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Abstract: Calculating adequate vehicle routes for collecting municipal waste is still an unsolved
issue, even though many solutions for this process can be found in the literature. A gap still exists
between academics and practitioners in the field. One of the apparent reasons why this rift exists
is that academic tools often are not easy to handle and maintain by actual users. In this work,
the problem of municipal waste collection is modeled using a simple but efficient and especially easy
to maintain solution. Real data have been used, and it has been solved using a Genetic Algorithm (GA).
Computations have been done in two different ways: using a complete random initial population,
and including a seed in this initial population. In order to guarantee that the solution is efficient,
the performance of the genetic algorithm has been compared with another well-performing algorithm,
the Variable Neighborhood Search (VNS). Three problems of different sizes have been solved and,
in all cases, a significant improvement has been obtained. A total reduction of 40% of itineraries is
attained with the subsequent reduction of emissions and costs.

Keywords: waste collection route planning; traveling salesman problem; genetic algorithms

1. Introduction

The improvement of the waste collection process can be considered aligned with the 11th
Sustainable Development Goal (SDG) “Sustainable cities and communities” [1]. Nevertheless,
this process is still far from being in an optimal status. As experts state [2], inadequate vehicle routes
are among the problems the process should tackle. The optimization of the routes for waste collection
vehicles with time window is known as the Waste Collection Vehicle Routing Problem (WCVRP).

As indicated by Caria, Todde, and Pazzona [3], the WCVRP is a specific case of the whole class of
problems, known as the Vehicle Routing Problem (VRP). The oldest VRP type problem in the transport
history is the Travelling Salesman Problem (TSP), solved for the first time by Lin [4], where the aim is
to find the shortest route visiting each member of a collection of locations and returning to the starting
point. The TSP has evolved towards solving similar problems with different and additional restrictions
and objectives, including the WCVRP presented herein.

The WCVRP needs to organize routes, vehicles, and customers, while respecting the constraints
that are imposed by the system. VRP allows for reaching the goals that are referred to as transport
logistics, as well as the minimization of costs and carbon dioxide (CO,) emissions [3]. On top of
the overall VRP considerations, WCVRP is concerned with finding cost optimal routes for garbage
trucks such that all garbage bins are emptied and the waste is driven to disposal sites while respecting
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customer time windows and ensuring that drivers are given the breaks that the law requires. The first
waste collection problem was probably presented by Beltrami and Bodin [5]. Since then, the problem
has evolved into the herein presented WCVRP. Many relevant references have studied this problem so
far, offering different approaches for solving the same challenge (or similar ones). Concerning the most
relevant and recent ones, Buhrkal, Larsen, and Ropke [6] propose an adaptive large neighborhood
search algorithm for solving the problem. Babaee Tirkolaee, Mahdavi, and Seyyed Esfahani [7] apply
an improved hybrid simulated annealing algorithm (SA) for optimizing the mathematical model
developed. Hannan et al. [8] propose a particle swarm optimization algorithm to optimize a model
that considers not only typical distance, total waste, collection efficiency, etc. parameters but also
Threshold Waste Level (TWL) tightness factors. De Bruecker et al. [9] present an enhanced model for
the WCVRP that models distinct labor cost types and collecting speeds; thus, they differentiate between
cheaper regular shifts during traffic peak hours, against higher collection speeds but with expensive,
non-regular shift-rates. Rodrigues Pereira Ramos, Soares de Moraisa, and Barbosa-P6voa [10] study
three operational management approaches to define dynamic optimal routes based on sensoring,
Radio Frequency Identification (RFID), and considering the access to real-time information on the bins’
fill-levels. Benjamin and Beasley [11] develop a model for the waste collection vehicle routing problem
with time windows, driver rest period, and multiple disposal facilities as a differential aspect.

It is worth mentioning that the sometimes explicit, but always present idea of this optimization
problem is the reduction of CO, emissions, as the current logistic methods used in this routing problems
depend strongly on fossils fuels [12].

The fact of not having generalized optimized routes for the WCVRP is striking, as many solutions
for this process can be found in the literature. When analyzing the potential causes of this breach
between the practitioners and the academia, it could be stated that generic routing tools are considered
incomplete for this variant of the traveling salesman problem [13], whereas more specific tools
(such as [14,15]) have a related cost that often entities are not willing to afford. Additionally, many
researchers developed their solutions to the problem, but normally they are more focused on publishing
them than in offering them to entities that manage the waste collection. Thus, even though the problem
has been deeply studied from a theoretical point of view, its application to real-world problems is
scarce.

Within this context, the aim of this work has been to show the development and implementation
of a procedure for the optimization for a local commonwealth for tackling the WCVRP of a region.

In the final solutions, Genetic Algorithms (GAs) have been applied. GAs belong to the more
general classification of evolutionary optimization techniques or evolutionary programs and they
are surely the most widely known type of Evolutionary Algorithms. They are based on selection,
crossover, and mutation principles of Darwin’s theory of evolution. In the last few years, there has been
a growing effort to apply GAs to general constrained optimization problems as most of engineering
optimization problems often see their solution constrained by a number of restrictions imposed on
the decision variables [16].

The research method had three major steps: first, we performed a literature review of optimization
algorithms applied to this case that is detailed in Section 1. The aim of this study was to analyze
how this problem was modeled in the past, and to pre-select which types of algorithms could fit
best to the end user requirements in terms of user friendliness, cost, and quality of results. Second,
the characteristics of this specific optimization case (detailed in Section 2) were analyzed to offer
the company a selection of the algorithm fitting best to its requirements. Finally, the designed solution
was successfully implemented and tested with the pre-selected types of algorithms, to choose the one
performing best, as it is detailed in Section 3 Methodology, Section 4 Algorithm, and Section 5 Results,
remarking that the obtained results raised the interest of the surrounding communities.
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2. Optimization Problems

Combinatorial optimization problems can be written mathematically as:

minimize f(x), 1
subjectto  hi(x) >a;, i=1,...,m, (2)
filx)=10b;, j=1,....s (3)

where f : R" — R s the objective function, and /; : R* - R, i=1,...,m andfj R"—=R,j=1,...,s
are the constraints.

The optimization problem has been written as a minimization problem, but after some
modifications it can be written as a maximization problem:

min g(x) = max —g(x). 4)
In the same way, the equality constraints f;(x) = b; can be written as inequalities:

The simplest constrained optimization problem arises when the objective function f(x) and the
restrictions are linear functions. This type of problem is a linear programming problem, and it can
be solved quite efficiently by the simplex algorithm. However, in the majority of the optimization
problems, neither the objective function nor the restrictions are linear functions. The vast majority
of these problems are NP-complete problems, which means that there is no any solving algorithm
that can be executed in polynomial time in relation to the size of the problem. In complexity theory,
NP-complete denotes the set of problems that are not solvable by a deterministic polynomial time
algorithm. The feasible solutions’ space is so large that the computation of the exact solution requires a
lot of time. NP-complete problems can be solved by a restricted class of brute force search algorithms
and they can be used to simulate any other problem with a similar algorithm. Genetic algorithms are
also a good and efficient choice to find an approximate solution of these problems [17]. A classical
NP-complete problem is the Travelling Salesman Problem (TSP), in which the shortest route for a
traveling salesman starting and finishing in the same point and visiting every city once has to be found.

An efficient way to solve these types of problems is using genetic algorithms. The basic principles
of genetic algorithms were established by Holland [18], and they are well described in several
texts [19-23]. Owing to their simplicity, flexibility, ease of implementation, minimal requirements,
fast convergence towards close-to-optimal solutions, and global perspective, GAs are successfully used
in a wide variety of problems [16]. As these characteristics are essential for practitioners to have a
utilizable solution, and as the performed literature review did not bring better solutions, the chosen
option was to implement the simple GA (SGA) presented herein.

Traveling Salesman Problem

In the TSP problem, a collection of # cities are given. The objective is to determine the shortest
route that a salesman has to follow, in which each city is visited once and then the salesman returns to
the starting point of the route. This problem can be defined mathematically as follows:

Given an integer 7 and an n x n matrix D = (d;j) in which each d;; is the distance between two
cities, the cyclic permutation 7 of the integers i = 1, 2, ..., n that minimizes the distances has to be
determined. As a first approximation, the feasible search space is formed by all cyclic permutations of
the numbers {1,2,...,n}:

F={(mm...m)|m €{1,2,...,n}and m; # mj¥i # j} . (6)
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The number of elements of this space is 1!, being n the number of cities. In this way, the length of
a permutation 71 = (711, 712, . . ., 7T, ) can be expressed as:

M-

dn’i*lrﬂi + dﬂ.’,,,?'[l ° (7)

i=2

For each permutation 7, there are (n — 1) permutations that starting in a different city are similar
to the given one. That is to say, the distance of these n permutations is the same. Taking into account
this consideration, the size of the feasible space is n!/n = (n — 1)!. Moreover, if the distance matrix D is
symmetric, the distance of each permutation in both directions is the same, and the size of the feasible
space is reduced to (n — 1)!/2. As it can be observed, the main difficulty of this problem is the huge
number of possible tours.

3. Methodology

The objective of this work is to find an optimal itinerary for the waste collection. This methodology
will be applied to the data of Sopelana, a municipality in the province of Biscay, autonomous
community of the Basque Country (Spain). Sopelana is located in the region of Plencia-Munguia or
Uribe, and it is part of the Commonwealth of Services of Uribe Coast. It has an extension of 8.40 km?
and a population of 13,510 inhabitants, a figure that in summer is usually multiplied by four due to
summer visitors.

It is the responsibility of the commonwealth everything related to waste management. There are
various trash cans to collect waste:

o  Restwaste: 317 trash cans. They are distributed in three routes. There are 186 trash cans in the first

route, 72 trash cans in the second route, and 59 in the third one. The trash of the first route is

collected everyday. The second route is done four days per week and the third route three days

per week.

Organic waste: 29 trash cans. This waste is collected once per week.

Small recipients of plastic and metal: 85 trash cans. This waste is collected twice per week.

Glass: 69 trash cans. Glass is collected once per month.

Paper: 62 trash cans. These trash cans are divided in two groups depending on their filling

frequency. Paper is collected everyday, but not all the containers are emptied everyday.

Oil: 4 trash cans. This waste is collected twice per month.

e  Reusable waste: 7 trash cans. From September to June, it is collected once per week, and in July
and August twice per week.

e  Batteries: 31 trash cans. They are collected twice per month.

Other types of waste such as big volume wastes are collected once per week following the same
route as for the restwaste; there are eight points to collect lamps and fluorescent lightings and they
are collected when the container is full; there are some locations in which CDs are collected when
the containers are full. All the aforementioned data were given by the local government.

In this work, three problems of different sizes will be analyzed. In the three cases, the aim is to
improve the waste collection itinerary in the sense of obtaining a shorter route than the one followed
nowadays. A small problem of reusable waste with seven trash cans, a medium problem of organic
waste consisting of 29 trash cans, and a big problem consisting of the first route of restwaste with
a total of 186 trash cans will be considered. In the case of restwaste, there are several trash cans in
the same location. Specifically, the 186 trash cans are distributed in 147 different locations; thus, these
locations will be considered in the problem. The data of these problems can be seen in Table 1.
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Table 1. Three problems analyzed.

Waste-Type Number of Locations Collecting Frequency
Reusable waste 7 September to June once per week,
July and August twice per week
Organic waste 29 Once per week
Restwaste 147 Everyday

According to the data given by the enterprise in charge of restwaste collection, between 8000 kg
and 13,000 kg of restwaste are collected everyday in Sopelana. A truck is enough to carry out this
collection. The truck used has a load of 13 tons, and it has a compaction mechanism. Each container
has 1.1 m®, which is reduced to 0.183 m3 after compaction. This means that the volume of 125 trash
cans that are full can fit in the truck (125 x 0.183 m® = 22.875 m?). In the event that the truck was filled
during the collection of the 186 containers (147 location points), it would be emptied in the dump
intended for it and, after that, it would continue with the route. However, this event is not very
probable as it means that 125 trash cans out of 186 are full up (which is the 67.20%).

4. Algorithms

For the three problems, the coordinates of the locations and the distance matrices have been
calculated using Google Maps (https:/ /www.google.com/maps, data from October and November
2019). The coordinates of all locations and the distance matrices can be found in Appendix A.
The smallest distance between two locations has been considered in the distance matrices. The distance
matrices are not symmetric, as the way back and forth from a location to another may be different.

The three problems have been solved using a VNS and a GA. The smallest problem (reusable
waste, seven locations) has also been solved using the brute force algorithm. These two algorithms
were chosen among all the set of alternatives for developing the final solution for maintainability
reasons. The developers of the solutions are academic institutions, so we cannot provide maintenance
services. As both literature [24] and the news [25] state, there is a lack of availability of computer science
technicians. Because of this fact, the final user of the solution wanted a competitive but mainly easy
to maintain algorithm. These algorithms being two of the most frequently applied when developing
the syllabuses of subjects related to programming, the research team decided to compare them and offer
the most effective possible solution. The distances that correspond to all the permutations of n = 7
elements have been calculated that is 7! = 5040. The process has been implemented as it is explained
in Algorithm 1.

Algorithm 1 Algorithm to determine solutions using brute force.

1: procedure BRUTEFORCE( distance matrix of n = 7 problem )

2 Create all the permutations of n = 7 elements

3 for i=1:7! do

4: Calculate the distance of the permutation

5 end for

6 Calculate the shortest distance among all the permutations
7: end procedure

We have started by trying the VNS algorithm [26] for all the problems. The VNS consists of
applying a local search method repeatedly in the neighborhood Nj of the actual solution. When
a local optimal is reached, the algorithm changes the system of neighborhood with the aim of
escaping from local optima and reaching a better one. For this reason, it can be said that the VNS
performs well both when searching local and global optima. In Algorithm 2, the process followed
is explained. We have implemented two systems of neighborhoods: the 2-opt neighborhood and a
swap-based neighborhood. The neighborhood structure 2-opt consists of changing a pair of edges
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between cities [27]. The swap-based neighborhood that we have created swaps the first element of
the permutation with all the rest.

Algorithm 2 Algorithm to determine solutions using VNS.

1: procedure VARIABLE NEIGHBORHOOD SEARCH(distance matr1x)

2: Choose a set of neighborhood structures Ny fork = 1,2, ..., kyax
3 Generate the initial solution

4: Consider the initial solution as the best one

5: k<1

6 while k < k;; do

7 while There is an improvement do

8 Choose the neighborhood system that corresponds to k

9 Find the best solution among all the neighbors

10: if The solution is improved then

11: Update the best solution and its evaluation function value

12: Continue to search with k < 1

13: else

14: Continue to search with k <— k+1

15: end if

16: end while

17: end while

18: Output the shortest distance and the corresponding route of the overall process

19: end procedure

Additionally, for all the problems n = 7, n = 129, and n = 147, another two algorithms have
been implemented. In Algorithm 3, an initial population of m different individuals (permutations) has
been created. The evaluation function (distance of the route) of each individual has been calculated.
In each generation, the process of selecting two parents randomly, the crossover operator, the posterior
correction of the individual in order to be a permutation, and the mutation process have been performed
m/2 times. If the new descendants are different from the individuals of the population and if their
evaluation function (fitness function) is smaller than the worst (the largest) of the population, the worst
individuals are replaced by these new descendants. The fourth algorithm implemented only differs
from the third in the fact that the routes followed nowadays in the trash collection (one route in each
problem) are inserted as a seed in the initial population.

Algorithm 3 Algorithm to determine solutions using SGA.

1: procedure SIMPLE GENETIC ALGORITHM(distance matrix, generations, population size, probabilities)
2 Create an initial population of m different permutations randomly

3 Compute the evaluation function of each permutation

4 for i=1:generations do

5 forj=1:m/2 do

6: Select two parents randomly from the population

7 Cross with a certain probability to produce two descendants

8 Correct the descendants to be permutations

9 Mutate each individual with a certain probability

10: Compute the evaluation function of each descendant

11: if evaluation function of the descendants smaller than the largest evaluation then
12: if the descendants are not repeated in the population then

13: Replace the descendants by the permutations with largest evaluation

14: end if

15: end if

16: end for

17: Output the shortest distance and the corresponding route of each generation

18: end for

19: Output the shortest distance and the corresponding route of the overall process

20: end procedure
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The crossover operator used is the classical one [18]. A crossover point is selected randomly from
which the two strings of the parents are broken into separate parts. The new descendants are formed
by recombination of these parts. For example, consider n = 7 and the routes:

(1234567)
(2453716)

Randomly, a crossover point in which the strings are broken into separate parts is selected.
Suppose that the crossover point is chosen between the third and the fourth bit:

(123 4567)
(245 |3716)

Combining the head of the first route with the tail of the second route and vice versa, the result is
the following:

(123 [3716)
(245 |4567)

If the resulting descendants are not permutations, then a correction algorithm is applied in order
to obtain two individuals that belong to the feasible space. Each resulting individual is repaired,
by calculating the repeated values and their positions, and by inserting the missing values randomly
on the positions where the repeated values are located.

The exchange mutation operator, also called the swap mutation operator, has been applied,
in which two positions of the route are selected randomly and the cities on those positions are
exchanged [28]—for example, if we consider the route:

(1235746),
and if we choose the fourth and seventh positions, the cities on those positions are interchanged:

(1236745)

5. Results

In this section, the results obtained for each of the problems are presented.

For n = 7, the brute force algorithm has been applied first. The shortest itinerary has 7.67 km
and the longest 13.2 km. In Figure 1, the distances of all permutations (7! = 5040) are shown.
All the permutations are represented in the horizontal axis (that is, 7! = 5040), and the distance that
corresponds to each of them is plotted in the vertical axis.
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Figure 1. Brute force application, problem n = 7.

For the three problems, the VNS algorithm has been applied next. Ten executions have been
done for each problem. The best, the worst, the mean, and the median distances of this executions are
presented in Tables 2—4. In all the executions, an initial solution has been generated randomly.

Table 2. Results of 10 executions #n = 7 problem, VNS.

n=7 VNS

Best distance (km) 7.6700
Worst distance (km)  8.4000
Mean distance (km) 7.7690

Median distance (km) 7.6700

Table 3. Results of 10 executions 1 = 29 problem, VNS.

n =29 VNS

Best distance (km) 19.4170
Worst distance (km)  25.5570
Mean distance (km) 22.5475

Median distance (km) 21.9450

Table 4. Results of 10 executions #n = 147 problem, VNS.

n = 147 VNS

Best distance (km) 61.5470
Worst distance (km) 71.3560
Mean distance (km) 66.8944

Median distance (km) 66.9507

In addition, finally, the SGA (without and with a seed) has been performed. For n = 7, taking into
account that the average of the shortest and the longest route is 10.4350 km, the route (6,7,3,4,2,5,1)
of 10.45 km has been chosen as seed. In the cases of n = 29 and n = 147, the actual itineraries have
been chosen as seed. These data are available in Table 5. Notice that, if the VNS algorithm is started,
taking the actual itinerary as initial solution, all the executions have the same performance. In this
case, for n = 7, a route of 8.2500 km is obtained; for n = 29, a route of 18.7670 km; and, for n = 147, a
route of 34.4280 km.
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Table 5. Average distance route (n = 7) and actual routes (n = 29, n = 147).

n—==197 n=29 n = 147
Route (6,7,3,4,2,5,1) (26,24,23,18,15,11,12,13, 16, — (135, 136,140, 141, 139, 138,137,107, 142,147, —
17,20,21,22,19,9,7,27,28, — 110,42,40,44,101,102,104, 146,105,103, —

14,25,10,8,6,2,3,4,5,29,1) 108,109, 144,143,106, 145,111,112,115,113, —
41,114,116,121,126,127,132,131,133, 134, —
130,129,128,125,120,118,119,117,124,122, —
123,58,57,69,70,96,97,100,99,98, —

68,67,66,49,48,47,45,46,55, 56, —

65,64,62,95,94,77,76,75,74,73, —

61,60,59,36,35,37,84, 85,88, 89, —

86,7,10,9,8,3,2,1,4,6, —

5,11,14,13,15,16,18,17,12,90, —

91,92,93,78,79,80,81,87,19, 83, —

82,71,29,27,26,28,23,22,21,20, —

24,25,72,30,31,32,34,33,38,43, —

50,52,63,54,53,51,39)
Distance (km) 10.4500 229170 46.2890

An execution for each problem has been performed. Parameters have been chosen according
to [29]: a relatively high crossover rate (> 0.6), small mutation rate (range [0.001,0.1]) and a moderate
population size. Data and results are presented in Tables 6-8. In all the cases, the execution in which
the seed is considered obtains better solutions.

Table 6. Results of the n = 7 problem.

n=>7 SGA without Seed SGA with Seed
Generations 20 20
Population size 30 30
Crossover probability 0.8 0.8
Mutation probability 0.01 0.01
Best route (3,2,1,6,7,4,5) (7,4,5,3,2,1,6)
Best distance (km) 7.6700 7.6700

Table 7. Results of the n = 29 problem.

n=29 SGA without Seed SGA with Seed
Generations 4000 4000
Population size 200 200
Crossover probability 0.8 0.8
Mutation probability 0.01 0.01
Best route (18,16,28,27,14,25,13,12,11,9, —  (10,12,13,17,23,24,26,22,19,21, —
7,4,3,2,5,8,6,10,17,20, — 20,18,15,11,9,7,28,27,14,25, —
21,23,24,26,22,19,1,29,15) (16,1,29,5,4,3,2,8,6)

Best distance (km) 18.0270 17.6570
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Table 8. Results of the n = 147 problem.

n = 147 SGA without Seed SGA with Seed
Generations 4000 4000
Population size 400 400
Crossover probability 0.8 0.8
Mutation probability 0.01 0.01
Best route (102,103,142,113,114,125,130,134,133,132, — (141, 140,135,136,107,138,137,139, 142,147, —
124,117,75,61,79,82,87,21,18,19, — 41,42,40,101, 44,102,104, 146,105,108, —
53,139,141,52, 36, 85,8,7,10,9, — 145,109, 144, 143,106,103,111,112,110,113, —
88,76,48,46,57,50,49,47,45,121, — 115,114,116,51,126,121,125,129,130, 134, —
120,119,116, 56, 64,62,99,98, 69, 67, — 133,131,128,127,119,132,124,117,120,122, —
66,122,123,129,131,128,126,55,39,71, — 123,50, 118, 69, 64, 62,68,100,99,98, —
73,97,68,65,63,104,146,105,137,138, — 97,67,66,49,48,47,45,46,55,43, —
54,20,28,32,34,41,42,33,38,31, — 56,70,96,95,94,77,78,73,75,74, —
29,24,25,30,35,44,106,107,143,147, — 61,60,59,39,31,37,76,84,88,86, —
111,112,115,144,108,127,118,95,77,83, — 90,10,9,8,7,3,2,4,1,6, —
3,4,2,1,14,80,110,43,51,100, — 5,12,11,13,15,17,18,16,14,89, —
70,74,59,58,27,26,12,17,6,5, — 91,92,93,85,87,80,79,81,19,82, —
22,23,72,78,86,11,13,15,16,81, — 83,71,29,27,25,26,23,22,21,20, —
37,96,94,84,89,90,91,93,92,60, — 24,28,72,30,32,35,34,33,38,57, —
40,101, 145,140, 135,136,109) 58,65,63,54,53,52,36)
Best distance (km) 48.3510 30.4150

The longest, the shortest, and the average-distance itineraries for n = 7 can be seen in Figure 2.
The limit of the municipality of Sopelana is marked using a thick red line.

Figure 2. Routes of problem n = 7, longest in red, shortest in green, “average” in purple.

Additionally, several executions have been performed for each of the problems (n = 7,29, 147).
The best, the worst, the mean, and the median distance of this performance are presented in Tables 9-11.
The values of these tables are acquired after performing 10 executions for each version of each problem.
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Table 9. Results of 10 executions n = 7 problem, SGA.

n=7 SGA without Seed SGA with Seed
Generations 20 20
Population size 30 30
Crossover probability 0.8 0.8
Mutation probability 0.01 0.01
Best distance (km) 7.6700 7.6700
Worst distance (km) 8.0200 7.7700
Mean distance (km) 7.7050 7.6900
Median distance (km) 7.6700 7.6700

Table 10. Results of 10 executions n = 29 problem, SGA.

n=29 SGA without Seed SGA with Seed
Generations 4000 4000
Population size 200 200
Crossover probability 0.8 0.8
Mutation probability 0.01 0.01
Best distance (km) 17.3770 17.1870
Worst distance (km) 19.0170 18.3670
Mean distance (km) 18.1910 17.8530
Median distance (km) 17.9420 17.7420

Table 11. Results of 10 executions n = 147 problem, SGA.

n = 147 SGA without Seed SGA with Seed
Generations 4000 4000
Population size 400 400
Crossover probability 0.8 0.8
Mutation probability 0.01 0.01
Best distance (km) 48.4740 29.6310
Worst distance (km) 54.6080 32.7670
Mean distance (km) 50.9096 31.7165
Median distance (km) 50.3485 31.9552

For the largest problems, n = 29 and n = 147, computation has been repeated choosing different
parameters in order to obtain better results. The most important change is that a larger population size
has been used, i.e., 4000 individuals. Execution data and results can be seen in Tables 12 and 13.

Table 12. Results of the n = 29 problem.

n =29 SGA without Seed SGA with Seed

Generations 800 800

Population size 4000 4000
Crossover probability 0.8 0.8
Mutation probability 0.8 0.8

Best route (16,17,23,24,26,22,19,21,20,18, —  (15,11,10,13,16,17,23,24, 26,22, —
15,11,10,12,2,1,29,5,4,3— 19,21,20,18,14,25,28,27,12,9, —
8,6,9,7,28,27,14) (—,7,4,8,6,3,5,2,1,29)

Best distance (km) 17.1700 16.9370
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Table 13. Results of the n = 147 problem.

n =147 SGA without Seed SGA with Seed
Generations 1800 1800
Population size 4000 4000
Crossover probability 0.8 0.8
Mutation probability 0.8 0.8
Best route (107,142,53,37,73,60,59,50,58,67, —  (141,140,135,136,107,138,137,139, 142,112, —
66,29,26,25,24,28,30,51,121,116, — 41,42,40,101, 44,102,104, 146,105,106, —

114,115, 56,36, 35,33,34,46,122,124, — 103,108, 144,143,145,109, 147,110,43,113, —
117,120,126,127,132,119,19,80,17,16, — 115,114,116,123,127,126,129,130, 134,133, —

77,78,71,76,94,82,88,85,84,39, — 132,125,128,131,121,122,124,117,120, 119, —
31,32,38,57,143,105, 146,104,103, 108, — 52,118,100, 69,70,94,73,97,99,98, —
147,136,135,112,111,79,87,81,22,23, — 68,67,66,49,48,47,45,46,55,56, —
72,48,45,145,144,139,138,137,123,128, — 58,64,62,96,95,77,78,71,61,75, —
134,133,110,43,113,41,40,42,141, 140, — 74,60,59,36,35,37,76,84, 88,86, —
64,62,68,69,70,96,95,93,92,91, — 90,10,9,8,7,3,1,2,4,6, —
10,3,1,2,4,83,97,65,63,61, — 5,11,12,13,15,17,16,18,14,89, —
75,74,118,100,99, 98, 49,47,55,125, — 91,92,93,85,79,87,80,81,19,83, —
129,130,131, 54,27,20,21,18,12,11, — 82,30,29,27,25,26,23,22,21,20, —
6,5,7,8,9,89,90,86,14,13, — 24,28,72,39,31,32,34,33,38,57, —
15,52,109,44,101,102,106) 50,65, 63,54,53,51,111)
Best distance (km) 40.3460 27.0950

The actual itineraries are presented in Figures 3 and 4, and the improved itineraries of
Tables 12 and 13 obtained with the new parameters in Figures 5 and 6. In the case of problem
n = 147, Figures 4 and 6, the first and the last location of the route are marked in red.

M CataEaa e ke

Figure 3. Actual route of problem n = 29.
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Figure 5. Smallest route obtained for problem n = 29.
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Figure 6. Smallest route obtained for problem n = 147.

6. Conclusions

In this work, three waste collection itineraries have been improved in a municipality of Biscay
(Spain). The average itinerary of the reusable waste (n = 7 problem) has had a reduction of 2.78 km;
and the actual itineraries of organic waste (n = 29 problem) and restwaste (n = 147 problem) have
been reduced 5.98 km and 19.194 km, respectively. Taking into account the collection frequencies of
these three itineraries, this makes a total reduction of 7400 km per year, that is to say, a reduction of
the 40% of the total actual itineraries.

The truck has a continent of 13 tons and it has a compaction mechanism. Considering the following
average data for the truck: vehicle of 26 Tn, speed limit 30 km/h, with 270 CV minimum engine power
(1 CV =735.39, 875 W= 0.986 HP) and diesel fuel type and 29 L/100 km consumption [30]. This implies
a reduction of 5.58 Tn of CO, emissions, 0.43 Kg of CO, and 13.95 Kg of NOx per year. In addition
to these improvements, a direct cost savings of 7294€ was obtained (considering the direct cost per
kilometer calculation model recommended by the Ministry of Transportation, Logistics and Urban
Agenda of Spain [31]).

It is worth mentioning that the research team performed an additional validation for the developed
model. Specifically, the actual consumptions versus the ones proposed by the model were analyzed
at the two comparable routes (the ones the truck made before and after the optimization), obtaining
negligible differences. This double check on the results and the easiness of the solution have raised
the interest of other commonwealths, such as the one of Lea-Artibai. Thus, the short and midterm
future steps would be oriented to the application of the same procedure to other local communities,
incorporating other parameters such as the elevation information of the routes.
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Abbreviations

The following abbreviations are used in this manuscript:

GA Genetic Algorithm

VNS Variable Neighborhood Search
SDG Sustainable Development Goal
WCVRP  Waste Collection Vehicle Routing Problem
VRP Vehicle Routing Problem

TSP Travelling Salesman Problem

SA Simulated Annealing

TWL Threshold Waste Level

RFID Radio Frequency Identification

NP Nondeterministic Polynomial Time
SGA Simple Genetic Algorithm

Appendix A. Data
Table A1. Coordinates of the seven locations.

Location Latitude Longitude
(Decimal Degrees)  (Decimal Degrees)
1 43.391464 —2.987950
2 43.381466 —2.980558
3 43.380186 —2.979504
4 43.377695 —2.980651
5 43.378805 —2.982968
6 43.375206 —2.992354
7 43.374066 —2.990935

Table A2. Distances of the seven locations in kilometers.

From | To — 1 2 3 4 5 6 7
1 017 19 2.2 2.2 23 24
2 1.7 0 023 055 055 17 1.1
3 1.9 0.27 0 0.8 0.8 2 1.3
4 34 1.8 0.5 0 04 19 095
5 2 0.4 0.4 0.4 0 1.2 08
6 24 1.7 1.9 1.9 1.2 0 1
7 3.8 1.7 2 1.6 1.6 17 0
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Table A3. Coordinates of the 29 locations.

Location Latitude Longitude
(Decimal Degrees)  (Decimal Degrees)

1 43.391326 —2.988336
2 43.382808 —2.999907
3 43.379497 —2.992421
4 43.378769 —2.990454
5 43.381233 —2.989976
6 43.376588 —2.991162
7 43.376443 —2.990605
8 43.374686 —2.993086
9 43.377947 —2.987348
10 43.377956 —2.986103
11 43.379873 —2.985665
12 43.379364 —2.983446
13 43.378979 —2.982283
14 43.378942 —2.980098
15 43.380483 —2.982809
16 43.380490 —2.980981
17 43.380161 —2.979534
18 43.381520 —2.980494
19 43.382913 —2.979929
20 43.382040 —2.978645
21 43.382416 —2.977694
22 43.384166 —2.977144
23 43.381216 —2.976394
24 43.381311 —2.975217
25 43.379194 —2.977072
26 43.382615 —2.972005
27 43.374091 —2.979216
28 43.375154 —2.973282

29 43.384723 —2.984886
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Table A4. Distances of the 29 locations in kilometers.

From | To— 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 0 22 19 19 1.7 3 25 24 24 21 19 23 22 21 18 2 19 17 17 19 2 24 2 22 25 25 26 3 11
2 15 0 09 12 11 2 19 14 18 16 17 19 19 28 24 23 23 22 23 23 24 29 25 26 28 3 28 32 19
3 2 08 0 07 05 13 14 065 13 11 12 14 14 19 19 18 18 16 18 18 19 24 2 21 23 25 23 27 16
4 19 12 02 0 13 11 2 05 2 17 15 18 17 17 14 26 14 13 13 14 15 19 16 17 21 2 22 26 17
5 18 1.1 05 03 0 15 2 08 2 17 18 21 2 24 22 23 22 2 21 22 23 27 24 25 28 28 29 33 14
6
7
8

22 12 04 02512 0 09 16 09 065 075 1 09 15 14 14 14 12 13 14 15 2 15 17 19 21 18 22 19
31 24 14 12 24 23 0 17 09 1 11 14 13 17 18 18 19 16 17 18 18 23 19 21 19 35 16 2 29
24 14 065 05 15 026 12 0 12 09 1 12 12 17 17 16 17 15 16 16 17 22 18 19 21 23 21 25 22

9 28 21 11 09 21 2 045 14 O 07508 11 1 12 15 13 14 13 14 15 16 2 16 18 14 22 11 15 24
10 23 23 13 11 1.7 22 12 16 12 0 065 045 045 075 11 07 07 075 1 1 1 14 11 12 11 16 13 16 2
11 24 2 1 08 18 19 09 13 09 06 O 08 07 13 13 1 12 1 12 12 13 17 14 15 17 19 18 22 21
12 2 18 08 065 15 18 08 11 075 045 02 O 06 09 09 08 08 065 08 08 09 13 1 11 13 15 15 18 1.8
13 21 22 11 1 16 21 11 15 1 075 05 03 O 03 1 025028 065 09 08 09 13 1 11 07 14 08 12 19
14 39 38 21 2 33 31 15 25 17 14 12 1 09 0 26 09 1 24 25 25 25 26 14 21 04 21 11 15 36
15 1.7 21 11 09 12 2 11 14 1 07 045 09 09 09 O 08 065 045 05 06 07 11 075 09 13 12 14 18 15
16 8 21 11 1 12 2 11 14 1 07 05 06 05 04 019 0 035 021 05 04 05 08 05 07 08 1 1 13 15
17 19 24 15 13 14 27 14 18 14 1 08 1 08 08 05 07 0 028 045 027 035 075 04 055 12 08 13 17 17
18 1.7 22 12 1 11 24 12 15 11 075 055 07 055 05 024 04 019 0O 04 019 027 065 035 05 09 08 1 14 14
19 17 22 13 11 11 25 12 16 12 08 06 1 09 085 055 075 06 04 O 04 03 06 075 05 12 075 14 17 14
20 1.8 23 14 12 13 26 13 17 13 095 07 08 075 07 04 06 035 017 019 0 0.087 05 035 04 11 06 12 16 16
21 19 24 15 13 14 27 14 18 14 1 08 095 085 075 05 065 04 026 027 0087 0 04 024 03 12 05 13 17 17
22 2 25 16 14 15 28 15 19 15 12 1 13 12 12 08 11 095 055 035 04 03 0 045 05 16 07 17 21 18
23 2 25 16 14 14 28 15 19 15 12 08 1 09 08 055 075 05 035 075 035 026 05 0 017 1.8 05 14 18 17
24 21 26 17 15 15 29 16 2 16 13 1 11 1 1 07 08 06 045 055 04 03 045 011 O 14 04 15 19 18
25 38 36 2 18 32 29 14 23 16 16 17 08 075 06 24 08 08 22 24 22 21 22 19 18 0 17 095 13 35
26 24 3 2 19 19 32 2 23 19 16 13 15 14 13 1 12 09 075 08 06 05 06 05 04 17 0 18 22 22
27 35 34 17 16 29 27 11 2 13 14 12 1 09 075 22 09 09 19 21 21 22 27 23 24 09 26 0 075 32
28 39 31 21 2 33 3 15 24 17 18 16 14 13 11 26 13 13 23 25 25 26 31 27 28 13 23 065 0 3.6

29 13 1.7 1 08 06 2 14 13 14 11 08 12 11 1 075 09 08 065 065 08 09 13 1 11 14 14 16 2 0
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Table A5. Coordinates of the 147 locations.

Location Latitude Longitude
(Decimal Degrees)  (Decimal Degrees)

1 43.386866 —2.967695
2 43.385065 —2.969335
3 43.384389 —2.970417
4 43.385533 —2.970361
5 43.386875 —2.976296
6 43.385967 —2.975167
7 43.381338 —2.967009
8 43.382074 —2.969934
9 43.382585 —2.972301
10 43.381528 —2.972474
11 43.384161 —2.974454
12 43.383708 —2.975088
13 43.384144 —2.976702
14 43.384005 —2.976627
15 43.384120 —2.977955
16 43.383985 —2.977985
17 43.384236 —2.978082
18 43.383631 —2.978442
19 43.383199 —2.978524
20 43.383740 —2.979749
21 43.383519 —2.979418
22 43.383012 —2.979399
23 43.382807 —2.980273
24 43.383741 —2.980453
25 43.383798 —2.980842
26 43.383568 —2.980869
27 43.383510 —2.981054
28 43.382908 —2.980460
29 43.383270 —2.981680
30 43.382436 —2.981768
31 43.382340 —2.982082
32 43.382122 —2.982337
33 43.383011 —2.983951
34 43.382812 —2.983972
35 43.381533 —2.983377
36 43.381334 —2.983270
37 43.381829 —2.982122
38 43.382067 —2.986113
39 43.381568 —2.986365
40 43.381784 —2.988524
41 43.380237 —2.989935
42 43.381140 —2.989132
43 43.381249 —2.988139
44 43.381235 —2.989827
45 43.380718 —2.987577
46 43.380491 —2.987676

47 43.380686 —2.987247
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Table A5. Cont.

Location Latitude Longitude
(Decimal Degrees)  (Decimal Degrees)

48 43.380298 —2.986529
49 43.379818 —2.985593
50 43.379931 —2.985285
51 43.380432 —2.984580
52 43.380354 —2.984325
53 43.380485 —2.983974
54 43.380450 —2.983486
55 43.379426 —2.987135
56 43.379123 —2.986105
57 43.378931 —2.986235
58 43.378462 —2.986664
59 43.380934 —2.982889
60 43.380474 —2.982763
61 43.380781 —2.981613
62 43.379854 —2.981971
63 43.380253 —2.982916
64 43.379868 —2.982576
65 43.379837 —2.982973
66 43.379389 —2.983617
67 43.379319 —2.983048
68 43.378805 —2.982968
69 43.378960 —2.982608
70 43.379314 —2.981559
71 43.381485 —2.980560
72 43.382740 —2.980696
73 43.380752 —2.980763
74 43.380498 —2.981023
75 43.380236 —2.980826
76 43.380501 —2.979872
77 43.381449 —2.979324
78 43.381796 —2.979530
79 43.382100 —2.978779
80 43.382583 —2.978996
81 43.382971 —2.979162
82 43.382396 —2.977782
83 43.382645 —2.977287
84 43.381542 —2.978895
85 43.381407 —2.977533
86 43.381706 —2.976436
87 43.382816 —2.978206
88 43.381285 —2.976771
89 43.381425 —2.975376
90 43.381242 —2.975296
91 43.380864 —2.975344
92 43.380848 —2.976503
93 43.380832 —2.977200
94 43.380186 —2.979504
95 43.380019 —2.980074
96 43.379958 —2.980587
97 43.378765 —2.981322
98 43.377759 —2.982722
99 43.377512 —2.982654
100 43.377344 —2.982785
101 43.381321 —2.992360
102 43.380362 —2.993327
103 43.380051 —2.993379

104 43.381045 —2.994875
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Table A5. Cont.

Location Latitude Longitude
(Decimal Degrees)  (Decimal Degrees)
105 43.380561 —2.995728
106 43.379430 —2.993877
107 43.379093 —2.993990
108 43.379339 —2.992198
109 43.378773 —2.991203
110 43.378845 —2.990499
111 43.378604 —2.990441
112 43.378568 —2.990115
113 43.378646 —2.988672
114 43.378464 —2.987841
115 43.378462 —2.988852
116 43.378328 —2.987209
117 43.377763 —2.987006
118 43.377847 —2.986469
119 43.376388 —2.988905
120 43.376071 —2.988053
121 43.377174 —2.988653
122 43.377572 —2.988626
123 43.377533 —2.988873
124 43.377958 —2.988862
125 43.376747 —2.990108
126 43.375579 —2.989862
127 43.375428 —2.990021
128 43.375322 —2.990450
129 43.375529 —2.991228
130 43.374831 —2.991743
131 43.374468 —2.991131
132 43.373440 —2.991881
133 43.374343 —2.992137
134 43.378307 —2.991586
135 43.378739 —2.991224
136 43.378672 —2.990759
137 43.378758 —2.999239
138 43.378467 —2.990613
139 43.374214 —2.992418
140 43.374757 —2.993032
141 43.375189 —2.992432
142 43.375826 —2.994840
143 43.376289 —2.993976
144 43.377369 —2.992465
145 43.376535 —2.991381
146 43.376925 —2.991370
147 43.377435 —2.991360

The distances between the 147 locations can be found in [32].
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