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ABSTRACT:  

A continuous stream of syllables is segmented into discrete constituents based on the transitional 

probabilities (TPs) between adjacent syllables by means of statistical learning. However, we still do not 

know whether people attend to high TPs between frequently co-occurring syllables and cluster them 

together as parts of the discrete constituents or attend to low TPs aligned with the edges between the 

constituents and extract them as whole units. Earlier studies on TP-based segmentation also have not 

distinguished between the segmentation process (how people segment continuous speech) and the learning 

product (what is learnt by means of statistical learning mechanisms). In the current study we explored the 

learning outcome separately from the learning process, focusing on three possible learning products: holistic 

constituents that are retrieved from memory during the recognition test, clusters of frequently co-occurring 

syllables, or a set of statistical regularities which can be used to reconstruct legitimate candidates for discrete 

constituents during the recognition test. Our data suggests that people employ boundary-finding mechanisms 

during online segmentation by attending to low inter-syllabic TPs during familiarization and also identify 

potential candidates for discrete constituents based on their statistical congruency with rules extracted during 

the learning process. Memory representations of recurrent constituents embedded in the continuous speech 

stream during familiarization facilitate subsequent recognition of these discrete constituents.  
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1 INTRODUCTION 

Segmenting the continuously changing world into units is a daunting yet unavoidable challenge the brain 

faces as it transforms ongoing, dynamic sensory flow into structured and meaningful experience. Continuous 

speech, for example, must be divided into sentences, phrases and words by means of statistical learning 

mechanisms (SL). SL is not restricted to processing only linguistic input (Abla & Okanoya, 2008). To a 

large extent, segmentation relies on tracking transitional probabilities (TPs) between smaller elements (e.g., 

syllables, distinct tones or pseudo-shapes). Speech-like acoustic streams with high TPs between syllables are 

easily extracted and committed to memory during habituation learning (e.g., Aslin et al., 1998). During 

subsequent recognition tests, these sequences can be identified as legitimate word candidates and mapped to 

objects more readily than their random counterparts (Graf Estes et al., 2007; Hay et al., 2011).  

Despite the fact that TPs are known to be crucial for SL, the cognitive mechanisms for TP-based 

segmentation are still under debate. Two possible classes of mechanisms, suggesting different roles for TPs 

in the segmentation of continuous input, have been proposed: 1) boundary-finding mechanisms and 2) 

clustering mechanisms (see Perruchet & Pacton, 2006 for an overview). Boundary-finding mechanisms rely 

on detecting the edges of the constituents by attending to the troughs in TPs, which are aligned with the 

boundaries between holistic consecutive segments. (Endress & Mehler, 2009; Elman, 1990). By contrast, 

clustering mechanisms rely on attention to TPs between syllables that have a higher probability of co-

occurrence, leading to the emergence of clusters that do not necessarily correspond to whole constituents 

(Perruchet & Poulin-Charronnat, 2012; Perruchet, P., & Vinter, 1998; Frank, Goldwater, Griffiths & 

Tenenbaum, 2010). We also do not have a clear understanding of what is learnt by means of SL. There are 

three possible alternatives for the learning product: (i) recurrent syllable sequences as whole discrete 

constituents; (ii) frequently presented chunks, e.g., frequently co-occurring syllable pairs; (iii) statistical 

regularities per se, e.g., TPs.  

In this study, we wanted to find out (1) whether people attend to lower or to higher TPs for the 

purpose of online segmentation, i.e., during exposure to continuous sensory input, and (2) what is 
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endorsed as a legitimate constituent offline, i.e., during the recognition test following the 

familiarization exposure. The former question is related to the process of segmentation, that is, how people 

use TPs to extract discrete constituents from continuous flow, and the latter is related to the product, that is, 

what is actually learnt by means of SL mechanisms.  

To address these issues, we set up an experiment using the artificial language learning paradigm (Saffran et 

al., 1996), and constructed an artificial language that could lead to the emergence of false word candidates 

that had never appeared in the habituation acoustic stream - phantoms (Endress & Mehler, 2009; Endress & 

Langus, 2017). Imagine a stream of syllables, in which syllable A is followed by syllable B, and the syllabic 

pair AB is frequently presented in the habituation input as a part of the syllable triplet ABC. However, 

syllable B can also be followed by syllable Z, and the syllabic pair BZ is frequently presented as a part of a 

tri-syllabic YBZ sequence. Although the tri-syllabic sequence ABZ never occurs during learning, it could 

potentially be endorsed as a sequence present in the habituation input during the recognition test (Endress & 

Mehler, 2009; Turk-Browne & Scholl, 2009; Endress & Langus, 2017). The constructed artificial language 

stream for our study included 12 recurrent syllable triplets (statistical words), and the TPs between adjacent 

syllables allowed for the emergence of phantoms as perceptual units (see the Methods section for details 

regarding the experimental material). The habituation phase was followed by a dual forced-choice 

recognition test. For this test, we paired words with phantoms (triplets that shared the statistical properties of 

the words but had never occurred during habituation and thus could not have been encoded and committed 

to memory as whole constituents) and with non-words (random tri-syllabic sequences). On each trial, 

participants were asked to give confidence ratings regarding their choice. We measured neural oscillatory 

changes related to the encoding phase, and the behavioral and ERP responses related to recognition 

performance. Neural changes during the habituation phase were related to the learning process and to 

extracting regularities for building representations (Battering & Paller, 2017; Ding et al., 2016; 2017a). 

Online segmentation was indexed by the entrainment of neural oscillations to the frequency of extracted 

constituents; increases in power peaks and precision (inter-trial coherence) were considered to be a function 
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of learning progress. During the subsequent recognition phase, the behavioral and ERP responses to words, 

phantoms and non-words informed us about what is learnt by means of SL mechanisms.  

1.1 Electrophysiology of TP-based segmentation 

The learning process and the role of TPs in segmentation can be explored by tracking ongoing changes in 

neural oscillatory dynamics as habituation progresses. When we process real connected speech, multiple 

neural oscillations track extracted linguistic units at different timescales by tuning into syllabic, phrasal and 

sentence rhythms: power peaks and coherence maxima in the EEG signal emerge at frequencies that 

correspond to the rate of these linguistic constituents (Peelle & Davis, 2012; Peelle, Gross, & Davis, 2013; 

Ghitza, Giraud, & Poeppel, 2013; Ding et al., 2016; 2017a). The adjustment of brain rhythms to the phase 

and period of rhythms in environmental stimuli is known as neural entrainment. The spectrum of the 

temporal envelope of sound, which reflects how fast sound intensity fluctuates over time, reveals well-

separated power peaks at around 4-5Hz across typologically different languages, corresponding to the mean 

syllabic rate across languages (Ding et al., 2017b). This modulation spectrum is a purely acoustic measure of 

syllabic rhythm, and thus provides unambiguous acoustic cues for brain-to-sound coupling. Rhythms at 

higher levels of the linguistic hierarchy are less consistent across languages in terms of their acoustic 

manifestation, and sometimes totally non-existent. Nevertheless, neural oscillations also emerge at the 

frequency of higher-level linguistic constituents. Online encoding of statistical words during familiarization 

with an artificial language is indexed by the entrainment of brain rhythm to word frequency, and the degree 

of entrainment increases as the learning progresses (Batterink & Paller, 2017; Buiatti et al., 2009). The 

degree of neural entrainment correlates with the percentage of endorsed statistical words during the 

subsequent recognition test. We assume that the degree of neural entrainment will correlate with the 

percentage of recognized phantoms only if segmentation is supported by clustering mechanisms, and 

frequently co-occurring syllable pairs represent the learning outcome of statistical learning. If the learning 

product is instead represented by whole triplets, because segmentation relies on boundary-finding 

mechanisms, the degree of neural entrainment should correlate with the percentage of endorsed triplets 

during the recognition test.  
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Ongoing changes in oscillatory dynamics during familiarization will inform us about the segmentation 

process. Neural oscillations at the syllabic frequency are expected to emerge immediately as exposure to the 

acoustic stream starts. The entrainment of cortical rhythms to the acoustic syllabic rhythm is a physiological 

response of the brain to the acoustic structure of the ambient signal (Greenberg & Ainsworth, 2004). It does 

not reflect higher-level processing and is not expected to be modulated over the course of habituation. 

Neural oscillations at word-frequency are expected to emerge only when tri-syllabic word boundaries have 

been identified and should increase in power and phase coherence with exposure (Wöstmann, Fiedler, & 

Oblesser, 2017). If TPs are used to detect syllable transitions with low probabilities and to insert boundaries 

between tri-syllabic constituents, we should observe the emergence and gradual increase of neural 

oscillations at one third of the syllable frequency rate. If, on the other hand, TPs are used to detect syllables 

that frequently cluster together, then we should expect the emergence of neural oscillations at the frequency 

of boundaries between frequently co-occurring syllable pairs. As the syllable pairs that cluster together are 

overlap (syllables 1 and 2 and syllables 2 and 3 constitute frequent syllable clusters), we should observe an 

increase in neural oscillations at the frequency of the syllable as exposure increases.  

In addition to behavioural data, the product of statistical learning will be explored by examining ERPs 

elicited by triplets, phantoms and foils during the recognition test. If only whole tri-syllabic constituents are 

encoded as learning products, then ERPs elicited by words are going to be different from those elicited by 

phantoms and by foils. If statistical rules are used to endorse legitimate word candidates, then the ERPs 

elicited by non-words should be different from the ERPs elicited by statistically congruent tokens. Finally, if 

phantoms are accepted as legitimate constituents because they can be reconstructed from frequent syllable 

pairs, while words are recognized upon their retrieval from memory as whole units, then endorsing words 

and phantoms would rely on different neural substrates (Skosnik et al., 2002), and thus may have distinct 

electrophysiological correlates (ERPs) even in the absence of different behavioural responses to words and 

phantoms.  

2 MATERIAL AND METHODS 



 

7 

2.1 Participants 

34 Spanish-Basque bilinguals between 18 and 26 years of age (with no known history of neurological 

diseases or hearing problems, right-handed) were recruited and received monetary compensation for their 

time. The age of acquisition for their second language (Basque) was three years (at school), with Spanish 

being the first language and the family language of all participants. This is the most common linguistic 

profile for participants in the Basque country, where the experiment was carried out. The study was 

approved by the BCBL Ethics committee (approval number 280317). All participants signed a written 

informed consent form prior to the study.  

2.2 Stimuli  

The syllable inventory included 18 syllables (consonant + vowel) that were used to make 12 tri-syllabic 

statistical nonsense words, each syllable contributing to two words. Each syllable was 240ms in duration 

(vowels–140ms). Each statistical word had a unique combination of consonants. We also counterbalanced 

the position of plosive, sonorant and fricative consonants. Each consonant was used an equal number of 

times. We tried to counterbalance the vowels and the position of vowels within statistical words. The 

statistical words were randomly concatenated 125 times into a continuous stream (1080sec), ramped on both 

ends to prevent the listener from using the edge syllables of streams as anchors for the edges of the initial 

and final statistical words. In the final acoustic stream, the TPs between syllables within words were 50%, 

and the TPs between syllables straddling the statistical word boundaries were around 15%. The list of words 

is presented in Table 1. Figure 1 presents an example of a stream, demonstrating the different potential 

roles of TPs in segmentation. The acoustic stream was created using MBROLA speech synthesizer using 

ES1 voice, the stimuli were prepared at 22050Hz. F0 was set to 120Hz. The stream was preceded by 

293.76sec of silence, so that we could use the EEG signal measured during the resting state period as a 

baseline.  

INSERT FIGURE 1 SOMEWHERE HERE¨ 
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The TPs implemented in the habituation stream allowed for the emergence of phantoms as perceptual units 

(tri-syllabic sequences that did not appear in the habituation acoustic stream as whole triplets, yet had 50% 

TPs between syllables and were composed of the syllable pairs that constituted the words).  

For the recognition test, each word and phantom was synthesized as a separate file. Finally, we prepared 

random tri-syllabic sequences with inter-syllable TPs set to 0% (i.e., sequences composed of syllabic pairs 

that never appeared in the habituation stream, we refer to these sequences as non-words below). None of the 

words, phantoms or non-words resembled any real word from the participants’ native languages. The list of 

phantoms and non-words is in Table 1. 

INSERT TABLE 1 SOMEWHERE HERE 

2.3 Experimental procedure 

The experiment consisted of two separate phases. During the familiarization phase, participants were 

explicitly instructed to detect and memorize the words of an unknown “extraterrestrial” language. 

Immediately after the learning phase, segmentation performance was assessed by means of a dual forced-

choice recognition test. During the test, each word was used in 4 different pairs, pitted against two different 

non-words and two different phantoms, counterbalancing the position of items in the pairs. Also, each 

phantom was pitted against two different non-words, counterbalancing the position of items in the pair. In 

total, 72 test pairs were created. Each item was used an equal number of times in the test. The acoustic 

stimuli were presented auditorily, and while the stimuli were being played, the fixation cross was shown in 

the middle of the screen. Items within the test pairs were separated by 1000ms. Both the habituation stream 
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and test stimuli were presented in PsychoPy (v.1.80.04) via two speakers positioned about one meter in front 

of the participants, at approximately 75dB. Presentation of each pair was followed by two questions. First, 

participants were asked to choose whether the first or the second item in each pair was the word from the 

extraterrestrial language (i.e., recognition response). To test whether participants were more aware of the 

words than the phantoms, we asked them to indicate how confident they were in their answer (i.e., 

confidence response). The confidence rating assigned to each trial was used as an awareness index of the 

behavioral responses (Schwiedrzik, Singer, & Melloni, 2011). Confidence ratings were given on a 4-point 

scale: 1-guess, 2-slightly confident, 3-fairly confident, 4-sure. We encouraged participants to use the full 

range of the scale.  

The participants were instructed not to move/blink when the cross was on the screen, and to input their 

response only when the screen disappeared and the prompt to give a response was presented on the screen. 

The prompt to give the recognition response was given 1060ms after the presentation of the second item in 

the stimulus had finished. The structure of the test trial is presented in Figure 2. 

INSERT FIGURE 2 SOMEWHERE HERE 

 

2.4 EEG data acquisition and pre-processing 

EEG recordings were recorded throughout the experiment, both during the habituation and testing phases 

using the Brain Amp DC acquisition system. EEG was recorded from 27 Ag/AgCL electrodes (Fp1/2, F7/8, 

F3/4, FC5/6, FC1/2, T7/8, C3/4, CP5/6, CP1/2, P7/8, P3/4, O1/2, Fz, Cz, Pz) positioned according to the 

10/20 system positioned in an EasyCap and referenced to the left mastoid. The sampling rate was set at 500 

Hz. Additional electrodes were placed on the right mastoid, at the outer canthi of both eyes, and above and 

below the right eyes. Impedances were kept below 5kΩ.  
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The EEG signal recorded during the testing phase was re-referenced offline to the average of the left and 

right mastoids and low-pass filtered (30Hz, 24dB/octave, using a 50Hz notch filter to remove electrical 

interference). This continuous EEG signal was checked for the presence of artifacts such as EMG bursts, 

glitches, spikes and other instrumental artifacts, artifacts caused by movements, etc. Artifacts were defined 

as segments +/- 200ms around amplitude changes exceeding 75µV/ms, exceeding a 100µV difference over a 

50ms segment, or when the amplitude was lower than 0.5µV over a 50ms segment.  

For the ocular correction, the EEG signal was decomposed into independent components using a fast ICA 

extended algorithm implemented in BrainVision Analyzer 2.0.2.5859 based on the entire dataset for each 

participant. Components that captured blinks, horizontal eye movements and, in rare cases, heartbeats 

(identified by visual inspection based on the components’ topography and energy) were removed. The mean 

number of removed components was 2.063.  

2.5 Oscillatory analysis, encoding 

Since we were interested in evaluating possible hemispheric differences with EEG (as reported in 

Vanvooren et al., 2014), the recordings during the Encoding phase were first referenced to Cz, which has 

been reported to be the best reference for this purpose (van der Reijden et al., 2005; Van Dun et al., 2009; 

Vanvooren et al., 2014). No reliable hemispheric difference was found, in line with Ding et al. (2017). Raw 

data were then segmented into epochs of 8.64 seconds corresponding to the presentation of 12 tri-syllabic 

words in the continuous stream. This time window gives a frequency resolution for the Fourier transform of 

each trial equal to 0.12Hz, and allows good estimations at the frequencies of interest (1.39 Hz, 2.08 Hz, and 

4.17 Hz). We then grouped the first 40 repetitions in Section 1, the next 40 in Section 2 and the third 40 in 

Section 3. For baseline purposes, we also considered 40 consecutive 8.64-second intervals extracted from 

the resting state period collected before the main experiment began. We then averaged the epochs in each 

Section and computed the inter-trial phase coherence (ITC) across trials for each Section: we first computed 

the phase of the Fourier-transformed signal in the frequency domain (using the function angle in Matlab 

R2012b), and then computed phase coherence across trials. ITC provides a measure of spectral consistency 

across trials, without showing the typically skewed distribution of power estimates. However, since these 
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frequency tagging effects should also emerge in power (Ding et al., 2017), we also computed the absolute 

value of the discrete Fourier transform (DFT) of the data as implemented in Matlab R2012b. This reflects 

the power of the EEG responses synchronized to the auditory stimulus. The resulting ITC and DFT 

estimations were further used for grand-averaging across participants.  

Power and coherence at the frequencies of interest were contrasted statistically considering all electrodes. 

We also exploratively tried to group electrodes in different clusters, but different clustering did not yield any 

differences in the result pattern, and the effect was always significant across all electrodes. We first 

evaluated if the peak at each frequency was statistically stronger for the stimulation sections compared to the 

resting state and then conducted pairwise contrasts for the three Sections. Our main hypothesis was that 

these parameters should become more positive during exposure across the different Sections. Consequently, 

we tested the right tail of the statistical distribution.  

2.5 ERP analysis, recognition test 

The continuous EEG signal was segmented into 1420ms epochs, yielding 48 epochs corresponding to each 

token type (phantoms, words and non-words). The epochs were time-locked to the onset of each item in 

each test pair, with 200ms preceding the onset and 1220ms following the onset of the first syllables in the 

items. The epochs that contained artifacts were rejected. We excluded participants from further analysis if 

we had to reject over 25% of trials in any of the conditions (words, phantoms or non-words). In total, 4 

participants were excluded from both the ERP and oscillatory analyses. For the remaining 30 participants, 

the average proportion of trials that survived artefact rejection was 95.5%, comprising 93.6% for words, 

96.4% for phantoms, and 96.3% for non-words. Epochs were baseline corrected (subtraction method) using 

the 200ms of data preceding the onset of each item.  

As we did not have an a priori hypothesis regarding the time windows in which ERP amplitudes should 

differ between the conditions, we decided to follow a data-driven approach to determine the latencies of 

interest. For this purpose, differences in amplitude between conditions were assessed by means of a non-

parametric cluster-based permutation statistical approach implemented in the Fieldtrip toolbox. This 
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algorithm evaluates the presence of significant effects in the data by employing a cluster-based approach 

while controlling for multiple comparisons (Maris & Oostenveld, 2007). In the interval between 0 and 1 sec, 

for each sample of the data the null hypothesis that the data in the experimental conditions come from the 

same probability distribution is tested. The null distribution was extracted by randomly permuting the values 

of the contrasted conditions 1000 times and selecting the largest cluster-level statistic in each permutation. 

Cluster-level statistics with an F-value for the three conditions highlighted a significant effect in the time-

window on which the pairwise comparisons were made using the same non-parametric cluster-based 

permutation statistical approach. Clusters falling in the highest or lowest 2.5
th

 percentile of the permutation 

distribution were considered significant. 

3 RESULTS 

3.1 Behavioural data  

As shown in Figure 3, participants preferred words over non-words significantly more often than would be 

expected by chance (M=64.83% [10.71, 18.94], 95% confidence interval in square brackets, SD=11.79, 

t(33)=7.331, p< .0005, Cohen’s d=1.26). Participants also preferred words to phantoms more often than 

would be expected by chance (M=55.15% [1.77, 8.52], SD=9.68, t(33)=3.1, p=.004, Cohen’s d=.53). When 

choosing between phantoms and non-words, participants preferred phantoms (M=62.13% [8.03, 16.23], 

SD=11.76, t(33)=6.017, p< .0005, Cohen’s d=1.03). The results show that participants tended to reject non-

words as discrete constituents of the continuous habituation acoustic stream. The magnitude of the effect 

shows that the non-words were rejected equally efficiently when paired with words (d=1.26) and with 

phantoms (d=1.03), while the magnitude of the effect was substantially lower for test trials in which the 

participants had to choose between words and phantoms (d=.53). The preference for words against 

phantoms is significantly weaker than the preference for words against non-words (M=-9.68 [-13.94, -5.42], 

SD=12.21, t(33)=-4.623, p< .0005, Cohen’s d=.79) and the preference of phantoms against non-words (M=-

6.99 [-11.9, -2.07], SD=14.09, t(33)=-2.89, p=.007, Cohen’s d=.64). However, we did not observe a 
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significant difference between preference of words against non-words and preference of phantoms against 

non-words (M=2.7 [-1.48, 6.87], SD=11.96, t(33)=1.315, p=.198, Cohen’s d=.23).  

These results suggest that phantoms are endorsed as word candidates when paired with non-words, but not 

when paired with statistical words from the habituation stream. Non-words were rejected with equal 

accuracy, irrespective of whether they were paired with words or phantoms.  

INSERT FIGURE 3 SOMEWHERE HERE 

 

As shown in Figure 4, participants assigned the lowest confidence ratings to trials in which they chose non-

words, while the highest confidence ratings were assigned to trials in which participants chose words. The 

difference between confidence ratings assigned to responses in which participants chose words (M=2.72), 

phantoms (M=2.57), or non-words (M=2.28) was significant (F(2,66)=23.073, p< .0005, ηp
2
=.411, 

sphericity assumed based on Mauchly’s test, p=.142). Pairwise comparisons (Bonferroni correction applied, 
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all the tests performed on weighted averages of confidence ratings) showed that opting for words elicited 

significantly higher confidence than opting for phantoms (M=.144[.033, .254], SD=.316, t(33)=2.652, 

p=.024, Cohen’s d=.455), and that opting for phantoms elicited significantly higher confidence than opting 

for non-words (M=.291 [.141, .441], SD=.429, t(33)=3.956, p< .0005, Cohen’s d=.678). Confidence ratings 

assigned to correct responses tend to be higher than confidence ratings assigned to incorrect responses on 

trials when participants are consciously aware of the learning product (Galvin et al., 2003). The pattern or 

results in our study suggest that people consider words to be more legitimate than phantoms, and this also 

aligns with their recognition accuracy.  

INSERT FIGURE 4 SOMEWHERE HERE 

 

3.2 EEG: Learning phase 

These analyses were performed to reveal the dynamics of neural oscillations during the habituation phase. 

We aimed to understand whether brain rhythms emerge at the frequency of syllables, frequent syllable pairs, 

or recurrent syllable triplets, and whether these oscillations are modulated by the length of exposure. The 

increase in power and inter-trial coherence of brain oscillations with exposure reflects the learning process 

and shows whether the continuous signal is split into recurrent syllable sequences or frequent syllable pairs. 
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These oscillatory dynamics reveal whether TPs function to mark the edges of the holistic constituents (low 

inter-syllable TPs), or to raise the perceptual salience of frequent syllable clusters (high inter-syllable TPs).  

The ITC (inter-trial coherence) analyses showed two main peaks of entrainment compared to resting state 

recordings (Figure 5). Syllable-level (4.17 Hz: t(29) = 6.31, p<0.001) and word-level (1.39 Hz: t(29) = 2.05, 

p=0.025) peaks were evident across all electrodes (see Figure 6 for individual topoplots). No peak was 

evident at 2.08 Hz. The harmonic of the word-level peak was evident at 2.78 Hz. We did not detect any 

difference in syllable-level peaks between sections (all t statistics <1). When considering the word-level 

peak, the comparison between Section 1 and Section 2 revealed a significant difference at p=0.08, t(29) = 

1.44, the comparison between Section 1 and Section 3 revealed a significant difference at p=0.027, t(29) = 

2.01. No significant difference emerged between Section 2 and Section 3, t(29) = 0.41, p=.68.  

In the DFT analysis (power spectrum analysis) of the EEG signal recorded during the habituation phase, the 

syllable-level peak at 4.17 Hz (t(29) = 7.18, p<0.001) and the word-level peak at 1.39 Hz (t(29) = 3.67, 

p<0.01) showed larger amplitudes compared to the resting condition (Figure 5). Again, at 2.08 Hz we did 

not observe any effect (t(29)<0.5). In the syllable-level peak at 4.17 Hz no reliable differences emerged 

between the three Sections (all t statistics < 1). A power peak evident at 2.78 Hz compared to the resting 

state condition reflected a harmonic of the word-level peak, again, with no statistically significant 

differences in amplitude between the three Sections (all t statistics <.1). In the word-level peak at 1.39 Hz an 

eloquent trend emerged when comparing Section 1 and Section 2 (t(29) = 1.61, p=0.059), and a statistically 

significant effect emerged from the comparison between Section 1 and Section 3 (t(29) = 1.85, p=0.037). No 

meaningful or statistically significant effect emerged from the Section 2-Section 3 comparison (t(29) = 

0.43).  

INSERT FIGURE 5 SOMEWHERE HERE 

INSERT FIGURE 6 SOMEWHERE HERE 
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In order to evaluate the specificity of the oscillatory activity at 1.39Hz, we contrasted both power and 

coherence at this frequency averaged across exposure segments (first, second and third segments of the 

exposure periods) and channels. We then averaged the activity in the neighbor frequencies (1.27Hz and 

1.5Hz) and contrasted those values (across participants) against our target frequency with a permutation 

approach employing 50,000 reiterations. We observed a significant effect at 1.39Hz compared to the 

neighbor frequencies for both power (t=5.25, p<0.001) and inter-trial coherence (t=4.17, p<0.001). This 

indicated that the expected word-level effect was statistically reliable compared to the rest of the oscillatory 

activity.  

We further investigated the relationships between the Encoding and Recognition phases by testing for 

correlations between the frequency results and recognition performance. We subtracted the estimates of 

Section 1 (assumed to reflect initial exposure) from the estimates of Section 3 (supposed to reflect acquired 
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word-level knowledge) for each participant (averaged across all electrodes). We tested for correlations 

between differences in entrainment estimates (ΔITC) and recognition performance measured as the 

percentage of trials in which words, phantoms or non-words were endorsed. Scatterplots illustrating these 

correlations are displayed in Figure 6. We did not detect any outliers in measures of neural entrainment or 

behavioural performance (the variance did not exceed 3SD around the mean, or exceed the value 2.58, when 

the measures were z-transformed, for any variable). However, due to the very different scale of ITC gain, on 

the one hand, and the percentage scores, on the other hand, the problem of heteroscedasticity in the data is 

inevitable. Therefore, we used a non-parametric Spearman´s method for correlational analysis. We observed 

a positive but not significant correlation between the percentage of trials in which participants selected a 

word from the pair of test items (when one of the items was indeed a word) and the ΔITC, rho = 0.151 [-

.224, .484], p=.257). Importantly, we observed a negative relation, also not significant, between the 

percentage of trials in which participants selected a non-word (when one of the items was indeed a non-

word) and the ΔITC, rho = – .239 [-.551, .132], p=.07. The correlation between the ΔITC and the preference 

of participants for phantoms was negligibly weak, rho= .074 [-.294, .422], p=.577. We later compared the 

strength of these correlations pairwise, and found no significant differences, z=1.433, p=.126 for ΔITC and 

percentage of trials with endorsed words vs. ΔITC and percentage of trials with endorsed non-words; 

z=.282, p=.389 for ΔITC and percentage of trials with endorsed words vs. ΔITC and percentage of trials 

with endorsed phantoms; and z=.979, p=.164 for ΔITC and percentage of trials with endorsed non-words vs. 

ΔITC and percentage of trials with endorsed phantoms. These correlations suggest that the increase in ITC 

at the word frequency is linked with increased recognition accuracy for words and for non-words, and the 

weakest association is between the proportion of endorsed phantoms and ITC gain. This tentatively indicates 

that it is unlikely that phantoms emerge as perceptual units during learning. However, the correlations are 

not significant, and we did not detect significant differences between the strengths of correlations between 

ΔITC and performance measures, indicating that any conclusion regarding the association between the 

entrainment and behavioural variables are only suggestive, and the data does not yield convincing evidence 

against the null hypothesis. The correlations should be interpreted with caution and re-evaluated against a 

larger sample size.  
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INSERT FIGURE 7 SOMEWHERE HERE 

 

3.3 ERP: Recognition test 

The comparison between ERPs elicited by words, phantoms and non-words showed a significant difference 

(p<.001) in the time interval between 836ms and 952ms following the onset of the stimulus (the time 

interval was determined based on a data-driven, non-parametric cluster-based permutation statistical 

approach (Maris & Oostenveld, 2007), in the interval between 0 and 1sec following stimulus onset, see the 

Methods section for details). Pairwise comparison confirmed that non-words elicited more negativity 

compared to both words (p=<.05) and phantoms (p=<.01). These negative effects showed a central-posterior 

distribution over the scalp (Figure 8). No statistically significant effect emerged from the comparison 

between words and phantoms. To estimate the degree of support for the null hypothesis in the words vs. 

phantoms comparison, we averaged the ERP amplitude over the central electrodes (C3, C4, P3, P4, Cz, Pz, 

CP1, CP2) during the time interval between 836ms and 952ms for words and phantoms, and calculated the 

Bayes Factors (BF) using the Bayesian paired t-test (performed in JASP). BF10=0.371 showed that the null 

model is favoured 2.7 times more than the alternative model, which provides only weak evidence (Raftery, 

1995) for a lack of difference in ERP amplitudes between words and phantoms, and calls for further 

investigation of this issue.  

INSERT FIGURE 8 SOMEWHERE HERE 
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4 DISCUSSION 

The analysis of the EEG signal recorded during habituation revealed entrainment of neural oscillations to the 

acoustic signal at the syllable frequency rate. However, brain rhythm at the syllable frequency rate was not 

modulated by length of exposure, and thus the entrainment at this frequency likely represents a 

physiological response to the environmental stimuli. In contrast, the emergence of neural oscillations at the 

word frequency rate increased both in power and in ITC as a function of exposure length, reflecting the 

learning process. ITC and power measures provide supplementary, not overlapping information regarding 

neural entrainment (Wöstmann, Fiedler, & Oblesser, 2017). ITC informs us about the precision of 

entrainment, while power tells us about the strength of entrainment. Entrainment can potentially be strong 

but not necessarily precise. We did not observe any evidence that frequent syllabic clusters emerged as 

perceptual units during familiarization, neither in regard to the strength, nor precision of neural entrainemnt. 

This pattern of results suggests that holistic statistical recurrent words, not frequent clusters of syllables are 

extracted online from continuous speech. Statistical cues are used to detect syllable pairs with low TPs and 

to insert boundaries between recurrent triplets in continuous acoustic signal. 

The results of correlational analysis indicate at possible association of the ITC gain during learning and 

recognition accuracy during the test for correctly endorsed words. Correlations between the gain in precision 

of neural oscillations and the proportion of trials in which phantoms were endorsed as word candidates is 

negligible (rho=.074), providing tentative support for the earlier interpretation that words, not phantoms 

emerged as perceptual units during familiarization. However, the difference in the strength of correlation 

between ΔITC with the percentage of accepted words and accepted phantoms was not significant, 

suggesting that the presumption of no difference is not yet overcome by the data, and another study with a 

larger sample size would be needed to establish whether the difference in correlation strength is genuine.  

During recognition performance, words were differentiated from both phantoms and from non-words, but 

with different levels of accuracy and confidence. Recognition was better for words relative to non-words 

and phantoms, while the difference between words and phantoms, although significant, was substantially 
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weaker. As we did not find any supporting evidence for a clustering mechanism during segmentation, we 

suggest that phantoms are endorsed based on the statistical congruency that they share with words. Both 

words and phantoms can be reconstructed based on transitional probabilities during the test phase, which 

explains why phantoms are sometimes confused with words. This also suggests that an artificial grammar 

(i.e., a network of TPs) is one of the learning outputs of the statistical learning mechanism. 

Choosing between two structured syllabic sequences, both statistically congruent with the rules of the 

artificial language (i.e., words and phantoms), is more challenging than choosing between statistically 

congruent (grammatical) and statistically incongruent (agrammatical) sequences. We suggest that people 

detect this absence of statistical structure and distinguish between grammatical and agrammatical test tokens 

based on TPs. When words and phantoms are pitted against each other, both test items exhibit similar 

internal statistical structure, and the need to recourse to additional cues for making a decision makes the task 

more difficult. This suggestion is also supported by the analysis of ERPs. Ungrammatical tokens (i.e., 

nonwords) elicited a different ERP than grammatical sequences (words and phantoms), with more negativity 

spread over the central-parietal scalp area. Considering that ERPs may be taken to reflect the similarity 

between two cognitive processes (Kutas & Federmeier, 2011), we tentatively propose that the recognition of 

statistically congruent items relies on similar cognitive processes, irrespective of whether they were actually 

presented during habituation. This suggests that both words and phantoms are endorsed based on their 

statistical congruency with the rules embedded in the familiarization stream, providing support for the 

hypothesis that statistical regularity per se is a primary product of statistical learning. It is important to point 

out, however, that the Bayesian analysis only weakly supported a lack of difference between the 

electrophysiological response to words and phantoms, indicating that this issue warrants further 

investigation.  

It is not rare to have inconsistent neurophysiological and behavioural results; however, neurophysiological 

results are usually more sensitive to experimental manipulations than behavioural results. In this study we 

observed the reverse pattern: ERPs elicited by words and phantoms did not differ significantly, while at the 

behavioural level, words were preferred to phantoms, and trials in which words had been endorsed were 
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assigned higher confidence ratings than trials in which phantoms were endorsed over non-words. This 

deviation from the general tendency to detect finer distinctions in neurophysiological data may have a 

variety of explanations. The number of trials per condition might not have been sufficient to achieve a good 

signal-to-noise ratio for differentiating between electrophysiological responses to words and phantoms, 

which may differ only slightly from each other, in contrast to the larger differences between statistically 

congruent (words and phantoms) vs. incongruent (non-words) items. However, individual variability within 

conditions (Figure 7) is lower than variability between conditions, suggesting that the signal-to-noise ratio 

is sufficiently high to detect the existing effect, and the lack of differences in ERPs elicited by words and 

phantoms cannot be explained by low statistical power and type II error. Another possible explanation for 

the discrepancy between the sensitivity of the behavioural and electrophysiological data is the elusive nature 

of ERP responses. Different neurophysiological processes can be manifested in similar ERP components. 

For example, memory processes, recognition processes, lexico-semantic integration, phonological and 

orthographical processing and a range of other cognitive processes may be manifested in similar N400-like 

ERP components (see Kutas & Federmeier, 2011 for a review). Statistical learning and the recognition of 

statistically extracted tokens engages a wide network of neural substrates, suggesting highly distributed 

neural generators (Paraskevopoulos et al., 2017), which may function in a dynamic interaction. Statistical 

learning is mediated by intraparietal areas, pre-motor areas in inferior frontal cortices, and temporal areas, 

which are activated dynamically (Paraskevopoulos et al., 2017). Further, different ensembles may produce 

similar neural signatures, yet result in different behaviours (Krakauer, Ghazanfar, Gomez-Marin, MacIver, 

& Poeppel, 2017). A third explanation is based on a dual-process model of recognition memory (Rugg & 

Curran, 2007), which suggests that recognition is based on distinct processes eliciting a familiarity effect 

followed by a recollection effect, which occurs in a later time-window after the onset of the event to be 

recognized. The detected difference in ERP responses to words and phantoms vs. non-words may represent 

the combined effects of detecting deviations from statistical regularities acquired during the learning phase 

and familiarity elicited by statistical congruency. There would be a longer latency for the stronger 

mnemonic effects related to recollection, and thus differentiating between words presented during the 

learning stage and phantoms, could be beyond the analyzable time window in our study due to design 



 

23 

limitations. As participants were allowed to make their behavioural decisions later, the effect of recollection, 

which is not present in neurophysiological data at an earlier latency, might facilitate recognition on trials 

with words, leading to a higher confidence rating when endorsing words and a slight preference for words 

over phantoms. Further investigation is required to ascertain which of these explanations best accounts for 

the pattern of results reported here. 

The timing and topography of the increased negativity elicited by non-words, compared to the negativity 

elicited by words and phantoms, allows us to define this effect as belonging to the family of N400s. Here, 

the N400 is considered to be a heuristic definition of stimulus-related brain activity around 400ms-600ms 

after the critical event, eliciting relative negativity on deviations from an (over)learnt pattern (Kutas & 

Federmeier, 2011). In the auditory modality, the N400 exhibits slightly more frontal and less right-biased 

(more central) scalp distribution, which corresponds to the topography of the observed negativity effect. In 

our study, the critical event that leads to the N400-like effect is the onset of the second syllable, when the 

listener detects a violation of the internal statistical structure of the syllabic sequence. A non-word is a 

deviation from a pattern of syllable sequencing that the participant has learnt while listening to the 

familiarization stream. This leads us to suggest that the increased negativity we found might be the 

electrophysiological correlate of detecting a structural violation.  

Our results are also in line with earlier studies on N400-like effects in recognition memory (Friedman & 

Johnson, 2000; Curran, 2000): new items elicit more negativity than old, (over)learnt items. N400 is elicited 

by unlearnt items when the participant is not necessarily aware of the specific details of the (over)learnt 

items that allowed recognizing them as old (Smith & Guster, 1993; Curran, 2000). Danker et al. (2008) 

found that negativity associated with new verbal stimuli is shifted forward and to the centre of the scalp, 

compared to the typical N400 elicited in language research studies (thus the term frontal, or fN400). This 

also corresponds to the topography of negativity distribution we observed in our study in response to the 

non-words. The fN400 is limited to situations in which the stimuli are not processed holistically, but when 

categorization of stimuli into old and new requires unitization, i.e., using the attributes of stimuli to integrate 

them into familiar (old) and unfamiliar (new) units (Mecklinger, 1998). These data suggest a different 
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interpretation for the obtained pattern of results. It is possible that statistically congruent items – words and 

phantoms – trigger a familiarity effect, because both are reconstructed based on the artificial grammar that 

the participants acquired during familiarization. Reconstruction of triplets from syllables for further 

categorization of test items as grammatical (familiar) or agrammatical creates a situation of unitization that 

leads to an fN400 associated with new items (non-words). Interestingly, we explicitly asked the participants 

to detect and memorize the words of a novel language during the habituation phase. We did not inform them 

that the embedded words had any kind of internal structure. Learning the artificial grammar, as opposed to 

extracting the recurrent triplets, happened without intention. Rugg and Curran (2007) claimed that the ERP 

index of familiarity actually reflects implicit learning. Both words and phantoms elicit similar degrees of 

familiarity (and thus similar electrophysiological differences from nonwords), and distinguishing between 

them requires explicit retrieval of words as holistic constituents from memory. The data suggest that 

statistical congruency has more weight for recognition of legitimate structural constituents, while memory 

representations facilitate recognition of triplets that were actually embedded in the continuous signal and 

presented multiple times during learning. The facilitatory effect of memory representations for holistic 

constituents was also reflected in the higher confidence ratings assigned to endorsed words than to endorsed 

phantoms.  

Vos and Paller (2007) and Pallet et al. (2007) argued that the processes responsible for eliciting the N400 are 

also active during recognition memory and recognition tasks, and thus may have the same or overlapping 

neural generators, which include lateral pre-frontal and temporal areas. The neural substrates in these areas 

also support statistical learning processes and recognition of newly learnt sequences. Paraskevopoulos et al. 

(2017) showed that statistical learning relies on a distributed network composed of the superior temporal 

gyri (bilateral), where TPs are calculated (Bischoff-Grethe et al., 2000; McNealy et al., 2006), bilateral intra-

parietal areas, which support memory processes (Ciaramelli et al., 2008; Vilberg & Rugg, 2008), and the left 

inferior frontal gyrus (Karuza et al., 2013), where phonological processes are mapped onto motor codes, 

with the arcuate fasciculus supporting functional and structural connectivity between temporal and pre-

motor areas for integration of motor-auditory information (López-Barroso et al., 2013). This audio-pre-
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motor interface supports the initial learning and recognition of new phonological words (Rodríguez-Fornells 

et al., 2009; López-Barroso et al., 2013).  

Overall, the current results show that entrainment of neural oscillations to acoustic rhythm at the syllable 

frequency is automatic (e.g. happening incidentally, without conscious intention, Ding et al., 2017) and to a 

large extent is determined by the physiology of the peripheral auditory system (Greenberg & Ainsworth, 

2004). Entrainment of neural oscillations to the acoustic signal at the word frequency is a marker of the 

segmentation progress (Battering & Paller, 2017; Ding et al., 2016; 2017; Buiatti et al., 2009). It therefore 

also reflects the learning process which is modulated by the length of exposure. ITC of neural oscillations at 

the word frequency reflects the precision of neural entrainment and predicts recognition accuracy only for 

words. These results suggest that the role of the TPs in online segmentation is to detect (or predict) the 

boundaries between recurrent structural constituents, i.e., syllabic triplets. These triplets, as well as the 

network of transitional probabilities (i.e., artificial grammar) are the target of the statistical learning 

mechanisms. 

5 CONCLUSION 

A continuous stream of syllables is segmented into discrete constituents based on transitional probabilities 

(TPs) between adjacent syllables by means of statistical learning (SL). Here we focused on: 1) the role of 

TPs in segmentation; 2) what is learnt by means of SL. Listeners could use TPs to detect frequent clusters 

with high inter-syllabic TPs, or to detect syllable pairs with low TPs at the edges of holistic recurrent 

constituents. We addressed these hypotheses within an artificial language learning paradigm by measuring 

changes in the EEG oscillatory dynamics during learning, and by measuring behavioral and ERP responses 

during a subsequent recognition test. The results indicate that participants segmented recurrent triplets, not 

frequent clusters of syllables, during habituation. During the recognition test, both words (old triplets 

embedded in the familiarization stream) and phantoms (novel yet statistically congruent triplets) tended to 

be endorsed as legitimate word candidates. However, old triplets were recognized better and with higher 

confidence than novel ones. Random sequences were not recognized. Random, statistically incongruent 
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sequences elicited ERPs that differed from those elicited by statistically congruent old and new tokens. This 

indicates that both statistical regularities and whole constituents segmented from continuous sensory input 

are learnt by means of SL mechanisms. TPs, however, have more weight in the recognition of segmented 

constituents, while memory representations facilitate recognition of old triplets.  

The present study highlights the need to focus on the mechanisms that allow humans to successfully process 

a continuous flow of information with an unlimited degree of complexity using limited cognitive resources. 

One of these mechanisms is statistical learning. Statistical learning engages a set of general cognitive 

mechanisms that are used to extract regularities and discrete constituents from continuous sensory input. 

Although these mechanisms did not evolve specifically for speech processing, they are brought to bear when 

we listen to and learn a real language and should be further explored to better understand speech and 

language processing.  
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TABLES 

Table 1. The list of words, phantoms and non-words used in the experiment 

Words Phantoms Nonwords 

ROSENU 
ROKAFA 
PASETI 
LEKATI 
PAMONU 
LEMOFA 
PERIKO 
MURIFO 
PETASA 
LUTAFO 
MUNIKO 
LUNISA 

PASENU 
LEKAFA 
ROSETI 
ROKATI 
PAMOFA 
LEMONU 
MURIKO 
LUTASA 
PERIFO 
PETAFO 
MUNISA 
LUNIKO 

ROTIMO 
SEPAKO 
FALUSA 
FOLERI 
TAMUPE 
NIKANU 
NURIPE 
FOLUKA 
NIMUKO 
MOPARO 
LESATI 
TASEFA 
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FIGURE CAPTIONS 

Figure 1. Cognitive mechanisms of TP-based segmentation (TP-transitional probability). A. Representation of 

clustering mechanism. TPs can be used to extract clusters of syllables (in this case, frequent syllable pairs) that can be 

recombined to recognize the discrete structural constituents of the continuous stream. If the “clustering” segmentation 

mechanism is engaged, phantoms can emerge as perceptual units and be recognized as discrete structural constituents 

of the continuous signal. For example, the syllable pairs ROSE and SENU compose the recurrent triplet ROSENU. 

The pairs PASE and SETI constitute. The triplet PASETI. From these statistical words, a triplet ROSETI can be 

reconstructed, with the same TPs between syllables Yet with no memory traces of ROSETI as a holistic unit because it 

is never implemented as a whole triplet in familiarization stream. B. Representation of boundary-finding mechanism. 

TPs can be used to detect the syllable pairs with low transitional probability between syllables, and to “insert” 

boundaries corresponding to the locations of the troughs in the stream of TPs, “bracketing” the recurrent triplets and 

extracting them as holistic discrete constituents. 

Figure 2. The structure of the test stimuli pairs. Each item in the pair is 720ms in duration (vowels are 140ms, 

consonants are 100ms. The participant listens to a pair of stimuli, and then he needs to decide whether the first or the 

second syllabic sequence in the test pair is a word from the language he listened to. Afterwards, the participant has to 

indicate how sure he is in his response, on a 4-point scale. “1” in the circle stands for recognition response, “2” stands 

for confidence response. 

Figure 3. Recognition results. Preference for words when paired with non-words (left) and phantoms (middle), and 

preference for phantoms when paired with non-words (right). The points indicate the percentage of words, phantoms 

and non-words chosen in each comparison for each individual.  

Figure 4. Confidence ratings. Confidence ratings assigned to words, phantoms and non-words when these items are 

paired versus possible alternatives. The chosen item is always the first one in the name of the test pair on the abscise 

axis. That is, “words vs. non-words” denotes all the pairs in which words were paired with non-words, irrespective of 

whether the word was the first or the second item in the test trial, and in which the participants endorsed “words”. 

“non-words vs. words” denotes all the pairs in which words were paired with non-words, irrespective of whether the 

word was the first or the second item in the test trial, and in which the participants endorsed “non-words”. 

Figure 5. Neural entrainment during learning. A) Inter-trial phase coherence as a function of the learning stream 

Section (blue – section 1, red – section 2, and green – section 3). Averaged topographical plots showing the 

distribution of ITC across the scalp at the frequency of words (1.39Hz) and syllables (4.17Hz). B) Power spectrum as 

a function of the learning stream Section.  

Figure 6. Individual topoplots. A) Individual topoplots showing the distribution of ITC across the scalp at the 

frequency of syllables. B) Individual topoplots showing the distribution of ITC across the scalp at the frequency of 

words. 

Figure 7. Correlations between inter-trial phase coherence (ITC) gain during learning and proportion of endorsed 

tokens during recognition test. Left: Correlations between differential ITC (difference in the ITC between the first and 

the third exposure blocks) and the overall preference of participants for non-words over phantoms and words. Middle: 

Correlations between differential ITC and the overall preference of participants for phantoms over words and 

nonwords. Right: Correlations between differential ITC and the overall preference of participants for words over 

phantoms and non-words.  

Figure 8. ERPs elicited by nonwords (red) and words (green), on the left, and by nonwords (red) and phantoms 

(green), on the right. Shaded areas show two standard errors (30 participants) around the mean at each timepoint. 

Topoplots (averaged topoplots inside the ERP graphs and individual topoplots below) show the distribution of the 

effects, computed by subtracting the mean amplitude of words (left) or phantoms (right) from the mean amplitude of 

non-words in the time windows that yielded significant differences between three conditions in the non-parametric 

cluster-based permutation analysis (836-952ms).  


