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ABSTRACT

The facet  of  optical  fibers coated with  nanostructures enable the development  of

ultraminiature and sensitive (bio)chemical sensors. The reported sensors until now

lack of  specificity and the fabrication methods offer  poor  reproducibility.  Here,  we

demonstrate that by transforming the facet of conventional multimode optical fibers

onto  plasmon resonance energy transfer  (PRET) antenna surfaces  the specificity

issues may be overcome. To do so, a low cost chemical approach was developed to

immobilize  gold  nanoparticles  on  the  optical  fiber  facet  in  a  reproducible  and

controlled  manner.  Our  nanosensors  are  highly  selective  as  PRET  is  a

nanospectroscopic  effect  that  only  occurs  when  the  resonant  wavelength  of  the

nanoparticles matches that of the target parameter. As an example, we demonstrate

the  selective  detection  of  picomolar  concentrations  of  copper  ions  in  water.  Our

sensor is 1,000 times more sensitive than state of the art technologies. An additional

advantage of our nanosensors is their simple interrogation; it comprises of a low-

power  light  emitting  diode,  a  multimode  optical  fiber  coupler,  and  a  miniature

spectrometer. We believe that the PRET-based fiber optic platform reported here may

pave the way of the development of a new generation of ultra-miniature, portable,

and hypersensitive and selective (bio)chemical sensors.

Keywords: optical fiber, plasmonics, chemosensor, nanoparticles, metal ion 
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The localized surface plasmon resonance (LSPR) phenomenon constitutes the basis

of  highly sensitive optical  (bio)chemical  sensors. So far,  a myriad of LSPR-based

sensors  have  been  reported  in  the  literature1-4.  The  operating  principle  of  such

nanosensors is based on the detection of the LSPR spectral position upon chemical

or biomolecular interactions that occur on the surface of the plasmonic nanostructure.

Among the multiple platforms and alternatives to devise an LSPR sensor, the

flat  end of a conventional  optical  fiber coated with gold nanoparticles  (AuNPs) or

other plasmonic nanostructures present the highest degree of miniaturization. Such

optical  fiber  nanoprobes  have  important  advantages  for  optical  sensing.  Their

miniature dimensions make them ideal for applications where the amount of sample

is extremely small while optical fibers confer such sensors flexibility and capability for

remote or in situ sensing5.

Nanopatterning  the  microscopic  facet  of  an  optical  fiber  by  means  of

conventional nanofabrication techniques is challenging. So far, different fabrication

processes based on electron beam lithography6-8 and focus ion beam9-11 have been

used to make plasmonic nanostructures directly on the face of optical fibers. Another

approach  consists  of  transferring12-14 nanostructures  fabricated  by  means  of

lithography or self-assembly15-17 techniques to the fiber facet. 

The main disadvantages of the aforementioned fabrication techniques include

complexity, time-consuming fabrication steps, expensive and bulky equipment, etc.

Moreover,  such  fabrication  methods  offer  low  or  poor  reproducibility.  In  addition,

current fiber optic plasmonic nanosensors often do not provide any information about

the spectroscopic characteristics of the analyte. Instead they monitor the changes in

the dielectric constant of the medium that surrounds the plasmonic nanostructure and

that can produce a shift in the LSPR peak.
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Here,  we  report  the  development  of  fiber  optic  nanosensors  via  plasmon

resonance energy transfer (PRET)18-27. The latter, is a nanospectroscopy effect that

occurs only when the frequencies between the light scattered from AuNPs and those

adsorbed by target molecules near the AuNPs match. The PRET technique can be

carried out even with a single plasmonic nanoparticle19. Current sensors based on

PRET  are  capable  of  detecting  chemical  and  biological  parameters  with  high

sensitivity and specificity.  However, they require complex setups that involve dark

filed  microscopes,  hyperspectral  cameras,  and  highly  sensitive  spectrometers.

Conversely,  our  devices  are  simpler;  they  are  easy  to  interrogate,  as  it  will

demonstrated in the following paragraphs.  

To  overcome  reproducibility  issues,  a  low  cost  chemical  approach  to

immobilize  functionalized  AuNPs  onto  the  end  face  of  a  conventional  multimode

optical  fiber  (MMF)  was  developed.  Unlike  previous  works28-31 where  the

immobilization of nanoparticles on the fiber end is an incontrollable process. In our

case, the deposition of AuNPs was monitored in real time; this allowed us to know

indirectly  the  relative  coverage  of  the  fiber  optic  surface  and  to  achieve  highly

reproducible probes.   

 The sensing capability  of  our  fiber  optic  nanosensors is  demonstrated  by

detecting specifically copper ions (Cu2+) in water. It was found that our nanosensors

are 1000 times more sensitive than their counterpart based on microscopy by using

the same chemistry previously reported32. It is also demonstrated that our devices

can  reach  picomolar  detection  limits  and  broad  measuring  range.  Therefore,  we

believe  that  the  concepts  and  approaches  reported  here  may  lead  to  the

development  of  a  new generation  of  specific  fiber  optic  plasmonic  (bio)chemical

nanosensors.
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Results

Fabrication and characterization of the nanoprobes

Figure 1 shows the schematic representation of the setup that was used to monitor in

real time the fabrication process of the fiber optic nanoprobes. The same setup was

used  to  characterize  the  sensors.  The  setup  comprises  of  a  white  light  LED

(MCWHL5,  Thorlabs)  with  emission  from  400  to  700  nm,  an  MMF  coupler

(TM105R5S1A, Thorlabs), a low-resolution spectrometer (Avantes,  mini2048-VI25)

connected  to  a  computer  and  controlled  with  Avantes  software,  and  a  sampling

chamber.  All  the components of our measuring setup are inexpensive and widely

available. The cost of all the components to implement our setup was less than 2500

Euros. 

Light from the LED was launched to the end face of the MMF by means of the

fiber optic coupler. The light reflected from the MMF face passed again through the

coupler  and  reached  the  spectrometer.  In  all  the  experiments,  the  absorbance

spectra were calculated with the following expression:
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Fig. 1 Schematic of the measuring  setup.  It  contains an LED, a fiber optic

coupler  (FOC),  a  spectrometer,  multimode  optical  fiber  (MMF),  and  a  small

sample container. 



A=−log( S−D
R−D ).                                                (1)

In the above equation, R is the spectrum that is obtained when there are no AuNPs

onto the MMF facet, D is the measured spectrum when the LED is turned off, and S

is the reflected spectrum from the AuNPs-coated fiber facet. The acquisition of the

absorbance  spectra  was  optimized  by  adjusting  the  power  of  the  LED  or  the

exposition time of the spectrometer. 

The MMF used in the experiments (FG105LCA, Thorlabs) had core/cladding

diameter of 105/125 m. It was cleaved with a common optical fiber cleaver (VF-78,

INNO Instrument America). The cleaving process guarantees MMF tips with smooth

and flat surfaces. The MMF tips were cleaned in a piranha solution during 30 min,

and later, they were modified with 3-aminopropyltriethoxysilane (APTES); an organic

linker  molecule,  to  enable  covalent  attachment  of  40  nm-diameter  AuNPs.  Upon

attachment of AuNPs to the fiber facet, we observed an absorption spectrum, indeed

the LSPR peak, with maxima centered ca. 540 nm, see Fig. 2a. The intensity of the

absorption spectrum increased with time of incubation until it reached a plateau after

45 minutes, see Fig. 2b. The peak of the absorption spectra matched the LSPR peak

of the 40 nm AuNPs provided by the manufacturer, thus confirming immobilization of

the nanoparticles on the facet of the MMF.

Scanning  electron  microscopy  (SEM)  images  of  the  MMF tips  showed  an

increasing  density  of  AuNPs  on  the  fiber  facet  with  time  of  incubation,  a

homogeneous distribution of the AuNPs, and a very low number of aggregates, see

Fig.  2c  and  2d.  The  formation  of  dimmers  and  trimmers  increased  with  time of
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incubation, but single AuNPs remained over 75% of the total events, see Fig. 2d.

SEM images of MMF facets after different AuNPs immobilization times are shown in

Fig. S1.

The  measured  absorption  spectra  correlated  well  with  the  SEM  images.

Higher  intensities  of  the  LSPR peaks  are  in  good  agreement  with  an  increased

7

Fig.  2  Study of time deposition.  a Evolution of the absorption spectra with

incubation time. b Intensity of the LSPR peak with deposition time. The solid line

is  a  fitting  to  the  data.  c SEM image of  the MMF facet  after  45 minutes  of

incubation time (Magnification 10,000x. COMPO mode). The inset image is a

close-up.  d Percentage of single AuNPs observed at different incubation times.

Error bars correspond to the standard errors from 3 samples. 



density of AuNPs on the MMF facet. The minute red shift shown in Fig. 2a could be

explained by the formation of some aggregates at prolonged incubation times. 

The immobilization of AuNPs was reproducible; a coefficient of variation (CV)

of  6,2% in the binding curves between three different  samples was observed. An

additional advantage of our protocol to immobilize AuNPs is its potential for batch

fabrication of nanosensors, something that is not possible with prior nanofabrication

techniques.  

Nanosensors for selective copper ions detection

Copper  is  an  essential  element  in  biological  processes;  however,  concentrations

higher than 63 µM in water may lead to harmful effects for human health33. So far,

different techniques have been performed to detect Cu2+ in water, as for example,

electrochemistry, fluorescence, PRET, colorimetric methods, and surface enhanced

Raman spectroscopy34-39. However, atomic absorption spectrometry and inductively

coupled plasma mass spectroscopy are the gold standard techniques to measure

Cu2+ in water. The limit  of detection of such expensive techniques is in the micro

molar  range  but  they  operate  in  centralized  analytical  laboratories  only.  Thus,  a

stand-alone portable system that enables on-site detection of Cu2+ in water, hence,

reducing the time and cost of the analytical process, is highly desirable.

In order to enable Cu2+ detection with our devices, we fabricated nanoprobes

where the immobilization of Au nanoparticles was set at 25 minutes to have a good

coverage of the MMF facet while avoiding the formation of many aggregates, see

Fig.  2b.  The  MMFs  coated  with  AuNPs  were  further  functionalized  with  N-[3-

(trimethoxysilyl)propyl]ethylediamine (TMSen),  to form Cu2+  specific  ligands on the

surface of  the AuNPs,  see Fig.  3.  This  functionalization of  the AuNPs induced a
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negligible change in the absorption spectra obtained from the MMF facet (see Fig.

S2).

Fig. 3 PRET surface. Schematic representation of the facet of an MMF with AuNPs 

attached and functionalized with TMSen. 

To evaluate the sensing performance of the fiber optic nanoprobes, they were

immersed in a series of aqueous solutions containing increasing concentrations of

Cu2+ ions ranging from 10-12 to 10-3 M. The results of our experiments are summarized

in  Fig.  4.  From Fig.  4a,  it  can  be observed that  the intensity  of  the LSPR peak

decreases as  the concentration of  Cu2+ in  the solution increases.  The measuring

range of our fiber optic nanosensor was found to be linear; from 10-12 up to 10-4 M

with saturation occurring from 10-3 M onwards, see the calibration curve shown in Fig.

4b.
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In such a figure, the plotted data were calculated by the expression: 100∗(1−I / I0) ,

where I  corresponds to the maximum signal intensity of each concentration and

I0 to 0 µM concentration, this means, no Cu2+.

Efficient  complexation of  Cu2+ by the  nanoprobes was further confirmed by

XPS  (Fig.  S3).  Additionally,  a  competitive  binding  assay  was  performed  using

ethylenediaminetetraacetic  acid  (EDTA).  EDTA is  a  chelating  agent  with  stronger

affinity  for  Cu2+ ions  than  TMSen  complex.  Incubation  of  Cu2+ saturated  PRET

surfaces in a 0.1 M solution of EDTA, resulted in the recovery of the LSPR peak

intensity of the MMF-AuNPs-TMSen obtained prior to incubation with Cu2+ ions. This

observation was in agreement with the removal of Cu2+ ions from the PRET surfaces

by EDTA solutions (Fig. S4). 

The experiments  described  above were  repeated  with  AuNPs-coated MMF

facets  that  were  not  modified  with  TMSen.  The  results  of  such  experiments  are

shown  in  Fig.  4b.  No  significant  changes  in  LSPR  peak  were  observed  thus

confirming that Cu2+ ions did not interact with the AuNPs in the absence of amine

functional groups.

Selectivity tests were carried out for the Cu2+ fiber optic PRET nanosensors.

They did not show a significant response in the absorption spectra in the presence of

different  heavy  metal  ions  (Co2+,  Pb2+,  Ni2+)  and  other  ions  (Na+)  that  usually

accompany Cu2+ ions in water, see Fig. 5a. This agrees with the fact that the AuNPs

were modified with Cu2+ specific ligands, thus, other metal ions could not be bound to

the surface of AuNPs. However, all the ions produced an unspecific LSPR shift (see

Fig. 5b). The reason for the LSPR shift in the presence of Cu2+ ions and other metals

in the solution is related to changes of the dielectric constant, while the decrease in

the LSPR peak intensity is related to the PRET effect. 
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Fig.  4  Nanosensor  response  upon  complexation  of  Cu2+.  a Absorption

spectra of observed in different aqueous solutions with increasing concentrations

of Cu2+ ions.  b Corresponding calibration plot. The solid line is a fitting to the

experimental data. Cu2+ ions detection using no-functionalized nanoprobes are

shown with the data fitted with the dashed line. 



Discussion

The light scattered from 40 nm-diameter AuNPs has an LSPR peak close to 540 nm.

Therefore, the absorbance spectrum of an MMF coated with such nanoparticles was

12

Fig. 5  Interference studies. a  Bars diagram showing the effect of Cu2+, Ni2+,

Pb2+,  Na2+, and Co2+ on the intensity of the LSPR peak. Error bars correspond to

the standard errors from 3 tested samples.  b  LSPR shifts observed with the

presence of same ions in a at concentrations ranging from 10-12 to 10-4 M. In all

cases, the incubation time was 5 minutes.



expected to exhibit a peak ca. 540 nm; see Eq. (1) for the definition of absorbance

used in this work. The results shown in Fig. 4a confirm that the observed spectra

corresponded to the LSPR peaks of the 40 nm-diameter AuNPs. On the other hand,

ethylenediamine copper complex  has optical absorption in the visible range with a

peak  centered at  569 nm. Therefore,  there is  an overlapping between the LSPR

spectral  peak  of  the metallic  nanoparticles and the absorption peaks of  the Cu2+

complex formed on top of the nanoparticles. This is what enables energy transfer

between the AuNPs and the coordinated Cu2+ ions32. 

When the AuNPs deposited on the MMF facet are illuminated with white light,

the free electrons of the nanoparticles enter in resonance. The energy stored in such

resonant electrons can be transferred to Cu2+ ions located close to the nanoparticles.

Consequently,  the  intensity  of  the  absorbance  spectra  of  the  fiber  nanoprobe

changes.  It  is  worth  noting  that  the  absorbance  changes  in  proportion  to  the

concentration of Cu2+ ions, see Fig. 4a. The results shown in Fig. 4 suggest that as

the  concentration  of  copper  ions  increases  more  energy  is  transferred  from  the

nanoparticles to the ions.

Our  observations  are  in  agreement  with  previous  reports  that  showed  a

decrease  in  the  intensity  of  the  Rayleigh  scattering  of  single  nanoparticles

functionalized  with  Cu2+ chelating  agents  upon  Cu2+ complexation32.  A  similar

response could be expected from other transition metal ions such as Co2+ and Ni2+

that  also form complexes, which have absorption bands overlapping the Rayleigh

scattering of the nanoparticles, but it was not obtained. The large specificity for Cu2+

must be related to its higher affinity for ethylenediamine compared to Co2+ and Ni2+ as

well  as  an  intense  absorption  by  the  Cu2+ complex  in  the  visible  range40 (see

supporting information) .  
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It can be observed from Fig. 4a that the absorbance peak shifts to the blue as

the concentration of  Cu2+ increases.  For  our  measurements such a shift  was not

relevant as it was unspecific for several metal ions. Instead, the height or intensity of

the peak was specifically correlated with the concentration of Cu2+ in relation with the

chemistry used to modify the nanoprobes. 

In comparison with other optical sensors for the detection of Cu2+  , the PRET-

based fiber optic platform reported here showed 1000 times higher sensitivity than its

counterpart  based  on  dark  field  microscopy,  and  a  larger  analyzable  range  of

concentrations.  The  lower  concentration  of  Cu2+ measured  was  1  pM,  and  the

theoretical  LOD calculated as 3 times de signal  to noise ratio,  was 0.2  pM.  The

performance of our device and that of other optical techniques are summarized in

Table S1.

Conclusions

In  summary,  we  have  reported  on  the  development  of  PRET-based  fiber  optic

nanosensors that  may be incorporated in inexpensive, portable detection systems

that could be hold on the palm of a hand. The nanosensors proposed here are much

simpler  to  fabricate  than  other  LSPR  sensors  that  require  sophisticated

nanofabrication techniques. In our approach, the sensor fabrication process can be

monitored in real time; hence, it can be controlled.

The potential of our nanosensors for the detection of Cu2+ ions in water was

demonstrated. Our nanosensors are 1,000 more sensitivity than previous reported

PRET sensors.  The  significant  difference  in  sensitivity  lies  on  the  efficient  light-

AuNPs interaction as it takes place on the facet of a conventional multimode optical
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fiber.  As  compared  with  current  equipment  for  Cu2+ ions  detection,  our  sensing

approach can be hundred times cheaper.

In  contrast  to  previous PRET sensors that  use a  dark  field  microscope  to

record  the  scattering  spectra  of  AuNPs  immobilized  on  a  glass  surface,  the

interrogation of our nanosensors is quite simple. It involves low cost, small size, and

widely available components such as a white light LED, an optical fiber coupler, and

a miniature spectrometer. 

Our  fiber  optic  nanosensors  provide  high  specificity  through  the  PRET

phenomena  and  ultra-high  sensitivity  thanks  to  its  LSPR  nature  that  is  further

leveraged by depositing the antenna surfaces directly on the face of an optical fiber.

The multiplexing of our devices is feasible with optical fiber switches, which

are widely used in optical fiber technology. The incorporation of a switch in the setup

shown  above  (Fig.  1)  is  straightforward.  Therefore,  differently  functionalized

nanosensors would specifically detect a number of different analytes. 

We believe that the sensing concept presented here will be a breakthrough as

it  will  enable the development  of  ultrasensitive  and specific  fiber  optic  plasmonic

(bio)chemical nanosensors. Such sensors will find application in many different high

impact  fields  such  as  on-site  monitoring  of  heavy  metals  in  water  or  even

ultrasensitive detection of protein, nucleic acids, and many other analytes. 

To the best of our knowledge, this is the first report of the combination of LSPR

and the specific chemical fingerprint by PRET on the face of MMFs. It opens up the

possibility of generating a new and powerful detection method for a wide number of

areas.

Materials and methods
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Chemicals

All chemicals were purchased from Sigma-Aldrich and used as received from the

supplier without further purification. All water used was Mili-Q ultrapure grade (18.2

MΩ cm).  40  nm  diameter  citrated  capped  spherical  gold  nanoparticles  aqueous

solutions (particle concentration = 6.2 x 10-10 particles·mL-1)  were purchased from

Nanovex Biotechnologies S.L. (Spain). 

Preparation of PRET surfaces

The end-face of the MMF was cleaved by using an optical fiber cleaver (VF-78, INNO

Instrument  America).  The  cut  angle  was  verified  by  optical  microscopy,  being

perpendicular  to the cross section of  the incident  light.  MMFs were cleaned in a

piranha solution during 30 min and rinsed with DI water. Later, MMFs were modified

with 3-aminoproyltriethoxysilane (APTES) by incubation in 1mM APTES solution in

isopropanol  for  90  minutes.  MMFs  were  then  rinsed  out  with  a  solution  of

isopropanol-water  (1:1).  Later,  AuNPs  were  immobilized  on  the  APTES-modified

MMFs  by  immersion  of  the  fibers  in  a  6.2  x  10-10 particles/mL AuNPs  aqueous

suspension  during  25  min.  Subsequently,  freshly  prepared  MMF-AuNPs  were

immersed  in  1mM  APTES  solution  in  isopropanol  for  90  min.  The  silane-

functionalized MMF-AuNPs were washed with a solution of isopropanol-water (1:1)

and were immersed in a 0,1M HCl solution for hydrolysis of the methoxy groups of

APTES  (1  h),  and  rinsed  with  water.  Finally,  the  gold  plasmonic  probes  were

immersed into 1mM N-[3-(trimethoxysilyl)propyl]ethylediamine (TMSen) solution for 2

h to obtain the MMF-AuNPs-TMSen, or nanoprobes, and then it was rinsed with Mili-

Q water for 5 min. MMF-PRET platforms were stocked in Mili-Q water and protected

from light.
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Scanning Electronic Miscroscopy (SEM) characterization

The presence of AuNPs attached to the end-face of  the MMFs was confirmed by

SEM. Images were acquired in a SEM of type JEOL JSM-7000-F (JEOL, Japan) at

10 kV acceleration voltage. MMFs were placed in metallic holder aligned vertically. A

chromium monolayer of 5 nm was deposited by sputtering for surface metallization.

The aggregation ratio was obtained by  the public domain software ImageJ 1,51d

(National Institutes of Health, USA).

PRET sensing

Different  MMF-AuNPs-TMSen  were  immersed  into  aqueous  solutions  of  varying

concentrations of metal ions in a final volume of 300 µL, using black flat-well (NUNC

96 wells)  plates.  All  components were used at  the same range of  concentrations

(from 10-12  to 10-4  M). The ions solutions were prepared from their  following salts:

CuCl2, Pb(NO3)2, Co(NO3)2, Ni(NO3)2 and NaCl. In all the measurements, the spectra

of the resulting mixtures were recorded after 5 min.

Data availability

The authors declare that the data supporting the findings of this study are available

within the paper and its supplementary information files.

Supporting Information Available: The following files are available free of charge:

Supporting Information. Brief description of contents: SEM images of the facets of

optical  fibers  with  different  concentrations  of  AuNPs.  Spectra  from functionalized

optical  fibers.  XPS  spectra  of  functionalized  glass  surfaces.  UV-vis  Spectra  of

TMSem complexed with Cu2+, Co2+ and Ni2+. Spectra of MMF-PRET-Cu2+ before and

after incubation with 0.1M EDTA.
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