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From development to aging and disease, the brain parenchyma is under the constant

threat of debris accumulation, in the form of dead cells and protein aggregates. To prevent

garbage buildup, the brain is equipped with efficient phagocytes: the microglia. Microglia

are similar, but not identical to other tissue macrophages, and in this review, we will first

summarize the differences in the origin, lineage and population maintenance of microglia

and macrophages. Then, we will discuss several principles that govern macrophage

phagocytosis of apoptotic cells (efferocytosis), including the existence of redundant

recognition mechanisms (“find-me” and “eat-me”) that lead to a tight coupling between

apoptosis and phagocytosis. We will then describe that resulting from engulfment and

degradation of apoptotic cargo, phagocytes undergo an epigenetic, transcriptional and

metabolic rewiring that leads to trained immunity, and discuss its relevance for microglia

and brain function. In summary, we will show that neuroimmunologists can learn many

lessons from the well-developed field of macrophage phagocytosis biology.

Keywords: microglia, macrophages, phagocytosis, apoptosis, efferocytosis, epigenetic, metabolism, trained

immunity

INTRODUCTION

Microglial phagocytosis of apoptotic cells (efferocytosis) is at the core of the brain regenerative
response. Its relevance in maintaining brain tissue homeostasis from development to aging and
neurodegenerative diseases is undisputed but, nonetheless, many fundamental questions about the
biology of the process remain open: How is phagocytosis efficiency regulated at the cellular and
molecular levels? How can it be manipulated? Is it a dead-end road or does it trigger changes in the
phagocyte? Is phagocytosis simply a process of garbage removal or does it actively participate in the
well-being of the surrounding tissue? We here try to address these questions by collecting answers
frommicroglia’s cousins, the macrophages that reside in other tissues. In the first part of this review,
we will discuss similarities and differences in the identity of microglia and other macrophages,
taking into account their developmental origin and the maintenance of the adult populations. In
the second part, we will compare the mechanisms that mediate recognition and engulfment and
their epigenetic, transcriptional, metabolic, and immunological consequences. We will conclude
that phagocytosis has a tremendous potential to impact on brain physiology and pathology.

LINEAGE AND ORIGINS OF MICROGLIA AND OTHER
MACROPHAGES

Microglia are brain-resident macrophages. They interact with the brain parenchyma and
carry out essential maintenance functions. They are often studied independently from other
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tissue-residentmacrophages, probably because they are unique in
some aspects, most notably in their isolation from the rest of the
body through the blood brain barrier (BBB). But how different
are microglia really from other tissue resident macrophages in
terms of origin, lineage, and identity? A close review of the
literature shows that microglia are not as coarsely distinct to
other macrophages as one may think, yet there are some fine
differences in how they behave in their local environment. In the
next sections, we will review evidence about the origin, lineage,
identity, and population dynamics of microglia compared to
other tissue-resident macrophages and highlight commonalities
and differences.

Lesson 1. The Monocytic Origin of
Macrophages Is More the Exception Than
the Rule
Macrophages are widespread and reside inmany different organs,
where they fulfill different functions. Because it is such a
diverse population of cells, a fundamental question is whether
they have a common precursor or whether each macrophage
population develops from a different precursor. Based on the
observation that some macrophages are short-lived and that they
are often renewed by circulating monocytes, already in 1972
van Furth et al. proposed the “mononuclear phagocyte system”
theory, by which tissue-resident macrophages were assumed to
derive from blood-circulating monocytes and to differentiate
within the host tissue (1). However, at that time there was
evidence that some macrophage populations can proliferate
locally and self-renew (2, 3), which clashed with the idea that
macrophages are of monocytic origin. Why would they need
to divide and self-renew locally if the main source is in fact
a pool of circulating monocytes? Over the last decade, tracing
and parabiosis experiments, where the origin and location of
specific macrophage populations can be followed over time,
have demonstrated that in fact most macrophage populations
originate in the embryo prenatally. And it is only some
macrophage populations, such as gut (4), dermis (5), pancreas
(6), and heart (7) macrophages that are replaced from circulating
monocytes. In contrast, other macrophage populations, most
notably microglia and skin macrophages (Langerhans cells), but
also others, originate early during development, are long-lived
and capable of local self-renewal with no significant involvement
of circulating monocytes (8–12).

The notion that macrophages have a prenatal and not a
monocytic origin caused a paradigm shift in the field and
prompted questions about their precise site of origin and about
the routes by which they reach target organs. The precise spatial
origin of each macrophage pool is still under debate, but there
are essentially two accepted sources: the yolk sac and the aorta-
gonad mesonephros. From there, macrophages take one of two
routes: they migrate directly to their target organ or they go
through fetal liver and then on to their target tissue (Figure 1).
What percentage of the mature tissue-resident macrophages in
fact originate via each of these routes is still being investigated
for most macrophage populations. In this respect, the origin of
microglia is probably the most undisputable: they originate in the

yolk sac and migrate directly to the brain as early as embryonic
day E10.5 in the mouse. Other macrophages, such as Langerhans
cells seem to have a mixed origin: some derive directly from the
yolk sac, whereas others travel through the fetal liver before they
reach their destination (9). The latter route through fetal liver
seems to be the standard and more prevalent for most other
macrophage populations (13, 14).

In summary, the original theory that tissue-resident
macrophages universally derive from circulating monocytes
has now been replaced with a more refined picture, where
macrophages in fact originate from an early embryonic
precursor, seed their target tissue, and self-renew locally (12).
In this new picture, macrophages that derive from circulating
monocytes are more the exception than the rule and microglia
probably constitute the paradigmatic example of macrophages of
prenatal origin with self-renewal capacity and no exchange with
circulating monocytes under physiological conditions.

But if monocytes are not the precursor cells for most
macrophages, what is in fact the molecular identity of their
precursors and how different is it for different macrophage
populations? In the next section, we will summarize what is
known about the identity of the embryonic precursors that give
rise to different tissue-resident macrophages.

Lesson 2. Microglia Do Not Require the
Transcription Factor c-Myb to Develop, but
Other Macrophages Do
After it was demonstrated that most macrophages originate
prenatally either from the yolk sac or from the aorta-gonad
mesonephros, investigators turned their attention to the precise
molecular identity of the precursors. The goal was to identify
markers and transcription factors that would allow us to identify
and classify them.

There is a certain correlation between the physical and
temporal origin of macrophages and the markers they express.
The most polarizing marker, the one that probably allows the
most straightforward classification, is the transcription factor
c-Myb. Early (E7.5-8.5 in mice) progenitors from the yolk
sac (erythromyeloid precursors or EMPs) do not express or
require the transcription factor c-Myb for development and
maturation. Accordingly, macrophages that stem from EMPs,
such as microglia, Langerhans cells and Kupffer cells (liver
macrophages), develop normally in c-Myb−/− animals (10).
In contrast, late (E10.5 in mice) progenitors that originate in
the fetal liver (hematopoietic stem cells, HSCs) do express and
require c-Myb for proper development (15, 16). This is the case
for most tissue-resident macrophages, which fail to develop in
the absence of c-Myb (10). c-Myb dependence is therefore a
classifying criterion for macrophage lineage, but it is not the
only transcription factor involved in maturation. The overall
topic of macrophage lineage markers is beyond the scope of
this review and has been covered extensively before (13). For
microglia in particular, key players in their development include
the growth factor receptor CSF1R (Colony Stimulating Factor 1
Receptor), the chemokine receptor CX3CR1 (CX3C chemokine
receptor 1), the calcium binding protein Iba-1 (ionized calcium
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FIGURE 1 | Summary of the origin, lineage, and population dynamics of main macrophage populations. Some macrophages, such as microglia, originate exclusively

from an early, c-Myb-negative erythromyeloid precursor (EMP) in the yolk sac, while others, such as Langerhans and Kupffer cells, have a mixed yolk sac-fetal liver

origin. Many macrophage populations originate from c-Myb-positive hematopoietic stem cells (HSC) after traveling through the main prenatal hematopoietic location,

the fetal liver. Note that for the sake of simplicity, arrows indicate the main site of origin of macrophages, although for some HSC-derived macrophage populations,

some contribution from the yolk sac has also been reported. Weighted arrows next to each tissue-specific macrophage population indicate the relative contribution of

self-renewal (circular arrows) vs. exchange with circulating monocytes (double-sided arrows) to that particular population. Microglia and Langerhans cells for instance

are mainly self-renewing, whereas cardiac and colonic macrophages do exchange significantly with circulating monocytes. Some vector graphics were obtained from

Vecteezy.com with permission.

binding adaptor molecule 1), the G-protein-coupled receptor
F4/80 (also known as EMR1 - EGF-like module-containing
mucin-like hormone receptor-like 1) and the integrin CD11b
(cluster of differentiation molecule 11B, also known as Integrin
Alpha M - ITGAM) (17, 18) .

The lesson that derives from these studies is that ontogeny
and molecular identity of different macrophage populations go
hand in hand. There is an additional component, longevity,
which also shows some level of correlation with macrophage
ontogeny. Early, c-Myb-negative progenitors in the yolk sac
give rise to populations that tend to be long-lasting (microglia,
Langerhans and Kupffer cells), and later, c-Myb-positive cells
in the mesonephros and fetal liver give rise to a mix of long-
and shorter-lived populations. Microglia are particularly long-
lived and have the ability to self-renew several times over a
lifetime (19). A question that derives from this notion is how

the population behaves with respect to individual cells. What
is the natural “life cycle” of a single microglia and how does it
contribute to the overall stability of the population? The next
section will examine evidence of how microglia are replenished
under homeostatic conditions.

Lesson 3. As Long as the Blood-Brain
Barrier Is Intact, Microglia Can Self-Renew
Throughout a Lifetime Without a
Significant Monocyte Contribution
As reviewed in the previous section, under physiological
conditions, microglia have a prenatal yolk sac origin. The
BBB protects and isolates the brain from exchange with
blood circulation, effectively turning it into a very isolated
microenvironment. Here, microglia stay stable and self-renew
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with virtually no contribution from circulating monocytes in
physiological conditions (8). But what is the exact population
dynamics of microglia and how do they behave individually? And
what happens if microglia are depleted in a healthy brain, how do
they replenish under these conditions?

One critical factor in microglial development and survival
is CSFR1. Mice devoid of this receptor do not have microglia
(8, 20), and mutations that affect the function of the kinase
domain of the receptor cause severe neurological syndromes in
mice and humans (21–24). In line with this, in 2014, Elmore et al.
showed that a chemical inhibitor of CSF1R virtually ablated the
microglial population in the healthy brain. Strikingly, they also
showed that microglia could be repopulated upon withdrawal
of the inhibitor (25). It was then critical to identify which cells
microglia repopulated from. The original report suggested the
existence of a “hidden” microglial progenitor expressing the
intermediate filament nestin (25). However, more detailed studies
have in fact demonstrated that the most likely scenario is one
where microglia replenish from the few remaining cells that are
not removed during CSF1R inhibition (19, 26). A few questions
are left unanswered regarding how this repopulation happens,
including why some cells remain resistant to CSF1R inhibition
and what signaling mechanisms tell microglia that they need to
stop proliferating once the repopulation is completed. In this
regard, it is interesting to note that microglia seem to have a very
active population dynamics at steady-state, with a balanced ratio
of proliferation and apoptosis and several self-renewal cycles
during a lifetime (19).

A similar scenario is observed in Langerhans cells, which
also have a predominant yolk sac origin, are long-lived (9),
renew during a lifetime (27) and most likely proliferate
from fully differentiated cells (28). Indeed, proliferating, self-
renewing macrophages can be found in almost all tissues
under physiological conditions (11, 29), and often even
more so under pathological conditions, although in the latter
case the contribution from circulating monocytes is most
likely instrumental (30, 31). Only when the BBB integrity is
compromised, most commonly after head irradiation, circulating
monocytes can give rise to functional microglia [for a review
see (31)]. Nonetheless, the fact that a population of cells exists
that has the potential to differentiate into microglia under
certain pathological conditions is highly relevant for therapeutic
intervention and merits further research.

Overall, macrophages seem to be in charge of their own
local population dynamics and reach a steady state of functional
self-renewal with balanced division/death rates that match the
functions they carry out in their host tissues.

Lesson 4. Microglia Have Specialized in
Homeostatic and Stimulus-Triggered
Remodeling of Brain Circuits and Structure
The original notion that macrophages are a uniform pool of
phagocytes that reside in all organs and perform immune
functions has long been discarded. Instead, the current view
is that macrophages are essentially as dissimilar as their target
tissues and have specialized in performing tissue homeostasis

functions that make sense in their local microenvironment. For
instance, whereas lung macrophages are specialized in surfactant
clearance (32) and adipose macrophages participate in lipid and
insulin metabolism (33), spleen macrophages are critical for
iron homeostasis (34, 35). In the particular case of microglia,
their specialized functions include interactions with neurons,
potentially participating in synaptic remodeling (36), modulating
experience-triggered events, such as neurogenesis (37), and
participating in memory acquisition (38, 39). Microglia are also
very active in surveilling the brain parenchyma with their highly
motile processes (40, 41) and this is believed to be essential for
brain maintenance and protection and to be in close connection
with neuronal activity (42, 43). However, microglial motility
may not be so unique, as late evidence suggests that other
macrophages might also perform this type of surveillance in the
intersticial space (44).

It is not surprising that macrophages have specialized
roles within their host tissues to aid their homeostasis and
maintenance. In this context, microglia need to be in close
contact with neurons and be highly sensitive to changes in the
microenvironment. In the next section, we will focus on this
sensitivity to environmental factors and how that may impact the
epigenetic and transcriptional identity of microglia.

Lesson 5. Microglia Have Developed a
Unique Transcriptional and Epigenetic
Landscape
Given the wide diversity of macrophage tissue-specific
phenotypes, a very relevant question to ask is how different
macrophages are at the molecular level. How different are
their transcription and epigenetic profiles under physiological
conditions and how do they respond to changes in their
environment? With the advent of “omics” methods and, in
particular, with the application of single-cell studies the field
has experimented a boom. It is now clear that macrophages
are as different at the transcription and epigenetic level as they
are at the phenotypic level. Macrophages share a common core
transcriptional identity, but each tissue-specific population
expresses a unique set of transcripts that is organ-specific
(45, 46). In line with this, microglia are transcriptionally distinct
to other macrophage populations but, in addition, single-cell
studies have shown that there are several subpopulations of
microglia that could perform functionally different tasks under
basal and inflammatory conditions (47, 48). Similar observations
are being made in other macrophage populations, with single-
cell omics techniques revealing their underlying richness and
diversity (49, 50).

In the particular case of microglia, these studies have
revealed that microglia are transcriptionally homogeneous
across brain regions but diverge in their transcriptional profiles
across their cell division state (48). Another distinct microglia
subpopulation that has earned a fair bit of attention is the
so-called Disease-Associated Microglia (DAM), a subgroup
of microglia revealed by single-cell sequencing specifically
in the brain of an Alzheimer’s disease mouse model (47).
However, despite the power of these approaches in revealing
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the heterogeneity of distinct microglia subpopulations, there
is debate as to the relevance of these populations in human
brain, which seem to have subpopulations of their own (see
comment in https://www.alzforum.org/news/research-news/
when-it-comes-alzheimers-disease-do-human-microglia-even-
give-dam). Ultimately, and under the premise that to study
human disease one should focus on human microglia as much
as possible, these studies reveal that microglia are in fact more
diverse than anticipated and encourage further investigation
aiming at dissecting their identity.

An ever-expanding source of cell diversity lies in the
epigenetic landscape, which is most commonly read in the
form of histone modifications (acetylations, methylations), DNA
modifications (DNA methylation) and small non-coding RNAs
(miRNAs, lncRNAs), and which has also been probed in different
macrophage populations. The combinatorial patterns of histone
3 acetylation (at lysine 27) and methylation (at lysine 4) have
been profiled in detail, revealing a core epigenetic macrophage
signature, as well as a set of specific enhancer marks that are
unique to each organ (46). This study also served to validate
the idea that local macrophage identity is shaped by the local
microenvironment. Previous experiments had shown that some
macrophages populations are highly plastic and can adopt
a tissue-specific identity even after ex vivo culture (51, 52).
Recent evidence suggests that this phenotypic identity reshaping
is accompanied by rewiring of the epigenetic landscape (46).
In this context, microglia proved to be transcriptionally and
epigenetically distinct to all other tissue-resident macrophages
and clustered systematically separated from other populations for
different epigenetic marks (46).

A follow-up question that emerges from these observations
is to which extent epigenetic reprogramming is relevant for
macrophage biology, and how it may affect microglia in
particular. Microglia depletion studies in diseased brains have
shown that after replenishment with “fresh” microglia, animals
have improved cognitive scores (53–55). These studies have
played with the idea that microglia in a diseased brain may
have an altered epigenetic signature that is erased at the
time of depletion and that the replenishing microglia are
reprogrammed and therefore functionally fitter. How much of
the original epigenetic identity is retained by the few remaining
microglia and what role exactly cellular reprogramming plays
in microglia phenotype is still unclear. Nonetheless, microglia
and other tissue-resident macrophages appear to have a unique
transcriptional and epigenetic signature that is highly plastic
and may play a fundamental role in how they interact with
their environment.

Since the molecular and phenotypic identities of any cell are
in constant interplay, it is expected that different macrophages
with different tissue-specific functions and phenotypes would
have different transcriptional and epigenetic signatures. A more
thorough characterization of the effect of environmental factors
on cellular reprogramming and function will shed light on
how dynamic these changes are and, most importantly, how
relevant under physiological and disease situations. However, in
spite of their phenotypic diversity, macrophages do share some
core functions, such as phagocytic clearance of dead cells and

immune signaling. Yet even those have tissue-specific nuances.
The next section will address the similarities and disparities
in mechanisms and dynamics of phagocytosis in microglia vs.
other macrophages.

PHAGOCYTOSIS BY MACROPHAGES AND
MICROGLIA

The efficient phagocytic removal of apoptotic debris
(efferocytosis), mostly carried out by resident macrophages,
vastly influences our daily physiology. It is estimated that
billions of cells are removed everyday (56): aged erythrocytes
and neutrophils in the spleen, liver and bone marrow (57, 58),
epithelial cells in the mammary gland after the lactation period
(59), spermatogenic cells in the testis (60), and the outer segment
of light-exposed photoreceptors in the retina (61), among others.
In the brain, microglia remove the excess newborn cells produced
during embryonic and postnatal development in the cortex,
cerebellum and amygdala (62–64) and in adult neurogenic niches
in the hippocampus and subventricular zone (SVZ) (37, 65),
as well as deceased cells during aging and neurodegenerative
diseases (66). Other cell types, such as astrocytes, neuroblasts or
cells of the neural crest may also act as phagocytes but generally
with less efficiency and thus microglia are considered the brain
“professional” phagocytes (67).

In this section, we will compare available data on the
process of phagocytosis by macrophages and microglia. We will
then describe that phagocytes express overlapping recognition
mechanisms of apoptotic cells, and that this redundancy ensures
that phagocytosis is fast and efficient. We will then describe
the functional consequences of ingestion in the phagocyte,
focusing on inflammatory responses, and metabolic adaptations.
Ultimately, we will conclude that phagocytosis is a powerful
mechanism that needs to be firmly controlled to ensure the
efficient removal of target cells while preventing the demise of
live cells.

Lesson 6. Phagocytosis Is Tightly Coupled
to Apoptosis Due to Redundant
Recognition Mechanisms
Phagocytosis and apoptosis are evolutionarily linked together as
a mechanism that allows the elimination of excess, dysfunctional,
or aged cells without imposing alterations or damage in the
surrounding cells (67). Homeostatic phagocytosis is ensured by
the immediate recognition of the apoptotic cell by phagocytes
through a redundant plethora of released “find-me” and
membrane-bound “eat-me” signals that are recognized by
the phagocytes (Table 1). Herein we summarize some of the
most relevant signals and receptors involved in apoptotic cell
recognition, and we prompt the reader to comprehensive reviews
on the topic for more details (67, 72).

Among “find-me” signals stand out purines (ATP, UTP,
and their dephosphorylated derivatives) and the chemokine
fractalkine, and the corresponding metabotropic purinergic
P2Y receptors and CX3CR1 expressed in phagocytes. Another
important “find-me” signal is the lipid lysophosphatidylcholine
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(LPC), which binds to GPR132 (G2A) receptors in phagocytes.
The best known “eat-me” signal is the lipid phosphatidylserine
(PS), with its many phagocyte receptors, such as BAI1, TIM4
and stabilins. PS is also indirectly recognized by several bridge-
molecules, including MFG-E8 (Milk-fat globule E8), as well
as Protein S and Gas6, which bind to members of the TAM
(Tyro3, Axl, Mer) family in phagocytes. In addition, other well-
known receptors classically involved in immune responses are
the inflammation triggering receptors expressed on myeloid
cells TREM2 and CD300B; and integrins and complement
receptors such as CD11b, which recognize opsonized apoptotic
cells both directly and some of them indirectly via MFG-
E8. More recently, three sugar-related receptors have been
involved in phagocytosis: the mannose receptor CD206 (MRC1),
which is upregulated in bone marrow and intestinal phagocytes
compared to non-phagocytic macrophages and predicts their
phagocytic performance (73). The sialic acid binding protein
CD22, a negative regulator of phagocytosis identified in an
in vitro screen that is upregulated in microglia in the aging
brain (74). And the beta glucan receptor Clec7a, associated to
the phagocytosis of oligodendrocytes by microglia during early
postnatal development (48). Each type of phagocyte expresses
their own set of receptors (67) and microglia is no exception.

The most conspicuous phagocytosis receptors expressed in
both mouse and human microglia are CX3CR1, P2Y6, P2Y12,
stabilin 1, SIRPα, TREM2, MerTK, and CD11b, based on brain
RNASeq databases (68, 69) and the immunological RNASeq
database Skyline (http://rstats.immgen.org/Skyline/skyline.html)
(Table 1). However, it is important to note that each of these
receptors is dynamically expressed during aging, disease and in
different brain areas (47, 48, 70, 71) (Table 1), and each may
serve different functions. For instance, in macrophages, MerTK
and Axl show opposite regulation of their expression during
inflammatory conditions, and specialize in different types of
phagocytosis: MerTK in homeostasis, Axl during inflammation
(75). Similarly, CD206, MerTK, and TIM4 (but not other
receptors) are upregulated in peripheral macrophages early upon
phagocytosis (73). In microglia, the expression of these receptors
is not a proxy of their phagocytic performance either, as some
including CX3CR1, P2Y12, and MerTK, have higher expression
in striatal than in cerebellar microglia, whereas phagocytosis
seems more prominent in the cerebellum than in the striatum
(71). Similarly, their expression is also not correlated with
PAM (proliferative-region- associated microglia), which has been
involved in phagocytosis of developing oligodendrocytes during
early postnatal development (48). Moreover, the efficiency of
phagocytosis does not rely on their expression alone, but also on
the motility of the microglial processes, the relative distribution
of microglia compared to apoptotic cells, or the lysosomal
efficiency, to name a few other factors. Their expression, however,
has been linked to functional changes in microglia. For instance,
some of these receptors, such as CX3CR1 and P2Y12, are
part of the so-called “homeostatic microglia signature,” and are
downregulated in DAM (47) but upregulated in aging microglia
(70). Therefore, the expression of phagocytosis receptors is
not invariably linked to microglial phagocytosis efficiency. A
careful analysis of the subsets of receptors expressed by microglia

in different regions across the lifespan and during specific
disease will shed light into their functional implication in
microglial phagocytosis.

Finally, as microglia is specialized in surveilling the brain
parenchyma, several receptor systems involved in the recognition
of apoptotic cells have also been “hitchhiked” by other brain-
specific cargos. For instance, TREM2 has been deeply involved
in the recognition of beta amyloid extracellular deposits in
the context of Alzheimer’s disease (AD) (76), and is one of
the main genetic risk factors for its development (77). The
complement receptor CD11b (78, 79) and the fractalkine receptor
CX3CR1 (36) are used to recognize dendritic spines and are
related to synaptic prunning. SIRPα recognizes the “don’t-eat-
me” signal CD47 on myelin debris and on active synapses,
inhibiting their phagocytosis (80, 81). CD22 binding to sialic
acid inhibits the phagocytosis of extracellular deposits of beta
amyloid, myelin and α-synuclein during aging (74). However,
to which extent the phagocytosis of beta amyloid, α-synuclein,
spines, and synapses, or myelin debris phenocopies the complete
process of efferocytosis, including attraction, engulfment, and
degradation, remains to be determined.

Lesson 7. Phagocytosis Is Fast and
Apoptosis Is Silent
A consequence of the tight coupling between apoptosis and
phagocytosis is that phagocytes are not easily caught red-handed
and, consequently, apoptosis is largely underestimated. Original
experiments in the thymus, where T lymphocytes undergo
chromosomic rearrangement in their antigen receptor genes,
suggested that the negatively selected cells were removed but few
apoptotic cells were found. It was only when phagocytosis was
analyzed that it became evident that apoptotic T lymphocytes
were quickly removed by resident macrophages (82), leading to
the suggestion that phagocytosis lasts minutes (72). Similarly,
taking into account the number of erythrocytes removed daily in
the spleen and liver, and the number of resident macrophages in
these tissues (pulp macrophages and Kupffer cells, respectively),
phagocytosis has been estimated to last under 30min (67).
Microglia are comparably fast. Using as a model the adult
neurogenic cascade of the hippocampus, where newborn cells
naturally undergo apoptosis and are phagocytosed by microglia,
the estimated average clearance time of an apoptotic cell is 90
min (37).

A corollary of this data is that phagocytosis efficiency
determines the amount of apoptosis visualized. At a given
time, the number of apoptotic cells found can be conceived
as a black box with doors on each side: an incoming door
that represents the cells that enter apoptosis de novo; and an
outgoing door that represents the cells that are removed via
phagocytosis. Using this analogy is easy to understand that
the size of the pool of apoptotic cells depends on the relative
velocities of the two processes, apoptosis and phagocytosis
(Figure 2). Therefore, in physiological conditions apoptotic cells
are difficult to observe because microglial phagocytosis is very
efficient (37). In contrast, in pathologies like epilepsy, the
increased number of apoptotic cells in early stages is not due
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FIGURE 2 | The amount of apoptosis visualized depends on phagocytosis

efficiency. The net apoptotic cell number observed (net apoptosis) at a given

time point depends on the rate of live neurons undergoing apoptosis (input)

and the rate of clearance of the apoptotic cells by microglia (output). (A) In a

perfect scenario, the rate of phagocytosis would be comparable to the rate of

apoptosis induction, and no apoptotic cells should be observed. (B) In most

cases, apoptosis induction is faster than engulfment and degradation, and

only some apoptotic cells would be observed, whereas others are already

cleared by microglia. (C) In a dysfunctional scenario with deficient

phagocytosis, all cells undergoing apoptosis would be visible.

to apoptosis induction, but to phagocytosis impairment and
accumulation of non-removed apoptotic cells (42). In conclusion,
phagocytosis efficiency determines the dynamics of apoptosis
during development and disease.

Lesson 8. Phagocytosis Is
Immunomodulatory at the Epigenetic,
Transcriptional and Posttranslational
Levels
The tight coupling between apoptosis and phagocytosis has
functional relevance, as it prevents the release of intracellular
contents in physiological conditions. In contrast, during trauma,

uncontrolled and unexpected cell death is usually followed
by infection by microorganisms, and the dead cells release
damage-associated molecular patterns (DAMPs), such as DNA,
RNA, nucleotides, or chromatin proteins such as HMGB1
(high mobility group box 1 protein). These signals are initially
recognized by the fluidic branch of the innate immune response
(i.e., the complement and the coagulation systems), followed by
recognition of specific pattern recognition receptors (PRRs) in
several types of leukocytes. This cascade of events initiates a
complex immune response that includes chemokine and cytokine
release, release of reactive oxygen species and other responses
to heal the damaged tissue and kill invading microorganisms
(83). Unlike cell death caused by trauma, programmed cell death
during physiological events ensures that DAMPs are contained
within membranous blebs (the apoptotic bodies) and do not
trigger activation of PRRs (84). The efficient coupling between
apoptosis and phagocytosis avoids the development of secondary
necrosis and release of DAMPs as apoptosis progresses, as well
as the initiation of an inflammatory response from the immune
system (84). As a result, apoptotic cell removal via phagocytosis
is largely anti-inflammatory or at least immunomodulatory (67,
85), although the inflammatory responses of different types of
macrophages are indeed heterogeneous (73).

In microglia, the evidences showing that phagocytosis of
apoptotic cells is immunomodulatory are more tenuous than
in other macrophage populations. Classic in vitro experiments
showed that cultured microglia exposed to apoptotic cells express
dampened responses to inflammatory stimuli such as bacterial
lipopolysaccharides (LPS) (86, 87). In vivo, phagocytosis blockade
induced by seizures in a mouse model of epilepsy correlated
with a pro-inflammatory profile in microglia (42). Similarly,
restoring phagocytosis in the aging brain using an anti-CD22
therapy reduced the microglial expression of inflammatory
and disease-associated genes (74). However, the molecular
mechanisms linking efferocytosis and inflammation are still
unclear: is inflammation triggered by recognition of surface
receptors or by downstream mechanisms related to the cargo
degradation? Is it regulated at the epigenetic, transcriptional or
the translational levels?

In both macrophages and microglia, these effects are at
least partially mediated by apoptotic cell recognition via the
complement protein C1q, whose presence turns efferocytosis
anti-inflammatory (88, 89). Indeed, some of the transcriptional
changes associated to efferocytosis occur while macrophages
are still early in the process of phagocytosis, as shown by
experiments comparing macrophages containing labeled dead
cells and macrophages without apparent cargo (phagocytic and
not phagocytic, respectively) (73). Similarly, posttranslational
modifications related to the reduced release of the major pro-
inflammatory mediator interleukin 1 beta (IL-1β) are related
to the inhibition of the NLRP3 (NLR family pyrin domain
containing 3) inflammasome triggered by mere contact with
apoptotic cells in the absence of effective engulfment (90).

In addition to these early changes, it is also likely that the
metabolic rewiring associated with apoptotic cell degradation
(91)may trigger a “metabolite storm” in the phagocyte that would
further contribute to regulate its function at later time points. For
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instance, internalization of the apoptotic cell, but not surface-
to-surface interaction, triggers in macrophages another set of
transcriptional anti-inflammatory changes through a chloride
channel, Slc12a2, and chloride-sensing kinases (92). Time-
dependent transcriptional changes have in fact been observed
in cultured microglia upon phagocytosis of apoptotic cells
(93). While some genes are transiently regulated at 3 h after
engulfment, most are regulated in the post-degradation phase
at 24 h after engulfment. This second wave of transcriptional
changes is likely related to epigenetic mechanisms, as in fact
chromatin remodeling related genes are upregulated in the late
phagocytic microglia (93). In agreement, microglial phagocytosis
is related to altered epigenetic and transcriptional profiles in vivo,
as shown by comparing cerebellar and striatal microglia (i.e.,
phagocytic and non-phagocytic, respectively) (71). While this
study analyzed epigenetic changes at the whole population level,
it is likely that in brain areas with high basal apoptotic cell
clearance, such as the cerebellum (71), the amygdala (64) or the
hippocampus (37) microglia coexist in different stages related to
phagocytosis. Even in these areas, it would be expected that at any
given time point there would be non-phagocytic cells as well as
cells engaged in different stages of engulfment, early degradation
and late post-phagocytic events. This continuum of phagocytosis
states is likely reflected on the epigenomic and transcriptional
profiles of microglia.

Lesson 9. Phagocytosis Alters the
Phagocyte Metabolism and Function
Along with its epigenetic, transcriptional and
immunomodulatory effects, phagocytosis also promotes
metabolic adaptations that influence the phagocyte cellular
function. In immune cells, the main metabolic pathways are
catabolic (related to degradation and energy production)
and anabolic (related to synthesis). Catabolic degradation of
glucose starts with cytoplasmic glycolisis, which is responsible
for glucose oxidation and produces pyruvate and lactate; and
continues with the tricarboxylic acid cycle (TCA or Krebs
cycle), which oxidizes pyruvate to produce reduced molecules
(NADH, reduced nicotinamide adenine dinucleotide). NADH
is also produced from the catabolism of fatty acids in the
mitochondria through the beta-oxidation pathway. Next,
NADH is completely degraded through the mitochondrial
electron transport chain (ECT) during mitochondrial oxidative
phosphorylation, to finally produce energy as ATP. Major
anabolic pathways include the pentose phosphate pathway
(PPP), which generates precursors of nucleotides; and the
fatty acid and cholesterol synthesis pathway. The connection
between metabolism and immune responses in the field of
immunometabolism is very complex (94) and here we will
focus on phagocyte’s metabolic changes after inflammatory and
phagocytic challenges.

Inflammatory stimuli trigger different types of metabolic
adaptations. In pro-inflammatory conditions, macrophages need
to act against infection and microorganisms and they undergo
metabolic adaptations that meet the increased energetic demands
while assuring cell survival. The most important change is a

metabolic shift that potentiates glycolisis and downregulates
oxidative phosphorylation, allowing faster, albeit less efficient,
ATP production (95). In addition, several metabolic changes
lead to the production of antibactericidal agents (96), such
as reactive oxygen species (ROS) through increased PPP
(97) and fatty acid synthesis (98); and mitochondrial ROS
(mROS), through a disrupted ETC (99). Moreover, several
metabolic pathways, as TCA cycle and fatty-acid synthesis are
necessary for pro-inflammatory cytokine production, via HIF1α
stabilization and through the fatty-acid synthesis regulator
Laccase Domain-Containing Protein 1 (FAMIN), respectively
(98, 100). In addition, fatty acid and cholesterol synthesis
pathways also contribute to producing inflammatory mediators
such as leukotriene B4 (LTB4) and isopropenoids, which
bind the nuclear receptors peroxisome proliferator-activated
receptors (PPARs) and the liver X receptor LXR (PLXR),
respectively (101, 102). On the other hand, metabolic changes
after anti-inflammatory stimuli help macrophages to resolve
inflammation. In this case, upregulation of glycolisis and a
proper TCA cycle contribute to the expression of an anti-
inflammatory phenotype (103, 104). In addition, increased
oxidative phosphorylation, together with the promotion of fatty-
acid oxidation reduces the expression of pro-inflammatory
cytokines (105). Thus, pro- and anti-inflammatory stimulation
triggers different metabolic adaptations that contribute to
modulate macrophage function.

Phagocytosis-induced metabolic adaptations are less known.
In macrophages, phagocytosis of apoptotic cells drives a
downregulation of fatty acid oxidation and de novo cholesterol,
while promoting a metabolic shift that upregulates glycolisis and
reduces oxidative phosphorylation (91, 106). In fact, phagocytosis
triggers mitochondrial adaptations, such as mitochondrial fission
(106) and decreased mitochondrial membrane potential via
mitochondrial uncoupling protein 2 (UCP2) (107), which
together with increased glycolisis (91) ensure the continued
uptake of corpses. In addition, increased lactate release promotes
the establishment of an anti-inflammatory environment (91).
However, phagocytosis-induced metabolic adaptations not only
have an effect during phagocytosis, but also trigger long-
lasting effects. There are several examples of how phagocytosis
reprograms the function of macrophages. For instance, during
Drosophila early development, naïvemacrophages are insensitive
to tissue damage or infection. However, upon corpse uptake
macrophages become capable of migrating into damaged
regions, and phagocytose bacterial pathogens, through the
activation of the Jun kinase-signaling pathway and increased
the expression of the damage receptor Draper (108). Similarly,
phagocytosis of fungal β-glucan in mammalian macrophages
drives a metabolic shift that contributes to an enhanced and
nonspecific protection against infections known as trained
immunity (109). In this response, macrophages upregulate
glycolisis, glutaminolysis, PPP, and cholesterol synthesis, and
decrease oxidative phosphorylation through the activation of
the dectin-1–Akt–mTOR–HIF-1α signaling pathway. Metabolic
adaptations lead to the increased production of metabolites
such as fumarate and mevalonate, key for driving changes in
histone acetylation and long-term epigenetic changes, which
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FIGURE 3 | Metabolic adaptations after phagocytosis and inflammatory stimulation in macrophages and microglia. (A) In macrophages, phagocytosis of β-glucan

activates the dectin1-Akt-mTOR-HIF1α pathway triggering metabolic adaptations required for changes in histone acetylation, which contribute to trained immunity.

Phagocytosis of apoptotic cells, also triggers metabolic adaptations and increases calcium levels, which through JNK enhance the expression of the damage receptor

Draper. Draper overexpression contributes to the migration and phagocytosis of bacteria by macrophages. (B) Microglial cells stimulated with pro- and anti,

inflammatory stimuli modulate metabolism in different ways. Moreover, microglial phagocytosis increases the transcription of genes related to metabolism and

chromatin remodeling, although the effect of phagocytosis in microglial metabolism and function are still unknown. In italics, key metabolites in trained immunity after

β-glucan phagocytosis.
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lead to increased levels of pro-inflammatory cytokines after
subsequent exposure to inflammatory challenges (110–112).
Thus, phagocytosis of apoptotic corpses in macrophages
triggers metabolic adaptations that immediately modulate cell

function and also drives a long-term reprogramming of the
phagocyte (Figure 3).

In microglia, the metabolic adaptations to inflammatory
stimuli are well known and similar those of macrophages,

FIGURE 4 | Spectrum of possibilities between physiological phagocytosis and pathological phagoptosis. Healthy neurons (green) increase their expression of released

“find-me” and surface “eat-me” molecules and decrease “don’t eat-me” signals under stressful situations. Stressed neurons (red) may revert to the healthy situation or

follow up with the completion of the apoptotic program. In non-pathological conditions, apoptotic debris removal rapidly occurs after phagocytosis is executed by

professional phagocytes, such as microglia. Under certain circumstances, stressed neurons (red) may be recognized and executed by nearby phagocytes, including

microglia, before the apoptotic program has been fully engaged. In contrast to these two cases of canonical efferocytosis, in a third scenario, dysregulation of the

“eat-me” and “don’t-eat-me” signalization may lead microglia or other phagocytes to directly target for execution healthy, viable neurons in a process termed

phagoptosis.
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although their functional impact is less explored. Pro-
inflammatory stimuli cause upregulation of glycolisis, leading
to a speedy ATP generation that is crucial for the expression
of pro-inflammatory cytokines (113). Other adaptations
include impaired oxidative phosphorylation accompanied by
mitochondrial fission (114, 115), increased glutamine entrance
to the TCA cycle, suppressed fatty-acid oxidation and synthesis,
and contradictory effects on the PPP (116). On the other hand,
metabolic changes induced by anti-inflammatory factors in
microglia are less known and show some differences compared
to macrophages. Microglia exposed to anti-inflammatory stimuli
maintain active both oxidative phosphorylation and PPP, and
increase fatty-acid oxidation and synthesis while reducing
glycolisis (116, 117). In contrast, little is known about the
microglial metabolic adaptations to phagocytosis. Cultured
phagocytic microglia upregulate genes related to metabolism
and chromatin remodeling (93), suggesting long-term metabolic
and phenotypic changes in microglia upon phagocytosis.
Therefore, phagocytosis triggers a complex remodeling of the
cell’s metabolism and a “metabolite storm” that is likely to affect
the function of microglia.

Lesson 10. Does Phagocytosis Execute
Cell Death?
Since apoptosis and phagocytosis are so closely related, the last
question that arises is: when is cell death precisely executed?
in vitro experiments with apoptosis inducers clearly show
that the apoptotic pathways effectively progresses to kill the
target cell via proteolytic degradation of intracellular contents
by caspases (118). In this conventional scenario, called-upon
macrophages would simply serve to dispose of the garbage.
However, the tight coupling between apoptosis and phagocytosis
also presumes a second scenario, in which expeditious nearby
macrophages detect the first signs of cell distress and execute
the latest stages of cell death. In these two cases, canonical
efferocytosis/phagocytosis is used as a homeostatic mechanism
and blocking engulfment would be expected to have detrimental
consequences. In a third scenario, macrophages actually select
which cells die and phagocytosis causes neuronal demise,
through a process named phagoptosis (119) (Figure 4).

Discerning between the three scenarios is complicated by the
phagocytosis-related downstream transcriptional and metabolic
changes, which in turn feedback into the surrounding cells,
affecting their survival and proliferation. For instance, liver
phagocytic macrophages release VEGF (vascular endothelial
growth factor) to support the proliferation of neighboring cells
(120). Similarly, the secretome of phagocytic microglia acutely
inhibits proliferation of neural progenitors, allowing their long-
term maintenance and the preservation of neurogenesis. These
feedback mechanisms are likely related to the compensatory
proliferation induced by killer caspases during apoptosis
(“apoptosis-induced proliferation,” AiP), observed in some cell
types and organisms (121). Because of these loops between death
and life processes, the identification of phagoptosis must not be
procedural, i.e., phagocytosis blockade increases survival, ergo,
phagocytosis must kill cells. Instead, the discrimination between

canonical phagocytosis and phagoptosis should be mechanistic
and based on direct observation.

In macrophage biology, evidences of phagoptosis are in
fact scarce and controversial. For instance, most literature
claims that neutrophils die spontaneously by apoptosis after
24 h in circulation and are subsequently phagocytosed by bone
marrow macrophages (67, 122). Others in contrast claim that
neutrophils die by phagoptosis because phagocytosis blockade
leads to more “alive” neutrophils (119), although in fact they
are senescent and have impaired capabilities/migration (123).
In spite of this controversy, macrophages are doubtless capable
of activating the apoptosis program by direct contact through
the so-called “death receptors,” such as Fas and TNFR (tumor
necrosis factor alpha receptors) (124). Similarly, deletion of
engulfment genes in C.elegans increases the survival of cells
treated with weak apoptotic stimuli, supporting that phagocytes
execute death of stressed cells (125). Microglia execute bona
fide canonical phagocytosis of apoptotic newborn cells in the
adult hippocampus (37). They also engage in phagoptosis
during inflammatory conditions that lead to dysregulation of the
“eat-me” signalization. Dysfunctional and transient expression
of PS by stressed neurons leads to their recognition and
execution by microglia, and their survival when microglia
is not present (126). Microglia have also been reported to
kill neuroprogenitor cells during cortical development, an
effect that was exacerbated in mice treated with LPS (62);
and Purkinje cells in the developing cerebellum, through the
production of radical oxygen species (127). However, it is
not clear whether in these cases cell death was executed
by phagocytosis. In the end, it is likely that canonical
phagocytosis and phagoptosis are two sides of a spectrum
of ways to die that depends on the fine balance between
the different “find-me” and “eat-me” signals in each pair of
apoptotic cell/phagocyte.

In summary, phagocytosis is a powerful double-edged sword
that must be kept under a tight rein, as is exemplified by
two recent papers in zebrafish and Drosophila. Phagocytosis
of apoptotic cells is beneficial during brain trauma, as it
prevents secondary damage spread in zebrafish larvae (128).
In control larvae, the initial necrotic and apoptotic cells
resulting from traumatic brain injury in the optic tectum are
cleared by microglia within the first 24 h. When phagocytosis
is pharmacologically and genetically disturbed by targeting
PS and the zebrafish ortholog of PS receptor BAI1, a larger
wave of secondary cell death spread over the brain (128).
In contrast, overexpression of phagocytosis receptors Six-
Microns-Under (SIMU) and Draper (Drpr), homologs of
Stabilin2 and MEGF10 (Multiple EGF Like Domains 10, a
complement receptor), respectively, in adult Drosophila leads
to phagocytosis of live neurons, motor dysfunction and a
shortened lifespan (129). These recent papers highlight the
profound physiological impact of microglial phagocytosis on
the survival of their surrounding neurons both in health and
in disease.

Given the powerful influence of phagocytosis on tissue
homeostasis, it may seem striking that few pathologies have been
related to its dysfunction. One may in fact speculate that the
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redundant apoptotic cell recognition mechanisms are in place
to ensure that efferocytosis is effectively executed. Macrophage
phagocytosis impairment has been reportedmostly in the context
of inflammatory and autoimmune diseases (72). For instance,
macrophage efferocytosis is defective in atherosclerotic plaques,
in chronic inflammatory lung diseases, and in lymph nodes
of systemic lupus erythematosus patients. The involvement of
phagocytosis in central nervous system diseases is, however,
less explored. Mutations in MERTK lead to retinal diseases
possibly linked to deficient phagocytosis of photoreceptors
(130). Similarly, mutations in TREM2 or its bridge protein
DAP12 are well known to cause defects in phagocytosis by
osteoclasts, causing bone cysts and early dementia (Nasu-
Hakola disease) (131). These mutations have been more recently
associated to increased risk of AD (132) and result in deficient
beta amyloid clearance in mouse models of AD (76) and

reduced efferocytosis in cultured human microglia (133). In
addition, mouse models and human biopsy samples have also
shown impaired microglial efferocytosis during epilepsy caused
by hyperactivity of the neuronal network (42). Phagocytosis
therefore has a strong potential for impinging on the course of
neurodegenerative diseases, as has been evidenced by blocking
of the phagocytosis inhibitor CD22 in aging mouse brains to
restore a microglial homeostatic profile and improve cognitive
function (74).

In closing, we hope to provided enough evidence to support
the idea that microglia are to some extent similar to other
tissue macrophages and that important lessons can be learnt
from them (Figure 5). There are remarkable similarities between
microglia and macrophages in many aspects related to their
origin, the establishment and maintenance of their identity,
and in their dynamic epigenetic and transcriptional landscapes.

FIGURE 5 | Lessons from macrophages in microglial ontogeny, identity and phagocytosis. The cartoon summarizes the main lessons that can be learnt from

macrophages regarding the ontogeny and identity of microglia (1-5) and the regulation and impact of microglial phagocytosis in brain homeostasis (6-9). Lesson 10 is

depicted in Figure 4. Some vector graphics were obtained from Vecteezy.com with permission.
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They are also comparable and at the same time unique in the
regulation of their phagocytosis efficiency, the cargos they engulf,
and the functional consequences of phagocytosis, including
metabolic adaptations, immunomodulation and its impact on
the surrounding tissue. Our aspiration is that pointing out the
(dys)similarities between microglia and macrophages will help
to develop novel tools to harness microglial phagocytosis in the
healthy and diseased brain.
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