ammonium nutrition, which was closely related to plant metabolic adaptation. 

Statistical and exploratory data analysis highlighted, among others, PEPC activity and NH4
+ 

content in the leaves, sucrose content in the root and glutathione levels as important traits 

explaining the observed variability in ammonium tolerance. Genome-wide association studies 

using multi-locus mixed models for every trait determined revealed an important number of 

significant SNPs, highlighting genomic regions where key genes related to B. distachyon 

ammonium tolerance may be located. Overall, this work represents a significant advance to 

unmask the complex networks that link metabolism with natural variability under ammonium 

nutrition. 

2. INTRODUCTION 

Cereals are the major source of calories for human nutrition and essential for animal feed and 

also for the production of biofuel. To maximize yields the application of fertilizer is required. 

Although plants require a balance of all mineral nutrients for optimal growth, nitrogen (N) is 

generally the main driver of yield. Thus, over 100 million tons of N fertilizers are globally applied 

per year (Garnett et al., 2015; Swarbreck et al., 2019). Unfortunately, cereal nitrogen use 

efficiency (NUE), defined, as the amount of applied fertilizer that is recovered by grain, is very 

low and it is estimated that only 33 % of the applied N is recovered at harvest, which represents 

a huge loss of N to the environment and consequently a great threat for the environment (Raun, 

and Johnson, 1999). These N losses, on average 50 kg N ha-1 year-1, leads to pollution of 

groundwater and the emission of greenhouse gases (Lassaletta et al., 2014). These losses make 

agriculture unsustainable, even more in the context of a growing world population. Thus, 

decreasing crop N requirement while maintaining high yield is necessary. Increasing NUE can be 

achieved by improving fertilization management and increasing plant potential for higher NUE 
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(Garnett et al., 2015; Hawkesford and Griffiths, 2019). Very recently, it has been proposed to 

consider N responsiveness as an alternative selection trait to NUE, a concept defined as the 

capacity of plants to induce physiological and morphological changes according to N availability 

that may increase N uptake and assimilation (Swarbreck et al., 2019).  

The use of ammonium fertilizers, in combination with nitrification inhibitors, has been 

demonstrated efficient to mitigate N losses to the environment and therefore a good approach 

to increase NUE (Ruser and Schulz, 2015; Coskun et al., 2017b). This is because the use of 

inhibitors of nitrification delays the conversion of ammonium to nitrate, allowing ammonium to 

stay bonded to the soil profile for longer, but yet available for the plant to uptake. Nevertheless, 

when NH4
+ is present in the soil at high concentrations may lead to reduced growth respect to 

nitrate nutrition, therefore it makes necessary to improve crops performance under ammonium 

nutrition. 

When plants directly take up NH4
+, the metabolic energy needed for NO3

- reduction is saved. 

However, although NH4
+ is a fundamental substrate for many biomolecules synthesis, when it is 

present in excess many species develop toxic symptoms. The adverse effects of ammonium 

stress range from visible symptoms such as leaf chlorosis to physiological disorders such as 

oxidative stress, alteration in intracellular pH or mineral nutrition imbalance (Britto and 

Kronzucker, 2002; Liu and von Wirén, 2017). In general, it is considered that these physiological 

disorders are the result of excessive NH4
+ uptake and accumulation in tissues (Britto and 

Kronzucker, 2002; Sarasketa et al. 2014). In fact, the main strategies plants have evolved to avoid 

ammonium toxicity are the increase of NH4
+ efflux outside, and its capture inside the vacuole. 

Alternatively, enhancing NH4
+ assimilation, which demands an important adaptation of primary 

metabolism, is essential to restrain the unwanted effects of ammonium stress. The energetic 

cost of these processes is considered as a cause of the growth impairment often observed under 

ammonium nutrition. Although considered as universal (Britto and Kronzucker, 2002), different 

species display great variation in ammonium tolerance or sensitivity and indeed intraspecific 

variability in ammonium tolerance has also been reported in different species such as 

Arabidopsis thaliana (Rauh et al., 2002; Sarasketa et al., 2014.) or rice (Di et al., 2018.). Today, 

the causal genes underlying the observed variability are far of being discovered.  

Indeed, NUE and ammonium tolerance are highly complex polygenic traits that involve 

biochemistry, phenology, architecture and responses to the environment. Indeed, there is great 

variation in NUE traits among different genotypes and thus, the exploitation the genetic 

variation, in particular with quantitative genetic approaches such as quantitative trait loci (QTL) 
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mapping of bi-parental populations or the use of association genetics, is a great means for the 

identification of genes controlling NUE (Garnett et al., 2015; Han et al., 2015; Hawkesford and 

Griffiths, 2019). Although there is variation in NUE traits among modern cereal varieties, it is 

clear that a much greater potential of variation exists with the study of ancient/historical 

varieties and wild species that may allow identifying alleles which have been lost in the modern 

germplasm pool (Hawkesford and Griffiths, 2019). Indeed, it appears at a global scale that 

cereals yield increase is plateauing and that modern varieties are not improving in their NUE 

(Han et al., 2015). In this line, a functional allele of the NAC transcription factor NAM-B1 that 

influences nutrients remobilization was identified in wild wheat populations and was absent in 

most modern hexaploid wheat varieties (Uauy et al., 2006). The study of non-domesticated 

species or varieties may be of special relevance in the case of ammonium nutrition, since the 

high nitrification rates common in agricultural soils have made that varieties selection has been 

nearly exclusively performed in the use of nitrate as N source. 

Brachypodium distachyon represents an excellent model plant for the study of cereals 

physiology and genetics (Brutnell et al., 2015; Scholthof et al., 2018). Moreover, as evidenced in 

chapter 1 its behavior under ammonium nutrition is very similar to that of cereal crops such as 

wheat or barley (De la Peña et al., 2019). B. distachyon is a diploid grass with a highly 

homozygous and small genome (272 Mbp) and there is an increasing number of sequenced 

natural accessions available, which are geographically, genetically and phenotypically diverse 

(Vogel et al. 2009; Tyler et al., 2016; Gordon et al., 2017). Interestingly, probably related to the 

fact that B. distachyon is a wild plant that has not experienced domestication, the pangenome 

of B. distachyon contains nearly twice the number of genes found in an individual genome 

(Gordon et al., 2017).  

In this context, the general objective of this chapter was to explore the genetic and metabolic 

natural intraspecific variability of B. distachyon. To do so, we characterized a large panel of 52 

de novo sequenced B. distachyon natural accessions, already shown as genetically diverse 

(Gordon et al., 2017), grown under ammonium and using nitrate as nutritional control. We 

determined the plant biomass and we depicted the metabolic adaption to the N source of every 

genotype determining a panel of 22 metabolic markers including enzyme activities and 

metabolites content. The obtained phenotypes were then used to identify genomic regions 

associated with the different traits by the use of Genome-Wide Association Studies (GWAS).  
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3. EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS 

To characterize the metabolic adaptation of B. distachyon natural accessions grown under 

nitrate or ammonium nutrition, we studied 52 diverse B. distachyon inbred lines that have been 

recently de novo assembled and annotated (Gordon et al., 2017; 

https://brachypan.jgi.doe.gov/). Seeds for the different accessions were obtained from different 

laboratories working in B. distachyon: Pilar Catalán (University of Zaragoza, Spain), Luis Mur 

(Aberystwyth University, UK), Ludmila Tyler (University of Massachusetts, USA), Amy Cartwright 

(Joint Genome Institute) and from the National Plant Germplasm System of the United States 

(https://www.ars-grin.gov/npgs/). 

Seeds were treated were treated following the methodology described in Tyler et al. (2016). 

Seeds were peeled by removing the lemma, washed for 4 min in a solution containing 15 % 

bleach plus 0.1 % Triton-X 100 (Sigma-Aldrich) and thoroughly rinsed with sterile deionised 

water. To synchronise germination, seeds were placed in Petri dishes on damp paper towels and 

stratified in the dark at 4°C for 7 days. After stratification, the plates covered with aluminum foil 

were transferred into a growing chamber for 3 days. Germinated seeds were then sowed on 

trays filled with perlite:vermiculite (1:1, v:v) misted with deionised water. After 7 days, seedlings 

with a uniform appearance were finally transferred to hydroponic tanks filled with 4.5 L of 

nutrient solution. 12 seedlings were placed per tank corresponding to 3 individuals of four 

different genotypes. With a 2.5 mM N provision in the form of NO3
- or NH4

+ during 19 days. 

Growth chamber conditions and medium composition were as described in chapter 1 and after 

the renewed to maintain the pH and the concentration of mineral elements of the hydroponic 

medium constant, the nutrient solution was replaced every 4 days. After every change, the 

stability of pH in the nutrient solution was confirmed. The plants were harvested between 10 

and 12 am. (Two hours after the onset of the photoperiod). Shoots and roots were separated 

and individually weighed. Accession plants grown within the same tank were pooled, 

immediately frozen in liquid nitrogen, homogenized in a Tissue Lyser (Retsch MM 400) and 

stored at -80 °C until use. Three tanks were set up per condition and accession. 12 seedling were 

placed per tank. The three individuals of the same accession growing in the same tank were 

considered as a biological replicate. 

Statistical analysis 

Statistical analyses were performed with IBP SPSS ver.22 (IBM Corp., Armonk, USA). Normality 

and homogeneity of variance were analyzed by Kolmogorov–Smirnov and Levene’s tests. 

Analysis of variance (ANOVA) was carried out to assess the effects of accession (A), nitrogen 
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source (S), and A × S interactions using the general linear model procedure. T-student test was 

performed between ammonium and nitrate condition into each genotype for total biomass. 

Multiple linear regression analysis (stepwise) was used to analyse the relationship between the 

studied variables and the biomass. In this analysis, some traits were excluded to avoid 

collinearity based on multi-collinearity test. 

For PCA analysis, data was standardized with Vegan package and the PCAs runned with 

FactoMineR and Factoextra packages. To deepen into the correlation among the variables, 

correlation matrixes (p<0.01) and a hierarchical clustering using Euclidian distance and average 

linkage were performed using Hmisc and corrplot packages. Heatmaps were visualized with 

heatmap.plus package. Statistical analysis corresponding to Genome Wide Association study is 

available in materials and methods section. 

4. RESULTS 

B. distachyon accessions display extensive intraspecific natural variation in their response to 

growing with ammonium or nitrate as N source. 

To evaluate B. distachyon intraspecific variability when growing with ammonium as sole N-

source we compared the total biomass of 52 B. distachyon natural accessions (Table S3.1) after 

19 days of growth with 2.5 mM NH4
+ supply and we used 2.5 mM NO3

- as control condition 

(Figure 3.1, S3.1). To estimate the degree of ammonium tolerance, we used the ratio between 

the plant total biomass under NH4
+ versus NO3

- conditions, as it has been previously used in 

other works (Cruz et al., 2006; Ariz et al., 2011; Sarasketa et al., 2014). We observed highly 

significant genetic variation regarding ammonium tolerance (SxA) (Figure 3.1, Table S3.2). As 

reported in previous chapters with Bd21 genotype, the results confirm B. distachyon as a 

sensitive species towards ammonium nutrition when 2.5 mM NH4
+ is provided. Indeed, every 

accession except BdTR1i (ratio 1.0) displayed an ammonium/nitrate biomass ratio lower than 1, 

with the lowest ratio reported for Foz1 (0.40). Bd21 displayed an intermediate phenotype, with 

a ratio of 0.68 (Figure 3.1). Overall, 31 accession showed significant differences when comparing 

plant biomass sunder ammonium and nitrate nutrition, notably for the accessions that have a 

ratio lower than that of BdTR11I (less than 0.77). Regarding shoot and root biomass separately, 

they showed a similar pattern to that of total biomass, with a significant SxA interaction in both 

organs (Figure S3.1).  
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Figure 3.1. Natural variation of B. distachyon grown under nitrate or ammonium as N source in 52 accessions of B. 
distachyon. (A) Total plant biomass, (B) Ratio between total biomass under NH4

+ and NO3
- nutrition. Values in left 

graphs are the mean ± SE (n = 3). Asterisk (*) indicates either significant of the two-way ANOVA (S for nitrogen source, 
A for accession) or significant difference between total biomass under ammonium compared with nitrate for each 
accession (p<0.05). The violin plots on the right side show the distribution of the traits.  

The metabolic adaptation of B. distachyon to the N-source is essential to explain its intraspecific 

natural variability in growing under ammonium nutrition  

To evaluate whether B. distachyon intraspecific variability, highlighted by the significant SxA 

interaction of growth parameters, is related to the metabolic adaptation of leaf and root in 

function of the N source provided, we analyzed a panel of metabolic markers in both organs. 

We analyzed the content of 13 metabolites (chlorophyll, glucose, fructose, sucrose, starch, 

malate, citrate, NH4
+, NO3

-, glutamate, total amino acids, protein and glutathione) and 10 

enzyme activities (glucokinase, GK; fructokinase, FK; glutamate dehydrogenase, GDH; glutamine 

synthetase, GS; phosphoenolpyruvate carboxylase, PEPC; malate dehydrogenase, MDH; 

pyruvate kinase, PK; total citrate synthase, CS; mitochondrial citrate synthase (CSm) and NADP-

dependent isocitrate dehydrogenase, ICDH). The whole dataset is available in Table S3.2 and 

represented in boxplots available in supplementary material (Figures S3.2, S3.3, S3.4 and S3.5). 

Overall, we observed significant SxA interaction effect for the content of NH4, NO3
-, amino acids, 

glucose, malate and citrate and for the activity GDH activity in both leaf and root. Besides, in leaf 

a significant interaction was also observed for the content for chlorophyll, sucrose and 

glutamate and for CS and CSm activities. In root, we report significant A x S effect for the content 

of fructose and total glutathione and for PEPC activity (Figure S3.2, S3.3, S3.4 and S3.5).  
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To explore the dataset and to understand the relationships between variables we performed 

different statistical analysis: principal component analysis (PCA), Pearson correlations visualized 

by clustered correlograms and heat map plots that included two-way hierarchical clustering. 

Firstly, PCA was performed with the whole dataset (Figure 3.2) taking into consideration 11 

metabolites and 9 enzymes measured in leaf and root and using the organ biomass as 

supplementary variable. Since root has no value of chlorophyll and starch they were not 

considered for this PCA analysis. GS activity was discarded for every analysis because of the low-

quality of the data obtained. PC1 and PC2 accounted for 76 % of the total variation (Figure 3.2). 

Indeed all the metabolic markers were represented in the PC1-PC2 biplot, except fructose that 

is almost exclusively represented in PC4 (Figure 3C) and citrate and malate, whose variations are 

explained by PC1 but also by PC3. Organ biomass was placed in PC1 and negatively correlated 

with most enzymes. Looking to individuals plot, the metabolic data allowed to clearly differente 

root and leaf data and also a clear differentiation between nitrate and ammonium-grown plants. 

The N-source appeared to have a higher impact on the root metabolism since the leaf data 

overlap while the root-data are clearly separated (Figure 3.1A). Besides, the highest variability 

appears to take place in the root of ammonium-fed plants.  

In view of the expected clear separation between root and leaf we next performed PCAs and 

heat map visualization with hierarchical clustering for each organ separately, both showing again 

a clear separation in function of the N-source supplied (Figures S3.6, S3.7, S3.8 and S3.9). In leaf 

tissue, the heat map highlighted on the one hand the tendency of ammonium-fed plants for 

having a higher content of NH4
+, total amino acids and glutathione together with higher GDH, 

CSm, CS, ICDH, MDH, GK and FK enzyme activities. On the other hand, nitrate-fed plants 

nutrition showed the tendency to accumulate more NO3
-, citrate and malate. On the other hand, 

roots under ammonium nutrition showed the tendency for having a higher content of NH4
+, total 

amino acids and a higher activity of all the enzymes determined. Similar information can be 

extracted from the root-PCA and leaf-PCA (Figures S3.6, S3.7). For instance, in the leaf PCA, 

ammonium-fed accessions were placed in the positive side of the PC1 in agreement with the 

metabolic markers with higher values shown for this nutrition (Figure S3.6).  
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Figure 3.2. Principal component analysis (PCA) of metabolic data set for leaf and root of 52 B. distachyon accessions 
grown under ammonium or nitrate nutrition. (A) Individuals PCA score plot. (B) Variables loading plot represent cos2 
as the square loadings for variables shows the quality of the representation for metabolites traits included in the plot. 
(C) Correlation plot showing the PCs where the variables are represented.  

To further narrow down the exploratory analysis, we performed new heat maps analyzing 

separately not only the organ but also the nutrition type (Figures 3.3, 3.4, S3.10, S3.11). In leaves, 

variables were split into two groups, one including biomass in close relation with the content of 

sugars for both ammonium and nitrate nutrition. In the case of ammonium nutrition, leaf 

biomass was also closely associated to NH4
+ content type (Figure 3.3). For roots, the split of 

variables was more disperse with biomass closely related to soluble carbohydrates in the case 

of ammonium-fed plants and to amino acids (figure 3.3), malate and sucrose in the case of 

nitrate-fed ones (Figure 3.4). Regarding the distribution of the accessions, the clustering 

revealed two groups, in the case of leaves the groups formed contain a similar number of 

accessions (Figures 3.3 S3.10 )while for roots one of the groups was smaller and contained 21 

for ammonium-fed and 13 accessions for nitrate-fed plants (Figures 3.3, 3.4, S3.10, S3.11). 

Looking to the localization of the 10 accessions showing the highest (FOZ1, Adi-2, ABR2, Bd3-1, 

RON2, ABR4, ABR6, ABR8, Tek 4, ABR5) and the lowest (BDTR1i, Bd21-3, Koz-1, Mig3, Per1, 

Mur1, BdTR10C, BdTR2B, Gaz8, BDTR11I) sensitivities to ammonium stress, in both leaf and root 
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tissue of nitrate-fed plants their distribution was scattered (Figures S3.10, S3.11). Interestingly, 

under ammonium nutrition, these accessions were distributed in the two groups of the 

cladogram in function of their tolerance degree. In particular, in roots every tolerant accession 

was located in the upper group while 8 out of the 10 most sensitives located in the lower group 

(Figure 3.4). Similarly in leaves 9 out of 10 tolerant genotypes were placed in the upper group 

while also 9 of the 10 more sensitive accessions were located in the lower group (Figure 3.3). 

This observation highlights the relevance of the metabolic adaptation under ammonium 

nutrition in relation with B. distachyon natural variability towards ammonium stress. 
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Figure 3.3. Leaf heat map visualization with two‐way clustering of 13 metabolites and 9 enzymatic activities 
determined plants grown under ammonium-nutrition including also biomass data against 52 accessions of B. 
distachyon.  Chl means chlorophyll, CS citrate synthase, CSm mitochondrial citrate synthase, FK fructokinase, FW fresh 
weight, GDH NAD-dependent glutamate dehydrogenase, GK glucokinase, Glu glutamate, ICDH NADP-dependent 
isocitrate dehydrogenase, MDH malate dehydrogenase, PEPC phosphoenolpyruvate carboxylase and PK pyruvate 
kinase. The 10 accession displaying the highest tolerance and the highest sensitivity to ammonium nutrition in Figure 
3.1 are shown in purple and yellow, respectively. 
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Figure 3.4. Root heat map visualization with two‐way clustering of 13 metabolites and 9 enzymatic activities 
determined in plants grown under ammonium-nutrition including also biomass data against 52 accessions of B. 
distachyon. Abbreviations are in Figure 3.3. The 10 accession displaying the highest tolerance and the highest 
sensitivity to ammonium nutrition in Figure 3.1 are shown in purple and yellow, respectively. 
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To test the connectivity between paired variables, we tested their linear dependence using 

Pearson’s correlation coefficient was calculated for P≤0.01 that were then clustered in 

correlograms (Figure 3.5). Under ammonium nutrition shoot biomass showed to be positively 

correlated with glucose (r=0.59), fructose (r=0.41) and chlorophyll (r=0.36) content and 

negatively correlated with all the enzymatic activities, notably with CS (r=-0.77) and PEPC (r=-

0.83) (Figure 3.5). Under nitrate nutrition leaf biomass was only negatively correlated with 

protein content (r=-0.68) and the activity of ICDH (r=-0.45) and PEPC (r=-0.50) (Figure 3.3b). In 

the case of root biomass under ammonium nutrition, it was positively correlated with the 

content of sucrose (r=0.49) and glucose (r=0.52) (Figure 3.5). Under nitrate nutrition root 

biomass was positively correlated with the content of citrate (r=0.43), malate (r=0.53), glucose 

(r=0.53) and fructose (r=0.44) and negatively correlated with the content of proteins (-0.40) and 

NO3
- (r=-0.40) and with the activity of many of the determined enzyme activities (GK, r=-0.48; 

GDH, r=-0.46; MDH, r=-0.43; CSm, r=-0.41; ICDH, r=-0.38; CS, r=-0.37) (Figure 3.3d). Regarding 

the total plant biomass ratio ammonium and nitrate-fed plants we only observed was significant 

correlation with the metabolic markers determined under ammonium nutrition. In particular, 

with leaf PEPC (r=-0.54), GDH (r=-0.46), CS (r=-0.43) and PK (r=-0.36) enzyme activities and, with 

root citrate (r=-0.55), glutathione (r=0.48) and glucose (r=0.44) content (Figure 3.5).  

Finally, we analyzed the connectivity between the metabolic variables but regarding their ratios 

under ammonium vs. nitrate nutrition, again considering leaf and root data separately (Figures 

S3.12 and S3.13). In this context, the both total and root biomass ratios were strongly associated 

with the ratio of glutathione content. This association, is also apparent observing the glutathione 

boxplot (Figure S3.4), notably in the root, where the difference in the content of glutathione 

tends to diminish when moving from the most sensitive accession (on left side of the figure) to 

the most tolerant (on right side of the figure). Interestingly this difference does not appear to 

be due to a decrease of glutathione in nitrate nutrition but to an increase of the glutathione 

content of those accessions more tolerant to ammonium. Indeed, both leaf and root glutathione 

content under ammonium nutrition were significantly correlated with biomass parameters, 

while no correlation was observed under nitrate nutrition (Figure 3.5). In this sense, this points 

out that glutathione may play an important role in B. distachyon variability versus the tolerance 

to ammonium.  
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Figure 3.5. Correlation matrixes of the 13 metabolites and 9 enzymatic activities, including also biomass data 
determined in the in leaf and root of 52 B. distachyon accession grown under ammonium or nitrate nutrition. 
Numbers inside the boxes indicate Pearson r correlation coefficient (x100). Significant positive and negative 
correlations (P < 0.01) are highlighted in blue and red, respectively following the scale shown in the right-side of the 
plots. Abbreviations are shown in Figure 3.3. 

Multiple regression analysis is a helpful tool to select the most explanatory metabolic 

variables regarding B. distachyon response to growing under ammonium or nitrate 

nutrition. 

To try to make a hierarchy of the most explanatory variables related with plant growth. We 

performed multiple regression models with a sequential methods using Akaike’s information 

criterion (AIC) to determine the ‘best’ model by rewarding the variables that add explanatory 

power but penalizing the inclusion of additional variables. This provides the simplest model with 

the least collinearity and, thus, supposedly, the best estimation (Shaw and Geyer, 2010). 
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We analyzed eight different scenarios considering the organ biomass (Tables 3.1, 3.2, S3.3 and 

S3.4) and total plant biomass (Table 3.3, S3.5) as dependent variables. Besides, we also made 

two additional models using ammonium vs. nitrate total biomass ratio as dependent variable 

(Table 3.4).The standardized coefficient shows the strength of the independent variables to 

explain the corresponding dependent variable. Under ammonium nutrition, the regression 

models explained 82.5 % and 52.6 % of the variability for shoot and root biomass respectively 

(Tables 3.1, 3.2). For shoot biomass, PEPC activity was the variable with the highest contribution 

to the model and showed a negative effect on shoot biomass. PEPC contribution was followed 

by the content of amino acids, glucose, malate, glutathione and MDH activity (Table 3.1). For 

root biomass, sucrose was the most explanatory variable showing a positive effect and was 

followed by the activity of MDH activity, glucose content and CS activity (Table 3.2).  

Table 3.1. Stepwise-multiple-regression analysis of the metabolic 
measurements (independent variables) in leaves of B. distachyon fed with 
ammonium- associated with shoot biomass (dependent variable). 

 

 

 

 

 

 

 

 

 

 

Table 3.2. Stepwise-multiple-regression analysis of the metabolic 
measurements (independent variables) in root of B. distachyon fed with 
ammonium associated with shoot biomass (dependent variable) 

 
 

 

 

 

 

Under nitrate nutrition, for shoot biomass, protein content followed by ICDH activity and NH4
+ 

content explained 55.6 % of the total variability (Table S3.3). For root biomass glucose showed 

 
SHOOT BIOMASS – AMMONIUM NUTRITION 

INDEPENDENT VARIABLE STANDARDIZED COEFFICIENT P- value 

PEPC ACTIVITY -0.512 0.000 

AMINO ACIDS 0.295 0.000 

GLUCOSE 0.261 0.005 

MALATE 0.213 0.001 

GLUTATHIONE 0.204 0.003 

MDH ACTIVITY -0.171 0.031 

R2 0.846 

ADJUSTED R2 0.825 

ESTIMATE SE 0.036 

 
ROOT BIOMASS – AMMONIUM NUTRITION 

INDEPENDENT VARIABLE STANDARDIZED COEFFICIENT P- value 

SUCROSE 0.484 0.004 

MDH ACTIVITY -0.373 0.009 

GLUCOSE 0.312 0.039 

CS ACTIVITY -0.282 0.029 

R2                        0.565 

ADJUSTED R2                        0.526 

ESTIMATE SE                       0.040 
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the highest contribution to the model, followed by the activity of GK and FK, overall explaining 

the 48.7 % of the variability (Table S3.4). 

Regarding total plant biomass, under ammonium nutrition root-sucrose and leaf-PEPC were the 

most explanatory variables, which together with root PK and leaf CS activity, glutathione and 

total amino acids content explained 86.5 % of the variability (Table 3.3). Under nitrate nutrition 

leaf-protein and GDH activity in combination with root-malate and glucose content explained 

63.9 % of the variability (Table S3.5). In the next scenario, the ratio of ammonium vs. nitrate 

total plant biomass leaf PEPC activity and NH4
+ content under ammonium nutrition, together 

with leaf nitrate and starch content under nitrate nutrition where the variable with the highest 

contribution to the model, which in total explained 76.9 % of the variability (Table 3.4).  

Table 3.3. Stepwise-multiple-regression analysis of the metabolic 
measurements (independent variables) in leaf and root of ammonium-fed plants 
associated with whole-plant biomass (dependent variable). AR and AL are used 
to differentiate the variable determined respectively in roots and leaves of 
ammonium-fed plants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TOTAL BIOMASS – AMMONIUM NUTRITION 

INDEPENDENT VARIABLE STANDARDIZED COEFFICIENT P- value 

AR - SUCROSE 0.445 0.000 

AL – PEPC ACTIVITY -0.348 0.003 

AL - CS -0.303 0.009 

AL - GLUTATHIONE 0.280 0.000 

AL – AMINO ACIDS 0.242 0.000 

AR – PK ACTIVITY -0.242 0.001 

R2                     0.882 

ADJUSTED R2                    0.865 

ESTIMATE SE                    0.051 
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Table 3.4. Stepwise-multiple-regression analysis of the metabolic measurements 
(independent variables) in leaf and root of ammonium- and nitrate-fed plants 
associated with whole-plant biomass ratio of ammonium- vs. nitrate-fed plants 
(dependent variable) AR and AL are used to differentiate the variable determined 
respectively in roots and leaves of ammonium-fed plants. Accordingly, NR and NL 
are used to differentiate the variable determined respectively in roots and leaves 
of nitrate-fed plants. 

 

 
 
 
 
 
 
 
 
 

 

 

 

GWA mapping of the different traits reveals significant genetic association potentially related 

with the natural adaptation of B. distachyon towards ammonium nutrition  

One strategy to decipher the underlying genetics of naturally occurring phenotypic variation is 

the use of genome-wide association studies (GWAS). The power of GWAS has been 

demonstrated by multiple plant studies in different species that mapped and validated 

individual genes associated to many traits like pathogen resistance, Cd content (Atwell et al., 

2010; Chao et al., 2012; Rosas et al., 2013; Yan et al., 2019), complex traits such as flowering or 

root architecture (Rosas et al., 2013; Romero-Navarro et al., 2017) or even metabolites and 

enzyme activities (Angelovici et al., 2013; Luo, 2015; Fusari et al., 2017).  

Complex agricultural traits are controlled by complex genetic architectures that may include 

thousands of genes controlling the variation in the trait of interest (Boyle et al., 2017; Miao et 

al., 2019). Most GWAS carried out in crops use single-locus linear models, such as mixed-linear 

models (MLM) including EMMAX. However, mainly because these models do not take into 

account the background genome possess a reduced statistical power, which is of great 

importance for the study of complex traits (Jaiswal et al., 2016; Miao et al., 2019). In this sense, 

in this study we gave importance to the multi-locus models such as multi-locus mixed-model 

(MLMM) and fixed and random model circulating probability unification model (FarmCPU) which 

take the background genome into account for the analysis using a multiple regression approach 

(Wang et al., 2012; Jaiswal, et al 2016). We select MLMM model over FarmCPU, because the last 

 
RATIO AMMONIUM BIOMASS/NITRATE BIOMASS 

INDEPENDENT VARIABLE STANDARDIZED COEFFICIENT P- value 

AL – PEPC ACTIVITY -0.565 0.000 

NL - NITRATE -0.513 0.000 

NL - STARCH -0.507 0.000 

AL - NH4
+ 0.469 0.000 

AL - FRUCTOSE -0.368 0.000 

AL - STARCH 0.360 0.001 

NR – MDH ACTIVITY -0.250 0.010 

R2                      0.803 

ADJUSTED R2                      0.769 

ESTIMATE SE                      0.066 



 

123 
 

one uses a reduced kinship matrix, which is a less restrictive way to control false positives. 

Indeed, using MLMM more markers passed the significance thresholds, demonstrating that the 

power of association mapping improved due to the MLMM. This is a rather conservative 

approach, as we are aware of the possible multicollinearity that can arise as a result of testing a 

reduced number of genotypes with a very large number of markers. The multi-locus approach 

ensures that trait variance is associated with the most significant markers, whereas closely 

similar markers anywhere in the genome will not be selected by this model. Nevertheless, 

general-linear model (GLM) and MLM, single-locus models, were performed (data not shown). 

Overall, MLMM model showed the best level of confidence and seemed to perform well in 

controlling false positives, as revealed by the closeness of the expected vs. observed 

probabilities points to the 1:1 line in the quantile-quantile (Q-Q) plots for all traits. 
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Figure 3.6. Manhattan plots (left side) showing the marker-trait associations and Q-Q plots (right side) showing 
distribution of observed and expected p-values for the total biomass of plants grown under ammonium (A) or nitrate 
(N) nutrition and for the whole-plant biomass ratio of ammonium vs nitrate-fed plants. When SNPs over –log10(p)>5 
threshold the threshold is shown with a black dashed line 

First, we performed GWAs with the most important and integrative trait related to plant 

performance, which is plant biomass. Besides, we also performed a GWAS with the total plant 

biomass ratio of ammonium vs. nitrate grown plants (Figure 3.6) together with leaf and root 

biomass separately (Figure S3.14).  According to Bonferroni-corrected threshold we did not find 

any significant marker for these traits. In general, the effect sizes of genetic associations with 

complex, highly polygenic traits are often small and in many cases missing (Huang et al., 2012; 

Luo, 2015) For instance, it is common to find that GWAS does not have enough power to find 

associations for physical measurements such as biomass (Burghard et al., 2017). In this line, we 

performed GWAS for all the metabolic markers analyzed in both leaf and root tissue under both 

nutritions (Figures S3.15-S3.18). We found highly significant associations for 15 of 80 of the 

metabolic markers analyzed (Table S3.6). For ammonium nutrition, highly significant 

associations were found for 6 traits: leaf NH4
+, glucose, and glutathione content, leaf CS and CSm 



 

125 
 

activities and root GK activity. For nitrate nutrition, highly significant associations appeared for 

9 traits: leaf NH4
+, NO3

-, malate and fructose content and root malate content and CS, GDH, MDH 

and PK activities (Table S3.6). We look for the genomic regions (20kb up- and down-stream 

surrounding the significant SNPs) and extracted the genes encoded, which are also available in 

Table S3.6. Although for biomass parameters and many metabolites we did not find significant 

SNPs with the Bonferroni-corrected threshold, it must be noted that this statistical analysis is 

very restrictive and sometimes hides SNPs that might be also relevant. In this sense, we also 

extracted the SNPs with a significance higher than -log10(p)=5, which are all available in Table 

S3.7.  

For biomass, taking -log10(p)=5 as threshold, under nitrate nutrition we found 1 SNP associated 

to leaf biomass , 3 SNPs to root biomass and 3 SNPS to whole plant biomass. Under ammonium 

nutrition we found only 1 SNP for leaf biomass. Besides, 2 SNPS were found associated with 

whole plant biomass ratio under both nutritions (Table S3.7). The genes encoded in the genomic 

regions surrounding the significant SNPs (20 kb up- and down-stream each SNP) are shown in 

Table S3.8.  

The exploration of the data, notably with the clustering of genotypes in the heat maps, revealed 

that B. distachyon natural variation in ammonium stress degree, quantified as the ratio of the 

plant biomass under ammonium vs. nitrate nutrition, was mainly influenced by the metabolic 

performance under ammonium nutrition. Thus, we focused on the variables with the highest 

contribution to the multiple regression models performed using as dependent biomass 

parameters of ammonium-fed plants (Table S3.9) and the ratio of total plant biomass (Table 

S3.9). In particular, we focused on PEPC activity and NH4
+ content in the leaves and in sucrose 

content in the root. For PEPC activity and sucrose content no significant SNPs were found with 

Bonferroni-corrected threshold, but 12 and 2 SNPS were associated, respectively with a -

log10(p)>5 significance. For NH4
+ content in the leaves 1 SNP in chromosome 1 was found 

associated with Bonferroni-corrected threshold together with 8 SNPS with  log10(p)>5 

significance. 
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Figure 3.6. Manhattan plots (left side) showing the marker-trait associations and Q-Q plots (right side) showing 
distribution of observed and expected p-values for PEPC activity and NH4

+ content in leaves and sucrose content in 
roots of ammonium-fed plants. When SNPs over Bonferroni-corrected threshold are found the threshold is shown 
with a green line within the Manhattan plot and the threshold for –log10(p)>5 is shown with a black dashed line.  

Looking into genomic regions surrounding the significant SNPs (20 kb up- and down-stream each 

SNP) we found 13 genes for the content sucrose in the root, 10 for leaf NH4
+ content and 39 

genes for leaf PEPC activity (Table S3.9). Out of the 13 genes in the sucrose associated genomic 

regions, 9 were uncharacterized or unknown genes and 4 were encoding for a rosmarinate 

synthase (BRADI_1g50770), a protease (BRADI_1g50760) and two cysteine synthases 

(BRADI_1g50826, BRADI_1g50832). For leaf NH4
+ content only 2 of the genes had a function 

associated: BRADI_2g28450 that encodes for a probable AMP deaminase and BRADI_2g28427 

for anaphase-promoting complex subunit 1. Interestingly for PEPC, out of the 12 SNPs with -

log10(p)>5 significance, 5 were located in a 10 kb region of Chromosome 2 and among the genes 

in that region we found that they encoded a probable pectinesterase (BRADI_2g49500), a 

probable glutamate carboxypeptidase (BRADI_2g49510) and interestingly  a NADP-malic 

enzyme (BRADI_2g49540), an enzyme that is closely related to PEPC as anaplerotic enzyme of 

the TCA cycle (Table S3.9) 
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Finally, since the overall data exploration also suggested an role for glutathione content under 

ammonium nutrition, we further look to the SNPs associated to this trait (Table S3.7; S3.8) and 

found in leaf under ammonium nutrition 3 SNPS with a significance lower than -log10(p)>5, one 

SNP being significant with Bonferroni-corrected threshold while no significant SNPS were found 

in the root.  Sixteen genes were located in the surrounding regions of these SNPS, with an 

assigned function for 12 of them (Table S3.9). Among them, associated to the SNP with the 

highest significance we found a MYB transcription factor (BRADI_4g09490), a threonine kinase 

(BRADI_4g09498) and a probable LRR receptor-like kinase (BRADI_4g09481) that may be 

involved in the regulation of glutathione homeostasis. 

5. DISCUSSION 

Brachypodium distachyon displays extensive natural variation to growing with NH4
+ as sole N 

source 

Ammonium stress is considered as universal, virtually affecting every species.  However, great 

variation in ammonium tolerance or sensitivity has been reported in different species 

(Monselise and Kost, 1993). For instance, there are species that even display ammonium 

preference such as late-successional conifers, probably because of the adaptation of boreal 

forests to low nitrification soils (Britto and Kronzcuker, 2013). Besides, two of the species with 

high tolerance to ammonium belong to the Poaceae family such the halophyte C4 grass Spartina 

alterniflora (Hessini et al., 2013) and notably rice, likely because its adaptation to paddy fields 

were the limited oxygen availability restraints nitrification. 

Within the same species great variability towards ammonium stress has also been reported in 

different species such as pea (Cruz et al., 2011), Arabidopsis thaliana (Rauh et al., 2002; 

Sarasketa et al., 2014) and a number of graminaceous species like maize (Schortemeyer et al. 

1997), rice (Chen et al., 2013; Di et al., 2018) or wheat (Wang et al., 2016a). In agreement, in 

this study carried out with a panel of 52 natural accessions of Brachypodium distachyon model 

grass, we report extensive variability in ammonium tolerance with accessions that grew similarly 

with NO3
- or NH4

+ supply and with accessions that showed high sensitivity experiencing more 

than 50 % of grown reduction under ammonium respect to nitrate nutrition (Figure 3.1). We 

considered biomass as the main marker to evaluate the performance of plants under each N-

supplied since biomass integrates all the metabolism changes, nutrient uptake and assimilation. 

Overall, we observed a similar degree of intraspecific variability as previously reported by 

Sarasketa et al. (2014) studying 47 A. thaliana accessions or by Di et al. (2018), who phenotyped 

the response of 25 rice genotypes upon ammonium stress. Previous works with A. thaliana have 



Chapter 3 

128 
 

tried to take advantage of intraspecies variability to map quantitative trait loci (QTL) in relation 

with ammonium tolerance. For instance, Rauh et al. (2002) and Sasaki and Kojima (2018) 

identified, respectively, 5 and 6 QTLs analyzing a RIL population of A. thaliana derived from the 

cross between Columbia-4 × Landsberg erecta (Ler). However, the identified QTLs covered big 

genomic regions and no positional cloning or candidate gene analysis was performed (Rauh et 

al., 2002; Sasaki and Kojima, 2018). 

Brachypodium distachyon displays a natural variation in metabolic adaptation under ammonium 

nutrition 

Metabolite composition and concentration, together with enzyme activity, reflect the metabolic 

adaptation of organisms to a particular nutrient environment or stressing conditions and may 

obviously impact plant growth. The advantage of taking natural genetic diversity into account is 

that it represents a powerful tool to unmask the complex networks that link metabolism with 

biomass because it allows the study of thousands of genetic perturbations that vary 

independently between different genotypes (Sulpice et al., 2013). In the present study, whole-

plant metabolic data gives light about the strategy of Brachypodium as species to face up 

ammonium stress and could potentially reveal genetic clues regarding the extent of the growth 

response in sensitive and tolerant genotypes. In view of genotypes distribution (Figures 3.3, 3.4) 

it is clear that the metabolic adaptation to ammonium nutrition has great impact in the observed 

natural variability towards ammonium stress (Figure 3.1).  

In many species, including cereals, primary nitrate assimilation occurs mainly in the 

photosynthetic organs and ammonium assimilation mainly in the root  and this has been 

reported in many species including wheat, sorghum (Setien et al., 2013; Miranda et al., 2016; 

Wang et al., 2016a) and B. distachyon in chapter 1 (De la Peña et al., 2019). This fact had a huge 

impact on the metabolic behaviour of virtually every accession and indeed, the metabolic 

profiling of the 52 accessions clearly segregated the dataset in four groups separating organs 

(leaves and roots) and N-nutrition (ammonium and nitrate) (Figure 3.2). In agreement, we 

mostly focused on the behaviour on each plant organ under a given specific nutrition, looking 

for specific features in their metabolic response. 

One of the most common markers of ammonium stress is the accumulation of free NH4
+ and 

amino acids (Sarasketa et al., 2014; Esteban et al., 2016). In agreement, and as reported in 

chapters 1 and 2 for Bd21, ammonium nutrition provoked in every accession the accumulation 

of NH4
+, mostly in roots, accompanied by parallel increments in the contents of amino acids and 

proteins.  Disproportionate amino acid synthesis in the root entails the using of most of the 2-
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OG available for NH4
+ assimilation, thus making TCA-cycle to work in a non-cyclic mode (Setién 

et al., 2013; Vega-Mas et al., 2019a). Moreover, there is a need to increase the flux of carbon 

towards NH4
+ assimilation. This functioning requires a coordinated regulation of TCA cycle 

enzymes together with its associated anaplerotic enzymes as evidenced in the present study 

with the generalized induction in the root of CS, mCS, MDH, NADP-ICDH and PEPC (Figure S3.9). 

Besides, TCA cycle was also coordinated with glycolytic pathway, as evidenced by sugars 

content, FK, GK and PK activities. In agreement with this mode of action ammonium-fed leaves 

were almost depleted of citrate and malate levels. 

Genotypes clustering evidenced that the metabolic adaptation to ammonium nutrition (Figures 

3.3, 3.4) rather than to nitrate nutrition (Figures S3.10, S3.11) was responsible of B. distachyon 

variability in ammonium stress degree taking the biomass ratio when growing in ammonium vs. 

nitrate nutrition as a marker. After data exploration together with stepwise multiple-regression, 

the activity of PEPC and NH4
+ content in ammonium-fed leaves together with the sucrose 

content in the root of ammonium-fed plants revealed as key variables explaining B. distachyon 

tolerance to ammonium stress. Besides, glutathione content also appeared closely related to B. 

distachyon performance in function of the N source provided. 

Interestingly, in agreement with the underlined importance of NH4
+ content in leaves of 

ammonium-fed B. distachyon, Sarasketa et al. (2014) observed that the accumulation of free 

NH4
+ in the leaves was correlated with A. thaliana natural variability to ammonium tolerance. In 

fact, the excessive accumulation of NH4
+ in cells´ cytosol has been put forward as the most 

probable cause of the biomass reduction typically observed in plants subjected to ammonium 

stress. Suggesting that growth reduction could be a trade-off of the energy consumed by the cell 

to deal with free NH4
+, through its assimilation into organic molecules, its efflux outside the cell 

or its confinement inside the vacuole (Coskun et al., 2013; Kirscht et al., 2016). Similarly, 

Schortemeyer et al. (1997) studying 4 maize cultivars with contrasted ammonium-tolerance 

observed that growth reduction in Helga variety, which displayed the highest sensitivity to 

ammonium nutrition, was correlated with the accumulation of twice the concentration of free 

NH4
+ in the shoot. 

Regarding soluble sugars, and particularly sucrose, paired correlations with growth parameters 

support the idea that the availability of soluble sugars (Gluc, Fru and Suc; Figure 3.5) in roots is 

essential to fuel the capacity to assimilate ammonium and key to explain B. distachyon natural 

variation towards ammonium stress. Schortemeyer et al. (1997) also reported decreased 

concentration in root soluble carbohydrates in the maize cultivars that displayed higher 
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sensitivity to ammonium nutrition. Wang et al. (2016a) also observed that soluble sugar content 

in the root decreased with ammonium respect to nitrate nutrition notably in the sensitive wheat 

ecotype AK58, while this reduction was less pronounced in the tolerant Xumai25. Besides, ratio 

of shoot to root in soluble sugar was higher in AK58 respect to Xumai25 (Wang et al., 2016a). 

Interestingly, in our study shoot-to-root sucrose ratio was negatively correlated with plant 

biomass under ammonium nutrition (Figure S3.19), overall indicating perturbed sucrose 

transport toward the root together with sugars content in this organ may explain the observed 

B. distachyon variability in ammonium tolerance. 

The role of PEPC upon ammonium nutrition has been addressed in several works from different 

experimental approaches. In non-photosynthetis tissues, the enzyme has a primary role 

functioning as anaplerotic route to refill the TCA cycle, mainly when intermediates of the cycle 

are removed to maintain different biosynthetic pathways as, it is the case for ammonium 

nutrition (Lasa et al., 2002; Setién et al., 2013 and 2014; Arias-Baldrich et al., 2017; Vega-Mas et 

al., 2019a). Moreover, studies using PEPC-deficient or knockdown mutants demonstrated that 

this enzyme would be key for the provision of citrate and malate (Shi et al., 2011; Matsumoto 

et al., 2010). PK is also another enzyme that uses PEP to provide pyruvate to the TCA cycle. 

Therefore, PK and PEPC are key enzymes to branch the channelling of PEP pool either towards 

pyruvate or OAA.  In B. distachyon there was also induction of PK in roots under ammonium, 

which agrees with evidences described in other works, for instance in sunflower (Lasa et al. 

2002), wheat (Liu et al., 2017) and A. thaliana (Coleto et al., 2019). In spinach plants, considered 

a sensitive species, PK was the main way to provide carbon skeletons while the induction of PEPC 

was prioritized in pea plants, considered as an ammonium tolerant species (Ariz et al., 2011; 

Cruz et al., 2011). Thus PEP seems a crucial checkpoint in the capacity of the root cell to 

assimilate NH4
+. However, root PEPC activity was not underlined as metabolic trait contributing 

to explain the natural variability of B. distachyon root. In contrast, the activity of PEPC in the 

leaf, negatively correlated with growth parameters, showed a relevant contribution to explain 

the variability of B. distachyon growing with exclusive NH4
+ supply.  

Glutathione is an essential molecule for plants that possess a myriad of functions (Noctor et al., 

2012). It is a potent non-enzymatic antioxidant, with a central role in Foyer-Halliwell-Asada 

cycle, it participates in the regulation of cell redox homeostasis. Indeed, one of the symptoms 

of ammonium nutrition may be ROS overproduction and thus ammonium is known to 

sometimes induce the plant antioxidant-machinery (Domínguez-Valdivia et al., 2008; Podgórska 

et al., 2017b). GSH also acts as regulator of cellular sulphur homeostasis, storage and transport. 

Indeed, in chapter 2 the proteome analysis showed a link between sulphur metabolism and 
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ammonium nutrition that could be related with the increasing GSH content observed in roots 

under ammonium-nutrition in relation with the promotion of ammonium tolerance. In the same 

line of evidence, Coleto et al., (2017) reported that ammonium nutrition enhanced sulphur 

assimilation, supported among others by an increase in the synthesis of GSH in Brassica napus. 

Alternatively, since GSH is a tripeptide formed by Glu, Cys and Gly, it seems logical that its 

content could be favored when the overall synthesis of amino acids is also promoted. Besides 

GSH is the substrate of glutathione-S-transferases (GSTs) and several transcriptomic and 

proteomic studies, including B. distachyon (chapter 2), observed the up-regulation of GSTs under 

ammonium nutrition (Patterson et al., 2010; Vega-Mas et al., 2017; Prinsi and Espen, 2018; 

Coleto et al., 2019; Royo et al., 2019). One explanation could be that GSTs would be contributing 

to sequester ammonium-derived compounds into non-toxic metabolites (Vega-Mas et al., 

2017). Overall, GSH seems to accomplish several protective functions under ammonium 

nutrition and its content seems to be an important trait related to the natural variation in the 

response of B. distachyon to ammonium stress. 

Genome-wide association analysis reveals new candidate loci associated to B. distachyon 

ammonium tolerance. 

Genome-wide association studies (GWAS) are a relatively new way for scientists to identify 

potential genes that are responsible for the phenotypic variation in populations. Although GWAS 

were originally developed in humans (Hirschhorn and Daly. 2005), they have been even more 

successful in plants (Brachi et al., 2011) and now this technique constitutes one of the tools of 

the so-called “Gene Revolution” aimed to identify and alter genes that may  increase crops 

performance (Taiz, 2013). In the case of B. distachyon, studies of GWAS have been conducted 

to find genes related to flowering time (Tyler et al., 2016), seed metabolite levels (Onda et al., 

2019), environmental adaptation using climatic data (Dell’Acqua et al., 2019) or agronomic traits 

such as flowering time, early vigor, and energy traits in response to climate (Wilson et al., 2018), 

among others. These studies in Brachypodium have been successful identifying candidate 

genes/genomics regions associated to traits of interest in B. distachyon but to date the 

functional validation of these genes has not been completed. However, other works have 

demonstrated the soundness of GWAS to identify and validate new genes related to a certain 

trait. For instance, in relation to nitrogen nutrition, Rosas et al., (2013) in A. thaliana identified 

Phosphate 1 (PHO1) and Root System Architecture 1 (RSA1) genes associated to root plasticity, 

among others, in response to nitrate availability. Similarly, Jia et al., (2019) identified the 

brassinosteroid (BR) signaling kinase BSK3 as a modulator of Arabidopsis thaliana root 

elongation under mild N deficiency. The combination of GWAS and metabolic analysis has also 
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emerged as an alternative to study the genetic and biochemical bases of plants metabolism with 

impact in agronomical traits (Luo, 2015). For instance, Wen et al. (2014) identified five potential 

genes associated with metabolites of interest in maize kernel and validate the function of 

putrescine hydroxycinnamoyl transferase (PHT) and a caffeoyl CoA 3-O-methyltransferase 

1(CCoAOMT1). Fusari et al. (2017) used GWAS to map QTLs for biomass, 9 metabolites and 24 

enzyme activities and validated a number of candidate genes by the use of T-DNA insertional 

knocked-out and found, among others, that the leucine-rich repeat immune receptor 

Accelerated Cell Death 6 (ACD6) modulates central metabolism in a pleiotropic manner pointing 

to a trade-off between defense and metabolism. Overall, the power of GWAS to study the 

genetics underlying the natural variability of complex traits is unquestionable. 

However, GWAS have some limitations. False positives are not rare and are usually generated 

due to the population structure and kinship among individuals. Most of the studies in crops have 

used single-locus models such as MLM that control very well false positives, however the 

adjustment of the model also compromises false negatives because of the confounding between 

population structure, kinship, and quantitative trait nucleotides (Liu et al., 2016). In this context, 

the  Multiple Loci Linear Mixed Model (MLMM) used in this study, has been recently created to 

control false positives at the same time without compromising true positives by incorporating 

multiple markers simultaneously as covariates in a stepwise MLM to partially remove the 

confounding between testing markers and kinship (Liu et al., 2016). Allelic heterogeneity is 

another limitation because GWAS assumes that common (biallelic) genetic variation explains 

quantitative trait variation (Brachi et al., 2011). Fortunately, the genome of B. distachyon is 

mostly homozygous but with a large diversity population. The size of the population is another 

limitation that affects the power of GWAS. Although in comparison with the usually 

recommended over 100 to 300 individuals (Vogel, 2016), in the present study we used a 

relatively small number of accessions (51) but we increased the efforts in the amount and quality 

of phenotypes, which is reported to be more relevant for finding associations in complex traits 

than increasing the amount of individuals (Han et al., 2015). Another weakness of GWAS is its 

lack of power to detect rare alleles that are involved in natural variation, for this reason, 

researchers increase artificially the P-value threshold in tests of association to be sensitive to 

SNPs that have low minor-allele frequencies (Brachi et al.,  2011). A suggestive threshold of –

log(P-value)>5 has been used in several studies of GWAS (Matsuda et al., 2015; Yano et al., 

2016;  Montaez et al., 2018) even in B. distachyon this threshold was used to study flowering 

time (Vogel, 2016). Nevertheless, the most stringent control of false positives is to apply a 

Bonferroni correction that divides the threshold for statistical significance (for example, P = 0.05) 
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by the number of markers. In general, individual P values of monogenic traits are higher 

compared with the P-values obtained for highly polygenic traits. (Sánchez‐Vallet et al., 2018). 

Although, for polygenic traits the identification of causal SNPs is of great difficulty, association 

mapping analysis allows finding markers to make phenotypic predictions out of individual 

genomic information (Gondro et al., 2013).  

In this study, we combined metabolic profiling trying to explain the growth of a diverse panel of 

B. distachyon accessions under ammonium and nitrate nutrition. For traits like biomass is normal 

that the GWAS do not provide strong signals because of its complex multigenic nature (Luo et 

al., 2015; Burghardt et al., 2017). However, it may be particularly important to study the GWAS 

of alternative traits such as metabolites and enzyme activities that themselves may explain the 

biomass and thus, may be useful to find loci that ultimately contribute to explain the trait of 

interest. In this sense the content of sucrose in root and the activity of PEPC activity and the 

content NH4
+ content in leaf of ammonium-fed plants stood above the other determined 

variables affecting B. distachyon ammonium tolerance.  

Among the genes harboring the significant SNPS associated with the content of sucrose in the 

root, we highlight a rosmarinate synthase (BRADI_1g50770; Table S3.8). Rosmarinic acid is a 

phenolic compound with diverse biological function. It is derived from caffeic acid which is 

provided by the general phenylpropanoid pathway that starts with the transformation of Phe to 

cinammic acid by PAL enzyme (Bulgakov et al., 2012; Pezeshki and Petersen, 2018).  . 

Interestingly, the proteome analysis in Chapter 2 underlined the modulation of   

phenylpropanoid pathway in ammonium-fed plants. The synthesis of rosmarinic acid has been 

shown dependent on the availability of sucrose (Xiao and Wang, 2015). However, rosmarinic 

acid is mostly present in Lamiacea and Boraginaceae and its interest in Poaceae has been mostly 

related as a marker for botanical and evolutionary relationships (Míka et al., 2005) and thus, it 

is difficult to establish a potential relationship with ammonium nutrition. Besides, two genes 

encoding for cysteine synthases (BRADI_1g50826, BRADI_1g50832; Table S3.8) were found close 

to the significant SNPs. Previous works have shown the interaction between sulfur metabolism 

and the N source. For instance, ammonium nutrition enhances sulphate uptake and assimilation 

(Van Beusichem et al., 1998; Gerendas et al.,, 1997; Coleto et al., 2017). Moreover, in Chapter 2 

an important link between ammonium nutrition and sulfur metabolism was observed in B. 

distachyon, notably in relation with Met homeostasis and recycling.  

For leaf NH4
+ accumulation we found encoded a probable adenosine monophosphate 

deaminase (AMPD; BRADI_2g28450; Table S3.8) harbouring the SNP ss.31153022. AMDP 
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catalyzes the hydrolytic removal of the 6- amino group of adenosine monophosphate (AMP) to 

yield inosine monophospahte (IMP). AMPD is the first step in the degradation of purine 

compounds that leads, by multiple pathways, to the production of oxypurines such as xanthine 

and hypoxanthine (Yoshino and Murakami, 1980). Further xanthine degradation yields ureides, 

which are also nitrogenous compounds that contribute to nitrogen recycling in plants. 

Accumulation of ureide compounds has been reported in a number of plant species under stress 

conditions, suggesting their involvement in plants’ response to stress (Irani and Todd, 2016). 

Indeed, during the sequential hydrolysis of purines four NH4
+ molecules are released, which then 

need to be reassimilated (Werner et al., 2010). Besides, purine catabolism has been shown to 

contribute to N balance in Arabidopsis thaliana, for instance regulating leaf senescence 

(Soltabayeva et al., 2018). Overall, the interaction between AMPD and ammonium nutrition 

cannot be precluded and deserves further investigation. 

For leaf PEPC activity significant, among the genes in the region of chromosome 2 were we found 

5 significant SNPs, a gene encoding a pectin methylesterase (PME; BRADI_2g49500; Table S3.8) 

is present. PMEs are enzymes that modify the degree of methyl-esterification of pectins, a major 

component of plant cell wall. PMEs play role in major processes including plant growth, defence 

and reproduction (Pelloux et al., 2007). For instance, PMEs are involved in cell wall extension 

and stiffening. In Chapter 2 the one of the findings derived from the proteome analysis was the 

relationship between ammonium nutrition and cell wall biogenesis. Importantly, Zhu et al. 

(2006) reported that NH4
+ positively regulates the pectin content and activity of PME in cell 

walls. In the associated genomic region, a probable glutamate carboxypeptidase LAMP1 was 

encoded (BRADI_2g49510; Table S3.8). Arabidopsis AMP1 has been suggested to AMP1 

modulate abscisic acid, oxidative and abiotic stress responses. Interestingly, AMP1 has been 

related to carbon and amino acid metabolism since Arabidopsis amp1 mutant presents lower 

levels of amino acids and its overexpressor accumulates several amino acids, notably Asn (Shi et 

al., 2013).  Indeed, considering AMP1 peptidase activity it has been speculated that AMP1 may 

be a regulator of the activity of metabolic enzymes related with C/N metabolism (Shi et al. 2013). 

Finally, in this region in chromosome 2, a gene encoding NADP-dependent malic enzyme (NADP-

ME; BRADI_2g49540) was also present. This fact is of great interesting, considering the close link 

between NADP-ME and PEPC. Both enzymes are key in the “biochemical pH-stat” known 

important for the pH regulation according to the N-form absorbed (Raven, 1986; Schubert and 

Yan, 1997; Coleto et al., 2019). Besides, as anaplerotic enzymes associated to TCA cycle, both 

enzymes contribute to sustain the supply of carbon skeletons for NH4
+ assimilation, as described 
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in Chapter 1. Overall, the relation of these two enzymes seems more important when plants are 

subjected to stressful conditions (Doubnerová and Ryšlavá; 2011).  

Summarizing, B. distachyon is an emerging model system with extensive genetic, genomic, and 

natural variation resources. Here we report extensive natural variation in B. distachyon response 

to ammonium nutrition, which is related to plant metabolic adaptation. Statistical and 

exploratory analysis of the data highlighted, among others, PEPC activity and NH4
+ content in 

the leaves, sucrose content in the root and glutathione levels as important variables explaining 

the observed variability in ammonium tolerance. GWAS using Multi Locus Mixed Model (MLMM) 

for every trait determined a panel of 51 accessions revealed an important number of significant 

SNPs, highlighting genomic regions where causal genes related to B. distachyon ammonium 

tolerance may be located. A better understanding of natural variation in B. distachyon especially 

at the molecular level will provide a unique opportunity for gaining insight into plant adaptation 

to ammonium tolerance as well as novel avenues for improving nitrogen fertilization. Future 

research to further identify the causal genes involved in ammonium nutrition include 

transcriptomic analysis of tolerant vs. sensitive accessions and phenotyping of mutant lines 

publicly available, such as the BRACHYTIL TILLING platform for functional genomics developed 

in Bd21-3 genetic background (Dalmais et al., 2013) and the T-DNA lines collection in Bd21 

genetic background (Hsia et al., 2017). 
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6. SUPPLEMENTARY INFORMATION 

 

Table S3.1. List of B. distachyon accessions studied and their associated metadata. Available in attached USB flash 

drive. 

Table S3.2. Data of biomass and metabolic profile of 52 accessions of B. distachyon under ammonium or nitrate 

nutrition. Available in attached USB flash drive. 

Table S3.3. Stepwise-multiple-regression analysis of the metabolic measurements 
(independent variables) in leaves of nitrate-fed plants associated with shoot 
biomass (dependent variable).  
  

SHOOT BIOMASS – NITRATE NUTRITION 

INDEPENDENT VARIABLE STANDARDIZED COEFFICIENT P- value 

PROTEIN -0.683 0.000 

ICDH ACTIVITY -0.278 0.007 

NH4
+ 0.244 0.018 

R2                            0.582 

ADJUSTED R2                            0.556 

ESTIMATE SE                            0.083 

 

Table S3.4. Stepwise-multiple-regression analysis of the metabolic measurements 
(independent variables) in root of nitrate-fed plants associated with root biomass 
(dependent variable).  

  
ROOT BIOMASS – NITRATE NUTRITION 

INDEPENDENT VARIABLE STANDARDIZED COEFFICIENT P- value 

GLUCOSE 0.573 0.000 

GK ACTIVITY -0.294 0.018 

FK ACTIVITY -0.266 0.036 

R2                           0.517 

ADJUSTED R2                           0.487 

ESTIMATE SE                           0.053 

 

Table S3.5. Stepwise-multiple-regression analysis of the metabolic measurements 
in leaf and root of NO3

-fed plants (independent variable) affecting the NO3
- total 

biomass (dependent variable) 
 

TOTAL BIOMASS – NITRATE NUTRITION 

INDEPENDENT VARIABLE STANDARDIZED COEFFICIENT P- value 

NL - PROTEIN -0.618 0.000 

NR - MALATE 0.546 0.000 

NL – GDH ACTIVITY -0.266 0.004 

NR - GLU -0.212 0.017 

R2                        0.667 

ADJUSTED R2                        0.639 

ESTIMATE SE                        0.114 
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Table S3.6. Selected SNPs by the significance of their statistical association with a trait. Available in attached USB flash 

drive. 

Table S3.7. Selected SNPs by the -log10(p)>5 of their statistical association with a trait. Available in attached USB flash 

drive. 

Table S3.8. Genes associated to the selected SNPs (-log10(p)>5)  of the selected variables PEPC activity and NH4
+ 

content in leaf and sucrose content in root under ammonium nutrition. Available in attached USB flash drive. 
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Figure S3.1. Natural variation in shoot and root biomass of 52 B. distachyon accessions grown under nitrate or 
ammonium as N source. Values in left graphs are the mean ± SE (n = 3). Asterisk (*) indicates significant (p<0.05) of 
the two-way ANOVA (S for nitrogen source, A for accession). The violin plots on the right side show the distribution 
of the traits.  
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Values in left graphs are the mean ± SE (n = 3). Asterisk (*) indicates either significant of the two-way ANOVA (S for 
nitrogen source, A for accession) or significant difference between total biomass under ammonium compared with 
nitrate for each accession (p<0.05). The violin plots on the right side show the distribution of the traits.  
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Figure S3.2. Natural variation in leaf metabolites of 52 B. distachyon accessions grown under nitrate or ammonium 
as N source. Values in left graphs are the mean ± SE (n = 3). Asterisk (*) indicates significant (p<0.05) of the two-way 
ANOVA (S for nitrogen source, A for accession). The violin plots on the right side show the distribution of the traits. 
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Figure S3.2. Continuation 
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Figure S3.2. Continuation. 
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Figure S3.3. Natural variation in leaf enzymes activities of B. distachyon grown under nitrate or ammonium as N 
source. Values in left graphs are the mean ± SE (n = 3). Asterisk (*) indicates significant (p<0.05) of the two-way ANOVA 
(S for nitrogen source, A for accession). The violin plots on the right side show the distribution of the traits. 
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Figure S3.3. Continuation. 
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Figure S3.4. Natural variation in root metabolites of 52 B. distachyon accessions grown under nitrate or ammonium 
as N source. Values in left graphs are the mean ± SE (n = 3). Asterisk (*) indicates significant (p<0.05) of the two-way 
ANOVA (S for nitrogen source, A for accession). The violin plots on the right side show the distribution of the traits. 
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Figure S3.4. Continuation 
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Figure S3.4. Continuation 
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Figure S3.5. Natural variation in root enzymes activity of 52 B. distachyon accessions grown under nitrate or 
ammonium as N source. Values in left graphs are the mean ± SE (n = 3). Asterisk (*) indicates significant (p<0.05) of 
the two-way ANOVA (S for nitrogen source, A for accession). The violin plots on the right side show the distribution 
of the traits. 
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Figure S3.5. Continuation 
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Figure S3.6. Principal component analysis (PCA) of leaf metabolic data of of 52 B. distachyon accessions grown under 
ammonium or nitrate nutrition. (A) Individuals PCA score plot. (B) Variables loading plot where cos2 is the square 
loadings for variables and shows the quality of the representation for variables on the plot. (C) Correlation plot 
showing the PCs where the variables are represented. 

                            

Figure S3.7. Principal component analysis (PCA) of root metabolic data of 52 B. distachyon accessions grown under 
ammonium or nitrate nutrition. (A) Individuals PCA score plot. (B) Variables loading plot where cos2 is the square 
loadings for variables and shows the quality of the representation for variables on the plot. (C) Correlation plot 
showing the PCs where the variables are represented.  

Chl

NH4+

Protein

Amino acids

NO-3

Fruc

Gluc Sucrose

Glu

Malate

Starch

Citrate CS

CSm

GDH

MDH

ICDH

PEPC

PK

FK

GK

Glutathione

Organ-FW

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

PC1 (42.5%)

P
C

2
 (

1
2
.8

%
)

0.3

0.5

0.7

cos2

Variables - PCA

-5.0

-2.5

0.0

2.5

-5.0 -2.5 0.0 2.5 5.0

PC1 (42.5%)

P
C

2
 (

1
2
.8

%
)

Groups

Leaf - nitrate nutrition

Leaf - ammonium nutrition

Individuals - PCA

0

0.08

0.16

0.25

0.33

0.41

0.49

0.57

0.66

0.74

0.82

P
C

1
P

C
2

P
C

3
P

C
4

P
C

5

Chl
NH4

+

Protein
Amino acids

NO3
-

Fruc
Gluc
Suc
Glu

Malate
Starch
Citrate

CS
CSm
GDH
MDH
ICDH

PEPC
PK
FK
GK

Glutathione

A

B C



 

151 
 

  

Figure S3.8. Leaf heat map visualization with two‐way clustering of 13 metabolites and 9 enzymatic activities 
determined in plants grown under ammonium and nitrate-nutrition including also biomass data against 52 accessions 
of B. distachyon.  Chl means chlorophyll, CS citrate synthase, CSm mitochondrial citrate synthase, FK fructokinase, FW 
fresh weight, GDH NAD- dependent glutamate dehydrogenase, GK glucokinase, Glu glutamate, ICDH NADP-
dependent isocitrate dehydrogenase, MDH malate dehydrogenase, PEPC phosphoenolpyruvate carboxylase and PK 
pyruvate kinase. 
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Figure S3.9. Root heat map visualization with two‐way clustering of 13 metabolites and 9 enzymatic activities 
determined in plants grown under ammonium and nitrate-nutrition including also biomass data against 52 accessions 
of B. distachyon. Abbreviations as in Figure S3.8. 
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Figure S3.10. Leaf heat map visualization with two‐way clustering of 13 metabolites and 9 enzymatic activities 
determined in plants grown under nitrate-nutrition including also biomass data against 52 accessions of B. distachyon. 
Abbreviations as in Figure S3.8. The 10 accessions displaying the highest tolerance and the highest sensitivity to 
ammonium nutrition in Figure 1 are highlighted in purple and yellow, respectively. 
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Figure S3.11. Root heat map visualization with two‐way clustering of 13 metabolites and 9 enzymatic activities 
determined in plants grown under ammonium-nutrition including also biomass data against 52 accessions of B. 
distachyon.  Abbreviations as in Figure S3.8. The 10 accessions displaying the highest tolerance and the highest 
sensitivity to ammonium nutrition in Figure 1 are highlighted in purple and yellow, respectively. 
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Figure S3.12. Leaf heat map visualization with two‐way clustering of the ratio ammonium/nitrate nutrition of 13 
metabolites and 9 enzymatic activities determined in plants grown under ammonium-nutrition or nitrate nutrition 
including also biomass data against 52 accessions of B. distachyon.  Abbreviations as in Figure S3.8.  
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Figure S3.13. Root heat map visualization with two‐way clustering of the ratio ammonium/nitrate nutrition of 13 
metabolites and 9 enzymatic activities determined in root of plants grown under ammonium-nutrition or nitrate 
nutrition including also biomass data against 52 accessions of B. distachyon.  Abbreviations as in Figure S3.8.  
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Figure S3.14.Manhattan plots (left side) showing the marker-trait associations and QQ plots (right side) showing the 
distribution of observed and expected p-values for leaf and root biomass of ammonium and nitrate nutrition of B. 
distachyon. 
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Figure S3.15. Manhattan plots (left side) showing the marker-trait associations and QQ plots (right side) showing 
distribution of observed and expected p-values for metabolites measured in leaf of ammonium and nitrate nutrition 
of B. distachyon. When SNPs over Bonferroni-corrected threshold are found the threshold is shown with a green line 
within the Manhattan plot. 
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Figure S3.15. Continuation.  
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Figure S3.15. Continuation.  
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Figure S3.15. Continuation. 
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Figure S3.15. Continuation. 
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Figure S3.15. Continuation. 
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Figure S3.16. Manhattan plots (left side) showing the marker-trait associations and QQ plots (right side) showing 
distribution of observed and expected p-values for enzymatic activity in leaf of ammonium and nitrate nutrition of B. 
distachyon. When SNPs over Bonferroni-corrected threshold are found the threshold is shown with a green line within 
the Manhattan plot. 
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Figure S3.16. Continuation 
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Figure S3.16. Continuation 
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Figure S3.16. Continuation 
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Figure S3.17. Manhattan plots (left side) showing the marker-trait associations and QQ plots (right side) showing 
distribution of observed and expected p-values for metabolites measured in root of ammonium and nitrate nutrition 
of B. distachyon. When SNPs over Bonferroni-corrected threshold are found the threshold is shown with a green line 
within the Manhattan plot. 
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Figure S3.17. Continuation 
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Figure S3.17. Continuation 
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Figure S3.17. Continuation 
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Figure S3.17. Continuation 
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Figure S3.18. Manhattan plots (left side) showing the marker-trait associations and QQ plots (right side) showing 
distribution of observed and expected p-values for enzymatic activity in root of ammonium and nitrate nutrition of B. 
distachyon. When SNPs over Bonferroni-corrected threshold are found the threshold is shown with a green line within 
the Manhattan plot. 
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Figure S3.18. Continuation 
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Figure S3.18. Continuation 
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Figure S3.18. Continuation 
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Figure S3.19.  Linear regression of sucrose ratio (leaf : root) vs total, leaf and root bioamas. r represents the Pearson 
correlation coefficient significant for p <0.01. 
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GENERAL CONCLUSIONS 

 

1. The physiological and metabolic response of Brachypodium distachyon Bd21 to ammonium 

nutrition is in line with previous studies with cereal crops, such as wheat, ryegrass and 

sorghum. Thus, B. distachyon emerges as a suitable tool for defining the physiological, 

molecular and genetic basis of ammonium nutrition in cereals. 

2. Under ammonium nutrition, the root behaves as a physiological barrier preventing NH4
+ 

translocation to aerial parts, as indicated by a sizeable accumulation of NH4
+, Asn and Gln in 

this organ. A continuing high NH4
+ assimilation rate was made possible by a tuning of the 

TCA cycle and its associated anaplerotic pathways in order to match carbon skeletons 

demand, mainly 2-oxoglutarate and oxaloacetate for Gln and Asn synthesis. 

3. Proteome analysis reveals an important root adaptation to ammonium nutrition, involving 

carbon and nitrogen metabolism, but also among others cell wall metabolism, redox 

homeostasis and interaction for the acquisition of essential mineral nutrients. 

4. Ammonium nutrition induces the accumulation of Fe and Zn in the root, probably due to a 

higher uptake of these elements in relation with the activation of methionine cycle and the 

synthesis of phytosiderophores observed in this organ. 

5. There exists an interaction between the N-source and B. distachyon response to Fe 

availability. Indeed, ammonium-fed plants displayed higher sensitivity to limiting Fe 

availability respect to nitrate-fed plants. This behavior could be related with increased NH4
+ 

accumulation in the tissues and with impaired Fe transport and utilization.  

6. The use of a panel of 52 natural accessions of B. distachyon reveals great intraspecific 

variability in response to ammonium stress using growth as a marker of plant performance.  

7. The metabolic variability observed through the analyses of 13 metabolites and 9 enzyme 

activities of carbon and nitrogen metabolism in root and leaf tissue of 52 accessions grown 

under ammonium and nitrate nutrition highlighted the importance of the metabolic 

adjustment to explain the observed natural variability in B. distachyon growth upon 

ammonium stress.  

8. Multiple regression analysis underlined the accumulation of NH4
+ and activity of PEPC in 

leaves of ammonium-fed plants, together with the content of sucrose in the root as key 

variables explaining B. distachyon intraspecific variability in ammonium tolerance.  
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9. GWAS using Multi Locus Mixed Model (MLMM) for every trait determined in the panel of 

51 accessions reveals an important number of significant SNPs, highlighting genomic regions 

where causal genes related to B. distachyon ammonium tolerance may be located. 
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MATERIALS AND METHODS  

Brachypodium distachyon lines 

Brachypodium distachyon Bd21, considered as reference inbred line, was used to define the 

strategies of the species to ammonium nutrition. Brachypodim distachyon Bd21 seeds were 

provided by Elena Benavente, from the Polytechnic University of Madrid. 

A total of 52 B. distachyon natural accessions were selected (Table S3.1) for the study of natural 

variability in ammonium tolerance. These inbred lines have been recently de novo assembled 

and annotated (Gordon et al., 2017; https://brachypan.jgi.doe.gov/). Seeds for the different 

accessions were obtained from different laboratories working on B. distachyon: Pilar Catalán 

(University of Zaragoza, Spain), Luis Mur (Aberystwyth University, UK), Ludmila Tyler (University 

of Massachusetts, USA), John P Vogel (University California, Berkeley, USA) and from the 

National Plant Germplasm System of the United States. 

Seed treatment and germination 

Brachypodium distachyon Bd21 seeds were sterilized in 100 % ethanol for 1 min, rinsed three 

times with deionised water and incubated in deionised water for 2 h. Then, seeds were placed 

on trays filled with a perlite:vermiculite (1:1, v:v) mixture moistened with deionised water. After 

4 days of stratification at 4°C in the dark, the trays were transferred to a growth chamber. Eleven 

days after sowing seedlings were transferred to 4.5-L hydroponic tanks (10 plants/tank). 

The methodology described by Tyler et al. (2016) was adopted later since it gained higher and 

more uniform germination rates. Seeds were peeled by removing the lemma, washed for 4 min 

in a solution containing 15 % bleach plus 0.1 % Triton-X 100 and thoroughly rinsed with sterile 

deionised water. To synchronise germination, seeds were placed in Petri dishes on damp paper 

towels and stratified in the dark at 4°C for 7 days (Figure 4.1A). After stratification, the plates 

covered with aluminum foil were transferred into a growing chamber for 3 days (Figure 4.1B). 

Germinated seeds (Figure 4.1C) were then sowed on trays filled with perlite:vermiculite (1:1, 

v:v) misted with deionised water. After 7 days, seedlings with a uniform appearance (Figure 

4.1D) were finally transferred to hydroponic tanks filled with 4.5-L of nutrient solution (10-12 

plants/tank, Figure 4.2). 
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Figure 4.1. Germination of Brachypodium distachyon seeds. (A) Seed stratification, (B-D) seed germination.  

Nutrient solution  

The basic nutrient solution (Rigaud and Puppo, 1975) contained: 

1.15 mM   K2HPO4 
0.85 mM   MgSO4 
0.70 mM   CaSO4 
2.68 mM   KCl 
0.50 mM   CaCO3 
0.07 mM   NaFeEDTA 
16.5 μM   Na2MoO4  
3.70 μM   FeCl3 
3.50 μM   ZnSO4 
16.2 μM  H3BO3 
0.47 μM  MnSO4 
0.12 μM   CuSO4 
0.21 μM   AlCl3 
0.126 μM   NiCl2  
0.06 μM   KI, pH 6.8.  

The nitrogen source was supplied as (NH4)2SO4 for ammonium-fed plants and as Ca(NO3)2 for 

nitrate-fed ones. Each N source was supplied at 1 or 2.5 mM of total N. To compare both N 

sources within each concentration, NO3
--fed plants were supplied with extra CaSO4 to balance 

the SO4
2-

 supplied with the NH4
+. The pH of the solution was checked every 2 days and the 

nutrient solution replaced every 4 days. 
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The interaction between nitrogen and Fe nutrition was studied supplying different Fe(III)EDTA-

treatments to the base nutrient solutions either with ammonium or nitrate. Fe(III)EDTA-

treatment consisted of free-NaFe(III)-EDTA or 0.01 mM NaFe(III)-EDTA for deficiency (D) or 

moderate Fe deficiency (MD), respectively 0.1 mM NaFe(III)-EDTA for Fe control conditions, and 

2.5 mM NaFe(III)-EDTA for Fe  toxicity (T). During the first 7 days in hydroponic culture, 

treatments of Fe deficiency were grown in the same nutritional regime with optimal Fe supply 

(0.1 mM NaFe(III)-EDTA). At 7th day, Fe control plants were kept under the same conditions, but 

Fe was removed for deficiency treatments (D) or supplied at 0.01 mM for moderate deficiency 

(MD). For Fe toxicity treatment the plants were provided with 2.5 mM Fe since the transfer of 

seedlings to hydroponic tanks. To maintain constant the pH and the concentration of mineral 

elements of the hydroponic medium, the nutrient solution was replaced three times on 7th, 11th 

and 15th days. After each renewal of nutrient solution the stability of pH in the nutrient solution 

was checked.   

Hydroponic system and controlled environmental 

The tanks used for the hydroponic systems consisted of 4.5-L plastic containers with lid 

(29.7x19.2x12.4 cm, Tatay). Plastic containers were wrapped with black plastic in order to 

prevent the path of the light. The container lid was adapted in order to prevent the adjacent 

roots from intertwining each other and to facilitate the individual harvesting of roots (Figure 

4.2). Several holes (10-12) were performed and uniformly distributed on the lid and individual 

plastic alveoli (Projar/Herkupak, Hercu Pack® HP 104/5R) were stuck on the back on the lid 

keeping the hole in middle of the alveolus. The aeration in the hydroponic system was settled 

connecting silicone 0.5-cm width tubes from the tank to the power diaphragm air pump (Mistral 

400), to keep the dissolved oxygen in the nutrient solution with 20 cm length diffuser bars 

(Soloacuarios HJS-3802A). Seven-day-old seedlings were transplanted to the hydroponic system, 

and shoots were kept upright and protected in the holds by a small amount of hydrophobic 

cotton wrapping the plant neck (Figure 4.2).  

Plants were grown under controlled environmental conditions (60/70 % of relative humidity, 23 

°C day (14 h) with a light intensity of 350 μmol m-2 s-1 and 18 ºC night (10 h)) in growth chambers 

of Phytothron and Greenhouse Service of the Advanced Research Facilities (SGIKER) at the 

University of the Basque Country (UPV/EHU, Faculty of Science and Technology, Leioa-Bizkaia). 
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Figure 4.2. Hydroponic systems for Brachypodium distachyon cultivation 

Harvesting of plants and conservation 

Plants were harvested at 19th or 24th days, between 10 and 12 a.m., this is two hours after the 

onset of the photoperiod. Shoots and roots were separated and individually weighed. Plants 

grown within the same tank for the same accession were pooled, immediately frozen in liquid 

nitrogen, homogenized in a Tissue Lyser (Retsch MM 400) and stored at -80 °C until use or until 

being lyophilized.  

Metabolites extraction 

Metabolites were extracted using different solvents: acetone extraction, ethanol extraction, 

HCl-extraction, methanol:water:chloroform extraction and water extraction. 

Acetone extraction: approximately, 20 mg of frozen fresh weight (FW) were extracted by 

adding 1.8 ml 80 % aqueous acetone, centrifuged at 13,200 rpm for 20 min at 4º, 

recovered supernatant and 5 fold-diluted with acetone 80 %. 

Ethanol extraction: Approximately, 20 mg of frozen FW were extracted in 3 phases: 250 µl 

80 % ethanol, 10 mM HEPES/KOH pH 6, incubated 20 min at 80 ºC, centrifuged 13,200 

rpm for 5 min at 4º and supernatant recovered. The process was replicated with 150 µl 

80 % ethanol, 10 mM HEPES/KOH, pH 6, and 250 µl 50 % ethanol in 10 mM HEPES/KOH 

pH 6. Supernatants from each step were pooled.  
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HCl-extraction: Approximately, 100 mg of frozen FW was homogenized in 1.5 ml 1 M HCl and 

incubated on ice for 10 min. Subsequently, extracts were centrifuged at 20,000 g and 4°C 

for 10 min, supernatants were neutralized using NaOH. 

Methanol:water:chloroform extraction: Approximately, 150 and 200 mg of frozen FW for leaf 

and root material, respectively, were extracted in 1.8 ml of methanol:water:chloroform 

(4:4:10, v:v:v). After centrifugation, the upper layer (methanol:water) was recovered, 

vacuum dried and the pellet was resuspended in 1 ml of ultrapure water, that was finally 

filtered through a 0.22 µm polyethersulfone membrane filter. 

Water extraction: approximately, 20 mg of frozen FW were extracted by adding 650 µl of 

milli-Q water, homogenized at 27 Hertz for one minute, heated at 80 °C for 5 min and 

centrifuged at 13,200 rpm for 20 min at 4º and the supernatant recovered. 

Chlorophyll quantification 

Chlorophylls extraction was performed either with acetone (chapter 1) or ethanol (chapter 2 

and 3). 

Following the acetone extraction, chlorophyll content was immediately quantified 

spectrophotometrically in 1-cm light path cuvettes at 663 and 645 nm (Power Wave x 340, 

BioTek Instruments) using the following formula (Arnon, 1949):  

 Chl a (µg ml-1) = 12.7 A663 – 2.69 A645 

 Chl b (µg ml-1) = 22.9 A645 - 4.86A663 

Following the ethanol extraction, immediately 50 µl aliquots of ethanol extraction were mixed 

with 120 µl 98 % ethanol in 96-well microplates. Plates were measured for absorbance (OD) in 

a 96-well microplate reader (SAFAS MP96) at 645 and 665 nm. Chlorophyll content was adapted 

to microplates with a final volume of 170 µl per well from previously described Arnon (1949), 

using the following formula:  

 Chl a (µg well-1) = 5.21 A665 – 2.07 A645, 

 Chl b (µg well-1) = 9.29 A645 – 2.74A665  

Total chlorophyll (a + b) content was expressed as µg mg-1 FW  
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Ammonium quantification 

Ammonium content was obtained following either water extraction (Chapter 1 and 2) or ethanol 

extraction (Chapter 3). 

Aliquots of 50 µl of water or ethanol extractions or ammonium standard (0-0.5 mM (NH4)2SO4) 

were mixed with 100 µl of 0.33 M sodium phenolate (pH 13), 50 µl of 0.76 mM sodium 

nitroprusside and 100 µl of sodium hypochloride (diluted solution of 2 % commercial bleach, 

v/v). Microplates were incubated for 30 min at room temperature and OD determined at 635 

nm in a 96-well microplate reader (Power wave x 340, BioTek Instruments or SAFAS MP96). 

Ammonium content was expressed as µmol g−1 FW. 

Nitrate quantification 

Nitrate was determined as described by Tschoep et al. (2009).  Aliquots of 5 µl of ethanol 

extraction or nitrate standard (0. 0.4, 0.8 and 1.4 mM KNO3) were mixed with 95 µl assay mix.  

Assay mix: 

10 µl  1 M potassium phosphate buffer, pH 7.5 
0.5 µl 50 mM NADPH in 50 mM NaOH  
1  µl 5 U ml-1 nitrate reductase (NR) in 0.1 M phosphate buffer  
83.5 µl  H2O MilliQ 

 
The reaction was formed by incubating the microplates at 25 °C for 30 min, then 15 µl 0.25 mM 

phenazine methosulfate, mixed, protected from light and incubated at 25 ºC for 20 min. 

Afterwards, nitrite was detected with the addition of 60 µl 1 % w/v sulphanilamide in 3 M 

phosphoric acid, 60 µl 0.02 % w/v NNEDA (N (1-Naphtyl) ethylendiamine dihydrochloride). 

Microplates were incubated for 10 min at 25ºC and OD determined at 540 nm in a 96-well 

microplate reader and (Power wave x 340, BioTek Instruments or SAFAS MP96). Nitrate content 

was expressed as µmol g−1 FW. 

Amino acids 

Total free amino acids quantification 

Quantification of total free amino acids was performed either from water extraction (chapter 2) 

or from ethanol extraction (chapter 3) 

In chapter 2, total free amino acids were determined by the ninhydrin method (Yemm et al., 

1955). Aliquots of 10 µl of water extraction or standard (0-5 mM L-glutamine) were mixed with 

90 µl of milli-Q water, 50 µl of 25.5 µM KCN (pH 5.4) and 50 µl of 0.168 M ninhydrin diluted in 
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ethylene glycolmonomethyl ether. The samples were mixed, stirred, and incubated at 100 °C for 

15 min. Finally, 500 µl of 50 % (v/v) isopropanol were added and stirred and OD was determined 

at 570 nm (Power wave x 340, BioTek Instruments).  

In chapter 3, total free amino acids were assayed as described by Bantan-Polak et al., (2001). 2 

µl aliquots of ethanol extraction or Na-glutamate standard (0, 100, 200, 400, 800 µM in 70 % 

ethanol/HEPES KOH 10 mM) were mixed with 15 µl 0.1 M borate buffer pH 8, 90 µl 

fluorescamine in acetonitrile and 100 µl H20 milliQ. Plates were incubated for 5 min at room 

temperature and fluorescence determined at 405 nm excitation, 485 nm emission in a 96-well 

microplate reader (SAFAS XENIUS XMA).  

Total free amino acid content was expressed as µmol Glu or Gln g−1 FW. 

Individual amino acid quantification 

From the HCl-extraction the internal standards norvaline and homoglutamic acids were added. 

Samples were then derivatized with 1 mM fluorescein isothiocyanate (FITC) in acetone at room 

temperature for 15 h in 20 mM borate buffer (pH 10). The content of free amino acids was 

determined using a Beckman Coulter capillary electrophoresis SYSTEM PA-800 (Beckman 

Coulter Inc., USA) coupled to a laser induced florescence detector (argon laser at 488 nm), as 

described in Takizawa and Nakamura (1998), with minor modifications. Individual free amino 

acid content was expressed as µmol g−1 FW. The determination of Individual amino acid was 

carried out at the Natural Sciences Department of the Public University of Navarra in Pamplona 

(Spain). 

Glutamate quantification 

To determine glutamate enzymatically 15 µl aliquots of ethanol extraction or standard (ranging 

from 0 to 0.5 mM Na-glutamate) were mixed with 185 µl of assay mix.  

Assay mix: 

20  µl  1 M Tricine KOH pH 8.5 
10  µl 10 mM methylthiazolyldiphenyl tetrazolium bromide (protected from 

    light) 
10  µl 30 mM NAD+  
5   µl 10 % Triton X-100  
2   µl 50 mM ADP  
5   µl 2.5 mM phenazine ethosulfate  
133 µl  H2O MilliQ 
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After reading the absorbance at 570 nm for 10 min, one unit of glutamate dehydrogenase was 

added, and the OD was read until curve reaction stabilized. Content of glutamate was expressed 

in µmol g−1 FW.  

Organic acids quantification  

Organic acids were extracted from 150 and 200 mg of frozen FW leaf and root, respectively, in 

1.8 ml of methanol:water:chloroform (4:4:10). After centrifugation, the upper layer was 

recovered, vacuum dried and the pellet resuspended in 1 ml of ultrapure water that was finally 

filtered through a 0.22-µm polyethersulfone (PES) membrane filter. Separation and 

quantification of the different organic acid were performed by ion chromatography (Dionex ICS-

5000, Thermo Scientific) in the Service of the Advanced Research Facilities (SGIker) at the 

University of the Basque Country (UPV/EHU, Faculty of Science and Technology, Leioa-Bizkaia). 

Contents of phosphoenolpyruvate, pyruvate, oxaloacetate, malate, citrate, isocitrate, 2-

oxoglutarate, fumarate (chapter 1) were expressed in nmol mg-1 FW. 

Citrate and malate enzymatic quantification 

To determine citrate 10 µl aliquots of ethanolic extracts were mixed with 100 µl assay mix.  

Assay mix: 

5  µl 1M Tricine/KOH pH 8,  
1  µl 50 mM NADH in 50 mM NaOH 
0.05 µl 200 mM ZnSO4  
0.15 µl 1000 U ml-1 malate dehydrogenase in 100 mM Tricine 
93.8 µl H2O milliQ 

After reading the absorbance at 340 nm for 10 min, 0.014 units of citrate lyase were added, 

and the OD was read until curve reaction stabilized. The ΔOD due to the addition of citrate 

lyase was determined for the calculation of citrate content.  

To determine malate 10 µl aliquots of ethanolic extracts were mixed with 90 µl assay mix. 

Assay mix: 

69 µl 0.1 M Tricine /KOH pH 9 
10 µl 30 mM NAD+  
10 µl 20 mM Na-glutamate  
1  µl 200 U ml-1 glutamate:oxoglutarate aminotransferase   

After reading the absorbance at 340 nm for 15 min, 2 units of malate dehydrogenase were 

added, and the OD was read until curve reaction stabilized (Nunes-Nesi et al., 2007). Content of 
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citrate and malate were expressed in nmol mg-1 FW. The ΔOD due to the addition of malate 

dehydrogenase was determined for the calculation of malate. 

Soluble sugars quantification: glucose, fructose and sucrose 

Soluble sugars, glucose, fructose and sucrose, were determined as described by Jelitto et al., 

(1992). Aliquots of 50 µl of ethanol extraction were mixed with 160 µl of assay mix. 

Assay mix: 

193.7 µl 0.1 M HEPES/KOH, 3 mM MgCl2, pH 7 
6  µl 100 mM ATP  
6  µl 45 mM NADP+  
1  µl 700 U ml-1 Glucose-6-phosphate dehydrogenase (G6PDH grade II) 

 
Plates were incubated at 37 ºC in a 96-well microplate reader (SAFAS MP96) and NADPH 

evolution was monitored at 340 nm (one reading every 30 s) until OD1 was stabilized, and then 

added successively the following enzymes: 

1 µl Hexokinase (900 U ml-1 solution in 0.1 M HEPES/KOH 0, 3 mM MgCl2, pH 7)  

Waiting until OD2 is stabilized, and adding of 

1 µl Phosphoglucose isomerase (1000 U ml-1 solution in 0.1 M HEPES/KOH 0, 3 mM 
   MgCl2, pH 7), 

Waiting until OD3 is stabilized and adding of 

1 µl Invertase (300 mg in 3 ml 0.1 M buffer)  

Then when stabilized OD4 was recorded evolution of NAD(P)H. Content of glucose, fructose and 

sucrose were expressed in eq µmol glucose g-1 FW. For glucose determination, ΔOD due to the 

difference between the absorbance before and after applying hexokinase was calculated. For 

fructose determination, ΔOD due to the difference between the absorbance before and after 

applying phosphoglucose isomerase was calculated. For sucrose determination, ΔOD due to the 

difference between the absorbance before and after applying invertase was calculated.  

Starch  

Starch was determined from the pellet obtained from the ethanolic extraction by adding 400 µl 

0.1 M NaOH and heating at 95 ºC for 30 min, as described by Hendriks et al. (2003). The re-

suspended pellet was acidified to pH 4.9 with 80 µl 0.5 M HCl / 0.1 M sodium-acetate, mixed 

and the suspension was digested overnight at 37 ºC with 100 µl of starch degradation enzymatic 

buffer (210 units amyloglucosidase and 150 units α-amylase in 12.5 ml of 50 mM acetate buffer 
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for 1 microplate). The glucose content of the supernatant was then used to assess the starch 

content of the sample, according to the glucose determination above stated. 

Total glutathione extraction and determination 

Total glutathione (oxidized (GSSG) and reduced (GSH)) were extracted using approximately 20 

mg of FW in 400 µl of 5 % metaphosphoric acid. To determine total glutathione pool (GSH + 

GSSG) 10 µl aliquots of extracts or standard (0, 3.12, 6.25, 12.5, 25, 50 µM GSSG) were mixed 

with 150 µl assay mix (Griffith, 1980).  

Assay mix: 

31.59 µl Phosphate buffer (add 0.5 M KH2P4 to 0.5 M K2HPO4 until pH 7) 
1.46  µl 0.5 M EDTA pH 7 
4.19 µl Glutathione reductase in 4.12 µl buffer 1X    
    (5.2 ml phosphate buffer, 0.24 ml EDTA, 18.56 ml H2O milliQ) 
4.19 µl DTNB (5.5’ Dithio-2-nitro benzoic acid) 1.5 mg ml-1 in Ethanol 99 % 
    (prepared fresh just before the assay) 
112.76 µl H2O milliQ 

After 5-min incubation, 5 µl of 2mM NADPH were added and TNB (5- thionitrobenzoic acid) 

evolution absorbance at 415 nm was measured every 30 s for 30 min in a 96-well microplate 

reader (SAFAS MP96). Total glutathione was expressed  

Total glutathione (GSSG + GSH) = 
[∆𝑂𝐷 𝑎𝑡 415/𝑚𝑖𝑛 –(𝑦−𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)] 𝑥 𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 2

𝑠𝑙𝑜𝑝𝑒
  

Total glutathione is expressed as eq nmol GSSG g-1 FW 

Phytosidopheres determination 

The concentration of nicotianamine, mugenic acid (MA) and analogous chelators: 2´-

deoxymugineic acid, deoxydistichonic acid A, distichonic acid A, avenic acid and 3-

hydroxymugineic acid were measured by HPLC (Kawai et al., 1988) in the Experimental Station 

Aula Dei, CSIC (Zaragoza).  

Mineral elements: extraction and quantification 

Lyophilized leaf and root samples (10 mg DW) were extracted with HNO3 by microwave-assisted 

digestion (Mars6, Vertex, Spain). Nitrogen (N), carbon (C) and sulphur (S) contents were 

determined with an elemental analyser Flash EA1112 (Thermo Fisher Scientific Inc., Waltham, 

MA, USA). Quantification of inorganic elements (Fe, Zn, Mg, Ca, P, K and Na) was performed by 

optical emission spectrophotometer with inductively coupled plasma ICP-OES (Horiba Jobin 

Yvon, Activa). The determination of mineral elements were carried out at the Central Analysis 
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Service of the Advanced Research Facilities (SGIKER) at the University of the Basque Country 

(UPV/EHU, Faculty of Science and Technology, Leioa-Bizkaia). 

Soluble proteins extraction and enzymatic activity determination 

Soluble proteins were extracted using three protocols, referred as “ethanolic extraction” used 

in the chapter 3, “extraction buffer 1” in the chapter 1, and “extraction buffer 2” in the chapter 

3.  

Ethanolic extraction: Approximately, 20 mg of frozen FW were extracted in 3 phases: 250 

µl 80 % ethanol, 10 mM HEPES/KOH pH 6, incubated 20 min at 80 ºC, centrifuged 13,200 

rpm for 5 min at 4º and supernatant recovered. The process was replicated with 150 µl 

80 % ethanol, 10 mM HEPES/KOH, pH 6, and 250 µl 50 % ethanol in 10 mM HEPES/KOH 

pH 6. Supernatants from each step were pooled.  

Extraction buffer 1: 40 mg of frozen FW with 20-30 mg polyvinylpyrrolidone (PVPP) were 

extracted with 800 µl of extraction buffer containing 10 % Glycerol, 0.05% BSA, 0.1% 

Triton X-100, 50 mM HEPES-KOH pH 7.5, 10 mM MgCl2, 1 mM EDTA Na2, 1 mM EGTA, 

10 mM DTT, 1 mM PMSF, 1 mM delta-aminocapronic acid, 5 µM leupeptin, 1 mM 

benzamidine). Afterwards, it was homogenized twice for 60 s at 27 Hertz and 

centrifuged at 13,200 rpm and 4 ºC for 20 min. The supernatant was used for enzyme 

activities determination and soluble protein content (Chapter 1). 

Extraction buffer 2: 20 mg of frozen FW with 20 mg of polyvinylpyrrolidone (PVPP) were 

extracted with 500 µl of extraction buffer (289.5 µl H2O milliQ, 100 µl glycerol 99%, 50 

µl pre-extraction buffer 10X, 50 µl 10 % Triton-X 100, 5 µl leupeptin 2 mM , 0.5 µl DTT 

500 mM). After mixed vigorously, it was centrifuged at 2500 rpm and 4 ºC for 10 min. 

The supernatant was used for enzymatic activities performed in the high throughput 

metabolic phenotyping platform (HiTe Platform) in the National Institute of Agricultural 

Research (INRA), Aquitaine-University of Bordeaux. 

Soluble proteins quantification 

The content of soluble protein was measured according to Bradford assay (Bradford, 1976) 

adjusting the volumes for microplate reader in each case. Aliquots of 10 µl of enzymatic extract 

(extraction buffer 1, chapter 1), or 3 µl of ·ethanolic extraction (chapter 3) or bovine serum 

albumin standard (0-0.5-1-2-3-4-5-6 µg ml-1) were mixed with 240 µl and 180 respectively, of 5-

fold diluted Bradford base dye-binding assay (Bio-Rad, Hercules, CA, USA). Plates were incubated 



Materials and methods 

196 
 

for 5 or 10 min at room temperature and OD determined at 595 nm in a 96-well microplate 

reader (Power wave x 340, BioTek Instruments, SAFAS MP96). 

Soluble proteins content was expressed in mg BSA g−1 FW. 

Enzymatic activities 

NADP(H)- glutamate dehydrogenase  

In chapter 1, to determine glutamate deshydrogenase (NAD(P)(H)-GDH, EC 1.4.1.2, EC 1.4.1.4) 

activity in the aminating sense 20 µl aliquots of enzymatic extraction (buffer 1) were mixed with 

280 µl assay mix.  

Assay mix: 

28 µl 1 M Tricine KOH, pH 8 
0.28 µl 1 M CaCl2 
5.6 µl 2.5 M (NH4)2SO4 
28 µl 2.5 M NADH or NADPH 
28 µl 130 mM α-Ketoglutaric acid disodium salt dihydrate 
190.2 µl H2O milliQ 

 
Microplates were incubated at 25 °C during 20 min in a 96-well microplate reader (Power wave 

x 340, BioTek Instruments) and NAD(P)H evolution was monitored at 340 nm. Activity was 

expressed in μmol NAD(P)H g−1 FW h−1 

To determine NAD-GDH (EC 1.4.1.2) activity in the aminating sense 2 µl aliquots of enzymatic 

extraction (buffer 2) or standard (0, 50, 100, 200 µM NAD+) were mixed with 18 µL of assay mix.  

Assay mix: 

4  µl Assay buffer (Tricine/KOH 0.5 M pH 8, CaCl2 5 mM, NH4 acetate 3.2 
    M, Triton  X100 0.25 %) 
2  µl 150 mM α-Ketoglutaric acid disodium salt dihydrate 
0.04 µl 60 mM NADH in 60 mM of NaOH 
11.96 µl H2O milliQ 

After incubating at 25 °C for 20 min, the reaction was stopped with 20 µl of 0.5 M HCl in 100 mM 

Tricine/KOH pH 9, incubated at 90 ºC for 10 min and 20 µl 0.5 M NaOH. After mixed, 45 µl of 

determination mix and 5 µl of 4 mM PES (Phenazine ethosulfate) were added and reduced MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) evolution were monitored at 

570 nm. For blanks α-Ketoglutaric (acid disodium salt dehydrate) was substituted by water 

(Gibon et al., 2004). Activity was expressed in μmol NADH g−1 FW h−1 
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Determination mix  

10 µl 1 M Tricine/KOH pH 9 buffer 
10 µl 10 mM MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
    bromide) 
4  µl 200 mM EDTA 
2  µl 50 % Ethanol 
1  µl 2000 U ml-1 alcohol dehydrogenase (in 200 mM Tricine/KOH, pH 9, 10 
    mM MgCl2) 
18 µl H2O milliQ 
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Glutamine synthetase  

In chapter 1, glutamine synthase (GS, EC 6.3.1.2) activity was determined in the semibiosynthetic 

reaction, according to O'Neal and Joy (1973). Aliquots of 50 µl of enzymatic extraction (buffer 1) 

or standard (0-4 nmol µl-1 -glutamilhydroxamate), were mixed with 100 µl assay mix, and 

incubated for 30 min. Afterwards, 150 µl of “stopping mix” (0.37 M FeCl3, 0.2 M trichloroacetic 

acid, 0.67 N HCl) were added, centrifuged for 10 min and 200 µl of supernatant was transferred 

to a new microplate. The OD was read at 540 nm in a 96-well microplate (Power wave x 340, 

BioTek Instruments). GS activity was expressed in μmol -glutamilhydroxamate g−1 FW h−1. 

Assay mix: 

5  µl 1 M Tris-HCl pH 7.6 
2  µl 1 M MgSO4 
10 µl  0.8 M Na-glutamate 
1  µl 0.6 M Hydroxylamine 
0.8 µl 0.5 M EDTA 
6.66 µl 120 mM ATP 
47.54 µl H2O milliQ 

In chapter 3, to determine glutamine synthetase activity 5-µl aliquots of enzymatic extraction 

(buffer 2), were mixed with 95 µl of assay mix. Microplates were incubated at 25 °C during 20 

min in a 96-well microplate reader (SAFAS MP96) and NADH evolution was monitored at 340 

nm. For blanks L-glutamate was substituted by water (Gibon et al., 2004). 

Assay mix: 

20 µl Assay buffer 5X (MgCl2 100 mM, HEPES/KOH 0.5 M pH 7.5, NaVO3 2 
    mM,  5’,5’- Diadenosine pentaphosphate 0.4 mM , NH4Cl 20 mM, 
   EDTA 10 mM,  Triton-X 100 0.25%) 
10 µl 99 % Glycerol  
2  µl 50 mM Phospho(enol)pyruvic acid trisodium salt hydrate 
5  µl 100 mM ATP  
2  µl 50 U.ml-1 Pyruvate kinase  
1  µl 60 mM NADH in 60 mM NaOH 
1  µl Lactate dehydrogenase (60 U ml-1 in 200 mM HEPES/KOH pH 7.5,  
   10 mM MgCl2) 
45 µl L-glutamate 100 mM pH (7.5) 
9  µl H2O milliQ 
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NADH-dependent glutamate synthase  

To determine NADH-dependent glutamate synthase (NADH-GOGAT, EC 1.4.1.14) activity 

(chapter 1) 20 µl aliquots enzymatic extraction (buffer 1) were mixed with 280 µl assay mix. 

Microplates were incubated at 25 °C during 20 min in a 96-well microplate reader (Power wave 

x 340, BioTek Instruments) and NADH evolution was monitored at 340 nm. Activity was 

expressed in μmol NADH g−1 FW h−1 

Assay mix: 

28 µl 1 M Tricine KOH pH 8.6 
22.4 µl 2.5 mM NADH 
1.4 µl 1 M Dithiothreitol (DTT) 
2.15 µl 0.13 M α-Ketoglutaric acid disodium salt dihydrate 
28 µl 30 mM Gln 
198.05 µl H2O milliQ 
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Phosphoenolpyruvate carboxylase 

In chapter 1, to determine phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activity 20 µl 

aliquots of enzymatic extraction (buffer 1) were mixed with 280 µl assay mix. Microplates were 

incubated at 25 °C during 20 min in a 96-well microplate reader (Power wave x 340, BioTek 

Instruments) and NADH evolution was monitored at 340 nm. Activity was expressed in μmol 

NADH g−1 FW h−1 

Assay mix: 

28 µl 1 M Tricine KOH pH 8 
1.4 µl 1M MgCl2 
5.6 µl 0.1 M NaHCO3 
5.6 µl 0.25 M NaF 
5.6 µl 0.15 M Phosphoenolpyruvic acid trisodium salt hydrate 
0.21 µl 10 kU malate dehydrogenase in 1.18 ml (NH4)2SO4 
28 µl 2.5 mM NADH 
205.59 µl H2O milliQ 

In chapter 3, phosphoenolpyruvate carboxylase activity was determined using 5 µl of aliquots of 

enzymatic extraction buffer 2, mixed with 95 µl of assay mix. Plates were incubated at 25 °C 

during 20 min in a 96-well microplate reader (SAFAS MP96) and NADH evolution was monitored 

at 340 nm. For blanks phosphoenolpyruvate was substituted by water (Bénard and Gibon, 2016) 

Assay mix: 

20 µl Assay buffer (0.5M Tricine/KOH pH8, 100 mM MgCl2, 50 mM  
    NaHCO3, 0.25% Triton X-100) 
10  µl  100 U ml-1 Malate dehydrogenase in 200 mM tricine/KOH pH8,  
   10mM MgCl2  
4  µl 50 mM Phosphoenolpyruvic acid trisodium salt hydrate 
1  µl 60 mM NADH in 60 mM NaOH 
60 µl H20 milliQ 
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NAD-dependent malate dehydrogenase  

In chapter 1, to determine NAD-dependent malate dehydrogenase (NAD-MDH, EC 1.1.1.37) 

activity 20 µl aliquots of enzymatic extraction buffer 1 were mixed with 280 µl assay mix. Plates 

were incubated at 25 °C during 20 min in a 96-well microplate reader (Power wave x 340, BioTek 

NADH g−1 FW h−1 

Assay mix: 

28 µl 1 M HEPES pH 7.5 
1.4 µl 1 M MgSO4  
2.8 µl 0.2 M Oxaloacetate (OAA, fresh prepared) 
28 µl 2 mM NADH 
219 µl H2O milliQ 

In chapter 3, to determine NAD-MDH activity 5 µL of aliquots of enzymatic extraction (buffer 2) 

were mixed with 95 µL of assay mix. Plates were incubated at 25 °C during 20 min in a 96-well 

microplate reader (SAFAS MP96) and NADH evolution was monitored at 340 nm. For blanks 

oxaloacetate was substituted by water. Activity was expressed in mmol NADH g−1 FW h−1 

Assay mix: 

20  µL Reaction buffer: 0.5 mM Tricine-KOH pH 8, 0.25% Triton X-100, 0.5 
    mM EDTA) 
2  µL 60 mM NADH in 60 mM NaOH 
22.5  µL  5 mM Oxaloacetate (fresh prepared) 
50.5  µL  H2O milliQ 
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NAD-dependent malic enzyme 

To determine NAD-dependent malic enzyme (NAD-ME, EC 1.1.1.38) activity 20 µl of aliquots of 

enzymatic extraction (buffer 1) were mixed with 280 µl of assay mix. Plates were incubated at 

25 °C during 20 min in a 96-well microplate reader (Power wave x 340, BioTek Instruments) and 

NADH evolution was monitored at 340 nm. Activity was expressed in μmol NADH g−1 FW h−1  

Assay mix: 

14 µl 1 M KOH pH 8 
0.112 µl 1 M EDTA 
1.4 µl 1 M DTT 
2.8 µl 0.5 M Malate  
1.12 µl 1 M MnCl2 
2.8 µl 10 mM Coenzyme A (CoA) 
28 µl 20 mM NAD 
28 µl 2.5 µM NADH 
201.77 µl H2O milliQ 

NADP-dependent malic enzyme  

To determine NADP-dependent malate dehydrogenase (NADP-ME, EC 1.1.1.40) activity 20 µl of 

aliquots of enzymatic extraction (buffer 1) were mixed with 280 µl of assay mix. Plates were 

incubated at 25 °C during 20 min in a 96-well microplate reader (Power wave x 340, BioTek 

Instruments) and NAD(P)H evolution was monitored at 340 nm. Activity was expressed in 

μmol  NADPH  g−1 FW h−1 

Assay mix: 

28 µl 1 M Tris-HCl, pH 7 
2.8 µl 1 M MgCl2 
28 µl 5 mM NADP 
5.6 µl 0.5 M Malate 
215 µl H2O milliQ 
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NADP-dependent isocitrate dehydrogenase 

In chapter 1, to determine NADP-dependent isocitrate dehydrogenase (NADP-ICDH, EC 1.1.1.42) 

activity 20 µl aliquots of enzymatic extraction (buffer 1) were mixed with 280 µl assay mix. Plates 

were incubated at 25 °C during 20 min in a 96-well microplate reader (Power wave x 340, BioTek 

Instruments) and NAD(P)H evolution was monitored at 340 nm. Activity was expressed in μmol 

NADPH g−1 FW h−1 

Assay mix: 

28 µl 1 MTricine KOH pH 8 
28 µl 1 M NADP 
1.4 µl 1 M MgCl2 
28 µl 50 mM Isocitrate 
194.6 µl H2O milliQ 

In chapter 3, to determine NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) activity 5 µl 

of aliquots of enzymatic extraction (buffer 2) were mixed with 95 µl of assay mix. Plates were 

incubated at 25 °C during 20 min in a 96-well microplate reader (SAFAS MP96) and NADPH 

evolution was monitored at 340 nm. For blanks isocitrate was substituted by water. Activity was 

expressed in μmol NADPH g−1 FW h−1 

Assay mix: 

20 µl Assay buffer (0.5 M Tricine/KOH pH 8, 40 mM MgCl2, 0.25 % Triton  
   X-100) 
50 µl 20 mM NADP+  
10 µl 20 mM Isocitrate (adjusted to pH 8.5 with NaOH) 
15 µl H2O milliQ 

 
Aspartate aminotransferase  

To determine aspartate aminotransferase (AAT, EC 2.6.1.1) activity 20 µl of aliquots of enzymatic 

extraction (buffer 1) were mixed with 280 µl assay mix. Plates were incubated at 25 °C during 20 

min in a 96-well microplate reader (Power wave x 340, BioTek Instruments) and NADH evolution 

was monitored at 340 nm. Activity was expressed in μmol NADH g−1 FW h−1 

Assay mix: 

56 µl 0.25 M Mes-Bicine-MOPS (MBM) pH 8 
1.4 µl 1 M MgCl2 
28 µl 100 mM Aspartic acid 
6.46 µl 130 µM Pyridoxal phosphate 
28 µl 3 mM NADH 
0.25 µl 10 kU Malate dehydrogenase enzyme in (NH4)2SO4 
159.9 µl H2O milliQ 
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Pyruvate kinase 

To determine pyruvate kinase (PK, EC 2.7.1.40) activity 5 µl of aliquots of enzymatic extraction 

(buffer 2) were mixed with 95 µl of assay mix. Plates were incubated at 25 °C during 20 min in a 

96-well microplate reader (SAFAS MP96) and NADH evolution was monitored at 340 nm. For 

blanks phosphoenolpyruvate was substituted by water. Activity was expressed in 

μmol  NADH  g−1 FW  h−1 

Assay mix: 

20 µl Assay buffer (0.5 M Tricine/KOH pH 8, 0.5 M KCl, 50 mM MgCl2,  
   2 mM EDTA, 0.25 % Triton-X-100)  
10 µl 50 mM Phosphoenolpyruvic acid trisodium salt hydrate 
5  µl 20 mM ADP   
0.79 µl 60 mM NADH in 60 mM NaOH 
1  µl  60 U ml-1 Lactate dehydrogenase in 200 mM Hepes/KOH pH 7.5, 10 
    mM MgCl2 
58.16  µl  H2O milliQ 
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Citrate synthase  

To determine citrate synthase (CS, EC 2.3.3.1) total activity 5 µl of aliquots of enzymatic 

extraction (buffer 2) were mixed with 87 µl of assay mix. After incubating at 25 °C during 5 min, 

4 µl of 2 mM DTNB (5, 5’-dithiobis(2-nitrobenzoic acid) in 99 % ethanol and 4 µl of 10 mM acetyl-

CoA were added. TNB (5-thionitrobenzoic acid) evolution was monitored at 418 nm in a 96-well 

microplate reader (SAFAS MP96). For blanks acetyl-CoA was substituted by water. Activity was 

expressed in μmol NADH g−1 FW h−1 

Assay mix: 

2  µl 500 mM Tricine/KOH, pH 8 
4  µl 5 mM Oxalacetate (fresh prepeared) 
63 µl H2O milliQ 

To determine citrate synthase mitochondrial activity (CSm) 5 µl of aliquots of enzymatic 

extraction (buffer 2) were mixed with 87 µl of assay mix. After incubating at 25 °C during 5 min, 

4 µl of 2 mM DTNB (5, 5’-dithiobis (2-nitrobenzoic acid) in 99 % ethanol and 4 µl of 5 mM 

oxaloacetate were added. TNB evolution was monitored at 418 nm in a 96-well microplate 

reader (SAFAS MP96). For blanks acetyl-CoA was substituted by water. Activity was expressed 

in μmol NADH  g−1 FW  h−1 

Assay mix: 

20 µl 500 mM Tricine/KOH, pH 8 
4  µl 2 mM DTNB  
63 µl H2O milliQ 
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Hexokinases 

To determine fructokinase (FK, EC 2.7.1.3) and glucokinase (GK, EC 2.7.1.1) activities, 2 µl 

aliquots of enzymatic extraction (buffer 2) or standard (0, 20, 50, 100 µM glucose-6-phosphate 

or frutose-6-phosphate) were mixed with 18 µl of assay mix.  

Assay mix: 

4  µl Assay buffer (0.5 M Tricine/KOH pH 8, 25 mM MgCl2, 0.25 % Triton 
    X 100) 
0.4 µl 100 mM ATP   
0.5 µl 20 mM NADP+  
0.4 µl 50 U ml-1 Glucose-6-phosphate dehydrogenase (G6PDH grade II) in 200 
    mM Tricine/KOH pH 8, 10 mM MgCl2 
0.2 µl 1 U ml-1 phosphoglucoisomerase (fructokinase assay) 
0.2 µl 2 mM glucose (glucokinase) or fructose (fructokinase) 
12.3 µl H2O milliQ 

After incubating at 25 °C for 20 min, the reaction was stopped with 20 µl of 0.5 M NaOH, 

incubated 95 ºC for 5 min. Then, 20 µl of 0.5 M HCl in 100 mM Tricine/KOH pH 9 was added. 

After being mixed, 45 µl of determination mix and 5 µl of 4 mM PES (Phenazine ethosulfate) 

were added and reduced MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

evolution were monitored at 570 nm. For blanks ATP was substituted by water (Gibon et al., 

2004). Activity was expressed in μmol NADPH g−1 FW h−1 

Determination mix  

10 µl Tricine/KOH, pH 9 
10 µl 2 mM MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
    bromide) 
4  µl 200 mM EDTA  
2  µl 205 mM G6P   
0.5 µl 5 U ml-1 glucose-6-phosphate-dehydrogenase (G6PDH grade I)  
18.5 µl H2O milliQ 
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RNA extraction and gene expression analysis  

RNA extraction was carried out from 25 mg of frozen FW leaf or root powder with the Nucleospin 

RNA plant kit (Macherey-Nagel) that includes DNAse treatment. One μg of RNA was 

retrotranscribed into cDNA (PrimeScriptTM RT; Takara Bio Inc.) and gene expression was 

determined from 2 µL of cDNA diluted 1:10 in a 15 μL reaction volume using SYBR Premix 

ExTaqTM (Takara Bio Inc.) in a Step One Plus Real Time PCR System (Applied Biosystems). The 

PCR program was 95 °C for 5 min followed by 40 cycles of 94 °C for 15 s and 60 °C for 1 min and 

a melting curve (40–95 °C with one fluorescence read every 0.3 °C). ACT3 and SamDC were used 

as housekeeping genes to normalize gene expression. Absence of genomic DNA contamination 

was checked in all RNA samples. Primers used and their efficiency, calculated with serial cDNA 

dilution, are described as following (Table 4.1, also included in supplementary information, 

Table S1.1). 

Table 4.1. Brachypodium distachyon Bd21 genes encoding for GLN, AS and GDH enzymes. The primers used for qPCR 
expression together with their efficiencies (E) are shown. BdSamDC and BdACT3 are the genes that served as 
reference for relative gene expression quantification. 
 

Name Locus name Gene symbol Forward Reverse E 

BdGLN1;1 Bradi3g59970 LOC100845598 aagctgcccaagtggaactacg tccttgaagatagcctgtgggtag 1.76  

BdGLN1;2 Bradi1g69530 LOC100824429 tcgtcgagtacttgtgggttgg ccattcacggtccttgctttgc 1.80  

BdGLN1;3 Bradi1g11450 LOC100837122 caagccatcttcagggatccattc tgcatagcagtcacacataaccag 1.92  

BdGLN2 Bradi5g24550 LOC100842712 tcgcttcacaagtgccatggtatg agaggccagttcacatctctctgg 1.76  

BdASN1 Bradi1g65540 LOC100830770 tgccgaagcatatcctctac tttcatcatctcatcggtgac 1.93  

BdASN2 Bradi2g21050 LOC100830419 tctcttgtctggtggacttg tcaggagaacccttcaaacc 2.02  

BdASN3 Bradi4g45010 LOC100839462 cagtgttcaggatggcattg gcgacttgatcttgcgtgac 2.05  

BdGDH1 Bradi1g05680 LOC100831066 agtttcatggttactcgcctgctg tcccagagatcctccaaggtcaac 1.89  

BdGDH2 Bradi5g17330 LOC100828452 acatgggaactaatgcacagacc agtggcagcatccctacctaatg 1.91  

BdNADP-GDH Bradi2g41130 LOC100833076 cgatgccgatctacgtcaaagc tgaaccacctcctggatagactg 1.95  

BdSamDC Bradi5g14640 LOC100821874 tgctaatctgctccaatggc gacgcagctgaccacctaga 2.04  

BdACT3 Bradi4g41850 LOC100834364 cctgaagtccttttccagcc agggcagtgatctccttgct 2.05  

 

Phylogenetic analysis  

Phylogenetic analysis for GS, GDH and AS genes was done using the programs included in the 

Phylogeny.fr tool (Dereeper et al., 2008) as follows. Coding Sequences (CDs) multiple alignments 

were conducted with the Muscle algorithm and refined using G blocks. Phylogeny analysis was 

done using the bootstrapping procedure with the PhyML software. Finally, TreeDyn was used to 

visualize the tree. 
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Proteomics 

The proteomic analysis was performed in the Proteomics Core Facility-SGIKER (member of 

ProteoRed-ISCIII) at the University of the Basque Country. 

Protein extraction and digestion  

Around 10 mg of dried root powdered material was resuspended in 0.4 ml 8 M urea, 

homogenized through vortex and disrupted by sonication. After centrifuged at 13,000 rpm, the 

supernatant was collected. Protein integrity was checked by SDS-

precipitated with 2D CleanUp (GE Healthcare) according to the manufacturer’s instructions, re-

suspended in RapiGest 0.2 % (Waters) and protein concentration determined by Bradford (BCA 

assay; Thermo Fisher Scientific). Aliquots of each samples containing 75 µg of protein were 

heated (85 °C, 15 min), reduced with DTT (5 mM), alkylated with iodoacetamide (15 mM) and 

digested with trypsin (1.5 mg) overnight at 37 ° (Roche Diagnostics). RapiGest was inactivated 

twice by the addition of HCl at a final concentration of 0.5 % and incubation at 37 °C for 40 min. 

Samples were centrifuged at 16,000 g for 10 min, the supernatant was collected and 25 µg were 

desalted using C-18 Micro SpinColums (Harvard Apparatus). Finally, samples were dried down 

in a SpeedVac centrifuge (ThermoFisher Scientific). 

Quantification of peptides by LC-MC/MS  

Mass spectrometric analyses were performed on an EASY-nLC 1200 liquid chromatography 

system interfaced with a Q Exactive HF-X mass spectrometer (ThermoFisher Scientific) via a 

nanospray flex ion source. Dried peptides were dissolved in 0.1% formic acid and loaded onto 

an Acclaim PepMap100 pre-column (75 μm × 2 cm, ThermoFisher Scientific) connected to an 

Acclaim PepMap RSLC C18 (75 μm × 25 cm, ThermoFisher Scientific) analytical column. Peptides 

were eluted by a 150 min linear gradient from 2 % to 30 % acetonitrile in 0.1 % formic acid at a 

flow rate of 300 nl min-1. The mass spectrometer was operated in positive ion mode. Full MS 

scans were acquired from m/z 375 to 1800 with a resolution of 60,000 at m/z 200. The 15 most 

intense ions were fragmented by higher energy C-trap dissociation with normalized collision 

energy of 28 and MS/MS spectra were recorded with a resolution of 15,000 at m/z 200. The 

maximum ion injection time was 60 ms for survey and MS/MS, whereas AGC target values were 

3 × 106 and 5 × 105 respectively. In order to avoid repeat sequencing of peptides, dynamic 

exclusion was applied for 20 s. singly charged ions or ions with unassigned charge state were 
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also excluded from MS/MS. Data were acquired using Xcalibur software (ThermoFisher 

Scientific). 

Proteomics data analysis 

Acquired raw data files were processed with the MaxQuant (Cox and Mann, 2008) software 

(version 1.6.0.16) using the internal search engine Andromeda (Cox et al., 2011) and searched 

against the UniProt database restricted to Brachypodium_distachyon entries (release 2017_08). 

Carbamidomethylation (C) was set as fixed modification whereas Met oxidation and protein N-

terminal acetylation were defined as variable modifications. Mass tolerance was set to 8 and 20 

ppm at the MS and MS/MS level, respectively. Enzyme specificity was set to tryññpsin, allowing 

for a maximum of three missed cleavages. Match between runs option was enabled with 1.5 

min match time window and 20 min alignment window to match identification across samples. 

The false discovery rate for peptides and proteins was set to 1 %. Normalized spectral protein 

label-free quantification (LFQ) intensities were calculated using the MaxLFQ algorithm. 

MaxQuant output data was analysed with the Perseus module (version 1.6.0.7) (Tyanova et al., 

2016). Proteins identified by site (identification based only on a modified peptide), reserve 

proteins (identified by a decoy database) and potential contaminants were filtered out. Proteins 

with 3 LFQ values in at least one group were used for quantification and missing LFQ intensity 

values were replaced with values from a normal distribution (width 0.3 and down shift 1.8), 

meant to simulate expression below the detection limit (Tyanova et al., 2016). Perseus program 

was used for comparison of media for the different treatments by running a t-student analysis. 

Significant and differential data were selected by a p-value lower than 0.05, and a fold change 

of < 0.67 (down accumulation) and >1.5 (up-accumulation) in linear scale. Functional 

classification of proteins identified was carried with Protein Analysis through Evolutionary 

Relationships (PANTHER v14.1 http://www.pantherdb.org), which is in compliance with gene 

ontology (GO) standards. 

Genome wide association analysis 

The SNP data set from 51 inbred sequenced lines was analyzed with the GWAS tool GAPIT 

(Genome Association and Prediction Integrated Tool-R package) (Lipka et al., 2012) for all 

measured phenotypes in each condition (ammonium or nitrate).The principal component (PC) 

matrix was generated automatically by setting GAPIT parameters PCA.total to 3 since three 

groups were observed in the VanRaden plot (Figure S4.1). These three match with those 

described by Gordon et al. (2017). The PC analysis and the kinship matrix were calculated from 

a SNP.fraction = 0.05. We used four models for GWAS analysis: 1) GLM, 2) MLM, 3) MLMM and 
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4) FarmCPU. A Bonferroni-corrected threshold probability based on individual tests was 

calculated to correct for multiple comparisons, using 0.05/N, where N is the number of 

individual trait-SNP combinations tested. Because SNPs with low MAF (Minor Allelic Frequency) 

can often result in false positive associations, SNPs were removed from the analysis if their minor 

allele frequency was less than 10 % across the panel. In total, 2 653 103 SNPs were distributed 

across the five chromosomes of B. distachyon. Wilson et al., (2018) reported that the mean LD 

of 107 accessions including the panel of our study decays across all chromosomes ~113 kb. To 

limit false positives, we defined 20 kb up and downstream to find the genes associated in the 

reference genome Bd21 using JGI_Phytozome database 12 (https://phytozome.jgi.doe.gov/) 

and NCBI database (https://www.ncbi.nlm.nih.gov/) 

Figure 4.4 Kinship relationships among samples according to VanRaden method (VanRaden, 2008). Three main 
groups are generated. 

 

https://www.ncbi.nlm.nih.gov/
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